
Advanced Function Presentation IBML

Application Programming Interface:
Programming Guide and Reference

S544-3872-02

Advanced Function Presentation IBML

Application Programming Interface:
Programming Guide and Reference

S544-3872-02

 Note!

Before using this information and the product it supports, be sure to read the general
information in “Notices” on page ix.

| Third Edition (February 1996)

| This edition applies to Print Services Facility/VM Version 2 Release 1 Modification 1, Print Services Facility/MVS
| Version 2 Release 2 Modification 0, and Print Services Facility/VSE Version 2 Release 2 Modification 1, and to all
| subsequent releases and modifications until otherwise indicated in new editions or technical newsletters. See the
| Summary of Changes for the changes made to this publication. Technical changes or additions to the text and
| i l lustrations are indicated by a vertical line to the left of the change. Be sure to use the correct edition for the

level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

The IBM Printing Systems Company welcomes your comments. For your convenience, a form for reader′s
comments is provided at the back of this publication. You may either send your comments by fax to
1-800-524-1519, or by mail to:

INFORMATION DEVELOPMENT
THE IBM PRINTING SYSTEMS COMPANY
DEPARTMENT H7FE BUILDING 003G
PO BOX 1900
BOULDER CO 80301-9191

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1993, 1994, 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices . ix
Programming Interface Information . ix
Trademarks . ix

About this Publication . xi
Who Should Read This Publication? . xi
How to Use this Publication . xi
How Is this Publication Organized? . xii

Summary of Changes . xiii

Chapter 1. Advanced Function Presentation Concepts 3
The Evolution of Printing and Presentation . 3
What Is Advanced Function Presentation? . 4

AFP Documents, Pages, and Resources . 4
How Is Printing with AFP Different? . 5

AFP Documents and Pages . 8
Data Objects and AFP Resource Objects . 11

AFP Data Objects . 11
AFP Resource Objects . 12

Indexing AFP Data for Viewing and Archiving 14

Chapter 2. Using AFP API . 17
Creating the Sample Document . 18
Getting Started . 23

Program Template . 24
Putting Data on the Page . 26

Character String . 28
Rule . 31
Resources . 33
Paragraphs . 36
Areas . 42
Tables . 48
Box . 62
Include Object . 63

Introducing Return Codes and Severity Codes 65
Setting Up and Defining the Environment for an AFP API Session 65

Setting Output Characteristics and Resource Libraries 66
| Buffering AFP API Output . 66

Defining Fonts and Using Them with AFP API 67
Setting Attributes (and Querying Them) . 73

Understanding States and Handles . 75
Understanding States . 75
Understanding Handles . 77

Indexing Data for Viewing and Archiving . 79
What′s Involved? . 79
What Are the Indexing Procedure Calls? . 79

Determining Page Breaks and Changing Page Layout 82
Specifying Presentation Options . 84

| Using AFP API in a CICS/ESA Environment . 85
| Defining the Temporary Storage Queue for AFP Output 85

 Copyright IBM Corp. 1993, 1994, 1996 iii

| Using IOCA and GOCA Objects . 85
| Creating VSAM Data Sets for Fonts and Page Segments 86
| Using the Error-Checking Routine in APQPERF 86
| Link-Editing Your Program with AFP API . 86
| Improving Performance . 87
| Coding Tips . 88
| Troubleshooting Your Program . 89
| Debugging Errors in Your Application Program 89
| Modifying the Error-Checking Routine Supplied with AFP API 90

Chapter 3. Procedure Call Reference . 93
The Application Programming Interface Program 93
Format of the AFP API Procedure Call Descriptions 98
 AFPBDOC (Begin Document) . 100
 AFPBFLD (Begin Field) . 104
 AFPBGRP (Begin Group) . 106
 AFPBPAG (Begin Page) . 108
 AFPBPAR (Begin Paragraph) . 112
 AFPBROW (Begin Row) . 116
 AFPBTBL (Begin Table) . 118
 AFPCARE (Create Area) . 121
 AFPDFLD (Define Field) . 124
 AFPDFNT (Define Font by Attributes) . 128
 AFPDROW (Define Row) . 131
 AFPEARE (End Area) . 134
 AFPEDOC (End Document) . 136
 AFPEFLD (End Field) . 137
 AFPEGRP (End Group) . 138
 AFPEND (End AFP API) . 140
 AFPEPAG (End Page) . 141
 AFPEPAR (End Paragraph) . 143
 AFPEROW (End Row) . 145
 AFPETBL (End Table) . 147

| AFPGBUF (Get Output Buffer) . 149
 AFPINIT (Initialize AFP API) . 151
 AFPINVM (Invoke Medium Map) . 152
 AFPIOBJ (Include Object) . 154
 AFPIOVL (Include Page Overlay) . 158
 AFPIPSG (Include Page Segment) . 160
 AFPPARE (Put Area) . 162
 AFPPBOX (Put Box) . 164
 AFPPCHS (Put Character String) . 166
 AFPPRUL (Put Rule) . 169
 AFPPTAG (Put Tag) . 171
 AFPPTXT (Put Text) . 173
 AFPQATT (Query Current Attributes) . 175
 AFPQPOS (Query Current Position) . 177

| AFPQSTR (Query Character String Size) . 179
 AFPSCLR (Set Color) . 181
 AFPSFNT (Set Font) . 183
 AFPSICS (Set Intercharacter Spacing) . 185
 AFPSLIB (Set Resource Library Names) . 187
 AFPSOUT (Set Output Characteristics) . 190
 AFPSPOS (Set Position) . 193
 AFPSRTH (Set Rule Thickness) . 195

iv Programming Guide and Reference

 AFPSUNI (Set Units) . 197
 AFPSWSP (Set Word Spacing) . 199
 AFPTERM (Terminate AFP API) . 201
 AFPXARE (Destroy Area) . 202

Appendix A. Font Library Indexing Program (FLIP) 203
Invoking the Font Library Index Program in VM 203
Invoking the Font Library Index Program in MVS 204

| Invoking the Font Library Index Program in a CICS/ESA Environment 205
Invoking the Font Library Index Program in VSE 205
Font Library Index Program Return Codes . 207

Appendix B. Return Codes and Severity Codes 209
AFP API Return Codes . 210

Appendix C. Shade Patterns and Types . 261

Appendix D. Creating an Executable Program under MVS 265
| MVS JCL for Compiling and Link-Editing a COBOL Application 265

MVS JCL for Running a COBOL Application 267
| MVS JCL for Compiling and Link-Editing a PL/1 Application 268
| MVS JCL for Running a PL/1 Application . 271
| MVS JCL for Compiling and Link-Editing a COBOL Application in a
| CICS/ESA Environment . 273

Appendix E. Creating an Executable Program under VM 275
| VM EXEC for Compiling a COBOL Application 275
| VM EXEC for Link-Editing and Running a COBOL Application 276
| VM EXEC for Compiling a PL/1 Application . 278
| VM EXEC for Link-Editing and Running a PL/1 Application 279

Appendix F. Creating an Executable Program under VSE 281
| VSE JCL for Compiling and Link-Editing a COBOL Application 281

VSE JCL for Running a COBOL Application . 283

Appendix G. AFP API Macros Used as Programming Interfaces 285
General-Use Programming Interfaces . 285

Appendix H. Related Publications . 287

Glossary . 291
Source Identifiers . 291
References . 291

Index . 301

Contents v

vi Programming Guide and Reference

Figures

 1. Bill ing Statement Produced using Line Data and a Page Definition . . . 6
 2. Bill ing Statement Produced using the AFP Data Stream 7
 3. Bill ing Statement Produced using AFP API 8
 4. Logical Page Coordinate System . 9
 5. Medium Coordinate System . 9
 6. Relationship between the Logical Page and Media Coordinate Systems 10
 7. Sample Document . 22
 8. Document Elements . 23
 9. Files Shipped with AFP API . 27
10. Character String . 28
11. Sample Rule . 31
12. Page Segment (Art) . 33
13. Paragraph . 36
14. Area Containing an Overlay . 42
15. Document Elements . 47
16. The Header Row of the Table . 48
17. One Row of the Table . 50
18. Sample Document . 57
19. Box . 62
20. Example of the IOCAMMR Data Object Shipped with PSF 63
21. Information Flow . 65

| 22. Information Flow Using Buffered Output 67
23. Character String . 68
24. Portion of a Sample of Font Library Index Program Listing 71
25. Hierarchy of AFP API States . 75
26. An Example Showing the Use of Handles 78
27. Sample Document with Different Page Layouts 82
28. Coding the Sample Document for Page Breaks 83
29. The Hierarchy of States in AFP API . 93
30. Format of the AFPBDOC Procedure Call 100
31. Page Orientation of 0° . 101
32. Page Orientation of 90° . 102
33. Format of the AFPBFLD Procedure Call 104
34. Format of the AFPBGRP Procedure Call 106
35. Format of the AFPBPAG Procedure Call 108
36. Page Orientation of 0° . 109
37. Page Orientation of 90° . 110
38. Format of the AFPBPAR Procedure Call 112
39. Format of the AFPBROW Procedure Call 116
40. Format of the AFPBTBL Procedure Call 118
41. Format of the AFPCARE Procedure Call 121
42. Format of the AFPDFLD Procedure Call 124
43. Format of the AFPDFNT Procedure Call 128
44. Format of the AFPDROW Procedure Call 131
45. Format of the AFPEARE Procedure Call 134
46. Format of the AFPEDOC Procedure Call 136
47. Format of the AFPEFLD Procedure Call 137
48. Format of the AFPEGRP Procedure Call 138
49. Format of the AFPEND Procedure Call 140
50. Format of the AFPEPAG Procedure Call 141
51. Format of the AFPEPAR Procedure Call 143

 Copyright IBM Corp. 1993, 1994, 1996 vii

52. Format of the AFPEROW Procedure Call 145
53. Format of the AFPETBL Procedure Call 147

| 54. Format of the AFPGBUF Procedure Call 149
55. Format of the AFPINIT Procedure Call 151
56. Format of the AFPINVM Procedure Call 152
57. Format of the AFPIOJB Procedure Call 155
58. Format of the AFPIOVL Procedure Call 158
59. Format of the AFPIPSG Procedure Call 160
60. Format of the AFPPARE Procedure Call 162
61. Format of the AFPPBOX Procedure Call 164
62. Format of the AFPPCHS Procedure Call 166
63. Format of the AFPPRUL Procedure Call 169
64. Format of the AFPPTAG Procedure Call 171
65. Format of the AFPPTXT Procedure Call 173
66. Format of the AFPQATT Procedure Call 175
67. Format of the AFPQPOS Procedure Call 177

| 68. Format of the AFPQSTR Procedure Call 179
69. Format of the AFPSCLR Procedure Call 181
70. Format of the AFPSFNT Procedure Call 183
71. Format of the AFPSICS Procedure Call 185
72. Format of the AFPSLIB Procedure Call 187
73. Format of the AFPSOUT Procedure Call 190
74. Format of the AFPSPOS Procedure Call 193
75. Format of the AFPSRTH Procedure Call 195
76. Format of the AFPSUNI Procedure Call 197
77. Format of the AFPSWSP Procedure Call 199
78. Format of the AFPTERM Procedure Call 201
79. Format of the AFPXARE Procedure Call 202
80. Shade Pattern—STANDARD . 262
81. Shade Pattern—SCREEN . 263

| 82. JCL to Compile and Link-Edit a COBOL Application in an MVS System 265
83. JCL to Execute a COBOL Program in an MVS System 267

| 84. JCL to Compile and Link-Edit a PL/1 Application in an MVS System . 268
| 85. JCL to Execute a PL/1 Program in an MVS System 271
| 86. JCL to Create an Executable Program in a CICS/ESA Environment . . 273
| 87. VM EXEC to Compile a COBOL Application 275
| 88. VM EXEC to Link-Edit a COBOL Application and Run it 276
| 89. VM EXEC to Compile a PL/1 Application 278
| 90. VM EXEC to Link-Edit a PL/1 Application and Run it 279

91. JCL to Compile and Link-Edit a COBOL Application in a VSE System . 281
92. JCL to Run a COBOL Application in a VSE System 283

viii Programming Guide and Reference

Notices

References in this publication to products or services of IBM do not suggest or
imply that IBM will make them available in all countries where IBM does
business or that only products or services of IBM may be used. Noninfringing
equivalents can be substituted, but the user must verify that such substitutes,
unless expressly designated by IBM, work correctly. No license, expressed or
implied, to patents or copyrights of IBM is granted by furnishing this document.

Programming Interface Information
This publication is intended to help the customer program AFP applications with
high-level programming languages, such as COBOL. This publication documents
General-Use Programming Interface and Associated Guidance Information
provided by the AFP Application Programming Interface.

General-Use Programming Interfaces allow the customer to write programs that
obtain the services of AFP API.

Trademarks
The following terms appear in this publication and are trademarks or registered
trademarks of the IBM Corporation:

Advanced Function Presentation
AFP
BookManager
C/370
CICS
CICS/ESA
GDDM
IBM
Print Services Facility
PSF
S/370
System/370

The following terms appear in this publication and are trademarks of other
companies:

ElixirForm for AFP and ElixirImage for AFP are trademarks of Elixir
Technologies Corporation.
ISIS and FormsDesigner are trademarks of ISIS Information Systems.
Windows is a trademark of the Microsoft Corporation.

The examples in this publication are for purposes of illustration only. Any
resemblance to existing businesses or people is unintentional.

 Copyright IBM Corp. 1993, 1994, 1996 ix

x Programming Guide and Reference

About this Publication

This publication describes the Advanced Function Presentation Application
Programming Interface (AFP API) product and how to use it.

Who Should Read This Publication?
This publication is for COBOL and PL/1 application programmers who want to
use AFP API to:

• Develop new Advanced Function Presentation (AFP) applications
• Revise existing applications so that they can be migrated to AFP
• Insert indexing codes into a document for online viewing

The programming language you can use depends on the operating system:

• On the MVS and VM operating systems, you can use either the PL/1 or the
COBOL programming language.

| • On the MVS operating system in a CICS/ESA environment, you can use the
| COBOL programming language.

• On the VSE operating system, you can use the COBOL programming
language.

How to Use this Publication
Before reading about AFP API and its code, you need general knowledge about
Advanced Function Presentation concepts and terminology. Read Chapter 1,
“Advanced Function Presentation Concepts” to familiarize yourself with AFP.

If you are familiar with AFP, turn to Chapter 2, “Using AFP API” for a
step-by-step description of AFP API and an explanation of how to use it.

To determine whether you want to use AFP API, see the following sections:

• “How Is Printing with AFP Different?” on page 5
• “AFP with AFP API” on page 8

 Copyright IBM Corp. 1993, 1994, 1996 xi

How Is this Publication Organized?
This publication introduces key AFP concepts and describes the concepts
needed to use AFP API. The publication uses the code for a sample document
shipped with the product to illustrate AFP API concepts.

The publication contains the following information:

• Chapter 1, “Advanced Function Presentation Concepts,” which introduces
key concepts of AFP

• Chapter 2, “Using AFP API,” which introduces the concepts needed to use
AFP API

• Chapter 3, “Procedure Call Reference,” which contains reference
information for all AFP API calls

• Appendix A, “Font Library Indexing Program (FLIP),” which contains
information about the fonts on your system

• Appendix B, “Return Codes and Severity Codes,” which contains the return
codes and severity codes issued by AFP API

• Appendix C, “Shade Patterns and Types,” which contains examples of the
shading patterns available for use with AFP API

• Appendix D, “Creating an Executable Program under MVS,” which contains
information about printing AFP API output using PSF/MVS

• Appendix E, “Creating an Executable Program under VM,” which contains
information about printing AFP API output using PSF/VM

• Appendix F, “Creating an Executable Program under VSE,” which contains
information about printing AFP API output using PSF/VSE

• Appendix G, “AFP API Macros Used as Programming Interfaces,” which
contains a list of macros that are General-Use Programming Interfaces of
AFP API

• Appendix H, “Related Publications,” which contains lists of publications that
might be helpful when you are using AFP API

xii Programming Guide and Reference

Summary of Changes

In addition to editorial changes, the following changes are included in this
edition of the publication, S544-3872-02:

• Changes documented in the Print Services Facility/MVS: Update Guide,
G544-3984-00, are incorporated.

• Support for output buffering is added. Changes include:

− The AFPSOUT (Set Output Characteristics) procedure call allows you to
request that AFP API write output to a buffer in your program.

− AFPSOUT also allows you to request that AFP API discard the output
instead of returning it to your program.

− The new AFPGBUF (Get Output Buffer) procedure call returns the AFP
buffered output to your application program.

− New codes 280, 281, and 282 are returned.

• Support for the Customer Information Control System (CICS/ESA) running
under the MVS operating system is added. Changes include:

− The Set Output Characteristics procedure call allows you to name the
CICS/ESA temporary storage queue for the AFP output.

− The Include Object procedure call is not supported.

− The Set Resource Library Names procedure call is ignored.

− Fonts and page segments must be in VSAM data sets defined to
CICS/ESA.

− Sample JCL to compile and link edit a CICS/ESA program with AFP API
is provided.

• The new Query Character String Size procedure call allows you to determine
the size of the area required to print a character string in the current font.
New codes 284 and 285 are returned.

• The Set Position procedure call now allows your application program to
place data in any order on the page.

• You can now issue the Define Row and Define Field procedure calls only in
the document state. You can no longer issue these calls in the page or area
state.

• You can issue the Put Area procedure call only in the page state, not in the
area state.

• You must set the Concatenation parameter to TRU on the first Put Text
procedure call in a field or paragraph.

• New conditions for issuing return codes 0071, 0217, and 0218 are added.

• All fonts are provided in the IBM Font Collection product and are no longer
shipped with PSF.

• The trace function is no longer supported on the Initialize AFP procedure
call.

• You must include new AFP API modules when link-editing your API
application. Also, you no longer need the C/370 libraries when link-editing or
running your COBOL programs.

 Copyright IBM Corp. 1993, 1994, 1996 xiii

• Tips to improve performance, code your program, and debug your program
are included.

• Return codes are now listed with the description of each procedure call.

• Sample JCL to compile, link-edit, and run your PL/1 programs is included.

Technical changes to the text made in this edition are indicated by a vertical line
to the left of the changes.

The following changes were included in the previous edition of this publication,
S544-3872-01:

• Support for the VSE operating system and the COBOL programming
language was added.

• A description of the VM search order was added to the Set Resource Library
Names procedure call.

• A new condition for issuing return code 0217 was added: The default coded
font was not found in the font library.

• The descriptions of the Include Object POINT-TO-PEL and POINT-TO-PEL with
DOUBLE DOT options was changed.

• An appendix containing the macros provided as General-Use Programming
Interfaces was added.

xiv Programming Guide and Reference

Chapter 1. Advanced Function Presentation Concepts

Chapter 1. Advanced Function Presentation Concepts 3
The Evolution of Printing and Presentation . 3
What Is Advanced Function Presentation? . 4

AFP Documents, Pages, and Resources . 4
How Is Printing with AFP Different? . 5

AFP Before AFP API . 7
AFP with AFP API . 8

AFP Documents and Pages . 8
Data Objects and AFP Resource Objects . 11

AFP Data Objects . 11
AFP Resource Objects . 12

Fonts . 12
Page Segments . 12
Overlays . 13
Form Definitions . 13
Page Definitions . 13

Indexing AFP Data for Viewing and Archiving 14

 Copyright IBM Corp. 1993, 1994, 1996 1

2 Programming Guide and Reference

Chapter 1. Advanced Function Presentation Concepts

Please Read

This chapter contains Advanced Function Presentation concepts and a
description about indexing data for viewing and archiving. Read this chapter
first if you are unfamiliar with AFP, because to use AFP API, you need to
understand a few things about AFP.

Even if you are familiar with AFP, read “Indexing AFP Data for Viewing and
Archiving” on page 14 to see whether indexing is something you can use,
then skip the rest of this chapter and turn to Chapter 2, “Using AFP API.”

This chapter describes:

• How printing has evolved into today′s printing and presentation
• AFP concepts
• AFP documents, pages, and resources
• How AFP printing is different from line-oriented printing
• Resource objects
• Data objects
• How to index AFP data for viewing and archiving

When you finish this chapter, you should be ready to use Chapter 2, “Using AFP
API” and the rest of this publication and the other AFP API publications to
produce AFP output from your COBOL or PL/1 applications.

The Evolution of Printing and Presentation
Printing has evolved from slow, fifteenth-century moveable-type processes to
today′s high-speed, high-quality, computer-driven printers. Today′s print
technology enables you to combine the high quality of Renaissance printing with
the speed and convenience of computer-generated data. Now, in addition to
printing lines of text, applications can print data that includes a variety of output
such as logos, pie charts, graphs, signatures, and bar codes. Programs can
print these types of data today, because AFP printers can place data at any
addressable point on the page.

Although all-points-addressability (APA) produces high-quality output, it
dramatically increases the complexity of formatting the data for printing. Using
early printing technologies, programmers placed each line of data. With APA
printers, programmers can place each pel (an abbreviation for picture element)
of data, and many printers can address over 50 000 pels in each square inch of
paper! Before the availability of APA printing, programmers needed to set the
spacing between individual lines of text; with APA, programmers can position
multiple types of data anywhere on the page.

Moreover, advances in the resolution of computer displays have enabled an
evolution from printing to online viewing of information for some applications.
Data formatted for APA printing can also be presented on a display, with the
same fidelity as the printed output. Because distributing information in softcopy
form is often less expensive than distributing printed output, viewing is emerging
as an alternative to printing for information presentation. However, to make

 Copyright IBM Corp. 1993, 1994, 1996 3

information retrieval as easy to perform with softcopy data as it is with hardcopy,
the data must include indexing information comparable to the table of contents
and the index found in printed output. Inserting that indexing information in the
softcopy output is thus a new requirement for application programmers to
consider.

AFP API is a tool that helps application programmers manage the complexity of
both placing data for APA printing and including indexing information in viewable
output. With AFP API, you don′ t need to understand the format of AFP data used
for either hardcopy or softcopy presentation. Instead, you issue calls from within
your application program to access AFP API functions to generate AFP-format
output. With AFP API, you can integrate and manipulate other application data,
and you can include and reference objects, such as artwork, within a document.
Language bindings exist for using AFP API with COBOL and PL/1 programs in
the MVS and VM operating systems and with COBOL in the VSE operating
system.

Before learning more about AFP API, read the rest of this chapter to understand
AFP.

What Is Advanced Function Presentation?
Advanced Function Presentation (AFP) is a collection of hardware and software
products that generates high-quality presentation output from data-processing
systems, making computer output more readable and attractive. AFP is
implemented with an architected data stream (the AFP data stream) consisting of
structured fields of presentation information. Structured fields are
self-identifying, variable-length records containing control information and data.
The two major elements in the AFP data stream are the document and several
types of resources.

AFP Documents, Pages, and Resources
An AFP document consists of data that has been formatted into a series of one
or more AFP data stream pages. Each page contains the actual output text
characters for that page, as well as information about the placement of each
character. In addition to text, the following types of data can be included on a
page:

• Graphics and images (line art, pie charts, business graphics, and scanned
data such as photographs or facsimile)

• Logos
• Signatures
• Lines (rules) and boxes
• Bar code data
• Indexing information that is ignored when the AFP document is printed but

that is useful for navigating through a displayed document

Programs can store all these types of data (except indexing information) outside
the document and can use the types of data in multiple pages within a document
or in multiple applications. These external files are called AFP resources, which
are described more fully in “Data Objects and AFP Resource Objects” on
page 11.

4 Programming Guide and Reference

How Is Printing with AFP Different?
Before AFP and APA printers, applications generated output for printing one line
at a time; this output was called line data. The output lines were created in the
order in which they were to appear on the printed page. Limited positioning
controls called carriage control characters and channel codes could be used to
place output lines on the paper. The application used carriage control
characters to space down 0, 1, 2, or 3 lines on the form, allowing for overstriking
(to create the effect of a bold font) and for single-, double-, or triple-spacing
between lines. The application used channel codes to skip to 1 of 12 different
locations on the form, including the top of the form to start a new form.

Interpreting carriage control characters and channel codes included in line data
was determined outside the application program. For the early impact line
printers, carriage control tapes were punched and loaded on the carriage (form
transport) mechanism of the printer. Holes in the tapes corresponded to the
locations on the carriage at which the form would be positioned when a carriage
control character or channel code was encountered in the print data. Nonimpact
line printers (such as the IBM 3800 Printing Subsystem Model 1) provided a
software equivalent of the carriage control tape called the forms control buffer
(FCB).

With AFP, programs can use an external file called a page definition to map the
positioning controls to locations on the form, with the additional flexibility of
addressing more locations and using such enhancements as overlays and
typographic fonts. Figure 1 on page 6 shows the application output for a typical
billing statement using line data formatted with a page definition.

Chapter 1. Advanced Function Presentation Concepts 5

Figure 1. Bill ing Statement Produced using Line Data and a Page Definition. Notice the unused rows in the table
and the use of two sheets of paper.

The page definition also permits applications to format output without the
carriage control characters and channel codes. This is because the page
definition can place individual parts of the records (fields of data) at any location
on the form. For example, an application can produce a single record containing
the customer identification information and another record for each customer
transaction. The page definition can format the customer identification
information into an address label format and format each transaction into
columns in a tabular arrangement.

With this use of the page definition, the program can format the printed output
separately from generating the output data. However, the functions provided in
the page definition require that the application generate uniform data for each
customer. In the above example, if the customer transactions are of two
different types (such as deposits and withdrawals), and if each customer has a
different number of transactions of each type, coding the page definition to stop
formatting deposits and start formatting withdrawals at the right time is not easy.

6 Programming Guide and Reference

Also, the page definition does not support functions such as flowing text into
paragraphs, centering text, or drawing a box around a variable amount of data.
To obtain these AFP functions and to handle output, such as the withdrawal and
deposit example, you must change the application to produce the AFP data
stream.

AFP Before AFP API
Changing applications to produce the AFP data stream to generate AFP output
used to require you to learn the rather complex syntax and semantics of the AFP
data stream. For example, the statement shown in Figure 1 on page 6 contains
unused rows and requires two sheets to present all the output. As shown in
Figure 2, you can eliminate the unused rows, and you can place the data on a
single sheet by producing AFP data stream output from the application.

Figure 2. Bill ing Statement Produced using the AFP Data Stream

Chapter 1. Advanced Function Presentation Concepts 7

AFP with AFP API
With AFP API, you can use procedures called using the COBOL or PL/1
programming languages to produce the AFP data stream, instead of using page
definitions or complicated AFP data stream coding. On the MVS and VM
operating systems, you can use either COBOL or PL/1; on the VSE operating

| system, you can use COBOL. On the MVS operating system, you can write
| COBOL programs that run under the Customer Information Control System
| (CICS). Figure 3 shows a portion of AFP API coding to produce the same output

for the billing statement shown in Figure 2 on page 7.

Figure 3. Bill ing Statement Produced using AFP API. The output is the same as in Figure 2 on page 7, but the
AFP API code to generate the AFP data stream is much simpler.

AFP Documents and Pages
An AFP document consists of one or more pages of AFP data. An AFP page is
also called a logical page because it is not bound to a particular physical entity
such as a certain form or display. The logical page is the electronic
representation of the page that will ultimately be presented.

The logical page has dimensions and a coordinate system similar to that of a
physical form or medium. The logical page coordinate system is referred to as
the Xp, Yp coordinate system in the AFP data stream. The logical page
coordinate system is shown in Figure 4 on page 9.

8 Programming Guide and Reference

Figure 4. Logical Page Coordinate System

The origin of this system (Xp=0, Yp=0) is always defined at the top-left corner
of the logical page, at the logical page origin. Positive Xp values begin at the
origin and increase along the top of the logical page from left to right. Positive
Yp values begin at the origin and increase along the left side of the logical page
from top to bottom. The size and units of measurement for each logical page of
AFP data are specified within the page itself.

The physical medium, whether it is a form or display, also has dimensions and a
coordinate system. The medium coordinate system is referred to as the Xm, Ym
coordinate system in the AFP data stream. The medium coordinate system is
shown in Figure 5.

Figure 5. Medium Coordinate System

The origin of this system (Xm=0, Ym=0) is always defined at the top-left corner
of the medium at the media origin. Positive Xm values begin at the origin and
increase along the top of the medium from left to right. Positive Ym values
begin at the origin and increase along the left side of the medium from top to
bottom. The media origin used by a printer can be affected by how forms are
fed through the printer. To determine the media origin used by your printer,
refer to Advanced Function Presentation: Printer Information.

Chapter 1. Advanced Function Presentation Concepts 9

In AFP, data is positioned on a logical page relative to the logical page origin.
The logical page is positioned on the medium by aligning the top of the logical
page with the top of the medium and positioning the logical page origin relative
to the media origin. That is, the logical page does not rotate; the objects and
text within the logical page rotate relative to the logical page origin. Figure 6
shows the relationship between the coordinate systems. This relative location,
often called the logical page offset, is contained in an AFP resource called the
form definition. The form definition used to present a document is specified
when the document is submitted for printing or opened for viewing.

Figure 6. Relationship between the Logical Page and Media Coordinate Systems

Each logical page does not need to contain within itself all the data that will
ultimately be presented on a medium. The page can refer to external files (AFP
resources), which AFP presentation programs can retrieve when the document is
submitted for printing or opened for viewing. The next section describes these
AFP resources.

10 Programming Guide and Reference

Data Objects and AFP Resource Objects
An AFP data object contains a single type of presentation data; that is,
presentation text, vector graphics, raster images, or bar codes, plus all the
controls required to present the data. Applications can generate some types of
data as AFP data objects and then include the data objects in their output.
Programs can format each data object separately from any other data object on
a page, and programs can present multiple objects of the same or different types
in any sequence on a page.

An AFP resource object is a collection of presentation instructions and data
consisting entirely of AFP structured fields. Resource objects are referenced by
name in the presentation data stream and can be stored in system libraries so
that multiple applications and the print server can use them. Some types of
resource objects can also be included (inline) in the presentation file, so that
library access is not required when printing or viewing the file.

AFP Data Objects
The AFP data objects supported by AFP API are:

• Graphics objects (in Graphics Object Content Architecture or GOCA format)
that contain the type of vectored data used for line art drawing

• Image objects (in Image Object Content Architecture or IOCA format) that
contain raster data such as that produced by a facsimile or scanning device

Unlike resources such as overlays and page segments, AFP API can manipulate
image and graphics objects to change the size and orientation of the object on
the presentation medium.

For more information about each type of data object, refer to the architecture
publication for each object type listed in Appendix H, “Related Publications.”

Chapter 1. Advanced Function Presentation Concepts 11

AFP Resource Objects
The five types of AFP resource objects are:

• Fonts , which are collections of graphics characters of a given size and style
used to present text.

• Page segments , which are collections of image graphics or text data objects
that can be presented at any location on a page. Examples of items that can
be page segments include logos, signatures, bar charts, and engineering
drawings.

• Overlays , which are collections of predefined data objects, such as boxes,
lines, shading, text, logos, and graphics, that can be merged with application
data for presentation. Overlays are often used as electronic forms.

• Form definitions , which contain information that defines the presentation of
the page on the medium, such as where the page should be placed on the
medium and whether the data should be printed on one or both sides of the
paper.

• Page definitions , which contain information that formats line data into AFP
pages.

The following sections provide additional information about using these
resources.

Fonts
Fonts present text characters requested for presentation in a page, an overlay,
or a page segment. Local font identifiers are used in the data stream to select
fonts. These identifiers are equated to the resource files containing the actual
font data. For more information about AFP fonts and how to use them, see
“Defining Fonts and Using Them with AFP API” on page 67.

Page Segments
Page segments can contain a mixture of text, image objects, and graphics data
objects and can be placed anywhere on a presentation page. Programs can
request page segments for presentation in a page or overlay. Because page
segments inherit the environment (such as the local font identifiers) defined by
the page or overlay that includes them, you can think of them as pieces of
pages. Page segments are used for logos, signatures, and boilerplate.

12 Programming Guide and Reference

Overlays
Overlays can contain a mixture of text, image, graphics, and bar code data
objects and also can include page segments. Unlike page segments, overlays
contain all of the environment information required for their presentation.

AFP defines two types of overlays: medium overlays and page overlays. Medium
overlays are referenced by a form definition and are positioned on the medium
relative to the media origin. Page overlays are referenced by a page and are
positioned on the medium relative to the page origin.

Form Definitions
Form definitions contain instructions about how to map pages of data to a
physical medium. A form definition can request that a medium overlay be
presented on the medium with the page of data. You must use a form definition
whenever you print or display an AFP document.

Each form definition contains one or more copy groups, which can be changed
between pages of a document to dynamically select the form-mapping controls
for subsequent pages. Using copy groups (also called medium maps), the
application can specify the following form-mapping controls:

• Position the logical page on the physical medium

• Print on both sides of a sheet of paper (duplex printing)

• Include medium overlays

• Select the number of copies of any page of data (to replace traditional
multipart forms)

• Suppress selected fields (to replace the use of spot carbons)

• Specify offset stacking of cut-sheet output or marking the edges of
continuous-forms output

• Select among input bins on a printer

• Select the level of print quality

• Specify the page presentation (portrait or landscape)

Page Definitions
Page definitions contain instructions for formatting data intended for a line
printer into pages that can be printed on an AFP printer. A page definition is
used whenever you print a line-data file on an AFP printer, but a page definition
is not needed when you print or display an AFP file. With AFP API, page
definitions are not necessary, because AFP API produces an AFP file rather than
a line-data file. The information contained in the page definition is already
contained in the output that AFP API produces from the application.

Chapter 1. Advanced Function Presentation Concepts 13

Indexing AFP Data for Viewing and Archiving
As described in “The Evolution of Printing and Presentation” on page 3,
documents designed for viewing on a workstation should contain indexing
information to facilitate navigating through the document. Archival and retrieval
applications can use indexing information to identify separate parts of a large
print file for saving or restoring.

Using indexing, you can logically segment a large print file into
uniquely-identifiable “logical documents.” Bank-statement applications, for
example, can create large print files, with each print file containing thousands of
individual statements. Each of these statements can be thought of as a “logical
document” and can be uniquely identified by an attribute such as an account
number. Other attributes, such as date and type of account, can further identify
a specific customer statement.

AFP API provides procedure calls that generate indexing information, with which
you can:

• Define boundaries of logical documents (called groups) in the AFP API output
document, for example, the start and end of the statement for each customer
in the file containing many customer statements.

• Identify a group of pages with an indexing tag containing an attribute name
and value, for example, an Account Number attribute associated with the
account number of each customer. This type of tag is called a group-level
tag because it is associated with a group of pages.

• Identify a single page with a tag containing an indexing attribute name-value
pair, for example, a Total Charges attribute associated with the charges for
each specific customer. This type of tag is called a page-level tag because it
is associated with a single page.

Using AFP Workbench for Windows, the Viewer Application, you can locate a
group of pages using the indexing attribute names and values defined for each
group. You can navigate through a large file to locate a single customer
statement more quickly than by performing a string search on, for example, a
customer ′s name. For more information about using groups for navigation in
AFP Workbench for Windows, the Viewer Application, refer to the help screens
provided with the Viewer application.

For the Viewer application or an archival and retrieval program to take full
advantage of the indexing information in a document, you can create an AFP
index object file that identifies the location of all of the groups and tags in the
document. You cannot create an index object file with AFP API, but you can use
AFP Conversion and Indexing Facility (ACIF) to create it from an indexed
document created by AFP API. ACIF is provided with PSF/MVS Version 2.1.1,
PSF/VM Version 2.1.1, and PSF/VSE Version 2.2.1. For more information about
creating an index object file, refer to AFP Conversion and Indexing Facility:
Application Programming Guide.

“Indexing Data for Viewing and Archiving” on page 79 describes the AFP API
procedure calls to use to insert indexing information in your output document.

14 Programming Guide and Reference

Chapter 2. Using AFP API

Chapter 2. Using AFP API . 17
Creating the Sample Document . 18
Getting Started . 23

Program Template . 24
Putting Data on the Page . 26

Character String . 28
Rule . 31
Resources . 33

More About Resources . 34
Paragraphs . 36

More About Paragraphs . 40
Areas . 42

More About Areas . 47
Tables . 48

More About Tables . 58
Step 1. Sketch the Row . 59
Step 2. Define all of the Fields in the Row 59
Step 3. Form a Grid . 59
Step 4. Determine the Number of Columns and Their Widths 59
Step 5. Determine the Number Subrows and Their Depths 60
Step 6. Determine the Arrangement of Each Field Within Each Subrow 60
Step 7. Define The Row . 60

Box . 62
Include Object . 63

Introducing Return Codes and Severity Codes 65
Setting Up and Defining the Environment for an AFP API Session 65

Setting Output Characteristics and Resource Libraries 66
| Buffering AFP API Output . 66

Defining Fonts and Using Them with AFP API 67
Selecting the Font You Want . 68
Font Library Indexing Program . 69

Setting Attributes (and Querying Them) . 73
Understanding States and Handles . 75

Understanding States . 75
Understanding Handles . 77

Indexing Data for Viewing and Archiving . 79
What′s Involved? . 79
What Are the Indexing Procedure Calls? . 79

Determining Page Breaks and Changing Page Layout 82
Specifying Presentation Options . 84

| Using AFP API in a CICS/ESA Environment . 85
| Defining the Temporary Storage Queue for AFP Output 85
| Using IOCA and GOCA Objects . 85
| Creating VSAM Data Sets for Fonts and Page Segments 86
| Using the Error-Checking Routine in APQPERF 86
| Link-Editing Your Program with AFP API . 86
| Improving Performance . 87
| Coding Tips . 88
| Troubleshooting Your Program . 89
| Debugging Errors in Your Application Program 89
| Modifying the Error-Checking Routine Supplied with AFP API 90

 Copyright IBM Corp. 1993, 1994, 1996 15

16 Programming Guide and Reference

Chapter 2. Using AFP API

General-Use Programming Interfaces

The macros identified in this chapter in Figure 9 on page 27 are provided as
programming interfaces for customers by AFP API.

Warning: Do not use as programming interfaces any AFP API macros other than
those identified in this chapter.

End of General-Use Programming Interfaces

These macros are listed separately in Appendix G, “AFP API Macros Used as
Programming Interfaces.”

Please Read

If you are not familiar with Advanced Function Presentation, read Chapter 1,
“Advanced Function Presentation Concepts” before reading this chapter.
You must understand AFP concepts before you can understand and use AFP
API.

This chapter describes the components of AFP API and how they work together,
using an example as a model. The publication uses COBOL to illustrate the
code for the example. PL/1 programmers can translate the COBOL explanations
and code to PL/1 language bindings to run the samples.1

The sequence of this chapter is as follows:

 1. First is a “ template” with key initialization calls. You can insert code into the
template to put data on the page. The actual initialization code for the
sample includes calls for defining the environment, which will be described
later in the chapter.

 2. Next is the code for putting various types of data on the page; that is, the
data to insert into the template. In this publication, the term page means
logical page, not the physical medium or sheet of paper, unless otherwise
noted.

 3. Finally, the chapter describes the initialization calls for defining the
environment (such as setting up output characteristics and defining fonts)
and describes handles and states.

| 1 The PL/1 programming language is supported only on the VM and MVS operating systems. PL/1 is not supported in a
| CICS/ESA environment.

 Copyright IBM Corp. 1993, 1994, 1996 17

The files that contain the COBOL and PL/1 source code for the example used in
this chapter are shipped with the product. The source code for the examples are
printed in AFP Application Programming Interface: COBOL Language Reference
and AFP Application Programming Interface: PL/1 Language Reference. You can
insert the code for various parts of the example (character string, rule,
paragraph, area, and table) into the template in “Getting Started” on page 23
and print each part. You can put the code for all of the parts in the template and
print the entire example. The code shown uses copy files that contain constants
and variables. These copy files are provided with AFP API.

When you finish studying this chapter, you should be ready to follow the source
code in AFP Application Programming Interface: COBOL Language Reference and
AFP Application Programming Interface: PL/1 Language Reference and modify it
to suit your needs.

Creating the Sample Document
The following sections describe the tasks to create the sample document shown
on the next three pages. The sample document has three pages, but a
document can have many pages.

18 Programming Guide and Reference

Chapter 2. Using AFP API 19

20 Programming Guide and Reference

Chapter 2. Using AFP API 21

Sample Document

Figure 7 shows where various parts of the first two pages of the sample are
described.

�1� Character string. See “Character String” on page 28.
�2� Rule. See “Ru le ” on page 31.
�3� Page segment. See “Resources” on page 33.
�4� Paragraph. See “Paragraphs” on page 36.
�5� Overlay and Area. See “Areas” on page 42.
�6� Table. See “Tables” on page 48.
�7� Page segment, new page layout.
See “Determining Page Breaks and Changing Page Layout” on page 82.
�8� Continue data after page break.
See “Determining Page Breaks and Changing Page Layout” on page 82.
�9� Footer. See “Determining Page Breaks and Changing Page Layout” on page 82.

Figure 7. Sample Document

22 Programming Guide and Reference

Getting Started

Documents contain pages, which can contain the elements shown in Figure 8, all
of which are optional. “AFP Documents and Pages” on page 8 describes the
components of a document in more detail.

Figure 8. Document Elements. This is a conceptual drawing; it does not reflect the
layout of the sample document.

Getting Started
The approach to this sample (or any document) is:

 1. Initialize AFP API to begin the AFP API session. The AFP API session
initialization must successfully complete before you invoke any other call .

 2. If necessary, override the default environment of the AFP API session.
“Setting Up and Defining the Environment for an AFP API Session” on
page 65 describes calls for doing this.

 3. Begin the document.

| 4. If necessary, define fonts. “Defining Fonts and Using Them with AFP API” on
| page 67 describes calls for defining fonts.

| 5. If necessary, define table rows and fields. “Tables” on page 48 describes
| calls for defining table rows and fields.

 6. Begin the page.

a. Specify where to put data on the page.

b. Specify the attributes of the data.

 c. Put data on the page. In the example, data consists of strings of text (the
name and address), a horizontal rule, a paragraph, a page segment
(artwork), an overlay (the shaded summary in the upper right of the
sample), an area (includes the overlay), and a table. Start with the
character string.

d. Repeat steps a through c until the page is complete.

 7. End the page.

Chapter 2. Using AFP API 23

Program Template

| 8. If you requested that AFP API write the output to a buffer, retrieve the output
| for the page. “Buffering AFP API Output” on page 66 describes calls for
| retrieving buffered output.

| 9. Begin a new page. Repeat steps 6− 8 above.

10. End the document.

11. End the AFP API session.

To help you keep track of where you are in the above procedure, AFP API has
named the elements of the process. Each element (AFP API session, document,
page, and so on), is called a state, and each state has an ID called a handle.
“Understanding Handles” on page 77 describes handles in more detail. Don ′ t
be concerned with states yet; they are described later in this chapter under
“Understanding States” on page 75.

Program Template
To get started in the AFP API sample, use the template shown on page 25. By
inserting the code for the various parts of the sample, as described in “Putting
Data on the Page” on page 26, you can print either part or all of the sample.
The AFP API procedure calls shown in the sample code (for example, AFPBDOC)
include all the parameters. This chapter does not describe all of the
parameters; see “Format of the AFP API Procedure Call Descriptions” on
page 98 for a detailed description of the parameters.

You must begin and end every document and every page within the document.
The code in this template is only part of the total initialize code for the example.
It does not contain calls for setting output characteristics, defining fonts, and
defining table defaults. The complete code for the example is in AFP Application
Programming Interface: COBOL Language Reference and in AFP Application
Programming Interface: PL/1 Language Reference. Basically, the code is as
follows for initializing AFP API, beginning a document, beginning a page, and
then ending each:

Code Description

SETUP-AFPAPI.
CALL ″AFPINIT″ USING

BY REFERENCE
AFPAPI-HANDLE

BY CONTENT
FALS

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPINIT (Initialize AFP API):
Establishes the AFP API session and must successfully
complete before you invoke any other call. FALS
means do not generate a trace file. AFP API returns
the AFPAPI handle, which must appear in all
subsequent calls to the AFP API in this session. See
“Understanding Handles” on page 77 for a description
of handles.

MOVE 215 TO AFP-DOC-PAGE-WIDTH
MOVE 280 TO AFP-DOC-PAGE-DEPTH

CALL ″AFPBDOC″
USING

BY CONTENT
AFPAPI-HANDLE
MM
AFP-DOC-PAGE WIDTH
AFP-DOC-PAGE DEPTH
ORIENT0

BY REFERENCE
AFP-DOCUMENT-HANDLE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPBDOC (Begin Document):
Begins a document and establishes the default unit of
measure, page size, and page orientation for all pages
in this document. The page width is 215 mm, and the
page depth is 280 mm. The begin page call can
override the page size and orientation defaults. AFP
API returns the document handle. AFPBDOC must
include the AFP API handle returned from the AFPINIT
call.

24 Programming Guide and Reference

Program Template

Code Description

MOVE AFP-DEFAULT TO AFP-PAGE-WIDTH
MOVE AFP-DEFAULT TO AFP-PAGE-DEPTH

CALL ″AFPBPAG″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-DOCUMENT-HANDLE
AFP-PAGE WIDTH
AFP-PAGE DEPTH
ORIENTDOC

BY REFERENCE
AFP-PAGE-HANDLE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPBPAG (Begin Page):
Begins a page within a document and establishes the
page size and orientation. If you use default values,
the page inherits them from the document (AFPBDOC
call). The page width is 215 mm, which is the default
set in the AFPBDOC call. The page depth is 280 mm,
which is the default set in the AFPBDOC call. AFP API
returns a page handle. AFPBPAG must include the
AFP API handle returned from the AFPINIT call and the
document handle returned from the AFPBDOC call.
Only one page can be open at a time.

= =
(Put data on the page here....)
= =

= =
See “Putting Data on the Page” on page 26.
= =

CALL ″AFPEPAG″ USING
BY CONTENT

AFPAPI-HANDLE
BY REFERENCE

AFP-PAGE-HANDLE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPEPAG (End Page):
Ends the page. AFPEPAG must include the AFP API
handle returned from the AFPINIT call and the page
handle returned from the AFPBPAG call. At this point,
you can either begin a new page in this document or
end the document.

CALL ″AFPEDOC″ USING
BY CONTENT

AFPAPI-HANDLE
BY REFERENCE

AFP-DOCUMENT-HANDLE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPEDOC (End Document):
Ends the document. AFPEDOC must include the AFP
API handle returned from the AFPINIT call and the
document handle returned from the AFPBDOC call. At
this point, you can begin a new document in this
session. AFPEDOC is required before ending an AFP
API session with the AFPEND call (normal end).

CALL ″AFPEND″ USING
BY CONTENT

AFPAPI-HANDLE
BY REFERENCE

AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPEND (End AFP API):
Ends the AFP API session and frees all AFP API
storage. AFPEND must include the AFP API handle
returned from the AFPINIT call.

AFPINIT establishes a session and assigns a handle for that session. You
cannot issue any other AFP API calls until you have successfully initialized AFP
API.

AFPBDOC begins a document, and AFPBPAG begins a page within the
document. Both AFPBDOC and AFPBPAG contain the logical page width, logical
page depth, and logical page orientation parameters. If the values for these
parameters are different, the values in AFPBPAG override those in AFPBDOC
until an AFPEPAG is received, when the values for these parameters return to
those specified in AFPBDOC. Definitions for logical page and physical page are:

Physical Page The top of the physical page is the short side of the paper.

Logical Page The top of the logical page is the side associated with the width
on the AFPBDOC or AFPBPAG procedure calls.

For example, if you want to format for landscape presentation, specify either 90°
or 270° orientation and set the logical page width equal to the dimension of the
short side of the paper. See “ AFPBDOC (Begin Document)” on page 100 for a
description of logical page orientation.

AFPBDOC also specifies the unit of measure to use for the entire document
(inches, millimeters, centimeters, 240ths of an inch or 1440ths of an inch), which

Chapter 2. Using AFP API 25

Putting Data on a Page

remains in effect until overridden by the AFPSUNI (Set Units) procedure call.
“Setting Attributes (and Querying Them)” on page 73 describes units of measure
(AFPSUNI).

After you end all pages and end the document, end the session. You can end a
session with either of two procedure calls. One is a normal termination, and one
is an abnormal termination.

AFPEND (End AFP API): Normal end. Ends the AFP API session and
frees all AFP API storage.

AFPTERM (Terminate AFP API): Abnormal end. Ends an AFP API session,
frees all AFP API storage, and creates a
partial page (if one exists) that you can print.
This is useful for assisting you in debugging
your program.

Putting Data on the Page
After you initialize, begin the document, and begin a page, you can use
procedure calls to put data in a page (see item 4c under “Getting Started” on
page 23). Before putting data on a page, you must specify its position on the
page with the AFPSPOS procedure call. You can put these types of data on a
page:

• Character strings
• Rules
• Resources (art and overlays)
• Paragraphs
• Areas
• Tables
• Boxes (not shown in the example)
• Data objects (not shown in the example)

The example shown here is one document with three pages; however, you can
put the code for each piece of data shown in this section into the template
shown in “Program Template” on page 24 and print just that piece of data. The
example is intended to illustrate concepts and should not interfere with your
understanding of the complete code for the example.

The example code on the pages that follow produces the output shown, if you
use the copy files for variables and constants and the other files that are shipped
with the product. These files are listed in Figure 9 on page 27. Refer to AFP
Application Programming Interface: COBOL Language Reference and AFP
Application Programming Interface: PL/1 Language Reference for a description of
the copy files for COBOL and PL/1.

26 Programming Guide and Reference

Putting Data on a Page

 APQSAMP COBOL source (performs)
 APQSAMP2 COBOL source (calls)

| APQCISMP COBOL source for sample program (CICS)
| APQCISMB COBOL source for sample program (CICS, buffered output)

 APQRCS COBOL return codes
 APQCONST COBOL constants
 APQPERF COBOL performs
 APQVARS COBOL variables
 APQTRIM COBOL trim subprogram
 APQSTRL COBOL string length subprogram
 APQPSAMP PL/1 source (performs)
 APQPSMP2 PL/1 source (calls)
 APQPRCS PL/1 return codes
 APQPCON PL/1 constants
 APQPPRF PL/1 performs
 APQPVAR PL/1 variables
 APQDATA Data file for APQSAMP, APQSAMP2, APQPSAMP, and APQPSMP2
 APQCOCOB JCL to compile & link COBOL
 APQCOPLI JCL to compile & link PL/1
 APQIVCOB JCL to run APQSAMP
 APQIVPLI JCL to run APQPSAMP

| APQCOSMB JCL to translate, compile & link APQCISMB (CICS)
| APQCOSMP JCL to translate, compile & link APQCISMP (CICS)
| APQCIFON JCL to copy font PDS into VSAM data set (CICS)
| APQCISEG JCL to copy page segment PDS into VSAM data set (CICS)

 APQPSEG Page segment (PRIMO artwork)
 O1APQL2 Overlay (shaded summary box)
 IOCAMMR Image object used for describing AFPIOBJ (Include Object)

| Note: IOCAMMR is shipped with PSF but not on the AFP API distribution
| tape.

Figure 9. Files Shipped with AFP API

Chapter 2. Using AFP API 27

Put Character String

Character String
A character string is printed exactly as entered;
that is, with no formatting, except to align it
right, left, center, or at a character. The
example has three character strings in the name
and address, and all are aligned left. The
example, however, shows code only for Susan′s
name. Code for the street address and the city
are similar, except for the font used and the
position on the page.

The steps for placing this string on the page are:

 1. Specify the font to use for Susan′s name.
 2. Specify where to put Susan′s name.
 3. Put Susan′s name on the page.

The character strings in the sample look like this:

Figure 10. Character String

For Susan′s name only, here is the code to put in the template:

Code Description

* Write the customer name. *

CALL ″AFPSFNT″ USING
BY CONTENT

AFPAPI-HANDLE
TIM12BOLD
AFP-PAGE-HANDLE

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPSFNT (Set Font):
Specifies a font for Susan′s name. Prior to specifying
a font, you must define it to AFP API. Do this with a
AFPDFNT (Define Font) procedure call. “Defining
Fonts and Using Them with AFP API” on page 67
contains more detail.

28 Programming Guide and Reference

Put Character String

Code Description

MOVE 29 TO AFP-X-COORDINATE.
MOVE 56 TO AFP-Y-COORDINATE.

CALL ″AFPSPOS″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-PAGE-HANDLE
AFP-X-COORDINATE
XABS
AFP-Y-COORDINATE
YABS

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPSPOS (Set Position):
Specifies the position for placing the baseline of the
character string on the page in the current unit of
measure. In this case, the current unit of measure is
millimeters, which was established in the AFPBDOC
call. Susan′s name is at X-coordinate 29 and
Y-coordinate 56. XABS and YABS mean the
X-absolute and Y-absolute reference coordinate
systems, respectively. See “Setting Attributes (and
Querying Them)” on page 73 for a description of
absolute and relative coordinate systems.

CALL ″TRIM″ USING CUST-NAME,
BY CONTENT LENGTH OF CUST-NAME,
BY REFERENCE AFP-CHARACTER-STRING,
AFP-STRING-LENGTH.

TRIM:
Uses Susan′s name in the CUST-NAME identifier,
strips off unnecessary leading and trailing blanks in
the data for correct formatting, counts the characters
(length) of CUST-NAME, inserts the trimmed string in
AFP-CHARACTER-STRING, and inserts the string
length in AFP-STRING-LENGTH. TRIM is a subprogram
shipped with the example code.

Chapter 2. Using AFP API 29

Put Character String

Code Description

CALL ″AFPPCHS″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-PAGE-HANDLE
AFP-STRING-LENGTH
AFP-CHARACTER-STRING
L-FT
AFP-ALIGNMENT-CHAR
FALS
FALS

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPPCHS (Put Character String):
Puts a character string (Susan′s name) on the page
and aligns the left character (S) in the string at the
current position. AFPPCHS can put a character string
in a page, in an area, and in the field of a table with
the following alignments relative to the current
position:

Left First character begins at the current
position.

 Current position = |
A B C
A B C

Right Last character ends at the current position.

 Current position = |
A B C
A B C

Center Characters are centered around the current
position.

 Current position = |
A B C
A B C

Character Specified character (for example, a decimal
point) is placed at the current position.

 Current position = |
A B C.

.A B C

The current values for intercharacter spacing, word
spacing, color, and font apply, and you can underline
the string. See “Setting Attributes (and Querying
Them)” on page 73 for a description of these
concepts.

FALS (first one) means move the current position to
the end of the string.

FALS (second one) means don′ t underline the string.

The code is similar for the street address and city and state, except for using a different font and a
different position. Refer to AFP Application Programming Interface: COBOL Language Reference and
AFP Application Programming Interface: PL/1 Language Reference for the code.

30 Programming Guide and Reference

Put Rule

Rule
You can draw vertical and horizontal rules and
can specify their position, length, and thickness.
Here are the steps for placing this rule on the
page:

 1. Set the rule thickness.
 2. Set the position for where the rule begins.
 3. Draw the rule from the specified position, in

the specified direction, at the specified
thickness, for the specified length.

The rule in the sample looks like this:

Figure 11. Sample Rule

For the rule only, here is the code to put in the template:

Code Description

* Draw a rule underneath the address *

MOVE 1.5 TO AFP-RULE-THICKNESS.
CALL ″AFPSRTH″ USING

BY CONTENT
AFPAPI-HANDLE
AFP-PAGE-HANDLE
AFP-RULE-THICKNESS

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPSRTH (Set Rule Thickness):
Specifies the thickness for the rule in the unit of
measure currently in effect, in this case,
1.5 mil l imeters.

MOVE 29 TO AFP-X-COORDINATE.
MOVE 73 TO AFP-Y-COORDINATE.

CALL ″AFPSPOS″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-PAGE-HANDLE
AFP-X-COORDINATE
XABS
AFP-Y-COORDINATE
YABS

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPSPOS (Set Position):
Sets the position for placing the top-left corner of the
rule at 29 mill imeters in the X-direction and
73 millimeters in the Y-direction, relative to the logical
page origin. XABS and YABS mean the X-absolute
and Y-absolute reference coordinate systems,
respectively. See “Setting Attributes (and Querying
Them)” on page 73 for a description of absolute and
relative coordinate systems.

Chapter 2. Using AFP API 31

Put Rule

Code Description

MOVE 158 TO AFP-RULE-LENGTH.
CALL ″AFPPRUL″ USING

BY CONTENT
AFPAPI-HANDLE
AFP-PAGE-HANDLE
XDIRECTION
AFP-RULE-LENGTH

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPPRUL (Put Rule):
Draws a rule 158 millimeters long across the page
from the current position. The current values for rule
thickness and color apply. See “ AFPSCLR (Set
Color)” on page 181 for specifying color. The rule
thickness extends below (for a horizontal rule) or to
the right (for a vertical rule) of the rule. The current
position is unchanged after the rule is drawn. That is,
X is 29 millimeters, and Y is 73 mil l imeters.

32 Programming Guide and Reference

Resources

Resources
You can put art on a page at a specified position
by using a resource called a page segment,
which is created by using another application
program. “More About Resources” on page 34
describes other resources and their use.

Here are the steps for placing this page segment
on the page:

 1. Set the position for where to place the
upper-left corner of the page segment.

 2. Put the page segment at the specified
position.

The page segment in the example looks like this:

Figure 12. Page Segment (Art)

For the page segment only, here is the code to put in the template:

Code Description

* Include the Page Segment *

MOVE 29 TO AFP-X-COORDINATE.
MOVE 23 TO AFP-Y-COORDINATE.

CALL ″AFPSPOS″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-PAGE-HANDLE
AFP-X-COORDINATE
XABS
AFP-Y-COORDINATE
YABS

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPSPOS (Set Position):
Sets the position for placing the page segment at
29 millimeters in the X-direction and 23 millimeters in
the Y-direction, relative to the logical page origin.
XABS and YABS mean the X-absolute and Y-absolute
reference coordinate systems, respectively. See
“Setting Attributes (and Querying Them)” on page 73
for a description of absolute and relative coordinate
systems.

Chapter 2. Using AFP API 33

Resources

Code Description

MOVE ″APQPSEG″ TO AFP-PSEG-NAME.
CALL ″AFPIPSG″ USING

BY CONTENT
AFPAPI-HANDLE
AFP-PAGE-HANDLE
AFP-PSEG-NAME
TRU
FALS

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPIPSG (Include Page Segment):
Gets the page segment (art), called APQPSEG, from
the page segment library and brings it inline at the
current position specified in the AFPSPOS call. “More
About Resources” on page 34 has more information
about including page segments, objects, and overlays
in documents. The current position is unchanged after
the page segment is drawn. That is, the position is
X = 29 millimeters and Y = 23 mill imeters.

More About Resources
As described in “Data Objects and AFP Resource Objects” on page 11,
resources are objects that are created with other applications and placed in a
library. AFP API must be able to access these libraries.2 AFP API can either
reference a resource that the printer later integrates with the AFP API output or
retrieve the resource and integrate it with the output pages produced by AFP
API. The example uses three resources:

• The PRIMO logo in the upper-left corner of the first page is a page segment
(artwork) called APQPSEG. The sample code above shows how to include
this page segment in a document.

• The shaded summary box in the upper-right corner of the first page uses an
overlay. The overlay is included in an area, which is described in “Areas”
on page 42.

• The fonts are used throughout the document.

Resources also include form definitions, images, and graphics. All resources
must be available to AFP API, the print server, or both. The approach in the
code for including overlays and objects is similar to the approach used for
including page segments. The approach to referencing form definitions is
described below under AFPINVM.

You′ ll get an error at print time but not necessarily during AFP API execution for
either of the following conditions:

• If you reference a resource that doesn′ t exist or is in a resource library that
isn′ t available to AFP API

• If AFPSPOS places an overlay or page segment at a valid position on the
page, but the object runs off the page

2 On the VM operating system, AFP API searches in alphabetical order for fonts, page segments, and included objects on the
first minidisk on which the resource is stored. For example, AFP API searches for a page segment named RUFUS as RUFUS
PSEG3820 *.

34 Programming Guide and Reference

Resources

You can use, for example, the following licensed programs to create these
resources:

• Overlays

− Overlay Generation Language/370 (OGL/370)
− PSF/2 and IBM AFPDS Windows Driver
− FormsDesigner by ISIS Information Systems, Inc.
− ElixirForm by Elixir Technologies Corporation

• Form definitions

− Page Printer Formatting Aid/370 (PPFA/370)
− Application Builder for AFP by Elixir Technologies Corporation
− FormsDesigner by ISIS Information Systems, Inc.

• Page segments, images, and graphics

− Graphical Data Display Manager (GDDM)
− PSF/2 and IBM AFPDS Windows Driver
− AFP Workbench for Windows (the clipping function)
− AFP Workbench for Windows and IBM AFPDS Windows Driver
− ElixirImage by Elixir Technologies Corporation
− FormsDesigner by ISIS Information Systems, Inc.

Four other procedure calls involve resources. See “Format of the AFP API
Procedure Call Descriptions” on page 98 for detailed parameter descriptions for
the following procedure calls.

AFPINVM (Invoke Medium Map): References a medium map (also called a
copy group) from the form definition being
used for printing the AFP API output. You
can use this procedure call in the document
between pages; it is valid only in document
state and always forces a new physical
page. You can use AFPINVM to change
medium overlays, to switch bins, and to
control duplexing options.

AFPIOBJ (Include Object): Gets and puts an image or graphic object
either in a page or area.

AFPIOVL (Include Page Overlay): References an overlay either in a page or
area.

AFPIPSG (Include Page Segment): Either gets a page segment from the library
specified in the AFPSLIB call and puts it
inline in either a page or area, or
references the page segment for the printer
to include in the document at print time.

Chapter 2. Using AFP API 35

Paragraphs

Paragraphs
You put paragraphs in a page or area, and you
can control the layout and appearance of that
paragraph.

Here are the steps for placing a paragraph on
the page:

 1. Set the position for where to place the
top-left corner of the paragraph.

 2. Set the rule thickness.
 3. Begin the paragraph.
 4. Set the font you want (you′ l l do this several

times).
 5. Put text in the paragraph (you′ l l do this

several times).
 6. End the paragraph.

The paragraph in the example looks like this:

Figure 13. Paragraph

For the paragraph only, here is the code to put in the template:

Code Description

* PROCESS THE PARAGRAPH. *

PROCESS-THE-PARAGRAPH.

MOVE 29 TO AFP-X-COORDINATE.
MOVE PARAGRAPH-WHITE-SPACE TO AFP-Y-COORDINATE.

CALL ″AFPSPOS″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-PAGE-HANDLE
AFP-X-COORDINATE
XABS
AFP-Y-COORDINATE
YREL

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPSPOS (Set Position):
Sets the position for placing the paragraph at
29 millimeters in the X-direction and after the
designated white space in the Y-direction. The Data
Division in the COBOL program contains the value for
PARAGRAPH-WHITE-SPACE. XABS and YREL mean
the X-absolute and Y-relative reference coordinate
systems, respectively. See “Setting Attributes (and
Querying Them)” on page 73 for a description of
absolute and relative coordinate systems.

36 Programming Guide and Reference

Paragraphs

Code Description

MOVE 0.5 TO AFP-RULE-THICKNESS.
CALL ″AFPSRTH″ USING

BY CONTENT
AFPAPI-HANDLE
AFP-PAGE-HANDLE
AFP-RULE-THICKNESS

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPSRTH (Set Rule Thickness):
Sets the thickness for the rule (frame) around the
paragraph and overrides any rule thickness set earlier.

MOVE 0 TO AFP-FIRST-LINE-INDENT.
MOVE AFP-DEFAULT TO AFP-FIRST-LINE-OFFSET.
MOVE 10.0 TO AFP-LEFT-MARGIN.
MOVE 145.0 TO AFP-LINE-LENGTH.
MOVE AFP-DEFAULT TO AFP-LINE-SPACING.
MOVE 158.0 TO AFP-RT-RULE-OFFSET.
MOVE 0.0 TO AFP-BOT-RULE-OFFSET.
MOVE 0 TO AFP-SHADING-INTENSITY.

CALL ″AFPBPAR″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-PAGE-HANDLE
AFP-FIRST-LINE-INDENT
FOJUSTIFY
AFP-FIRST-LINE-OFFSET
AFP-LEFT-MARGIN
AFP-LINE-LENGTH
AFP-LINE-SPACING
TRU
AFP-RT-RULE-OFFSET
AFP-BOT-RULE-OFFSET
NOSHADE
AFP-SHADING-INTENSITY

BY REFERENCE
AFP-PARAGRAPH-HANDLE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPBPAR (Begin Paragraph):
Begins a paragraph at the current position. With the
parameters in this call, you can specify the first-line
offset, left margin, line length and line spacing, the
amount of indentation for the first line (0, positive, or
negative) and can frame (TRU) or shade (or both) the
paragraph. To shade the paragraph without a frame,
use 0 for AFPSRTH just prior to the AFPBPAR in page
or area state, but remember to reset the AFPSRTH
after ending the paragraph.

CALL ″AFPSFNT″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-PARAGRAPH-HANDLE
TIM12BOLD

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPSFNT (Set Font):
Specifies a font previously defined in the AFPDFNT
call. You′ ll use several AFPSFNT calls in this example.

MOVE LOW-VALUES TO AFP-CHARACTER-STRING.
STRING ″CONGRATULATIONS, ″ DELIMITED BY SIZE

INTO AFP-CHARACTER-STRING.
CALL ″STRING-LENGTH″ USING AFP-CHARACTER-STRING,

BY CONTENT LENGTH OF AFP-CHARACTER-STRING,
BY REFERENCE AFP-STRING-LENGTH.

LOW-VALUES is a reserved COBOL word. It has the
lowest ordinal position in the collating sequence.
Moving it to AFP-CHARACTER-STRING removes all
residual data from any previous
AFP-CHARACTER-STRING.

STRING-LENGTH determines the length of a character
string and puts the length in
AFP-CHARACTER-STRING. APQSTRL is the name of
the copy book that contains the string-length
subprogram that is shipped with the example code.

CALL ″AFPPTXT″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-PARAGRAPH-HANDLE
AFP-STRING-LENGTH
AFP-CHARACTER-STRING
TRU
FALS

BY REFERENCE
AFP-REMAINING-LENGTH
AFP-REMAINING-STRING
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPPTXT (Put Text):
Places text in the paragraph and underscores it, if you
want. Here, TRU means concatenate (format) lines of
text, and FALS means no underscore. You can use
multiple AFPPTXT calls in a paragraph, and the
program merges and formats the lines to fit the space,
as shown in the two paragraphs in “More About
Paragraphs” on page 40 for Susan and Lawrence. If
the text exceeds the page or area depth, AFP API
returns a WARNING severity code and returns the
overflow characters to the program. This example
contains several AFPPTXT calls.

Chapter 2. Using AFP API 37

Paragraphs

Code Description

CALL ″TRIM″ USING CUST-NAME,
BY CONTENT LENGTH OF CUST-NAME,
BY REFERENCE AFP-CHARACTER-STRING,
AFP-STRING-LENGTH.

TRIM:
Uses Susan′s name in the CUST-NAME identifier,
strips off unnecessary leading and trailing blanks in
the data for correct formatting, counts the characters
(length) of CUST-NAME, inserts the trimmed string in
AFP-CHARACTER-STRING, and inserts the string
length in AFP-STRING-LENGTH. TRIM is a subprogram
shipped with the example code.

CALL ″AFPSFNT″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-PARAGRAPH-HANDLE
TIM12MED

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPSFNT (Set Font):
Specifies a font defined in the AFPDFNT call. In this
case, it is the font for Susan′s name and the rest of
the text in the paragraph.

CALL ″AFPPTXT″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-PARAGRAPH-HANDLE
AFP-STRING-LENGTH
AFP-CHARACTER-STRING
TRU
FALS

BY REFERENCE
AFP-REMAINING-LENGTH
AFP-REMAINING-STRING
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPPTXT (Put Text):
Writes Susan′s name in the paragraph. CUST-NAME in
the TRIM call identifies the character string (Susan) to
be printed.

MOVE LOW-VALUES TO AFP-CHARACTER-STRING.
STRING ″ ! Because of your excellent credit rating, you are

- ″ now eligible for free credit insurance which″
DELIMITED BY SIZE INTO AFP-CHARACTER-STRING.

CALL ″STRING-LENGTH″ USING AFP-CHARACTER-STRING,
BY CONTENT LENGTH OF AFP-CHARACTER-STRING,
BY REFERENCE AFP-STRING-LENGTH.

LOW-VALUES is a reserved COBOL word. It has the
lowest ordinal position in the collating sequence.
Moving it to AFP-CHARACTER-STRING removes all
residual data from any previous
AFP-CHARACTER-STRING.

STRING-LENGTH determines the length of a character
string and puts the length in
AFP-CHARACTER-STRING. APQSTRL is the name of
the copy book that contains the string-length
subprogram shipped with the example code.

CALL ″AFPPTXT″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-PARAGRAPH-HANDLE
AFP-STRING-LENGTH
AFP-CHARACTER-STRING
TRU
FALS

BY REFERENCE
AFP-REMAINING-LENGTH
AFP-REMAINING-STRING
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPPTXT (Put Text):
Writes the next text string in the paragraph.

38 Programming Guide and Reference

Paragraphs

Code Description

MOVE LOW-VALUES TO AFP-CHARACTER-STRING.
STRING ″ protects you in case your Primo card is ever lost

- ″or stolen. ″
DELIMITED BY SIZE INTO AFP-CHARACTER-STRING.

CALL ″STRING-LENGTH″ USING AFP-CHARACTER-STRING,
BY CONTENT LENGTH OF AFP-CHARACTER-STRING,
BY REFERENCE AFP-STRING-LENGTH.

LOW-VALUES is a reserved COBOL word. It has the
lowest ordinal position in the collating sequence.
Moving it to AFP-CHARACTER-STRING removes all
residual data from any previous
AFP-CHARACTER-STRING.

STRING-LENGTH determines the length of a character
string and puts the length in
AFP-CHARACTER-STRING. APQSTRL is the name of
the copy book that contains the string-length
subprogram that is shipped with the example code.

CALL ″AFPPTXT″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-PARAGRAPH-HANDLE
AFP-STRING-LENGTH
AFP-CHARACTER-STRING
TRU
FALS

BY REFERENCE
AFP-REMAINING-LENGTH
AFP-REMAINING-STRING
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPPTXT (Put Text):
Writes the next text string in the paragraph.

MOVE LOW-VALUES TO AFP-CHARACTER-STRING.
STRING ″ Call NOW for more information!″
DELIMITED BY SIZE INTO AFP-CHARACTER-STRING.

CALL ″STRING-LENGTH″ USING AFP-CHARACTER-STRING,
BY CONTENT LENGTH OF AFP-CHARACTER-STRING,
BY REFERENCE AFP-STRING-LENGTH.

LOW-VALUES is a reserved COBOL word. It has the
lowest ordinal position in the collating sequence.
Moving it to AFP-CHARACTER-STRING removes all
residual data from any previous
AFP-CHARACTER-STRING.

STRING-LENGTH determines the length of a character
string and puts the length in
AFP-CHARACTER-STRING. APQSTRL is the name of
the copy book that contains the string-length
subprogram that is shipped with the example code.

CALL ″AFPPTXT″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-PARAGRAPH-HANDLE
AFP-STRING-LENGTH
AFP-CHARACTER-STRING
TRU
TRU

BY REFERENCE
AFP-REMAINING-LENGTH
AFP-REMAINING-STRING
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPPTXT (Put Text):
Writes the last text string in the paragraph. The first
TRU means concatenate the lines and the second TRU
means underline the text string.

CALL ″AFPEPAR″ USING
BY CONTENT

AFPAPI-HANDLE
BY REFERENCE

AFP-PARAGRAPH-HANDLE
AFP-PARAGRAPH-DEPTH
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPEPAR (End Paragraph):
Ends the paragraph, returns to the program the final
depth of the paragraph in the units of measure
currently in effect, resets the font to what it was before
the AFPBPAR call, and establishes the current position
as the bottom-left corner of the paragraph.

Chapter 2. Using AFP API 39

Paragraphs

More About Paragraphs
While in a paragraph, you can set fonts (AFPSFNT), put text (AFPPTXT), set color
(AFPSCLR), control intercharacter spacing (AFPSICS), and set word spacing
(AFPSWSP). Attributes specified for a paragraph override those specified in the
page or area in which that paragraph appears, until an AFPEPAR is issued.

The most significant feature of a paragraph is that text flows within it. That is,
words and sentences flow according to the formatting parameters set in the
AFPBPAR call, regardless of how the words and sentences were entered on the
AFPPTXT call. For example, here are two versions of the same paragraph with
only the name changed:

A paragraph formatted with Susan ′s
name. Notice where each line
breaks. Also notice that the
paragraph uses two different fonts.

CONGRATULATIONS , Susan B. Ames! Because of your excellent credit
rating, you are now eligible for free credit insurance, which protects you
in case your Primo card is ever lost or stolen. Call NOW for more
information!

The same paragraph formatted with
Lawrence ′s name. Notice where
each line breaks, and that the
breaks are different than for
Susan′s paragraph above. Both
were entered exactly the same way,
but the power of AFP API caused
the text to “flow” into the allotted
space.

CONGRATULATIONS , Lawrence M. Browning, Jr! Because of your
excellent credit rating, you are now eligible for free credit insurance,
which protects you in case your Primo card is ever lost or stolen. Call
NOW for more information!

The four formatting options you can specify look like this:

Ragged Right

Paragraphs are wonderful
because you can change them
in so many ways.

Ragged Left

Paragraphs are wonderful
because you can change them

in so many ways.

Center

Paragraphs are wonderful
because you can change them

in so many ways.

Justify

Paragraphs are wonderful
because you can change
them in so many ways.

40 Programming Guide and Reference

Paragraphs

Because of this text-formatting ability of the paragraph, the AFPPCHS (Put
Character String) call is not allowed in a paragraph. Remember that an
AFPPCHS is printed exactly as entered, with no formatting. The example doesn′ t
use all the allowable procedure calls. Other procedure calls that are permitted
in a paragraph are as follows. (See “Format of the AFP API Procedure Call
Descriptions” on page 98 for detailed parameter descriptions.)

AFPSCLR (Set Color) Specifies the color for the text.

AFPSICS (Set Intercharacter Spacing) Specifies additional spacing
between characters. The font
determines the original spacing
between characters.

AFPSWSP (Set Word Spacing) Specifies the spacing between
words.

Chapter 2. Using AFP API 41

Areas

Areas
Areas are great for specifying data that you want
to reuse in a document or for constructing
variable portions of a page, as described in
“Determining Page Breaks and Changing Page
Layout” on page 82. Create the area, store it,
then call it in where you want it—several times
on the same page or on different pages. Having
the data already formatted saves time in
reformatting the same data every time you use
it.

In areas, you can set attributes, define and set
fonts, put rules and boxes, write paragraphs,
build tables, and invoke resources and objects.
See “More About Areas” on page 47 for
additional information about areas.

Here are the steps for creating this area and
placing it on the page:

 1. Create the area.
 2. Include the overlay.
 3. Set the position for where to place the

character string (account number) relative to
the area origin.

 4. Place the character string.
 5. Repeat the previous two steps until all of the

data is placed.
 6. End the area.
 7. Set the position for where to place the area

on the page.
 8. Place the area.
 9. Destroy the area if it is no longer needed.

The area in the example contains an overlay and
several character strings and looks like this:

Figure 14. Area Containing an Overlay. You can place the area anywhere on the page by changing only the
AFPSPOS call.

42 Programming Guide and Reference

Areas

For the area only, here is the code to put in the template:

Code Description

* PROCESS THE AREA. *

PROCESS-THE-AREA.
MOVE 50.0 TO AFP-AREA-WIDTH.
MOVE 65.0 TO AFP-MAX-AREA-DEPTH.
MOVE 0 TO AFP-SHADING-INTENSITY.
CALL ″AFPCARE″ USING

BY CONTENT
AFPAPI-HANDLE
AFP-PAGE-HANDLE
AFP-AREA-WIDTH
AFP-MAX-AREA-DEPTH
AFP-AREA-FRAME
NOSHADE
AFP-SHADING-INTENSITY

BY REFERENCE
AFP-AREA-HANDLE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPCARE (Create Area):
Creates the area to be fil led with elements and returns
the area handle for that area. You use this area
handle to identify the area when you place data in the
area with subsequent calls and when you place the

| area on a page with the AFPPARE call.

With the parameters in this call, you can specify the
area width as 50 millimeters, the maximum depth as
65, and a shading intensity of 0. The area in this
example isn′ t framed.

* Include the Page Overlay *

MOVE ″O1APQL2″ TO AFP-OVLY-NAME.
CALL ″AFPIOVL″ USING

BY CONTENT
AFPAPI-HANDLE
AFP-AREA-HANDLE
AFP-OVLY-NAME

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPIOVL (Include Page Overlay):
References an overlay called O1APQL2 for use in the
area. Notice that because AFPSPOS wasn′ t issued,
AFP API placed the overlay at the area origin.

* Write the account number *

CALL ″AFPSFNT″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-AREA-HANDLE
TIM10MED

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPSFNT (Set Font):
Specifies a font defined in the AFPDFNT call. This
example uses several AFPSFNT calls.

MOVE 49 TO AFP-X-COORDINATE.
MOVE 7 TO AFP-Y-COORDINATE.

CALL ″AFPSPOS″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-AREA-HANDLE
AFP-X-COORDINATE
XABS
AFP-Y-COORDINATE
YABS

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPSPOS (Set Position):
Sets the position for placing the account number at
49 millimeters in the X-direction and 7 mil l imeters in
the Y-direction, relative to the area origin. XABS and
YABS mean the X-absolute and Y-absolute reference
coordinate systems, respectively. See “Setting
Attributes (and Querying Them)” on page 73 for a
description of absolute and relative coordinate
systems.

Chapter 2. Using AFP API 43

Areas

Code Description

MOVE ACCOUNT-NUM-IN TO ACCOUNT-NUM-OUT.
MOVE 19 TO AFP-STRING-LENGTH.
MOVE ACCOUNT-NUM-OUT TO AFP-CHARACTER-STRING.

CALL ″AFPPCHS″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-AREA-HANDLE
AFP-STRING-LENGTH
AFP-CHARACTER-STRING
R-GHT
AFP-ALIGNMENT-CHAR
FALS
FALS

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

* Write the due date. *

MOVE 49 TO AFP-X-COORDINATE.
MOVE 12 TO AFP-Y-COORDINATE.

CALL ″AFPSPOS″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-AREA-HANDLE
AFP-X-COORDINATE
XABS
AFP-Y-COORDINATE
YABS

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPSPOS (Set Position):
Sets the position for placing the due date on the
logical page at 49 mill imeters in the X-direction and
12 millimeters in the Y-direction, relative to the area
origin. XABS and YABS mean the X-absolute and
Y-absolute reference coordinate systems, respectively.
See “Setting Attributes (and Querying Them)” on
page 73 for a description of absolute and relative
coordinate systems.

MOVE DUE-DATE TO AFP-CHARACTER-STRING.
MOVE 11 TO AFP-STRING-LENGTH.

CALL ″AFPPCHS″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-AREA-HANDLE
AFP-STRING-LENGTH
AFP-CHARACTER-STRING
R-GHT
AFP-ALIGNMENT-CHAR
FALS
FALS

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

* Write the customer balance. *

MOVE 49 TO AFP-X-COORDINATE.
MOVE 19 TO AFP-Y-COORDINATE.

CALL ″AFPSPOS″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-AREA-HANDLE
AFP-X-COORDINATE
XABS
AFP-Y-COORDINATE
YABS

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

44 Programming Guide and Reference

Areas

Code Description

CALL ″TRIM″ USING CUSTOMER-BALANCE-OUT,
BY CONTENT LENGTH OF CUSTOMER-BALANCE-OUT,
BY REFERENCE AFP-CHARACTER-STRING,
AFP-STRING-LENGTH.

TRIM:
Uses the customer balance out in the
CUSTOMER-BALANCE-OUT identifier, strips off
unnecessary leading and trailing blanks in the data for
correct formatting, counts the characters (length) of
the data, inserts the trimmed string in
AFP-CHARACTER-STRING, and inserts the string
length in AFP-STRING-LENGTH. TRIM is a subprogram
shipped with the example code.

CALL ″AFPPCHS″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-AREA-HANDLE
AFP-STRING-LENGTH
AFP-CHARACTER-STRING
R-GHT
AFP-ALIGNMENT-CHAR
FALS
FALS

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

* Write the customer payment. *

MOVE 49 TO AFP-X-COORDINATE.
MOVE 24 TO AFP-Y-COORDINATE.

CALL ″AFPSPOS″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-AREA-HANDLE
AFP-X-COORDINATE
XABS
AFP-Y-COORDINATE
YABS

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

MULTIPLY .1 BY CUSTOMER-BALANCE-IN GIVING
MIN-AMOUNT-DUE-COMP ROUNDED.

MOVE MIN-AMOUNT-DUE-COMP TO MIN-AMOUNT-DUE-OUT.
CALL ″TRIM″ USING MIN-AMOUNT-DUE-OUT,

BY CONTENT LENGTH OF MIN-AMOUNT-DUE-OUT,
BY REFERENCE AFP-CHARACTER-STRING,
AFP-STRING-LENGTH.

TRIM:
Uses the minimum amount due out in the
MIN-AMOUNT-DUE-OUT identifier, strips off
unnecessary leading and trailing blanks in the data for
correct formatting, counts the characters (length) of
the data, inserts the trimmed string in
AFP-CHARACTER-STRING, and inserts the string
length in AFP-STRING-LENGTH. TRIM is a subprogram
shipped with the example code.

CALL ″AFPPCHS″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-AREA-HANDLE
AFP-STRING-LENGTH
AFP-CHARACTER-STRING
R-GHT
AFP-ALIGNMENT-CHAR
FALS
FALS

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

Chapter 2. Using AFP API 45

Areas

Code Description

CALL ″AFPEARE″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-AREA-HANDLE

BY REFERENCE
AFP-AREA-DEPTH
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPEARE (End Area):
Ends the area and returns the actual area depth in the
unit of measure currently in effect.

* Place the area on the page. *

MOVE 137 TO AFP-X-COORDINATE.
MOVE 23 TO AFP-Y-COORDINATE.

CALL ″AFPSPOS″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-PAGE-HANDLE
AFP-X-COORDINATE
XABS
AFP-Y-COORDINATE
YABS

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPSPOS (Set Position):
Sets the position for placing the top-left corner of the
area on the logical page at 137 millimeters in the
X-direction and 23 millimeters in the Y-direction,
relative to the logical page origin. XABS and YABS
mean the X-absolute and Y-absolute reference
coordinate systems, respectively. See “Setting
Attributes (and Querying Them)” on page 73 for a
description of absolute and relative coordinate
systems.

CALL ″AFPPARE″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-PAGE-HANDLE
AFP-AREA-HANDLE
ORIENT0

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPPARE (Put Area):
Puts the area onto the page at the position specified in
the AFPSPOS procedure call.

You can rotate the area around the current position;
however, page segments and overlays in the area will

| not rotate. AFPPARE is valid only in page state.

* Destroy the area from AFP API storage. *

CALL ″AFPXARE″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-AREA-HANDLE

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPXARE (Destroy Area):
Deletes the area contents from storage to free storage
when the area is no longer needed. AFPXARE is valid
only in document state or page state.

46 Programming Guide and Reference

Areas

More About Areas

Attributes, including fonts, specified in the area override attributes specified in
the document or page but do not affect the attributes of the document or page.
All the AFP API elements shown in Figure 15 are valid in an area.

Figure 15. Document Elements

| Data is placed in an area relative to the area origin. When placing data within
| an area, you must place the data in a top to bottom order. After being built, the

formatted data remains in storage until used.

Note: Vertical rules that are part of an area cannot be enclosed with an area
frame, because the current position is unchanged when a vertical rule is drawn.
See “ AFPPARE (Put Area)” on page 162 and “ AFPSPOS (Set Position)” on
page 193 for placing an area and for the current position after an area is drawn.

| You can place an area on a page with the AFPPARE procedure call.

See “Format of the AFP API Procedure Call Descriptions” on page 98 for
detailed parameter descriptions for the procedure calls described in this section,
and see “Setting Attributes (and Querying Them)” on page 73 for more
information about placing data on a page with the AFPSPOS procedure call.

Chapter 2. Using AFP API 47

Tables

Tables
The details of Susan′s statement are in a table.
The following will be provided:

• Descriptive information about tables
• Definition of terms
• Code for the first, shaded row of the table
• Tips on reading the source code for the

other rows in the table

Here are the steps for defining the table and
placing it on the page:

| 1. Begin the document (AFPBDOC).
 2. Define the format of the fields for the row

(AFPDFLD).
 3. Define the format of the row (AFPDROW).
 4. Repeat steps 2 and 3 until all unique rows

are defined.
| 5. Begin the page (AFPBPAG).

 6. Begin the table (AFPBTBL).
 7. Begin the row (AFPBROW).
 8. Begin the field (AFPBFLD).
 9. Put the data in the field (AFPPCHS).
10. End the field (AFPEFLD).
11. Repeat steps 8, 9, and 10 until all fields in

the row are filled.
12. End the row (AFPEROW).
13. Repeat steps 7− 1 2 until all rows in the table

are complete or until the table is full. See
“Determining Page Breaks and Changing
Page Layout” on page 82 for determining
when the table is full.

14. End the table (AFPETBL).
| 15. End the page (AFPEPAG).
| .| .| .
| 16. End the document (AFPEDOC).

The first row of the table in the example looks like this:

Figure 16. The Header Row of the Table

Tables can present information in a logical manner. By understanding some
basic principles and with some planning, you can create tables of any
complexity.

A table has one or more rows; each row consists of one or more columns, and
each column consists of one or more subrows. AFP API constructs tables with
three types of procedure calls: table, row, and field. This chapter will define the
procedure calls and then describe how they fit together to form a table.

48 Programming Guide and Reference

Tables

This is the basic, simplest table. It has one row (horizontal), one column
(vertical), one subrow, and no text:

This is a table with one row, one subrow, two columns, and two fields with no
text:

This is a table with one row, one subrow, two columns, and two fields with text:

This is a table with one row, two subrows, three columns, and five fields of text.

This is the basic approach to creating a table:

 1. Define the format of the unique fields for all rows of the table (AFPDFLD).

This includes text positioning, text orientation, line spacing, shading, and so
on. The field is the place where you put text.

 2. Define the format of the unique rows of a table (AFPDROW).

This includes arranging fields in the row, column width, minimum subrow
depth, and the thickness of the top and bottom rules for the row. The row is
the horizontal element in a table; it is divided into vertical elements called
columns and can be divided horizontally into elements called subrows.

| 3. Begin the page (AFPBPAG).

 4. Begin the table (AFPBTBL).

This includes specifying table rotation, width, maximum depth, and the
thickness of the rules that surround the table.

 5. Begin a row (AFPBROW), which was already defined in step 2.

 6. Begin a field (AFPBFLD), which was already defined in step 1.

 7. Place data in the field using either:

AFPPTXT, which puts text into a paragraph in the field to flow as defined in
the AFPDFLD procedure call for text alignment.

AFPPCHS, which puts text in the field as entered (character alignment). The
Alignment Position parameter in AFPDFLD is specified if you want character
alignment (AFPPCHS alignment option).

 8. End the field (AFPEFLD).

 9. Repeat steps 6− 8 until all fields in the row are filled.

| 10. End the row (AFPEROW).

This is a f ield of text within a row. This is another field of text in another
column within a row.

This is a field of text in
column one, subrows 1

and 2.

This is a field of text in
column 2, subrow 1.

This is a field of text in
column 3, subrow 1.

This is a field of text in
column 2, subrow 2.

This is a field of text in
column 3, subrow 2.

Chapter 2. Using AFP API 49

Tables

11. Repeat steps 5− 1 0 until data for the table is finished or until the end of the
page is reached.

12. End the table (AFPETBL).

| 13. End the page (AFPEPAG).

Again, here is the first row of the table in the example:

Figure 17. One Row of the Table

For the first row only of the table, here is the code to put in the template:

Code Description

* PROCESS THE TABLE. *

/---*
* THIS IS THE START OF THE FIELD AND ROW DEFINITIONS *

MOVE 18 TO AFP-SHADING-INTENSITY.
MOVE 0 TO AFP-ALIGNMENT-POSITION.
MOVE 0.0 TO AFP-LEFT-MARGIN.
MOVE 0.0 TO AFP-RIGHT-MARGIN.
MOVE AFP-DEFAULT TO AFP-LINE-SPACING.
MOVE .5 TO AFP-TOP-THICKNESS.
MOVE .5 TO AFP-BOTTOM-THICKNESS.
MOVE .5 TO AFP-LEFT-THICKNESS.
MOVE .5 TO AFP-RIGHT-THICKNESS.

CALL ″AFPDFLD″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-DOCUMENT-HANDLE
FOCENTER
AFP-ALIGNMENT-POSITION
VERCENTER
AFP-LEFT-MARGIN
AFP-RIGHT-MARGIN
AFP-LINE-SPACING
TXTOR0-0
SCREEN
AFP-SHADING-INTENSITY
AFP-TOP-THICKNESS
AFP-BOTTOM-THICKNESS
AFP-LEFT-THICKNESS
AFP-RIGHT-THICKNESS

BY REFERENCE
FIELDH1
AFP-RET-CODE
AFP-SEVERITY-CODE.

 AFPDFLD (Define Field):
Defines characteristics for the field for row 1 column 1.

• 18 is the shading pattern intensity from
Appendix C, “Shade Patterns and Types” on
page 261.

• MOVE 0 TO AFP-ALIGNMENT-POSITION means, if
character alignment is specified in the AFPPCHS
procedure call within this field, the position of the
character in the field.

• MOVE 0.0 TO AFP-LEFT-MARGIN means no left
margin within the field.

• MOVE 0.0 TO AFP-RIGHT-MARGIN means no right
margin within the field.

• FOCENTER means center the text in the column
horizontally.

• VERCENTER means center the text in the column
vertically.

• TXTOR0-0 means no text rotation.

• SCREEN means use the specified shading pattern
(18 in the example).

• All table rules are 0.5 millimeters.

50 Programming Guide and Reference

Tables

Code Description

CALL ″AFPDFLD″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-DOCUMENT-HANDLE
FOCENTER
AFP-ALIGNMENT-POSITION
VERCENTER
AFP-LEFT-MARGIN
AFP-RIGHT-MARGIN
AFP-LINE-SPACING
TXTOR0-0
SCREEN
AFP-SHADING-INTENSITY
AFP-TOP-THICKNESS
AFP-BOTTOM-THICKNESS
AFP-LEFT-THICKNESS
AFP-RIGHT-THICKNESS

BY REFERENCE
FIELDH2
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPDFLD (Define Field):
Defines characteristics for the field for row 1 column 2.

It uses the same characteristics as row 1 column 1
above.

CALL ″AFPDFLD″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-DOCUMENT-HANDLE
FOCENTER
AFP-ALIGNMENT-POSITION
VERCENTER
AFP-LEFT-MARGIN
AFP-RIGHT-MARGIN
AFP-LINE-SPACING
TXTOR0-0
SCREEN
AFP-SHADING-INTENSITY
AFP-TOP-THICKNESS
AFP-BOTTOM-THICKNESS
AFP-LEFT-THICKNESS
AFP-RIGHT-THICKNESS

BY REFERENCE
FIELDH3
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPDFLD (Define Field):
Defines characteristics for the field for row 1 column 3.

It uses the same characteristics as row 1 column 1
above.

Chapter 2. Using AFP API 51

Tables

Code Description

MOVE 3 TO AFP-NUMBER-COLUMNS.
MOVE 1 TO AFP-NUMBER-SUBROWS.
MOVE AFP-DEFAULT TO AFP-SUBROW-DEPTH(1).
MOVE FIELDH1 TO AFP-COLUMN-ARRANGE (1, 1).
MOVE 25.0 TO AFP-COLUMN-WIDTH (1).
MOVE FIELDH2 TO AFP-COLUMN-ARRANGE (1, 2).
MOVE 70.0 TO AFP-COLUMN-WIDTH (2).
MOVE FIELDH3 TO AFP-COLUMN-ARRANGE (1, 3).
MOVE 30.0 TO AFP-COLUMN-WIDTH (3).
CALL ″AFPDROW″ USING

BY CONTENT
AFPAPI-HANDLE
AFP-DOCUMENT-HANDLE
AFP-MIN-SUBROW-DEPTH-ARRAY
AFP-TOP-THICKNESS
AFP-BOTTOM-THICKNESS
AFP-NUMBER-COLUMNS
AFP-NUMBER-SUBROWS
AFP-ROW-ARRANGE-ARRAY
AFP-COLUMN-WIDTH-ARRAY

BY REFERENCE
ROW1
AFP-RET-CODE
AFP-SEVERITY-CODE.

/---*
* END OF THE FIELD AND ROW DEFINITIONS

AFPDROW (Define Row):
Defines characteristics for the three columns in row 1.

• AFP-DEFAULT TO AFP-SUBROW-DEPTH(1) means
use a subrow depth for each subrow determined
by the font used.

• FIELDH1 TO AFP-COLUMN-ARRANGE (1, 1) means
use the characteristics for row 1 column 1 that
were specified in the AFPDFLD that returned an ID
of FIELDH1 (above).

• 25.0 TO AFP-COLUMN-WIDTH (1) means use
25.0 millimeters for the width of column 1.

• FIELDH2 TO AFP-COLUMN-ARRANGE (1, 2) means
use the characteristics for row 1 column 2 that
were specified in the AFPDFLD that returned an ID
of FIELDH2 (above).

• 70.0 TO AFP-COLUMN-WIDTH (2) means use
70.0 millimeters for the width of column 2.

• FIELDH3 TO AFP-COLUMN-ARRANGE (1, 3) means
use the characteristics for row 1 column 3 that
were specified in the AFPDFLD that returned an ID
of FIELDH3 (above).

• 30.0 TO AFP-COLUMN-WIDTH (3) means use
30.0 millimeters for the width of column 3.

/---*

* Begin a table *
* Write the header row *
* End the table *

* Start the table whose maximum depth is the remaining page *
* body space after the white space preceding the table. *

MOVE 45 TO AFP-X-COORDINATE.
MOVE TABLE-WHITE-SPACE TO AFP-Y-COORDINATE.

CALL ″AFPSPOS″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-PAGE-HANDLE
AFP-X-COORDINATE
XABS
AFP-Y-COORDINATE
YREL

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPSPOS (Set Position):
Sets the position for the table at 45 millimeters in the
X-direction and after the designated white space in the
Y-direction. DATA DIVISION contains the value for
TABLE-WHITE-SPACE. XABS and YREL mean the
X-absolute and Y-relative reference coordinate
systems, respectively. See “Setting Attributes (and
Querying Them)” on page 73 for a description of
absolute and relative coordinate systems.

52 Programming Guide and Reference

Tables

Code Description

COMPUTE AFP-MAX-TABLE-DEPTH = PAGE-BODY -
TABLE-WHITE-SPACE.

MOVE 125.0 TO AFP-TABLE-WIDTH.
MOVE 1.0 TO AFP-TOP-THICKNESS.
MOVE .5 TO AFP-BOTTOM-THICKNESS.
MOVE .5 TO AFP-LEFT-THICKNESS.
MOVE .5 TO AFP-RIGHT-THICKNESS.

CALL ″AFPBTBL″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-PAGE-HANDLE
AFP-TABLE-WIDTH
AFP-MAX-TABLE-DEPTH
ROTATE0
AFP-TOP-THICKNESS
AFP-BOTTOM-THICKNESS
AFP-LEFT-THICKNESS
AFP-RIGHT-THICKNESS

BY REFERENCE
AFP-TABLE-HANDLE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPBTBL (Begin Table):
Begins the table, sets up its size, and sets up the rule
thickness.

ROTATE0 means the table is not rotated.

/---*

* WRITE-HEADER-ROW. *
* *
* Write the header row for the table. *

 WRITE-HEADER-ROWS.

CALL ″AFPBROW″
USING
BY CONTENT

AFPAPI-HANDLE
AFP-TABLE-HANDLE
ROW1

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPBROW (Begin Row):
Begins the header row, using the ROW1 ID returned
from AFPDROW for formatting.

* Write the first field in column 1. *

CALL ″AFPBFLD″
USING
BY CONTENT

AFPAPI-HANDLE
AFP-TABLE-HANDLE
FIELDH1

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPBFLD (Begin Field):
Begins the first field in the header row, using the
FIELDH1 ID returned from AFPDFLD for formatting.

CALL ″AFPSFNT″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-TABLE-HANDLE
TIM12MED

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPSFNT (Set Font):
Sets the font for the header row.

Chapter 2. Using AFP API 53

Tables

Code Description

MOVE ″Date″ TO AFP-STRING-IN.
CALL ″TRIM″ USING AFP-STRING-IN,

BY CONTENT LENGTH OF AFP-STRING-IN,
BY REFERENCE AFP-CHARACTER-STRING,
AFP-STRING-LENGTH.

TRIM
Uses “Date” as the AFP-STRING-IN identifier, strips off
unnecessary leading and trailing blanks in the data for
proper formatting, counts the characters (length) of the
data, inserts the trimmed string in
AFP-CHARACTER-STRING, and inserts the string
length in AFP-STRING-LENGTH. TRIM is a subprogram
shipped with the example code.

CALL ″AFPPCHS″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-TABLE-HANDLE
AFP-STRING-LENGTH
AFP-CHARACTER-STRING
CENTER
AFP-ALIGNMENT-CHAR
FALS
FALS

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPPCHS:
Puts a character string (Date) in the field and
centers it.

CALL ″AFPEFLD″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-TABLE-HANDLE

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPEFLD:
Ends the first field in row 1.

* Write the second field in column 2. *

CALL ″AFPBFLD″
USING
BY CONTENT

AFPAPI-HANDLE
AFP-TABLE-HANDLE
FIELDH2

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPBFLD (Begin Field):
Begins the second field in the header row, using the
FIELDH2 ID returned from AFPDFLD for formatting.

MOVE SPACES TO AFP-STRING-IN.
MOVE ″Transaction Description″ TO AFP-STRING-IN.

CALL ″TRIM″ USING AFP-STRING-IN,
BY CONTENT LENGTH OF AFP-STRING-IN,
BY REFERENCE AFP-CHARACTER-STRING,
AFP-STRING-LENGTH.

TRIM:
Uses “Transaction Description” for AFP-STRING-IN,
strips off unnecessary leading and trailing blanks in
the data for correct formatting, counts the characters
(length) of the data, inserts the trimmed string in
AFP-CHARACTER-STRING, and inserts the string
length in AFP-STRING-LENGTH. TRIM is a subprogram
shipped with the example code.

54 Programming Guide and Reference

Tables

Code Description

CALL ″AFPPCHS″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-TABLE-HANDLE
AFP-STRING-LENGTH
AFP-CHARACTER-STRING
CENTER
AFP-ALIGNMENT-CHAR
FALS
FALS

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPPCHS:
Puts a character string (Transaction Description) on
the page and centers it.

CALL ″AFPEFLD″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-TABLE-HANDLE

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPEFLD:
Ends the second field in row 1.

* Write the third field in column 3. *

CALL ″AFPBFLD″
USING
BY CONTENT

AFPAPI-HANDLE
AFP-TABLE-HANDLE
FIELDH3

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPBFLD (Begin Field):
Begins the second field in the header row, using the
FIELDH3 ID returned from AFPDFLD for formatting.

MOVE SPACES TO AFP-STRING-IN.
MOVE ″Amount″ TO AFP-STRING-IN.

CALL ″TRIM″ USING AFP-STRING-IN,
BY CONTENT LENGTH OF AFP-STRING-IN,
BY REFERENCE AFP-CHARACTER-STRING,
AFP-STRING-LENGTH.

TRIM:
Uses “Amount” for AFP-STRING-IN, strips off
unnecessary leading and trailing blanks in the data for
correct formatting, counts the characters (length) of
the data, inserts the trimmed string in
AFP-CHARACTER-STRING, and inserts the string
length in AFP-STRING-LENGTH. TRIM is a subprogram
shipped with the example code.

CALL ″AFPPCHS″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-TABLE-HANDLE
AFP-STRING-LENGTH
AFP-CHARACTER-STRING
CENTER
AFP-ALIGNMENT-CHAR
FALS
FALS

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPPCHS:
Puts a character string (Amount) on the page and
centers it.

Chapter 2. Using AFP API 55

Tables

Code Description

CALL ″AFPEFLD″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-TABLE-HANDLE

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPEFLD:
Ends the third field in row 1.

CALL ″AFPEROW″
USING
BY CONTENT

AFPAPI-HANDLE
AFP-TABLE-HANDLE

BY REFERENCE
AFP-CURRENT-TABLE-DEPTH
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPEROW:
Ends row 1.

* End the table. *

CALL ″AFPETBL″ USING
BY CONTENT

AFPAPI-HANDLE
BY REFERENCE

AFP-TABLE-HANDLE
AFP-TABLE-DEPTH
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPETBL:
Ends the table, returns the final depth of the table to
the program, resets the font to what it was before the
AFPBTBL call, and establishes the current position as
the bottom-left corner of the table.

After this overview and studying the code for one row, examine the sample
document again. The code for the entire table is lengthy and won ′ t be repeated
here. By knowing what to look for in the source code, you should be able to
understand the coding for the entire table.

Figure 18 on page 57 shows the sample document, which has a table containing
the following:

• A heading row with three columns and shading (code covered above)

• Several transaction rows with three columns and no shading

• A summary row with two-columns and shading

56 Programming Guide and Reference

Tables

Figure 18. Sample Document

You must define a separate AFPDROW call for each type of row in the table and
| for all the unique AFPDFLD parameters for each field in each row. To do this,

determine the number of columns and subrows in each row. All rows have one
subrow, and the table has three types of rows, as described above.

| Note: You can use a field in more than one row, but you cannot use a field
| more than once in the same row.

Look at the source code in AFP Application Programming Interface: COBOL
Language Reference and in AFP Application Programming Interface: PL/1
Language Reference. For COBOL, the AFPINIT section contains all of the row
and field definitions. In the code, look for these IDs and study the code and
comments:

AFPDROW (Define Row) and AFPBROW (Begin Row):
ROW1 (ID for the header row)
ROW2 (ID for the transaction rows)
ROW3 (ID for the summary row)

AFPDFLD (Define Field) and AFPBFLD (Begin Field):
FIELDH1, FIELDH2, and FIELDH3 (IDs for the three fields, one in each
column of the header row)
FIELDT1, FIELDT2, and FIELDT3 (IDs for the three fields, one in each
column of the transaction row)
FIELDS1 and FIELDS2 (IDs for the two fields, one in each column of
the summary row)

Chapter 2. Using AFP API 57

Tables

Other procedure calls that affect tables are as follows. (See “Format of the AFP
API Procedure Call Descriptions” on page 98 for detailed parameter descriptions
for these procedure calls).

AFPPTXT (Put Text)
Puts text (to be formatted) in the field

AFPSCLR (Set Color)
Sets the color of the field

AFPSSICS (Set Intercharacter Spacing)
Sets the intercharacter spacing for the field

AFPSWSP (Set Word Spacing)
Sets the word spacing for the field

More About Tables
The preceding example showed the code for a row with one subrow. Here is the
code and the process for developing a table that has one row with three
subrows.

First, please review some terms. When you build a table, you use three basic
elements:

Field A field is rectangular and is usually separated from other fields by
horizontal and vertical rules. A field is similar to a column but does
not always go from the top of the row to the bottom of the row.

Row A row is a horizontal, rectangular collection of one or more fields.
The fields that make up a row may have different widths and depths.

Table A table is a collection of one or more rows. The rows that make up a
table may contain different field arrangements.

The parameters on the AFPTBL, AFPDROW, and AFPDFLD procedure calls
provide flexibility in specifying different characteristics of the table. For example,
you can specify shading to be used in a field and the vertical alignment of the
contents of the field. Consider the following table:

Determining the correct ARRANGE parameter values to create the previous table
can be tricky. The following steps should make the process a little easier.

This field is
as wide as
the two fields
below it.

This field extends from the
top to the bottom of the row
and is the only field to do so
in this table.

An-
other
field

An-
other
field

An-
other
field

An-
other
field

What more
can I say?

This field is
as wide as
the upper,
leftmost field
in this table.

58 Programming Guide and Reference

Tables

Step 1. Sketch the Row
Sketch your row and assign an identifier to each field in the row. You don′ t have
to number the fields sequentially, but the process is easier if you do.

Field 1

Field 5

Field 6 Field 7

Field 2 Field 3
Field 8

Field 4

Step 2. Define all of the Fields in the Row
The table has eight Fields, so you must issue the AFPDFLD call eight times and
save the IDs from each call. The field IDs are FIELD1, FIELD2, FIELD3, FIELD4,
FIELD5, FIELD6, FIELD7, and FIELD8.

Step 3. Form a Grid
Extend all the vertical and horizontal rules to the edges of the sketch to form a
grid.

The extensions are shown in thin rules, and the fields from Step 1 are shown in
thick rules.

Step 4. Determine the Number of Columns and Their Widths
Determine the horizontal width of each rectangle in the grid from Step 3. These
are the values to use on the COLUMN-WIDTH parameter of the AFPDROW
procedure call.

The value of the NUMBER-COLUMNS parameter in AFPDROW is 5.

The value of the TABLE-WIDTH parameter in AFPBTABL is the sum of the
column widths, which is 98 (12 plus 12 plus 50 plus 12 plus 12).

12 12 50 12 12

Chapter 2. Using AFP API 59

Tables

Step 5. Determine the Number Subrows and Their Depths
Determine the number of subrows in the grid from Step 3. This is the value to
use in the NUMBER-SUBROWS parameter in the AFPDROW procedure call. The
value in this case is 3.

The depth of each subrow is specified in the SUBROW-DEPTH parameter in
AFPDROW. This example uses the default subrow depth determined by the font
being used.

Step 6. Determine the Arrangement of Each Field Within Each
Subrow
Construct an array called COLUMN-ARRANGE with five columns and three
subrows, and store the arrangement of the field IDs in the elements of the array,
as shown in the following figure:

Field1 Field1 Field5 Field6 Field7

Field2 Field3 Field5 Field8 Field8

Field4 Field4 Field5 Field8 Field8

Step 7. Define The Row
This AFPDROW includes the IDs returned from the eight AFPDFLD calls identified
in Step 2. The example uses IDs from the eight AFPDFLD calls but doesn′ t show
the code for them. Page50 described how to code AFPDFLD calls. The complete
row definition AFPDROW looks like this:

Code Description

* DEFINE THE FIELDS *

CALL ″AFPDFLD″ USING

 ..

 ..

 ..

AFPDFLD (Define Field):

See page50 for how to code FIELDH1, FIELDH2, and FIELDH3. The

coding for FIELD1, FIELD2, FIELD3, FIELD4, FIELD5, FIELD6, FIELD7,

and FIELD8 is similar.

60 Programming Guide and Reference

Tables

Code Description

* DEFINE THE ROW *

MOVE 5 TO AFP-NUMBER-COLUMNS.
MOVE 3 TO AFP-NUMBER-SUBROWS.
MOVE AFP-DEFAULT TO AFP-SUBROW-DEPTH(1).
MOVE AFP-DEFAULT TO AFP-SUBROW-DEPTH(2).
MOVE AFP-DEFAULT TO AFP-SUBROW-DEPTH(3).
MOVE FIELD1 TO AFP-COLUMN-ARRANGE (1, 1).
MOVE FIELD1 TO AFP-COLUMN-ARRANGE (1, 2).
MOVE FIELD5 TO AFP-COLUMN-ARRANGE (1, 3).
MOVE FIELD6 TO AFP-COLUMN-ARRANGE (1, 4).
MOVE FIELD7 TO AFP-COLUMN-ARRANGE (1, 5).
MOVE FIELD2 TO AFP-COLUMN-ARRANGE (2, 1).
MOVE FIELD3 TO AFP-COLUMN-ARRANGE (2, 2).
MOVE FIELD5 TO AFP-COLUMN-ARRANGE (2, 3).
MOVE FIELD8 TO AFP-COLUMN-ARRANGE (2, 4).
MOVE FIELD8 TO AFP-COLUMN-ARRANGE (2, 5).
MOVE FIELD4 TO AFP-COLUMN-ARRANGE (3, 1).
MOVE FIELD4 TO AFP-COLUMN-ARRANGE (3, 2).
MOVE FIELD5 TO AFP-COLUMN-ARRANGE (3, 3).
MOVE FIELD8 TO AFP-COLUMN-ARRANGE (3, 4).
MOVE FIELD8 TO AFP-COLUMN-ARRANGE (3, 5).
MOVE 12.0 TO AFP-COLUMN-WIDTH (1).
MOVE 12.0 TO AFP-COLUMN-WIDTH (2).
MOVE 50.0 TO AFP-COLUMN-WIDTH (3).
MOVE 12.0 TO AFP-COLUMN-WIDTH (4).
MOVE 12.0 TO AFP-COLUMN-WIDTH (5).
CALL ″AFPDROW″ USING

BY CONTENT
AFPAPI-HANDLE
AFP-DOCUMENT-HANDLE
AFP-MIN-SUBROW-DEPTH-ARRAY
AFP-TOP-THICKNESS
AFP-BOTTOM-THICKNESS
AFP-NUMBER-COLUMNS
AFP-NUMBER-SUBROWS
AFP-ROW-ARRANGE-ARRAY
AFP-COLUMN-WIDTH-ARRAY

BY REFERENCE
ROW1
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPDROW (Define Row):

Defines characteristics for the five columns in the row.

• AFP-DEFAULT TO AFP-SUBROW-DEPTH(1) means use the default

for the depth of subrow 1. The font you use determines this default.
• AFP-DEFAULT TO AFP-SUBROW-DEPTH(2) means use the default

for the depth of subrow 2. The font you use determines this default.
• AFP-DEFAULT TO AFP-SUBROW-DEPTH(3) means use the default

for the depth of subrow 3. The font you use determines this default.
• FIELD1 TO AFP-COLUMN-ARRANGE (1, 1) means use the

characteristics for subrow 1 column 1 that were specified in the

AFPDFLD call that returned an ID of FIELD1.
• FIELD1 TO AFP-COLUMN-ARRANGE (1, 2) means use the

characteristics for subrow 1 column 2 that were specified in the

AFPDFLD call that returned an ID of FIELD1.
• FIELD5 TO AFP-COLUMN-ARRANGE (1, 3) means use the

characteristics for subrow 1 column 3 that were specified in the

AFPDFLD call that returned an ID of FIELD5.
• FIELD6 TO AFP-COLUMN-ARRANGE (1, 4) means use the

characteristics for subrow 1 column 4 that were specified in the

AFPDFLD call that returned an ID of FIELD6.
• FIELD7 TO AFP-COLUMN-ARRANGE (1, 5) means use the

characteristics for subrow 1 column 5 that were specified in the

AFPDFLD call that returned an ID of FIELD7.
• FIELD2 TO AFP-COLUMN-ARRANGE (2, 1) means use the

characteristics for subrow 2 column 1 that were specified in the

AFPDFLD call that returned an ID of FIELD2.
• FIELD3 TO AFP-COLUMN-ARRANGE (2, 2) means use the

characteristics for subrow 2 column 2 that were specified in the

AFPDFLD call that returned an ID of FIELD3.
• FIELD5 TO AFP-COLUMN-ARRANGE (2, 3) means use the

characteristics for subrow 2 column 3 that were specified in the

AFPDFLD call that returned an ID of FIELD5.
• FIELD8 TO AFP-COLUMN-ARRANGE (2, 4) means use the

characteristics for subrow 2 column 4 that were specified in the

AFPDFLD call that returned an ID of FIELD8.
• FIELD8 TO AFP-COLUMN-ARRANGE (2, 5) means use the

characteristics for subrow 2 column 5 that were specified in the

AFPDFLD call that returned an ID of FIELD8.
• FIELD4 TO AFP-COLUMN-ARRANGE (3, 1) means use the

characteristics for subrow 3 column 1 that were specified in the

AFPDFLD call that returned an ID of FIELD4.
• FIELD4 TO AFP-COLUMN-ARRANGE (3, 2) means use the

characteristics for subrow 3 column 2 that were specified in the

AFPDFLD call that returned an ID of FIELD4.
• FIELD5 TO AFP-COLUMN-ARRANGE (3, 3) means use the

characteristics for subrow 3 column 3 that were specified in the

AFPDFLD call that returned an ID of FIELD5.
• FIELD8 TO AFP-COLUMN-ARRANGE (3, 4) means use the

characteristics for subrow 3 column 4 that were specified in the

AFPDFLD call that returned an ID of FIELD8.
• FIELD8 TO AFP-COLUMN-ARRANGE (3, 5) means use the

characteristics for subrow 3 column 5 that were specified in the

AFPDFLD call that returned an ID of FIELD8.
• 12 TO AFP-COLUMN-WIDTH (1) means that column 1 is 12

mi l l imeters wide.
• 12 TO AFP-COLUMN-WIDTH (2) means that column 2 is 12

mi l l imeters wide.
• 50 TO AFP-COLUMN-WIDTH (3) means that column 3 is 50

mi l l imeters wide.
• 12 TO AFP-COLUMN-WIDTH (4) means that column 4 is 12

mi l l imeters wide.
• 12 TO AFP-COLUMN-WIDTH (5) means that column 5 is 12

mi l l imeters wide.

Chapter 2. Using AFP API 61

Put Box

Box
You can draw a box anywhere on a page and shade it if you want. You can even
shade an “invisible” box (that is, a box with shading but no rules enclosing it) by
setting the rule thickness to zero before drawing the box. The example does not
contain a AFPPBOX procedure call, but here is a typical box. (See “Format of
the AFP API Procedure Call Descriptions” on page 98 for detailed parameter
descriptions.)

Figure 19. Box

Here are the steps for placing this box on the page:

 1. Set the rule thickness.
 2. Set the position for where the box begins.
 3. Put the box at the specified position.

Here is the code:

Code Description

* Draw a box *

MOVE 0.3 TO AFP-RULE-THICKNESS.
CALL ″AFPSRTH″ USING

BY CONTENT
AFPAPI-HANDLE
AFP-PAGE-HANDLE
AFP-RULE-THICKNESS

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPSRTH (Set Rule Thickness):
Specifies the thickness for the sides of a box in the
unit of measure currently in effect, in this case,
0.3 mill imeters for the box.

MOVE 29 TO AFP-X-COORDINATE.
MOVE 73 TO AFP-Y-COORDINATE.

CALL ″AFPSPOS″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-PAGE-HANDLE
AFP-X-COORDINATE
XABS
AFP-Y-COORDINATE
YABS

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPSPOS (Set Position):
Sets the position for placing the rule as 29 mil l imeters
in the X-direction and 73 millimeters in the Y-direction.
XABS and YABS mean the X-absolute and Y-absolute
reference coordinate systems, respectively. See
“Setting Attributes (and Querying Them)” on page 73
for a description of absolute and relative coordinate
systems.

MOVE 33 TO AFP-BOX-WIDTH.
MOVE 31 TO AFP-BOX-DEPTH.
MOVE 0 TO AFP-SHADING-INTENSITY.
CALL ″AFPPBOX″ USING

BY CONTENT
AFPAPI-HANDLE
AFP-PAGE-HANDLE
AFP-BOX-WIDTH
AFP-BOX-DEPTH
NOSHADE
AFP-SHADING-INTENSITY

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPPBOX (Put Box):
Draws a box with the top-left corner beginning at the
current position. The example specifies a width of
33 millimeters, a depth of 31 millimeters, and no
shading for the box. The current values for rule
thickness and color apply. See “ AFPSCLR (Set
Color)” on page 181 for how to specify color. If you
specify shading and a value of 0 for rule thickness, you
get shading with no box. The current position is
unchanged after the box is drawn.

62 Programming Guide and Reference

Include Object

Include Object
You can include Image Object Content Architecture (IOCA) and Graphics Object
Content Architecture (GOCA) objects in a document. The object can be either in
a document or a page segment, such as those created by Graphical Data
Display Manager (GDDM), or it can be an individual object. When you include an
individual object, you can instruct the printer to change the size and rotation of
the object when it is printed.

| When AFP API is running in a CICS/ESA environment, you cannot include
| individual image and graphic objects. The objects must be in page segments;
| use the AFPIPSG (Include Page Segment) procedure call to include a page
| segment.

When you include an individual object, AFP API retrieves the member containing
the object either from the object library specified in the AFPSLIB procedure call
or from the default object library. If the included member contains more that one
object, only the first object inside the member is included in the document. AFP
API places the object at the current position. “Data Objects and AFP Resource
Objects” on page 11 describes data objects.

The example does not contain an AFPIOBJ procedure call, but here is an
example of using it to include an IOCA object named IOCAMMR that is shipped
with PSF/MVS, PSF/VM, and PSF/VSE. The PSF installation process stores the
object in the PSF page segment library. To use the IOCAMMR object with AFP
API, copy it into the AFP API object library. See “Format of the AFP API
Procedure Call Descriptions” on page 98 for detailed parameter descriptions.
Here are the steps for including a data object in a document:

 1. Set the position for where to place the upper-left corner of the object.
 2. Include the object at the specified position.

The IOCAMMR object looks like this when it is included as shown in the
following sample code:

Figure 20. Example of the IOCAMMR Data Object Shipped with PSF

Chapter 2. Using AFP API 63

Include Object

Here is the code:

Code Description

MOVE 29 TO AFP-X-COORDINATE.
MOVE 23 TO AFP-Y-COORDINATE.

CALL ″AFPSPOS″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-PAGE-HANDLE
AFP-X-COORDINATE
XABS
AFP-Y-COORDINATE
YREL

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPSPOS (Set Position):
Sets the position for the object at 29 mill imeters in the
X-direction and 23 millimeters in the Y-direction.

* Include Object *

MOVE ″IOCAMMR″ TO AFP-OBJECT-NAME.
MOVE 38.1 TO AFP-OBJECT-WIDTH.
MOVE 38.1 TO AFP-OBJECT-DEPTH.
MOVE ROTATE0 TO AFP-OBJECT-ROTATION.
MOVE SCALE-TO-FIT TO AFP-OBJECT-MAPPING-OPTION.
MOVE AFP-DEFAULT TO AFP-OBJECT-X-OFFSET.
MOVE AFP-DEFAULT TO AFP-OBJECT-Y-OFFSET.

CALL ″AFPIOBJ″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-PAGE-HANDLE
AFP-OBJECT-NAME
AFP-OBJECT-WIDTH
AFP-OBJECT-DEPTH
AFP-OBJECT-ROTATION
AFP-OBJECT-MAPPING-OPTION
AFP-OBJECT-X-OFFSET
AFP-OBJECT-Y-OFFSET

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPIOBJ (Include Object):
Includes the SPECIFIED object at the current position.
Specify the width and the depth of the space on the
page in which you are placing the object
(38.1 millimeters) and specify how the printer is to
map the object into the space. The example specifies
SCALE-TO-FIT, which means that the object should be
shrunk or expanded to fit into the specified space. The
current position is unchanged after including the
object.

64 Programming Guide and Reference

Defining Your Environment

Introducing Return Codes and Severity Codes
AFP API sends return codes and severity codes back to the program after
processing every procedure call. The application program should monitor these
codes after every call and respond accordingly. The example doesn′ t check
return codes on every call; however, checking them aids in debugging your
program.

See Appendix B, “Return Codes and Severity Codes” for detailed descriptions
for these codes.

| Figure 21 shows the usual flow of information between AFP API and the
application program and from AFP API to an output file or to a CICS/ESA
temporary storage queue.

| Figure 21. Information Flow. AFP API sends the AFP data stream to an output fi le or to a
| CICS/ESA temporary storage queue for printing.

| Note: AFP API can write the AFP data stream to an output buffer in your
| program instead of to an output file. See “Buffering AFP API Output” on page 66
| for more information.

Setting Up and Defining the Environment for an AFP API Session
When the example in “Program Template” on page 24 was initialized, it didn′ t
include the code that sets output characteristics, defines resource libraries,
defines fonts, and sets (and queries) attributes. After the output characteristics
are set and the resource libraries, fonts, and attributes are defined, you can use
these values throughout AFP API.

AFP API also has default values for most parameters, which is described in
“Setting Attributes (and Querying Them)” on page 73. With set procedure calls,
you can override both values specified at initialization and any AFP API default
values.

Chapter 2. Using AFP API 65

Buffered Output

Setting Output Characteristics and Resource Libraries
During initialization, you must set some output characteristics and identify the
libraries where resources are stored, unless you want to use the defaults. The
procedure calls described here do that. See “Format of the AFP API Procedure
Call Descriptions” on page 98 for detailed parameter descriptions for these
procedure calls.

The procedure calls for setting up the characteristics of an AFP API session are:

AFPSOUT (Set Output Characteristics):
Establishes the following:

• The maximum size of a variable-length data-stream record

• The name of the AFP API output file (or the DD card name on
MVS or the file name of a DLBL statement on VSE) if AFP API is
to write the output records to a file

• Whether or not to create a new output file or replace an existing
one

| • The name of the queue if AFP API is to write output records to a
| CICS/ESA transient data queue

| • Whether AFP API is to return output records to a buffer in your
| program or discard the output, instead of writing the output to an
| output file.

AFPSLIB (Set Resource Library Names):
Identifies the libraries where fonts, page segments, and objects
reside. AFP API must have access to these libraries. See “More
About Resources” on page 34 for more information about resources
and how to access them.3

| In a CICS/ESA environment, you do not identify font and page
| segment resources with the AFPSLIB (Set Resource Library Names)
| procedure call. Font and page segment resources must be in VSAM
| data sets defined to CICS/ESA with the names FONTLIB and SEGLIB.

| Buffering AFP API Output
| During initialization, you can request that AFP API return the output data stream
| to a buffer in your program, instead of writing it to an output file or to a
| CICS/ESA temporary storage queue. Returning the output data stream to a
| buffer allows your program to modify the data stream.

| Figure Figure 22 on page 67 shows the flow of information when you request
| that AFP API buffer the output data stream.

3 On the VM operating system, AFP API searches in alphabetical order for fonts, page segments, and included objects on the
first minidisk on which the resource is stored. For example, AFP API searches for a page segment named RUFUS as RUFUS
PSEG3820 *.

66 Programming Guide and Reference

Fonts

| Figure 22. Information Flow Using Buffered Output. AFP API sends the AFP data stream
| to your program.

| Follow these steps to use output buffering:

| 1. Issue the AFPSOUT procedure call to request that AFP API return output
| records to a buffer in your program instead of writing them to a file. To do
| this, specify the constant BUFFERED as the output file name on the AFPSOUT
| procedure call.

| 2. After each page is ended, that is, after the AFPEPAG procedure call, issue
| the AFPGBUF procedure call repeatedly to retrieve each record for the page
| just completed. AFP API returns each record and its length in a buffer you
| provide in your program. Each record contains one structured field.

| 3. Issue the AFPEDOC procedure call to end the document and obtain the last
| output record in the same buffer provided in the last AFPGBUF procedure
| call.

| 4. Write the output records to an output file or to a CICS temporary storage
| queue.

| Sample COBOL code showing how to use output buffering is printed in AFP
| Application Programming Interface: COBOL Language Reference.

Defining Fonts and Using Them with AFP API
You must tell AFP API which fonts to use and where they are stored. This
section provides an overview of IBM fonts and describes some of the terms used

| to identify them. AFP API requires that the fonts you tell AFP API to use have
| been installed using the Font Indexing Library Program (FLIP). Also, the
| installation-verification program (IVP) for the AFP API uses certain fonts, which
| you must install using FLIP; refer to the Program Directory for information about
| the fonts required by the IVP.

| The AFP Font Collection product provides fonts. For samples of these fonts,
refer to IBM AFP Fonts: Font Samples.

You can identify fonts by appearance, height, width, and thickness of the
| characters in the font, provided the fonts are defined in your font library. The

steps below show how to identify, select, and use the font for Susan′s name in

Chapter 2. Using AFP API 67

Fonts

the example, shown again in Figure 23 on page 68. Notice that Susan′s name is
printed with a different font than that used for the address. The following is the
process for selecting only the font for her name.

Figure 23. Character String

Selecting the Font You Want
The code for placing Susan′s name on the page is described in “Character
String” on page 28, but the sample doesn′ t show how to define the font. The
following are the steps to select and use the font for Susan′s name:

 1. Select a typeface from IBM AFP Fonts: Font Samples. The example uses
Latin1: Times New Roman Roman Bold and notes the name, point size,
weight, and width.

 2. Look for that typeface in IBM AFP Fonts: Technical Reference for IBM
Expanded Core Fonts to select the font′s code page4 from a list of valid code
pages. The example uses code page T1V10500.

| Note: ASCII code pages are not supported.

 3. Verify that the font is on your system by doing the following:

• Locate the font′s characteristics (name, point size, weight, and width) in
the Font Library Indexing Program output listing. Figure 24 on page 71
is an example of such a listing.

Fonts have a Descriptive Name, which in this case is “TIMES NEW
ROMAN LATIN1.” From the listing, you can get the information about the
font that you need to complete the AFPDFNT procedure call.

• Look in the font library on your system for the code page that you
selected, in the sample, code page T1V10500. The font library is the one
you identified in the AFPSLIB call. If you don ′ t know the font library
name, see your system programmer.

 4. Invoke the AFPDFNT call with the following information for the example:

• Code page: T1V10500

• Descriptive name length: 22 (TIMES NEW ROMAN LATIN1 has a length of
22, including characters and blanks.)

• Descriptive name: TIMES NEW ROMAN LATIN1.

• Point size: 12 points (vertical font size)

• Weight: Bold

• Width: Normal (the horizontal size of a font)

• Rotation: 0 (the clockwise rotation of a character in a font). Rotation
values are not in the listing, but the choices are: 0°, 90°, 180°, or 270°.

4 A code page is a particular assignment of hexadecimal identifiers to graphic characters. For example, X′ 4F′ is an
exclamation point (!) in code page T1V10500, and X′ 5A′ is an exclamation point (!) in code page T1V10037. If the code page
used by your terminal or system for input is different from the code page used to present the data, you may not get the output
you expect.

68 Programming Guide and Reference

Fonts

• Style: Roman (the posture of a font, roman or italic)

 5. Invoke AFPSFNT with the ID returned from AFPDFNT.

 6. Invoke AFPPCHS with Susan′s name. The complete code for doing this is
shown in “Character String” on page 28.

Here is the code for AFPDFNT:

Code Description

MOVE ″T1V10500″ TO AFP-CODE-PAGE.
MOVE 22 TO AFP-DESC-NAME-LENGTH.
MOVE ″TIMES NEW ROMAN LATIN1″ TO AFP-DESCRIPTIVE-NAME.
MOVE 12 TO AFP-POINT-SIZE.

CALL ″AFPDFNT″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-DOCUMENT-HANDLE
AFP-CODE-PAGE
AFP-DESC-NAME-LENGTH
AFP-DESCRIPTIVE-NAME
AFP-POINT-SIZE
BOLD
NORMAL
ORIENT0
ROMAN

BY REFERENCE
TIM12BOLD
AFP-RET-CODE
AFP-SEVERITY-CODE.

Defines all the attributes for the font specified with the
AFPSFNT for Susan′s name. TIM12BOLD is the ID to
use in the AFPSFNT call to identify the font defined in
this AFPDFNT call. “Character String” on page 28
contains the code for placing Susan′s name on the
page.

See “Format of the AFP API Procedure Call Descriptions” on page 98 for
detailed parameter descriptions for the following procedure calls.

AFPDFNT (Define Font by Attributes):
Creates a font ID on your system that matches a specified font′s
attributes, such as, code page, point size, weight, width, rotation, and
style. AFPSFNT uses this font ID when specifying a font. The font
must exist in a font library available to AFP API.

AFPSFNT (Set Font):
Specifies one of the fonts defined with the AFPDFNT Procedure Call
for use in subsequent text. You must issue a new AFPSFNT call
whenever you want to change fonts.

Font Library Indexing Program
This section provides a brief overview of the Font Library Indexing Program
(FLIP) and shows how to use it. A system programmer runs this program
whenever a font is modified, added, or deleted.

Font Library Indexing Program (FLIP): FLIP,5 which is used to document the
contents of your AFP font library, produces a listing of the available fonts; this
listing includes several attributes of the fonts that you need when you code the
AFPDFNT.

5 The FLIP program that comes with AFP API is similar to the one available with Document Composition Facility (DCF). The
AFPINDEX file is identical in content to the DCFINDEX file, so if you have already installed DCF and have run FLIP, you may
not need to re-run it for AFP API. However, the listing files produced from AFPINDEX are quite different, so you may want to
keep both. AFP API searches first for AFPINDEX and then for DCFINDEX. DCF does not recognize or process the AFPINDEX
file.

Chapter 2. Using AFP API 69

Fonts

You must use FLIP to re-create the AFPINDEX whenever a font object in the font
library is modified, added, or deleted. The program directory shipped with the
product contains instructions for running FLIP. Appendix A, “Font Library
Indexing Program (FLIP)” contains an overview of running FLIP, in case the
program directory is not available.

AFP Font Listing: The FLIP listing, which is illustrated in Figure 24 on page 71,
specifies the contents of the library in the same terms that are used when
identifying the font with the Define Font by Attributes call.

• On VM, the listing is a file named FONTxxxx LISTING, where FONTxxxx
matches the file type of the font objects. The listing is stored on the same
disk as the font library index.

• On MVS, the listing is a member named LISTING, which is stored in the font
library.

• On VSE, the listing is named AFPINDEX and is held on the POWER LST
QUEUE. The listing can be stored in the font sublibrary.

See your system programmer if you cannot locate the FLIP listing. The system
programmer may need to run FLIP again, which is described in Appendix A,
“Font Library Indexing Program (FLIP).”

70 Programming Guide and Reference

Fonts

APQFPRPT: AFP FONT LIBRARY INDEX PROGRAM REPORT. FONT LIBRARY: F O NT3820 PAGE: 47
For a description of this report, see the AFP API Programmers Guide sect ion on Defining Fonts

FORMAT: BOUNDED BOX

 DESCRIPTIVE NAME: TIMES NEW ROMAN LATIN1
CHARACTER POINT LINE FIGURE WORD
SET SIZE WEIGHT WIDTH STYLE DEVICE SPACE SPACE SPACE
C0N40000 10 Bold Normal Roman 3820 35 17 8
C0N50000 10 Bold Normal Italic 3820 35 17 8
C0N200A0 11 Medium Normal Roman 3820 40 18 9
C0N300A0 11 Medium Normal Italic 3820 40 18 9
C0N400A0 11 Bold Normal Roman 3820 40 18 9
C0N500A0 11 Bold Normal Italic 3820 40 18 9
C0N200B0 12 Medium Normal Roman 3820 43 20 10
C0N300B0 12 Medium Normal Italic 3820 43 20 10
C0N400B0 12 Bold Normal Roman 3820 43 20 10
C0N500B0 12 Bold Normal Italic 3820 43 20 10
C0N200D0 14 Medium Normal Roman 3820 50 23 12
C0N300D0 14 Medium Normal Italic 3820 50 23 12
C0N400D0 14 Bold Normal Roman 3820 50 23 12
C0N500D0 14 Bold Normal Italic 3820 50 23 12
C0N200F0 16 Medium Normal Roman 3820 57 27 13
C0N300F0 16 Medium Normal Italic 3820 57 27 13
C0N400F0 16 Bold Normal Roman 3820 57 27 13
C0N500F0 16 Bold Normal Italic 3820 57 27 13
C0N200H0 18 Medium Normal Roman 3820 64 30 15
C0N300H0 18 Medium Normal Italic 3820 64 30 15
C0N400H0 18 Bold Normal Roman 3820 64 30 15
C0N500H0 18 Bold Normal Italic 3820 64 30 15
C0N200J0 20 Medium Normal Roman 3820 72 33 17
C0N300J0 20 Medium Normal Italic 3820 72 33 17
C0N400J0 20 Bold Normal Roman 3820 72 33 17
C0N500J0 20 Bold Normal Italic 3820 72 33 17
C0N200N0 24 Medium Normal Roman 3820 86 40 20
C0N300N0 24 Medium Normal Italic 3820 86 40 20
C0N400N0 24 Bold Normal Roman 3820 86 40 20
C0N500N0 24 Bold Normal Italic 3820 86 40 20
C0N200T0 30 Medium Normal Roman 3820 107 50 25
C0N300T0 30 Medium Normal Italic 3820 107 50 25
C0N400T0 30 Bold Normal Roman 3820 107 50 25
C0N500T0 30 Bold Normal Italic 3820 107 50 25
C0N200Z0 36 Medium Normal Roman 3820 128 60 30
C0N300Z0 36 Medium Normal Italic 3820 128 60 30
C0N400Z0 36 Bold Normal Roman 3820 128 60 30
C0N500Z0 36 Bold Normal Italic 3820 128 60 30

Figure 24. Portion of a Sample of Font Library Index Program Listing

Chapter 2. Using AFP API 71

Fonts

The character set is not used as a parameter on Define Font, but it tells the
formatter which character set in the font library to read when its attribute values
are specified with the other parameters on Define Font, such as descriptive
name, width, weight, and so on. Within each descriptive name group, fonts are
ordered by point size, weight, width, and style. Point sizes can range from 6
through 72.

Programming constants for specifying weight, width, and style are identified in
the description of the AFPDFNT call in AFP Application Programming Interface:
COBOL Language Reference and AFP Application Programming Interface: PL/1
Language Reference.

The first font found (in the order shown in the font report listing) whose
description matches the attributes on AFPDFNT is used. For example, if you
code the following, character set CON400B0 of the font library is used.

MOVE ″T1V10500″ TO AFP-CODE-PAGE.
MOVE 22 TO AFP-DESC-NAME-LENGTH.
MOVE ″TIMES NEW ROMAN LATIN1″ to AFP-DESCRIPTIVE NAME.
MOVE 12 to AFP-POINT-SIZE.

CALL ″AFPDFNT″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-CURRENT-HANDLE
AFP-CODE-PAGE
AFP-DESC-NAME-LENGTH
AFP-DESCRIPTIVE-NAME
AFP-POINT-SIZE
BOLD
NORMAL
ORIENT0
ROMAN

BY REFERENCE
TIM12BOLD
AFP-RET-CODE
AFP-SEVERITY-CODE.

72 Programming Guide and Reference

Setting Attributes

Setting Attributes (and Querying Them)
To override defaults, you must tell AFP API which units of measure to use
(inches, millimeters, centimeters, 240th of an inch, or 1440ths of an inch) when
placing information on a page, where to place the information, how thick to make
rules, how much space to put between words and characters, and which color (if
any) to use. See “Understanding States” on page 75 for more information about
the attribute hierarchy. If a value is not specifically established for an attribute,
the following default values apply:

Attribute Default
Unit of measure Mill imeters.
Initial position X position is 0;

Y position is 0 (that is, the logical page origin).
Color Black.
Rule Thickness 0.4 millimeters.
Font Coded font X0N2100C (Times New Roman 10 point

with code page T1V10500).
Intercharacter Spacing The additional intercharacter spacing increment is 0.
Word Spacing The word space associated with the current font.

The following procedure calls set the attributes indicated:

AFPSUNI (Set Units):
Sets the units of measure in a document, page, or area. For
example, you can specify inches in the AFPBDOC procedure call for
the page width and depth for the entire document, then specify
millimeters in a page for spacing and placing characters on the page.
The default is millimeters.

| Note: The output file generated by AFP API is in logical units of 1440
| per inch, even if you specify a different unit of measure in the Set
| Units procedure call.

AFPSPOS (Set Position):
Specifies where to place data (text, rules, and so on) with X and Y
coordinates. Placement can be either relative to the current position
or absolute to the data or area coordinate system origin. “ AFPBDOC
(Begin Document)” on page 100 describes the data coordinate
system and logical-page orientation, and “More About Areas” on
page 47 describes the area coordinate system.

Relative Place relative to the current position either in the unit of
measure currently in effect or in lines of text.

Absolute Place at the specified position in the unit of measure
currently in effect. You don′ t care where you were,
because you specify values for X and Y for where you want

| to be. When placing data or placing areas in a specified
| position, you can specify X and Y values that are greater
| than, less than, or equal to the current X and Y values;
| however, when placing data within an area, the Y value
| must be greater than or equal to the current Y value.

Chapter 2. Using AFP API 73

Setting Attributes

AFPSWSP (Set Word Spacing):
Specifies the width of spaces (X′ 40′) between words in the unit of
measure currently in effect. The default is the word spacing
associated with the current font. Whatever value you specify is used
when the text contains a X′ 40′ (space).

AFPSICS (Set Intercharacter Spacing):
Specifies the amount of space to insert between characters in a word
in the unit of measure currently in effect. This space is in addition to
the normal space for a character in a particular font. The default is to
add no additional space between characters.

AFPSCLR (Set Color):
Specifies the color for subsequent text and rules. Valid colors are
black, blue, red, magenta, green, cyan, yellow, brown, and the color
of the media. The default is black.

You can ask AFP API what attributes and position parameter values are in effect
| for the document. You can also ask AFP API what size area is required to print
| a specified character string using the current attributes. The procedure calls

described here do that. For AFPQATT and AFPQPOS, the numeric values
returned may be slightly different than the ones specified, because of rounding.

See “Format of the AFP API Procedure Call Descriptions” on page 98 for
detailed parameter descriptions for these procedure calls.

AFPQATT (Query Current Attributes):
Returns the current values for units of measure, position, color, rule
thickness, font, intercharacter spacing, and word spacing.

AFPQPOS (Query Current Position):
Returns the current X-coordinate and Y-coordinate values for position
in the units of measure currently in effect. Use this procedure call
instead of AFPQATT if you need only the position; response may be a
little faster.

| AFPQSTR (Query Character String Size):
| Returns the width and depth of the specified character string printed
| in the current font. The width and depth is returned in the current
| unit of measure, using the font, intercharacter spacing, and word
| spacing attributes currently in effect.

74 Programming Guide and Reference

States

Understanding States and Handles
Now that you′ve read about most of the AFP API parts, you need to put them
together in a hierarchy (states) and keep track of where you are in the hierarchy
(handles).

Understanding States
AFP API is state driven. This means that AFP API needs to know at all times
where in the document it is operating, so that it can determine which attributes
are in effect. AFP API uses states to do this. Figure 25 shows all of the AFP API
states and their relationship to each other.

Figure 25. Hierarchy of AFP API States

When you issue a AFP API procedure call that begins a state (AFPINIT,
AFPBDOC, AFPBPAG, AFPCARE, AFPBPAR, AFPBTBL, AFPBROW, or AFPBFLD),
AFP API enters a new state. When you issue a AFP API procedure call that ends
the state (AFPEND, AFPTERM, AFPEDOC, AFPEPAG, AFPEARE, AFPEPAR,
AFPETBL, AFPEROW, or AFPEFLD), AFP API returns to the previous state. When
backing out, you must keep track of where AFP API is. For example, when
coming out of an area, AFP API can be in either document state or page state.
The state in which AFP API is determines your next action. When you end a
document (AFPEDOC), AFP API enters start state; when you terminate a
document (AFPTERM) or end AFP API (AFPEND), the AFP API session ends.

Chapter 2. Using AFP API 75

States

Other characteristics about states are:

• Calls made in one state set the defaults for lower states. For example, units
set in document state apply to pages and areas in that document, and fonts
set in page state apply to an area, table, or paragraph in that page.

• Calls made in lower states override defaults. For example, AFPSUNI in page
state overrides the units set in document state.

• Calls affect current and lower states only. For example, AFPSUNI in
paragraph state does not affect units in page state.

When AFP API is initialized and a document is created (see “ AFPINIT (Initialize
AFP API)” on page 151 and “ AFPBDOC (Begin Document)” on page 100), the
program changes to document state. In document state, a default environment
is established for each page within the document, and you can create one or
more pages in that document. If a default is not specifically established for an
attribute, the defaults listed in “Setting Attributes (and Querying Them)” on
page 73 apply.

When a page is created (see “ AFPBPAG (Begin Page)” on page 108), the
program changes to page state. Each page inherits its initial environment from
the parent document. You can override the default environment within a page,
but when the page ends, the program returns to document state, and the
document environment is reestablished for subsequent pages within the
document.

You can create an area in either document or page state, and several areas can
be active at the same time. An area provides a way of defining an autonomous
object that is in AFP API storage. You can place the area on one or more pages
by referencing the area within page state. Creating an area is independent of
the state in which it was created, except that its initial default environment is
inherited from the current environment. You can override the default
environment within the area, but when the area ends, the current environment is
reestablished.

76 Programming Guide and Reference

Handles

Understanding Handles
Handles are IDs that identify the session and the portion (state) of the document
in which AFP API is operating. AFP API uses these handles to keep track of
which state in the document it is processing at any given time.

The AFP API handle is required on all calls to identify the program to AFP API.
You learned in “Understanding States” on page 75 that when you issue a AFP
API procedure call that begins a state (AFPINIT, AFPBDOC, AFPBPAG, AFPCARE,
AFPBPAR, AFPBTBL, AFPBROW, or AFPBFLD), you enter a new state. When
AFP API enters a state, except for row state and field state, it assigns an
identifier or handle to that state and sends that handle back to the program; in

| row state and in field state, the table handle is used. Your program must place
| the handle of the current state in the Current-Handle field on AFP API procedure
| calls.

The handles for a simple document look like Figure 26 on page 78. When you
issue the AFPINIT call, AFP API returns the AFP API handle back to the program,
and this becomes the handle for the session and is required in all calls for that
session. When you issue the AFPBDOC call, AFP API returns document handle
back to the program. The next call in the document state, in this case the
AFPBPAG, includes the AFP API handle and the document handle, and AFP API
returns the page handle back to the program. The next call in the page state, in
this case the AFPBPAR, includes the AFP API handle and the page handle, and
AFP API returns the paragraph handle to the program. The next call in the
paragraph state, in this case the AFPPTXT, includes the AFP API handle and the
paragraph handle.

When you use a procedure call that ends a state (AFPEND, AFPTERM, AFPEDOC,
AFPEPAG, AFPEARE, AFPEPAR, AFPETBL, AFPEROW, or AFPEFLD), you use all
of the handles that got you where you are, and the program goes back to the
previous state. For example, when you end the paragraph (AFPEPAR) in
Figure 26 on page 78, you include the AFP API handle and the paragraph
handle; when you end the page, you include the AFP API handle and the page
handle.

Chapter 2. Using AFP API 77

Handles

Figure 26. An Example Showing the Use of Handles

Chapter 3, “Procedure Call Reference” also uses the term current handle. The
current handle identifies the state from which a call is made. The handle is
returned from the call that initiated that state. For example, in the AFPBPAR call
in Figure 26, the current handle is the page handle received from the AFPBPAG
call. If this AFPBPAR had been in an area, the current handle would have been
the area handle. The application program must set the appropriate current
handle prior to invoking any AFP API “Begin” procedure calls.

78 Programming Guide and Reference

Indexing

Indexing Data for Viewing and Archiving
As described in “Indexing AFP Data for Viewing and Archiving” on page 14, you
can use AFP API to place indexing information in your document. This section
describes the AFP API procedure calls for indexing your document.

What ′s Involved?
Three IBM programs are involved in generating and using indexing information:
AFP API, AFP Conversion and Indexing Facility (ACIF), and AFP Workbench for
Windows, the Viewer Application.

• AFP API: Can insert three kinds of indexing information in a document:

− Group boundaries
− Group-level indexing tags
− Page-level indexing tags

• ACIF: Can insert two kinds of indexing information in a document (if the input
document does not already contain any indexing information):

− Group boundaries
− Group-level indexing tags

Also, ACIF can create an index object file that identifies the locations of all of
the groups and indexing tags in a document.

• Viewer Application: Uses the index object file and indexing information to
facilitate navigation through an online document.

This section describes by example how to insert tags into the document using
AFP API. For creating the index object file, refer to AFP Conversion and Indexing
Facility: Application Programming Guide. For information about how the indexing
information is used when navigating through a document, refer to either AFP
Workbench for Windows: Using the Viewer Application or the help screens for
Viewer.

What Are the Indexing Procedure Calls?
The AFP API procedure calls that insert indexing information into the document
are AFPBGRP (Begin Group), AFPEGRP (End Group), and AFPPTAG (Put Tag).
The AFPBGRP and AFPEGRP procedure calls identify the boundaries of a group,
which is a named collection of sequential pages. A group name should be
unique within a document.

In addition to defining groups, you can use the AFPPTAG procedure call to add a
group-level indexing tag inside a defined group. The Attribute Name and
Attribute Value parameters of the AFPPTAG procedure call are used to define
the content of the indexing tag. You can use multiple tags to define a single
group, such as both the Customer Name and the Account Number, to provide
more than one way to identify the group. With AFP Workbench for Windows, the
Viewer Application, you can locate a group of pages by selecting the attribute
name and value of the indexing tag associated with the group.

You can use the AFPPTAG procedure call to produce indexing tags that identify
a single page in the document. For example, to locate the summary page of a
multi-page statement, you can define each statement in the document as a
group, tag the group with the customer ′s name and account number, and tag the
Summary page within the group. With AFP Workbench for Windows, the Viewer

Chapter 2. Using AFP API 79

Indexing

Application, you can use this page-level tag to locate the summary page in a
statement after locating the customer ′s statement as a group in the document.

When the AFPPTAG procedure call is issued in page state, the tag is valid
without an enclosing group. When the AFPPUT procedure call is issued in
document state, group-level indexing is required, and the tag is not valid without
an enclosing group. Nested groups are not supported (for example, an
AFPBGRP followed by another AFPBGRP). Basically, the code is as follows for
generating group-level indexing information for the sample application:

Code Description

* PROCESS INDEXING *

PROCESS-INDEXING
MOVE ACCOUNT-NUM-OUT TO AFP-GROUP-NAME

CALL ″AFPBGRP″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-DOCUMENT-HANDLE
AFP-GROUP-NAME

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPBGRP (Begin Group):
Identifies the beginning of a named group of pages in
the document. The name of the group can be any
unique identifier. In this case, it is Susan′s Primo
charge account number. AFPBGRP is valid only
between pages.

MOVE ″LAST-NAME″ TO AFP-ATTRIBUTE-NAME
MOVE CUST-NAME TO AFP-ATTRIBUTE-VALUE

CALL ″AFPPTAG″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-CURRENT-HANDLE
AFP-TAG-NAME
AFP-TAG-VALUE

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPPTAG (Put Tag):
Inserts an indexing tag for the group of pages. In this
case, the attribute name is LAST NAME, and the
attribute value is the customer ′s name (AMES).
AFPPTAG is valid either in a group or in a page.

CALL ″AFPBPAG″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-DOCUMENT-HANDLE
...
...

BY REFERENCE
AFP-PAGE-HANDLE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPBPAG (Begin Page):
Represents page 1 of the sample for Susan ′s
statement.

CALL ″AFPEPAG″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-CURRENT-HANDLE
...
...

BY REFERENCE
AFP-PAGE-HANDLE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPEPAG (End Page)
Ends page 1 of the sample for Susan′s statement.

CALL ″AFPBPAG″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-DOCUMENT-HANDLE
...
...

BY REFERENCE
AFP-PAGE-HANDLE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPBPAG (Begin Page):
Represents page 2 of the sample for Susan ′s
statement.

80 Programming Guide and Reference

Indexing

Code Description

CALL ″AFPEPAG″ USING
BY CONTENT

AFPAPI-HANDLE
AFP-CURRENT-HANDLE
...
...

BY REFERENCE
AFP-PAGE-HANDLE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPEPAG (End Page):
Ends the collection of pages for Susan′s statement.

MOVE ACCOUNT-NUM-OUT TO AFP-GROUP-NAME
CALL ″AFPEGRP″ USING

BY CONTENT
AFPAPI-HANDLE
AFP-DOCUMENT-HANDLE
AFP-GROUP-NAME

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPEGRP (End Group):
Ends the group having the group name
ACCOUNT-NUM-OUT. AFPEGRP is valid only between
pages.

Chapter 2. Using AFP API 81

Page Breaks and Page Layout

Determining Page Breaks and Changing Page Layout
As you′ve seen, an important function of AFP API is to place variable information
(names, account information, and so on) on a page. Figure 3 on page 8
describes this.

AFP API also allows you to create different page layouts in the same document.
That is, page 2 can have a different header or bottom margin or different artwork
than page 1, as shown in Figure 27.

The code won′ t be shown here; this section will describe the approach used to
create the page break and the different page layouts for pages 1 and 2 of the
example. AFP Application Programming Interface: COBOL Language Reference
and AFP Application Programming Interface: PL/1 Language Reference show the
complete, actual code. Remember that the actual COBOL and PL/1 code to
create it is on the tape shipped with the product.

Figure 27. Sample Document with Different Page Layouts

The goals for this part of the example are:

• Place as much data as possible on page 1.
• Place the remaining data on page 2.
• Modify the layout of page 2.

Here is a brief overview of the steps to accomplish this, followed by a
description of the details.

 1. Conceptually break the pages into three parts: header, body, and footer, as
shown in Figure 28 on page 83.

 2. Determine the size (depth in mill imeters) of the page body as the page depth
less the header and footer depth.

82 Programming Guide and Reference

Page Breaks and Page Layout

 3. Subtract the depth for each piece of data in the body from the current body
depth in order to determine the remaining space.

 4. Determine when the data in the body approaches the footer and prepare to
put the remaining data on a new page.

 5. Calculate the size of the body on page 2 and begin printing the remainder of
the table in the body of page 2.

Figure 28. Coding the Sample Document for Page Breaks. The source code in AFP Application Programming
Interface: COBOL Language Reference and AFP Application Programming Interface: PL/1 Language Reference
shows the code for calculating the space on a page and then ejecting to a new page.

Here are the details of steps 1− 5 above:

Header, Body, and Footer: The headers for both pages are different, but after
being established, their size remains constant when data is put into them. The
footers for both pages are the same, and after being established, their size
remains constant as data is put into them. The bodies for both pages vary as
data is written into them.

As you write data into the body, subtract the depth of the data from the depth of
the body. Here are the steps:

 1. For Page 1, make the footer 20 mil l imeters deep.

 2. Write the header, including the horizontal rule and white space, after the
horizontal rule.

 3. Write the paragraph, which is small and wil l not print off the page.

 4. After the paragraph, calculate the remaining body space, subtracting the
paragraph size and white space preceding the table from the page body.
Specify this as the maximum depth of the table on the AFPBTBL call. As you
write data into the table, one of two things happens:

Chapter 2. Using AFP API 83

Invoke Medium Map

• The data does not exceed the maximum depth specified. In this case,
write another row of data.

Note: Another way to do this is to look at the parameter AFP API returns
that contains the actual depth of the table after each AFPEROW. With
this depth, calculate the space left in the body, begin another data
element, and repeat the process until the page is full.

• The data exceeds the maximum depth specified. In this case, AFP API
returns a WARNING severity code on AFPEROW. At this point, end the
table and write the footer for the first page, start a new page, write the
header for the new page, and continue writing data on page 2.

 5. For page 2, monitor the severity code of the AFPEROW call in the same way
as for page 1. In this example, the data ends before reaching the footer.

To summarize, you can use AFP API to format pages in the following ways:

• Areas and tables: You can specify a maximum depth on the AFPCARE call
and on the AFPBTBL call. As data approaches the maximum depth, AFP API
issues a warning in a severity code, and you know to stop writing data and
begin a new page. The table is described in the sample document.

• Character strings: Issue AFPQPOS after each AFPPCHS to determine where
on the page you are, then calculate the remaining space.

• Paragraphs: AFP API returns the actual depth of the paragraph on the
AFPEPAR call. You can also put paragraphs in an area, so that you can
specify a maximum depth of the area. In this case, AFP API issues a
WARNING severity code when you are at the bottom of the area.

Specifying Presentation Options
You can specify presentation options to use for the pages in your document. To
do this, reference a medium map (also called a copy group) that is defined in a
resource called a form definition. Although the example does not contain an
AFPINVM procedure call, the example shows using the call to reference a typical
medium map. See “Form Definitions” on page 13 for more information about
medium maps. See “Format of the AFP API Procedure Call Descriptions” on
page 98 for detailed parameter descriptions.

To reference a form definition in a document, specify the name of the medium
map, as shown in the sample code:

Code Description

* Invoke Medium Map *

MOVE f1XXXXXXX TO AFP-MEDIUM-MAP.
CALL ″AFPINVM″ USING

BY CONTENT
AFPAPI-HANDLE
AFP-DOCUMENT-HANDLE
AFP-MEDIUM-MAP

BY REFERENCE
AFP-RET-CODE
AFP-SEVERITY-CODE.

AFPINVM (Invoke Medium Map):
Invokes the medium map (copy group) specified.
Medium maps are in form definitions. AFPINVM is
valid only between pages, because it selects
presentation options for subsequent pages.

84 Programming Guide and Reference

CICS/ESA Environment

| Using AFP API in a CICS/ESA Environment
| You write a program that calls AFP API in a CICS/ESA environment in much the
| same way you write any other program that calls AFP API. You use the COBOL
| programming language, running the program under the MVS operating system.

| Be aware, however, of differences in the following areas when using AFP API in
| a CICS/ESA environment:

| • Defining the temporary storage queue for AFP output
| • Using IOCA and GOCA objects
| • Creating font and page segment data sets
| • Using the error-checking routine in APQPERF
| • Link-editing your CICS/ESA program with AFP API

| Defining the Temporary Storage Queue for AFP Output
| Instead of writing AFP output to an output file, in a CICS/ESA environment, AFP
| API writes output to a temporary storage queue. You can then use the CEBR
| PUT command to copy the contents of the temporary storage queue to a
| transient data queue, from which the data can be printed using TSO or a batch
| job.

| Your program must manage the temporary storage queue, as follows:

| • Name the temporary storage queue in the Set Output Characteristics
| (AFPSOUT) procedure call.

| • Purge the temporary storage queue as necessary.

| Instead of writing the AFP output to a CICS/ESA temporary storage queue, AFP
| API can return the AFP output to a buffer in your program. Output buffering
| allows you to inspect and modify the AFP output. When you use output buffering,
| your program is responsible for writing the output to a temporary storage queue
| or another output data set. See “Buffering AFP API Output” on page 66 for a
| description of output buffering.

| AFP API provides two sample COBOL programs for a CICS/ESA environment.
| The transaction names for these sample programs are:

| • APQS, which writes AFP output to a CICS/ESA temporary storage queue.
| The source code for the program is provided in APQCISMP.

| • APQB, which writes AFP output to a buffer in the program, The program then
| writes the AFP output to a CICS/ESA temporary storage queue. The source
| code for the program is provided in APQCISMB.

| These sample COBOL programs are printed in AFP Application Programming
| Interface: COBOL Language Reference.

| Using IOCA and GOCA Objects
| In a CICS/ESA environment, AFP API does not support including IOCA and GOCA
| objects as individual objects; therefore, you cannot use the Include Object
| (AFPIOBJ) procedure call. You can, however, use the Include Page Segment
| (AFPIPSG) procedure call to include a page segment that contains an IOCA or
| GOCA object. Page segments can be created using programs such as the
| Graphical Data Display Manager (GDDM).

Chapter 2. Using AFP API 85

CICS/ESA Environment

| Creating VSAM Data Sets for Fonts and Page Segments
| Fonts and page segments must be located in key-sequenced VSAM data sets
| that are defined to CICS/ESA with file names FONTLIB and SEGLIB.

| AFP API provides program APQCIVSM and associated JCL to copy an existing
| font or page segment partitioned data set (PDS) into a VSAM data set. Your
| system programmer must modify and run the JCL in APQCIFON and APQCISEG
| at installation and whenever the font and page segment PDSs are modified.

| Because AFP API reads fonts and page segments from VSAM data sets with
| standard names, you do not need to define resource library names with the Set
| Resource Library Names (AFPSLIB) procedure call. AFP API ignores the
| AFPSLIB procedure call if it occurs in your program.

| Using the Error-Checking Routine in APQPERF
| The error-checking routine, CHKSUCC, in APQPERF contains modifications for a
| CICS/ESA environment; however these modifications are commented out in the
| version of APQPERF distributed with AFP API. Therefore, before using the
| COBOL paragraphs in APQPERF, follow the instructions in the comments of the
| CHKSUCC routine to make the necessary modifications.

| Link-Editing Your Program with AFP API
| When you link-edit your program with AFP API code, you must specify INCLUDE
| statements to include the AFP API code for a CICS/ESA environment. See “MVS
| JCL for Compiling and Link-Editing a COBOL Application in a CICS/ESA
| Environment” on page 273 for a description of the required INCLUDE statements.

86 Programming Guide and Reference

Performance Considerations

| Improving Performance
| You may be able to improve the performance of AFP API by following these
| suggestions:

| • Ensure that AFP API is at the current service level. Several problems have
| been corrected involving storage and processing of areas and tables. You
| can request a service update from IBM Service (1-800-237-5511) if you are
| not sure what level you have installed.

| • Use AFP API only if your application cannot be performed with a page
| definition.

| • Use multiple Begin Document (AFPBDOC) and End Document (AFPEDOC)
| procedure calls or multiple Initialize AFP API (AFPINIT) and End AFP API
| (AFPEND) procedure calls only when necessary. Instead, you can define
| multiple groups of pages in a single document using the Begin Group
| (AFPBGRP) and End Group (AFPEGRP) procedure calls.

| • Create areas only when necessary and delete them when they are no longer
| needed. Because you can now place character data on a page in any order,
| you no longer have to create areas for this purpose.

| • Create tables only when necessary. Tables provide powerful formatting
| functions for vertically aligning related text, but they require a large amount
| of overhead during formatting time. You can often use the Put Character
| String (AFPPCHS) procedure call with alignment options to simulate tables of
| data.

| • Define rows and fields only when necessary. Reuse common row and field
| definitions whenever possible.

| • Define fonts and areas in the document state rather than in the page state.

| • Define only those fonts, areas, fields, and rows that your program actually
| uses, because AFP API performs a linear search of these definitions
| whenever it processes the object.

| • Use the character-alignment option on the Put Character String (AFPPCHS)
| procedure call only when necessary. Often, the right-alignment option
| produces the same result more efficiently.

| For example, to align columns of data at a decimal point when the data
| contains exactly the same number of decimal places, you can use the
| right-alignment option. If you use the right-alignment option instead of the
| character-alignment options, AFP API does not need to search for the
| decimal point in each string.

Chapter 2. Using AFP API 87

Coding Tips

| Coding Tips
| This section contains tips for coding your program, based on problems
| customers have reported:

| • Issue the Define Row (AFPDROW) and Define Field (AFPDFLD) procedure
| calls only in the document state. You can no longer issue the AFPDROW
| and AFPDFLD calls in other states.

| • Issue the Put Area (AFPPARE) procedure call only in page state. This means
| that you cannot create an area that contains another area. Instead of
| creating and putting a nested area, you can put several areas on the same
| page with separate Put Area procedure calls.

| • Fractional (non-integer) point sizes are not supported.

| • Do not request an ASCII code page on the Define Font by Attributes
| (AFPDFNT) procedure call. ASCII fonts are not supported.

| • Specify a descriptive name on the Define Font by Attributes (AFPDFNT)
| procedure call that matches exactly the descriptive name in the FLIP listing.
| Notice that the descriptive names are case sensitive.

| • Ensure that the default coded font (X0N2100C) exists as member X0N2100C in
| your font library even if you are not using the default font. This coded font
| can point to any valid character set and code page combination that you
| want, but the member name must be X0N2100C.

| If you are formatting for a 3800 printer, copy a valid coded font member with
| zero rotation and rename it to X0N2100C. A coded font member with zero
| rotation begins with X1.

| • Ensure that all character sets have unique typeface and attribute
| combinations in the FLIP listing. AFP API uses the first character set in the
| FLIP listing that has the descriptive name and attributes specified on the
| Define Font by Attributes (AFPDFNT) procedure call.

| • Null characters (X′00′) are not permitted in character strings in AFP API
| procedure calls.

88 Programming Guide and Reference

Troubleshooting

| Troubleshooting Your Program
| This section contains information to help you debug your program. It addresses
| the following areas:

| • Debugging errors in your application program
| • Modifying the error-checking routine provided with AFP API

| Debugging Errors in Your Application Program
| AFP API sends return codes and severity codes back to the program after every
| procedure call. Your program should check these codes after every call and
| respond as suggested in Appendix B, “Return Codes and Severity Codes”
| Checking the return codes aids in debugging your program.

| Some errors in your application program may cause your program to terminate
| abnormally or result in incorrect formatting of the AFP output. Table 1 describes
| some of the more common errors of this type.

| Table 1. Common Errors and Solutions

| Error| Solutions

| Abend S0C1 occurs with message IEC135 DD
| STATEMENT MISSING when you use the buffered-output
| function or discard the output.

| Use the latest APQCONST or APQPCON copy books
| to select the BUFFERED or DISCBUFF constant on the
| Set Output Characteristics (AFPSOUT) procedure
| call. Notice that this constant value is case
| sensitive. Also, be sure to specify the constant
| BUFFERED or DISCBUFF, not the string BUFFERED or
| DISCBUFF.

| You receive message IEW2456E when using the JCL
| in APQCOCOB or APQCOPLI to compile your
| application program.

| Ensure that you are using the latest level of
| APQCOCOB or APQCOPLI. The old level contains
| INCLUDE statements for modules in the “C” runtime
| library: EDCXGET, EDCXFREE, EDCXLOAD,
| EDCXSRVI, and EDCXSRVN. The current level
| contains INCLUDE statements for AFP API modules
| instead: APQXGET, APQXFREE, APQXLOAD,
| APQXSRVI, APQXSRVN, and APQXUNLD.

| An unexpected line break occurs when you change
| the font in a paragraph or table.
| Set the Concatenate parameter to TRU the first time
| you invoke the Put Text (AFPPTXT) procedure call in
| each field and paragraph.

| An expected page break does not occur when you
| use the Invoke Medium Map (AFPINVM) procedure
| call.

| Ensure that the medium map named on the Invoke
| Medium Map (AFPINVM) procedure call is correct. If
| the medium map named is the same as the medium
| map named on the previous AFPINVM procedure
| call, AFP API ignores the AFPINVM call.

Chapter 2. Using AFP API 89

Troubleshooting

| Modifying the Error-Checking Routine Supplied with AFP API
| The AFP API Installation Verification Programs (IVPs) and the AFP API sample
| programs perform error checking after most of the AFP API procedure calls.
| These programs use the CHKSUCC error-checking routine provided in APQPERF
| (for COBOL programs) and APQPPRF (for PL/1 programs).

| CHKSUCC displays an error message and terminates when the severity code
| returned by AFP API is greater than 4, because a severity code greater than 4
| when running the IVPs indicates that the installation of AFP API did not complete
| successfully. If you use the routines provided in either APQPERF or APQPPRF,
| and if you want your application to handle severity codes of 8 or less, modify
| CHKSUCC to allow severity codes less than or equal to 8.

| Note: Modify the CHKSUCC routine in APQPERF before using it in a CICS/ESA
| environment. Follow the instructions in the comments of the CHKSUCC routine.

90 Programming Guide and Reference

Chapter 3. Procedure Call Reference

Chapter 3. Procedure Call Reference . 93
The Application Programming Interface Program 93
Format of the AFP API Procedure Call Descriptions 98
 AFPBDOC (Begin Document) . 100
 AFPBFLD (Begin Field) . 104
 AFPBGRP (Begin Group) . 106
 AFPBPAG (Begin Page) . 108
 AFPBPAR (Begin Paragraph) . 112
 AFPBROW (Begin Row) . 116
 AFPBTBL (Begin Table) . 118
 AFPCARE (Create Area) . 121
 AFPDFLD (Define Field) . 124
 AFPDFNT (Define Font by Attributes) . 128
 AFPDROW (Define Row) . 131
 AFPEARE (End Area) . 134
 AFPEDOC (End Document) . 136
 AFPEFLD (End Field) . 137
 AFPEGRP (End Group) . 138
 AFPEND (End AFP API) . 140
 AFPEPAG (End Page) . 141
 AFPEPAR (End Paragraph) . 143
 AFPEROW (End Row) . 145
 AFPETBL (End Table) . 147

| AFPGBUF (Get Output Buffer) . 149
 AFPINIT (Initialize AFP API) . 151
 AFPINVM (Invoke Medium Map) . 152
 AFPIOBJ (Include Object) . 154
 AFPIOVL (Include Page Overlay) . 158
 AFPIPSG (Include Page Segment) . 160
 AFPPARE (Put Area) . 162
 AFPPBOX (Put Box) . 164
 AFPPCHS (Put Character String) . 166
 AFPPRUL (Put Rule) . 169
 AFPPTAG (Put Tag) . 171
 AFPPTXT (Put Text) . 173
 AFPQATT (Query Current Attributes) . 175
 AFPQPOS (Query Current Position) . 177

| AFPQSTR (Query Character String Size) . 179
 AFPSCLR (Set Color) . 181
 AFPSFNT (Set Font) . 183
 AFPSICS (Set Intercharacter Spacing) . 185
 AFPSLIB (Set Resource Library Names) . 187
 AFPSOUT (Set Output Characteristics) . 190
 AFPSPOS (Set Position) . 193
 AFPSRTH (Set Rule Thickness) . 195
 AFPSUNI (Set Units) . 197
 AFPSWSP (Set Word Spacing) . 199
 AFPTERM (Terminate AFP API) . 201
 AFPXARE (Destroy Area) . 202

 Copyright IBM Corp. 1993, 1994, 1996 91

92 Programming Guide and Reference

Chapter 3. Procedure Call Reference

This chapter contains reference information for the AFP API procedure calls. All
of the parameters for the procedure calls are required and must be in the order
shown. If all parameters are not present, an addressing exception may occur.
The files that contain the COBOL and PL/16 source code for the examples shown
in Chapter 2, “Using AFP API” and the copy files that contain the constants and
variables in the code are shipped with the AFP API product. The listings for the
code are printed in AFP Application Programming Interface: COBOL Language
Reference and AFP Application Programming Interface: PL/1 Language
Reference.

The Application Programming Interface Program
The AFP API program is state driven. Figure 29 shows the hierarchy of valid
states in AFP API (except for final state). Table 2 on page 94 shows the
procedure calls that are valid in each state.

Figure 29. The Hierarchy of States in AFP API

After successfully executing AFP API initialization, the program is in start state,
and the AFP API session is assigned a handle identifier. From start state, you
can create a document.

6

| You can use the PL/1 programming language only on the VM and MVS operating systems, in a non-CICS environment.

 Copyright IBM Corp. 1993, 1994, 1996 93

Table 2 shows the AFP API states and valid procedure calls in each state.

Table 2 (Page 1 of 4). AFP API State Diagram

Initial State Function Resultant State

Start State

Begin Document Document State

End AFP API Final State

Set Output Characteristics Start State

Set Resource Library Names Start State

Terminate AFP API Final State

Final State Initialize AFP API Start State

Document State

Begin Group Document State

Begin Page Page State

Create Area Area State

Define Field Document State

Define Font by Attributes Document State

Define Row Document State

Destroy Area Document State

End Document Start State

End Group Document State

| Get Output Buffer| Document State

Invoke Medium Map Document State

Put Tag Document State

Query Current Attributes Document State

Set Color Document State

Set Font Document State

Set Intercharacter Spacing Document State

Set Rule Thickness Document State

Set Units Document State

Set Word Spacing Document State

Terminate AFP API Final State

94 Programming Guide and Reference

Table 2 (Page 2 of 4). AFP API State Diagram

Initial State Function Resultant State

Page State

Begin Paragraph Paragraph State

Begin Table Table State

Create Area Area State

Define Font by Attributes Page State

Destroy Area Page State

End Page Document State

Include Object Page State

Include Page Overlay Page State

Include Page Segment Page State

Put Area Page State

Put Box Page State

Put Character String Page State

Put Rule Page State

Put Tag Page State

Query Current Attributes Page State

Query Current Position Page State

| Query Character String Size| Page State

Set Color Page State

Set Font Page State

Set Intercharacter Spacing Page State

Set Position Page State

Set Rule Thickness Page State

Set Units Page State

Set Word Spacing Page State

Terminate AFP API Final State

Chapter 3. Procedure Call Reference 95

Table 2 (Page 3 of 4). AFP API State Diagram

Initial State Function Resultant State

Area State

Begin Paragraph Paragraph State

Begin Table Table State

Define Font by Attributes Area State

End Area Return to Invoking State

Include Object Area State

Include Page Overlay Area State

Include Page Segment Area State

Put Box Area State

Put Character String Area State

Put Rule Area State

Query Current Attributes Area State

Query Current Position Area State

| Query Character String Size| Area State

Set Color Area State

Set Font Area State

Set Intercharacter Spacing Area State

Set Position Area State

Set Rule Thickness Area State

Set Units Area State

Set Word Spacing Area State

Terminate AFP API Final State

Paragraph State

End Paragraph Return to Invoking State

Put Text Paragraph State

| Query Character String Size| Paragraph State

Set Color Paragraph State

Set Font Paragraph State

Set Intercharacter Spacing Paragraph State

Set Word Spacing Paragraph State

Terminate AFP API Final State

Table State

Begin Row Row State

End Table Return to Invoking State

Terminate AFP API Final State

Row State

Begin Field Field State

End Row Table State

Terminate AFP API Final State

96 Programming Guide and Reference

Table 2 (Page 4 of 4). AFP API State Diagram

Initial State Function Resultant State

Field State

End Field Row State

Put Character String Field State

Put Text Field State

| Query Character String Size| Field State

Set Color Field State

Set Font Field State

Set Intercharacter Spacing Field State

Set Word Spacing Field State

Terminate AFP API Final State

| Note: AFP API does not assign a unique handle to the row and field states;
| therefore, you must use the table handle as the current handle for the row and
| field states on AFP API procedure calls.

Chapter 3. Procedure Call Reference 97

Format of the AFP API Procedure Call Descriptions
Procedure Call descriptions are listed in alphabetical order. “Getting Started”
on page 23 gives the sequence for using procedure calls. Each procedure call
description contains these parts:

Procedure Call Name Specifies the AFP API procedure call name and the
natural language command name (in parentheses).

Function Describes the procedure call′s function.

Syntax Specifies the syntax for the procedure call. Procedure
Call parameters must be in the order given, and all are
required. If all are not present, an addressing
exception may occur. Refer to AFP Application
Programming Interface: COBOL Language Reference
and AFP Application Programming Interface: PL/1
Language Reference for a description of the syntax for
your programming language.

Input Parameters Briefly describes each parameter and its function. The
parameter description also tells how to use the
parameter.

Output Parameters Handles (when appropriate) return codes and severity
codes for the procedure call, which indicate whether
the call was successful and whether the calling
program should examine them. See Appendix B,
“Return Codes and Severity Codes” for descriptions of
these codes.

This section defines the parameter data types for each procedure call without
regard to a specific high-level language. The data types are:

HANDLE An AFP API-assigned, 4-byte, unsigned integer for an
AFP API session and for the document, table, area,
page, or paragraph in a session

TOKEN An 8-byte character string

| FILENAME-TOKEN A string of characters containing:

| • For MVS, the name of a DD statement or a CICS
| temporary storage queue

• For VM, the file name
• For VSE, the name specified in the DLBL JCL

statement that identifies a file

| FILETYPE-TOKEN For VM, a string of characters containing the file type

| FILEMODE-TOKEN For VM, a string of characters containing the file mode

BOOLEAN A 4-byte, unsigned integer with a value of 0 or 1

STRING A string of single-byte, unsigned characters

98 Programming Guide and Reference

CHARACTER A single-byte, unsigned character

ADDRESS A 4-byte, unsigned integer containing an address

REAL A floating-point number greater than or equal to 0

SREAL A positive or negative floating-point number

INTEGER4 A 4-byte, unsigned integer

SGLARRAY A single-dimension array of REALs

MULTARRAY An n X m array of REALs, where n and m are specified
in INTEGER parameters

Chapter 3. Procedure Call Reference 99

Begin Document

AFPBDOC (Begin Document)

Function
Begins a document and specifies the default unit of measure, page dimensions,
and orientation for a logical page. These attributes apply to every page in the
document unless they are overridden on individual Begin Page procedure calls.

Syntax

AFPBDOC(
HANDLE AFPAPI-handle,
INTEGER4 unit-of-measure,
REAL doc-page-width,
REAL doc-page-depth,
INTEGER4 page-orientation,
HANDLE document-handle,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 30. Format of the AFPBDOC Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Unit of Measure
The unit of measure for the document; that is, inches, millimeters,
centimeters, 240ths of an inch, or 1440ths of an inch.

| Note: The output file generated by AFP API is in logical units of 1440 per
| inch, even if you specify a different unit of measure in this parameter.

Document Logical Page Width
The page width in the specified unit of measure.

Document Logical Page Depth
The page depth in the specified unit of measure.

Logical Page Orientation
The orientation (rotation) of the top of the data relative to the top of the
media. The top of the logical page is the side associated with the page
width. The top of the media depends on the printer that is used. Refer to
Advanced Function Presentation: Printer Information for a description of the
default media origin for AFP printers.

100 Programming Guide and Reference

Begin Document

For example:

• If a page orientation of 0° is specified, the top of the data coincides with
the top of the media, as shown in Figure 31.

• If a page orientation of 90° is specified, the top of the data is rotated 90°
in the clockwise direction with respect to the top of the media, but the
top of the logical page remains the side associated with the width, as
shown in Figure 32 on page 102.

AFPSPOS always sets the position with respect to the top of the data.

Figure 31. Page Orientation of 0°. The figure shows the relationship between the logical
page and the data coordinate system.

Chapter 3. Procedure Call Reference 101

Begin Document

Figure 32. Page Orientation of 90°. The figure shows the relationship between the
logical page and the data coordinate system.

The process of rotating pages does not rotate any page segments or overlays in
the logical page; the process does, however, rotate any included data objects.

Output Parameters
Document Handle

The handle for the document.

Return Code
The return code for this call.

Severity Code
The severity of the return code.

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0008 The state is invalid; a document is already started. Severity 8 (ERROR).

0017 The unit of measure is invalid. Severity 8 (ERROR).

0018 The page orientation is invalid. Severity 8 (ERROR).

0021 The state is invalid; the state must be start. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0125 The page width is invalid. Severity 8 (ERROR).

102 Programming Guide and Reference

Begin Document

0126 The page depth is invalid. Severity 8 (ERROR).

0186 Null handle. Severity 8 (ERROR).

0217 The font specified cannot be used by AFP API. Severity 8 (ERROR).

0224 The output file exists, but Replace was not specified on the Set Output
Characteristics procedure call. Severity 12 (SEVERE). (VM only)

Chapter 3. Procedure Call Reference 103

Begin Field

AFPBFLD (Begin Field)

Function
Begins a field of data in a row of a table.

Syntax

AFPBFLD(
HANDLE AFPAPI-handle,
HANDLE table-handle,
INTEGER4 field-id,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 33. Format of the AFPBFLD Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Table Handle
The handle of the table in which this row is being placed, returned from the
AFPBTBL call.

Field ID
The ID of the field definition returned from the associated AFPDFLD (Define
Field) call.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0111 The field has not been previously defined. Severity 8 (ERROR).

0156 The handle is invalid. Severity 8 (ERROR).

104 Programming Guide and Reference

Begin Field

0157 The state is invalid; the state must be row. Severity 8 (ERROR).

0225 The field is not part of the Begin Row procedure call currently in effect.
Severity 8 (ERROR).

0229 The field is rotated, and no subrow depth was specified in the Define Row
procedure call. Severity 8 (ERROR).

Chapter 3. Procedure Call Reference 105

Begin Group

AFPBGRP (Begin Group)

Function
Begins a logical grouping of pages for viewing purposes using AFP Workbench
for Windows and for archiving. Related pages can be indexed with the Attribute
Name and Attribute Value parameters of the AFPPTAG procedure call. The
group name aids in identifying a particular group if an Attribute Value is not
unique within a document. A group name should be unique within a document.
Nesting groups is not supported (that is, an AFPBGRP followed by another
AFPBGRP). See “Indexing Data for Viewing and Archiving” on page 79 for more
information about using this procedure call.

Syntax

AFPBGRP(
HANDLE AFPAPI-handle,
HANDLE document-handle,
CHAR(64) group-name,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 34. Format of the AFPBGRP Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Document Handle
The handle for the document returned from the AFPBDOC call.

Group Name
The name for the group to be started, encoded using code page T1V10500; it
should be unique within a document. The maximum number of characters in
the group name is 64. Code page T1V10500 is IBM′s universal graphic
character map. For more information about code page T1V10500 and other
IBM code pages, refer to IBM AFP Fonts: Technical Reference for Code
Pages.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

106 Programming Guide and Reference

Begin Group

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0226 A group is already active. Severity 8 (ERROR).

0269 The state is invalid; the state must be document. Severity 8 (ERROR).

0270 The group name is invalid. Severity 8 (ERROR).

Chapter 3. Procedure Call Reference 107

Begin Page

AFPBPAG (Begin Page)

Function
Begins a logical page and optionally overrides the page dimensions and
orientation specified for the document. The initial current position is at the page
origin that is at the top-left corner of the page.

Syntax

AFPBPAG(
HANDLE AFPAPI-handle,
HANDLE document-handle,
SREAL page-width,
SREAL page-depth,
INTEGER4 page-orientation,
HANDLE page-handle,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 35. Format of the AFPBPAG Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Document Handle
The handle for the document, returned from the AFPBDOC call.

Logical Page Width
The page width in the current unit of measure. If the default is specified, the
page width from the AFPBDOC (Begin Document) procedure call is used. If
data placed in the page exceeds the page width, the call that placed the data
generates a non-zero return code with an ERROR severity code.

Logical Page Depth
The page depth in the current unit of measure. If the default is specified, the
page depth from AFPBDOC (Begin Document) is used. If data placed in the
page exceeds the page depth, the call that placed the data generates a
non-zero return code with a WARNING severity code.

108 Programming Guide and Reference

Begin Page

Logical Page Orientation
The orientation of the top of the logical page relative to the top of the media.
If the default is specified, the page orientation from AFPBDOC (Begin
Document) is used. The top of the logical page is the side associated with
the page width. The top of the media depends on the printer that is used.
Refer to Advanced Function Presentation: Printer Information for a
description of the default media origin for AFP printers. For example:

• If a page orientation of 0° is specified, the top of the data coincides with
the top of the media, as shown in Figure 36. You do not need to switch
the width and depth measurements if the page is rotated 90° or 270°.
The page rotation is absolute from the media origin and is not relative to
the document orientation; that is, a 90°-rotated page is always relative to
0°, not 90° from the document orientation.

• If a page orientation of 90° is specified, the top of the data is rotated 90°
in the clockwise direction with respect to the top of the media, but the
top of the logical page remains the side associated with the width, as
shown in Figure 37 on page 110.

AFPSPOS always sets the position with respect to the top of the data.

Figure 36. Page Orientation of 0°. The figure shows the relationship between the logical
page and the data coordinate system.

Chapter 3. Procedure Call Reference 109

Begin Page

Figure 37. Page Orientation of 90°. The figure shows the relationship between the
logical page and the data coordinate system.

The process of rotating pages does not rotate any page segments or
overlays in the logical page; the process does, however, rotate any included
data objects.

Output Parameters
Page Handle

The handle for the page.

Return Code
The return code for this call.

Severity Code
The severity of the return code.

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0009 The state is invalid; a page is already started. Severity 8 (ERROR).

0018 The page orientation is invalid. Severity 8 (ERROR).

110 Programming Guide and Reference

Begin Page

0022 The state is invalid; the state must be document. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0125 The page width is invalid. Severity 8 (ERROR).

0126 The page depth is invalid. Severity 8 (ERROR).

0186 Null handle. Severity 8 (ERROR).

Chapter 3. Procedure Call Reference 111

Begin Paragraph

AFPBPAR (Begin Paragraph)

Function
Begins a paragraph at the current position using the current values for
intercharacter spacing, word spacing, color, and font. You can format
paragraphs four ways: ragged right, ragged left, centered, and justified.
Hyphenation is not supported. See “ AFPPTXT (Put Text)” on page 173 for
information about putting data in a paragraph. The current position at the end of
a paragraph is at the bottom-left corner of the paragraph.

Syntax

AFPBPAR(
HANDLE AFPAPI-handle,
HANDLE current-handle,
SREAL first-line-indent,
INTEGER4 format-option,
SREAL first-line-offset,
REAL left-margin,
REAL line-length,
SREAL line-spacing,
BOOLEAN paragraph-frame,
REAL rt-rule-offset,
SREAL bot-rule-offset,
INTEGER4 shading-pattern
INTEGER4 shading-intensity
HANDLE paragraph-handle,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 38. Format of the AFPBPAR Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Current Handle
The handle for the current state (page or area) that will contain this
paragraph, returned from the AFPBPAG or AFPCARE calls.

First-Line Indent
The amount to indent text in the first line of the paragraph: block, indented,
or hanging indent. A hanging indent is when the first line in the paragraph
begins at the left margin and all subsequent lines are indented from the left
margin by the specified amount. A value of 0 creates a block paragraph
where the first line in the paragraph begins at the left margin. A positive
value creates an indented paragraph where the first line in the paragraph is
indented from the left margin by the specified amount and all subsequent
lines are positioned at the left margin. A negative value creates a hanging
indent paragraph.

112 Programming Guide and Reference

Begin Paragraph

Format Option
The type of formatting to be performed for the paragraph:

Ragged Right Text is aligned at the left margin of the paragraph; the right
margin is not aligned.

Center Text is centered between the left and right margins of the
paragraph.

Ragged Left Text is aligned at the right margin of the paragraph; the left
margin is not aligned.

Justify Text is aligned at both the left margin and right margin of
the paragraph. The formatter varies the space between
words to stretch or shrink a line to fit.

First Line Offset
The location of the character baseline for the first line of text in the
paragraph as an offset from the paragraph origin in the current unit of
measure. The value is in addition to the normal line spacing. If the default
is specified, the offset is calculated based on the character height of the font
being used.

For unframed paragraphs, the paragraph origin is at the current position.
For framed paragraphs, the Y coordinate of the paragraph origin is at the
bottom of the top rule of the paragraph frame (that is, adjusted by the rule
thickness of the top rule). The X coordinate of the paragraph origin is
unchanged.

Left Margin
The left margin to be used for the lines in the paragraph as an offset from
the paragraph origin.

Line Length
The length of a line of formatted text in the current unit of measure.

Line Spacing
The spacing between subsequent lines of text in the paragraph. If the default
is specified, the line spacing associated with the largest font in each line of
text is used.

Paragraph Frame
The box or frame enclosing a paragraph. Specifies whether or not to
enclose the paragraph in a box. Rules of the frame use the current rule
thickness. See “ AFPSRTH (Set Rule Thickness)” on page 195 for more
information about rule thickness.

Chapter 3. Procedure Call Reference 113

Begin Paragraph

Paragraph Frame Offset
If the paragraph is framed, the location of the right vertical rule and the
bottom rule of the frame. The top horizontal rule begins at the paragraph
origin and extends to the right vertical rule offset. The left vertical rule
begins at the paragraph origin and extends to the bottom horizontal offset.

If the paragraph is not framed but is shaded, the area to be shaded.

Right Vertical Rule Offset
The location of the right vertical rule as an offset from the paragraph
origin if the paragraph is framed.

Bottom Horizontal Rule Offset
The location of the bottom horizontal rule as an offset from the baseline
of the last line in the paragraph if the paragraph is framed. The value is
in addition to the normal line spacing. You can specify a specific value
or use the default value. The default is determined by the line spacing of
the largest font in the last line of text in the paragraph.

Shading Pattern
Specifies whether to shade a paragraph and the shading pattern to use,
either Standard or Screen. See Appendix C, “Shade Patterns and Types”
for examples of shading patterns.

Shading Intensity
| A value between 0− 1 0 0 that specifies the shading intensity to be used, with

1 being the least intense; 0 indicates no shading. See Appendix C, “Shade
Patterns and Types” for examples of shading intensities.

Output Parameters
Paragraph Handle

The handle for the paragraph.

Return Code
The return code for this call.

Severity Code
The severity of the return code.

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0028 The Y position is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0072 A numeric overflow occurred; the specified left margin, when added to
the current inline position, exceeded the maximum valid value. Severity
8 (ERROR).

0129 The state is invalid; the state must be page or area. Severity 8 (ERROR).

114 Programming Guide and Reference

Begin Paragraph

0130 The shading pattern is invalid. Severity 8 (ERROR).

0131 The shading intensity parameter is invalid. Severity 8 (ERROR).

0133 The format option is invalid. Severity 8 (ERROR).

0144 The first line offset is invalid. Severity 8 (ERROR).

0145 The left margin paremeter is invalid. Severity 8 (ERROR).

0146 The line length is invalid. Severity 8 (ERROR).

0147 The line spacing is invalid. Severity 8 (ERROR).

0148 The right vertical rule offset is invalid. Severity 8 (ERROR).

0149 The bottom rule offset is invalid. Severity 8 (ERROR).

0150 The state is invalid; a paragraph already exists. Severity 8 (ERROR).

0186 Null handle. Severity 8 (ERROR).

0191 The first line indent is invalid. Severity 8 (ERROR).

0202 The line length or right rule offset exceeds the width of the page or area.
Severity 8 (ERROR).

0213 The maximum depth specified in the area, page, or table was exceeded;
the object will not fit. Severity 4 (WARNING).

0279 A numeric overflow occurred; the specified line length, when added to the
current inline position and the left margin, exceeded the maximum valid
value. Severity 8 (ERROR).

Chapter 3. Procedure Call Reference 115

Begin Row

AFPBROW (Begin Row)

Function
Begins a new row in a table.

Syntax

AFPBROW(
HANDLE AFPAPI-handle,
HANDLE table-handle,
STRING row-id,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 39. Format of the AFPBROW Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Table Handle
The handle for the associated table, returned from the AFPBTBL call.

Row ID
The ID of the row definition returned from the associated AFPDROW call.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

116 Programming Guide and Reference

Begin Row

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0110 The row has not been previously defined. Severity 8 (ERROR).

0154 The state is invalid; the state must be table. Severity 8 (ERROR).

0159 The state is invalid; the state must be table. Severity 8 (ERROR).

Chapter 3. Procedure Call Reference 117

Begin Table

AFPBTBL (Begin Table)

Function
Begins a table at the current position. Then you can format data into rows
consisting of fields that can be framed and shaded. See “ AFPBFLD (Begin
Field)” on page 104, “ AFPDFLD (Define Field)” on page 124, and “ AFPDROW
(Define Row)” on page 131 for more information. Also see “Tables” on page 48
for more information about creating tables. The current position at the end of a
table is at the bottom-left corner of the table.

Syntax

AFPBTBL(
HANDLE AFPAPI-handle,
HANDLE current-handle,
REAL table-width,
REAL max-table-depth,
INTEGER4 table-rotation,
REAL top-thickness,
REAL bottom-thickness,
REAL left-thickness,
REAL right-thickness,
HANDLE table-handle,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 40. Format of the AFPBTBL Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Current Handle
The handle for the current page or area, returned from the AFPBPAG or
AFPCARE calls.

Table Width
The width of the table in the current unit of measure. The width of the table
should be the sum of the widths of the columns. If the sum of the column
widths does not equal the table width, the column widths override the table
width. If the table is framed, the left and right vertical rule thickness used for
the table frame are included in the width of the table.

Maximum Table Depth
The maximum depth of the table in the current unit of measure. If the table
is framed, the thickness of the top and bottom horizontal rule of the table
frame is included in the depth of the table. If data placed in the table
exceeds the table depth, the AFPEROW call that placed the data generates a
non-zero return code with a WARNING severity code.

118 Programming Guide and Reference

Begin Table

Table Rotation
The rotation of the table in a clockwise direction around the table origin. For
0° rotation, the top of the table is parallel to the top of the page or area
containing the table.

Top Horizontal Rule Thickness
The thickness of the top horizontal rule of the table frame in the current unit
of measure. A value of 0 specifies no rule.

Bottom Horizontal Rule Thickness
The thickness of the bottom horizontal rule of the table frame in the current
unit of measure. A value of 0 specifies no rule.

Left Vertical Rule Thickness
The thickness of the left vertical rule of the table frame in the current unit of

| measure. A value of 0 specifies no rule; however, a value of 0 does not
| override a field rule.

Right Vertical Rule Thickness
The thickness of the right vertical rule of the table frame in the current unit of

| measure. A value of 0 specifies no rule; however, a value of 0 does not
| override a field rule.

Output Parameters
Table Handle

The handle for the table.

Return Code
The return code for this call.

Severity Code
The severity of the return code.

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0028 The Y position is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0106 The state is invalid; the state must be page or area. Severity 8 (ERROR).

0107 The table rotation is invalid. Severity 8 (ERROR).

0108 The right vertical thickness is invalid. Severity 8 (ERROR).

0136 The width is invalid. Severity 8 (ERROR).

0137 The depth is invalid. Severity 8 (ERROR).

0153 The state is invalid. Severity 8 (ERROR).

0170 The top horizontal rule thickness is invalid. Severity 8 (ERROR).

Chapter 3. Procedure Call Reference 119

Begin Table

0171 The bottom horizontal rule thickness is invalid. Severity 8 (ERROR).

0172 The left vertical rule thickness is invalid. Severity 8 (ERROR).

0186 Null handle. Severity 8 (ERROR).

0202 The table width is greater than the page or area width. Severity 8
(ERROR).

120 Programming Guide and Reference

Create Area

AFPCARE (Create Area)

Function
Creates an area in AFP API storage that you can fill with formatted elements for
use on one or more pages in the document. To fill the area with elements,
include the Area Handle returned from this call on subsequent calls. By doing
this, you can set attributes or build and put elements such as character strings,
boxes, rules, paragraphs, tables, resources, and objects. AFP API places
elements relative to the area origin.

You can create and maintain multiple areas concurrently, using the individual
area handles to indicate the area in which elements are placed and which area
to place on a page.

You must issue AFPCARE and AFPEARE procedure calls either within the same
page or in document state. You must end an area before placing it on a page.
To place the area on a page, use the AFPPARE (Put Area) procedure call. The
area and its contents remain in AFP API storage, until you delete them using the
AFPXARE (Destroy Area) procedure call. As long as an area is in storage, you
can place it multiple times. AFPEARE (End Area) ends the formatted area.

For unframed areas, the area origin is at the top-left corner of the area (similar
to pages). For framed areas, the Y coordinate of the area origin is at the bottom
of the top rule of the area frame (that is, adjusted by the rule thickness of the top
rule). The X coordinate of the area origin is unchanged.

An area improves performance because it provides a mechanism of repeating
boilerplate data without recreating it each time.

Syntax

AFPCARE(
HANDLE AFPAPI-handle,
HANDLE current-handle,
REAL area-width,
REAL maximum-area-depth,
BOOLEAN area-frame,
INTEGER4 shading-pattern,
INTEGER4 shading-intensity,
HANDLE area-handle,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 41. Format of the AFPCARE Procedure Call

Chapter 3. Procedure Call Reference 121

Create Area

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Current Handle
The handle for the current document or page returned from the AFPBDOC or
AFPBPAG calls.

Area Width
The width of the area in the current unit of measure. If the area is framed,
the thickness of the left and right vertical rule of the area frame is included
in the width of the area. If data placed in the area exceeds the area width,
the call that placed the data generates a non-zero return code with an
ERROR severity code.

Maximum Area Depth
The maximum depth of the area in the current unit of measure. If the area is
framed, the thickness of the top and bottom horizontal rule of the area frame
is included in the depth of the area. If data placed in the area exceeds the
area depth, the call that placed the data generates a non-zero return code
with a WARNING severity code. AFP API returns the depth of the area when
the AFPEARE (End Area) call is issued after all elements are placed in the
area.

Area Frame
The box or frame enclosing the area. If the area is framed, the current rule
thickness is used for the rules in the frame. The bottom horizontal rule
thickness is included in the area depth that is returned on the AFPEARE (End
Area) call.

Note: Vertical rules in a framed area are not included in the area depth,
because the current position is unchanged when a vertical rule is drawn.
This means that the bottom rule of the area may not enclose the vertical
rule.

Shading Pattern
Specifies whether to shade an area and the shading pattern to use, either
Standard or Screen. See Appendix C, “Shade Patterns and Types” for
examples of shading patterns.

Shading Intensity
| A value between 0− 1 0 0 that specifies the shading intensity to be used, with

1 being the least intense; 0 indicates no shading. See Appendix C, “Shade
Patterns and Types” for examples of shading intensities.

Output Parameters
Area Handle

The handle to be used on subsequent calls that place data in the area or
place the area on the page.

Return Code
The return code for this call.

Severity Code
The severity of the return code.

122 Programming Guide and Reference

Create Area

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0023 The state is invalid; the state must be document or page. Severity 8
(ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0100 The shading pattern is invalid. Severity 8 (ERROR).

0101 The shading intensity is invalid. Severity 8 (ERROR).

0136 The width is invalid. Severity 8 (ERROR).

0137 The depth is invalid. Severity 8 (ERROR).

Chapter 3. Procedure Call Reference 123

Define Field

AFPDFLD (Define Field)

Function
Creates a field definition for a table. Subsequent AFPBFLD (Begin Field)
procedure calls use the field definition. You can use either AFPPCHS (Put
Character String) or AFPPTXT (Put Text) procedure calls to put data into the
field.

Syntax

AFPDFLD(
HANDLE AFPAPI-handle,

| HANDLE document-handle,
INTEGER4 format-option,
REAL alignment-position,
INTEGER4 vertical-format,
REAL left-margin,
REAL right-margin,
SREAL line-spacing,
INTEGER4 text-orientation,
INTEGER4 shading-pattern,
INTEGER4 shading-intensity,
REAL top-thickness,
REAL bottom-thickness,
REAL left-thickness,
REAL right-thickness,
INTEGER4 field-id,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 42. Format of the AFPDFLD Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

| Document Handle
| The handle for the current document returned from the AFPBDOC call.

124 Programming Guide and Reference

Define Field

Format Option for AFPPTXT (Put Text)
The type of formatting to be performed on formatted text placed with the
AFPPTXT procedure call in the field as follows:

Left
Text is aligned at the left margin of the field, with a ragged right margin.

Center
Text is centered between the left and right margins of the field.

Right
Text is aligned at the right margin of the field.

Justify
Text is aligned at both the left margin and right margin of the field. The
formatter varies the space between words to stretch or shrink a line to
fit.

Alignment Position for AFPPCHS (Put Character String)
The position within the field for character alignment. The position is
specified as an offset from the left margin of the field. This parameter has
no effect on formatted data; that is, data included on the AFPPTXT (Put Text)
call and is used only when placing data with the AFPPCHS (Put Character
String) call with Character Alignment Option.

Vertical Field Format Option
The vertical alignment option for lines of text within the field. You can align
text at the top, center, or bottom.

Left Margin
The left margin for lines of text in the field as an offset from the leftmost
edge of the left vertical rule in current units.

Right Margin
The right margin for lines of text in the field as an offset from the leftmost
edge of the right vertical rule in current units.

Line Spacing
The spacing between subsequent lines of text in the current unit of measure.
You can specify a specific value or use the default baseline increment of the
font. If the default is specified, the line spacing associated with the largest
font in each line of text is used.

This parameter has no effect on unformatted data; that is, on data included
with the AFPPCHS (Put Character String call).

Field Text Orientation
The degree of orientation for lines of text in the field.

Shading Pattern
Specifies whether to shade a paragraph and the shading pattern to use,
either Standard or Screen. See Appendix C, “Shade Patterns and Types”
for examples of shading patterns.

Shading Intensity
| A value between 0− 1 0 0 that specifies the shading intensity to be used, with

1 being the least intense; 0 indicates no shading. See Appendix C, “Shade
Patterns and Types” for examples of shading intensities.

Chapter 3. Procedure Call Reference 125

Define Field

Field Frame
The vertical rules to be used for the field. The field width and row depth
specifications are used to determine the size of the area to be framed. If a
field shares a common boundary with another field, the thicker of the two
rules is used. If a field shares a common boundary with a table or row, the
table or row rule is used.

Top Horizontal Rule Thickness
The thickness of the top horizontal rule. A value of 0 specifies no rule.

Bottom Horizontal Rule Thickness
The thickness of the bottom horizontal rule. A value of 0 specifies no
rule.

Left Vertical Rule Thickness
The thickness of the left vertical rule. A value of 0 specifies no rule.

Right Vertical Rule Thickness
The thickness of the right vertical rule. A value of 0 specifies no rule.

Output Parameters
Field ID

The field ID for use on associated Begin Field calls.

Return Code
The return code for this call.

Severity Code
The severity of the return code.

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0087 The state is invalid; the state must be document. Severity 8 (ERROR).

0094 The format option is invalid. Severity 8 (ERROR).

0095 The vertical field format is invalid. Severity 8 (ERROR).

0096 The shading pattern is invalid. Severity 8 (ERROR).

0097 The shading intensity is invalid. Severity 8 (ERROR).

0098 The field text orientation is invalid. Severity 8 (ERROR).

0099 The top horizontal rule thickness is invalid. Severity 8 (ERROR).

0112 The alignment position is invalid. Severity 8 (ERROR).

0118 The left margin is invalid. Severity 8 (ERROR).

0119 The line spacing is invalid. Severity 8 (ERROR).

126 Programming Guide and Reference

Define Field

0120 The right margin is invalid. Severity 8 (ERROR).

0173 The bottom horizontal rule thickness is invalid. Severity 8 (ERROR).

0174 The left vertical rule thickness is invalid. Severity 8 (ERROR).

0175 The right vertical rule thickness is invalid. Severity 8 (ERROR).

0176 The column width is invalid. Severity 8 (ERROR).

Chapter 3. Procedure Call Reference 127

Define Font

AFPDFNT (Define Font by Attributes)

Function
Creates a font ID on your system that matches a specified attribute. The font ID
is used on subsequent AFPSFNT (Set Font) calls. The font must exist in a font
library available to AFP API. See “ AFPSLIB (Set Resource Library Names)” on
page 187 for more information about libraries.

Syntax

AFPDFNT(
HANDLE AFPAPI-handle,
HANDLE current-handle,
TOKEN code-page,
INTEGER4 desc-name-length,
STRING descriptive-name,
INTEGER4 point-size,
INTEGER4 weight,
INTEGER4 width,
INTEGER4 rotation,
INTEGER4 style,
STRING font-id,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 43. Format of the AFPDFNT Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Current Handle
The handle for the document, page, or area that the font is defined for,
returned from the AFPBDOC, AFPBPAG, or AFPCARE calls.

Code Page
The code page name.

• For MVS, this is the member name.
• For VM, this is the file name.
• For VSE, this is the member name in the font phase.

A code page is a particular assignment of hexadecimal identifiers to graphic
characters. For example, X′ 4F′ is an exclamation point (!) in code page
T1V10500, and X′ 5A′ is an exclamation point (!) in code page T1V10037. If
the code page used by your terminal or system for input is different from the
code page used to present the data, you may not get the output you expect.

| Note: ASCII code pages are not supported.

128 Programming Guide and Reference

Define Font

Font Attributes:
The parameters that follow describe the font attributes. See “Selecting the
Font You Want” on page 68 for information about determining the attributes
for fonts on your system.

Descriptive Name Length
Length of the descriptive name, including spaces. For example, “TIMES
NEW ROMAN LATIN1” has a length of 22. The descriptive name can
have a maximum length of 32.

Descriptive Name
| Name of the font, for example, “TIMES NEW ROMAN LATIN1.” The
| descriptive name must match the name in the FLIP listing exactly. The
| descriptive name is case sensitive; all descriptive names are currently
| defined in uppercase. See “Font Library Indexing Program” on page 69
| for information about the FLIP listing.

Point Size
Size of the font, for example, 12 points.

| Note: Fractional (that is, non-integer) point sizes are not supported.
Weight

The thickness of the font:
UltraLight
ExtraLight
Light
SemiLight
Medium
SemiBold
Bold
ExtraBold
UltraBold

Width
The width of the font:

UltraCondensed
ExtraCondensed
Condensed
SemiCondensed
Normal
SemiExpanded
Expanded
ExtraExpanded
UltraExpanded

Rotation
Character rotation clockwise from the baseline as follows:

0°
90°
180°
270°

This means that the font is built with this rotation, not that AFP API
rotates it for you.

Note: Character rotation is not the same as text rotation. In most cases,
you use a character rotation of 0° for all text rotations. A character
rotation of 270° can produce columnar text; character rotations of 90° or
180° usually produce unreadable character strings.

Chapter 3. Procedure Call Reference 129

Define Font

Style
Roman or italic.

Output Parameters
Font ID

The font ID for use on the AFPSFNT (Set Font) procedure call.

Return Code
The return code for this call.

Severity Code
The severity of the return code.

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

Some font errors are detected by the Set Font (AFPSFNT) procedure. See page
184 for a list of these errors.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0074 The code page is invalid. Severity 8 (ERROR).

0075 The descriptive name is invalid. Severity 8 (ERROR).

0076 The point size is invalid. Severity 8 (ERROR).

0077 The weight is invalid. Severity 8 (ERROR).

0078 The width is invalid. Severity 8 (ERROR).

0079 The rotation is invalid. Severity 8 (ERROR).

0080 The style is invalid. Severity 8 (ERROR).

0088 The state is invalid; the state must be document, page, or area. Severity
8 (ERROR).

0143 The descriptive name length is invalid. Severity 8 (ERROR).

0151 A null font ID parameter was specified. Severity 8 (ERROR).

0177 The maximum number of font definitions has been exceeded. Severity 12
(SEVERE).

130 Programming Guide and Reference

Define Row

AFPDROW (Define Row)

Function
Creates a row definition for use in a table. Associated AFPBROW (Begin Row)
calls use this row definition. The AFPBFLD (Begin Field) procedure call places
fields in a row.

Syntax

AFPDROW(
HANDLE AFPAPI-handle,

| HANDLE document-handle,
SGLARRAY min-subrow-depth-array,
REAL top-thickness,
REAL bottom-thickness,
INTEGER4 number-columns,
INTEGER4 number-subrows,
MULTARRAY row-arrange-array(number-subrows,number-columns),
SGLARRAY column-width-array(number-columns),
STRING row-id,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 44. Format of the AFPDROW Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

| Document Handle
| The handle for the current document returned from the AFPBDOC call.

Minimum Subrow Depth Array
The minimum depth of the subrows in a row in the current unit of measure.
You can specify a value or use a default that is determined by the field that
uses the largest font (that is, the font with the largest default line space).

Note: When using a text orientation of 90° or 270° for a field in a subrow, the
minimum subrow depth must be other than 0.

The depth of a subrow includes the top horizontal rule thickness used for the
subrow. The depth of the last subrow in a table also includes the bottom
horizontal rule thickness. If a subrow shares a common boundary with a
table, the table rule is used.

Top Thickness, Horizontal Rule
The thickness of the top horizontal rule. If you don′ t want a rule, specify a
value of 0. If a row shares a common boundary with a table, the table rule is
used. The rule used for the boundary between two rows is the thicker of the
two rules.

Chapter 3. Procedure Call Reference 131

Define Row

Bottom Thickness, Horizontal Rule
The thickness of the row′s horizontal rule. If you don′ t want a rule, specify a
value of 0. If a row shares a common boundary with a table, the table rule is
used. The rule used for the boundary between two rows is the thicker of the
two rules.

| Number of Columns and Subrows
| The subrows and columns form an array that is used to describe the
| contents of the row. The number of elements in the array, computed by
| multiplying the number of subrows by the number of column, cannot exceed
| 64.

Number of Columns
The number of vertical divisions within a row.

Number of Subrows
The number of horizontal divisions within a row.

Row Arrange Array
The field IDs to be used in the row and the arrangement of fields within the
row. The field IDs are from the AFPDFLD (Define Field) call.

Column Widths
The widths of the columns in the row in the current unit of measure. The
width of a column includes the left vertical rule thickness used for the field.
The right-most column in a table also includes the right vertical rule
thickness in the column width. If a field shares a common boundary with a
table, the rule thickness of the table frame is used. The sum of individual
column widths should equal the table width specified on the AFPBTBL (Begin
Table) call. If data placed in a column with AFPPCHS exceeds the column
width, the call that placed the data generates a non-zero return code with an
ERROR severity code.

Output Parameters
Row ID

The row ID for use on associated Begin Row calls.

Return Code
The return code for this call.

Severity Code
The severity of the return code.

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0084 The bottom horizontal rule thickness is invalid. Severity 8 (ERROR).

0089 The state is invalid; the state must be document. Severity 8 (ERROR).

132 Programming Guide and Reference

Define Row

0102 The depth is invalid. Severity 12 (SEVERE).

0103 The top horizontal rule thickness is invalid. Severity 8 (ERROR).

0111 The field has not been previously defined. Severity 8 (ERROR).

0113 The number of columns is invalid. Severity 8 (ERROR).

0152 A null row ID parameter was specified. Severity 8 (ERROR).

Chapter 3. Procedure Call Reference 133

End Area

AFPEARE (End Area)

Function
Ends an area that has been created using the AFPCARE (Create Area) procedure
call. You cannot place any additional elements in the area after issuing this call.
All elements in the area are formatted and placed in AFP API storage for
placement with the AFPPARE (Put Area) call. The area remains in storage until
you delete it with the AFPXARE (Destroy Area) call.

Syntax

AFPEARE(
HANDLE AFPAPI-handle,
HANDLE area-handle,
REAL area-depth,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 45. Format of the AFPEARE Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Area Handle
The handle of the area ended, returned from the AFPCARE call.

Output Parameters
Area Depth

The depth of the area, after it is formatted with all elements that were placed
in it, in the current unit of measure.

Return Code
The return code for this call.

Severity Code
The severity of the return code.

134 Programming Guide and Reference

End Area

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0012 A null area depth parameter is specified. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

Chapter 3. Procedure Call Reference 135

End Document

AFPEDOC (End Document)

Function
| Ends the document. If the AFPGBUF procedure call has been issued, also
| returns the last output record and record length in the parameters specified on
| the last AFPGBUF call.

Syntax

AFPEDOC(
HANDLE AFPAPI-handle,
HANDLE document-handle,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 46. Format of the AFPEDOC Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Document Handle
The handle of the document ended, returned from the AFPBDOC call. When
returned, this parameter is set to 0.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0179 The state is invalid. Severity 8 (ERROR).

0210 An error occurred writing to the output file specified in the Set Output
Characteristics procedure call. Severity 12 (SEVERE).

136 Programming Guide and Reference

End Field

AFPEFLD (End Field)

Function
Ends the field in a row of a table.

Syntax

AFPEFLD(
HANDLE AFPAPI-handle,
HANDLE table-handle,
INTEGER4 ret-code,
INTEGER4 severity-code
)

Figure 47. Format of the AFPEFLD Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Table Handle
The handle of the table in which this field is used, returned from the
AFPBTBL call.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0158 The state is invalid; the state must be field. Severity 8 (ERROR).

0163 The handle is invalid. Severity 8 (ERROR).

Chapter 3. Procedure Call Reference 137

End Group

AFPEGRP (End Group)

Function
Ends a logical grouping of pages for archiving and viewing purposes. See
“Indexing Data for Viewing and Archiving” on page 79 for more information
about using this procedure call.

Syntax

AFPEGRP(
HANDLE AFPAPI-handle,
HANDLE document-handle,
CHAR(64) group-name,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 48. Format of the AFPEGRP Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Document Handle
The handle for the document returned from the AFPBDOC call.

Group Name
The name of the group to be ended, encoded using code page T1V10500. A
previous AFPBGRP must have been issued with the name. The maximum
number of characters in the group name is 64. Code page T1V10500 is IBM′s
universal graphic character map. For more information about code page
T1V10500 and other IBM code pages, refer to IBM AFP Fonts: Technical
Reference for Code Pages.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

138 Programming Guide and Reference

End Group

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0227 The specified group is not active. Severity 8 (ERROR).

0270 The group name is invalid. Severity 8 (ERROR).

0271 The state is invalid; the state must be document. Severity 8 (ERROR).

Chapter 3. Procedure Call Reference 139

End AFP API

AFPEND (End AFP API)

Function
Ends the AFP API session and frees all AFP API storage. For the AFP API
Handle parameter, use the AFP API handle returned by the Initialize AFP API
procedure call.

The only AFP API procedure call you can issue after AFPEND is AFPINIT.

Syntax

AFPEND(
HANDLE AFPAPI-handle,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 49. Format of the AFPEND Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0004 The state is invalid; the state must be start. Severity 8 (ERROR).

0005 The handle is invalid. Severity 8 (ERROR).

0011 The state is invalid; the state must be start. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

140 Programming Guide and Reference

End Page

AFPEPAG (End Page)

Function
Ends the page and causes AFP API to write the page to the designated output
file. See “ AFPSOUT (Set Output Characteristics)” on page 190 for a description
of the output file that′s created.

Syntax

AFPEPAG(
HANDLE AFPAPI-handle,
HANDLE page-handle,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 50. Format of the AFPEPAG Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Page Handle
The handle of the page terminated returned from the AFPBPAG call. When
returned, this parameter is set to 0.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Chapter 3. Procedure Call Reference 141

End Page

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0178 The state is invalid. Severity 8 (ERROR).

0210 An error occurred writing to the output file specified in the Set Output
Characteristics procedure call. Severity 12 (SEVERE).

0219 A page segment or included object on the page extends beyond the
dimensions of the logical page. Severity 8 (ERROR).

0220 The page may not be printable because of the number or size of the fonts
selected. Severity 8 (ERROR).

142 Programming Guide and Reference

End Paragraph

AFPEPAR (End Paragraph)

Function
Ends the paragraph and returns the depth of the paragraph, including the depth
of the bottom rule if the paragraph is framed, in the current unit of measure.
The current position after the call to AFPEPAR is at the bottom-left corner of the
paragraph.

Syntax

AFPEPAR(
HANDLE AFPAPI-handle,
HANDLE paragraph-handle,
REAL paragraph-depth,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 51. Format of the AFPEPAR Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Paragraph Handle
The handle of the paragraph ended, returned from the AFPBPAR call. When
returned, this parameter is set to 0.

Output Parameters
Paragraph Depth

The depth of the paragraph in the current unit of measure.

Return Code
The return code for this call.

Severity Code
The severity of the return code.

Chapter 3. Procedure Call Reference 143

End Paragraph

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0165 The handle is invalid. Severity 8 (ERROR).

0166 A null paragraph depth parameter is specified. Severity 8 (ERROR).

144 Programming Guide and Reference

End Row

AFPEROW (End Row)

Function
Ends a row in a table. The current position is at the bottom-left corner of the
row.

Syntax

AFPEROW (
HANDLE AFPAPI-handle,
HANDLE table-handle,
REAL current-table-depth,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 52. Format of the AFPEROW Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Table Handle
The handle of the table in which this row is used, returned from the
AFPBTBL call.

Output Parameters
Current Table Depth

The depth of the table in the current unit of measure.

Return Code
The return code for this call.

Severity Code
The severity of the return code.

Chapter 3. Procedure Call Reference 145

End Row

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0160 The state is invalid; the state must be row. Severity 8 (ERROR).

0164 The handle is invalid. Severity 8 (ERROR).

0194 A null current table depth parameter is specified. Severity 8 (ERROR).

0209 A table row contains more data than will fit in the remaining or maximum
table depth or on the page. Severity 4 (WARNING).

146 Programming Guide and Reference

End Table

AFPETBL (End Table)

Function
Ends a table and returns the depth of the table, including the depth of the
horizontal rule, in the current units of measure. The current position at the end
of a table is at the bottom-left corner of the table.

Syntax

AFPETBL(
HANDLE AFPAPI-handle,
HANDLE table-handle,
REAL table-depth,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 53. Format of the AFPETBL Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Table Handle
The handle of the table terminated, returned from the AFPBTBL call. When
returned, this parameter is set to 0.

Output Parameters
Table Depth

This parameter contains the depth of the table in the current unit of measure.

Return Code
The return code for this call.

Severity Code
The severity of the return code.

Chapter 3. Procedure Call Reference 147

End Table

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0116 A null depth parameter is specified. Severity 8 (ERROR).

0155 The state is invalid; the state must be page or area. Severity 8 (ERROR).

148 Programming Guide and Reference

Get Output Buffer

|

| AFPGBUF (Get Output Buffer)

| Function
| Returns an AFP API output record and its length to a buffer in your program.
| Each record contains one structured field.

| Before calling AFPGBUF, end the page with an AFPEPAG call. Then issue the
| AFPGBUF call repeatedly, until the More Records parameter indicates that no
| more records exist for the page. Repeat the AFPGBUF calls for each page of the
| document. When you issue the AFPEDOC call to end the document, AFP API
| returns the final record and record length into the same areas used in the last
| AFPGBUF call.

| Note: Before using AFPGBUF, request that AFP API write output records to an
| output buffer instead of to an output file on the AFPSOUT call.

| Syntax

| AFPGBUF(
| HANDLE AFPAPI-handle,
| HANDLE document-handle,
| STRING buffer,
| INTEGER4 buffer-length
| BOOLEAN more-records
| INTEGER4 ret-code,
| INTEGER4 severity-code
|)

| Figure 54. Format of the AFPGBUF Procedure Call

| Input Parameters
| AFPAPI Handle
| The session handle returned from the AFPINIT call.

| Document Handle
| The handle for the current document returned from the AFPBDOC call.

| Output Parameters
| Buffer
| The area where AFPGBUF returns the next output record (structured field) in
| the page. The buffer should be large enough to hold the largest output
| record possible, as specified in the output record size parameter on the
| AFPSOUT procedure call.

Chapter 3. Procedure Call Reference 149

Get Output Buffer

| Buffer Length
| The length of the output record returned in the buffer parameter. If the
| length of the output record is longer than the output record size specified on
| the AFPSOUT call, only the number of bytes specified in the output record
| size parameter is returned. In this case, the return code indicates that the
| entire record was not returned, and the buffer length contains the actual
| length of the record so that you know how large the output record size
| parameter needs to be.

| More Records
| Indicates whether or not another record exists for the page. If this
| parameter is set to TRU, call AFPGBUF again to obtain the next record.

| Return Code
| The return code for this call.

| Severity Code
| The severity of the return code.

| Return Codes
| The following return codes indicate possible errors in your application program.
| In addition to the return codes listed here, you may receive codes that indicate
| an internal logic error (severity code 16) or that your program is out of memory
| (severity code 12). See Appendix B, “Return Codes and Severity Codes” for
| more information about each return code and the meaning of the severity codes.

| 0005 The handle is invalid. Severity 8 (ERROR).

| 0036 Invalid null handle was passed to an AFP API procedure. Severity 8
| (ERROR).

| 0280 The state is invalid; the state must be document. Severity 8 (ERROR).

| 0281 Buffered output was not requested on the AFPSOUT procedure call.
| Severity 12 (SEVERE).

| 0282 The record (structured field) is larger than the size of the buffer provided
| for the record. AFP API truncated the record to fit into the buffer.
| Severity 8 (ERROR).

150 Programming Guide and Reference

Initialize AFP API

AFPINIT (Initialize AFP API)

Function
Initializes AFP API. You cannot issue any other AFP API procedure call until you
have successfully initialized AFP API; otherwise, the system ends abnormally.

Syntax

AFPINIT(
HANDLE AFPAPI-handle,
BOOLEAN trace,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 55. Format of the AFPINIT Procedure Call

Input Parameters
Trace

| The trace facility is no longer supported; however, you must still specify this
| parameter. AFP API ignores this parameter.

Output Parameters
AFPAPI Handle

The identifier for this AFP API session. This handle is an input on all
subsequent related AFP API calls.

Return Code
The return code for this call.

Severity Code
The severity of the return code.

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0212 The font index could not found or could not be read. Severity 12
(SEVERE).

0223 During initialization, the AFP API module could not be loaded into the
system. Severity 12 (SEVERE).

Chapter 3. Procedure Call Reference 151

Invoke Medium Map

AFPINVM (Invoke Medium Map)

Function
Selects a medium map from the form definition resource used for printing the
AFP API output. A medium map, also called a copy group, is a set of print
options that includes names of medium overlays to be printed, which input bin to
use, the number of copies, and whether to duplex the output.

This call forces printing to begin on a new sheet of paper. All pages following
this call print with the medium map named, until another AFPINVM call is issued.

Use a form definition resource that contains the medium map named in this call
for printing or viewing your AFP API output.

Syntax

AFPINVM(
HANDLE AFPAPI-handle,
HANDLE document-handle,
TOKEN medium-map name,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 56. Format of the AFPINVM Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Document Handle
The handle for the document, returned from the AFPBDOC call.

Medium Map Name
The name of the medium map to be used for printing subsequent pages in
the document.

Notes:

 1. AFP API does not verify the existence of the medium map in the form
definition and returns no errors if the medium map doesn ′ t exist.
However, PSF errors may result.

| 2. If the medium-map you name is the same as the medium-map named on
| the previous Invoke Medium Map call, AFP API ignores the call and
| returns no errors.

152 Programming Guide and Reference

Invoke Medium Map

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0192 The state is invalid. Severity 8 (ERROR).

Chapter 3. Procedure Call Reference 153

Include Object

AFPIOBJ (Include Object)

Function
Includes an image or graphics object inline at the current position and specifies
the size, rotation, mapping option, and offset of the printed object.

The object must be formatted as Image Object Content Architecture (IOCA) or
Graphics Object Content Architecture (GOCA) in S/370 print record format,7 such
as that produced by Graphical Data Display Manager (GDDM).

The object can be part of a page segment or document or can be included as an
individual object. The object must reside in the object library identified by the
AFPSLIB procedure call or in the AFP API default object library. Use AFPIPSG to
include page segments that contain an IM1 image. If the included member
contains more than one object, only the first object inside the member is
included in the document. The object is placed at the current position. The
following apply:

• The current environment, for example, current font, color, rule thickness, and
so on, has no affect on the included object.

• The included object has no affect on the current environment, for example,
current position, font, color, rule thickness, and so on.

• At the end of this function, the current position is unchanged.

| • If included in an area, the object rotates with the area.

Notes:

| 1. The AFPIOBJ call is not supported in a CICS/ESA environment; if you issue
| the AFPIOBJ call, your program receives a return code with a SEVERE
| severity code. You can, however, include an object that is in a page
| segment using the AFPIPSG call.

| 2. Refer to Advanced Function Presentation: Printer Information to determine
| whether your printer can process IOCA image data and GOCA graphics data.

7 Each structured field must be in a separate print record with the value X′ 5A′ in the first byte of each record.

154 Programming Guide and Reference

Include Object

Syntax

AFPIOBJ(
HANDLE AFPAPI-handle,
HANDLE current-handle,
TOKEN object-name,
SREAL object-width,
SREAL object-depth,
INTEGER4 object-rotation,
INTEGER4 object-mapping-option,
SREAL object-x-offset,
SREAL object-y-offset,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 57. Format of the AFPIOJB Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Current Handle
The handle for the current page or area, returned from the AFPBPAG or
AFPCARE calls.

Object Name
The name of the object in the object library. See “ AFPSLIB (Set Resource
Library Names)” on page 187 for information about the resource library.

• For MVS, this is the member name.

| • For VM, this is the file name. The default file type is OBJT3820.

• For VSE, this is the member name in the object phase.

Object Area Width
The width of the object area in which to map the object data in the current
unit of measure. You can specify a value or use the width in the object.

Object Area Depth
The depth of the object area in which to map the object data in the current
unit of measure. You can specify a specific value or use the default depth in
the object.

Object Area Rotation
The rotation of the object area in a clockwise direction around the object′s
origin. Valid values are 0°, 90°, 180°, 270°, or you can specify an indicator to
use the default rotation in the object.

Chapter 3. Procedure Call Reference 155

Include Object

Object Mapping Options
The mapping of the object data within its area. The possible values depend
upon the type of object (or you can use the object′s default).

• For IOCA objects, the valid values are:
Scale to fit
Center and Trim
Position and Trim
Point to pel
Point to pel with double dot

• For GOCA objects, the valid values are:
Scale to fit
Center and Trim
Position and Trim

Note: If the POINT-TO-PEL or the DOUBLE-DOT option is specified for a
GOCA object, the mapping option specified in the object is used. If the
object does not contain a mapping option, the default value of
SCALE-TO-FIT is used. In this case, AFP API does not return an error.

These terms mean the following:

SCALE-TO-FIT
Center the object within the area dimensions specified in Object
Area Width and in Object Area Depth, and scale the object to fit
within the area.

CENTER-AND-TRIM
Center the object within the area dimensions specified in Object
Area Width and in Object Area Depth, and trim what falls outside
the area.

POSITION-AND-TRIM
Position the object at the location specified in Object Position
within the dimensions specified in Object Area Width and in
Object Area Depth, and trim what falls outside the area.

POINT-TO-PEL
Position the object at the object area origin within the
dimensions specified in Object Area Width and in Object Area
Depth, and trim what falls outside the area. No resolution
correction is done; that is, each image point is mapped to a pel.

DOUBLE-DOT
Position the object at the object area origin within the
dimensions specified in Object Area Width and in Object Area
Depth, and trim what falls outside the area. Each image point is
doubled. No resolution correction is done; that is, each of the
new image points is mapped to a pel.

156 Programming Guide and Reference

Include Object

Object Position
The position of the object data relative to the object area origin. It is valid
only for an object mapping option of position and trim. For all other mapping
options, this parameter is ignored. You can specify a specific value or use
the default position in the object.

Object X Offset
The X offset from the object area origin.

Object Y Offset
The Y offset from the object area origin.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0201 The formatter cannot read the object library. Severity 12 (SEVERE).

0213 The maximum depth specified in the area, page, or table was exceeded;
the object will not fit. Severity 4 (WARNING).

0216 The requested resource cannot be found. Severity 8 (ERROR).

0222 The object contains invalid structured fields. Severity 8 (ERROR).

0260 The state is invalid. Severity 8 (ERROR).

0262 The object area width is invalid.

0263 The object area depth is invalid. Severity 8 (ERROR).

0264 The object area rotation is invalid. Severity 8 (ERROR).

0265 The object area mapping option is invalid. Severity 8 (ERROR).

0266 The object X offset is invalid. Severity 8 (ERROR).

0267 The object Y offset is invalid. Severity 8 (ERROR).

0269 The state is invalid; the state must be document. Severity 8 (ERROR).

Chapter 3. Procedure Call Reference 157

Include Page Overlay

AFPIOVL (Include Page Overlay)

Function
Creates a reference to an overlay at the current position. The following apply:

• The current environment, for example, current font and color, has no affect
on the included overlay.

• The included overlay has no affect on the current environment.

• The current position is unchanged after the AFPIOVL procedure call.

• The physical top of the overlay is parallel to the top of the medium, even if
the top of the page is rotated. See “ AFPBDOC (Begin Document)” on
page 100 for a description of orientation.

Syntax

AFPIOVL(
HANDLE AFPAPI-handle,
HANDLE current-handle,
TOKEN ovly-name,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 58. Format of the AFPIOVL Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Current Handle
The handle for the current page or area, returned from the AFPBPAG (Begin
Page) or AFPCARE (Create Area) calls.

Overlay Name
The name of the page overlay in the overlay library used by PSF.

• For MVS, this is the member name.

• For VM, this is the file name.

• For VSE, this is the member name in the overlay phase.

The overlay must be available to the printer at the time of printing. You can
include up to 127 unique page overlays on a page.

Note: AFP API does not verify the existence of the overlay in the library and
returns no errors if the overlay doesn′ t exist.

158 Programming Guide and Reference

Include Page Overlay

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0070 The state is invalid; the state must be page or area. Severity 8 (ERROR).

Chapter 3. Procedure Call Reference 159

Include Page Segment

AFPIPSG (Include Page Segment)

Function
Creates a reference to a page segment or brings the page segment inline at the
current position. The current position is unchanged after the AFPIPSG procedure
call.

Note: If the page segment contains text, the current environment may affect the
page segment, and the page segment may affect the current environment.

Syntax

AFPIPSG(
HANDLE AFPAPI-handle,
HANDLE current-handle,
TOKEN pseg-name,
BOOLEAN inline-option,
BOOLEAN reuse-option,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 59. Format of the AFPIPSG Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Current Handle
The handle for the current page or area, returned from the AFPBPAG or
AFPCARE calls.

Page Segment Name
The name of the page segment in the page segment library.

• For MVS, this is the member name.

• For VM, this is the file name.

• For VSE, this is the member name in the page segment phase.

The page segment must be available to AFP API in the page segment library
specified in the AFPSLIB (Set Resource Library Names) procedure call. If
the page segment is not brought inline, it must be available to the printer at
print time.

Inline Option
Indicates whether the page segment should be brought inline as part of the
page or simply referenced.

Reuse Option
Indicates whether a page segment that is to be referenced will be reused on
multiple pages within the document. This parameter is ignored if the page
segment is brought inline.

160 Programming Guide and Reference

Include Page Segment

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0028 The Y position is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0180 The state is invalid. Severity 8 (ERROR).

0185 Invalid values are specified for the inline or reuse parameters. Severity 8
(ERROR).

0201 The formatter cannot read the page segment library. Severity 12
(SEVERE).

0213 The maximum depth specified in the area, page, or table was exceeded;
the object will not fit. Severity 4 (WARNING).

0216 The requested resource cannot be found. Severity 8 (ERROR).

0222 The page segment contains invalid structured fields. Severity 8 (ERROR).

Chapter 3. Procedure Call Reference 161

Put Area

AFPPARE (Put Area)

Function
Places an area at the current position. You cannot place an area until after you
create it with the AFPCARE (Create Area) call and end it with AFPEARE (End
Area) call. The current position is unchanged by an AFPPARE procedure call.
See “ AFPSPOS (Set Position)” on page 193 for ways to place an area.

Syntax

AFPPARE(
HANDLE AFPAPI-handle,

| HANDLE page-handle,
HANDLE area-handle,
INTEGER4 area-rotation,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 60. Format of the AFPPARE Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

| Page Handle
| The handle of the current page, returned from the AFPBPAG call.

Area Handle
The handle of the area to be placed on the page, returned from the
AFPCARE call.

Area Rotation
The degree of rotation of the area in the clockwise direction around the area
origin. Rotating an area rotates data objects but does not rotate any page
segments or overlays included in the area.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

162 Programming Guide and Reference

Put Area

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0007 The area has not been ended. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0053 The state is invalid; the state must be page. Severity 8 (ERROR).

0054 The rotation is invalid. Severity 8 (ERROR).

0071 The area handle does not exist. Severity 8 (ERROR).

0221 The contents of the area extend beyond the dimensions of the logical
page. Severity 8 (ERROR).

Chapter 3. Procedure Call Reference 163

Put Box

AFPPBOX (Put Box)

Function
Draws a box with the top-left corner beginning at the current position for the
specified width and depth, using the current color value and rule thickness for
the rules of the box. The top of the box is parallel to the top of the area or page
containing the box. The current position is unchanged at the end of this call.

Syntax

AFPPBOX(
HANDLE AFPAPI-handle,
HANDLE current-handle,
REAL box-width,
REAL box-depth,
INTEGER4 shading-pattern,
INTEGER4 shading-intensity,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 61. Format of the AFPPBOX Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Current Handle
The handle for the current page or area returned from the AFPBPAG or
AFPCARE calls.

Box Width
The width of a box in the current unit of measure. The box width is
measured from the left side of the left rule to the left side of the right vertical
rule.

Box Depth
The depth of the box in the current unit of measure. The box depth is
measured from the top side of the top horizontal rule to the bottom side of
the bottom horizontal rule.

164 Programming Guide and Reference

Put Box

Shading Pattern and Intensity
The shading pattern and intensity for the box.

Shading Pattern
Specifies whether to shade a paragraph and the shading pattern to use,
either Standard or Screen. See Appendix C, “Shade Patterns and
Types” for examples of shading patterns.

Shading Intensity
| A value between 0− 1 0 0 identifying different intensities, with 1 being the

least intense; 0 indicates no shading. See Appendix C, “Shade Patterns
and Types” for examples of shading intensities.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0028 The Y position is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0122 The shading pattern is invalid. Severity 8 (ERROR).

0123 The shading intensity is invalid. Severity 8 (ERROR).

0124 The state is invalid; the state must be page or area. Severity 8 (ERROR).

0167 The box width is invalid. Severity 8 (ERROR).

0168 The box depth is invalid. Severity 8 (ERROR).

0213 The maximum depth specified in the area, page, or table was exceeded;
the object will not fit. Severity 4 (WARNING).

Chapter 3. Procedure Call Reference 165

Put Character String

AFPPCHS (Put Character String)

Function
Places a character string on the page using the current values for intercharacter
spacing, word spacing, color, and font. Characters are placed in the direction of
the X axis to form a line of text.

At the end of this call, the current position is either unchanged or is adjusted in
the X (inline) direction as described in the Position Option parameter.

Note: If you place the character string at a valid position with the AFPSPOS call,
but the top of the character string extends beyond the boundaries of a page or
area, the results may not be what you expect, and the text may not print. AFP
API does not issue an error return code for this situation.

Syntax

AFPPCHS(
HANDLE AFPAPI-handle,
HANDLE current-handle,
INTEGER4 string-length,
STRING character-string,
INTEGER4 alignment-option,
CHARACTER alignment-char,
BOOLEAN position-option,
BOOLEAN underline,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 62. Format of the AFPPCHS Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Current Handle
The handle for the current page, area, or table, returned from the AFPBPAG,
AFPCARE, or AFPBTBL calls.

String Length
The number of characters in the character string; the maximum number is
determined by your compiler.

Character String
The character string, including any leading and trailing blanks in the strings,

| as indicated by the string length. The string cannot contain any null
| characters (X′00′).

166 Programming Guide and Reference

Put Character String

Alignment Option
The horizontal alignment option for the character data:

Right
Places the last character in the string at the current position.

Left
Places the first character in the string at the current position.

Center
Centers the character string around the current position.

Character
Places the character, specified in the alignment character parameter, at
the current position. If the designated character is not found in the
string, the string is right-aligned.

Alignment Character
The character for character alignment; it cannot be a space (X′ 40′). This
parameter is ignored for all other alignment options.

Position Option
Indicates whether the current position is updated at the conclusion of this
function. If this parameter is set to TRU, the current position remains at the
origin of the string. Otherwise, the current position is moved to the position
at which the next character would be placed.

| Note: This parameter causes a line break when you place a character string
| in a table field. If this parameter is set to TRU, the character string begins at
| the start of a new line.

Underline
Indicates whether the character string (including blanks) will be underlined.
If underline is specified, the width and position of the underline are taken
from the current font.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Chapter 3. Procedure Call Reference 167

Put Character String

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0020 The alignment option is invalid. Severity 8 (ERROR).

0028 The Y position is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0051 The state is invalid; the state must be page or area. Severity 8 (ERROR).

0127 The string length is invalid. Severity 8 (ERROR).

0202 The space in the area, page, or paragraph is not wide enough for the
text. Severity 8 (ERROR).

168 Programming Guide and Reference

Put Rule

AFPPRUL (Put Rule)

Function
Draws a rule from the current position extending in the specified X or Y direction
using the current color value and rule thickness for the rule. The rule thickness
extends below horizontal rules and to the right of vertical rules. At the end of
this call, the current position is unchanged.

Note: Vertical rules in a framed area are not included in the area depth,
because the current position is unchanged when a vertical rule is drawn. This
means that the bottom rule of the area may not enclose the vertical rule.

Syntax

AFPPRUL(
HANDLE AFPAPI-handle,
HANDLE current-handle,
INTEGER4 direction,
REAL rule-length,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 63. Format of the AFPPRUL Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Current Handle
The handle for the current page or area, returned from the AFPBPAG or
AFPCARE calls.

Direction
The direction of the rule is either parallel to the X axis or parallel to the Y
axis.

Rule Length
The rule length in the current unit of measure.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Chapter 3. Procedure Call Reference 169

Put Rule

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0028 The Y position is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0066 The state is invalid; the state must be page or area. Severity 8 (ERROR).

0067 The direction is invalid. Severity 8 (ERROR).

0169 The rule length is invalid. Severity 8 (ERROR).

0213 The maximum depth specified in the area, page, or table was exceeded;
the rule will not fit. Severity 4 (WARNING).

170 Programming Guide and Reference

Put Tag

AFPPTAG (Put Tag)

Function
Creates an indexing tag in the document for archiving or viewing purposes. See
“Indexing Data for Viewing and Archiving” on page 79 for more information
about using this procedure call.

Syntax

AFPPTAG(
HANDLE AFPAPI-handle,
HANDLE current-handle,
STRING tag-name,
STRING tag-value,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 64. Format of the AFPPTAG Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Current Handle
The handle for the current document or page returned from the AFPBDOC or
the AFPBPAG call.

Tag Name
The name of the indexing attribute, encoded using code page T1V10500. The
maximum number of characters in the attribute name is 64, including blanks,

| and the name cannot contain any single quotes (′) or null characters (X′00′).

Tag Value
The value of the indexing attribute, encoded using code page T1V10500. The
maximum number of characters in the attribute value is 64, including blanks,

| and the name cannot contain any single quotes (′) or null characters (X′00′).

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Chapter 3. Procedure Call Reference 171

Put Tag

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0228 A Put Tag procedure call attempted to put a tag in document state
(between pages), but no group is active. Severity 8 (ERROR).

0272 The state is invalid; the state must be document or page. Severity 8
(ERROR).

0273 The attribute name is invalid. Severity 8 (ERROR).

0274 The attribute value is invalid. Severity 8 (ERROR).

172 Programming Guide and Reference

Put Text

AFPPTXT (Put Text)

Function
Places text in the paragraph or field. Text flows to fit the characteristics of the
paragraph or field.

Note: If you place text at a valid position with the AFPSPOS call, but the top of
the text extends beyond the boundaries of a page or area, the results may not
be what you expect, and the text may not print. AFP API does not issue an error
return code for this situation.

Syntax

AFPPTXT(
HANDLE AFPAPI-handle,
HANDLE current-handle,
INTEGER4 string-length,
STRING character-string,
BOOLEAN concatenate,
BOOLEAN underline,
INTEGER4 remaining-length,
STRING remaining-string,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 65. Format of the AFPPTXT Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Current Handle
The handle for the current paragraph or table, returned from the AFPBPAR
or AFPBTBL calls.

String Length
The number of characters in the string; the maximum number is determined
by your compiler.

Character String
| The string of characters in the AFPPTXT call. The string cannot contain any
| null characters (X′00′).

Chapter 3. Procedure Call Reference 173

Put Text

Concatenate
Character string concatenation. If the Concatenate parameter is set to TRU,
the character string in this AFPPTXT (Put Text) call is concatenated with a
previous AFPPTXT (Put Text). If Concatenate is set to FALS, the character
string in this AFPPTXT (Put Text) call begins on a new line.

| On the first AFPPTXT (Put Text) call in a paragraph or field, set the
| Concatenate parameter to TRU. On subsequent calls, set the Concatenate
| parameter as desired.

Underline
Character string underline. If the underline parameter is specified, the width
and position of the underline are taken from the current font.

Output Parameters
Remaining Length

The number of characters that could not be placed in the character string if
the depth of the area or page is exceeded.

Remaining String
The character string that could not be placed in the paragraph because the
depth of the page or the maximum depth of the area was exceeded.

Return Code
The return code for this call.

Severity Code
The severity of the return code.

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0190 The state is invalid. Severity 8 (ERROR).

0202 The space in the area, page, paragraph, or table field is not wide enough
for the text. Severity 8 (ERROR).

0213 The maximum depth specified in the area, page, or table was exceeded;
the text will not fit. Severity 4 (WARNING).

174 Programming Guide and Reference

Query Current Attributes

AFPQATT (Query Current Attributes)

Function
Returns the current values for units, position, color, rule thickness, font,
intercharacter spacing, and word spacing. Because of rounding, the numeric
attribute values returned may be slightly different than the ones specified.

Syntax

AFPQATT(
HANDLE AFPAPI-handle,
HANDLE current-handle,
INTEGER4 units-of-measure,
REAL x-coordinate,
REAL y-coordinate,
INTEGER4 color,
REAL rule-thickness,
STRING font-id,
REAL character-spacing,
SREAL word-spacing,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 66. Format of the AFPQATT Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Current Handle
The handle for the current document, page, or area, returned from the
AFPBDOC, AFPBPAG, or AFPCARE calls.

Output Parameters
Units of Measure

The current unit of measure.

X Coordinate
The current X position returned in the current unit of measure.

Y Coordinate
The current Y position returned in the current unit of measure.

Color
The current color.

Rule Thickness
The current rule thickness in the current unit of measure.

Font ID
The ID of the current font.

Chapter 3. Procedure Call Reference 175

Query Current Attributes

Character Spacing
The current intercharacter spacing returned in the current unit of measure.

Word Spacing
The current word spacing returned in the current unit of measure.

Return Code
The return code for this call.

Severity Code
The severity of the return code.

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0002 The state is invalid; the state must be document, page, or area. Severity
8 (ERROR).

0005 The handle is invalid. Severity 8 (ERROR).

0013 A null rule thickness parameter is specified. Severity 8 (ERROR).

0025 A null font ID parameter is specified. Severity 8 (ERROR).

0030 A null intercharacter space parameter is specified. Severity 8 (ERROR).

0034 A null word space parameter is specified. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0181 A null units parameter is specified. Severity 8 (ERROR).

0182 A null X coordinate parameter is specified. Severity 8 (ERROR).

0183 A null Y coordinate parameter is specified. Severity 8 (ERROR).

0184 A null color parameter is specified. Severity 8 (ERROR).

176 Programming Guide and Reference

Query Current Position

AFPQPOS (Query Current Position)

Function
Returns the current position in the current unit of measure. Because of
rounding, the numeric values returned may be slightly different from the ones
specified on the AFPSPOS call.

Syntax

AFPQPOS(
HANDLE AFPAPI-handle,
HANDLE current-handle,
REAL x-coordinate,
REAL y-coordinate,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 67. Format of the AFPQPOS Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Current Handle
The handle for the current page or area, returned from the AFPBPAG or
AFPCARE calls.

Output Parameters
X coordinate

The X coordinate of the current position returned in the current unit of
measure.

Y coordinate
The Y coordinate of the current position returned in the current unit of
measure.

Return Code
The return code for this call.

Severity Code
The severity of the return code.

Chapter 3. Procedure Call Reference 177

Query Current Position

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0002 The state is invalid; the state must be page or area. Severity 8 (ERROR).

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

178 Programming Guide and Reference

Query Character String Size

|

| AFPQSTR (Query Character String Size)

| Function
| Returns the width and depth of a character string, using the current values for
| intercharacter spacing, word spacing, and font. AFPQSTR uses the font set in
| the last call to AFPSFNT as the current font. If you have not called AFPSFNT to
| set a font, AFPQSTR uses the default font.

| Syntax

| AFPQSTR(
| HANDLE AFPAPI-handle,
| HANDLE current-handle,
| STRING character-string,
| REAL string-length,
| REAL measured-width,
| REAL line-spacing,
| INTEGER4 ret-code,
| INTEGER4 severity-code
|)

| Figure 68. Format of the AFPQSTR Procedure Call

| Input Parameters
| AFPAPI Handle
| The session handle returned from the AFPINIT call.

| Current Handle
| The handle for the current page, area, paragraph, or table, returned from the
| AFPBPAG, AFPCARE, AFPBPAR, or AFPBTBL calls, respectively.

| Character String
| The character string whose size is to be returned. The maximum size of the
| character string is determined by your compiler.

| String Length
| The number of characters in the character string, including blanks. Ensure
| that you specify the correct length of the character string; AFPQSTR
| determines the width of the string using the number of characters you
| specify as the string length.

| Output Parameters
| Measured Width
| The width of the character string, in the current unit of measure. AFPQSTR
| ignores any justification value specified for the paragraph in an AFPBPAR
| call or for the table field in an AFPDFLD call when determining the width of
| the character string.

| Line Spacing
| The depth of the character string, in the current unit of measure. The depth
| is the default line spacing associated with the current font. AFPQSTR

Chapter 3. Procedure Call Reference 179

Query Character String Size

| ignores any line-spacing value specified for the paragraph in an AFPBPAR
| call or for the table field in an AFPDFLD call when determining the depth of
| the character string.

| Return Code
| The return code for this call.

| Severity Code
| The severity of the return code.

| Return Codes
| The following return codes indicate possible errors in your application program.
| In addition to the return codes listed here, you may receive codes that indicate
| an internal logic error (severity code 16) or that your program is out of memory
| (severity code 12). See Appendix B, “Return Codes and Severity Codes” for
| more information about each return code and the meaning of the severity codes.

| 0005 The handle is invalid. Severity 8 (ERROR).

| 0036 Invalid null handle was passed to an AFP API procedure. Severity 8
| (ERROR).

| 0284 The state is invalid; the state must be page, area, paragraph, or field.
| Severity 8 (ERROR).

| 0285 The character-string length is invalid. Severity 8 (ERROR).

180 Programming Guide and Reference

Set Color

AFPSCLR (Set Color)

Function
Specifies the color for subsequent data (text and rules).

Syntax

AFPSCLR(
HANDLE AFPAPI-handle,
HANDLE current-handle,
INTEGER4 color,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 69. Format of the AFPSCLR Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Current Handle
The handle for the current document, page, area, paragraph, or table,
returned from the AFPBDOC, AFPBPAG, AFPCARE, AFPBPAR, or AFPBTBL
calls.

Color
The color to be printed:

• Black
• Blue
• Red
• Magenta
• Green
• Cyan
• Yellow
• Brown
• Color of medium

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Chapter 3. Procedure Call Reference 181

Set Color

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0016 The color parmater is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0083 The state is invalid; the state must be document, page, area, paragraph,
or field.

182 Programming Guide and Reference

Set Font

AFPSFNT (Set Font)

Function
Specifies the font for subsequent text data.

Note: A code page is a particular assignment of hexadecimal identifiers to
graphic characters. For example, X′ 4F′ is an exclamation point (!) in code page
T1V10500, and X′ 5A′ is an exclamation point (!) in code page T1V10037. If the
code page used by your terminal or system for input is different from the code
page used to present the data, you may not get the output you expect.

Syntax

AFPSFNT(
HANDLE AFPAPI-handle,
HANDLE current-handle,
STRING font-id,
INTEGER4 ret-code,
INTEGER4 severity-code

Figure 70. Format of the AFPSFNT Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Current Handle
The handle for the current document, page, area, paragraph, or table,
returned from the AFPBDOC, AFPBPAG, AFPCARE, AFPBPAR, or AFPBTBL
calls.

Font ID
The font ID returned from the AFPDFNT (Define Font by Attributes) call.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Chapter 3. Procedure Call Reference 183

Set Font

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0056 The state is invalid; the state must be document, page, area, paragraph,
or field. Severity 8 (ERROR).

0063 The font was not defined in a Define Font procedure call. Severity 8
(ERROR).

0201 An error occurred reading the font library. Severity 12 (SEVERE).

0212 The font index cannot be not found or cannot be read. Severity 12
(SEVERE).

0214 The formatter cannot start the requested font. Severity 8 (ERROR).

0217 The font specified cannot be used. Severity 8 (ERROR).

0218 The requested code page contains characters that are not in the current
character set. Severity 8 (ERROR).

184 Programming Guide and Reference

Set Intercharacter Spacing

AFPSICS (Set Intercharacter Spacing)

Function
Specifies spacing (in addition to the character increment associated with the
character) between the individual characters in a word in the current unit of
measure. The space is in the positive inline direction. AFPSWSP (Set Word
Spacing) controls the spacing between words.

Syntax

AFPSICS(
HANDLE AFPAPI-handle,
HANDLE current-handle,
REAL character-spacing,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 71. Format of the AFPSICS Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Current Handle
The handle for the current document, page, area, paragraph, or table
returned from the AFPBDOC, AFPBPAG, AFPCARE, AFPBPAR, or AFPBTBL
calls.

Character Spacing
The amount of space to be inserted between the characters in a word as a
positive value.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Chapter 3. Procedure Call Reference 185

Set Intercharacter Spacing

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0057 The state is invalid; the state must be document, page, area, paragraph,
or field. Severity 8 (ERROR).

0187 The intercharacter spacing is invalid. Severity 8 (ERROR).

186 Programming Guide and Reference

Set Resource Library Names

AFPSLIB (Set Resource Library Names)

Function
Establishes the names of the print resource libraries used by AFP API.

| This procedure call is ignored in VSE and in a CICS/ESA environment:

• In VSE, the names of the resource libraries are specified in the // LIBDEF
PHASE,SEARCH=(...) JCL statement.

| • In a CICS/ESA environment, page segments and fonts must be located in
| VSAM data sets defined to CICS/ESA with file names of SEGLIB and
| FONTLIB.

Syntax

AFPSLIB(
HANDLE AFPAPI-handle,
TOKEN pseg-library,
TOKEN object-library,
TOKEN font-library,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 72. Format of the AFPSLIB Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Page Segment Library
The name of the library that contains the page segment:

• For MVS, the name of the DD card that specifies the page segment
library.
Default if this call is not issued: PSEGDD.

• For VM, the file type of the page segment library.
Default if this call is not issued: PSEG3820.
AFP API searches the disks alphabetically, based on the file mode value,
for the first minidisk where the object is stored; that is, AFP API searches
for “filename PSEG3820 *.”

• For VSE, this procedure call is ignored; the name of the page segment
library is specified in the // LIBDEF PHASE,SEARCH=(...) JCL statement.

| • For CICS/ESA, this procedure call is ignored; the page segment data set
| is defined to CICS/ESA with a file name of SEGLIB.

Chapter 3. Procedure Call Reference 187

Set Resource Library Names

Object Library
The name of the library that contains the objects:

• For MVS, the name of the DD card that specifies the object library.
Default if this call is not issued: OBJTDD.

• For VM, the file type of the object file library.
Default if this call is not issued: OBJT3820.
AFP API searches the disks alphabetically, based on the file mode value,
for the first minidisk where the object is stored; that is, AFP API searches
for “filename OBJT3820 *.”

• For VSE, this procedure call is ignored; the name of the object library is
specified in the // LIBDEF PHASE,SEARCH=(...) JCL statement.

| • For CICS/ESA, this procedure call is ignored; objects must be included
| within page segments.

Font Library
The name of the library that contains the fonts:

• For MVS, the name of the DD card that specifies the font library.
Default if this call is not issued: FONTDD.

• For VM, the file type of the font library.
Default if this call is not issued: FONT3820.
AFP API searches the disks alphabetically, based on the file mode value,
for the first minidisk where the object is stored; that is, AFP API searches
for “filename FONT3820 *.”

• For VSE, this procedure call is ignored; the name of the font library is
specified in the // LIBDEF PHASE,SEARCH=(...) JCL statement.

| • For CICS/ESA, this procedure call is ignored; the font data set is defined
| to CICS/ESA with a file name of FONTLIB.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

188 Programming Guide and Reference

Set Resource Library Names

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0196 The state is invalid. Severity 8 (ERROR).

0197 A null page segment library parameter is specified. Severity 8 (ERROR).

0198 A null object library parameter is specified. Severity 8 (ERROR).

0199 A null font library parameter is specified. Severity 8 (ERROR).

Chapter 3. Procedure Call Reference 189

Set Output Characteristics

AFPSOUT (Set Output Characteristics)

Function
| Defines where API is to write the AFP output records. Output can be written to
| an output file, to a CICS/ESA temporary storage queue, or to a buffer in your
| program.

| If output is written to an output file, specifies:

| • The maximum size of an output record
| • The name of the output file
| • Whether or not to replace an existing file

| If output is written to a CICS/ESA temporary storage queue, specifies:

| • The name of the queue
| • The maximum size of an output record

| If output is written to an output buffer, specifies:

| • The maximum size of an output record

| Note: Issue an AFPGBUF call, described in “ AFPGBUF (Get Output Buffer)” on
| page 149, to obtain records written to an output buffer.

Syntax

AFPSOUT(
HANDLE AFPAPI-handle,
INTEGER4 output-record-size,
FILENAME-TOKEN output-filename,
FILETYPE-TOKEN output-filetype,
FILEMODE-TOKEN output-filemode,

 BOOLEAN replace,
 INTEGER4 ret-code,
 INTEGER4 severity-code

)

Figure 73. Format of the AFPSOUT Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Output Record Size
The maximum size of a data stream record that is written as a variable

| length record to an output file, a CICS/ESA temporary storage queue, or an
| output buffer. A data stream record consists of a single structured field;
| therefore, the value should be size of the largest possible structured field.

Default if this call is not issued: 8205 bytes.

| If the output is written to an output file or to a CICS/ESA temporary storage
| queue, the smallest value that you can specify is 512 bytes, and the largest

190 Programming Guide and Reference

Set Output Characteristics

| value is 8205 bytes. For MVS, in a non-CICS/ESA environment, the value
specified must not exceed the length in the DCB.

| If the output is written to an output buffer, the smallest value that you can
| specify is 512 bytes, and the largest value is 32 767 bytes.

| Output File Name
| Specifies the name of the output file or CICS/ESA temporary storage queue,
| as follows:

| • For MVS, either the name of the DD statement that identifies the output
| file, or the name of the CICS/ESA temporary storage queue.

Default if this call is not issued: OUTFDD.

• For VM, the file name of the output file.
Default if this call is not issued: OUTFILE.

• For VSE, the name specified in the DLBL JCL statement that identifies
the output file.
Default if this call is not issued: OUTFDD.

Or, specifies one of the following constants, which are defined in the
APQCONST and APQPCON copy books:

| • BUFFERED, which requests that AFP API write output to an output buffer.

| • DISCBUFF, which requests that AFP API discard the output from each
| page rather than converting it to AFPDS output. You can use this
| function to count pages without creating any output.

Output File Type
For VM, specifies the filetype of the output file. For MVS and VSE, this
parameter is ignored.
Default if this call is not issued: LISTAFP.

Output File Mode
For VM, specifies the mode of the output file. For MVS and VSE, this
parameter is ignored.
Default if this call is not issued: *.

Replace
For VM, specifies whether to replace an existing output file with the output of
AFP API. The default if this call is not issued is not to replace the existing
file.

A severe return code is issued if the file exists and if you do not specify that
the file is to be replaced.

For MVS and VSE, this parameter is ignored. If an output file exists, it is
| replaced; if a CICS/ESA temporary queue exists, the output is written at the
| end of the existing data. For VM, if output is written to an output buffer or
| discarded, this parameter is ignored.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Chapter 3. Procedure Call Reference 191

Set Output Characteristics

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0006 The state is invalid; the state must be start. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0073 The mode is invalid. Severity 8 (ERROR).

0115 The output file ID is invalid. Severity 8 (ERROR).

192 Programming Guide and Reference

Set Position

AFPSPOS (Set Position)

Function
Sets the position in the current unit of measure.

Syntax

AFPSPOS(
HANDLE AFPAPI-handle,
HANDLE current-handle,
REAL x-coordinate,
INTEGER4 x-ref-coord-sys,
REAL y-coordinate,
INTEGER4 y-ref-coord-sys,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 74. Format of the AFPSPOS Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Current Handle
The handle for the current page or area, returned from the AFPBPAG or
AFPCARE calls.

X Coordinate
Contains the X coordinate of the position in the current unit of measure.

You can specify an X coordinate that is less than, greater than, or equal to
the current X coordinate. See “AFP Documents and Pages” on page 8 for
an explanation of the coordinate system.

Note: To specify an X coordinate that is less than the current X coordinate,
specify the coordinate as an offset from the current page or area origin.

X Reference Coordinate System
Indicates whether the X coordinate is an offset from the current page or area
origin (absolute) or whether it is an offset from the current X coordinate
(relative).

Y Coordinate
Contains the Y coordinate of the position either in the current unit of
measure or in lines of text, depending on the value of the Y reference
coordinate system parameter.

| If you are placing an area or placing data, you can specify a Y coordinate
| that is less than, greater than, or equal to the current Y coordinate.
| However, if you are placing data within an area, you must specify a Y
| coordinate that is greater than or equal to the current Y coordinate; that is,
| you can not specify a Y coordinate less than the current Y coordinate. See

Chapter 3. Procedure Call Reference 193

Set Position

| “AFP Documents and Pages” on page 8 for an explanation of the coordinate
| system.

| Note: To specify a Y coordinate less than the current Y coordinate, specify
| the coordinate as an offset from the current page origin.

Y Reference Coordinate System
Indicates if the Y coordinate is an offset from the current page or area origin
(absolute), if it is an offset from the current Y coordinate (relative), or if it is
the number of lines to move from the current Y-coordinate position (lines).

The line space is derived from the current font. If lines is specified, the
current unit of measure has no effect on the Y coordinate value.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0024 The state is invalid; the state must be page or area. Severity 8 (ERROR).

0029 The coordinate is invalid; the coordinate must be a positive number.
Severity 8 (ERROR).

0035 A numeric overflow occurred; the specified relative value added to the
current position exceeded the maximum valid value. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0059 The Y reference coordinate system is invalid. Severity 8 (ERROR).

0138 The X position is invalid. Severity 8 (ERROR).

0139 The Y position is invalid. Severity 8 (ERROR).

0142 The X reference coordinate system is invalid. Severity 8 (ERROR).

194 Programming Guide and Reference

Set Rule Thickness

AFPSRTH (Set Rule Thickness)

Function
Specifies the rule thickness for subsequent rules in the current unit of measure.
For vertical rules, the rule thickness extends in the positive (inline) direction.
For horizontal rules, the rule thickness extends in the positive Y direction.

Syntax

AFPSRTH(
HANDLE AFPAPI-handle,
HANDLE current-handle,
REAL rule-thickness,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 75. Format of the AFPSRTH Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Current Handle
The handle for the current document, page, or area, returned from the
AFPBDOC, AFPBPAG, or AFPCARE calls.

Rule Thickness
The new rule thickness to be used for subsequent rules.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Chapter 3. Procedure Call Reference 195

Set Rule Thickness

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0058 The state is invalid; the state must be document, page, or area. Severity
8 (ERROR).

0140 The rule thickness is invalid. Severity 8 (ERROR).

196 Programming Guide and Reference

Set Units

AFPSUNI (Set Units)

Function
Sets the current units of measure.

| Note: The output file generated by AFP API is in logical units of 1440 per inch,
| even if you specify a different unit of measure in this parameter.

Syntax

AFPSUNI(
HANDLE AFPAPI-handle,
HANDLE current-handle,
INTEGER4 unit-of-measure,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 76. Format of the AFPSUNI Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Current Handle
The handle for the current document, page or area, returned from the
AFPBDOC, AFPBPAG, or AFPCARE calls.

Units of Measure
The unit of measure: inches, millimeters, centimeters, 240 units, or
1440 units.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Chapter 3. Procedure Call Reference 197

Set Units

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0017 The unit specified is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0085 The state is invalid; the state must be document, page, or area. Severity
8 (ERROR).

198 Programming Guide and Reference

Set Word Spacing

AFPSWSP (Set Word Spacing)

Function
Specifies the width of spaces between words in the current unit of measure.

Syntax

AFPSWSP(
HANDLE AFPAPI-handle,
HANDLE current-handle,
SREAL word-spacing,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 77. Format of the AFPSWSP Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Current Handle
The handle for the current document, page, area, paragraph, or table,
returned from the AFPBDOC, AFPBPAG, AFPCARE, AFPBPAR, or AFPBTBL
calls.

Word Spacing
The width of spaces between words in the current unit of measure. You can
specify a value or use the default word spacing associated with the current
font. If the default is specified, the word spacing associated with the current
font is used.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Chapter 3. Procedure Call Reference 199

Set Word Spacing

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0086 The state is invalid; the state must be document, page, area, paragraph,
or field. Severity 8 (ERROR).

0141 The word spacing is invalid. Severity 8 (ERROR).

200 Programming Guide and Reference

Terminate AFP API

AFPTERM (Terminate AFP API)

Function
Abnormally terminates AFP API and frees all storage. If a partial page was
created, the partial page is written to the output file. This call is useful when
debugging your program.

The only AFP API procedure call you can issue after AFPTERM is AFPINIT. See
“ AFPEND (End AFP API)” on page 140 for normal termination.

Syntax

AFPTERM(
HANDLE AFPAPI-handle,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 78. Format of the AFPTERM Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

0210 The formatter cannot write to the output file specified with the Set Output
Characteristics procedure call. Severity 12 (SEVERE).

0278 The state is invalid. Severity 8 (ERROR).

Chapter 3. Procedure Call Reference 201

Destroy Area

AFPXARE (Destroy Area)

Function
Deletes an area and all its contents from AFP API storage. Delete the area
when it is no longer needed. For more information, see “ AFPCARE (Create
Area)” on page 121.

Syntax

AFPXARE(
HANDLE AFPAPI-handle,
HANDLE area-handle,
INTEGER4 ret-code,
INTEGER4 severity-code

)

Figure 79. Format of the AFPXARE Procedure Call

Input Parameters
AFPAPI Handle

The session handle returned from the AFPINIT call.

Area Handle
The handle of the area to be destroyed in AFP API storage, returned from the
AFPCARE call.

Output Parameters
Return Code

The return code for this call.

Severity Code
The severity of the return code.

Return Codes
The following return codes indicate possible errors in your application program.
In addition to the return codes listed here, you may receive codes that indicate
an internal logic error (severity code 16) or that your program is out of memory
(severity code 12). See Appendix B, “Return Codes and Severity Codes” for
more information about each return code and the meaning of the severity codes.

0005 The handle is invalid. Severity 8 (ERROR).

0036 Invalid null handle was passed to an AFP API procedure. Severity 8
(ERROR).

202 Programming Guide and Reference

Appendix A. Font Library Indexing Program (FLIP)

This appendix describes invoking the Font Library Index Program (FLIP) on the
system, in case the program directory is not available. Usually, a system
programmer will install FLIP for use by the entire installation.

| To use AFP API, your font library and the font library index created by FLIP, must
| contain the default font and any other fonts used by your applications. AFP API
| always requires that the default font be available, even though an application
| does not use the default font. The name of the default font is X0N2100C. To
| obtain fonts from IBM, order the AFP Font Collection product.

Invoking the Font Library Index Program in VM
In VM, a font library is a collection of CMS files, with a common (single) default
or user-specified file type, residing on a VM minidisk or its extensions. Font
objects are individual CMS files, and the font library index created by FLIP will
be a CMS file with the file name AFPINDEX8 and the same file type as the font
members.

In CMS, FLIP takes two parameters: the file type of the font objects and the file
mode where the font search should begin. If FLIP is invoked without any
parameters, a file type of FONT3820 and a file mode of “a” is used.

To create the index, FLIP examines each file of the library on the specified
minidisk and its extensions and, if the file is a font object, adds an index entry.

For example, consider a font library consisting of the following files:

C0B400N0 FONT3820 g1
C0B400H0 FONT3820 g1
C0B400F0 FONT3820 g1
C0B400D0 FONT3820 g1
C0B400B0 FONT3820 g1
C0B40090 FONT3820 g1
C0B30090 FONT3820 g1
C0B500D0 FONT3820 g1

To create the font library index, the “G” minidisk must be accessed in
READ/WRITE mode, and the following command must be issued:

flipvm font3820 g

The FLIPVM program will create a CMS file named AFPINDEX FONT3820 and a
report named FONT3820 LISTING. AFPINDEX FONT3820 will have file mode
“G1,” because only “G” was specified. You can also request that the file be
assigned a specific file mode number by specifying it explicitly. For example,
specifying:

flipvm font3820 g5

8 The FLIP program that comes with AFP API is similar to the one available with Document Composition Facility (DCF). The
AFPINDEX file is identical in content to the DCFINDEX file, so if you have already installed DCF and have run FLIP, you may
not need to re-run it for AFP API. However, the listing files produced from AFPINDEX are quite different, so you may want to
keep both. AFP API searches first for AFPINDEX and then for DCFINDEX. DCF does not recognize or process the AFPINDEX
file.

 Copyright IBM Corp. 1993, 1994, 1996 203

will assign the file with a file mode of “G5.”

The report will be created with a file type of LISTING and stored on the same
disk as the index. In the previous example, the report will be written to a file
named FONT3820 LISTING G5.

To improve performance in the CMS environment, you should not have the disk
that contains the existing AFPINDEX as your primary READ/WRITE disk. Instead,
set up a temporary disk for the purpose of holding the new AFPINDEX and make
the font disks extensions of that disk. This enables others to use the fonts while
FLIP is running.

The order of extensions used by FLIP to build the AFPINDEX must be the same
for AFP API and Print Services Facility (PSF). If AFP API does not use the same
order as specified when FLIP was run, formatting results are unpredictable,
because the font metrics and contents may differ. If PSF uses a different order,
the wrong font member may be selected if objects of the same name reside on
different minidisks.

Invoking the Font Library Index Program in MVS
In MVS, a font library is a partitioned data set; font objects are partitioned data
set members (to a maximum of 8192); and the font library index will be created
as a member named AFPINDEX.

FLIP in MVS accepts as input a data set name or a DD name (FONTLIB) to
enable you to concatenate multiple data sets for the font library. A separate
ddname, FONTLIBO, is used with FLIP to specify the single partitioned data set
that will contain the AFPINDEX.

If concatenation is used for FONTLIB, you must use the FONTLIBO ddname to
specify the single partitioned data set that will contain the AFPINDEX created by
FLIP.

If your FONTLIB is not concatenated, FONTLIBO is ignored. The AFPINDEX will
be created in the single partitioned data set referred to by FONTLIB.

If FONTLIB is a concatenated data set, only the first occurrence of each member
is used. Subsequent (duplicate) members found in FONTLIB are ignored.

When you use concatenation for FONTLIB with FLIP, the same concatenation
order must be used with AFP API and PSF. If AFP API does not use the same
concatenation order as FLIP, formatting results are unpredictable.

For example, a small set of fonts in SYS1.FONT3820 might contain the following
member names:

C0B400N0
C0B400H0
C0B400F0
C0B400D0
C0B400B0
C0B40090
C0B30090
C0B500D0

204 Programming Guide and Reference

To create the index, FLIP must examine each member of the library listed in the
partitioned data set directory and, if the member is a font object, add an index
entry for the font.

The following sample shows part of the JCL needed to create the font library
index:

//INDEX JOB ...
// EXEC PGM=FLIPMVS

 //STEPLIB DD DSN=***.****.*****,DISP=SHR
//SYSPRINT DD SYSOUT=A

 //FONTLIB DD DISP=OLD,DSN=SYS1.FONT3820
 //

Note: STEPLIB specifies the data set on the system where FLIPMVS is installed.

The FLIPMVS program adds two members to the font library data set in the
example named SYS1.FONT3820:

• AFPINDEX, which AFP API needs at run time

• LISTING, which is a human-readable listing of the font library contents shown
in Figure 24 on page 71

| Invoking the Font Library Index Program in a CICS/ESA Environment
| When running AFP API in CICS/ESA environment, fonts must be stored in a
| key-sequenced VSAM data set defined to CICS/ESA with a file name of FONTLIB.
| After invoking FLIP, your system programmer must copy the font partitioned data
| set, including the index, to a VSAM data set.

| To do this, AFP API provides program APQCIVSM and associated JCL in file
| APQCIFON. Your system programmer must modify and run the JCL in
| APQCIFON at installation and whenever the font library is modified.

Invoking the Font Library Index Program in VSE
In VSE/AF Version 2, fonts are stored in a sublibrary. Font objects are library
phases (to a maximum of 8192), and the font library index is a phase named
AFPINDEX.

For example, a small set of Monotype Times New Roman fonts in the
FONT3820.LIBRARY might contain the following phases:

C0B400N0 FONT3820 g1
C0B400H0 FONT3820 g1
C0B400F0 FONT3820 g1
C0B400D0 FONT3820 g1
C0B400B0 FONT3820 g1
C0B40090 FONT3820 g1
C0B30090 FONT3820 g1
C0B500D0 FONT3820 g1

To create the index, FLIP must examine each member of the library listed in the
library directory, and, if the member contains a font object, create an index entry
for the font. The AFPINDEX phase composed of the index is produced by using
the VSE linkage editor; APQFLVSE produces the input for the linkage editor.

Appendix A. Font Library Indexing Program (FLIP) 205

In VSE/AF Version 2, the following job must be executed to create the font library
index. In the example, api.code.library is the name of the library where the FLIP
phase resides, and afp.fontlib is the name of the font library.

// JOB AFPINDEX
LIBDEF PHASE,SEARCH=(api.code.library,afp.fontlib),
CATALOG=afp.fontlib

// DLBL IJSYSPH,′ AFP.SYSPCH.FILE1′ , 0 , SD
// EXTENT ,SYSWK1,,,150,50
ASSGN SYSPCH,3350,VOL=SYSWK1,SHR
// EXEC APQFLVSE,SIZE=AUTO
/*
CLOSE SYSPCH,PUNCH
// DLBL IJSYSIN,′ AFP.SYSPCH.FILE1′,99/365
// EXTENT SYSIPT,SYSWK1
ASSGN SYSIPT,3350,PERM,VOL=SYSWK1,SHR
// EXEC LIBR,PARM=′ A S=afp.fontlib′
/*

LIBDEF OBJ,SEARCH=afp.fontlib
// OPTION CATAL

PHASE AFPINDEX,*
INCLUDE AFPINDEX

/*
// EXEC LNKEDT
CLOSE SYSIPT,UANCH
/*
/&

The sublibrary list specified in the VSE LIBDEF statement for the EXEC
APQFLVSE job step must not contain any empty sublibraries. If an empty
sublibrary is specified, APQFLVSE will terminate with a return code of 32.

9 UA is an installation-dependent unit address of the SYSIPT before this job is executed. See your system programmer for the
correct address.

206 Programming Guide and Reference

Font Library Index Program Return Codes
The Font Library Index Program sets a return code resulting from index
processing. Table 3 lists these return codes.

Table 3. Font Library Index Program Return Codes

Return
Code Meaning

0 Normal completion

4 Listing file OPEN error

8 No font objects in the font library

12 Font library OPEN error

16 Not enough storage available for processing

20 Font l ibrary read error

24 Unable to FIND font object in the font library

28 Unable to read or write to disk

32 Librarian macro services error

36 Fontlib data set blocksize too small

40 Overflow from the font-library member-name table, in MVS and VSE. The
input font library is too large to be processed by FLIP. The library must be
subdivided into two or more smaller font l ibraries.

44 Unable to access disk specified with file mode (VM)

Appendix A. Font Library Indexing Program (FLIP) 207

208 Programming Guide and Reference

1234

Appendix B. Return Codes and Severity Codes

This appendix uses the following format to provide information about the return
codes for AFP API procedures:

 1234

A text description of the return code.

Severity: The severity level of the return code. The five levels are:

 0 Success. The AFP API procedure successfully completed.

 4 Warning. The AFP API procedure placed data outside the depth boundary of
the page or area. The AFP API procedure did not successfully complete. AFP
API can continue.

 8 Error. An error occurred, and the AFP API procedure did not successfully
complete. AFP API can continue.

12 Severe. An error occurred, and the AFP API procedure did not successfully
complete. AFP API cannot continue. This is probably an application
programming logic error.

16 Fatal. An error occurred, and the AFP API procedure did not successfully
complete. AFP API cannot continue. Contact your IBM service representative
in the IBM Support Center, because this is probably an AFP API logic error.

AFP API Procedures: A list of the procedure calls that may have issued the return code.

Response: What you can do to correct the situation.

Return Code Constants: Return code constants for the COBOL and PL/1 languages.
COBOL is shown; for PL/1, replace the hyphen (-) with an underscore (_). These
constants are included in your program if you include the copy file APQRCS COPY.

 Copyright IBM Corp. 1993, 1994, 1996 209

0000 • 0004

AFP API Return Codes

 0000

No error.

Severity: 0 (SUCCESS)

AFP API Procedures: All

Response: No response is necessary.

Return Code Constants: None

 0001

AFP API was unable to retrieve the specific error information.

Severity: 16 (FATAL)

AFP API Procedures: All

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-FAIL

 0002

| AFP API was in an invalid state when you issued a Query Current Attributes or Query
| Current Position procedure call. The state must be document, page, or area when
| you issue a Query Current Attributes procedure call; the state must be page or area
| when you issue a Query Current Position procedure call.

Severity: 8 (ERROR)

| AFP API Procedures: Query Current Attributes or Query Current Position

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-QATTS

 0003

AFP API is unable to retrieve the current attributes. Block attribute pointer is NULL.

Severity: 16 (FATAL)

AFP API Procedures: Query Current Attributes

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOATTS

 0004

| Invalid state for Terminate AFP API. The state must be start.

Severity: 8 (ERROR)

| AFP API Procedures: Terminate AFP API

Response: Verify that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-TERM

210 Programming Guide and Reference

0005 • 0009

 0005

Invalid handle.

Severity: 8 (ERROR)

AFP API Procedures: All

Response: Verify that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-NOTFOUND

 0006

Invalid state for a Set Output Characteristics procedure call. The state must be start.

Severity: 8 (ERROR)

AFP API Procedures: Set Output Characteristics

Response: Verify that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-SETOUT

 0007

Area must be ended before attempting to put the area on the page.

Severity: 8 (ERROR)

AFP API Procedures: Put Area

Response: Verify that the End Area procedure call is issued before the Put Area
procedure call.

Return Code Constants: ER-NOTENDED

 0008

Invalid state for a Begin Document procedure call. A document is already started.

Severity: 8 (ERROR)

AFP API Procedures: Begin Document

Response: Verify that the End Document procedure call is issued prior to the Begin
Document procedure call.

Return Code Constants: ER-DOCEXISTS

 0009

Invalid state for a Begin Page procedure call. A page is already started.

Severity: 8 (ERROR)

AFP API Procedures: Begin Page

Response: Verify that the End Page procedure call is issued prior to the Begin Page
procedure call.

Return Code Constants: ER-PAGEXISTS

Appendix B. Return Codes and Severity Codes 211

0011 • 0015

 0011

Invalid state for the End AFP API procedure call. The state must be start.

Severity: 8 (ERROR)

AFP API Procedures: End AFP API

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-END

 0012

NULL area depth parameter is specified in the End Area procedure call.

Severity: 8 (ERROR)

AFP API Procedures: End Area

Response: Verify that an area depth parameter is specified in the End Area procedure
call.

Return Code Constants: ER-MBAREA

 0013

NULL rule thickness parameter is specified in the Query Current Attributes procedure
call.

Severity: 8 (ERROR)

AFP API Procedures: Query Current Attributes

Response: Verify that a rule thickness parameter is specified on the Query Current
Attributes procedure call.

Return Code Constants: ER-IVLTHICK

 0014

Invalid router block type.

Severity: 16 (FATAL)

AFP API Procedures: All

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-IVTYPE

 0015

Invalid formatter block type.

Severity: 16 (FATAL)

AFP API Procedures: All

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-BLKTYPE

212 Programming Guide and Reference

0016 • 0020

 0016

Invalid color specified in the Set Color procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Set Color

Response: Change the color parameter on the Set Color procedure call to a valid value.

Return Code Constants: ER-IVCOLOR

 0017

Invalid units specified.

Severity: 8 (ERROR)

AFP API Procedures: Set Units and Begin Document

Response: Change the units parameter on the AFP API procedure call in error to a valid
value.

Return Code Constants: ER-IVUNITS

 0018

Invalid page orientation specified.

Severity: 8 (ERROR)

AFP API Procedures: Begin Document and Begin Page

Response: Change the page orientation parameter on the AFP API procedure call in
error to a valid value.

Return Code Constants: ER-IVROTATE

 0019

Invalid number of rows on the Define Row procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Row

Response: Change the number of rows on the Define Row procedure call to a valid
value.

Return Code Constants: ER-IVNUMROWS

 0020

Invalid alignment option specified in the Put Character String procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Put Character String

Response: Change the alignment option parameter on the Put Character String
procedure call to a valid value.

Return Code Constants: ER-IVALIGN

Appendix B. Return Codes and Severity Codes 213

0021 • 0026

 0021

Invalid state for the Begin Document procedure call. The state must be start.

Severity: 8 (ERROR)

AFP API Procedures: Begin Document

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-DPARENT

 0022

Invalid state for the Begin Page procedure call. The state must be document.

Severity: 8 (ERROR)

AFP API Procedures: Begin Page

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-PPARENT

 0023

Invalid state for the Create Area procedure call. The state must be document or
page.

Severity: 8 (ERROR)

AFP API Procedures: Create Area

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-APARENT

 0024

Invalid state for the Set Position procedure call. The state must be page or area.

Severity: 8 (ERROR)

AFP API Procedures: Set Position

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-NOCURSOR

 0025

NULL font ID parameter specified in the Query Current Attributes procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Query Current Attributes

Response: Ensure that a font ID parameter is specified on the Query Current Attributes
procedure call.

Return Code Constants: ER-IVFONTID

 0026

Invalid block.

Severity: 16 (FATAL)

AFP API Procedures: All

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-IVBLOCK

214 Programming Guide and Reference

0027 • 0031

 0027

Invalid application control.

Severity: 16 (FATAL)

AFP API Procedures: All

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-IVCONTROL

 0028

| A procedure call attempted to write data to an area, using an invalid value for the Y
position. The current Y position must be greater than the Y position of data

| previously written in the area.

Severity: 8 (ERROR)

AFP API Procedures: Begin Paragraph, Begin Table, Include Page Segment, Put Box, Put
Character String, and Put Rule

Response: Ensure that the Y position specified in the most recent Set Position procedure
call is valid.

Return Code Constants: ER-BACK

 0029

Invalid coordinate specified in the Set Position procedure call. The coordinate must
be a positive number.

Severity: 8 (ERROR)

AFP API Procedures: Set Position

Response: Change the coordinate parameter on the Set Position procedure call to a
positive value.

Return Code Constants: ER-NEGATIVE

 0030

NULL intercharacter space parameter specified in the Query Current Attributes
procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Query Current Attributes

Response: Ensure that an intercharacter space parameter is specified in the Query
Current Attributes procedure call.

Return Code Constants: ER-IVCSPACEP

 0031

Out of memory when trying to allocate a new block.

Severity: 12 (SEVERE)

AFP API Procedures: Initialize AFP API, Begin Document, Begin Page, Begin Table, Begin
Paragraph, and Create Area

Response: Request a larger region (MVS), a larger virtual machine size (VM), or try
running your program in a larger partition (VSE).

Return Code Constants: ER-BLKMEM

Appendix B. Return Codes and Severity Codes 215

0032 • 0037

 0032

The previous call to an AFP API procedure caused a SEVERE or FATAL error.

Severity: 12 (SEVERE)

AFP API Procedures: All

Response: End the AFP API by using Terminate AFP API.

Return Code Constants: None

 0034

NULL word space parameter specified in the Query Current Attributes procedure call

Severity: 8 (ERROR)

AFP API Procedures: Query Current Attributes

Response: Ensure that a word space parameter is specified in the Query Current
Attributes procedure call.

Return Code Constants: ER-IVWSPACE

 0035

Numeric overflow on the Set Position procedure call. The specified relative value
when added to the current position exceeds the maximum valid value.

Severity: 8 (ERROR)

AFP API Procedures: Set Position

Response: Change the relative coordinate value on the Set Position procedure call so
that when it is added to the current position, the result does not exceed the maximum
valid value.

Return Code Constants: ER-OVERFLOW

 0036

Invalid NULL handle was passed to an AFP API procedure.

Severity: 8 (ERROR)

AFP API Procedures: All

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-NULLPTR

 0037

Invalid NULL application control block pointer.

Severity: 16 (FATAL)

AFP API Procedures: All

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NULLCONTROL

216 Programming Guide and Reference

0038 • 0042

 0038

Invalid formatter block state. The state must be initial.

Severity: 16 (FATAL)

AFP API Procedures: Initialize AFP API, Begin Document, Begin Page, Begin Table, Begin
Paragraph, and Create Area

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTINIT

 0039

Invalid formatter block state. The state must be start.

Severity: 16 (FATAL)

AFP API Procedures: All

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTSTRT

 0040

Invalid formatter block state. The state must be either active or start.

Severity: 16 (FATAL)

AFP API Procedures: All

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACST

 0041

Invalid formatter block state. The state must be active.

Severity: 16 (FATAL)

AFP API Procedures: All

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT

 0042

Invalid formatter block state. The state must be active when attempting to update the
formatter ′s current position.

Severity: 16 (FATAL)

AFP API Procedures: Begin Paragraph, Begin Table, Put Character String, Put Box, Put
Rule, and Include Page Segment

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT-MOV

Appendix B. Return Codes and Severity Codes 217

0043 • 0048

 0043

Invalid formatter block state. The state must be active when attempting to write a
character string.

Severity: 16 (FATAL)

AFP API Procedures: Put Character String

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT-PUT

 0044

Invalid formatter block state. The state must be ended.

Severity: 16 (FATAL)

AFP API Procedures: End Document, End Page, End Area, End AFP API, End Paragraph,
and End Table

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTEND

 0045

Out of memory when trying to allocate block attributes.

Severity: 12 (SEVERE)

AFP API Procedures: Initialize AFP API, Begin Document, Begin Page, Begin Table, Begin
Paragraph, and Create Area

Response: Request a larger region (MVS), a larger virtual machine size (VM), or try
running your program in a larger partition (VSE).

Return Code Constants: ER-ATTSMEM

 0046

No block attribute pointer when trying to copy the block attributes.

Severity: 16 (FATAL)

AFP API Procedures: Initialize AFP API, Begin Document, Begin Page, Begin Table, Begin
Paragraph, and Create Area

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOATTPTR

 0048

Out of memory when trying to allocate the formatter and data stream generator
interface buffer.

Severity: 12 (SEVERE)

AFP API Procedures: Initialize AFP API

Response: Request a larger region (MVS), a larger virtual machine size (VM), or try
running your program in a larger partition (VSE).

Return Code Constants: ER-DCFMEM

218 Programming Guide and Reference

0049 • 0053

 0049

Out of memory when trying to allocate the application control block.

Severity: 12 (SEVERE)

AFP API Procedures: Initialize AFP API

Response: Request a larger region (MVS), a larger virtual machine size (VM), or try
running your program in a larger partition (VSE).

Return Code Constants: ER-APPLMEM

 0050

Out of memory when trying to allocate additional area pointers in the application
control block.

Severity: 12 (SEVERE)

AFP API Procedures: Create Area

Response: Request a larger region (MVS), a larger virtual machine size (VM), or try
running your program in a larger partition (VSE).

Return Code Constants: ER-AREAMEM

 0051

Invalid state for a Put Character String procedure call. The state must be page or
area.

Severity: 8 (ERROR)

AFP API Procedures: Put Character String

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-PUTSTR

 0052

Out of memory when trying to allocate the formatter and data stream generator
formatting environment.

Severity: 12 (SEVERE)

AFP API Procedures: Initialize AFP API

Response: Request a larger region (MVS), a larger virtual machine size (VM), or try
running your program in a larger partition (VSE).

Return Code Constants: ER-DCFFENV

 0053

| Invalid state for a Put Area procedure call. The state must be page.

Severity: 8 (ERROR)

AFP API Procedures: Put Area

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-PUTAREA

Appendix B. Return Codes and Severity Codes 219

0054 • 0058

 0054

Invalid rotation specified in a Put Area procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Put Area

Response: Change the rotation parameter on the Put Area procedure call to a valid
value.

Return Code Constants: ER-IVAREAROT

 0055

Invalid formatter block state. The state must be active.

Severity: 16 (FATAL)

AFP API Procedures: Put Area

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT-PUTA

 0056

Invalid state for a Set Font procedure call. The state must be document, page, area,
paragraph, or field.

Severity: 8 (ERROR)

AFP API Procedures: Set Font

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-SETFONT

 0057

Invalid state for a Set Intercharacter Spacing procedure call. The state must be
document, page, area, paragraph, or field.

Severity: 8 (ERROR)

AFP API Procedures: Set Intercharacter Spacing

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-SETCSPAC

 0058

Invalid state for a Set Rule Thickness procedure call. The state must be document,
page, or area.

Severity: 8 (ERROR)

AFP API Procedures: Set Rule Thickness

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-SETLTHCK

220 Programming Guide and Reference

0059 • 0063

 0059

Invalid Y reference coordinate system specified in a Set Position procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Set Position

Response: Change the Y reference coordinate system parameter on the Set Position
procedure call to a valid value.

Return Code Constants: ER-IVYREF

 0060

Parent font array pointer is NULL when attempting to copy a block.

Severity: 16 (FATAL)

AFP API Procedures: Initialize AFP API, Begin Document, Begin Page, Begin Table, Begin
Paragraph, and Create Area

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOFONTPTR

 0061

Out of memory when trying to allocate a font array.

Severity: 12 (SEVERE)

AFP API Procedures: Initialize AFP API, Begin Document, Begin Page, Begin Table, Begin
Paragraph, and Create Area

Response: Request a larger region (MVS), a larger virtual machine size (VM), or try
running your program in a larger partition (VSE).

Return Code Constants: ER-FONTMEM

 0062

Out of memory when trying to allocate a font attribute structure.

Severity: 12 (SEVERE)

AFP API Procedures: Define Font

Response: Request a larger region (MVS), a larger virtual machine size (VM), or try
running your program in a larger partition (VSE).

Return Code Constants: ER-FONTATSMEM

 0063

An AFP API procedure call referenced a font that was not defined in a Define Font
procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Query String Width and Set Font

Response: Add a Define Font procedure call to your program to define the font, or
change the font reference in the procedure call in error to reference a font that is
defined.

Return Code Constants: ER-FONTNOTFND

Appendix B. Return Codes and Severity Codes 221

0064 • 0068

 0064

Invalid formatter block state. The state must be active when attempting to define a
font.

Severity: 16 (FATAL)

AFP API Procedures: Define Font

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT-DEF

 0065

Invalid formatter block state. The state must be active when attempting to activate a
font.

Severity: 16 (FATAL)

AFP API Procedures: Put Character String and Put Text

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT-SET

 0066

Invalid state for a Put Rule procedure call. The state must be page or area.

Severity: 8 (ERROR)

AFP API Procedures: Put Rule

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-PUTLINE

 0067

Invalid direction specified in a Put Rule procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Put Rule

Response: Change the direction parameter on the Put Rule procedure call to a valid
value.

Return Code Constants: ER-IVDIRECTION

 0068

Invalid position returned from formatter and data stream generator.

Severity: 16 (FATAL)

AFP API Procedures: Begin Paragraph, Begin Table, Put Character String, Put Box, Put
Rule, and Include Page Segment

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-DCFPOS

222 Programming Guide and Reference

0069 • 0073

 0069

Invalid formatter block state. The state must be active when attempting to include an
overlay.

Severity: 16 (FATAL)

AFP API Procedures: Include Page Overlay

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT-INC

 0070

Invalid state for an Include Page Overlay procedure call. The state must be page or
area.

Severity: 8 (ERROR)

AFP API Procedures: Include Page Overlay

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-INCOVLY

 0071

Invalid area handle specified in a Put Area procedure call. The area does not exist.

Severity: 8 (ERROR)

AFP API Procedures: Put Area

Response: Change the area handle on the Put Area procedure call to an active area
| handle. Ensure that you have created the area with a Create Area procedure call and
| ended the area with an End Area procedure call before you place the area with a Put
| Area procedure call.

Return Code Constants: ER-AREANOTFND

 0072

Numeric overflow on a Begin Paragraph procedure call. The specified left margin,
when added to the current inline position, exceeds the maximum valid value.

Severity: 8 (ERROR)

AFP API Procedures: Begin Paragraph

Response: Change the left margin parameter on the Begin Paragraph procedure call, so
that when it is added to the current inline position, the result does not exceed the
maximum valid value.

Return Code Constants: ER-MARG-OVERF

 0073

Invalid mode specified in a Set Output Characteristics procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Set Output Characteristics

Response: Change the mode parameter on the Set Output Characteristics procedure call
to a valid value.

Return Code Constants: ER-IVFMODE

Appendix B. Return Codes and Severity Codes 223

0074 • 0078

 0074

Invalid code page specified in a Define Font procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Font

Response: Change the code page parameter on the Define Font procedure call to a valid
value.

Return Code Constants: ER-IVCODEPG

 0075

Invalid descriptive name specified in a Define Font procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Font

Response: Change the descriptive name parameter specified in the Define Font
procedure call to a valid value. See “Selecting the Font You Want” on page 68 for
determining the valid descriptive names installed on your system.

Return Code Constants: ER-IVDESCNM

 0076

Invalid point size specified in a Define Font procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Font

Response: Change the point size parameter specified in the Define Font procedure call
to a valid value.

Return Code Constants: ER-IVPTSIZE

 0077

Invalid weight specified in a Define Font procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Font

Response: Change the weight parameter specified in the Define Font procedure call to a
valid value.

Return Code Constants: ER-IVWEIGHT

 0078

Invalid width specified in a Define Font procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Font

Response: Change the width parameter specified in the Define Font procedure call to a
valid value.

Return Code Constants: ER-IVWIDTH

224 Programming Guide and Reference

0079 • 0083

 0079

Invalid rotation specified in a Define Font procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Font

Response: Change the rotation parameter specified in the Define Font procedure call to
a valid value.

Return Code Constants: ER-IVFONTROT

 0080

Invalid style specified in a Define Font procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Font

Response: Change the style parameter specified in the Define Font procedure call to a
valid value.

Return Code Constants: ER-IVSTYLE

 0081

Invalid formatter block state. The state must be active when attempting to include a
page segment.

Severity: 16 (FATAL)

AFP API Procedures: Include Page Segment

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT-INCPS

 0082

Invalid formatter block state. The state must be active when attempting to draw a
rule.

Severity: 16 (FATAL)

AFP API Procedures: Put Rule

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT-PUTL

 0083

Invalid state for a Set Color procedure call. The state must be document, page, area,
paragraph, or field.

Severity: 8 (ERROR)

AFP API Procedures: Set Color

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-SETCOLOR

Appendix B. Return Codes and Severity Codes 225

0084 • 0088

 0084

Invalid bottom horizontal rule thickness specified in a Define Row procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Row

Response: Change the bottom horizontal rule thickness parameter specified in the
Define Row procedure call to a valid value.

Return Code Constants: ER-SETPGOR

 0085

Invalid state for a Set Units procedure call. The state must be document, page, or
area.

Severity: 8 (ERROR)

AFP API Procedures: Set Units

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-SETUNITS

 0086

Invalid state for a Set Word Spacing procedure call. The state must be document,
page, area, paragraph, or field.

Severity: 8 (ERROR)

AFP API Procedures: Set Word Spacing

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-SETWORDSP

 0087

| Invalid state for a Define Field procedure call. The state must be document.

Severity: 8 (ERROR)

AFP API Procedures: Define Field

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-DEFFIELD

 0088

Invalid state for a Define Font procedure call. The state must be document, page, or
area.

Severity: 8 (ERROR)

AFP API Procedures: Define Font

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-DEFFONT

226 Programming Guide and Reference

0089 • 0093

 0089

| Invalid state for a Define Row procedure call. The state must be document.

Severity: 8 (ERROR)

AFP API Procedures: Define Row

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-DEFROW

 0090

Parent row array pointer is NULL when attempting to copy a block.

Severity: 16 (FATAL)

AFP API Procedures: Initialize AFP API, Begin Document, Begin Page, Begin Table, Begin
Paragraph, and Create Area

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOROWPTR

 0091

Out of memory when trying to allocate a row array.

Severity: 12 (SEVERE)

AFP API Procedures: Initialize AFP API, Begin Document, Begin Page, Begin Table, Begin
Paragraph, Create Area, and Define Row

Response: Request a larger region (MVS), a larger virtual machine size (VM), or try
running your program in a larger partition (VSE).

Return Code Constants: ER-ROWMEM

 0092

Parent field array pointer is NULL when attempting to copy a block.

Severity: 16 (FATAL)

AFP API Procedures: Initialize AFP API, Begin Document, Begin Page, Begin Table, Begin
Paragraph, and Create Area

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOFLDPTR

 0093

Out of memory when attempting to allocate a field array.

Severity: 12 (SEVERE)

AFP API Procedures: Initialize AFP API, Begin Document, Begin Page, Begin Table, Begin
Paragraph, Create Area, and Define Field

Response: Request a larger region (MVS), a larger virtual machine size (VM), or try
running your program in a larger partition (VSE).

Return Code Constants: ER-FLDMEM

Appendix B. Return Codes and Severity Codes 227

0094 • 0098

 0094

Invalid format option specified in a Define Field procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Field

Response: Change the format option on the Define Field procedure call to a valid value.

Return Code Constants: ER-IVHOR

 0095

Invalid vertical field format specified in a Define Field procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Field

Response: Change the vertical field format parameter on the Define Field procedure call
to a valid value.

Return Code Constants: ER-IVVER

 0096

Invalid shading pattern specified in a Define Field procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Field

Response: Change the shading pattern parameter on the Define Field procedure call to
a valid value.

Return Code Constants: ER-IVSHADE

 0097

Invalid shading intensity specified in a Define Field procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Field

Response: Change the shading intensity parameter on the Define Field procedure call to
a valid value.

Return Code Constants: ER-IVSHINT

 0098

Invalid field text orientation specified in a Define Field procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Field

Response: Change the text orientation parameter on the Define Field procedure call to a
valid value.

Return Code Constants: ER-IVFLDOR

228 Programming Guide and Reference

0099 • 0103

 0099

Invalid top horizontal rule thickness specified in a Define Field procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Field

Response: Change the top horizontal rule thickness parameter on the Define Field
procedure call to a valid value.

| Return Code Constants: ER-IVFLDFR

 0100

Invalid shading pattern specified in a Create Area procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Create Area

Response: Change the shading pattern parameter on the Create Area procedure call to
a valid value.

Return Code Constants: ER-IVARSHADE

 0101

Invalid shading intensity specified in a Create Area procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Create Area

Response: Change the shading intensity parameter on the Create Area procedure call to
a valid value.

Return Code Constants: ER-IVARSHINT

 0102

Invalid depth specified in a Define Row procedure call.

Severity: 12 (SEVERE)

AFP API Procedures: Define Row

Response: Change the depth parameter on the Define Row procedure call to a valid
value.

Return Code Constants: ER-IVDEPTH

 0103

Invalid top horizontal rule thickness specified in a Define Row procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Row

Response: Change the top horizontal rule thickness parameter specified in the Define
Row procedure call to a valid value.

Return Code Constants: ER-IVROWFR

Appendix B. Return Codes and Severity Codes 229

0104 • 0108

 0104

Out of memory when trying to allocate a field attribute structure.

Severity: 12 (SEVERE)

AFP API Procedures: Define Field

Response: Request a larger region (MVS), a larger virtual machine size (VM), or try
running your program in a larger partition (VSE).

Return Code Constants: ER-FLDATSMEM

 0105

Out of memory when trying to allocate a row attribute structure.

Severity: 12 (SEVERE)

AFP API Procedures: Define Row

Response: Request a larger region (MVS), a larger virtual machine size (VM), or try
running your program in a larger partition (VSE).

Return Code Constants: ER-ROWATSMEM

 0106

Invalid state for a Begin Table procedure call. The state must be page or area.

Severity: 8 (ERROR)

AFP API Procedures: Begin Table

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-CREATETABLE

 0107

Invalid table rotation specified in a Begin Table procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Begin Table

Response: Change the table rotation parameter on the Begin Table procedure call to a
valid value.

Return Code Constants: ER-IVTABLEROT

 0108

Invalid right vertical thickness specified in a Begin Table procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Begin Table

Response: Change the right vertical rule thickness parameter on the Begin Table
procedure call to a valid value.

Return Code Constants: ER-IVTBLRGHT

230 Programming Guide and Reference

0110 • 0114

 0110

The row has not been previously defined. The row must be defined before it can be
used within a table.

Severity: 8 (ERROR)

AFP API Procedures: Begin Row

Response: Add a Define Row procedure call to your program.

Return Code Constants: ER-ROWNOTFND

 0111

The field has not been previously defined. The field must be defined before it can be
used.

Severity: 8 (ERROR)

| AFP API Procedures: Begin Field or Define Row

Response: Add a Define Field procedure call to your program.

Return Code Constants: ER-FIELDNOTFND

 0112

Invalid alignment position specified in a Define Field procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Field

Response: Change the alignment position parameter on the Define Field procedure call
to a valid value.

Return Code Constants: ER-NOTACT-PUTF

 0113

Invalid number of columns on a Define Row procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Row

Response: Change the number of columns parameter on the Define Row procedure call
to a valid value.

Return Code Constants: ER-IVNUMCOLS

 0114

Invalid formatter block state. The state must be active when attempting to set the
output characteristics.

Severity: 16 (FATAL)

AFP API Procedures: Set Output Characteristics

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT-OUT

Appendix B. Return Codes and Severity Codes 231

0115 • 0119

 0115

Invalid output file ID specified in a Set Output Characteristics procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Set Output Characteristics

Response: Change the output file ID parameter on the Set Output Characteristics
procedure call to a valid value.

Return Code Constants: ER-IVDDNAME

 0116

A NULL depth parameter was specified in an End Table procedure call.

Severity: 8 (ERROR)

AFP API Procedures: End Table

Response: Ensure that a table depth parameter is specified in the End Table procedure
call.

Return Code Constants: ER-IVTABLDEP

 0117

Invalid formatter block state. The state must be active when attempting to set the
color.

Severity: 16 (FATAL)

| AFP API Procedures: Set Color

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT-SETCOL

 0118

Invalid left margin specified in a Define Field procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Field

Response: Change the left margin parameter on the Define Field procedure call to a
valid value.

Return Code Constants: ER-IVLMAR

 0119

Invalid line spacing specified in a Define Field procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Field

Response: Change the line spacing parameter on the Define Field procedure call to a
valid value.

Return Code Constants: ER-IVLINESP

232 Programming Guide and Reference

0120 • 0124

 0120

Invalid right margin specified in a Define Field procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Field

Response: Change the right margin parameter on the Define Field procedure call to a
valid value.

Return Code Constants: ER-IVRMAR

 0121

Invalid format for the field of a table.

Severity: 16 (FATAL)

AFP API Procedures: Begin Field and Begin Paragraph

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-IVFORMAT

 0122

Invalid shading pattern specified in a Put Box procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Put Box

Response: Change the shading pattern parameter on the Put Box procedure call to a
valid value.

Return Code Constants: ER-IVBXSHADE

 0123

Invalid shading intensity specified in a Put Box procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Put Box

Response: Change the shading intensity parameter on the Put Box procedure call to a
valid value.

Return Code Constants: ER-IVBXSHINT

 0124

Invalid state for a Put Box procedure call. The state must be page or area.

Severity: 8 (ERROR)

AFP API Procedures: Put Box

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-PUTBOX

Appendix B. Return Codes and Severity Codes 233

0125 • 0130

 0125

Invalid page width specified.

Severity: 8 (ERROR)

AFP API Procedures: Begin Document and Begin Page

Response: Change the page width parameter specified in the Begin Document
procedure call or the Begin Page procedure call to a valid value.

Return Code Constants: ER-IVPGWID

 0126

Invalid page depth specified.

Severity: 8 (ERROR)

AFP API Procedures: Begin Document and Begin Page

Response: Change the page depth parameter specified in the Begin Document
procedure call or the Begin Page procedure call to a valid value.

Return Code Constants: ER-IVPGDEP

 0127

Invalid string length specified in a Put Character String procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Put Character String

Response: Change the string length parameter on the Put Character String procedure
call to a valid value.

Return Code Constants: ER-IVSTRLEN

 0129

Invalid state for a Begin Paragraph procedure call. The state must be page or area.

Severity: 8 (ERROR)

AFP API Procedures: Begin Paragraph

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-CREATEPARA

 0130

Invalid shading pattern specified in a Begin Paragraph procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Begin Paragraph

Response: Change the shading pattern parameter on the Begin Paragraph procedure
call to a valid value.

Return Code Constants: ER-IVPRSHADE

234 Programming Guide and Reference

0131 • 0135

 0131

Invalid shading intensity specified in a Begin Paragraph procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Begin Paragraph

Response: Change the shading intensity parameter on the Begin Paragraph procedure
call to a valid value.

Return Code Constants: ER-IVPRSHINT

 0132

Invalid NULL pointer detected in an internal AFP API procedure.

Severity: 16 (FATAL)

AFP API Procedures: All

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-INULLPTR

 0133

Invalid format option specified in a Begin Paragraph procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Begin Paragraph

Response: Change the format option parameter on the Begin Paragraph procedure call
to a valid value.

Return Code Constants: ER-IVPARAFORM

 0134

Invalid formatter block state. The state must be active when attempting to use a Put
Text procedure call in a paragraph.

Severity: 16 (FATAL)

AFP API Procedures: Put Text

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT-PUTD

 0135

Invalid formatter state. The state of the block with the formatter must be active when
attempting to start a variable depth box.

Severity: 16 (FATAL)

AFP API Procedures: Create Area

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT-SBOX

Appendix B. Return Codes and Severity Codes 235

0136 • 0140

 0136

Invalid width specified.

Severity: 8 (ERROR)

AFP API Procedures: Create Area and Begin Table

Response: Change the width parameter on the procedure call in error to a valid value.

Return Code Constants: ER-IVAREAWID

 0137

Invalid depth specified.

Severity: 8 (ERROR)

AFP API Procedures: Create Area and Begin Table

Response: Change the depth parameter on the procedure call in error to a valid value.

Return Code Constants: ER-IVAREALEN

 0138

Invalid X position specified in a Set Position procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Set Position

Response: Change the X position parameter on the Set Position procedure call to a valid
value.

Return Code Constants: ER-IVXPOS

 0139

Invalid Y position specified in a Set Position procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Set Position

Response: Change the Y position parameter on the Set Position procedure call to a valid
value.

Return Code Constants: ER-IVYPOS

 0140

Invalid rule thickness specified in a Set Rule Thickness procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Set Rule Thickness

Response: Change the rule thickness parameter on the Set Rule Thickness procedure
call to a valid value.

Return Code Constants: ER-IVTHICK

236 Programming Guide and Reference

0141 • 0145

 0141

Invalid word spacing specified in a Set Word Spacing procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Set Word Spacing

Response: Change the word spacing parameter on the Set Word Spacing procedure call
to a valid value.

Return Code Constants: ER-IVSPACE

 0142

Invalid X reference coordinate system specified in a Set Position procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Set Position

Response: Change the X reference coordinate system parameter on the Set Position
procedure call to a valid value.

Return Code Constants: ER-IVXREF

 0143

Invalid descriptive name length specified in a Define Font procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Font

Response: Change the descriptive name length parameter on the Define Font procedure
call to a valid value.

Return Code Constants: ER-IVDESCLEN

 0144

Invalid first line offset specified in a Begin Paragraph procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Begin Paragraph

Response: Change the first line offset parameter on the Begin Paragraph procedure call
to a valid value.

Return Code Constants: ER-IVPARAOFF

 0145

Invalid left margin specified in a Begin Paragraph procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Begin Paragraph

Response: Change the left margin parameter on the Begin Paragraph procedure call to
a valid value.

Return Code Constants: ER-IVPARAMAR

Appendix B. Return Codes and Severity Codes 237

0146 • 0150

 0146

Invalid line length specified in a Begin Paragraph procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Begin Paragraph

Response: Change the line length parameter on the Begin Paragraph procedure call to a
valid value.

Return Code Constants: ER-IVPARALEN

 0147

Invalid line spacing specified in a Begin Paragraph procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Begin Paragraph

Response: Change the line spacing parameter on the Begin Paragraph procedure call to
a valid value.

Return Code Constants: ER-IVPARALSP

 0148

Invalid right vertical rule offset specified in a Begin Paragraph procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Begin Paragraph

Response: Change the right vertical rule offset parameter on the Begin Paragraph
procedure call to a valid value.

Return Code Constants: ER-IVPARALOF

 0149

Invalid bottom rule offset specified in a Begin Paragraph procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Begin Paragraph

Response: Change the bottom rule offset parameter on the Begin Paragraph procedure
call to a valid value.

Return Code Constants: ER-IVPARABOF

 0150

Invalid state for a Begin Paragraph procedure call. A paragraph already exists.

Severity: 8 (ERROR)

AFP API Procedures: Begin Paragraph

Response: Ensure that the End Paragraph procedure call is issued prior to the Begin
Paragraph procedure call.

| Return Code Constants: ER-PARAEXISTS

238 Programming Guide and Reference

0151 • 0155

 0151

NULL font ID parameter specified in a Define Font procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Font

Response: Ensure that a font ID parameter is specified on the Define Font procedure
call.

Return Code Constants: ER-IVFONT

 0152

NULL row ID parameter specified in a Define Row procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Row

Response: Ensure that a row ID parameter is specified in the Define Row procedure call.

Return Code Constants: ER-IVROWID

 0153

Invalid state for a Begin Table procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Begin Table

Response: Ensure that the End Table procedure call is issued prior to the Begin Table
procedure call.

Return Code Constants: ER-TABLEXISTS

 0154

| Invalid state for a Begin Row procedure call. The state must be table.

Severity: 8 (ERROR)

AFP API Procedures: Begin Row

| Response: Ensure that the handle on the AFP API procedure call in error is valid and
| that the Begin Table procedure call is successfully issued before the Begin Row
| procedure call.

Return Code Constants: ER-BEGINROW

 0155

Invalid state for an End Table procedure call. The state must be page or area.

Severity: 8 (ERROR)

AFP API Procedures: End Table

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-ENDTABLE

Appendix B. Return Codes and Severity Codes 239

0156 • 0160

 0156

Invalid handle for a Begin Field procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Begin Field

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-BEGINFLD

 0157

Invalid state for a Begin Field procedure call. The state must be row.

Severity: 8 (ERROR)

AFP API Procedures: Begin Field

Response: Ensure that a Begin Row procedure call is issued before a Begin Field
procedure call, or if a previous field exists in the row, ensure that an End Field procedure
call is issued prior to this Begin Field procedure call.

Return Code Constants: ER-NOTACT-SFLD

 0158

Invalid state for an End Field procedure call. The state must be field.

Severity: 8 (ERROR)

AFP API Procedures: End Field

Response: Ensure that a Begin Field procedure call is issued before an End Field
procedure call.

Return Code Constants: ER-NOTACT-EFLD

 0159

Invalid state for a Begin Row procedure call. The state must be table.

Severity: 8 (ERROR)

AFP API Procedures: Begin Row

Response: Ensure that a Begin Table procedure call is issued before a Begin Row
procedure call.

Return Code Constants: ER-NOTACT-SROW

 0160

Invalid state for an End Row procedure call. The state must be row.

Severity: 8 (ERROR)

AFP API Procedures: End Row

Response: Ensure that a Begin Row procedure call is issued before an End Row
procedure call.

Return Code Constants: ER-NOTACT-EROW

240 Programming Guide and Reference

0161 • 0166

 0161

Invalid state for an End Table procedure call.

Severity: 16 (FATAL)

AFP API Procedures: End Table

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT-ETBL

 0162

Invalid state for an End Paragraph procedure call. The state must be paragraph.

Severity: 16 (FATAL)

AFP API Procedures: End Paragraph

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT-EPAR

 0163

Invalid handle for an End Field procedure call.

Severity: 8 (ERROR)

AFP API Procedures: End Field

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-ENDFLD

 0164

Invalid handle for an End Row procedure call.

Severity: 8 (ERROR)

AFP API Procedures: End Row

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-ENDROW

 0165

Invalid handle for an End Paragraph procedure call.

Severity: 8 (ERROR)

AFP API Procedures: End Paragraph

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-ENDPARA

 0166

NULL paragraph depth parameter specified in an End Paragraph procedure call.

Severity: 8 (ERROR)

AFP API Procedures: End Paragraph

Response: Ensure that a paragraph depth parameter is specified on the End Paragraph
procedure call.

Return Code Constants: ER-IVPARADEP

Appendix B. Return Codes and Severity Codes 241

0167 • 0171

 0167

Invalid box width specified in a Put Box procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Put Box

Response: Change the box width parameter on the Put Box procedure call to a valid
value.

Return Code Constants: ER-IVBOXWIDTH

 0168

Invalid box depth specified in a Put Box procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Put Box

Response: Change the box depth parameter on the Put Box procedure call to a valid
value.

Return Code Constants: ER-IVBOXDEPTH

 0169

Invalid rule length specified in a Put Rule procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Put Rule

Response: Change the rule length parameter on the Put Rule procedure call to a valid
value.

Return Code Constants: ER-IVRULELEN

 0170

Invalid top horizontal rule thickness specified in a Begin Table procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Begin Table

Response: Change the top horizontal rule thickness parameter on the Begin Table
procedure call to a valid value.

Return Code Constants: ER-IVTBLTOP

 0171

Invalid bottom horizontal rule thickness specified in a Begin Table procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Begin Table

Response: Change the bottom horizontal rule thickness parameter on the Begin Table
procedure call to a valid value.

Return Code Constants: ER-IVTBLBOT

242 Programming Guide and Reference

0172 • 0176

 0172

Invalid left vertical rule thickness specified in a Begin Table procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Begin Table

Response: Change the left vertical rule thickness parameter on the Begin Table
procedure call to a valid value.

Return Code Constants: ER-IVTBLLFT

 0173

Invalid bottom horizontal rule thickness specified in a Define Field procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Field

Response: Change the bottom horizontal rule thickness parameter on the Define Field
procedure call to a valid value.

Return Code Constants: ER-IVFLDBOT

 0174

Invalid left vertical rule thickness specified in a Define Field procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Field

Response: Change the left vertical rule thickness parameter on the Define Field
procedure call to a valid value.

Return Code Constants: ER-IVFLDLFT

 0175

Invalid right vertical rule thickness specified in a Define Field procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Field

Response: Change the right vertical rule thickness parameter on the Define Field
procedure call to a valid value.

Return Code Constants: ER-IVFLDRGHT

 0176

Invalid column width specified in a Define Row procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Define Field

Response: Change the column width parameter on the Define Row procedure call to a
valid value.

Return Code Constants: ER-IVCOLWID

Appendix B. Return Codes and Severity Codes 243

0177 • 0181

 0177

Number of font definitions exceeded.

Severity: 12 (SEVERE)

AFP API Procedures: Define Font

| Response: Remove unnecessary Define Font procedure calls from your program. You
| can define a maximum of 255 fonts.

Return Code Constants: ER-FONTDEFS

 0178

Invalid state for an End Page procedure call.

Severity: 8 (ERROR)

AFP API Procedures: End Page

Response: Ensure that the handle on the AFP API procedure call in error is valid. Also,
ensure that no table or paragraph is active.

Return Code Constants: ER-ENDPAGE

 0179

Invalid state for an End Document procedure call.

Severity: 8 (ERROR)

AFP API Procedures: End Document

Response: Ensure that the handle on the AFP API procedure call in error is valid. Also,
ensure that no page is active.

Return Code Constants: ER-ENDDOC

 0180

Invalid state for an Include Page Segment procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Include Page Segment

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-INCPSEG

 0181

A NULL units parameter was specified on a Query Current Attributes procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Query Current Attributes

Response: Ensure that a units of measure parameter is specified in the Query Current
Attributes procedure call.

Return Code Constants: ER-IVUNITP

244 Programming Guide and Reference

0182 • 0186

 0182

A NULL X coordinate parameter was specified on a Query Current Attributes
procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Query Current Attributes

Response: Ensure that a X coordinate parameter is specified in the Query Current
Attributes procedure call.

Return Code Constants: ER-IVXPOSP

 0183

A NULL Y coordinate parameter was specified on a Query Current Attributes
procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Query Current Attributes

Response: Ensure that a Y coordinate parameter is specified in the Query Current
Attributes procedure call.

Return Code Constants: ER-IVYPOSP

 0184

A NULL color parameter was specified on a Query Current Attributes procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Query Current Attributes

Response: Ensure that a color parameter is specified in the Query Current Attributes
procedure call.

Return Code Constants: ER-IVCOLORP

 0185

Invalid values were specified for the inline or reuse parameters.

Severity: 8 (ERROR)

AFP API Procedures: Include Page Segment

Response: Change the inline or reuse parameters on the Include Page Segment
procedure call to a valid value.

Return Code Constants: ER-IVINLINE

 0186

NULL handle.

Severity: 8 (ERROR)

AFP API Procedures: Begin Document, Begin Page, Begin Paragraph, and Begin Table

Response: Ensure that an output handle parameter is specified in the procedure call in
error.

Return Code Constants: ER-IVBLKP

Appendix B. Return Codes and Severity Codes 245

0187 • 0191

 0187

Invalid intercharacter spacing was specified in a Set Intercharacter Spacing procedure
call.

Severity: 8 (ERROR)

AFP API Procedures: Set Intercharacter Spacing

Response: Change the intercharacter spacing parameter on the Set Intercharacter
Spacing procedure call to a valid value.

Return Code Constants: ER-IVCSPACE

 0188

Invalid formatter block state.

Severity: 16 (FATAL)

AFP API Procedures: Put Character String and Put Text

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT-SETWSP

 0189

Invalid formatter block state.

Severity: 16 (FATAL)

AFP API Procedures: Put Character String and Put Text

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT-SETISP

 0190

Invalid state for a Put Text procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Put Text

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-PUTTEXT

 0191

Invalid first line indent specified in a Begin Paragraph procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Begin Paragraph

Response: Change the first line indent parameter on the Begin Paragraph procedure call
to a valid value.

Return Code Constants: ER-IVPARAIND

246 Programming Guide and Reference

0192 • 0197

 0192

Invalid state for an Invoke Medium Map procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Invoke Medium Map

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-INVMM

 0193

Invalid formatter block state.

Severity: 16 (FATAL)

AFP API Procedures: Invoke Medium Map

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT-INVMM

 0194

NULL current table depth parameter on an End Row procedure call.

Severity: 8 (ERROR)

AFP API Procedures: End Row

Response: Ensure that a current table depth parameter is specified in the End Row
procedure call.

Return Code Constants: ER-IVROWDEP

 0195

Invalid formatter block state.

Severity: 16 (FATAL)

AFP API Procedures: Set Resource Library Names

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT-SLIBS

 0196

Invalid state for a Set Resource Library Names procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Set Resource Library Names

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-SETLIBS

 0197

NULL page segment library parameter on a Set Resource Library Names procedure
call.

Severity: 8 (ERROR)

AFP API Procedures: Set Resource Library Names

Response: Ensure that a page segment library parameter is specified on the Set
Resource Library Names procedure call.

Return Code Constants: ER-IVPSEGLIB

Appendix B. Return Codes and Severity Codes 247

0198 • 0202

 0198

NULL object library parameter on a Set Resource Library Names procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Set Resource Library Names

Response: Ensure that an object library parameter is specified on the Set Resource
Library Names procedure call.

Return Code Constants: ER-IVOBJLIB

 0199

NULL font library parameter on a Set Resource Library Names procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Set Resource Library Names

Response: Ensure that a font library parameter is specified on the Set Resource Library
Names procedure call.

Return Code Constants: ER-IVFONTLIB

 0200

The formatter could not obtain storage with a GETMAIN request.

Severity: 12 (SEVERE)

AFP API Procedures: All

Response: Request a larger region (MVS), a larger virtual machine size (VM), or try
running your program in a larger partition (VSE).

Return Code Constants: ER-NO-STORAGE

 0201

Error reading resource library. The formatter could not read a required resource
library (font, page segment, or object).

Severity: 12 (SEVERE)

AFP API Procedures: Set Font, Include Page Segment, and Include Object

Response: Ensure that the DD name or file name specified on the Set Resource Library
Names procedure call is correct and matches your JCL, and that you have read access to

| the files. In a CICS/ESA environment, ensure that your program does not issue the
| Include Object procedure call. If none of these conditions caused the error, have your

system programmer check for problems with the font, page segment, or object library.
This return code doesn′ t apply to the VSE operating system.

Return Code Constants: ER-READ-LIB

 0202

| A procedure call tried to place text or rules in an area, page, paragraph, or table
| field, but the space is not wide enough.

Severity: 8 (ERROR)

AFP API Procedures: Put Character String, Put Text, Begin Paragraph, and Begin Table

Response: If you are placing text with a Put Character String procedure call, either use
a smaller font, place fewer characters, or make the area or paragraph wider. If you are
placing text in a paragraph, ensure that the paragraph first-line indent plus its length
does not exceed the area, paragraph, or page width. If you are beginning a paragraph,
ensure that the line length and right rule offset do not exceed the width of the page or

248 Programming Guide and Reference

0203 • 0208

area. If you are building a table, ensure that the table width is not greater than the page
| or area width. If you place text in a table field with a AFPPTXT (Put Text) procedure call,
| ensure that the largest text word fits in the table field. To determine the width required
| for a character string to print, you can issue the AFPQSTR (Query String) procedure call
| prior to issuing the AFPPTXT (Put Text) procedure call.

Return Code Constants: ER-TOO-WIDE

 0203

Shade definition not found. A request for shading was made, but the shade definition
was not previously defined.

Severity: 16 (FATAL)

AFP API Procedures: Put Box, Begin Paragraph, Create Area, and Begin Field

Response: This error is caused by an interface problem between the AFP API internal
procedures. Contact your IBM service representative, and report this return code to
report the problem.

Return Code Constants: ER-NO-SHADE

 0204

Invalid request from AFP API to formatter. The AFP API code built a request to the
formatter that contains invalid parameters.

Severity: 16 (FATAL)

AFP API Procedures: All

Response: This error is caused by an interface problem between the AFP API internal
procedures. Contact your IBM service representative, and report this return code to
report the problem.

Return Code Constants: ER-IVREQUEST

 0206

AFP API attempted to query the line spacing of a font that is not defined.

Severity: 16 (FATAL)

AFP API Procedures: Set Position

Response: This error is caused by an interface problem between the AFP API internal
procedures. Contact your IBM service representative, and report this return code to
report the problem.

Return Code Constants: ER-QFONT-NOTFOUND

 0208

Missing internal work area address. An internal address that is required for
processing is zero.

Severity: 16 (FATAL)

AFP API Procedures: All

Response: This error is caused by an interface problem between the AFP API internal
procedures. Contact your IBM service representative, and report this return code to
report the problem.

Return Code Constants: ER-NO-FORMATTER-HANDLE

Appendix B. Return Codes and Severity Codes 249

0209 • 0212

 0209

A table row contains more data than will fit in the remaining or maximum table depth
or on the page.

Severity: 4 (WARNING)

AFP API Procedures: End Row

Response: Increase the table depth on the Define Table procedure call, decrease the
amount of row contents, position the table further up the page, or start a new page.

Return Code Constants: ER-ROW-TOO-DEEP

 0210

Error writing to output file. The formatter could not write to the output file specified
with the Set Output Characteristics procedure call.

Severity: 12 (SEVERE)

AFP API Procedures: End Page, End Document, and Terminate AFP API

Response: Ensure that you have WRITE authority to the data set. Ensure that the name
specified in the Set Output Characteristics procedure call (or the default) matches the DD
statement in your JCL (for MVS) or matches the file name specified on the DLBL in your
JCL (for VSE).

Return Code Constants: ER-WRITE-OUTPUT

 0211

An internal request for storage was too large to be processed.

Severity: 16 (FATAL)

AFP API Procedures: All

Response: This error is caused by an interface problem between the AFP API internal
procedures. Contact your IBM service representative, and report this return code to
report the problem.

Return Code Constants: ER-TOO-BIG

 0212

Font index not found or not usable. The formatter requires the font index file in the
font library in order to continue processing. The file was not found or could not be
read.

Severity: 12 (SEVERE)

AFP API Procedures: Initialize AFP API and Set Font

Response: Ensure that the font index file is in the font library specified with the Set
Resource Library Names procedure call or the default font library if the Set Resource
Library Names procedure call was not issued. The index file is a member named
AFPINDEX or DCFINDEX. If the member is not found, you must run the Font Library Index
Program provided with the AFP API. See your system programmer for assistance.

Note: See Appendix A, “Font Library Indexing Program (FLIP)” on page 203 for more
information.

Return Code Constants: ER-FONTINDEX

250 Programming Guide and Reference

0213 • 0216

 0213

The maximum depth specified in the area, page, or table was exceeded; the object
will not fit.

Severity: 4 (WARNING)

AFP API Procedures: Put Character String, Put Text, Put Box, Put Rule, Include Object,
Include Page Segment, and Begin Paragraph

Response: Increase the area or table dimensions, position the data further up the page,
or start a new page.

Return Code Constants: ER-DEPTH-EXCEEDED

 0214

The formatter cannot start the requested font. This error occurs when the font is set,
not when it is defined.

Severity: 8 (ERROR)

AFP API Procedures: Set Font

Response: Check the font definition specified with the Define Font by Attributes
procedure call. The Font Library Index Program (FLIP) index describes the fonts that are
available. See “Font Library Indexing Program” on page 69 for information about the
FLIP listing.

| If the definition appears correct, ensure that the font is available in the font library. Also,
check that the font library name specified in the Set Resource Library Names procedure
call (or the default font library if a Set Resource Library Names procedure call was not
issued) is correct.

| If the font is available, ensure that the font does not contain a fractional point size by
| checking the font listing produced by the Font Library Index Program. You cannot use a
| font with a fractional point size, such as 24.9.

| Ensure that the code page has a blank character defined at position X′40′.

Note: See Appendix A, “Font Library Indexing Program (FLIP)” on page 203 for more
information.

Return Code Constants: ER-STARTFONT

 0215

A procedure call attempted to begin an area, table, row, or field that was not
previously defined.

Severity: 16 (FATAL)

AFP API Procedures: Put Area, Begin Row, and Begin Field

Response: This error is caused by an interface problem between the AFP API internal
procedures. Contact your IBM service representative, and report this return code to
report the problem.

Return Code Constants: ER-NO-DEFINITION

 0216

The resource requested by an Include Page Segment procedure call or an Include
Object procedure call was not found.

Severity: 8 (ERROR)

AFP API Procedures: Include Page Segment and Include Object

Response: Ensure that the resource specified in the procedure call in error exists in the
library specified with the Set Resource Library Names procedure call or in the default
library, if a Set Resource Library Names procedure call was not issued.

Appendix B. Return Codes and Severity Codes 251

0217 • 0218

Return Code Constants: ER-NO-OBJECT

 0217

The font specified cannot be used by AFP API for one of the following reasons:

• The font contains invalid AFP objects.
• The font is missing required structured fields.
• The font pattern technology setting does not match previous fonts used in this

document.
• The specified character rotation could not be found.
• The default coded font was not found in the font library. The default coded font is

X0N2100C.

Severity: 8 (ERROR)

AFP API Procedures: Set Font and Begin Document

Response: Ensure that you have defined the font correctly, that it is available in your
font library, and that the pattern technology setting for all fonts in your document is the
same.

| Also, ensure that the descriptive name specified with the Define Font by Attributes
| procedure call matches exactly the description in the FLIP listing. Note that the
| descriptive name is case sensitive; all descriptive names are currently defined in
| uppercase.

| Ensure that the font library contains a coded-font member named X0N2100C even if you
| are not using the default font. This coded font can point to any valid character set and
| code page combination that you want, but the member name must be X0N2100C. If you
| are formatting for a 3800 printer, copy a valid coded font member with zero rotation (that
| is, a coded font that begins with X1) and rename it to X0N2100C.

Return Code Constants: ER-INVFONT

 0218

The code page you requested contains characters that are not in the current
character set.

Severity: 8 (ERROR)

AFP API Procedures: Set Font

Response: Select a code page that matches the character set you are using. Refer to
IBM AFP Fonts: Technical Reference for IBM Expanded Core Fonts for the fonts you are
using for more information about selecting code pages.

| Ensure that the descriptive name specified with the Define Font by Attributes procedure
| call matches exactly the description in the FLIP listing. Notice that descriptive names are
| case sensitive; all descriptive names are currently defined in uppercase.

| Ensure that the code page is not an ASCII code page; ASCII code pages are not
| supported.

| Ensure that all character sets have unique typeface and attribute combinations. If
| multiple character sets within a typeface have the same attributes, AFP API selects the
| first character set found (in the order shown in the FLIP listing).

Return Code Constants: ER-CODEPAGE

252 Programming Guide and Reference

0219 • 0223

 0219

A page segment or included object on the page is too wide or too deep and extends
beyond the dimensions of the logical page.

Severity: 8 (ERROR)

AFP API Procedures: End Page

Response: Print the page in order to determine which object is too large. Either make
the object smaller or position it at a different location so it will fit. For page segments
and included objects, “white space” in the object may be causing this error.

Return Code Constants: ER-OFF-PAGE

 0220

The page may not be printable because of the number or size of the fonts selected.

Severity: 8 (ERROR)

AFP API Procedures: End Page

Response: If the page won′ t print, reduce the number or size of the fonts used on this
page.

Return Code Constants: ER-FONTSIZE

 0221

The contents of the area extend beyond the dimensions of the logical page. The area
is either too wide or too deep. Whether it is the width or depth that is too large
depends on the rotation of the area and where you have positioned it relative to the
edge of the page.

Severity: 8 (ERROR)

AFP API Procedures: Put Area

Response: Reduce the size (width or depth) of the area, or move its position (using the
Set Position procedure call) so that the area will fit.

Return Code Constants: ER-AREA-OFF-PAGE

 0222

A page segment or object contains invalid structured fields.

Severity: 8 (ERROR)

AFP API Procedures: Include Page Segment and Include Object

Response: Ensure that the segment is valid for a 3820-type device and that it contains
valid AFP data stream structured fields. Refer to Mixed Object Document Content
Architecture Reference for more information about the structured fields.

Return Code Constants: ER-INVPSEG

 0223

During initialization, the AFP API module could not be loaded into the system.

Severity: 12 (SEVERE)

AFP API Procedures: Initialize AFP API

Response: Check with your system programmer to ensure that the AFP API module has
been installed. Check your JCL (MVS or VSE) or disk access (VM) to ensure that you
have access to the APQTKMOD (MVS, VM, and VSE) and APQIOMOD (MVS only)
modules.

Return Code Constants: ER-LOADMOD

Appendix B. Return Codes and Severity Codes 253

0224 • 0227

 0224

File exists, and REPLACE was not specified. You requested output to a file that
already exists and specified (or took the default) FALS for the REPLACE parameter on
the Set Output Characteristics procedure call.

Severity: 12 (SEVERE)

| AFP API Procedures: Set Output Characteristics

Response: Specify TRU for the REPLACE parameter on the Set Output Characteristics
procedure call if you want the file to be replaced, or select a different output file name.

Return Code Constants: ER-REPLACE

 0225

A Begin Field procedure call was issued, but the field was not part of the Begin Row
procedure call currently in effect.

Severity: 8 (ERROR)

AFP API Procedures: Begin Field

Response: Ensure that the field ID specified on the Begin Field procedure call matches
the ID for the current Define Field procedure call. Also ensure that the field ID was
specified as part of the arrangement on the Define Row procedure call.

Return Code Constants: ER-FIELDNDEF

 0226

Invalid Begin Group request. You attempted to start a group, but one is already
active. Nested groups are not valid; you must end the previous group before
beginning a new one.

Severity: 8 (ERROR)

AFP API Procedures: Begin Group

Response: End the previous group with an End Group procedure call before beginning
this one.

Return Code Constants: ER-NESTGRPS

 0227

Invalid End Group request. An End Group procedure call was issued, but a group of
that name is not active.

Severity: 8 (ERROR)

AFP API Procedures: End Group

Response: Ensure that the group name you specified matches the name specified in the
previous Begin Group request.

Return Code Constants: ER-NOBEGGRP

254 Programming Guide and Reference

0228 • 0262

 0228

Invalid Put Tag request. A Put Tag procedure call attempted to put a tag in document
state (between pages), but no group is active. Tags cannot be placed between pages
unless they are preceded by a Begin Group request.

Severity: 8 (ERROR)

AFP API Procedures: Put Tag

Response: Start a group using the Begin Group procedure call before you place
group-level tags with the Put Tag procedure call. Or, to create a page-level tag, start the
page so that the Put Tag procedure call comes after the Begin Page procedure call.

Return Code Constants: ER-NOACTGRP

 0229

A Begin Field procedure call was issued, but the field was rotated, and no subrow
depth was specified. The Define Row procedure call contained AFP-DEFAULT for the
SUBROW-DEPTH parameter.

Severity: 8 (ERROR)

AFP API Procedures: Begin Field

Response: Specify a value other than AFP-DEFAULT for the SUBROW-DEPTH parameter
of the Define Row procedure call that references the field.

Return Code Constants: ER-INVSUBROW

 0255

A logic error in the formatter code occurred.

Severity: 16 (FATAL)

AFP API Procedures: All

Response: This error is caused by an internal problem in the AFP API internal
procedures. Contact your IBM service representative, and report this return code to
report the problem.

Return Code Constants: ER-FORMATTER-ABEND

 0260

Invalid state for an Include Object procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Include Object

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-INCOBJ

 0262

Invalid object area width specified in an Include Object procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Include Object

Response: Change the object area width parameter specified in the Include Object
procedure call to a valid value.

Return Code Constants: ER-IVOBJWIDTH

Appendix B. Return Codes and Severity Codes 255

0263 • 0267

 0263

Invalid object area depth specified in an Include Object procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Include Object

Response: Change the object area depth parameter specified in the Include Object
procedure call to a valid value.

Return Code Constants: ER-IVOBJDEPTH

 0264

Invalid object area rotation specified in an Include Object procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Include Object

Response: Change the object area rotation parameter specified in the Include Object
procedure call to a valid value.

Return Code Constants: ER-IVOBJROT

 0265

Invalid object area mapping option specified in an Include Object procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Include Object

Response: Change the object area mapping option parameter specified in the Include
Object procedure call to a valid value.

Return Code Constants: ER-IVOBJMAP

 0266

Invalid object X offset specified in an Include Object procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Include Object

Response: Change the object X offset parameter specified in the Include Object
procedure call to a valid value.

Return Code Constants: ER-IVOBJXPOS

 0267

Invalid object Y offset specified in an Include Object procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Include Object

Response: Change the object Y offset parameter specified in the Include Object
procedure call to a valid value.

Return Code Constants: ER-IVOBJYPOS

256 Programming Guide and Reference

0268 • 0272

 0268

Invalid formatter state. The state of the block with the formatter must be active when
attempting to include an object.

Severity: 16 (FATAL)

AFP API Procedures: Include Object

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT-INCOBJ

 0269

Invalid state for a Begin Group procedure call. The state must be document.

Severity: 8 (ERROR)

| AFP API Procedures: Begin Group

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-BEGGRP

 0270

Invalid group name specified in a Begin Group procedure call or an End Group
procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Begin Group and End Group

Response: Change the group name parameter on the procedure call in error to a valid
value.

Return Code Constants: ER-IVGRPNAME

 0271

Invalid state for an End Group procedure call. The state must be document.

Severity: 8 (ERROR)

AFP API Procedures: End Group

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-ENDGRP

 0272

Invalid state for a Put Tag procedure call. The state must be document or page.

Severity: 8 (ERROR)

AFP API Procedures: Put Tag

Response: Ensure that the handle on the AFP API procedure call in error is valid.

Return Code Constants: ER-PUTTAG

Appendix B. Return Codes and Severity Codes 257

0273 • 0278

 0273

Invalid attribute name specified in a Put Tag procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Put Tag

Response: Change the attribute name parameter on the Put Tag procedure call to a
valid value.

Return Code Constants: ER-IVTAGNAME

 0274

Invalid attribute value specified in a Put Tag procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Put Tag

Response: Change the attribute value parameter on the Put Tag procedure call to a
valid value.

Return Code Constants: ER-IVTAGVALUE

 0275

Invalid formatter state. The state must be active when attempting to begin a group.

Severity: 16 (FATAL)

AFP API Procedures: Begin Group

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT-BGRP

 0276

Invalid formatter state. The state must be active when attempting to end a group.

Severity: 16 (FATAL)

AFP API Procedures: End Group

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT-EGRP

 0277

Invalid formatter state. The state must be active when attempting to put a tag.

Severity: 16 (FATAL)

AFP API Procedures: Put Tag

Response: Contact your IBM service representative, and report this return code.

Return Code Constants: ER-NOTACT-PTAG

 0278

Invalid state for a Terminate AFP API procedure call.

Severity: 8 (ERROR)

AFP API Procedures: Terminate AFP API

Response: Ensure that the handle on the Terminate AFP API procedure call in error is
valid.

| Return Code Constants: ER-TERMINATE

258 Programming Guide and Reference

0279 • 0284

 0279

Numeric overflow on a Begin Paragraph procedure call. The specified line length,
when added to the current inline position and the left margin, exceeds the maximum
valid value.

Severity: 8 (ERROR)

AFP API Procedures: Begin Paragraph

Response: Change the line length parameter on the Begin Paragraph procedure call, so
that when it is added to the current inline position and left margin, the result does not
exceed the maximum valid value.

Return Code Constants: ER-LINELEN-OVERF

| 0280

| Invalid state for Get Output Buffer procedure call. The state must be document.

| Severity: 8 (ERROR)

| AFP API Procedures: Get Output Buffer

| Response: Verify that the document handle on the AFPGBUF procedure call is valid.

| Return Code Constants: ER-GETOUT

| 0281

| Buffered output was not requested on the AFPSOUT procedure call. The AFPGBUF
| procedure call cannot return output to your program.

| Severity: 12 (SEVERE)

| AFP API Procedures: Get Output Buffer

| Response: Ensure that the BUFFERED constant is specified in the Output Filename
| parameter on the AFPSOUT procedure call.

| Return Code Constants: ER-NOTACT-GBUF

| 0282

| The record (structured field) is larger than the size of the buffer provided for the
| record. AFP API truncated the record to fit into the buffer. AFPGBUF returns the
| actual size of the record in the Buffer Length parameter.

| Severity: 8 (ERROR)

| AFP API Procedures: Get Output Buffer

| Response: Ensure that the maximum output record size specified on the AFPSOUT
| procedure call is large enough to hold the record.

| Return Code Constants: ER-IVBUFFER

| 0284

| Invalid state for a Query Character String Size procedure call. The state must be
| page, area, paragraph, or field.

| Severity: 8 (ERROR)

| AFP API Procedures: Query Character String Size

| Response: Ensure that the current handle on the AFPQSTR procedure call is valid.

| Return Code Constants: ER-QSTR

Appendix B. Return Codes and Severity Codes 259

0285

| 0285

| Invalid length of the character string specified for a Query Character String Size
| procedure call. The length of the character string must be greater than zero.

| Severity: 8 (ERROR)

| AFP API Procedures: Query Character String Size

| Response: Ensure that the length specified in the String Length parameter on the
| AFPQSTR procedure call is greater than zero.

| Return Code Constants: ER-QSTR-IVSTRLEN

260 Programming Guide and Reference

Appendix C. Shade Patterns and Types

AFP API provides 32 shading intensities in two patterns: STANDARD (the default)
and SCREEN. After specifying the shade pattern, select the shade intensity by
specifying one of the percentages shown in Figure 80 or Figure 81.

Note: The results may vary on different printers.

 Copyright IBM Corp. 1993, 1994, 1996 261

Figure 80. Shade Pattern—STANDARD

262 Programming Guide and Reference

Figure 81. Shade Pattern—SCREEN

Appendix C. Shade Patterns and Types 263

264 Programming Guide and Reference

Appendix D. Creating an Executable Program under MVS

| This appendix contains reference information for building the COBOL and PL/1
| load modules and running your COBOL and PL/1 programs under MVS.

| MVS JCL for Compiling and Link-Editing a COBOL Application
| Figure 82 shows the general format of the JCL for compiling and link-editing a
| COBOL object with the AFP API code. This JCL is based on the JCL distributed
| with AFP API in member APQCOCOB. After link-editing, run the job with the JCL

shown in Figure 83 on page 267.

| //APQCOCOB JOB ′ acct info′ , ′ name′ , MSGLEVEL=(1,1)
| //*
| //* COMPILE AND LINK-EDIT A COBOL PROGRAM WITH AFP API
| //*
| //COB2 EXEC PGM=IGYCRCTL,PARM=′ OBJECT,LIST,LIB,RENT,RES,Q′ ,
| // REGION=1024K
| //* MODIFY THE FOLLOWING FOR YOUR COBOL LIBRARY
| //STEPLIB DD DSNAME=cob2.V131.COB2COMP,DISP=SHR
| //SYSPRINT DD SYSOUT=A
| //* MODIFY THE FOLLOWING FOR YOUR COBOL PROGRAM
| //SYSIN DD DSNAME=PSF.AFPAPI.SAPQSAM1(APQSAMP),DISP=SHR
| //SYSLIN DD DSNAME=&&LOADSET,UNIT=SYSDA,DISP=(MOD,PASS),
| // SPACE=(TRK,(3,3)),
| // DCB=(BLKSIZE=80,LRECL=80,RECFM=FB)
| //* MODIFY THE FOLLOWING FOR YOUR COBOL LIBRARY
| //SYSLIB DD DSNAME=PSF.AFPAPI.SAPQSAM1,DISP=SHR
| //SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
| //SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
| //SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
| //SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
| //SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
| //SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
| //SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//LKED EXEC PGM=IEWL,
// PARM=′ LIST,AMODE=31,RMODE=ANY,RENT,CALL′ ,
// COND=(5,LT,COB2),
// REGION=512K
//* MODIFY THE FOLLOWING FOR YOUR PROGRAM TEXT LIBRARY

| //SYSLMOD DD DSNAME=PSF.AFPAPI.SAPQMOD1,
| // DISP=(OLD,KEEP)
| //* MODIFY THE FOLLOWING FOR YOUR COBOL LIBRARIES

//SYSLIB DD DSNAME=cob2.V131.COB2LIB,DISP=SHR
 //APQSTUB DD DSNAME=PSF.AFPAPI.SAPQMOD2,DISP=SHR
 //SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,DELETE)
 // DD *

INCLUDE APQSTUB(APQBDOC)
INCLUDE APQSTUB(APQBFLD)
INCLUDE APQSTUB(APQBGRP)
INCLUDE APQSTUB(APQBPAG)
INCLUDE APQSTUB(APQBPAR)
INCLUDE APQSTUB(APQBROW)
INCLUDE APQSTUB(APQBTBL)
INCLUDE APQSTUB(APQCARE)

| Figure 82 (Part 1 of 2). JCL to Compile and Link-Edit a COBOL Application in an MVS
| System

 Copyright IBM Corp. 1993, 1994, 1996 265

INCLUDE APQSTUB(APQDFLD)
INCLUDE APQSTUB(APQDFNT)
INCLUDE APQSTUB(APQDROW)
INCLUDE APQSTUB(APQEARE)
INCLUDE APQSTUB(APQEDOC)
INCLUDE APQSTUB(APQEFLD)
INCLUDE APQSTUB(APQEGRP)
INCLUDE APQSTUB(APQEND)
INCLUDE APQSTUB(APQEPAG)
INCLUDE APQSTUB(APQEPAR)
INCLUDE APQSTUB(APQEROW)
INCLUDE APQSTUB(APQETBL)

| INCLUDE APQSTUB(APQGBUF)
INCLUDE APQSTUB(APQINIT)
INCLUDE APQSTUB(APQINVM)
INCLUDE APQSTUB(APQIOBJ)
INCLUDE APQSTUB(APQIOVL)
INCLUDE APQSTUB(APQIPSG)
INCLUDE APQSTUB(APQPARE)
INCLUDE APQSTUB(APQPBOX)
INCLUDE APQSTUB(APQPCHS)
INCLUDE APQSTUB(APQPRUL)
INCLUDE APQSTUB(APQPTAG)
INCLUDE APQSTUB(APQPTXT)
INCLUDE APQSTUB(APQQATT)
INCLUDE APQSTUB(APQQPOS)

| INCLUDE APQSTUB(APQQSTR)
INCLUDE APQSTUB(APQSCLR)
INCLUDE APQSTUB(APQSFNT)
INCLUDE APQSTUB(APQSICS)
INCLUDE APQSTUB(APQSLIB)
INCLUDE APQSTUB(APQSOUT)
INCLUDE APQSTUB(APQSPOS)
INCLUDE APQSTUB(APQSRTH)
INCLUDE APQSTUB(APQSUNI)
INCLUDE APQSTUB(APQSWSP)

| INCLUDE APQSTUB(APQXARE)
| INCLUDE APQSTUB(APQXFREE)
| INCLUDE APQSTUB(APQXGET)
| INCLUDE APQSTUB(APQXLOAD)
| INCLUDE APQSTUB(APQXSRVI)
| INCLUDE APQSTUB(APQXSRVN)
| INCLUDE APQSTUB(APQXUNLD)

 ENTRY <Your cobol program name>
 NAME <Your cobol program name>(R)
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSPRINT DD SYSOUT=*
/*

| Figure 82 (Part 2 of 2). JCL to Compile and Link-Edit a COBOL Application in an MVS
| System

266 Programming Guide and Reference

MVS JCL for Running a COBOL Application
Figure 83 shows the general format of the JCL for running the AFP API job from

| a load module after you link-edit a COBOL object with the AFP API code. This
| JCL is based on the JCL distributed with AFP API in member APQIVCOB.

//APQIVCOB JOB ′ acct info′ , ′ name′ , MSGLEVEL=(1,1)
//*
//* RUN A COBOL PROGRAM
//*
//* MODIFY THE FOLLOWING FOR YOUR PROGRAM
//GO EXEC PGM=<your cobol program name>

| //* MODIFY THE FOLLOWING FOR YOUR COBOL LIBRARY
| //STEPLIB DD DSNAME=cob2.V131.COB2LIB,DISP=SHR
| // DD DSNAME=PSF.AFPAPI.SAPQMOD1,DISP=SHR

//* MODIFY THE FOLLOWING FOR YOUR PAGE SEGMENT LIBRARY
//PSEGDD DD DSNAME=PSF.AFPAPI.SAPQULIB,DISP=SHR
//* MODIFY THE FOLLOWING FOR YOUR CORE FONT LIBRARY
//FONTDD DD DSNAME=SYS1.FONTLIBB,DISP=SHR
//* MODIFY THE FOLLOWING FOR YOUR OUTPUT DATASET

 //APQSAMP DD DSNAME=userid.APQSAMP.LISTAFP,
 // DISP=(NEW,CATLG,CATLG),
 // UNIT=SYSDA,
 // SPACE=(CYL,(2,1),RLSE),
 // DCB=(RECFM=VB,LRECL=8205,BLKSIZE=8209)

//* MODIFY THE FOLLOWING FOR YOUR INPUT DATA
//DATAFILE DD DSNAME=PSF.AFPAPI.SAPQSAM1(APQDATA),DISP=SHR
//SYSABOUT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSDBOUT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
/*

Figure 83. JCL to Execute a COBOL Program in an MVS System

Appendix D. Creating an Executable Program under MVS 267

| MVS JCL for Compiling and Link-Editing a PL/1 Application
| Figure 84 shows the general format of the JCL for compiling and link-editing a
| PL/1 object with the AFP API code. This JCL is based on the JCL distributed
| with AFP API in member APQCOPLI. After link-editing, run the job with the JCL
| shown in Figure 85 on page 271.

| //APQCOPLI JOB ′ acct no.′ , ′ name′ , MSGLEVEL=(1,1)
| //*
| //* MODIFY THE FOLLOWING FOR YOUR PL/1 LIBRARIES
| //JOBLIB DD DSN=pli.V2R3M0.PLICOMP,DISP=SHR
| // DD DSN=pli.V2R3M0.PLITASK,DISP=SHR
| // DD DSN=pli.V2R3M0.PLIBASE,DISP=SHR
| // DD DSN=pli.V2R3M0.SIBMBASE,DISP=SHR
| // DD DSN=pli.V2R3M0.PLILINK,DISP=SHR
| // DD DSN=pli.V2R3M0.SIBMLINK,DISP=SHR
| //*
| //**
| //* THIS JOB STEP COMPILES PL/1 PROGRAMS *
| //**
| //*
| //STEP3 EXEC PGM=IEL0AA,
| // PARM=′ OBJECT,SOURCE,XREF,INCLUDE′ ,
| // REGION=512K
| //*
| //DDSYS DD DSN=PSF.AFPAPI.SAPQSAM1,DISP=SHR
| //*
| //SYSLIN DD DSNAME=&&LOADSET(APQPSAMP),
| // UNIT=SYSDA,DISP=(MOD,PASS),
| // SPACE=(TRK,(30,3,20)),
| // DCB=(BLKSIZE=80,LRECL=80,RECFM=FB)
| //SYSUT1 DD DSN=&&SYSUT1,
| // UNIT=SYSDA,
| // SPACE=(1024,(200,20)),
| // DCB=BLKSIZE=1024
| //*
| //SYSIN DD DSN=PSF.AFPAPI.SAPQSAM1(APQPSAMP),DISP=SHR
| //*
| //SYSPRINT DD SYSOUT=*
| //*
| //**
| //* THIS STEP LINKEDITS THE PROGRAMS *
| //**
| //*
| //STEP4 EXEC PGM=IEWL,
| // COND=(9,LT,STEP3),
| // PARM=′ XCAL,LIST′ ,
| // REGION=512K
| //* MODIFY THE FOLLOWING FOR YOUR PL/1 AND C LIBRARIES
| //SYSLIB DD DSN=pli.V2R3M0.PLIBASE,DISP=SHR
| // DD DSN=pli.V2R3M0.SIBMBASE,DISP=SHR
| // DD DSN=pli.V2R3M0.SIBMLINK,DISP=SHR
| // DD DSN=pli.V2R3M0.PLILINK,DISP=SHR
| //* MODIFY THE DATA SET NAME AND VOLSER FOR YOUR INSTALLATION
| //SYSLMOD DD DSN=userid.API.TEMPOUT(APQPSAMP),
| // UNIT=SYSDA,DISP=(NEW,CATLG,DELETE),
| // SPACE=(CYL,(5,1,1)),VOL=SER=TEMPnn,
| // DCB=(BLKSIZE=13000,LRECL=256,RECFM=U)
| //*

| Figure 84 (Part 1 of 3). JCL to Compile and Link-Edit a PL/1 Application in an MVS
| System

268 Programming Guide and Reference

| //SYSUT1 DD DSN=&&SYSUT1,
| // UNIT=SYSDA,
| // SPACE=(1024,(200,20)),
| // DCB=BLKSIZE=1024
| //*
| //TXTLIB DD DSN=PSF.AFPAPI.SAPQMOD2,DISP=SHR
| //*
| //OBJLIB DD DSN=&&LOADSET,DISP=(OLD,PASS)
| //*
| //SYSPRINT DD SYSOUT=*
| //*
| //SYSLIN DD *
| INCLUDE OBJLIB(APQPSAMP)
| INCLUDE TXTLIB(APQBDOC)
| INCLUDE TXTLIB(APQBPAG)
| INCLUDE TXTLIB(APQBFLD)
| INCLUDE TXTLIB(APQBGRP)
| INCLUDE TXTLIB(APQBROW)
| INCLUDE TXTLIB(APQBTBL)
| INCLUDE TXTLIB(APQBPAR)
| INCLUDE TXTLIB(APQCARE)
| INCLUDE TXTLIB(APQDFLD)
| INCLUDE TXTLIB(APQDFNT)
| INCLUDE TXTLIB(APQDROW)
| INCLUDE TXTLIB(APQEARE)
| INCLUDE TXTLIB(APQEDOC)
| INCLUDE TXTLIB(APQEFLD)
| INCLUDE TXTLIB(APQEGRP)
| INCLUDE TXTLIB(APQEND)
| INCLUDE TXTLIB(APQEPAG)
| INCLUDE TXTLIB(APQEPAR)
| INCLUDE TXTLIB(APQEROW)
| INCLUDE TXTLIB(APQETBL)
| INCLUDE TXTLIB(APQGBUF)
| INCLUDE TXTLIB(APQINIT)
| INCLUDE TXTLIB(APQINVM)
| INCLUDE TXTLIB(APQIOBJ)
| INCLUDE TXTLIB(APQIOVL)
| INCLUDE TXTLIB(APQIPSG)
| INCLUDE TXTLIB(APQPARE)
| INCLUDE TXTLIB(APQPBOX)
| INCLUDE TXTLIB(APQPTAG)
| INCLUDE TXTLIB(APQPTXT)
| INCLUDE TXTLIB(APQQATT)
| INCLUDE TXTLIB(APQPRUL)
| INCLUDE TXTLIB(APQPCHS)
| INCLUDE TXTLIB(APQQPOS)
| INCLUDE TXTLIB(APQQSTR)
| INCLUDE TXTLIB(APQSCLR)
| INCLUDE TXTLIB(APQSFNT)
| INCLUDE TXTLIB(APQSICS)
| INCLUDE TXTLIB(APQSLIB)
| INCLUDE TXTLIB(APQSOUT)
| INCLUDE TXTLIB(APQSPOS)
| INCLUDE TXTLIB(APQSRTH)
| INCLUDE TXTLIB(APQSUNI)
| INCLUDE TXTLIB(APQSWSP)
| INCLUDE TXTLIB(APQTERM)
| INCLUDE TXTLIB(APQXARE)
| INCLUDE TXTLIB(APQXGET)
| INCLUDE TXTLIB(APQXFREE)
| INCLUDE TXTLIB(APQXLOAD)
| INCLUDE TXTLIB(APQXSRVI)
| INCLUDE TXTLIB(APQXSRVN)
| INCLUDE TXTLIB(APQXUNLD)
| INCLUDE SYSLIB(IBMBOPAA)

| Figure 84 (Part 2 of 3). JCL to Compile and Link-Edit a PL/1 Application in an MVS
| System

Appendix D. Creating an Executable Program under MVS 269

| INCLUDE SYSLIB(IBMBLIIA)
| MODE AMODE(31),RMODE(ANY)
| NAME <your PL/1 program name> (R)
| /*

| Figure 84 (Part 3 of 3). JCL to Compile and Link-Edit a PL/1 Application in an MVS
| System

270 Programming Guide and Reference

| MVS JCL for Running a PL/1 Application
| Figure 83 on page 267 shows the general format of the JCL for running the AFP
| API job from a load module after you link-edit a PL/1 object with the AFP API
| code. This JCL is based on the JCL distributed with AFP API in member
| APQIVPLI.

| //APQIVPLI JOB ′ acct no.′ , ′ name′ , MSGLEVEL=(1,1)
| //*
| //* MODIFY THE FOLLOWING FOR YOUR PL/1 LIBRARIES
| //* ALSO, MODIFY FOR THE TEMPORARY OBJECT DATA SET
| //* CREATED FROM JOB APQCOPLI
| //JOBLIB DD DSN=pli.V2R3M0.SIBMLINK,DISP=SHR
| // DD DSN=pli.V2R3M0.PLILINK,DISP=SHR
| // DD DSN=pli.V2R3M0.PLILINK,DISP=SHR
| // DD DSN=PSF.AFPAPI.SAPQMOD1,DISP=SHR
| // DD DSN=userid.API.TEMPOUT,DISP=SHR
| //*
| //**
| //* THIS STEP DELETES THE EXISTING DATASETS *
| //**
| //*
| //STEP1 EXEC PGM=IEFBR14
| //*
| //*
| //FILE1 DD DSN=userid.APQPSAMP.LISTAFP,
| // DISP=(MOD,DELETE,DELETE),
| // UNIT=SYSDA,
| // SPACE=(TRK,(1,1),RLSE)
| //*
| //FILE2 DD DSN=userid.APQPSAMP.SYSPRINT,
| // DISP=(MOD,DELETE,DELETE),
| // UNIT=SYSDA,
| // SPACE=(TRK,(1,1),RLSE)
| //*
| //SYSPRINT DD SYSOUT=*
| //SYSOUT DD SYSOUT=*
| //*
| //**
| //* THIS STEP RUNS A PL/1 PROGRAM THAT USES THE AFP API *
| //**
| //*
| //STEP2 EXEC PGM=APQPSAMP,REGION=4098K
| //*
| //SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,1))
| //SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(5,1))
| //SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(5,1))
| //*
| //FONTDD DD DSN=SYS1.FONTLIBB,DISP=SHR
| //*
| //PSEGDD DD DSN=PSF.AFPAPI.SAPQULIB,DISP=SHR
| //*
| //APQSAMP DD DSN=userid.APQPSAMP.LISTAFP,
| // DISP=(NEW,CATLG,CATLG),
| // UNIT=SYSDA,
| // SPACE=(CYL,(2,1),RLSE),
| // DCB=(RECFM=VB,LRECL=8205,BLKSIZE=8209)
| //*
| //DATAIN DD DSN=PSF.AFPAPI.SAPQSAM1(APQDATA),DISP=SHR
| //*

| Figure 85 (Part 1 of 2). JCL to Execute a PL/1 Program in an MVS System

Appendix D. Creating an Executable Program under MVS 271

| //SYSPRINT DD DSN=userid.APQPSAMP.SYSPRINT,
| // DISP=(NEW,CATLG,CATLG),
| // UNIT=SYSDA,
| // SPACE=(TRK,(5,5),RLSE),
| // DCB=(RECFM=FB,LRECL=133,BLKSIZE=13300)
| //*
| //SYSERR DD SYSOUT=*
| //SYSABOUT DD SYSOUT=*
| //SYSOUT DD SYSOUT=*
| //SYSUDUMP DD SYSOUT=*
| //SYSIN DD DUMMY
| /*

| Figure 85 (Part 2 of 2). JCL to Execute a PL/1 Program in an MVS System

272 Programming Guide and Reference

| MVS JCL for Compiling and Link-Editing a COBOL Application in a CICS/ESA
| Environment
| Figure 86 shows the general format of the JCL for translating, compiling, and
| link-editing your COBOL program with the AFP API code in a CICS/ESA
| environment using the DFHEITVL procedure. This JCL is based on the JCL
| distributed with AFP API in member APQCOSMB.

| //DOIT EXEC PROC=DFHEITVL
| //*
| //* TRANSLATE, COMPILE, AND LINK-EDIT WITH AFP API
| //*
| //* MODIFY THE FOLLOWING FOR YOUR COBOL PROGRAM
| //TRN.SYSIN DD DSN=PSF.AFPAPI.SAPQSAM1(APQCISMB),DISP=SHR
| //* MODIFY THE FOLLOWING FOR YOUR COBOL PROGRAM
| //COB.SYSLIB DD
| // DD
| // DD DSN=PSF.AFPAPI.SAPQSAM1,DISP=SHR
| //* MODIFY THE FOLLOWING FOR YOUR PROGRAM TEXT LIBRARY
| //LKED.SYSLMOD DD DSN=PSF.AFPAPI.SAPQMOD1,DISP=SHR
| //LKED.SYSIN DD *
| INCLUDE APQSTUB(APQBDOC)
| INCLUDE APQSTUB(APQBFLD)
| INCLUDE APQSTUB(APQBGRP)
| INCLUDE APQSTUB(APQBPAG)
| INCLUDE APQSTUB(APQBPAR)
| INCLUDE APQSTUB(APQBROW)
| INCLUDE APQSTUB(APQBTBL)
| INCLUDE APQSTUB(APQCARE)
| INCLUDE APQSTUB(APQCEND)
| INCLUDE APQSTUB(APQCFREE)
| INCLUDE APQSTUB(APQCGET)
| INCLUDE APQSTUB(APQCINIT)
| INCLUDE APQSTUB(APQCLOAD)
| INCLUDE APQSTUB(APQCTERM)
| INCLUDE APQSTUB(APQCUNLD)
| INCLUDE APQSTUB(APQDFLD)
| INCLUDE APQSTUB(APQDFNT)
| INCLUDE APQSTUB(APQDROW)
| INCLUDE APQSTUB(APQEARE)
| INCLUDE APQSTUB(APQEDOC)
| INCLUDE APQSTUB(APQEFLD)
| INCLUDE APQSTUB(APQEGRP)
| INCLUDE APQSTUB(APQEPAG)
| INCLUDE APQSTUB(APQEPAR)
| INCLUDE APQSTUB(APQEROW)
| INCLUDE APQSTUB(APQETBL)
| INCLUDE APQSTUB(APQGBUF)
| INCLUDE APQSTUB(APQINVM)
| INCLUDE APQSTUB(APQIOBJ)
| INCLUDE APQSTUB(APQIOVL)
| INCLUDE APQSTUB(APQIPSG)
| INCLUDE APQSTUB(APQPARE)
| INCLUDE APQSTUB(APQPBOX)
| INCLUDE APQSTUB(APQPCHS)
| INCLUDE APQSTUB(APQPRUL)
| INCLUDE APQSTUB(APQPTAG)
| INCLUDE APQSTUB(APQPTXT)
| INCLUDE APQSTUB(APQQATT)
| INCLUDE APQSTUB(APQQPOS)
| INCLUDE APQSTUB(APQQSTR)

| Figure 86 (Part 1 of 2). JCL to Create an Executable Program in a CICS/ESA
| Environment

Appendix D. Creating an Executable Program under MVS 273

| INCLUDE APQSTUB(APQSCLR)
| INCLUDE APQSTUB(APQSFNT)
| INCLUDE APQSTUB(APQSICS)
| INCLUDE APQSTUB(APQSLIB)
| INCLUDE APQSTUB(APQSOUT)
| INCLUDE APQSTUB(APQSPOS)
| INCLUDE APQSTUB(APQSRTH)
| INCLUDE APQSTUB(APQSUNI)
| INCLUDE APQSTUB(APQSWSP)
| INCLUDE APQSTUB(APQXARE)
| INCLUDE APQSTUB(APQXSRVI)
| INCLUDE APQSTUB(APQXSRVN)
| ENTRY <Your cobol program name>
| NAME <Your cobol program name>(R)
| /*
| //LKED.APQSTUB DD DSNAME=SYS1.SAPQMOD2,DISP=SHR

| Figure 86 (Part 2 of 2). JCL to Create an Executable Program in a CICS/ESA
| Environment

274 Programming Guide and Reference

Appendix E. Creating an Executable Program under VM

| This appendix contains reference information for building COBOL and PL/1 load
| modules and running your COBOL and PL/1 programs under VM.

| VM EXEC for Compiling a COBOL Application
| Figure 87 shows how to compile a COBOL program in a VM system. This EXEC
| is distributed with AFP API in file VMCOB. After compiling, use the EXEC shown
| in Figure 88 on page 276 to create an executable module and run it.

| /***/
| /* FUNCTION NAME: APQCOCOB */
| /* */
| /* DESCRIPTION: This exec invokes the COBOL compiler to compile a */
| /* single COBOL source program. */
| /* */
| /* INPUTS: The filename of the Cobol program to be compiled. */
| /* */
| /* RETURNS: None */
| /* */
| /* NOTES: */
| /* */
| /* */
| /***/
| PARSE UPPER ARG compfn
| if (compfn = ′ ′)
| then do
| say ′ Incorrect invocation of APQCOCOB EXEC:′ ;
| say ′ APQCOCOB <fname>′ ;
| return
| end;

| /***/
| /* Link to the disk with the Cobol compiler. */
| /***/
| say ′ Have you accessed the disk with the COBOL libraries?′ ;
| PULL response
| if ((response ¬= ′YES′) & (response ¬= ′Y′))
| then do;
| say ′ Access to the COBOL libraries is required.′ ;
| say ′ APQCOCOB terminated.′ ;
| exit;
| end;
| /***/
| /* Issue a GLOBAL MACLIB for the AFP API copy books. */
| /***/
| GLOBAL MACLIB APQTEXT

| /***/
| /* Invoke the Cobol compiler. */
| /***/
| ′ COBOL2 ′ compfn ′ (LIB RENT RES TERM′

| /***/
| /* Clear the GLOBAL MACLIB */
| /***/
| GLOBAL MACLIB

| Figure 87. VM EXEC to Compile a COBOL Application

 Copyright IBM Corp. 1993, 1994, 1996 275

| VM EXEC for Link-Editing and Running a COBOL Application
| Figure 88 shows how to build an executable module and run it in a VM system.
| This EXEC is distributed with AFP API in file VMIVCOB.

| /***/
| /* FUNCTION NAME: APQIVCOB */
| /* */
| /* DESCRIPTION: This EXEC builds a module from a COBOL text deck, */
| /* loads the AFP API into the nucleus, and starts */
| /* execution of the COBOL program. */
| /* */
| /* INPUTS: The filename of the COBOL text deck. */
| /* */
| /* RETURNS: None */
| /* */
| /* NOTES: */
| /* */
| /* */
| /***/
| PARSE UPPER ARG linkfn
| if (linkfn = ′ ′)
| then do
| say ′ Incorrect invocation of APQIVCOB EXEC:′ ;
| say ′ APQIVCOB <fname>′ ;
| return
| end;
| /***/
| /* Link to the disk with the Cobol libraries. */
| /***/
| say ′ Have you accessed the disk with the COBOL libraries?′ ;
| PULL response
| if ((response ¬= ′YES′) & (response ¬= ′Y′))
| then do;
| say ′ Access to the COBOL libraries is required.′ ;
| say ′ APQIVCOB terminated.′ ;
| exit;
| end;

| /***/
| /* Issue a GLOBAL LOADLIB for the COBOL load library. */
| /***/
| GLOBAL LOADLIB VSC2LOAD

| if (RC ¬= 0)
| then do;
| say ′ APQIVCOB terminated.′ ;
| exit;
| end;
| /***/
| /* Issue a GLOBAL TXTLIB for the COBOL library, and AFP API */
| /* library. */
| /***/
| GLOBAL TXTLIB VSC2LTXT APQSTUBS

| if (RC ¬= 0)
| then do;
| say ′ APQIVCOB terminated.′ ;
| exit;
| end;

| Figure 88 (Part 1 of 2). VM EXEC to Link-Edit a COBOL Application and Run it

276 Programming Guide and Reference

| /***/
| /* Link and load the Cobol program. */
| /***/
| ′ LOAD′ linkfn ′ (CLEAR MAP AUTO LIBE RLD′

| if (RC ¬= 0)
| then do;
| say ′ LOAD failed for ′ linkfn;
| say ′ APQIVCOB terminated.′ ;
| exit;
| end;
| /***/
| /* Generate a module. */
| /***/
| ′ GENMOD′ linkfn

| if (RC ¬= 0)
| then do;
| say ′ GENMOD failed for ′ linkfn;
| say ′ APQIVCOB terminated.′ ;
| exit;
| end;
| /***/
| /* Clear the GLOBAL LOADLIB */
| /***/
| GLOBAL LOADLIB

| /***/
| /* Issue a FILEDEF for the AFP API trace file (if tracing) */
| /***/
| ′ FILEDEF STDERR DISK ′ linkfn ′ STDERR A (RECFM V DSORG PS′

| /***/
| /* Issue application-specific FILEDEFS (if necessary) */
| /***/
| ′ FILEDEF DATAFILE DISK APQDATA DATA * (RECFM F LRECL 80 DSORG PS′

| /***/
| /* Load the AFP API module as a nucleus extension */
| /***/
| ′ NUCXLOAD APQTKMOD APQTKMOD (SYSTEM′

| /***/
| /* Start execution of the program */
| /***/
| if (RC = 0) | (RC = 1)
| then linkfn
| else do;
| say ′ APQIVCOB terminated.′ ;
| exit;
| end;

| Figure 88 (Part 2 of 2). VM EXEC to Link-Edit a COBOL Application and Run it

Appendix E. Creating an Executable Program under VM 277

| VM EXEC for Compiling a PL/1 Application
| Figure 89 shows how to compile a PL/1 program in a VM system. This EXEC is
| distributed with AFP API in file VMCOPLI. After compiling, use the EXEC shown
| in Figure 90 on page 279 to create an executable module and run it.

| /***/
| /* FUNCTION NAME: APQCOPLI */
| /* */
| /* DESCRIPTION: This EXEC compiles a single PL/1 source program. */
| /* */
| /* INPUTS: The filename of the PL/1 source program. */
| /* */
| /* RETURNS: None */
| /* */
| /* NOTES: */
| /* */
| /* */
| /***/
| PARSE UPPER ARG compfn
| if (compfn = ′ ′)
| then do
| say ′ Incorrect invocation of APQCOPLI EXEC:′ ;
| say ′ APQCOPLI <fname>′ ;
| return
| end;
| /***/
| /* Link to the disk with the PL/1 compiler. */
| /***/
| say ′ Have you accessed the disk with the PL/1 libraries?′ ;
| PULL response
| if ((response ¬= ′YES′) & (response ¬= ′Y′))
| then do;
| say ′ Access to the PL/1 libraries is required.′ ;
| say ′ APQCOPLI terminated.′ ;
| exit;
| end;

| /***/
| /* Issue a FILEDEF for the AFP API copy book MACLIB. */
| /***/
| FILEDEF DDSYS DISK APQPLI MACLIB

| /***/
| /* Invoke the PL/1 compiler. */
| /***/
| ′ PLIOPT ′ compfn ′ (INC SOURCE′

| Figure 89. VM EXEC to Compile a PL/1 Application

278 Programming Guide and Reference

| VM EXEC for Link-Editing and Running a PL/1 Application
| Figure 90 shows how to build an executable module and run it in a VM system.
| This EXEC is distributed with AFP API in file VMIVPLI.

| /***/
| /* FUNCTION NAME: APQIVPLI */
| /* */
| /* DESCRIPTION: This exec builds a module from a PL/1 text deck, */
| /* loads the AFP API into the nucleus, and starts */
| /* execution of the PL/1 program. */
| /* */
| /* INPUTS: The filename of the PL/1 text deck. */
| /* */
| /* RETURNS: None */
| /* */
| /* NOTES: */
| /* */
| /* */
| /***/
| PARSE UPPER ARG linkfn
| if (linkfn = ′ ′)
| then do
| say ′ Incorrect invocation of APQIVPLI EXEC:′ ;
| say ′ APQIVPLI <fname>′ ;
| return
| end;

| /***/
| /* Link to the disk with the PL/1 libraries. */
| /***/
| say ′ Have you accessed the disk with the PL/1 libraries?′ ;
| PULL response
| if ((response ¬= ′YES′) & (response ¬= ′Y′))
| then do;
| say ′ Access to the PL/1 libraries is required.′ ;
| say ′ APQIVPLI terminated.′ ;
| exit;
| end;

| /***/
| /* Issue a GLOBAL TXTLIB for the PL/1 libraries, and AFP API */
| /* library. */
| /***/
| GLOBAL TXTLIB PLILIB CMSLIB IBMLIB APQSTUBS
| if (RC ¬= 0)
| then do;
| say ′ APQIVPLI terminated.′ ;
| exit;
| end;

| /***/
| /* Link and load the PL/1 program. */
| /***/
| ′ LOAD′ linkfn ′ (CLEAR MAP AUTO LIBE RLD′
| if (RC ¬= 0)
| then do;
| say ′ APQIVPLI terminated.′ ;
| exit;
| end;

| Figure 90 (Part 1 of 2). VM EXEC to Link-Edit a PL/1 Application and Run it

Appendix E. Creating an Executable Program under VM 279

| /***/
| /* Generate a module. */
| /***/
| ′ GENMOD′ linkfn ′ (from PLISTART′
| if (RC ¬= 0)
| then do;
| say ′ APQIVPLI terminated.′ ;
| exit;
| end;

| /***/
| /* Issue a FILEDEF for the AFP API trace file (if tracing) */
| /***/
| ′ FILEDEF STDERR DISK ′ linkfn ′ STDERR A (RECFM V DSORG PS′

| /***/
| /* Issue application-specific FILEDEFS (if necessary) */
| /***/
| ′ FILEDEF DATAIN DISK APQDATA DATA * (RECFM F LRECL 80 DSORG PS′

| /***/
| /* Load the AFP API module as a nucleus extension */
| /***/
| ′ NUCXLOAD APQTKMOD APQTKMOD (SYSTEM′

| /***/
| /* Start execution of the program */
| /***/
| if (RC = 0) | (RC = 1)
| then linkfn
| else do;
| say ′ APQIVPLI terminated.′ ;
| exit;
| end;

| Figure 90 (Part 2 of 2). VM EXEC to Link-Edit a PL/1 Application and Run it

280 Programming Guide and Reference

Appendix F. Creating an Executable Program under VSE

This appendix contains reference information for building a COBOL load module
and running your COBOL program under VSE.

| VSE JCL for Compiling and Link-Editing a COBOL Application
| Figure 91 shows the general format of the JCL for compiling and link-editing a
| COBOL object with the AFP API code. This JCL is based on the JCL distributed
| with AFP API in file VSECOCOB. After link-editing, run the job with the JCL

shown in Figure 92 on page 283.

| $$ JOB JNM=APQCOCOB,CLASS=0,DISP=D
| // JOB APQCOCOB
| *
| * COMPILE A COBOL PROGRAM
| *
| // DLBL IJSYSPH,′ file-id′
| // EXTENT SYSPCH,volser,,,reltrk,25
| ASSGN SYSPCH,DISK,VOL=volser,SHR
| // LIBDEF *,SEARCH=(PRD2.AFP,your cobol libraries)
| // OPTION DECK,NOLINK
| // EXEC IGYCRCTL,SIZE=IGYCRCTL,PARM=′ LIB,RENT,RES,NAME(ALIAS)′
| BASIS <your cobol program>
| *
| *
| * REASSIGN SYSPCH TO THE NORMAL PARTITION ASSIGNMENT
| *
| CLOSE SYSPCH,PUNCH
| *
| * CATALOG THE OBJECT DECK IN file-id SPECIFIED ABOVE IN IJSYSPCH
| *
| // DLBL IJSYSIN,′ file-id′
| // EXTENT SYSIPT,volser
| ASSGN SYSIPT,DISK,VOL=volser,SHR
| *
| * ACCESS THE SUBLIB THAT WILL CONTAIN THE OBJECT FILE
| *
| // EXEC LIBR,PARM=′ ACCESS SUBLIB=lib.sublib′
| *
| *
| * LINK EDIT YOUR COBOL PROGRAM WITH THE AFP API STUBS
| * ′ file-id′ IS THE NAME OF THE FILE THAT CONTAINS THE
| * OBJECT DECK. THIS FILE-ID REFERS TO THE
| * LIB.SUBLIB SPECIFIED ABOVE.
| * ′ cobol object library′ IS THE LIB.SUBLIB DEFINED ABOVE THAT
| * CONTAINS THE OBJECT DECK.
| * ′ your cobol libraries′ IS THE NAME OF THE COBOL COMPILER AND
| * RUNTIME LIBRARIES.
| * ′ CATALOG=lib.sublib′ IS THE LIB.SUBLIB WHERE THE LINK EDITED
| * PHASE WILL BE CATALOGED. THIS CAN BE THE
| * SAME AS THE LIB.SUBLIB THAT CONTAINS THE
| * OBJECT DECK.
| *
| * A RETURN CODE OF 4 IS NORMAL FOR THIS JOB. YOU WILL RECEIVE
| * 3 WXTERN REFERENCES FOR IGZETUN, IGZEOPT, ILBDMNS0
| *

Figure 91 (Part 1 of 2). JCL to Compile and Link-Edit a COBOL Application in a VSE
System

 Copyright IBM Corp. 1993, 1994, 1996 281

// DLBL filename,′ file-id′
// EXTENT ,volser
// LIBDEF *,SEARCH=(cobol object library,PRD2.AFP,your cobol libraries)
// LIBDEF PHASE,CATALOG=lib.sublib
// OPTION CATAL

ACTION MAP
PHASE <your cobol program>,*

 INCLUDE <your cobol program>
 INCLUDE APQBDOC
 INCLUDE APQBFLD
 INCLUDE APQBGRP
 INCLUDE APQBPAG
 INCLUDE APQBPAR
 INCLUDE APQBROW
 INCLUDE APQBTBL
 INCLUDE APQCARE
 INCLUDE APQDFLD
 INCLUDE APQDFNT
 INCLUDE APQDROW
 INCLUDE APQEARE
 INCLUDE APQEDOC
 INCLUDE APQEFLD
 INCLUDE APQEGRP
 INCLUDE APQEND
 INCLUDE APQEPAG
 INCLUDE APQEPAR
 INCLUDE APQEROW
 INCLUDE APQETBL

| INCLUDE APQGBUF
 INCLUDE APQINIT
 INCLUDE APQINVM
 INCLUDE APQIOBJ
 INCLUDE APQIOVL
 INCLUDE APQIPSG
 INCLUDE APQPARE
 INCLUDE APQPBOX
 INCLUDE APQPCHS
 INCLUDE APQPRUL
 INCLUDE APQPTAG
 INCLUDE APQPTXT
 INCLUDE APQQATT
 INCLUDE APQQPOS

| INCLUDE APQQSTR
 INCLUDE APQSCLR
 INCLUDE APQSFNT
 INCLUDE APQSICS
 INCLUDE APQSLIB
 INCLUDE APQSOUT
 INCLUDE APQSPOS
 INCLUDE APQSRTH
 INCLUDE APQSUNI
 INCLUDE APQSWSP
 INCLUDE APQTERM

| INCLUDE APQXARE
| INCLUDE APQXFREE
| INCLUDE APQXGET
| INCLUDE APQXLOAD
| INCLUDE APQXSRVI
| INCLUDE APQXSRVN
| INCLUDE APQXUNLD

ENTRY <your cobol program name>
// EXEC LNKEDT,PARM=′ AMODE=24,RMODE=24′
*
* REASSIGN SYSIPT TO THE NORMAL PARTITION ASSIGNMENT
*
CLOSE SYSIPT,cuu
/&
$$ EOJ

Figure 91 (Part 2 of 2). JCL to Compile and Link-Edit a COBOL Application in a VSE
System

282 Programming Guide and Reference

VSE JCL for Running a COBOL Application
Figure 92 shows the general format of the JCL for running the AFP API job from

| a load module after you link-edit a COBOL object with the AFP API code. This
| JCL is based on the JCL distributed with AFP API in file VSEIVCOB.

| $$ JOB JNM=APQIVCOB,CLASS=0,DISP=D
| // JOB APQIVCOB
| *
| * EXECUTE A COBOL PROGRAM
| *
| * MODIFY THE FOLLOWING TO
| * ACCESS YOUR COBOL PROGRAM
| *
| // DLBL filename,′ file-id′
| // EXTENT ,volser
| *
| * MODIFY THE FOLLOWING TO
| * ACCESS THE INPUT DATA FOR YOUR PROGRAM
| *
| // DLBL DATAFIL,′ file-id′ , 0 , SD,BLKSIZE=80
| // EXTENT SYSxxx,volser,,,reltrk,20
| // ASSGN SYSxxx,DISK,VOL=volser,SHR
| *
| * MODIFY THE FOLLOWING TO
| * ACCESS THE FILE TO CONTAIN THE AFP API OUTPUT
| *
| // DLBL APQSAMP,′ file-id′
| // EXTENT SYSxxx,volser,,,reltrk,20
| ASSGN SYSxxx,DISK,VOL=volser,SHR
| *
| * ′ cobol object library′ IS THE COBOL OBJECT LIBRARY DEFINED
| * ABOVE THAT CONTAINS YOUR COBOL OBJECT
| * ′ your cobol library′ IS THE COBOL RUNTIME LIBRARY
| *
| // LIBDEF *,SEARCH=(cobol object library,PRD2.AFP,your cobol library)
| // EXEC <your cobol program name>,SIZE=<your cobol program name>
| /*
| /&
| $$ EOJ

| Figure 92. JCL to Run a COBOL Application in a VSE System

Appendix F. Creating an Executable Program under VSE 283

284 Programming Guide and Reference

Appendix G. AFP API Macros Used as Programming Interfaces

General-Use Programming Interfaces

The macros identified in this appendix are provided as programming interfaces
for customers by AFP API.

Warning: Do not use as programming interfaces any AFP API macros other than
those identified in this appendix.

End of General-Use Programming Interfaces

General-Use Programming Interfaces
Following are the macros that are general-use programming interfaces. These
macros are documented in AFP Application Programming Interface: COBOL
Language Reference and AFP Application Programming Interface: PL/1 Language
Reference.

APQRCS COBOL return codes

APQCONST COBOL constants

APQPERF COBOL performs

APQVARS COBOL variables

APQTRIM COBOL trim subprogram

APQSTRL COBOL string length subprogram

APQPRCS PL/1 return codes

APQPCON PL/1 constants

APQPPRF PL/1 performs

APQPVAR PL/1 variables

 Copyright IBM Corp. 1993, 1994, 1996 285

286 Programming Guide and Reference

Related Publications

Appendix H. Related Publications

The following publications may help you understand the licensed programs used
with the data streams described in this publication. Also, the text of this
publication refers to many of the these publications.

Advanced Function Presentation

Title
Order
Number

Guide to Advanced Function Presentation
Contains an overview of AFP concepts and products G544-3876

AFP Application Programming Interface: COBOL Language Reference
Contains COBOL language bindings for using the AFP Application
Programming Interface S544-3873

AFP Application Programming Interface: PL/1 Language Reference
Contains PL/1 language bindings for using the AFP Application
Programming Interface S544-3874

Advanced Function Presentation: Printer Information
Contains details about AFP printers G544-3290

Page Printer Formatting Aid/370: User′s Guide and Reference
Contains information about the PPFA/370 product used to create AFP
page definitions and form definitions G544-3181

AFP Workbench for Windows: Using the Viewer Application
Contains information about using Workbench with AFP API G544-3813

AFP Conversion and Indexing Facility: Application Programming Guide
Contains information about using AFP Conversion and Indexing Facility G544-3824

Printing and Publishing Collection Kit
Contains the BookManager versions of many AFP publications SK2T-2921

Fonts

Title
Order
Number

IBM AFP Fonts: Introduction to Typography G544-3122

IBM AFP Fonts: Technical Reference for Code Pages S544-3802

IBM AFP Fonts: Technical Reference for IBM Expanded Core Fonts S544-5228

IBM AFP Fonts: Font Samples S544-3792

Advanced Function Printing: Host Font Data Stream Reference S544-3289

 Copyright IBM Corp. 1993, 1994, 1996 287

Related Publications

Architecture

Title
Order
Number

Mixed Object Document Content Architecture Reference
Contains the definition of the Mixed Object Document Content
Architecture and its functions and elements. SC31-6802

Advanced Function Presentation: Programming Guide and Line Data
Reference
Contains information about processing line and mixed data, page
definitions, and the X′ 5A′ prefix on structured fields. S544-3884

Font Object Content Architecture Reference S544-3285

Image Object Content Architecture Reference SC31-6805

Intelligent Printer Data Stream Reference S544-3417

Graphics Object Content Architecture Reference SC31-6804

Presentation Text Object Content Architecture Reference SC31-6803

PSF/MVS

Title
Order
Number

Print Services Facility/MVS: Application Programming Guide S544-3673

Print Services Facility/MVS: System Programming Guide S544-3672

| Program Directory for Print Services Facility/MVS| None

PSF/VM

Title
Order
Number

Print Services Facility/VM: Application Programming Guide S544-3677

Print Services Facility/VM: System Programming Guide S544-3680

| Program Directory for Print Services Facility/VM| None

PSF/VSE

Title
Order
Number

Print Services Facility/VSE: Application Programming Guide S544-3666

Print Services Facility/VSE: System Programming Guide S544-3665

| Program Directory for Print Services Facility/VSE| None

288 Programming Guide and Reference

Related Publications

| CICS/ESA Version 4 Release 1

| Title
| Order
| Number

| CICS/ESA Customization Guide| SC33-1165

| CICS/ESA Resource Definition Guide| SC33-1166

| CICS/ESA Operations and Utilities Guide| SC33-1167

| CICS/ESA Application Programming Guide| SC33-1169

| CICS/ESA Application Programming Reference| SC33-1170

Appendix H. Related Publications 289

Related Publications

290 Programming Guide and Reference

Glossary

Source Identifiers
This publication includes terms and definitions from:

• The American National Dictionary for Information Processing Systems, copyright 1982
by the Computer and Business Equipment Manufacturers Association (CBEMA).
Copies can be purchased from the American National Standards Institute,
1430 Broadway, New York, New York 10018. Definitions are identified by the symbol
(A) after the definition.

• The Information Technology Vocabulary, developed by the Subcommittee 1, Joint
Technical Committee 1, of the International Organization for Standardization and the
International Electrotechnical Committee (ISO/IEC JTC1/SC1).

Definitions of published segments of the vocabularies are identified by the symbol (I)
after the definition; definitions from draft international standards, draft proposals, and
working papers in development by the ISO/IEC JTC1/SC1 vocabulary subcommittee are
identified by the symbol (T) after the definition, indicating final agreement has not yet
been reached among participating members.

References
This glossary uses the following cross-references:

Deprecated term for Indicates that the term should not be used (because it is
obsolete, misleading, ambiguous, or jargonistic) and refers to
the preferred term. For a deprecated term, the commentary
contains only this reference; the deprecated term is not
defined.

Synonymous with Appears in the commentary of a preferred term and identifies
less desirable or less specific terms that have the same
meaning. The commentaries of the less desirable or less
specific terms refer back to the preferred term with the
Synonym for reference words.

Synonym for Appears in the commentary of a less desirable or less specific
term and identifies the preferred term that has the same
meaning.

Contrast with Refers to a term that has an opposite or substantively different
meaning.

See Refers to a multiple-word term in which this term appears.

See also Refers to related terms that have similar (but not synonymous)
meanings.

 Copyright IBM Corp. 1993, 1994, 1996 291

A
abend . An abnormal end of task before the task′s
completion because of an error condition.

absolute positioning . The establishment of a position
within a coordinate system as an offset from the
coordinate system origin. Contrast with relative
positioning.

addressable position . A position in a presentation
space or on a physical medium that can be identified
by a coordinate from the coordinate system of the
presentation space or physical medium. See also
picture element. Synonymous with position.

addressable point . For page printers, any point in a
presentation surface that can be addressed.
Synonymous with picture element.

Advanced Function Presentation (AFP) . A set of
licensed programs that use the all-points-addressable
concept to view and print text and graphics.

Advanced Function Printing data stream (AFPDS) .
The data stream supported by IBM ′s Advanced
Function Presentation products.

AFP . (1) Advanced Function Presentation.
(2) Advanced Function Printing.

AFPDS . Advanced Function Printing data stream.

all points addressable (APA) . (1) The ability to
address, reference, and position text, overlays, and
images at any defined position or pel on the printable
area of the paper. This capability depends on the
ability of the hardware to address and to display each
picture element. (2) In computer graphics, pertaining
to the ability to address and display or not display
each picture element (pel) on a display surface.
(3) See also picture element.

American National Standard Code for Information
Interchange (ASCII) . The standard code, using a
coded character set consisting of 7-bit coded
characters (8-bits including parity check), that is used
for information interchange among data processing
systems, data communication systems, and
associated equipment. The ASCII set consists of
control characters and graphic characters. (A)

APA . All-points addressable.

application program . (1) A program that performs a
particular data processing task, such as inventory
control or payroll. (2) A program that produces the
print file.

area . An AFP API element that can be defined and
used repeatedly in a document or page.

ASCII . American National Standard Code for
Information Interchange.

attribute . A property or characteristic of one or more
entities. (T)

B
background . (1) The part of a presentation space
that is not occupied with object data. (2) In GOCA,
that portion of a drawing primitive that is mixed into
the presentation space under the control of the
current values of the background mix and background
color attributes. (3) In GOCA, that portion of a
character cell that does not represent a character.
(4) The space of a bar code symbol.

bar code . A code representing characters by sets of
parallel bars of varying thickness and separation that
are read optically by transverse scanning. (I)

bar code object . The object containing the structured
fields required to present bar code information on a
page, a page segment, or an overlay.

baseline . The imaginary line on which successive
characters are aligned in the inline direction.

baseline axis . The axis along which successive lines
of text are placed.

baseline direction . The direction in which successive
lines of text appear on a logical page.

baseline increment . The distance between
successive sequential baselines.

bin . A paper supply on cut-sheet printers. See also
cassette.

boilerplate . (1) A frequently used segment of stored
text that can be combined with other text to create a
new document. (T) (2) In word processing and
desktop publishing, text that is stored for repeated
use in various documents; for example, the wording of
an edition notice.

C
carriage control character . An optional character in
an input data record that specifies a write, space, or
skip operation.

cassette . In a cut-sheet printer, a movable paper
storage enclosure. See also bin.

channel code . A number from 1 to 12 that identifies a
position in the forms control buffer or a page
definition. A carriage control character can select a
position defined by a particular channel code.

292 Programming Guide and Reference

CHAR . A data type for architecture syntax, indicating
one or more bytes to be interpreted as character
information.

character . (1) A member of a set of elements that is
used for the representation, organization, or control of
data. Characters may be letters, digits, punctuation
marks, or other symbols. (T) (2) A character is often
represented in the form of a spatial arrangement of
adjacent or connected strokes or in the form of other
physical conditions in data media. (3) A letter,
numeral, punctuation mark, or special graphic used
for the production of text. (4) A byte of data. (5) See
also graphic character.

character baseline . A reference line within a
character box on which the character reference point
lies. The character baseline is used to orient and
position the initial point of a character.

character data . Data in the form of letters and
special characters, such as punctuation marks. See
also numeric data.

character increment . The distance between the
current print position and the next print position.

character metrics . Measurement information that
defines individual character values such as height,
width, and space. Character metrics may be
expressed in specific fixed units, such as pels, or in
relative units that are independent of both the
resolution and size of the font. Character metrics are
often included as part of the general term font
metrics. See also font metrics.

character rotation . The alignment of a character with
respect to its character baseline, measured in
degrees in a clockwise direction. Examples are 0°,
90°, 180°, and 270°. 0° character rotation exists when
a character is in its customary alignment with the
baseline.

character set . (1) A collection of characters that is
composed of some descriptive information and the
character shapes themselves. (2) A group of
characters used for a specific reason, for example,
the set of characters a keyboard contains.
(3) Synonym for font character set. (4) See also
coded font.

character string . A sequence of characters.

| CICS/ESA . Customer Information Control
| System/Enterprise System Architecture.

CODE. A data type for architecture syntax, indicating
an architected constant to be interpreted as defined
by the architecture.

coded font . An AFP font that associates a code page
and a font character set.

code page . Part of an AFP font that associates code
points and character identifiers. A code page also
identifies undefined code points. See also coded font.

code point . A 1-byte code representing one of 256
potential characters.

composed text . Deprecated term for presentation
text.

compression algorithm . An algorithm used to
compress image data. Compression of image data
can decrease the volume of data required to
represent an image.

continuous forms . A series of connected forms that
feed continuously through a printing device. The
connection between the forms is perforated, enabling
the user to tear them apart. Before printing, the
forms are folded in a stack arrangement with the folds
along the perforations. Contrast with cut-sheet paper.

control character . A character that starts, changes,
or stops any operation that affects recording,
processing, transmitting, or interpreting data (such as
carriage return, font change, and end of
transmission).

coordinate system . A Cartesian coordinate system.
An example is the image coordinate system that uses
the fourth quadrant with positive values for the
Y-axis. The origin is the upper left-hand corner of the
fourth quadrant. A pair of values in the X and Y axes
corresponds to one image point that corresponds to a
single image data element.

coordinates . A pair of values that specify a position
in a coordinate space.

copies . See copy group.

copy files . Files shipped with AFP API to aid in
developing user programs. The files contain such
items as AFP API variables, return codes, constants
for variables, paragraphs that invoke AFP API
procedures, and other programs or subprograms.

copy group . A subset of a form definition that allows
different modifications to be made to multiple copies
of the input data. Modifications can include
suppression of some data fields from printing as well
as the use of different overlays.

core interchange font . See IBM Core Interchange
font.

current position . The position identified by the
current presentation space coordinates. For example,
the coordinate position reached after the execution of
a drawing order. See also current baseline
presentation coordinate and current inl ine
presentation coordinate. Contrast with given position.

Glossary 293

| Customer Information Control System (CICS) . An
| IBM licensed program that enables transactions
| entered at remote terminals to be processed
| concurrently by user-written application programs. It
| includes facilities for building, using, and maintaining
| databases.

cut-sheet paper . The medium that is cut into
uniform-size sheets before it is loaded into the
printer. Contrast with continuous forms.

D
data control block (DCB) . A control block used by
access method routines in storing and retrieving data.

data map . An internal object in a page definition that
specifies fonts, page segments, fixed text, page size,
and the placement and orientation of text.
Synonymous with page format.

data stream . A continuous stream of data that has a
defined format. An example of a defined format is a
structured field.

DCB . Data control block.

DCF. Document Composition Facility.

default . Pertaining to an attribute, value, or option
that is assumed when none is explicitly specified. (I)

direction . In GOCA, an attribute controlling the
direction in which a character string grows relative to
the inline direction. Values are: left-to-right,
right-to-left, top-to-bottom, and bottom-to-top.

disabled . A condition of the printer (physically
selected) in which the printer is not available to the
host processor. Contrast with enabled.

document . A file containing an AFP data stream
document. An AFP data stream document is bounded
by Begin Document and End Document structured
fields and can be created using a text formatter such
as AFP API.

document fidelity . Synonym for f idelity.

Document Composition Facility (DCF) . An IBM
licensed program that provides a text formatter called
SCRIPT/VS. SCRIPT/VS can process files marked up
with a unique set of controls and tags.

duplex printing . Printing on both sides of a sheet of
paper. Contrast with simplex printing. See also
normal duplex printing and tumble duplex printing.

E
EBCDIC . Extended binary-coded decimal interchange
code.

electronic forms . A collection of constant data that is
electronically composed in the host processor and
that can be merged with variable data on a page
during printing.

electronic overlay . A collection of constant data,
such as lines, shading, text, boxes, or logos, that is
electronically composed in the host processor and
stored in a library, and that can be merged with
variable data during printing. Contrast with page
segment. See also page overlay and medium overlay.

element . (1) A bar or space in a bar code character
or a bar code symbol. (2) A structured field in a
document-content architecture data stream.

enabled . (1) Pertaining to a state of the processing
unit that allows the occurrence of certain types of
interruptions. (2) A condition of the printer
(physically selected) in which the printer is available
to the host processor for normal work. (3) Contrast
with disabled.

exception . A condition that exists when the printer:

• Detects an invalid or unsupported command,
order, control, or parameter value from the host

• Finds a condition requiring host-system
notif ication

• Detects a condition that requires the host system
to resend data

extended binary-coded decimal interchange code
(EBCDIC) . A coded character set consisting of
eight-bit coded characters.

F
FCB . Forms control buffer.

fidelity . The ability to replicate faithfully the
appearance of document content on presentation
surfaces. Synonymous with document fidelity.

FLIP . Font Library Indexing Program.

font . (1) A family or assortment of characters of a
given size and style; for example, 9 point Bodoni
Modern. (A) (2) One size and one typeface in a
particular type family, including letters, numerals,
punctuation marks, special characters, and ligatures.

font character set . Part of an AFP font that contains
the raster patterns, identifiers, and descriptions of
characters. Synonymous with character set. See also
coded font.

294 Programming Guide and Reference

font metrics . Measurement information that defines
individual character values such as height, width, and
space, as well as overall font values, such as
averages and maximums. Font metrics may be
expressed in specific fixed units, such as pels, or in
relative units that are independent of both the
resolution and size of the font. See also character
metrics.

font object . A resource object that contains the
description of a font.

Font Object Content Architecture (FOCA) . An
architected collection of constructs used to describe
fonts and to interchange those font descriptions.

font width . The average character width expressed in
1440th of an inch. For proportionally spaced fonts,
the font width is 1/3 of the point size converted to
1440th of an inch (or the width of the average
character escapement box). For fixed pitch fonts, the
font width is calculated by dividing 1440 by the pitch.
For mixed pitch fonts, the font width is the width of
the space character (usually 120). See also pitch.

form . The paper on which output data is printed by a
printer. Synonymous with physical page, medium,
and sheet.

format . (1) The shape, size, and general makeup of a
printed document. (2) To prepare a document for
printing. (3) The arrangement of text on the page.

formatter . A computer program that prepares a
source document for printing.

form definition . A resource used by PSF that defines
the characteristics of the form that includes overlays
to be used (if any), text suppression, the position of
page data on the form, and the number and
modifications of a page.

forms control buffer (FCB) . A buffer for controlling
the vertical format of printed output. The forms
control buffer is a line-printer control that is similar to
the punched-paper, carriage-control tape used on IBM
1403 printers.

G
GDDM . Graphical Data Display Manager.

GOCA . Graphic Object Content Architecture.

graphic character . A visual representation of a
character, other than a control character, that is
normally produced by writing, printing, or displaying.
(T)

Graphical Data Display Manager . An IBM licensed
program containing util it ies for creating, saving,
editing, and displaying visual data such as page
segments, charts, images, vector graphics,

composites (of text, graphics, and images), and
scanned data.

graphics data . Data containing lines, arcs, markers,
and other constructs that describe a picture.

Graphics Object Content Architecture (GOCA) . An
architecture that provides a collection of graphics
values and control structures used to interchange and
present graphics data.

group . An object in a file used to define a named,
logical grouping of sequential pages.

H
handle . An ID that identifies the session and the
state of the document in which AFP API is operating.
AFP API uses handles to keep track of which state in
the document it is processing at any given time.

hanging indent . When the first line of a paragraph
begins at the left margin and all subsequent lines are
indented from the left margin by the specified
amount.

hexadecimal . Pertaining to a numbering system with
base of 16; valid numbers use the digits 0 through 9
and characters A through F, where A represents 10
and F represents 15.

I
IBM Core Interchange font . (1) A uniformly spaced,
typographic font with specialized characters for
different languages. (2) A group of fonts supplied
with Print Services Facility Version 2. These fonts
include the Courier, Helvetica, and Times New Roman
type families. Using the IBM Core Interchange fonts
increases the fidelity of documents exchanged
between different systems and applications.

image . An electronic representation of a picture. An
image can also be generated directly by software
without reference to an existing picture.

image data . A pattern of bits with 0 and 1 values that
define the pels in an image. (A 1-bit is a toned pel.)

image object . An object that contains image data.

Image Object Content Architecture (IOCA) . An
architected collection of constructs used to
interchange and present images.

image segment . A set of image data parameters and
image data that appear between begin and end
segment self-defining fields.

IM image . One of the two types of images used in
AFP data streams. An IM image is device- and
resolution-dependent, bi-level, uses pel-to-pel

Glossary 295

mapping for presentation, and cannot be compressed
or scaled. Contrast with IO image.

index object file . An index-information file created by
AFP Conversion and Indexing Facility that contains
structured fields, which allows indexed information to
be retrieved from storage, based on selected
attributes.

inline . (1) The direction of successive characters in a
line of text. Synonymous with inl ine direction. (2) A
resource contained within the print file so that a
reference to a resource library is not needed.

inline axis . The axis along which successive
characters in a line are placed.

inline direction . (1) The direction in which successive
characters appear in a line of text. (2) In GOCA, the
direction specified by the character angle attribute.

inline margin . The inline coordinate that identifies
the initial addressable position for a line of text.

interface . A shared boundary. An interface can be a
hardware component used to link two devices, or it
can be a portion of storage or registers accessed by
two or more computer programs. (A)

IO image . An image object containing IOCA
constructs.

IOCA . Image Object Content Architecture.

J
JAN . Japanese Article Numbering. A type of bar
code.

L
landscape . Pertaining to a display or hardcopy of a
page with greater width than height. Contrast with
portrait.

library . A data file that contains files and control
information that allows them to be accessed
individually.

line data . Data prepared for printing on a line printer,
such as a 3800 Model 1.

line printer . A device that prints a line of characters
as a unit. (I) (A) Contrast with page printer.

local identifier . An identifier that is mapped by the
environment to a named resource.

location . A site within a data stream. A location is
specified in terms of an offset in the number of

structured fields from the beginning of a data stream,
or in the number of bytes from another location within
the data stream.

logical page . A presentation space. One or more
object areas or data blocks may be mapped to a
logical page. A logical page has specifiable
characteristics. Examples of specifiable page
characteristics are size, shape, orientation, and offset.
The shape of a page is the shape of a rectangle.
Orientation and offset are specified relative to a
medium coordinate system. Contrast with physical
page.

logical page origin . The point on the logical page that
represents Xp=0, Yp=0 in the Xp, Yp coordinate
system.

M
magnetic ink character recognition (MICR) .
Recognition of characters printed with ink that
contains particles of a magnetic material. (I) (A)

media . Plural of medium. See also medium.

medium . A base coordinate space from which all
other coordinate spaces either directly or indirectly
originate. A medium is mapped to a presentation
surface in a device-dependent manner. Synonymous
with form, physical page, and sheet.

medium map . An internal object in a form definition
that controls the modifications to a form, page
placement, and overlays. Synonymous with copy
group.

media origin . A page is placed on a medium, or
form, relative to the media origin. The media origin is
located at the very top-left corner of the form.

medium overlay . An electronic overlay that is
invoked by the medium map of a form definition for
printing at a fixed position on the form. See also
page overlay and overlay.

MICR . Magnetic ink character recognition.

module . In a bar code, the basic element of width.
Actual bar code elements can be a module width or a
multiple of a module width. The multiple need not be
an integer. The smallest element is also called “unit”
or “x dimension” in some bar code specifications.

Multiple Virtual Storage (MVS) . Multiple Virtual
Storage, consisting of MVS/System Product Version 1
and the MVS/370 Data Facility Product operating on a
System/370 processor.

MVS . Multiple Virtual Storage.

296 Programming Guide and Reference

N
no operation (NOP) . A construct whose execution
causes a product to do nothing other than to proceed
to the next instruction to be processed.

NOP. No operation.

normal duplex printing . Printing on both sides of the
paper so that the sheets can be bound on the long
edge of the paper. Contrast with simplex printing.
See also tumble duplex printing.

numeric data . (1) Data represented by numerals. (I)

(A) (2) Data in the form of numerals and special
characters. For example, a date represented as
91/01/01. (3) See also character data.

O
object . A collection of structured fields. The first
structured field provides a begin-object function and
the last structured field provides an end-object
function. The object may contain one or more other
structured fields whose content consists of one or
more data elements of a particular data type. An
object may be assigned a name, which may be used
to reference the object. Examples of objects are text,
font, graphics, and image objects.

object area . A rectangular area on a logical page
into which a data object is mapped. Examples are
graphics block and image block.

object data . A collection of related data elements
that have been bundled together. Examples of data
elements are graphic characters, image data
elements, and drawing orders.

offset stacking . A function that allows the printed
output pages to be offset for easy separation of print
jobs.

OGL/370 . Overlay Generation Language/370.

option . (1) A specification in a statement that may
be used to influence the execution of the statement.
(2) A choice offered from a list of possibilities.

order . (1) In IOCA, an image data parameter
construct. (2) In GOCA, a graphics construct that
defines part of a picture or its visual attributes. See
also drawing order.

orientation . The number of degrees an object is
rotated relative to a reference; for example, the
orientation of an overlay relative to the page origin.
Usually applies to blocks of information. Character
rotation applies to individual characters. See also
text orientation.

origin . A pel position from which the placement and
orientation of text, images, and page segments are
specified. For example, pages, overlays, and page
segments have origins.

overlay . A collection of predefined, constant data
such as lines, shading, text, boxes, or logos, that is
electronically composed and stored as an AFP
resource file than can be merged with variable data
on a page while printing or viewing.

Overlay Generation Language/370 (OGL/370) . An IBM
licensed program you can use to design objects for
electronic overlays, such as lines, boxes, shadings,
and irregular shapes, to create graphics.

P
page . Part of an AFP document bracketed by a pair
of Begin Page and End Page structured fields.

page definition . A resource used by PSF that defines
the rules of transforming line data into composed
pages and text controls.

page format . Synonym for data map.

page origin . The point on the logical page that
represents Xp=0, Yp=0 in the Xp, Yp coordinate
system. The page origin is relative to the top left of
the form. Contrast with media origin.

page overlay . An electronic overlay that can be
invoked for printing and positioned at any point on the
page by an Include Page Overlay structured field in
the print data. See also medium overlay and overlay.

page printer . A device that prints one page as a unit.
(I) (A) Contrast with l ine printer.

Page Printer Formatting Aid/370 (PPFA/370) . An IBM
licensed program that you can use to create and
store form definitions and page definitions.

page segment . A resource that can contain text and
images and can be included on any addressable point
on a page or electronic overlay. A page segment
assumes the environment of an object in which it is
included.

parameter . A variable that is given a constant value
for a specified application and that may denote the
application.

partial page . A page that does not contain all the
intended data. Partial pages can be printed after an
error is sensed.

pattern . A symbol used repeatedly to fill an area.

pel . Picture element.

Glossary 297

physical page . Synonymous with form, medium, and
sheet. See also logical page.

picture element (pel) . (1) In computer graphics, the
smallest element of a display surface that can be
independently assigned color and intensity. (T)

(2) The addressable unit on a page printer. See also
all-points-addressable and raster.

pitch . A unit of width of type, based on the number
of characters that can be placed in a linear inch. For
example, 10-pitch type has ten characters per inch.

point . A unit of about 1/72 inch used in measuring
type. Contrast with pitch.

point size . The height of a font in points.

portrait . Pertaining to a display or hardcopy of a
page with a greater height than width. Contrast with
landscape.

position . A position in a presentation space or on a
presentation surface that can be identified by a
coordinate from the coordinate system of the
presentation space or presentation surface. See also
picture element. Synonymous with addressable
position.

PPFA/370 . Page Printer Formatting Aid/370.

presentation space . A conceptual address space with
a specified coordinate system and a set of
addressable positions. The coordinate system and
addressable positions may coincide with those of a
presentation surface. Examples of presentation
spaces are medium, page, and object area.

presentation text . (1) Text data and text control
information that dictates the format, placement, and
appearance of data to be printed. (2) Print data that
has been composed into pages. Text formatting
programs such as DCF can produce presentation text
consisting entirely of structured fields.
(3) Synonymous with composed text.

print file . A file that is created for the purpose of
printing data.

print job . The data that the user submits to PSF to
be printed. A print job can request the printing of
multiple data sets.

print quality . (1) The measure of printed output
against existing standards and in comparison with
jobs printed previously. (2) The ability of some page
printers to print data at more than one level of print
quality, such as “draft” and “near-letter” quality.

Print Services Facility (PSF) . An IBM licensed
program that manages and controls the input data
stream and output data stream required by supported

AFP printers. PSF combines print data with other
resources and printing controls to produce AFP
output.

PSF. Print Services Facility.

R
raster . Computer graphics in which a display image
is composed of an array of pels arranged in rows and
columns.

relative positioning . Establishing a position within a
coordinate system as an offset from the current
position. Contrast with absolute positioning.

resolution . In computer graphics, a measure of the
sharpness of an image, expressed as the number of
lines and columns on the display screen or the
number of pels per unit of linear measure.

resource . A collection of printing instructions
consisting entirely of structured fields. Coded fonts,
font character sets, code pages, page segments,
overlays, form definitions, and page definitions are all
resources.

rotation . The alignment of a character with respect
to its character baseline, measured in degrees in a
clockwise direction. Examples are 0°, 90°, 180°, and
270°. 0° character rotation exists when a character is
in its customary alignment with the baseline.
Synonymous with character rotation.

rule . A solid or patterned line of any weight,
extending horizontally or vertically across a column,
row, or page.

S
scale . To enlarge or reduce all or part of a display
image.

scaling . Making a picture, or part of it, smaller or
larger. Scaling is done by multiplying the coordinate
values of the picture by a constant amount.

segment . A grouping of graphic drawing orders that
can appear in a picture.

semantics . The part of a construct′s description that
describes the function of the construct.

shading . A darkened area on the displayed page.
Usually used to highlight an area containing text. In
AFP documents, image data is used to produce
shading.

sheet . A physical entity on which information is
printed. An example of a sheet is one piece of paper.
See also physical sheet, medium, and form.

298 Programming Guide and Reference

simplex printing . Printing on only one side of the
paper. Contrast with duplex printing.

single-byte font . A font having one byte per code
point.

skip . (1) To ignore one or more instructions in a
sequence of instructions. (A) (2) A move of the
current print position to another location.

state . The portion of the document in which AFP API
is operating, for example, document state or page
state.

structured field . A self-identifying string of bytes and
its data or parameters.

subset . Within a hierarchy structure, a portion of
architecture represented by a particular level.

symbol . (1) A visual representation of something by
reason of relationship, association, or convention.
(2) In GOCA, the sub-picture referenced as a
character definition within a font character set and
used as a character, marker, or fill pattern. A bitmap
may also be referenced as a symbol for use as a fill
pattern.

syntax . The part of a construct′s description that
describes the structure of the construct.

T
tag . A type of structured field used for indexing in an
AFP document. Tags associate an index attribute -
value pair with a specific page or group of pages in a
document.

text . A graphic representation of information. Text
can consist of alphanumeric characters and symbols
arranged in paragraphs, tables, columns, and other
shapes.

text control . Structured-field data that controls the
format, placement, and appearance of text.

text orientation . A description of the appearance of
text as a combination of inline direction and baseline
direction. See also inl ine direction and baseline
direction.

trace . A record of the execution of a computer
program. It exhibits the sequences in which the
instructions were executed. (A)

| transaction . In CICS, one of more application
| programs that can be used by a display station
| operator. A given transaction can be used
| concurrently from one or more display stations.

tumble duplex printing . Duplex printing for sheets
that are to be bound on the short edge of the paper
regardless of whether the printing is portrait or
landscape. Contrast with normal duplex printing.

TYPE. A table heading for architecture syntax. The
entries under this heading indicate the types of data
present in a construct. The data type will be one of
the following: BITS, CHAR, CODE, SBIN, UBIN.

type font . A collection of characters sharing the
same type family, typeface, and size.

typographic fonts . Fonts in which the distance
between characters varies. The distance from one
character to another is adjusted to improve the visual
flow of text by eliminating excess space.

V
value . A quantity assigned to a constant, a variable,
a parameter, or a symbol in a command.

variable space . A method used to assign a character
increment dimension of varying size to space
characters. The space characters are used to
distribute white space within a text line. The white
space is distributed by expanding or contracting the
dimension of the variable space character′s
increment, dependent upon the amount of white space
to be distributed. See also variable space character.

variable space character . The code point assigned by
the data-stream for which the character increment will
be varied according to the semantics and pragmatics
of the variable space function. This code point is not
presented, but its character increment parameter is
used to provide spacing.

virtual machine (VM) . A functional equivalent of
either a System/370 computing system or a
System/370-Extended Architecture computing system.
Each virtual machine is controlled by an operating
system. VM controls concurrent execution of multiple
virtual machines on a single system.

VM . Virtual machine.

Virtual Storage Extended (VSE) . An operating system
that is an extension of Disk Operating system/Virtual
Storage. A VSE system consists of licensed
VSE/Advanced Functions support and any programs
required to meet the data processing needs of the
user. VSE and the hardware it controls form a
complete computing system.

VSE. Virtual Storage Extended.

Glossary 299

W
white space . The portion of a line that is not
occupied by characters when the characters of all
words that can be placed on a line and spaces
between those words are assembled or formatted on
a line. When a line is justified, the white space is
distributed between the words, characters, or both on
the line in some specified manner.

window . A predefined part of a graphics presentation
space.

X
X-axis . In printing, an axis perpendicular to the
direction in which the paper moves through the
printer. See also Y-axis.

X-extent . The width a page or overlay along the
X-axis or the size of a page or overlay in the
X-direction (horizontal).

Xm, Ym coordinate system . The media coordinate
system.

Xp, Yp coordinate system . The logical page
coordinate system.

Y
Y-axis . In printing, an axis parallel with the direction
in which the paper moves through the printer. See
also X-axis.

Y-extent . A measurement along the Y-axis.

300 Programming Guide and Reference

Index

A
abends 89
ACIF (AFP Conversion and Indexing Facility)

description 14, 79
Advanced Function Presentation concepts 3
AFP API handles 77
AFP API procedure calls

AFPBDOC (Begin Document) 100
AFPBFLD (Begin Field) 104
AFPBGRP (Begin Group) 106
AFPBPAG (Begin Page) 108
AFPBPAR (Begin Paragraph) 112
AFPBROW (Begin Row) 116
AFPBTBL (Begin Table) 118
AFPCARE (Create Area) 121
AFPDFLD (Define Field) 124
AFPDFNT (Define Font By Attributes) 128, 129
AFPDROW (Define Row) 131
AFPEARE (End Area) 134
AFPEDOC (End Document) 136
AFPEFLD (End Field) 137
AFPEGRP (End Group) 138
AFPEND (End AFP API) 140
AFPEPAG (End Page) 141
AFPEPAR (End Paragraph) 143
AFPEROW (End Row) 145
AFPETBL (End Table) 147
AFPGBUF (Get Output Buffer) 149
AFPINIT (Initialize AFP API) 151
AFPINVM (Invoke Medium Map) 152
AFPIOBJ (Include Object) 154
AFPIOVL (Include Page Overlay) 158
AFPIPSG (Include Page Segment) 160
AFPPARE (Put Area) 162
AFPPBOX (Put Box) 164
AFPPCHS (Put Character String) 166
AFPPRUL (Put Rule) 169
AFPPTAG (Put Tag) 171
AFPPTXT (Put Text) 173
AFPQATT (Query Current Attributes) 175
AFPQPOS (Query Current Position) 177
AFPQSTR (Query Character String Size) 179
AFPSCLR (Set Color) 181
AFPSFNT (Set Font) 183
AFPSICS (Set Intercharacter Spacing) 185
AFPSLIB (Set Resource Library Names) 187
AFPSOUT (Set Output Characteristics) 190
AFPSPOS (Set Position) 193
AFPSRTH (Set Rule Thickness) 195
AFPSUNI (Set Units) 197
AFPSWSP (Set Word Spacing) 199
AFPTERM (Terminate AFP API) 201
AFPXARE (Destroy Area) 202
format of 98

AFP API procedure calls (continued)
handles 75, 98
output, description of 98
syntax of 98

AFP API session
AFPEND (End AFP API) procedure call 140
AFPGBUF (Get Output Buffer) procedure call 149
AFPINIT (Initialize AFP API) procedure call 151
ending a session 26
performance consideration for 87

AFP Conversion and Indexing Facility 14
AFP data stream 4
AFP Workbench for Windows 14, 79
alignment

AFPPCHS (Put Character String) procedure
call 166

of fields of a table (AFPDFLD call) 124
all-points addressability 3
application programming interface 93
archiving online documents

AFPBGRP (Begin Group) procedure call 106
AFPEGRP (End Group) procedure call 138
AFPPTAG (Put Tag) procedure call 171
description 14

areas
AFPCARE (Create Area) procedure call 121
AFPEARE (End Area) procedure call 134
AFPPARE (Put Area) procedure call 162
AFPXARE (Destroy Area) procedure call 202
coding tip for using 88
description of 47
example of 42
performance consideration for 87
rotation 162

ASCII code pages 128
attr ibutes

AFPDFNT (Define Font By Attributes) procedure
call 128

AFPQATT (Query Current Attributes) procedure
call 175

querying 74
setting 73

B
Begin Document procedure call 100
Begin Field procedure call 104
Begin Group procedure call 106
Begin Page procedure call 108
Begin Paragraph procedure call 112
Begin Row procedure call 116
Begin Table procedure call 118
beginning a document 23
boxes

AFPPBOX (Put Box) procedure call 164

 Copyright IBM Corp. 1993, 1994, 1996 301

boxes (continued)
shading 164

buffered output
abend 0C1 when using 89
description of 66
obtaining records with AFPGBUF call 149
requesting with AFPSOUT call 190

C
carriage control characters 5
changing page layout 82
channel codes 5
character string

AFPPCHS (Put Character String) procedure
call 166

AFPQSTR (Query Character String Size) procedure
call 179

AFPSICS (Set Intercharacter Spacing) procedure
call 185

description 28
CHKSUCC routine, modifying 90
CICS/ESA environment

AFPIOBJ call, not supported in 154
AFPSLIB call, ignored in 187
APFSOUT call to define output queue in 190
defining font and page segment data sets for 86
description of support for 85
JCL to link-edit COBOL program with AFP API 273
modifying CHKSUCC for 86
sample programs for 85
transactions for sample programs 85
using IOCA and GOCA objects in 85
writing output to a temporary storage queue 85

code page
ASCII 128
description 68
example of using 68

coding tips 88
color

AFPQATT (Query Current Attributes) procedure
call 175

AFPSCLR (Set Color) procedure call 181
default 73

columns in tables
See tables

compil ing
error during 89
MVS JCL for 265, 268
MVS JCL for, in a CICS/ESA environment 273
VM EXEC for 275
VSE JCL for 281

coordinate systems
logical page 8
physical page (medium) 9

copy group 84
Create Area procedure call 121
current handle description 78

current position
AFPQPOS (Query Current Position) procedure

call 177
after AFPEPAR 143
after AFPETBL 147
after AFPIOBJ 154
after AFPIOVL 158
after AFPIPSG 160
after AFPPARE 162
after AFPPBOX 164
after AFPPCHS 166
after AFPPRUL 169
after AFPPTXT 173
when drawing rules 169
when drawing rules in an area 122, 169

D
data object 11
debugging your program 89
defaults, list of 73
Define Field procedure call 124
Define Font By Attributes procedure call 128
Define Row procedure call 131
depth of character string, querying 179
Destroy Area AFP API procedure call 202
determining page breaks 82
document

AFPBDOC (Begin Document) procedure call 100
AFPEDOC (End Document) procedure call 136
description 4
elements of 18
performance consideration for 87
sample 18

E
End AFP API procedure call 140
End Area procedure call 134
End Document procedure call 136
End Field procedure call 137
End Group procedure call 138
End Page procedure call 141
End Paragraph procedure call 143
End Row procedure call 145
End Table procedure call 147
ending a session 26
environment, defining for a document 65
errors, finding in your API program 89
example

See sample document

F
fields in tables

See tables
FLIP

See Font Library Indexing Program

302 Programming Guide and Reference

Font Library Indexing Program 69
fonts

AFPDFNT (Define Font By Attributes) procedure
call 128

AFPSFNT (Set Font) procedure call 183
coding tips for using 88
default 73
defining and using 67
defining data set in CICS/ESA environment 86
definition of 12
determining if a font is on your system 69, 203
Font Library Indexing Program 69, 203
performance consideration for 87
rotation 68, 129
selecting them for your application 68
style 129
using 12

form definit ion
definition of 12
description and use 84
using 13

G
Get Output Buffer procedure call 149
getting started 23
GOCA 11
graphics 4
graphics object 11
groups, for indexing

See indexing for softcopy

H
handles

current handle 78
description 75, 77
diagram of using handles 78
format 98

I
image object 11

in a CICS/ESA environment 85
Include Object procedure call 63, 154
Include Page Overlay procedure call 158
Include Page Segment procedure call 160
indenting a paragraph 112
indexing for softcopy

AFPBGRP (Begin Group) procedure call 106
AFPEGRP (End Group) procedure call 138
AFPPTAG (Put Tag) procedure call 171
description 14, 79
tags 79

Initialize AFP API procedure call 151
initializing an AFP API session

AFPGBUF (Get Output Buffer) procedure call 149
AFPINIT (Initialize AFP API) procedure call 151
program template 24

initializing an AFP API session (continued)
sample code 23
setting up AFP API 24

intercharacter spacing
AFPQATT (Query Current Attributes) procedure

call 175, 185
AFPSICS (Set Intercharacter Spacing) procedure

call 185
default 73

invoke medium map
AFPINVM (Invoke Medium Map) procedure

call 152
description 34
error using 89

Invoke Medium Map procedure call 84, 152
IOCA 11

J
JCL

running AFP API 265, 268
running AFP API in CICS/ESA environment 273
running the Font Library Indexing Program 204

L
l ibrary

See resource l ibraries
line break

error when using AFPPTXT 89
when placing data in a table (AFPPCHS call) 166
when using AFPPTXT 174

line data 5
line spacing

in fields of a table (AFPDFLD call) 124
in paragraphs 112
querying (AFPQSTR call) 179

lines, drawing them
See rules

link-editing
MVS JCL for 265, 268
VM EXEC for 275
VSE JCL for 281

logical page
coordinate system 8
defining 8, 25
in Begin Page call 108
offset 10
orientation (rotation) 100, 109

logos 4

M
margins

for a paragraph (AFPBPAR call) 112
in the fields of a table (AFPDFLD call) 124

medium coordinate system 9
medium map

AFPINVM (Invoke Medium Map) procedure
call 152

Index 303

medium map (continued)
description and use 84
error using 89

messages, error 89
MVS

invoking the Font Library Indexing Program 204
running AFP API 265, 268
running AFP API in CICS/ESA environment 273

N
navigating through a soft-copy document 14, 79

O
objects

AFPIOBJ (Include Object) procedure call 154
description of 11
graphics 11
image 11
in a CICS/ESA environment 85
using include object (AFPIOBJ) 63

orientation
areas 162
logical page 109
logical page and physical page 100
table rotation 119

output
AFPSOUT (Set Output Characteristics) procedure

call 190
description 66
obtaining records (AFPGBUF call) 149
writing in a CICS/ESA environment 85
writing to an output buffer 66, 149, 190

overlays
AFPIOVL (Include Page Overlay) procedure

call 158
definition of 12
description 34
using 13

P
page

AFPBPAG (Begin Page) procedure call 108
AFPEPAG (End Page) procedure call 141
determining breaks 82
indexing 14
layout 82
orientation (rotation) 100

page breaks 82
page definition

definition of 12
using 5, 13

page layout, changing 82
page segments

AFPIPSG (Include Page Segment) procedure
call 160

defining data set in CICS/ESA environment 86

page segments (continued)
definition of 12
example 33
l ibrary 160
using 12

paragraphs
AFPBPAR (Begin Paragraph) procedure call 112
AFPEPAR (End Paragraph) procedure call 143
description of 40
example 36

parameters (in AFP API procedure calls)
AFP API handle (AFPEND call) 140
AFP API handle (AFPINIT call) 151
AFP API Handle (AFPTERM call) 201
alignment character (AFPPCHS call) 166
alignment option (AFPPCHS call) 166
alignment position (AFPDFLD call) 124
area depth (AFPEARE call) 134
area frame (AFPCARE call) 121
area handle (AFPCARE call) 121
area handle (AFPEARE call) 134
area handle (AFPPARE call) 162
area handle (AFPXARE call) 202
area rotation (AFPPARE call) 162
area width (AFPCARE call) 121
attribute name (AFPPTAG call) 171
attribute value (AFPPTAG call) 171
bottom rule offset (AFPBPAR call) 112
bottom thickness (AFPDFLD call) 124
bottom thickness (AFPDROW call) 131
box depth (AFPPBOX call) 164
box width (AFPPBOX call) 164
buffer (AFPGBUF call) 149
buffer length (AFPGBUF call) 149
buffered output (AFPSOUT call) 190
character spacing (AFPQATT call) 175
character spacing (AFPSICS call) 185
character string (AFPPCHS call) 166
character string (AFPPTXT call) 173
character string (AFPQSTR call) 179
code page (AFPDFNT call) 128
color (AFPQATT call) 175
color (AFPSCLR call) 181
column width array (AFPDROW call) 131
concatenate (AFPPTXT call) 173
current table depth (AFPEROW call) 145
descriptive name (AFPDFNT call) 128
descriptive name length (AFPDFNT call) 128
direction (AFPPRUL call) 169
document handle (AFPEDOC call) 136
document handle (AFPEGRP call) 138
document handle (AFPGBUF call) 149
document handle (AFPINVM call) 152
document page depth (AFPBDOC call) 100
document page width (AFPBDOC call) 100
field ID (AFPDFLD call) 124
field ID (AFPDROW call) 104
first line indent (AFPBPAR call) 112

304 Programming Guide and Reference

parameters (in AFP API procedure calls) (continued)
first line offset (AFPBPAR call) 112
font ID (AFPDFNT call) 128
font ID (AFPQATT call) 175
font ID (AFPSFNT call) 183
font library (AFPSLIB call) 187
format option (AFPBPAR call) 112
format option (AFPDFLD call) 124
group name (AFPBGRP call) 106
group name (AFPEGRP call) 138
left margin (AFPBPAR call) 112
left margin (AFPDFLD call) 124
left thickness (AFPBTBL call) 118
left thickness (AFPDFLD call) 124
line length (AFPBPAR call) 112
line spacing (AFPBPAR call) 112
line spacing (AFPDFLD call) 124
line spacing (AFPQSTR call) 179
max table depth (AFPBTBL call) 118
maximum area depth (AFPCARE call) 121
measured width (AFPQSTR call) 179
medium map name (AFPINVM call) 152
minimum subrow depth array (AFPDROW

call) 131
more records (AFPGBUF call) 149
number of columns (AFPDROW call) 131
number of subrows (AFPDROW call) 131
object depth (AFPIOBJ call) 155
object library (AFPSLIB call) 187
object mapping option (AFPIOBJ call) 155
object name (AFPIOBJ call) 155
object rotation (AFPIOBJ call) 155
object width (AFPIOBJ call) 155
object X-offset (AFPIOBJ call) 155
object Y-offset (AFPIOBJ call) 155
output buffer (AFPGBUF call) 149
output file mode (AFPSOUT call) 190
output file name (AFPSOUT call) 190
output file type (AFPSOUT call) 190
output record size (AFPSOUT call) 190
overlay name (AFPIOVL call) 158
page depth (AFPBPAG call) 108
page handle (AFPBPAG call) 108
page handle (AFPEPAG call) 141
page inline option (AFPIPSG call) 160
page orientation (AFPBDOC call) 100
page orientation (AFPBPAG call) 108
page reuse option (AFPIPSG call) 160
page segment library (AFPSLIB call) 187
page segment name (AFPIPSG call) 160
page width (AFPBPAG call) 108
paragraph depth (AFPEPAR call) 143
paragraph frame (AFPBPAR call) 112
paragraph handle (AFPBPAR call) 112
paragraph handle (AFPEPAR call) 143
point size (AFPDFNT call) 128
position option (AFPPCHS call) 166
remaining length (AFPPTXT call) 173

parameters (in AFP API procedure calls) (continued)
remaining string (AFPPTXT call) 173
replace (AFPSOUT call) 190
right margin (AFPDFLD call) 124
right rule offset (AFPBPAR call) 112
right thickness (AFPBTBL call) 118
right thickness (AFPDFLD call) 124
rotation (AFPDFNT call) 128
row arrange array (AFPDROW call) 131
row ID (AFPBROW call) 116
rule length (AFPPRUL call) 169
rule thickness (AFPQATT call) 175
rule thickness (AFPSRTH call) 195
shading intensity (AFPBPAR call) 112
shading intensity (AFPCARE call) 121
shading intensity (AFPDFLD call) 124
shading intensity (AFPPBOX call) 164
shading pattern (AFPBPAR call) 112
shading pattern (AFPCARE call) 121
shading pattern (AFPDFLD call) 124
shading pattern (AFPPBOX call) 164
string length (AFPPCHS call) 166
string length (AFPQSTR call) 179
style (AFPDFNT call) 128
table depth (AFPETBL call) 147
table handle (AFPBROW call) 116
table handle (AFPBTBL call) 118
table handle (AFPDROW call) 104
table handle (AFPEFLD call) 137
table handle (AFPEROW call) 145
table handle (AFPETBL call) 147
table rotation (AFPBTBL call) 118
table width (AFPBTBL call) 118
temporary storage queue (AFPSOUT call) 190
text orientation (AFPDFLD call) 124
top thickness (AFPBTBL call) 118
top thickness (AFPDFLD call) 124
top thickness (AFPDROW call) 131
trace (AFPINIT call) 151
underline (AFPPCHS call) 166
underline (AFPPTXT call) 173
unit of measure (AFPSUNI call) 197
units of measure (AFPQATT call) 175
vertical format (AFPDFLD call) 124
weight (AFPDFNT call) 128
width (AFPDFNT call) 128
word spacing (AFPQATT call) 175
word spacing (AFPSWSP call) 199
X coordinate (AFPQATT call) 175
X coordinate (AFPQPOS call) 177
X coordinate (AFPSPOS call) 193
X reference coordinate system (AFPSPOS

call) 193
Y coordinate (AFPQATT call) 175
Y coordinate (AFPQPOS call) 177
Y coordinate (AFPSPOS call) 193
Y reference coordinate system (AFPSPOS

call) 193

Index 305

pels 3
performance considerations 87
physical page

coordinate system 9
defining it 25
in the AFPINVM (Invoke Medium Map) call 152

position
AFPQPOS (Query Current Position procedure

call 177
AFPSPOS (Set Position) procedure call 193

program template 24
publications, related 287
Put Area procedure call 162
put box example 62
Put Box procedure call 164
Put Character String procedure call 166
put rule example 31
Put Rule procedure call 169
Put Tag procedure call 171
Put Text procedure call 173
putting data on the page 26

Q
Query Character String Size procedure call 179
Query Current Attributes procedure call 175
Query Current Position procedure call 177
querying attr ibutes 73

R
reference information for procedure calls 93
related publications 287
resource l ibraries

AFPSLIB (Set Resource Library Names) procedure
call 187

defining in a CICS/ESA environment 86
resources

AFPSLIB (Set Resource Library Names) procedure
call 187

defining in a CICS/ESA environment 86
description 12
understanding resource objects 11

return codes and severity codes
definitions 209
description 65
modifying CHKSUCC routine 90
use of the severity code 84

rotation
of areas (AFPPARE call) 162
of fonts (AFPDFNT call) 128
of objects (AFPIOBJ call) 155
of tables (AFPBTBL call) 118

rows in tables
See tables

rules
AFPPRUL (Put Rule) procedure call 169
AFPQATT (Query Current Attributes) procedure

call 175

rules (continued)
AFPSRTH (Set Rule Thickness) procedure call 195
default rule thickness 73
drawing vertical rules in an area 122, 169
example 31

S
sample document

areas 42
box 62
character string 28
description 18
ending the session 26
getting started 23
include object 63
page segment 33
paragraphs 36
put rule 31
putting data on the page 26
template 24

sample programs for CICS/ESA 85
screen shading pattern 263
session

See AFP API session
Set Color procedure call 181
Set Font procedure call 183
Set Intercharacter Spacing procedure call 185
Set Output Characteristics procedure call 190
Set Position procedure call 193
Set Resource Library Names procedure call 187
Set Rule Thickness procedure call 195
Set Units procedure call 197
Set Word Spacing procedure call 199
setting attributes 73
setting up a document

See initializing an AFP API session
severity codes 84
shading

pattern and intensity 261
pattern and intensity for boxes 62, 164

size of character string, querying 179
spacing

AFPQATT (Query Current Attributes) procedure
call 175

AFPSICS (Set Intercharacter Spacing) procedure
call 185

AFPSWSP (Set Word Spacing) procedure call 199
standard shading pattern 263
starting a document 23
states

description 75
diagram showing hierarchy of states 75
table of calls in each state 94

syntax of procedure calls 98

306 Programming Guide and Reference

T
tables

AFPBFLD (Begin Field) procedure call 104
AFPBROW (Begin Row) procedure call 116
AFPBTBL (Begin Table) procedure call 118
AFPDFLD (Define Field) procedure call 124
AFPDROW (Define Row) procedure call 131
AFPEFLD (End Field) procedure call 137
AFPEROW (End Row) procedure call 145
AFPETBL (End Table) procedure call 147
definition of 58
fields, in rows of a table 58
performance consideration for 87
rows in a table 58
setting up 48

tags, indexing
AFPPTAG (Put Tag) procedure call 171
defined 14
group-level 14

template, program (for the sample document) 24
temporary storage queue

naming (AFPSOUT call) 190
writing output to in CICS/ESA 85

Terminate AFP API procedure call 201
text and AFPPTXT (Put Text) procedure call 173
tips for coding your program 88
transactions, CICS/ESA 85
troubleshooting your program 89

U
underl ine

AFPPCHS (Put Character String) procedure
call 166

AFPPTXT (Put Text) procedure call 173
understanding handles 77
units of measure

AFPQATT (Query Current Attributes) procedure
call 175

AFPSUNI (Set Units) procedure call 197
default 73
used in AFP API output 73

V
vertical rules in an area 122, 169
viewing documents online

AFPBGRP (Begin Group) procedure call 106
AFPEGRP (End Group) procedure call 138
AFPPTAG (Put Tag) procedure call 171
description 14, 79

VM
invoking the Font Library Indexing Program 203
running AFP API 275

VSE
invoking the Font Library Indexing Program 205
running AFP API 281, 285

W
width of character string, querying 179
word spacing

AFPQATT (Query Current Attributes) procedure
call 175

AFPQSTR (Query Character String Size) procedure
call 179

AFPSWSP (Set Word Spacing) procedure call 199
default 73

Index 307

Readers ′ Comments — We ′d Like to Hear from You

Advanced Function Presentation
Application Programming Interface:
Programming Guide and Reference

Publication No. S544-3872-02

Use this form to provide comments about this publication, its organization, or subject matter.
Understand that IBM may use the information any way it believes appropriate, without incurring any
obligation to you. Your comments will be sent to the author′s department for the appropriate action.
Comments may be written in your language.

Note: IBM publications are not stocked at the location to which this form is addressed. Direct
requests for publications or for assistance in using your IBM system, to your IBM representative or
local IBM branch office.

Thank you for your input and cooperation.

Note: You may either send your comments by fax to 1-800-524-1519, or mail your comments. If mailed
in the U.S.A., no postage stamp is necessary. For residents outside the U.S.A., your local IBM office or
representative will forward your comments.

Comments:

Name Address

Company or Organizat ion

Phone No.

Yes No
• Does the publication meet your needs?
• Did you find the information:

Accurate?
Easy to read and
understand?
Easy to retrieve?
Organized for convenient
use?
Legible?
Complete?
Well i l lustrated?
Written for your technical
level?

• Do you use this publication:
As an introduction to the
subject?
As a reference manual?
As an instructor in class?
As a student in class?

• What is your occupation?

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers ′ Comments — We ′d Like to Hear from You
S544-3872-02 IBML

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Information Development
The IBM Printing Systems Company
Department H7FE Building 003G
P O Box 1900
BOULDER CO 80301-9817

Fold and Tape Please do not staple Fold and Tape

S544-3872-02

IBML

File Number: S370-40

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer f iber.

S544-3872-02

