

Component Broker
Programming Guide

Release 2.0

Document Number G04L-2376-04

November 20, 1998

IB
M

Component Broker

Programming Guide

Release 2.0

G04L-2376-04

IBM Component Broker

Programming Guide

Release 2.0

G04L-2376-04

 Note

Before using this information and the product it supports, be sure to read the general information under Appendix E, “Notices”
on page 355.

Fifth Edition (December, 1998)

This edition applies to Release 2.0 of Component Broker and to all subsequent releases and modifications until otherwise indicated
in new editions.

 Copyright International Business Machines Corporation 1997, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

What's New! . xiii

About This Book . xv
Who Should Read This Book . xv
How this Book is Organized . xv
Documentation Conventions . xvi
Notation . xvii

Interface Inheritance . xvii
 Implementation Inheritance . xviii
Associations . xviii
Aggregation . xviii
Qualified Association . xix
State Transition Diagrams . xx
Data Flow Diagrams . xx

The Component Broker Documentation . xxi

Chapter 1. Introduction . 1
Object-Oriented Application Development Paradigms . 1

Forward Engineering New Functional Requirements (Top-down) . 2
Reverse Engineering from the Legacy (Bottom-up) . 3
Meet in the Middle, Incremental Development . 6
Combining the Approaches . 7

Three-Tier Architecture Overview . 7
Programming Roles and Responsibilities . 10
Programming Languages and Conventions . 10

Interface Definition Language . 10
Java . 12
C++ . 12
Other Languages (Windows Only) . 12
Naming Conventions . 12
Coding Conventions . 13

Another Roadmap . 13

Chapter 2. Personal Life Insurance Application Example . 15
The Object Model (Top-down) . 15
The Application Model (Meet in the Middle) . 16
Design Model (Bottom-up) . 17
Model Details . 19

Object Model . 19
Object Identity . 19
Agent . 19
Beneficiary . 20
Customer . 21
PayoutFraction . 21
Person . 22
Policy . 22
PolicyHolder . 24
Claim . 25

Applications . 26
Create Policy . 26

 Copyright IBM Corp. 1997, 1998 iii

ModifyPolicy . 26
Create Customer . 26
Modify Customer . 27
Create Beneficiary . 27
Modify Beneficiary . 27
Process Claim . 27

Key Observations . 28

Chapter 3. The Managed Object Framework . 29
Managed and Non-Managed Objects . 30
Understanding MOFW Objects . 31

Chapter 4. MOFW Client Programming Model . 33
Client View of Component Broker Applications . 33
Client Programming Model: Basic Tasks . 35
Initializing the Client Environment . 35

Initialization and Object References . 36
Navigating the Name Space Using the Naming Service . 36
Finding a Managed Object . 38

Finding a Managed Object Bound in the Naming Service . 38
Finding a Managed Object Using the PrimaryKey Helper Class . 39

Using a PrimaryKey Helper Class to Find an Object . 40
Finding a Managed Object by Methods on Held Objects . 41

Using a Managed Object . 41
Creating a Managed Object . 41

Creating a New Object – Create From Key . 42
Creating a New Object – Create from Copy . 43

Using Sets of Objects . 44
Transient Sets . 46
Specifying Reference Collection Interfaces . 47

Remembering your Favorite Objects . 47
Releasing and Deleting Objects . 48
Coding Tips for proper CORBA Memory Management . 52

Using Object References . 52
Commonly Used CORBA Interfaces . 52

CORBA Class Interfaces . 53
CORBA::Object Interfaces . 53

Summary: The Client Programmer's Check List . 54

Chapter 5. MOFW Server Programming Model . 57
Business Object Basics . 57

Business Object State . 58
Business Object Attributes . 59

Developing a Business Object . 59
Developing an Interface to the Business Object . 60

Module Scoping . 61
Design Tips for Business Objects . 62

Selecting a Pattern for Handling Essential State . 62
The Data Object . 63
Design Tips for Data Objects . 63

Implementing Business Object Methods and Attributes . 64
Using C++ 'this' References in Business Objects . 64
Option 1 – Patterns for Handling State (Caching) . 65
Option 2 – Patterns for Handling State (Delegating) . 66

iv Component Broker: Programming Guide

Implementing the IManageable Required Methods . 67
IManageable::getPrimaryKeyString Method . 67
IManageable::getHandleString Method . 67
CosStream::Streamable::externalize_to_stream Method . 68
CosStream::Streamable::internalize_from_stream Method . 69
Summary of IManageable Methods . 70

Implementing IManagedObject Required Methods . 70
initForCreation() Method . 71
uninitForDestruction() Method . 71
initForReactivation() Method . 72
uninitForPassivation() Method . 72
syncFromDataObject() Method . 72
syncToDataObject() . 73
Summary of IManagedObject Methods . 73

Implementing the Primary Key Class . 73
CosStream::Streamable Methods . 74
Implementing IKey::getName . 75
Implementing IKey::isEqualToKey . 75
Implementing IKey::isEqualToKeyString . 75
Summary of Key Class Construction . 76
Other Ways to get the KeyClass . 76

Implementing the Optional Copy Helper Class . 76
Local-Only Development Process . 78

Summary . 78
Additional Information Business Object Creators Should Know . 80
Where to Next? . 81

Chapter 6. MOFW Client Programming Model – Advanced Concepts 83
Transactions . 83

CosTransactions Module . 84
A Simple Example . 85
Transactions, Exceptions, and Timeouts . 87

Session Service . 89
A Simple Example . 89

Set a Time Limit for All New Sessions . 90
Begin a Session . 90
End a Session . 90
Other Information . 91

Queries, Iterations and Specialized Homes . 91
Using Iterated Homes-Specific Functions . 91
Using Queryable Homes-Specific Functions . 94
Using Atomic Transactions with Query Evaluator . 95

More on Iterators . 96
Using Keyed Reference Collections . 96
Conventions and Guidelines . 99

Finding Persistent Objects . 99
Creating Persistent Objects . 99

The create_object() Method . 100
Using Handles . 102

Chapter 7. MOFW Server Programming Model – Advanced Concepts 105
Extending a Business Object . 105

Extending Business Object Interfaces . 106
Essential State Extensions . 106

 Contents v

Choosing an Inheritance Pattern . 107
Implement the Additional Business Logic . 108
Meet the MOFW IManageable Requirements . 110

getPrimaryKeyString . 110
getHandleString . 110
externalize_to_stream . 110
internalize_from_stream . 111

MOFW Requirements – IManagedServer . 111
initForCreation . 111
uninitForDestruction . 112
initForReactivation . 112
uninitForPassivation . 112
syncFromDataObject . 112
syncToDataObject . 113

More Key Classes . 113
More Copy Helper Classes . 113
Extension Summary . 114
Other Variations to Consider . 114

Object Relationships . 114
Cardinality-1 Relationships . 115

Optional or Required Cardinality-1 Relationships . 117
"Uses a" and "Has a" Cardinality-1 Relationships . 124
Making Cardinality-1 Relationships Persistent . 126

Cardinality-N Relationships . 127
Implementing the Relationship Interface . 129

Creating Specialized Homes . 133
Extending the Interface to IHome . 133

Details . 134
Alternatives to IManagedClient::IHome . 134

Implement the Extended IHome Interface . 134
Implementation Interface . 134
The Implementation . 135
Meet MOFW IManageable Requirements . 137
MOFW Requirements – IManagedObject Interfaces . 137
Keys . 138
Copy Helper . 138
Leveraging Server Provided Essential State Extensions . 138

Overriding Specific Methods on Specialized Homes . 139
Summary of Home Extension . 139

Copy Helpers – Sharing Opportunities . 139
Moving Object Data in Bulk . 140
Multiple Interfaces to Business Objects . 141
Circular References . 142

Chapter 8. MOFW – ActiveX Client Programming Model . 143
ActiveX Client View of Component Broker Applications . 143
Developing the Component Broker ActiveX Client . 144

Generating and Registering DLLs . 144
Unregistering and Moving DLLs . 145

Component Broker ActiveX Client Application Development Information 146
Client Programming Model: Basic Tasks . 146

Initializing The Component Broker Client Environment . 147
Finding a Managed Object . 147

Bound in the Naming Service . 147

vi Component Broker: Programming Guide

By Methods on Held Objects . 148
Using the PrimaryKey Helper Class . 148

Using a Managed Object . 150
Creating a Managed Object . 150

Creating a New Object – Create From Key . 150
Creating a New Object - Create from Copy . 151

Releasing and Deleting Objects . 153
Using Sets of Objects . 153
Remembering your Favorite Objects . 154
When References Explode . 155

Chapter 9. MOFW - Java Client Programming Model . 157
Java Client View of Component Broker Applications . 157
Client Programming Model: Basic Tasks . 159
Preparing to Use VisualAge for Java for Development of Component Broker Java Clients 160
Preparing Managed Objects for Remote Access . 160
Initializing the Component Broker Client Environment . 161
Finding a Managed Object . 162

Finding a Well-known Object Using the Naming Service . 163
Finding an Object Using Collections and Navigation . 163
A Note on Security . 165

Using a Managed Object . 165
Creating a New Object . 165

Create From Key . 165
Create from Copy . 166

Releasing and Deleting Objects . 167
Using Sets of Objects . 167
Remembering your Favorite Objects . 168
When References Explode . 169
Java Exception Handling . 169

Chapter 10. Java Server Programming Model . 171
Overview of Java Managed Object Development . 171
Developing an Interface to the Business Object . 173
Loading C++ DLLs from Java BO . 176
Selecting a Pattern for Handling Essential State . 176
Implement Business Object Methods . 177

Managing Memory . 179
Using 'this' References in Business Objects . 180
Reference Scoping . 180

Implement the Managed Object Framework Methods . 180
IManageable::getPrimaryKeyString . 181
IManagedClient::IManageable::getHandleString . 181
CosStream::Streamable::externalize_to_stream . 181
CosStream::Streamable::internalize_from_stream . 182
IManagedServer::IManagedObject::initForCreation . 182
IManagedServer::IManagedObject::uninitForDestruction . 183
IManagedServer::IManagedObjectWithDataObject::initForReactivation() 183
IManagedServer::IManagedObjectWithDataObject::uninitForPassivation() 183
IManagedServer::IManagedObjectWithDataObject::syncFromDataObject() and

IManagedServer::IManagedObjectWithDataObject::syncToDataObject() 183
Implementing the Primary Key Class . 184
Implementing the Optional Copy Helper Class . 186
Advanced Concepts . 188

 Contents vii

Extending a Business Object . 188
Relationships . 191
Specialized Homes . 191

Server Provided Essential State Extensions . 195

Chapter 11. Assembling and Installing Business Objects on AIX and Windows NT 197
Create the Managed Object Class and Implementation . 197

Business Object Methods in the Managed Object Implementation 200
OMG Services Methods in the Managed Object Implementation . 201
Application Adaptor Methods in the Managed Object Implementation 201
Special Methods in the Managed Object Implementation . 201
Handling Business Object Augmentation of OMG Services Methods 202
Managed Objects and Specialized Homes . 202

Sample Framework Flows . 203
Data Object Customization . 204

Data Objects (Unit Test) . 207
Transient Data Object Interfaces . 207
Transient Data Object Implementation . 208
Another Option . 210

BOIM Data Object Customization – Static SQL . 210
SQL Data Object Interfaces . 210
Static SQL Data Object Implementation . 213
Additional Considerations . 217

BOIM Data Object Customization – Cache Service . 217
Cache Service Data Objects Interfaces . 217

Transient Data Object Customization – UUID Key (Production Use) 223
Interfaces . 223
Implementation . 224
Additional Considerations . 225

Transient Data Object – Any Key (Production Use) . 225
BOIM Data Object Interfaces . 225
BOIM Data Object Implementation . 227

Summary of DataObject Customization . 229
Data Object Data Management Patterns . 233

Data Object Customization and Inheritance . 233
CarPolicy BOIM Data Object Interfaces . 233
CarPolicy BOIM Data Object Implementation . 235

Framework Required Method – internalizeFromPrimaryKey . 235
Framework Required Method – internalizeFromCopyHelper . 235
Framework Required Code – create() Function . 236
Methods To Support Attributes – Getters . 236
Methods to Support Attributes – Setters . 237
Additional Methods – Default Constructor . 237
Required Method – externalizeKeyAttributes . 237
Required Method – internalizeKeyAttributes . 237
Required Method —del . 238
Required Method —insert . 238
Required Method —retrieve . 238
Required Method —update . 238
Required Method —setConnection . 239

Data Object Customization for Cardinality Relations . 239
Top-Down Versus Bottom-Up Relations . 239
Top-Down Customizations . 239
Bottom-Up Customizations . 241

viii Component Broker: Programming Guide

Cardinality-1 Relationships . 243
Cardinality-N Relationships . 243
Summarizing Relationships Implementations . 244
Additional Customizations . 245

Mapping Helpers . 245
Example Usage of a Mapping Helper . 246

Expanding the Client Programming Interface . 246
Quality of Service Interfaces . 247
Using QOS Interfaces for Non-transactional Support . 249

Assembling the Pieces . 249
Packaging for Client and Server (VA C++) . 249

DLL Packaging . 249
Create Functions for Dynamic DLL Loading . 250
Exposing Interfaces to Clients . 251
Exposing Interfaces to Business Object Builders . 251

Packaging the DLL for the ActiveX Visual C++ Client . 251
Packaging the Java Client Code . 252
Enabling Additional Clients . 252

The Local-Only Development Process . 252
C++ Local-Only . 252
Java Local-Only . 254

Configuring Managed Objects into Servers . 254
Memory Management . 254
Synchronizing with the Back End . 255
Persistence . 255
Behavior in the Absence of a Transaction or Session . 255
Summary of Configuration Options on Container . 255
Configuring Application Adaptors – RDB . 256

Updating the Database Manager Configuration for the Transaction Processor Monitor 256
Starting the Database before Executing an Application . 257

Configuring Homes . 257
An Overview of Application Adaptors . 257
An Overview of BOIM . 258

Adapting Applications . 258
Managed Object Assembly . 258
Managed Object . 259
Business Object . 259
Data Object . 259
The Life Cycle of Managed Objects . 259
Qualities of Service . 259

Locking . 260
Assembling and Installing Java Business Objects . 261

Create the C++ Client and Server Bindings . 261
Create the Managed Object Class and Implementation . 261

Inheritance . 261
Construction and Destruction . 262

Data Object Customization . 263
Do Not Mark Data Object Interfaces as "Abstract" . 263

Generating Server-Specific Java Classes . 263
Generating Other C++ Classes . 263
Debugging Java Code Running on the Server . 264
The Managed Object for a Java Specialized Home . 265

Appendix A. Artifacts Produced in Building Objects . 269

 Contents ix

Appendix B. Interface Definition Language . 271
IDL Name Scoping . 271
Type and Constant Declarations . 272

Integral Types . 272
Floating Point Types . 272
Character Type . 272
Boolean Type . 272
Octet Type . 273
Any Type . 273
Constructed Types (struct, union, enum) . 273
Union Type . 273
Template Types (sequences and strings) . 274
Arrays . 274
Object Types . 275
Constants . 275

Interface Declarations . 275
Constant, Type, and Exception Declarations Within an Interface . 276

Operation Declarations . 276
"oneway" Keyword . 276
Parameter List . 277
"raises" Expression . 277
"context" Expression . 277

Attribute Declarations . 278
Exception Declarations . 278
IDL Syntax . 279

Comments . 281
Include Directives . 281
Pragma Directives . 281

localonly Pragma . 282
localonly abstract Pragma . 282
cpponly Pragma . 282
init Pragma . 282
ID Pragma . 283
Prefix Pragma . 283
version Pragma . 283

Multiple IDL Interfaces and Modules . 283
The idlc Command . 284

Options for the idlc Command . 285
Emitted File Names . 288

C++ Emitters . 288
Java Emitters . 288

IDLC_OPTIONS Environment Variables . 288
The IDL-to-Java Compiler . 289

Quick Reference . 289
Compilation Options . 289

Emitting Client and Server Bindings . 289
Specifying an Alternate Location for Emitted Files . 290
Specifying Alternate Locations for Include Files . 290

Emitting Bindings for Include Files . 291
Inserting Package Prefixes . 292
Emitting Client-side Bindings as JavaBeans . 293
Emitting Object by Value (Stateful) Bindings . 293
Emitting Makefiles and Specifying the Path Separator Character . 293
Defining Symbols Before Compilation . 294

x Component Broker: Programming Guide

Preserving Pre-existing Bindings . 294
Viewing Progress of Compilation . 295

The idl2com Command . 295
Options for the idl2com Command . 296
Generating Interfaces Using the idl2com Command . 296
Emitted File Names . 297
Data Type Restrictions . 297
idl2com Generated Makefile . 297

Appendix C. C++ CORBA Programming . 299
C++ Bindings . 299

C++ Bindings for Constants . 299
Within the Module . 299
Globally . 299

CORBA Types and Business Objects . 299
Basic Types . 300
Types and Object References . 300

C++ Bindings for Data Types . 301
Any Type . 301
Array Types . 306
Atomic Data Types . 308
Enums . 308
Sequence Types . 309
Strings . 312
Struct Types . 314
Union Types . 315
Using WStrings . 316

Exceptions . 317
Which Exceptions to Use . 317
Throwing Exceptions . 317
Catching Exceptions . 318

Name Scoping and Modules in the C++ Bindings . 319
C++ Bindings for Interfaces . 319

Managing Object References . 320
Widening Object References . 320
Narrowing Object References . 321
Narrowing to a C++ Implementation . 321

Storage Management and _var Types . 322
Argument Passing Considerations for C++ Bindings . 323
C++ Type Mapping for Argument Passing . 323
Storage Management Responsibilities for Arguments . 325

C++ Client Bindings . 327
C++ Server Bindings . 328
C++ Binding Restrictions . 330

Appendix D. Unit Test Environment . 333
Environment . 334

Interfaces . 335
IManagedClient::IHome . 335
IManagedClient::IManageable . 335
IManagedLocal::INonManageable . 336

Unit Test Process . 336
Implementing the Data Object . 337

Creating IDL for the Unit Test Data Object . 337

 Contents xi

Compiling IDL for the Unit Test Data Object . 338
Implementing the Unit Test Data Object . 339
Implementing PolicyDO Methods . 341
Implementing IManagedServer::IDataObject Methods . 342

Implementing the Unit Test Program . 344
Compiling, Linking, and Executing the Unit Test Program . 346

Unit Test for Java Business Objects . 347
Files . 347
Implementing a Java Unit Test Data Object . 348
Implementing the Unit Test Factories . 349
Implementing the Unit Test Program . 350

Running the Test Program . 351
Unit Test Supported Function . 352

Summary . 352

Appendix E. Notices . 355
Trademarks . 356

Index . 359

xii Component Broker: Programming Guide

 What's New!

The following changes were made to this publication since the previous edition:

� Added programming model documentation changes in theMOFW Client Programming Model chapter.
� Added information on loading C++ DLLs from Java BO in the Java Server Programming Model

chapter.
� Improved the ActiveX Client documentation in theMOFW – ActiveX Client Programming Model

chapter.
� Many platform-specific sections were moved to Assembling and Installing Business Objects on AIX

and Windows NT chapter. For platform-specific information on OS/390 Component Broker, see
OS/390 Component Broker Programming: Assembling Applications .

� The Unit Test chapter has been moved to an appendix section, see Unit Test Environment.
� An index has been added along with other various technical and editorial changes.

 Copyright IBM Corp. 1997, 1998 xiii

xiv Component Broker: Programming Guide

About This Book

The Component Broker Programming Guide describes the Component Broker programming model and
presents sample code showing common tasks required to develop typical object-oriented applications.

This preface includes the following sections:

� “Who Should Read This Book”
� “How this Book is Organized”
� “Documentation Conventions” on page xvi
� “Notation” on page xvii
� “The Component Broker Documentation” on page xxi

Who Should Read This Book

The Component Broker Programming Guide is intended for application developers who use the
Component Broker environment to build robust, distributed object-oriented applications.

The examples are written in C++; therefore, programming experience in C++ and a background in
object-oriented programming is required. A familiarity with Java is also helpful, but not required.

This book is not a programming manual; it is for experienced programmers who are going to use this
product.

How this Book is Organized

Chapter 1, “Introduction” on page 1 gives an introduction and describes some common object-oriented
analysis and design concepts that pervade the Component Broker programming model. It gives a simple
overview of a deployed, distributed object-oriented application. It presents a simple categorization of roles
and responsibilities later in the chapter. Throughout this document, each programming model concept and
task, and the roles that perform each task are explained. This chapter concludes with a definition of
extended Object Modeling Technique (OMT Rumbaugh) notation and coding conventions used in the rest
of the document.

Chapter 2, “Personal Life Insurance Application Example” on page 15 describes a simple Personal Life
Insurance Application. Aspects of this application development scenario are used in the rest of the
document wherever a real example is needed for illustration purposes.

Chapter 3, “The Managed Object Framework” on page 29 introduces the Managed Object Frameworks
and positions them with another set of frameworks called the Component Broker Frameworks. This
chapter tells how Component Broker implements and exposes business objects that are important for all
readers to understand.

Chapter 4, “MOFW Client Programming Model” on page 33 describes the basic cient programming model.
This chapter is organized in terms of basic tasks that the developer of a Component Broker client
application (object) performs to use Component Broker server objects.

Chapter 5, “MOFW Server Programming Model” on page 57 provides the server side details of the
Managed Object Framework, and explains the Component Broker server programming model. This section
explains how to:

� Implement business objects using the MOFW.

 Copyright IBM Corp. 1997, 1998 xv

� Map Component Broker objects onto existing applications and databases to achieve operational reuse.

Chapter 6, “MOFW Client Programming Model – Advanced Concepts” on page 83 provides additional
options and capabilities for programmers who are creating application objects.

Chapter 7, “MOFW Server Programming Model – Advanced Concepts” on page 105 provides additional
options and capabilities to be considered when creating managed objects. These advanced features build
upon the basics laid out in Chapter 5, “MOFW Server Programming Model” on page 57.

Chapter 8, “MOFW – ActiveX Client Programming Model” on page 143 tells how to access and update
Component Broker server objects from ActiveX/COM clients. Component Broker provides special support
for these applications.

Chapter 9, “MOFW - Java Client Programming Model” on page 157 replays the client programming model
described in Chapter 4, “MOFW Client Programming Model” on page 33; however, it is focused on
Java-CORBA clients and how business objects are accessed and used from a Java client.

Chapter 10, “Java Server Programming Model” on page 171 describes how to use Java to implement
managed objects that run in a Component Broker server.

Chapter 11, “Assembling and Installing Business Objects on AIX and Windows NT” on page 197
discusses how to use the Component Broker Application Development tools to build client and server
objects. This information is for those who want to go it alone, with command line tools. This chapter
includes the customizations necessary to install and run business objects on particular instance managers.

Appendix A, “Artifacts Produced in Building Objects” on page 269 lists the specifics of the Component
Broker object models and frameworks and provides summary documentation on their interfaces and
semantics. A brief overview of terminology and OOA/OOD concepts is included. This section is necessary
reading only for those interested in the mapping between object-oriented analysis (OOA) and
object-oriented design (OOD) and Component Broker concepts.

Appendix B, “Interface Definition Language” on page 271 discusses IDL topics including name scoping,
declarations, syntax, idlc and idl2com commands and the IDL-to-Java complier.

Appendix C, “C++ CORBA Programming” on page 299 discusses C++ topics including bindings, name
scoping, storage management, and binding restrictions.

Appendix D, “Unit Test Environment” on page 333 describes an environment supplied by Component
Broker that you can use to unit test business objects and applications.

 Documentation Conventions

The following conventions distinguish different text elements:

plain Window titles, folder names, icon names, and method names.

monospace Programming examples, user input at the command line prompt or into an entry field, user
output, and directory paths.

bold Menu choices, push buttons, check boxes, radio buttons, group-box controls, drop-down list
boxes, combo-boxes, notebook tabs, and entry fields.

italics Programming keywords, variables, and attributes, titles of information units, initial use of unique
terms, and emphasis.

The following icons are used to indicate platform-specific sections.

xvi Component Broker: Programming Guide

Denotes a section that applies only to the Windows 95 or Windows NT platform. Do
not interpret this symbol to denote that an equivalent AIX section exists.

Note: The Windows 95 platform only supports the Component Broker Java client.

Denotes a section that applies only to the AIX platform. Do not interpret this symbol
to denote that an equivalent Windows section exists.

Denotes a section does not apply to OS/390 Component Broker. Do not interpret
this symbol to denote that an equivalent section exists in OS/390 Component
Broker.

 Notation

Even though there is a large degree of commonality between the content of various object methods, there
is less agreement when it comes to the notations used to describe the content (that is, its form).

Throughout this document, the class diagrams use the Object Modeling Technique (OMT) notation
developed by James Rumbaugh, with the exception that it is distinguished between interface and
implementation inheritance.

Notations used in this document are:

 � Interface inheritance
 � Implementation inheritance
 � Association
 � Aggregation
 � Qualified association

There is explanatory text in the examples to further clarify the graphical Rumbaugh notation.

If you are already familiar with these notations, skip ahead to “State Transition Diagrams” on page xx or
“Data Flow Diagrams” on page xx.

 Interface Inheritance

Figure 1 shows that a child class inherits just the interface, but not the implementation, of a parent class.

Parent
Class

Child
Class

Figure 1. Class Inheriting Interface but not Implementation

 About This Book xvii

 Implementation Inheritance

The following notation shows that a child class inherits the implementation, not just the interface, of a
parent class:

Parent
Class

Child
Class

Figure 2. Class Inheriting Implementation and Interface

This notation is usually reserved for OOD models, as OOA models normally focus on semantics, and
therefore interfaces, rather than implementations.

 Associations

The notation for associations, sometimes referred to as by reference or uses-a relationships, is the
following:

X Y

X Y

X Y

X Y1+

X is associated with

X is associated with

X is associated with

X is associated with

0..1

0..n

1

1..n

Ys

Ys

Y

Ys

Source
Class

Target
Class

Figure 3. Associations Notation

 Aggregation

The notation for aggregations, which are sometimes referred to as containment or has-a relationships, is
the following:

xviii Component Broker: Programming Guide

X Y

X Y

X Y

X Y1+

X contains

X contains

X contains

X contains

0..1

0..n

1

1..n

Ys (by value)

Ys (by value)

Y (by value)

Ys (by value)

Containing
Class

Contained
Class

Figure 4. Aggregation Notation

 Qualified Association

A qualified association is a way to constrain the targets in a relationship without requiring that a special
subclass be created. The technique is to add an attribute to the relationship that can be considered to be
a unique identifier with respect to the source class.

X Y

X Y

X Y

X Y1+

X is associated with

X is associated with

X is associated with

X is associated with

0..1

0..n

1

1..n

Ys

Ys

Y

Ys

Source
Class

Target
Class

Figure 5. Qualified Association Notation

Sometimes the attribute used to constrain the relationship appears in the box on the relationship.

 About This Book xix

State Transition Diagrams

When an object exhibits a complex life cycle model, a simplified form of state-transition diagram (STD) is
used. This notation makes no distinction between initial and final states (because that can be ascertained
from the transitions); however, it separates the conditions from the actions, where the action is a method
on the object in question either from the static or recursively, the dynamic model as follows:

createMethod()

readMethod()

[condition]
updateMethod()

destroyMethod()State A State B

Figure 6. State Transistion Diagrams

When invoking the method on the object that can be assumed to be the trigger, no condition notation is
required on the diagram although some programmers include one to show the objects that can invoke the
method, and under what conditions, if any.

A loop back transition is no guarantee that a method is read-only as shown in the diagram. Of course, it
does not change the overall state of the object as shown in the diagram. A recursive dynamic model might
show a change of substate.

The method categorizations shown here are included as an introduction only. Their use within the
Component Broker programming model to enable optimistic service implementations are described in
Chapter 11, “Assembling and Installing Business Objects on AIX and Windows NT” on page 197.

Data Flow Diagrams

When the action in a transition, usually a method, is complex enough to warrant more than a simple text
explanation or some basic pseudo-code, relatively standard Yourdon DeMarco data flow diagrams are
used. The only difference is that objects appear as data source or sink objects, for example the box in the
following diagram:

Global Object

local object

Transform Transform

local
data flow

source
dataflow

sink
dataflow

Figure 7. Data Flow Diagrams

As the diagram shows, a data flow can be labeled or unlabeled, depending on whether the entire object is
used by the transform or not. Also, a data flow can be a read-and-write type data flow as required to
reduce the amount of clutter.

xx Component Broker: Programming Guide

The Component Broker Documentation

The following information is part of Component Broker:

� Help information is available from Component Broker product panels.

� The Component Broker online library can be viewed using a frames-compatible Web browser.

� Component Broker for Windows NT and AIX Quick Beginnings, G04L-2375 explains how to easily
create and verify a starter Component Broker environment. These instructions walk the user through a
typical server and client installation. Users can extend this configuration using the information in the
Component Broker for Windows NT and AIX Planning, Performance and Installation Guide .

� Component Broker for Windows NT and AIX Planning, Performance and Installation Guide,
SC09-2798 provides a comprehensive overview of the Component Broker environment, then guides
the user through planning considerations including capacity planning, performance tuning,
prerequisites, and migration. It also leads the user through installation options for all Component
Broker environments.

� Component Broker for Windows NT and AIX CICS and IMS Application Adaptor Quick Beginnings,
GC09-2703 provides a brief technical overview of the CICS and IMS application adaptor and guides
the user through its installation and configuration. Step-by-step instructions guide the user through
creating an initial CICS and IMS application using application development tools included in the
CBToolkit package.

� Component Broker for Windows NT and AIX Oracle Application Adaptor Quick Beginnings,
GC09-2733 provides a brief technical overview of the Oracle application adaptor and guides the user
through its installation and configuration. Step-by-step instructions guide the user through creating an
initial Oracle application using application development tools included in the CBToolkit package.

� Component Broker for Windows NT and AIX System Administration Guide, SC09-2704 provides
information about configuring and operating one or more hosts managed by Component Broker. It also
provides general information about using the System Manager User Interface.

� Component Broker Application Development Tools, SC09-2705 explains how to create and test
Component Broker applications using the tools provided in the Component Broker Application
Development Tools with a focus on common development scenarios such as inheritance and team
development.

� Component Broker Advanced Programming Guide, SC09-2708 describes the Component Broker
implementation for the CORBA Object Services and the Component Broker Object Request Broker
(including remote method invocation and the Dynamic Invocation Interface (DII) procedures), Session
Service, Cache Service, Notification Service, Interlanguage Object Model (IOM), and work-load
management (WLM).

� Component Broker Programming Reference, SC09-2810 contains information about the APIs available
to Component Broker application developers.

� Component Broker for Windows NT and AIX Problem Determinaion Guide, SC09-2810 explains how
to identify and resolve problems within a Component Broker environment using the tools provided with
Component Broker. The book includes information on installation problems, run time errors, debugging
of applications, and analysis of log messages.

� Component Broker Glossary, SC09-2710 contains terms and definitions relating to Component Broker.

� OS/390 Component Broker Introduction, GA22-7324 describes the concepts and facilities of
Component Broker and the value it has on the OS/390 platform. The audience is a knowledgeable
decision maker or a system programmer.

� OS/390 Component Broker Planning and Installation, GA22-7331 describes the planning and
installation considerations for Component Broker on OS/390.

 About This Book xxi

� OS/390 Component Broker System Administration, GA22-7328 describes system administration tasks
and operations tasks, as provided in the system administration user interface for OS/390.

� OS/390 Component Broker Programming: Assembling Applications, GA22-7326 provides information
for assembling applications using Component Broker on OS/390.

� OS/390 Component Broker Operations: Messages and Diagnosis, GA22-7329 provides diagnosis
information and describes the messages associated with Component Broker on OS/390.

xxii Component Broker: Programming Guide

 Chapter 1. Introduction

Component Broker is a client/server solution for object-oriented applications, in two respects:

� A deployed solution using Component Broker has a set of processes that serve objects to a set of
client applications. This logical, client/server process model can be implemented in a one, two, or
three tier client/server system, and a process may be both a client and a server.

� Object-oriented programming is client/server by nature. A server object provides an implementation of
an interface. Other client objects implement new functions using the interfaces and data provided by
server objects. An object may be a client of some objects and a server for others.

Due to the client/server nature of object-oriented applications, the Component Broker programming model
is divided into two sub-models, the client programming model and the server programming model.

Component Broker provides frameworks and classes that implement common functions needed to build
distributed object-oriented commercial applications. Some examples are transactions and a Naming
Service. Much of the value in Component Broker derives from these supplied services, which enable
developers to focus on their business logic and relieves them from the burden of implementing basic,
cross-application functions.

In addition to its pre-packaged services, Component Broker is extensible. End users, system integrators
(SIs) and independent software vendors (ISVs) can extend Component Broker by providing additional sets
of reusable services, or providing alternate pluggable replacements for the Component Broker services.
Component Broker can be extended in many ways, but the most important extensions are:

� Add new application adaptors. An application adaptor provides interoperability between Component
Broker objects and external environments such as DB2, CICS, and SAP. The application adaptor
provides frameworks and services that:

– Render or wrapper the external, non-object-oriented data and applications as Component Broker
server objects.

– Provide tailored implementations of Managed Object Framework and Component Broker Services
that interoperate with the services provided by the external system. For example, a Component
Broker application adaptor for DB2 provides an implementation of Object Transaction Services that
interoperates with the databases transaction services.

– Component Broker comes with a set of application adaptors. They do not support all external
environments. Therefore, customers, ISVs, and SIs can extend the capabilities of a Component
Broker server by implementing new application adaptors.

� Add new object services and frameworks that can be used by business objects. Some examples could
be frameworks or services for advanced transaction models or a business rules engine.

Component Broker is intended as an infrastructure or technical architecture which naturally supports
object-oriented applications produced through object-oriented analysis and design. This document explains
how Component Broker concepts are related to or derived from object-oriented analysis (OOA) and
object-oriented design (OOD) concepts.

Object-Oriented Application Development Paradigms

Object-oriented application development can be approached in the following ways:

Top-down
Modeling and analysis define the classes and behaviors that must be implemented.

 Copyright IBM Corp. 1997, 1998 1

Bottom-up
Existing applications and databases provide functions and data that must be wrapped through
encapsulating classes and instances.

Meet in the middle
A combination of top-down for new functions and bottom-up for reuse and incremental
reengineering of old applications.

The Component Broker programming model supports these scenarios.

Resulting
objects

less
flexibility

Functional
concerns

complete
flexibility

complete
flexibility

Implementation
concerns less

flexibilty

Figure 8. Degrees of Freedom During Application Development

The models can be characterized by their balancing of the concerns of the functional domain versus those
of the underlying implementation domain or design constraints. This balancing defines the degrees of
freedom possible during object-oriented analysis and design. Usually the degree of freedom depends on
the amount of legacy applications and databases involved along that dimension.

Typically, a given application of any complexity uses a mix of all three models.

Forward Engineering New Functional Requirements (Top-down)

Top-down development can be considered to be the ideal model for object-oriented applications because
objects directly derived from functional requirements are the goal. At a high level, the main steps in the
top-down process are:

1. Business Process Modeling (BPM) defines the application requirements and functions that must be
performed. This includes requirements specification and use case analysis.

2. Object-oriented analysis and object-oriented design uses a methodology and design guidelines to
produce an Object Model. The Object Model defines the relationships between classes, for example
inheritance, aggregation, and usage and the methods and attributes of the classes. Detailed
object-oriented analysis and design may also define state transitions and data flows. Finally, the model
may contain semantic metadata information that describes more details of the model and the
behaviors of classes. This metadata is used as the starting point for implementing the classes, and
may be the basis for code generation.

3. Object Implementation involves defining the classes in an implementation language such as C++,
Java, or Smalltalk. This step also involves implementing the objects as directly as possible in an
underlying database and the use of other object services.

2 Component Broker: Programming Guide

Implement Business
Function

Functional
concerns

OO Analysis
and Design

Implementation
concerns

Map into Database
and Applications

2

3

1

Figure 9. Top-down Development

The Component Broker programming model and tools support top-down development by:

� Loading Object Models produced by popular front-end BPM and OOA/OOD tools into the Component
Broker application development tools.

� Providing an Object Builder that eases the development of newly defined business objects that are
derived from the Managed Object Framework. The builder visually tools the Component Broker
programming model and automates the implementation of some MOFW framework methods by
generating code.

� Installing the new classes into an application adaptor to give the business objects access to object
services, including persistence. This includes generation of a database scheme for persistent objects
and emitting the implementation of methods and helper classes.

Reverse Engineering from the Legacy (Bottom-up)

Bottom-up development involves the composition of new applications from assembly and reuse of existing
functions and applications. One of the touted benefits of object-oriented programming is improved
productivity through reuse of existing classes. In many cases, however, a non-object-oriented legacy
application or database must be reused. When applied to object technology, this technique is often called
wrappering. That is, the objects developed are usually just thin wrappers around legacy code or data that
must be preserved in the new object-oriented application.

Develop
client applications

Identify
implementation
requirements

Functional
concerns

Implementation
concerns

Develop
wrapper
objects

2

1

3

Figure 10. Steps Involved in Reverse Engineering

When wrappering legacy data, the objects usually are little more than a set of public attributes, or get and
set methods, corresponding to a logical grouping of data, such as a row in a database table or record in a
file.

For legacy code, it is usually the case that multiple transaction programs share a given parameter that
tacitly identifies an underlying object. For example, a bank might have the following transactions:

� Create and open a checking account.

 Chapter 1. Introduction 3

� Close a checking account.
� Credit to checking account.
� Debit from checking account.
� Read and update taxpayer's Social Security Number for the account.

In this simple example, the checking account number effectively identifies an object. The existing
transactions are reused in the implementation of object methods. Transaction input and output parameters
are mapped onto object state data, and the parameters of object methods.

The term operational reuse is used to describe the wrappering and reuse of existing databases and
applications in the development of new object-oriented applications. For many readers of this document,
the concept of reusing data is obvious. Why do customers want to reuse applications, instead of having
the objects directly access the databases used by the old, legacy applications? There are two reasons for
application reuse:

� The existing applications embody a substantial investment, and it is too expensive to rewrite the
business logic. There are literally trillions of lines of existing application code which represents an
investment of billions of dollars. The old applications need to be supported anyway, at least for a
while, because not all client applications and terminals that use the legacy functions can be discovered
and updated.

� In principle, new business logic could directly access the data. For example, the
CheckingAccount::debit() method could directly update the database record. However, most apparently
simple applications, like the debit transaction, implement imbedded business rules and database
integrity constraints over multiple databases, and have side effects. Objects directly accessing the
underlying data must exactly implement these semantics. To do so effectively results in rewriting the
existing application, which is too expensive and would require ensuring consistent behavior over two
bodies of code.

4 Component Broker: Programming Guide

Checking
Apps

Savings
Apps

Mini Fund
Apps

Database Database Tier 3

Tier 1

Tier 2

Metadata
from

"Legacy"

Data Objects
Wrappers

Basic Business
Wrappers

Composed Business
Objects

Reuse
Framework

Assemble/Compose existing Business Objects into
composed Business Objects to build Portfolio

Client applications
use Basic and Composed Objects

Figure 11. The Operational Reuse Model

The bottom-up development process follows a well defined set of steps:

1. Wrapper existing applications and databases through encapsulating data objects. The Data Objects
provide a direct object-oriented rendering of the existing applications and databases.

2. Implement business objects that provide a veneer over the data objects to convert them into views
required by the object-oriented model.

3. Implement business objects that derive their state data and behavior from multiple or other business
objects. The composed objects provide a more natural view of the existing, legacy defined model and
provide a more natural object-oriented model for newly developed applications.

4. Develop new object-oriented applications.

The Component Broker programming model and supporting Application Development tools enable
bottom-up object-oriented development by:

 Chapter 1. Introduction 5

� Introducing the concept of application adaptors that provide interoperability between business objects
and existing legacy environments. For example, Component Broker comes with a Relational
Database application adaptor that enables object reuse of existing relational databases.

� Providing a set of application adaptor specific class libraries and frameworks that are supported by
Object Builder extensions to facilitate the construction of the wrapper objects from existing metadata.
For example, in the Relational Database application adaptor, this metadata is the database catalog
that defines tables and rows.

� Providing a framework and visual tool in the Object Builder for construction by parts based definition
and implementation of new business objects.

� Enablement of client applications that use server objects by generating client parts such as Java
Applets or ActiveX/COM components from the server class definitions.

Meet in the Middle, Incremental Development

The first two paradigms represent the extremes of new object applications and direct rendering of existing
applications. Most large development projects are a mix of both approaches. When top-down meets
bottom-up, what happens? A developer would be lucky if the classes developed bottom-up exactly
matched the interface and function requirements of the newly developed top-down model. In the entire
history of object-oriented application development, no one has ever been that lucky. To meld top-down
and bottom-up, it is necessary to create mapping objects that:

� Implement a facade that transforms the old object into one required by the new client objects.

� Are composed from existing bottom-up objects and reuse their implementation; can override existing
functions and can add new methods.

OO Analysis
and Design

People have an
attribute "age"

Expects to
see "age"

Expects
dateOfBirth

Uses dateOfBirth
to implement Age

Supports the
"age" interface

bottom-up

bottom-up
Person Object

Existing Database has
a "Person" table that has
a Date of Birth column

Client
Object

Old Client
Object

People
Facade

People have a
dateOfBirth attribute

Figure 12. Meeting in the Middle

This meeting in the middle problem is also present when new business processes and objects are added
to an existing object model. The new client objects defined by OOA/OOD often require changes or
extensions to the existing legacy server objects.

The developer could change the old objects, but the existing old client objects still require the interfaces
and semantics. So, as subsequent development occurs either top-down or bottom-up, the functional view
defined by the model begins to differ from the implementation view defined by what exists. An incremental
approach is required, which involves defining a mapping object with the correct interface. The
implementation of the mapping class uses composition to maximally reuse the functions of the old object.

Usually this approach makes heavy use of implementation inheritance and possibly delegation in an
attempt to reuse the work done before. The idea is to inherit (and implement) the interface of the objects

6 Component Broker: Programming Guide

corresponding to the new functional requirements and extend the implementation of the existing legacy
objects.

Identify
new

requirements Identify
legacy
objects

Functional
concerns

Implementation
concerns

Develop
mapping
objects

3

2

1

Figure 13. Meet in the Middle

Component Broker supports incremental, meet in the middle development by:

� Supporting both top-down and bottom-up development.

� Composing new classes from existing classes.

� Implementing the new class as an aggregate composed of an instance of the new class and an
imbedded instance of the existing class.

� Delegating behavior from the new classes onto the imbedded instance.

Combining the Approaches

Component Broker is designed to fully exploit all three development paradigms, with the following
considered to be a typical approach to migrating to and maintaining an object-oriented application:

1. Begin by bottom-up engineering the underlying legacy code and data into data objects and business
objects that are contained in application adaptors.

2. Top-down engineer pure object-oriented applications to implement new business behavior.

3. Install the new objects in an application adaptor to support their business behavior with object services
such as Concurrency Control, Transactions, Naming, Identity, and Persistence.

4. Use composition tools to build mapping and composed objects that join the bottom-up and top-down
classes.

5. Publish the public server classes to client systems by generating client parts that can be loaded into
client application development tools, for example, Java and Visual Basic. These client parts delegate
their business and service implementations onto the server objects.

Component Broker defines frameworks for supporting the previous tasks and application development
tools that facilitate using the frameworks.

Three-Tier Architecture Overview

Component Broker is based on a logical three-tier architecture. That is, the application design space is
separated into three tiers (or layers) that serve as the home, or server, for objects that encapsulate:

1. Client code and presentation (graphical user interface).

2. Business logic and supporting frameworks and object services.

3. Data access and supporting frameworks and object services.

 Chapter 1. Introduction 7

It is not within the scope of this document to detail the Component Broker architecture, but there are a few
points you need to know:

� The tiers are logical, not physical.

� N physical tiers are possible, given a logical client/server relationship, with the constraint that N is
greater than 0 and less than infinity.

Figure 14 on page 9 presents a conceptual overview of the types of objects used in the development of a
distributed Component Broker application. On the logical, tier-1 client, there are:

� View objects that provide the end-user interface interactions and mapping onto business objects.

� Client Application objects implement business logic specific to the client and integration with other
desktop applications, such as spreadsheets and document processors.

� Component Broker server objects are used on the client through proxy objects. A proxy supports the
interface of the server object, but implements the interface by using object remote procedure call
(RPC) to call the server object. Component Broker uses OMG's CORBA specification as its distributed
object infrastructure.

� The Component Broker client programming model also supports access to business objects in a
fashion that matches the client language and programming model. For example, Component Broker
provides support for wrappering Component Broker proxies with ActiveX/COM objects to facilitate their
use in Visual Basic applications.

On the logical tier-2 server, there are:

� Application objects (AOs) that implement server applications accessed from clients. Application objects
are special kinds of business objects that focus on business logic and usage of other business objects
analogous to the role performed by some application programs today. The AOs implement concepts
such as processes or tasks defined by OOA/OOD. They implement business logic that is not properly
modeled as a method on individual business objects. AOs are also the mechanism by which client
logic can be moved onto a server to support thin clients.

� Business objects that are built from other business objects and implement a new view or
transformation of the existing objects. These business objects transform the existing object model into
new concepts that more naturally match the real world and OOA/OOD.

� Business objects that transform data objects to match the requirements of the object-oriented design.

� Data objects implement a direct object-oriented rendering of existing applications and databases.

All server objects are derived from the Managed Object Frameworks, are maintained in an application
adaptor and use Component Broker frameworks and services.

8 Component Broker: Programming Guide

View
Object

View
Object

Client
Application

Server
Application

Proxy

DO

BO

Proxy

Composed Business
Object

Proxy

DO

BO

User

Client
Smart

Proxies

Client

Tier 2

Server

Tier 3

Application Adaptor
Object Services

Application Adaptor
Object Services

Existing
Applications and

Data

Existing
Applications and

Data

Figure 14. Object Topology

 Chapter 1. Introduction 9

Programming Roles and Responsibilities

The Component Broker programming model defines the following roles and set of tasks performed by
each role:

� The Data Object Builder:

– Implements the data objects that wrapper existing applications and data for bottom-up
development.

– Implements the data objects and scheme definitions that provide persistence and services for data
objects that support state data introduced by newly-defined top-down business objects.

– Implements the data objects in an application adaptor

� The Business Object Builder:

– Implements business objects that map data objects onto the required object-oriented model.

– Implements business objects that provide aggregate interfaces or views over other business
objects. A simple example is implementing a Portfolio class that provides functions for sets of
Checking and Savings objects.

� The Application Object Builder implements business processes or tasks on the server by scripting
behavior over multiple business objects.

� A Service Implementor extends the basic Component Broker server by adding new frameworks and
object services.

� An Application Adaptor Implementor extends Component Broker by enhancing the functions of an
existing application adaptor, or extends a Component Broker server by adding a new application
adaptor.

� The Client Part Provider generates and implements smart proxies for specific client environments.

� The Client Programmer builds client side applications by using Component Broker proxies and smart
proxies.

� The Interface Builder develops an end-user interface using proxies and client applications.

� The Application Installer packages sets of client and server classes into application DLLs or sets of
Java Applets, and configures and installs the applications.

Programming Languages and Conventions

This section discusses the language options for Component Broker Programming, and conventions used
in examples in this document.

Interface Definition Language

The primary method for defining Component Broker managed objects is the OMG Interface Definition
Language (IDL). OMG IDL is a distributable, language-neutral form for defining interfaces, and can be
mapped into almost any object-oriented language and many non-object-oriented languages.

The specific version used is CORBA 2.0. For more information about the syntax, see Appendix B,
“Interface Definition Language” on page 271.

10 Component Broker: Programming Guide

IDL

Native Language
Usage Bindings

Native Language
Implementation Template

Implementation
Added

ORB
Functions

Proxy

Using
Object

Server/Impl
Objects

Compile

Compile
Use

Emitters/Generators

Figure 15. IDL, Usage and Implementation

Figure 15 is an overview of the relationship between IDL and application development languages. Object
Providers use IDL to define the interfaces to their objects. The IDL may be directly defined by the Object
Provider or may be produced under the covers in application development tools. Code emitters and
generators produce the following:

� A Usage Binding that provides a native, client language rendering of the IDL. For example as a C++
class or Java Interface. The Usage Binding is also used to generate a proxy object that uses
delegation to map the interface onto the server object providing the implementation.

� An Implementation Template that provides a native, server language class template into which method
behavior can be inserted, for example, by editing the file and adding source code. Adding the behavior
to the Implementation Template can be done in a tool.

� Implementation objects such as skeletons and stubs may also be emitted and compiled by the
application development tools, if the client and server are in different processes, or in different
languages. These implementation objects provide the functions necessary to make inter-language calls
and remote method execution.

One often overlooked point about IDL is that all components in an IDL interface specification are
considered to be just that - interfaces. Even attributes in IDL are a shorthand for get and set methods or
just get methods for read-only attributes. There is no requirement that an underlying instance variable with
the same name must exist.

This separation of interface from implementation is one key to understanding how a language which
supports multiple inheritance, a construct not supported in all languages, can be considered to be
language neutral.

 Chapter 1. Introduction 11

 Java

Java is considered by some to have combined the best features of Smalltalk-like languages (such as a
well defined virtual machine interpreter with garbage collection) with those of C++ (the ability to drop out of
pure objects for primitives and compiled native methods to get performance).

Component Broker provides support for using Java to develop client applications and server objects, and
provides additional value over basic Java by supporting Java as a client application language that has
access to Component Broker object functionality from a remote process, and supporting C++ to Java
cross-language calls.

 C++

Component Broker provides support for developing client and server applications in C++. Component
Broker is also extensible, and supports the addition of Application Adaptors and Object Services, as well
as tailoring of existing services and application adaptors. C++ is the language initial versions of
Component Broker supported for extending Component Broker in these areas.

Other Languages (Windows Only)

Component Broker client applications can be developed in any language for which there are CORBA IDL
Usage Bindings. The Component Broker application development tools also emit ActiveX/COM interfaces
that wrap the CORBA Usage Bindings, which enables Component Broker client development in other
languages such as Visual Basic.

 Naming Conventions

Throughout this document and regardless of the language used, the class diagrams and code examples
use the VisualAge C++ naming conventions with an additional convention that a class name is assumed to
refer to an interface only (not an implementation class), unless it has a suffix of Impl. Therefore, Object as
shown in the following figure refers to an interface, but ObjectImpl refers to an implementation (note the
use of the interface inheritance symbol):

Object

ObjectImpl

Figure 16. Naming Conventions

The “I” prefacing the interfaces and implementation of Component Broker Objects stands for IBM. All of
the interfaces provided as part of Component Broker begin with “I.”

Throughout this book and the rest of Component Broker, there are several conflicting method naming
conventions. CORBA uses a convention that separates words with an underscore and uses lowercase
while the convention used for Component Broker methods is mixed-case method and class names with no

12 Component Broker: Programming Guide

underscores between words. The only exception to this is when Component Broker extends CORBA
interfaces with related methods. These are introduced using CORBA conventions.

 Coding Conventions

Coding conventions are beyond the scope of this book. However, material related to this topic is
presented in Appendix B, “Interface Definition Language” on page 271 and in Appendix C, “C++ CORBA
Programming” on page 299.

 Another Roadmap

The rest of this book provides you with the information necessary to write applications that use business
objects, and to create, test, and install new business objects.

If you need to write C++ CORBA client applications that use a minimum set of the Component
Broker-supplied client interfaces to business objects, read Chapter 4, “MOFW Client Programming Model”
on page 33. Then see Chapter 6, “MOFW Client Programming Model – Advanced Concepts” on page 83
for additional ways to work with managed business objects in Component Broker.

The basics of developing business objects can be found in Chapter 5, “MOFW Server Programming
Model” on page 57. This describes the basic abstractions that are necessary to build business logic and
augment it with the necessary logic to be supported by the server.

If you want to develop business objects using Java, see Chapter 10, “Java Server Programming Model”
on page 171.

Advanced topics regarding business object development are discussed in Chapter 7, “MOFW Server
Programming Model – Advanced Concepts” on page 105.

If the client application requirements specify the use of Java clients, then see Chapter 9, “MOFW - Java
Client Programming Model” on page 157. If the client application requirements specify the incorporation of
ActiveX components into the client application, then refer to Chapter 8, “MOFW – ActiveX Client
Programming Model” on page 143.

When a set of business objects and associated applications have been developed, the next step in the
development process is unit testing. This activity is described for client applications and business objects
in Appendix D, “Unit Test Environment” on page 333.

The final step is to assemble and install the business objects and associated applications. A detailed
description of this process can be found in Chapter 11, “Assembling and Installing Business Objects on
AIX and Windows NT” on page 197.

Select and read the chapters pertaining to the roles and responsibilities that you are required to do.
Application programmers will take one path, business object builders will take another. Each path includes
options depending on how much complexity you desire (or require), and how many Component Broker
systems capabilities are needed in your particular solution.

 Chapter 1. Introduction 13

14 Component Broker: Programming Guide

Chapter 2. Personal Life Insurance Application Example

One effective way to illustrate the programming model is through an actual example. For this guide, a
Personal Life Insurance Application is used because it is a domain with which most readers are familiar
and is complex enough to cover all of the analysis concepts and programming model concepts.

The scenario behind this example is as follows: an insurance company which has been selling business
liability insurance decides to go into the personal life insurance market. The company needs new
applications to support this new business opportunity, and has decided to develop new object-oriented
applications. The new application must leverage a set of existing applications and databases.

The top-down model is presented first, starting with the object-oriented model for the new application and
describing the new applications. Then, the constraints imposed by operational reuse of an existing set of
applications (CICS Transactions) and databases (DB2 Tables) is described.

The remaining chapters in this document use this example to explain the programming model, as the
basis for sample code, and to demonstrate the usage of tools.

The Object Model (Top-down)

Figure 17 on page 16 presents the object model for the new insurance application. The model contains
the following classes and relationships:

� The Person object contains information known about people, some of whom may be Customers or
Beneficiaries. The insurance company has information about people who are neither Customers nor
Beneficiaries. This information was obtained from purchased lists (for example, magazine subscription
lists) and other demographic services. The Life Insurance Application ensures that all Customers and
Beneficiaries are in the Person database, and updates the database when necessary.

� The Customer object represents information and functions known for Customers of the insurance
company. In the scenario, this information was obtained separately from the Person database, and
contains separate information. The Customer information was built during years of business, while the
Person database was recently acquired. A Customer is associated with an Agent.

� An Agent is associated with zero or more Customers. The Agent is a point of contact for the Customer
and receives commission payments.

� A PolicyHolder is both a Customer and a Person, and can have from zero to many Policies. The new
object-oriented application enforces the rule that both Customer and Person information must exist for
a PolicyHolder. Therefore, when new Policies are created, or existing Policies are modified or have
claims processed, any missing information is obtained.

� A Policy is owned by one PolicyHolder; it can have zero or more PayoutFractions, with one per
Beneficiary.

� A PayoutFraction is associated with one Beneficiary and one Policy. The PayoutFraction defines the
percentage of the Policy's value that is paid to the Beneficiary.

� A Beneficiary is a kind of Person that may hold interests in zero or more Policies (through a
PayoutFraction).

� A Claim is associated with a Policy. It represents the request for payment for a Policy, and the state
and resolution of this request.

In the terminology of “Three-Tier Architecture Overview” on page 7, the objects described in Figure 17 on
page 16 are business objects.

 Copyright IBM Corp. 1997, 1998 15

Customer

custName
sales

addNote()
getNote()
listNotes()

Agent

commissions
percent
pendingPaycheck

listCustomers()
addCustomer()
delCustomer()
payCommission()
findCustomerByID()

Claim

date
state
policy
reason

approve()
deny()
pay()

Beneficiary

claimPayments

addInterest()
delInterest()
listInterests()

Person

PayoutFraction

name
address

fraction
claimPayments

PolicyHolder

Policy

addPolicy()
listPolicies()

amount
premium
claimsPaid
premiumsPaid
pendingClaims

listBeneficiaries()
addBeneficiary()
delBeneficiary()
getBeneficiary()
changeFraction()
makeClaim()
delClaim()
getClaim()
listClaim()
cancel()
payPremium()
payClaim()

customers

agent

beneficiaries

policy

policies
insured

interests
beneficiary

Figure 17. Top-down Object Model

The method and attribute descriptions for each of these objects begins in “Model Details” on page 19.

The Application Model (Meet in the Middle)

In addition to the object-oriented model, the new line of business needs a set of Applications or Processes
that implement tasks and functions for users of the Object Model. These Applications implement functions
that transform the state of the Object Model by scripting task behavior over multiple business objects.

The Applications or Processes for the scenario are:

CreatePolicy
This application creates a new Policy, and ensures that:

� The Customer exists and is in the Person database.
� All Beneficiaries exist and are in the Person database.
� All PayoutFractions are in the range 0 to 100%, and that their sum is 100%.
� Commissions are paid to Agents.

16 Component Broker: Programming Guide

ModifyPolicy
This application modifies a Policy by modifying:

� Attributes of the Policy, for example, Value.
� The PayoutFractions for a Policy, and ensuring that the fractions satisfy the constraints

above.
 � The Beneficiaries.

CreateCustomer
This application creates a new Customer object, and updates the Person database if
necessary. This application associates an Agent with the new Customer.

ModifyCustomer
This application updates information about a Customer.

CreateBeneficiary
This application creates a new Beneficiary, and updates the Person database if necessary.

ModifyBeneficiary
Modifies information about a Beneficiary.

ProcessClaim
This application enters claims, moves a Claim through the states of Entered, Pending and
Denied Approved and Paid. When a Claim is Approved, the Policy, Claim and PayoutFractions
are marked as Paid.

In the terminology of “Three-Tier Architecture Overview” on page 7, the objects described previously are
application objects.

The scripts for these applications are presented in “Applications” on page 26.

Clearly, a truly useful Life Insurance Application must have a richer set of functions, but this set is simple
enough for illustrative purposes and covers the main Component Broker programming model concepts.

Design Model (Bottom-up)

Figure 18 on page 18 presents the “Design Model” or constraints on the new object-oriented application.
These constraints and design points are:

� The Person class is defined by Operational Reuse of an existing relational database. The Person
class is implemented in an object server that front-ends this class.

� There is an existing CICS mainframe based application Customer Management Application that is
wrapped by the Customer and Agent classes. These classes are implemented in an object server.

� The Policy, PolicyHolder, Claim, PayoutFraction and Beneficiary classes are new objects whose state
data is maintained in a newly defined relational database. In contrast to Person, the state data of the
classes defines the database scheme instead of the database scheme defining the state of the
classes. There are many possible choices for the persistence mechanism for new classes. Customers,
ISVs and SIs are expected to expand the basic Component Broker solution by adding and extending
application adaptors.

� The PolicyHolder class is also composed from an instance of Person and an instance of Customer
(represented by the dotted line in Figure 18 on page 18).

� The Beneficiary class is composed from an instance of Person.

� The applications CreatePolicy, ModifyPolicy, CreateCustomer, ModifyCustomer, CreateBeneficiary,
ModifyBeneficiary and ProcessClaim are implemented on a server.

 Chapter 2. Personal Life Insurance Application Example 17

� Agents and company employees use a GUI (Graphical User Interface) or a Web Browser to view
business objects and execute applications. There may also be a set of thick clients that use the
Applications and business objects.

Existing CICS
based Customer

Management App

Policy
Holders

Beneficiaries

Customer

Agent

Policies

Payout
Fractions

Claims

Process
Claim

Modify
Customer

Modify
Policy

Create
Beneficiary

Create
Policy

Create
Customer

Modify
Beneficiary

New DB2 Database

PolicyHolder Table
Claims Table
Policies Table
PayoutFraction Table
Beneficiary Table

Existing
Person DB

in DB2

Person

GUI Thick
Client

Application Server

Access
Business
Objects

Figure 18. Design Model

The existing applications place some constraints on the object model. For example, both PolicyHolder and
Beneficiary subclass from Person. Because there are people who are neither PolicyHolders or
Beneficiaries, and because the classes are maintained on different servers, the PolicyHolder and

18 Component Broker: Programming Guide

Beneficiary classes support the Person interface, but implement this interface through composition and
delegation onto instances of Person.

In “Design Model (Bottom-up)” on page 17, there are details on the CICS transactions to be reused, and
the scheme for the Person database. The scheme for the new databases is defined by the new object
model, and the database definition is explained as part of the programming model in Chapter 4, “MOFW
Client Programming Model” on page 33 and Chapter 5, “MOFW Server Programming Model” on page 57.

 Model Details

This section provides the details of the Object Model, Application Model and the existing CICS Customer
Management Application and Person relational database.

 Object Model

Object Model includes the following topics:

 � “Object Identity”
 � “Agent”
� “Beneficiary” on page 20
� “Customer” on page 21
� “PayoutFraction” on page 21
� “Person” on page 22
� “Policy” on page 22
� “PolicyHolder” on page 24
� “Claim” on page 25

 Object Identity

One of the most important concepts in an object-oriented model is Object Identity. The Identity of an
object and its class uniquely identifies an instance of a class. Identity is a critical concept in the
Component Broker programming model and for every class there must be a combination of attributes that
uniquely identifies an instance of the class. For example, for the Person class, the unique ID is:

 (ssNo, name)

In many cases, the ID must be explicitly defined as an attribute of the object, because no combination of
attributes can be guaranteed to be unique. Where a class does not have an explicit ID field, the set of
attributes that defines identity is explained.

The Component Broker model does not require that the Identity attributes be a public part of an interface
and usable by clients. Identity is needed by Component Broker application adaptors, and to support the
OMG Identity Service.

Component Broker introduces the notion of Keys in the programming model to assist in establishing
identity and maintaining unique access paths to the business objects. See “Implementing the Primary Key
Class” on page 73 for further information.

 Agent

The Agent object is reverse-engineered from the existing CICS based Customer Management Application.
This object serves as a point of contact for a Customer, and therefore maintains a list of associated
customers, as shown in the overview. The following IDL shows the next level of detail:

 Chapter 2. Personal Life Insurance Application Example 19

 interface Agent

 {

readonly attribute float commissions;

attribute string name;

readonly attribute long id;

 attribute float pendingPaycheck;

 attribute float percent;

void addCustomer (in Customer customer, in float bonus);

void removeCustomer (in Customer customer);

Customer findCustomerByID (in long customerNo);

 Iterator listCustomers();

void payCommission (in float amount);

 }

Attributes commissions
The total commissions that have been paid to the Agent this year (does not
include pendingPaycheck). This is a read-only attribute.

name
The name of the Agent.

id The ID of the Agent.

pendingPaycheck
The total earned commissions that have yet to be paid to the agent.

percent
The current percentage the Agent receives as a commission.

Methods addCustomer
Adds the Customer to the Agent's list of customers and gives a "signing" bonus
by incrementing the pendingPaycheck attribute.

removeCustomer
Deletes the Customer from the Agent's list of customers.

listCustomers
Lists and iterates through the Customers associated with a given Agent.

findCustomerByID
When a Customer's ID is passed, returns a pointer to the Customer object, if the
Agent is associated with this Customer. It returns NULL if the Agent does not
manage the Customer.

payCommission
Pays the appropriate commission percentage to the Agent on the amount
specified, incrementing the pendingPaycheck attribute.

 Beneficiary

The Beneficiary is a new object added for this Life Insurance Application. It inherits from Person and adds
the association to the PayoutFractions shown in the overview. The IDL follows:

interface Beneficiary : Person

 {

attribute float claimPayments;

readonly attribute long id;

void addInterest (in PayoutFraction interest);

20 Component Broker: Programming Guide

void removeInterest (in PayoutFraction interest);

Iterator listInterests ();

 }

Attributes claimPayments
The total amount of claims paid to the Beneficiary across all interests in all
Policies.

id The ID.

Methods addInterests
Adds the "interest" in the form of a PayoutFraction to the Beneficiary's list of
interests. That is, this method updates the Beneficiary to reference the
PayoutFraction for a Policy.

removeInterests
Deletes the interest in a Policy.

listInterests
Checks on the interests a Beneficiary may have in various Policies.

 Customer

The Customer, like Person and Agent, is an object reverse engineered from an existing application. As
with Agent, this class is backed by an existing CICS Customer Management Application.

 interface Customer

 {

attribute Agent agent;

attribute string custName;

attribute float sales;

readonly attribute long customerNo;

attribute string ssNo;

 }

Attributes agent
The current Agent in charge of the Customer account.

custName
The name of the Customer.

sales
The total sales accrued by the Customer, that is, the total yearly premiums paid
by this Customer.

customerNo
The unique customer ID.

ssNo
The Social Security number of the customer.

 PayoutFraction

The PayoutFraction is a new class added especially for this application. The fact that it is attributes only
(for a forward-engineered object) is an indicator that it is really more of a “link attribute” (in the manner of
Rumbaugh) than a first class object. The IDL follows:

 Chapter 2. Personal Life Insurance Application Example 21

 interface PayoutFraction

 {

readonly attribute Beneficiary beneficiary;

readonly attribute Policy policy;

attribute float claimPayments;

attribute float fraction;

 }

Identity The Object Model allows only one PolicyFraction per pair of Beneficiary and Policy.
Thus, the value of these two attributes uniquely identifies the PayoutFraction.

Attributes beneficiary
The Beneficiary who is to be paid the specified fraction of the Policy amount.

policy
The Policy in which a Beneficiary has a fractional interest.

claimPayments
The total amount of claim payments made to the Beneficiary for this Policy.

fraction
The fraction of any claim that is to be paid to the specified Beneficiary.

 Person

Person represents another reverse-engineered object, this time from an existing relational database. In the
example, it is attributes only. However, new business logic could be added to the class.

 interface Person

 {

readonly attribute string name;

attribute string street;

attribute string town;

readonly attribute string ssNo;

 }

Identity A Person is uniquely identified by:

 (ssNo, name)

Attributes name
The name of the Person.

street
The street number and name, for example:

3ð Saw Mill River Road

town
The name of the town.

ssNo
Social Security Number.

 Policy

The following IDL represents its “static” state (from the Static model), that holds regardless of the dynamic
state:

22 Component Broker: Programming Guide

 interface Policy

 {

readonly attribute PolicyHolder insured;

readonly attribute long policyNo;

 attribute float amount;

 attribute float premium;

 attribute float claimsPaid;

 attribute float premiumsPaid;

 attribute float pendingClaims;

boolean addBeneficiary (in Beneficiary beneficiary, in float fraction);

void removeBeneficiary (in Beneficiary beneficiary);

Iterator listBeneficiaries ();

Beneficiary getBeneficiary (in long id);

boolean changeFraction(in Beneficiary beneficiary,in float fraction);

void addClaim (in Claim Claim);

void removeClaim (in Claim Claim);

iterator listClaims ();

Claim getClaim (in long claimNo);

 void cancelPolicy();

void payPremium(in float amount);

void payClaim(in float percent);

 }

Attributes insured
The PolicyHolder who is insured by this Policy. This attribute is read-only.

policyNo
The ID of the Policy.

amount
The total amount of the Policy, that is, the maximum amount for which the
PolicyHolder is entitled to make claims.

premium
The amount that the Policy Holder is obligated to pay each year in order to keep
the Policy In Force.

claimsPaid
The total amount of claims that have been paid so far against the Policy. It is
used to determine when the Policy has been paid off, and is also useful in ROI
calculations.

premiumsPaid
The total amount of premiums paid against the Policy over its lifetime. This
figure is useful for ROI calculations.

pendingClaims
The amount of requested claims still left to be paid to the Beneficiaries if claims
are approved.

 Chapter 2. Personal Life Insurance Application Example 23

Methods addBeneficiary
Adds a Beneficiary to the Policy with the given fractional amount using a
PayoutFraction object.

removeBeneficiary
Deletes the PayoutFraction from the Policy's list of beneficiaries and the
Beneficiary's list of interests.

listBeneficiaries
Lists the PayoutFractions that show the Beneficiaries "interested" in this Policy.

getBeneficiary
Gets a Beneficiary by ID, if associated with this Policy.

changeFraction
Changes the PayoutFraction associated with a given Beneficiary.

addClaim
Associates a claim against the Policy by incrementing the pendingClaim attribute
and creating a linkage between the Claim and Policy.

removeClaim
Removes the association between a Policy and Claim.

listClaims
Enables iteration through a set of Claims.

getClaim
Gets a claim by ID.

payPremium
Pays a specified amount towards premiums by incrementing premiumsPaid,
either against the Policy In Arrears, or In Force. The Policy remains In Force or
is placed In Arrears depending on whether the premium payments are up to
date. In any event, premiums are not paid except while the Policy is In Force or
In Arrears.

payClaim
Records that a Claim was paid against this Policy.

cancelPolicy
Moves the Policy into the cancelled state.

 PolicyHolder

A PolicyHolder represents the Customer of a Personal Life Insurance application. Most of its data comes
from the Customer and Person objects, and only the additional behaviors associated with a PolicyHolder
are shown here.

interface PolicyHolder : Customer, Person

 {

void removePolicy (in Policy policy)

void addPolicy (in Policy policy);

Iterator listPolicies (in string query);

Policy getPolicy (in long policyNo);

 }

Identity Policy Holder derives its identity from Customer.

24 Component Broker: Programming Guide

Methods removePolicy
Removes a policy associated with a PolicyHolder.

addPolicy
Allows a new Policy to be associated with the target PolicyHolder. At present, the
system allows for multiple Policies to be associated with a single PolicyHolder.

listPolicies
Allows multiple Policies associated with a given PolicyHolder to be sequentially
accessed through an iterator.

getPolicy
Gets a Policy by its ID, if associated with this Policy Holder.

 Claim

A Claim tracks the state and processing of a request for payment on a Policy. Its interface is:

 interface Claim

 {

readonly attribute Policy thePolicy;

readonly attribute long claimNo;

readonly attribute string date;

 attribute enum state;

 attribute string explanation;

void approve (in string explanation);

void deny (in string explanation);

void pay ();

 }

Identify The claim is identified by the claimNo.

Attributes thePolicy
The Policy for the Claim.

claimNo
The unique Claim number.

date
The date the Claim was created.

state
The current state of the Claim. The state transition diagram for the Claim is
shown in Figure 19 on page 26.

explanation
Additional information about the Claim.

Methods approve
Mark the Claim approved and set an explanation or comment.

deny
Mark the Claim denied and set an explanation.

pay
Mark the claim as Paid.

 Chapter 2. Personal Life Insurance Application Example 25

Created

Denied

Approved

Paid

Figure 19. Claim States

 Applications

This section provides the pseudo-code and business logic for the applications.

Notes:

1. These applications are conversational, and involve many interactions between the end-user and the
running application.

2. These applications are transactions and follow typical transaction guidelines for data integrity. On
Commit, all databases are updated. On Abort, all changes are removed.

 Create Policy

An Agent uses this application to create a new Policy. This application is defined by the following rules:

Pre-conditions � The PolicyHolder must exist

Post-conditions of
Successful Completion

� There will be a Person object for the Customer.

� The Policy exists and has all attributes set to consistent values, that is, policyNo
and PolicyHolder.

Invariants The Customer is unchanged.

Application Logic 1. The PolicyHolder is identified.

2. A Policy is created and the attributes are set.

 ModifyPolicy

Pre-conditions The Policy must exist.

Post-conditions of
Successful Completion

� The Policy exists and has all attributes set to consistent values, that is, policyNo
and PolicyHolder.

� The PolicyHolder exists and is in a consistent state.

Application Logic 1. The Policy is identified.

2. Policy attributes are updated.

 Create Customer

Pre-conditions The Customer must not exist.

Post-conditions of
Successful Completion

� Customer exists and has attributes set.
� Person exists and has attributes set.

26 Component Broker: Programming Guide

Application Logic 1. The Customer's name is obtained

2. A Customer may or may not have an entry in the Person database. The
Customer and Person classes are tied together by a note associated with the
Customer through the Customer Management Application.

3. If the Customer or Person is missing, it is created.

 Modify Customer

This application enables modification of a Customer and the related Person information. It creates the
Person if one does not exist and creates the binding between Customer and Person if one does not exist.

 Create Beneficiary

Pre-conditions The Beneficiary must not exist

Post-conditions of
successful completion

� The Beneficiary exists.

� The Person exists and is linked with the Beneficiary.

Application Logic 1. The Beneficiary's name is entered.

2. The Beneficiary is created if it does not exist.

3. The Person is created if it does not exist.

 Modify Beneficiary

This application updates the Beneficiary and Person objects.

 Process Claim

Pre-conditions � The Policy must exist.
� The PolicyHolder exists.
� All Beneficiaries exist.

Post-conditions of
Successful Completion

� If this is a new Claim:
– A Claim is created.
– The Claim is associated with a Policy.

� If the Claim exists and is in the Created state:
– The Claim may be Approved with an explanation.
– The Claim may be Denied with an explanation.

Invariant Existence of objects is unchanged.

Application Logic 1. If this is a new Claim:
a. The Policy is identified.
b. A Claim is created.
c. The Claim state is Entered.
d. The Claim and Policy are associated.

2. If an existing Claim is being processed:
a. The Claim is retrieved:

� If the claimNo is known, the Claim is retrieved by number.
� If the claimNo is not known, the Policy is retrieved and the Claim is

retrieved by iterating through the associated claims to find the Claim with
the desired properties.

b. If the Claim is Entered, it may either be Approved or Denied.
c. If the Claim is Approved, it may be Paid.
d. If the Claim is Paid or Denied, it may only be viewed.

 Chapter 2. Personal Life Insurance Application Example 27

 Key Observations

The main points of this example are to demonstrate that:

� Both state data and attributes of objects can be derived from the in/out parameters of existing
applications.

� Many object methods can be mapped onto existing applications.

� Reuse of applications may often involve complex mappings between transactions, menu states, and
screens. Often, the mapping is simple and almost one-to-one between methods and transactions and
attributes and the fields on display or update screens.

� Even if the data is not maintained in an RDBMS, the application usually provides support for limited
query through selected attributes and iteration through the results. This is most often accomplished by
simple query operators on keys.

28 Component Broker: Programming Guide

Chapter 3. The Managed Object Framework

This chapter introduces the Managed Object Framework (MOFW) and its positioning within Component
Broker. A systematic approach to explaining the details of the MOFW follows in succeeding sections.

The MOFW represents the set of interfaces, implementations, and conventions that must be followed in
order to create and use business objects in Component Broker. The MOFW provides capabilities above
and beyond those present in the basic CORBA ORB and object services defined by OMG. MOFW also
provides simplified interfaces to some of the basic CORBA interfaces. The MOFW is not the only set of
interfaces supported by Component Broker. Component Broker allows for additional frameworks which can
be used by business objects and client programs.

Business Objects and
Client Programs

Business Objects and
Client Programs

Component
Broker

Frameworks

Managed Object Frameworks (MOFW)

CORBA ORB and COS Services

Figure 20. Component Broker and MOFW Framework Overview

As Figure 20 shows, business objects and client programs that use business objects can be written
directly to the MOFW interfaces. The MOFW is not a complete layer over the CORBA services. It adds
usability and function only in those places key to providing an integrated object server. Sometimes the
existing CORBA ORB and object services provide what is needed to implement the Component Broker
server vision. In some cases, the Component Broker Frameworks provide simpler access to the server.
The object provider rather than the applications programmer chooses the interfaces. The Component
Broker Frameworks are not, however, a complete encapsulation of the MOFW interfaces. Be careful when
mixing these sets of interfaces together. This document provides guidance on which combinations of
Component Broker Frameworks and the MOFWs make sense.

Examples of the abstractions found in the Managed Object Frameworks (MOFW) include:

 � IManagedClient::IHome
 � IManagedClient::IManageable
 � IManagedLocal::ILocalOnly
 � IManagedLocal::INonManageable
� IManagedLocal::IKey, IUniqueKey and IPrimaryKey

 � IManagedLocal::IHandle
 � IManagedServer::IManagedObject

 Copyright IBM Corp. 1997, 1998 29

 � IManagedServer::IManagedObjectWithDataObject
 � IManagedServer::IManagedObjectWithCachedDataObject
 � IManagedServer::IDataObject
 � IManagedCollections::IReferenceCollection
 � IManagedCollections::IKeyedReferenceCollection
� IManagedCollections::IIterator and IManagedCollections::IMIterable

Managed and Non-Managed Objects

There are two kinds of objects in Component Broker, those that are managed by a Component Broker
server and those that are not. All of the objects that client application programmers and business object
builders deal with descend, directly or most often indirectly, from either IManagedLocal::ILocalOnly or from
IManagedClient::IManageable. Component Broker has these two specific kinds of objects to ensure a
minimum footprint client, separate server-only objects from those that may exist on clients and servers,
and, most importantly, simplicity for the programmer. No extra methods need to be used or implemented
based on this separation.

Those objects that are to be local-only are descendants of ILocalOnly or INonManageable. Those objects
that are to be accessed remotely and managed by a Component Broker server are subclasses of the
IManageable interface. Figure 21 shows the basic relationship between these MOFW interfaces and the
CORBA object services interfaces.

IdentifiableObject
(from CosObjectIdentity)

CORBA::Object
(from Component Broker)

ILocalOnly
(from IManagedLocal)

LifeCycleObject
(from CosLifeCycle)

Streamable
(from CosStream)

INonManageable
(from IManagedLocal)

IManageable
(from IManagedClient)

Figure 21. MOFW Basic Abstractions

The INonManageable interface comes from a module named IManagedLocal while the IManageable
interface comes from the IManagedClient module. IManagedLocal, is explained in “Configuring Managed
Objects into Servers” on page 254. The Local-Only Development Process contains other abstractions that
are local-only objects. While these are not to be accessed remotely, Component Broker made these
descendents of CORBA::Object and treats them as much like CORBA objects as is practical for local-only
objects. INonManageable extends ILocalOnly by introducing methods that assist developers in making
“stringified” versions of ILocalOnly objects.

30 Component Broker: Programming Guide

IManagedClient is a set of abstractions that business object clients need to understand to some degree,
and interact with when writing applications that use Component Broker business objects. Object providers
subclass from, and often implement, abstractions in IManagedClient while client and applications
programmers call some of the methods introduced by these abstractions.

Both of the key abstractions shown at the bottom of Figure 21 on page 30 also get some additional
interface from CORBA object services. Both INonManageable and IManageable are descendants of
CosStream::Streamable, implying that they are also Identifiable objects. IManageable objects are also
LifeCycle objects. This is described in “Implementing the IManageable Required Methods” on page 67.
The important fact is that there are two kinds of objects to be remembered, and that each has a slightly
different ancestry and purpose in Component Broker.

All Component Broker objects inherit from CORBA::Object. This inheritance from here forward is not
generally shown. INonManageable has a notable parent ILocalOnly. Component Broker programmers can
always tell if a particular object is local-only or accessible remotely. IManageable also implies a lot more. It
means that descendants of this base class get not only remote accessibility, but also a full range of
services from the Component Broker server. The Component Broker server takes care of the IManageable
objects, allowing them to be persistent, accessed securely, participate in transactions, and take advantage
of all of the additional Component Broker server features.

You need INonManageable and ILocalOnly because there are some internal Component Broker objects
are ILocalOnly subclasses but do not need the additional interfaces implied by INonManageable.

Note: A Component Broker object cannot inherit from both IManageable and INonManageable. It can
have only one of these parents.

All Component Broker objects are described in IDL for documentation and consistency. Each programming
language that has a usage binding can be used to interact with Component Broker MOFW-based objects.
For example, a C++ programmer deals with descendants of IManageable through a C++ usage binding to
the IManageable's capabilities.

In addition to these two kinds of objects, any application using Component Broker also uses native
language objects. A mixture of native language objects and usage bindings to Component Broker objects
make up a particular application. Component Broker supports language usage bindings for Java and C++
and also provides special support for client programmers using ActiveX programming tools.

Using Component Broker MOFW-based objects is done with usage bindings as described previously.
Building Component Broker MOFW-based objects is different. Component Broker features the construction
of business objects using C++ or Java. The IBM ORB and emitters provide the basis for the
implementation bindings that are used to construct implementations for the Component Broker
MOFW-based business objects.

Understanding MOFW Objects

All MOFW-based objects, both IManageable and INonManageable, inherit from CORBA::Object, even
though this might not be apparent from the IDL.

IManageable objects:

� Are always created through Homes, that are located using Factory Finders.

� Are accessible remotely through client usage bindings in Java and C++.

� Are implemented using C++ or Java.

� Are always managed by an application adaptor and reside on a Component Broker server.

 Chapter 3. The Managed Object Framework 31

INonManageable objects:

� Are always created using a static create method of the form className::_create(), a method
generated by the IDL compiler.

� Look and behave a lot like regular native language (Java or C++) objects.

� Are not managed by an application adaptor. They might be used on the server, transiently, but they
are not persistent.

� Are written in C++ for use by the server and C++ client. They also must be written in Java if the
Java-client feature of Component Broker is to be used.

� Are developed using a special local-only development process. The emitters only generate the subset
of the various bindings that are necessary to support local use. (For example, no dispatcher code, no
server-side bindings, and so forth.) This is explained in more detail in “The Local-Only Development
Process” on page 252.

32 Component Broker: Programming Guide

Chapter 4. MOFW Client Programming Model

This chapter defines the Component Broker Managed Object Framework (MOFW) client programming
model. The word client generally refers to a particular computer in a distributed environment and the
relationship of that computer with other computers. In this context, the word client refers to any program
and its relationship to a business object. In other words, a client is any program executing in a process on
a client or server computer.

Therefore, the client programming model explains how you can use business objects and how to develop
objects that are clients of Component Broker business objects. Application programmers developing tier-1
(client) or tier-2 (server) applications use the client programming model when they use a business object
in the implementation of a new object. Client programmers use server objects to develop new applications
by composing new application objects and scripting behavior over sets of server objects.

A Component Broker server process implements managed objects that are used by client applications to
perform business functions. All Component Broker server objects are derived from the Managed Object
Framework. The term managed object is used because one of the Component Broker server product's
main contributions to object-oriented applications is the implementation of run-time management functions
used in the implementation of server objects. Some examples of these management services are:

� Persistence, Transactions, and Security.
� Workload management and availability management over multiple servers.
� Object-oriented access to existing databases and applications.

This chapter provides details on a client view of the structure of a Component Broker client/server
application.

� “Client View of Component Broker Applications” contains details on how a client object uses a
Component Broker business object and explains what occurs if this business object is implemented in
a different language on a different system.

� “Client Programming Model: Basic Tasks” on page 35 contains a quick overview of the client
programming model. This section explains what you need to know to get started developing a
Component Broker client application. Specifically, it explains how to accomplish common programming
tasks, and it contains sample code segments.

� “Summary: The Client Programmer's Check List” on page 54 contains a check list of information a
client application programmer needs to start developing the client side of a Component Broker
application.

Component Broker supports writing client applications in C++, Visual Basic, or Java. This chapter uses
C++ for the examples. For information on writing client applications in Visual Basic, see Chapter 8,
“MOFW – ActiveX Client Programming Model” on page 143. For information on writing client applications
in Java, see Chapter 9, “MOFW - Java Client Programming Model” on page 157.

Client View of Component Broker Applications

Figure 22 on page 34 presents a high-level overview of the client programming model. The way clients
deal with business objects at the programming model level is consistent regardless of the underlying
support mechanisms used to build those business objects.

The client application accesses business objects on the server. Business objects are instances of classes
that implement the business logic of the application. Business objects support the interfaces of the
Managed Object Framework which allows business objects to be installed onto, and managed by, a

 Copyright IBM Corp. 1997, 1998 33

Component Broker server. A business object that is installed on a Component Broker server is referred to
as a managed object (MO).

If the managed object is in the same process and same language as the client application, the client
directly accesses the object. If the object resides in another process or on another machine, the client
uses a CORBA proxy object. This proxy object:

� Implements the interface of the managed object in the language and process of the client.
� Uses the ORB and CORBA object RPC to relay method calls to the managed object in the remote

process.

Client Server

VAC++ Client
Object

Java Client
Object

MO Proxy
Local VAC++
Client Object MO

MO

MO

MO

MOMO

MOMOMO Proxy

idl2c++ tool

idl2java tool application development tools

corba

java

C++
CORBA

Java
CORBA

MO idl

MO idl

Component Broker ORB

Java ORB
(Javaldl)

VB/VC++ Client
Object MO Proxy

idl2com tool

com C++
CORBA

MO idl

VC++ CBSeries
ORB

ORB

Business
Logic

liop

liop

liop

Figure 22. Client Model Overview

Component Broker provides functions that enable the development of ActiveX/COM wrappers for
Component Broker managed objects. The wrappers implement an ActiveX/COM rendering of the interface
of the managed object. Within the COM object is a Component Broker proxy, and this proxy delegates
business logic calls from the COM object on the client to the Component Broker managed object on the
server.

The managed object implementor, sometimes referred to as a server application, provides the client
application with:

� A set of interface files that define the interface to a managed object and any helper class the client
uses. Interface files are provided for each client programming language; for example, .hh files for C++
and .java files for Java. In addition, Interface Definition Language (IDL) is provided for the managed
objects and helper classes.

� DLL and Java .class files that implement the classes in the interfaces and the helper classes. These
include the proxy classes that enable remote/local object use.

To use an object-oriented application (a set of managed objects) you need to understand its object model.
Specifically, you need to understand the interfaces and its methods and attributes.

The basic client programming model assumes that you have compile time access to the server interface
definitions (.idl files) and has documentation on the class relationships and the semantics of methods and

34 Component Broker: Programming Guide

attributes. The artifacts provided by the object provider define the interface syntax. What the interface
does is provided in comments and in the documentation.

Component Broker supports a remote/local programming model for managed objects. This is implemented
by run-time libraries, proxy classes, and application development tools. The managed object implementor
defines the interface to the managed object using CORBA IDL. The Component Broker application
development tools emit the necessary language bindings and proxies to support the managed object from
remote applications.

The Component Broker Managed Object Framework allows object providers the opportunity to present a
number of programming interfaces to clients. Determining which client interfaces to use is an advanced
skill in client programming and not critical to getting started. The kinds of client programming interfaces
provided and tips on how to select the correct one for a particular application are described in “Expanding
the Client Programming Interface” on page 246.

For this chapter, the container-type independent, business logic-only interface is used. This interface is the
simplest with which to get started. The examples in this document use interface names like “claim” and
“policy.” Using the client bindings for these interfaces provides access to all the methods that the object
provider defined for client usage.

Client Programming Model: Basic Tasks

A client application can perform the following tasks:

� Find an object.
� Use an object.
� Create an object.
� Use a set of objects.
� Remember an object.
� Release or delete an object.

The following sections present a quick overview and samples of how a client application performs these
tasks. However, before a client application can perform any of these tasks, it must initialize the
Component Broker client environment.

Initializing the Client Environment

The Component Broker provides a convenient interface for initializing a Component Broker client. This
interface is CBSeriesGlobal.

Initializing a Component Broker client requires only the following single line of code:

 CBSeriesGlobal::Initialize();

After initialization, the client has access to the static methods CBSeriesGlobal::orb() and
CBSeriesGlobal::nameService() that return references to objects of type CORBA::ORB and
IExtendedNaming::NamingContext, respectively.

The CBSeriesGlobal interface is provided as a convenience to client programmers. A Component Broker
client could define a set of CORBA calls that encapsulate the Initialize() method as follows:

 Chapter 4. MOFW Client Programming Model 35

 interface CBSeriesGlobal

 {

 void Initialize();

 CORBA::ORB orb();

 IExtendedNaming::NamingContext nameService();

 };

This IDL is directly implemented in each client programming language (C++ and Java). The C++ interface
is:

 class CBSeriesGlobal

 {

 public:

static void Initialize();

static CORBA::ORB_ptr orb ();

IExtendedNaming::NamingContext_ptr nameService ();

 };

Initialization and Object References

CBSeriesGlobal is a convenience interface that is not required for all client programs. However, if the
client program uses either a CopyHelper or PrimaryKey that contains an object as one of its attributes,
then initializing CBSeriesGlobal is a requirement. This is because the implementation of the CopyHelper
and PrimaryKey depend on CBSeriesGlobal:orb() when using the ORB object_to_string() operation.

Note: CBSeriesGlobal was developed as a convenience function and is not coded to the CORBA
programming style. This interface must be used carefully. See the MOFW section of the
Component Broker Programming Reference for more information.

Navigating the Name Space Using the Naming Service

The Component Broker name space is hierarchical and similar in structure to a file system directory tree.
As the nodes in a directory structure are files (either directories or leaf files), the nodes of the Component
Broker name space are CORBA::objects (either NamingContexts objects or leaf objects). A
NamingContext is an object that contains zero or more bindings of string name-object reference pairs.
Each object, bound by name into a context, can be a leaf object or a subordinate NamingContext in the
tree. Subordinate NamingContexts similarly can contain bindings of other NamingContexts and leaf
objects.

Component Broker introduces the interface IExtendedNaming::NamingContext as an extension of the
OMG defined CosNaming::NamingContext interface. This interface provides simplified methods for binding,
unbinding, and resolving name-object pairs in the name space. Specifically, the
NamingStringSyntax::NameString type allows programmers to specify the name space path in a string
format similar to the way they use strings for specifying directory paths. For example:

 "name1/name2/name3"

where:

name1 Identifies a NamingContext contained in the current NamingContext (and bound to "name1").

name2 Identifies a NamingContext within name1.

name3 Identifies a leaf object or another naming context bound in name2.

The interface for IExtendedNaming is:

36 Component Broker: Programming Guide

 module IExtendedNaming

 {

// This type resolves to a string that maps to a char\

typedef NamingStringSyntax::NameString Name;

interface NamingContext : CosNaming::NamingContext

 {

void bind_with_string (in Name n, in CORBA::Object obj)

raises (NotFound, CannotProceed, InvalidName, AlreadyBound);

CORBA::Object resolve_with_string (in Name n)

raises (Not Found, CannotProceed, InvalidName);

void unbind_with_string (in Name n)

raises (NotFound, CannotProceed, InvalidName);

 };

The OMG Naming Service specification defines only the interface to the Naming Service and does not
define any structure for the name space. Figure 23 provides an introduction to the Component Broker
name space structure.

Local Root ('/')
(one per server host)

Workgroup Root
(one per work group)

Cell Root
(one per cell)

Host Name Tree Workgroup Name Tree Cell Name Tree

other host entries other work group
entries

other cell entries

work group

host hosts hosts

resources

resources resources

work groups

<hostname>
<hostname>

<workgroupname>

Figure 23. The Name Space Structure

This structure defines the top level (root) naming contexts that exists in an enterprise (cell). Every host
system participating in the network has a Local Root NamingContext. This is the NamingContext that is
made available to applications through the CBSeriesGlobal::nameService() static method. This context is
the anchor from which applications navigate the name space. Each host system belongs to one and only
one work group and one cell.

A work group represents a subset of the systems participating in the network. The Workgroup Root
NamingContext can be navigated from the Local Root NamingContext by resolving names prefixed with

 Chapter 4. MOFW Client Programming Model 37

workgroup/<rest of path>. The NamingContexts of other systems within the work group can be navigated
from the Local Root NamingContext by a path that traverses the work group NamingContext if the
hostname of the desired system is known. For example, the name workgroup/hosts/<hostname>/<rest of

path> provides access to the NamingContext of another host within the work group.

A cell represents the set of all systems and work groups participating in the network. The Cell Root
NamingContext can be navigated from the Local Root NamingContext by resolving names prefixed with
.:/<rest of path>. As can be seen from Figure 23 on page 37, the NamingContexts of any system or
work group in the network can be navigated from the Local Root NamingContext by a path that traverses
the Cell NamingContext.

The resolve_with_string() method returns a CORBA::Object. Before a client can use the returned
reference as a NamingContext or as a specific class of leaf object, the client must narrow the object to the
desired class.

Finding a Managed Object

When a client application starts, it has no knowledge of any objects. In a non-distributed environment, the
application would create any objects it needs. These newly created objects would reside on the same
system as the application. If the application needs these newly created objects to be available the next
time the application runs, the application itself is responsible for making these objects persistent.

However, Component Broker is a distributed environment. In this environment, objects are not created on
a client system. Objects are created from a client system on a server system. Object persistence is
managed with the help of the Component Broker run time.

There are two ways for a client application to find a managed object:

� Use the Naming Service.

If the object has a Name, the client can use the Naming Service to locate the object by its Name. In
general, the Naming Service only contains a subset of the objects in a distributed system. This subset
consists of well-known objects, such as collections of business objects or important objects in the
object model.

� Use another object.

If the object does not have a Name, the client can find the object by using the Naming Service to find
a well-known object, such as a factory or collection, and then use this object to execute methods that
return the object as a return value or output parameter.—

Both techniques involve the use of the Naming Service. In the Component Broker distributed environment,
all work with objects in a client application must begin by using the Naming Service.

Finding a Managed Object Bound in the Naming Service

Assume that the insurance company application example contains a few important Claim objects in the
Naming Service and that the client application is written with the knowledge that these Claim objects can
be located at a known path in the name space. The following code segment shows how to find the Claim
object, belonging to a customer named “Lou.”

 {

 CORBA::Object_ptr temp_ptr;

 Claim_ptr louClaim_ptr;

 try

 {

38 Component Broker: Programming Guide

temp_ptr = CBSeriesGlobal::nameService()->resolve_with_string(

 ".:/Applications/LifeInsurance/Claim/LouClaim");

louClaim_ptr = Claim::_narrow(temp_ptr);

 CORBA::release(temp_ptr);

// use louClaim_ptr in various calls

 CORBA::release (louClaim_ptr);

 }

 catch(...)

 {

// appropriate error recovery

 }

 }

The path ".:/Applications/LifeInsurance/Claim/LouClaim" follows a path that traverses a
NamingContext bound into the Cell Root NamingContext with a name of Applications and so forth to the
desired LouClaim object.

The following code segment shows how the insurance application could have originally bound the
LouClaim object.

 Claim_var louClaim;

// Create Lou's Claim and initialize it prior to the following code segment

 ...

// Try to bind the 'louClaim' object into the name space.

 try

 {

 CBSeriesGlobal::nameService()->bind_with_string(

 ".:/Applications/LifeInsurance/Claim/LouClaim", louClaim);

 }

 catch(...)

 {

// appropriate error recovery

 }

For additional information on the Component Broker Naming Service, see References in the Component
Broker Online Documentation.

Finding a Managed Object Using the PrimaryKey Helper Class

What if Lou's Claim is not in the Naming Service? How do you find a specific claim? This section explains
how.

Homes are instances of the IHome class. You might decide to implement and provide a tailored subclass
of IHome, or you might use an instance of the base class. The relationship between managed objects and
collections is explained in “Using Sets of Objects” on page 44. For now, all that is important to know is
that a home can be used to find objects that were previously created by that home.

As stated previously, a client application always starts with the Naming Service to find its first object. As
such, it might seem reasonable to assume that a client application would find a Home directly in the name
space. However, the LifeCycle Service provides a facility for finding Homes called FactoryFinder.
Therefore, a client application uses the Naming Service to find a FactoryFinder, which is then used to find
a Home. FactoryFinders are discussed again in more detail in “Creating a New Object – Create From Key”
on page 42.

 Chapter 4. MOFW Client Programming Model 39

To continue the example, the following code segment finds the Home for Claim objects.

 CORBA::Object_var obj;

 IExtendedLifeCycle::FactoryFinder_var ff;

 IManagedClient::IHome_var claimHome;

 try

 {

obj = CBSeriesGlobal::nameService()->resolve_with_string(

 "host/resources/factory-finders/host-scope");

ff = IExtendedLifeCycle::FactoryFinder::_narrow(obj);

obj = ff->find_factory_from_string("Claim.object interface");

claimHome = IManagedClient::IHome::_narrow(obj);

// use claimHome

 }

 catch(...){

// appropriate error recovery

 }

Now you need to find Lou's Claim. Assume that Lou is on the phone and can tell you his claim number. In
the example, the Claim's claimNo attribute uniquely identifies an instance of the Claim class, and is a
primary key into the Claim Home. To facilitate the usage of a generic home, the Component Broker
programming model introduces two types of Helper Class: PrimaryKey and Copy. The Copy Helper Class
is discussed further in “Creating a New Object – Create From Key” on page 42. Every managed object
class has a primary Key Helper Class that lets you find (and create) objects of that type. An instance of a
Key Helper Class is always local to the client's process and language. Key Helpers, like all helper classes,
are created with a static method on the class named _create(). This static method gets generated in the
usage bindings of all interfaces that specify the localonly pragma in their IDL files. The same rule is in
place for copy helpers and objects of other classes that are described in “Local-Only Development
Process” on page 78.

When you create an instance of a primary key, the key must be set by one or more attributes on the
primary key object. When all of the key attributes have been set, the primary key object is now usable.
The Claim Home uses this primary key to find the previously created Claim object. Remember, the
PrimaryKey is on the client system, but the Claim object and the Claim Home are on the server system. If
the client passes a primary key object as a parameter to the Home, and the Home is on a remote system,
the remote system might get a proxy back to the client's PrimaryKey instance. This would turn the client
into a server and unpredictable results could occur. Therefore, the Component Broker programming
model uses strings as the method for passing keys to potentially remote objects.

Using a PrimaryKey Helper Class to Find an Object

Continuing the example, the following code segment would find Lou's Claim in the Home (assuming Lou
told you his number is 1234).

// Create an instance of the Key Helper Class

ClaimPrimaryKey_var claimPrimaryKey = ClaimPrimaryKey::_create();

// Set the claimNo attribute in the key

 claimPrimaryKey->claimNo(1234);

// Must convert key object to a string to go over the wire to the server

ByteString_var claimString = claimPrimaryKey->toString();

 IManagedClient::IManageable_var temp_var;

// Call find by key on the Home to find Lou's Claim

temp_var = claimHome->findByPrimaryKeyString(claimString);

40 Component Broker: Programming Guide

// Narrow type to Claim

Claim_var louClaim = Claim::_narrow(temp_var);

// continue to use louClaim

The object provider of a public managed object always provides you with a set of helper classes for using
the Homes that contain his managed objects. There is always exactly one primary key helper class. The
object provider gives you:

� The interface definitions for the primary key class.
� An implementation of the primary key class.
� Documentation for its use.

The previous code segment creates a new instance of the Key Helper Class ClaimPrimaryKey using the
static _create() method, and sets the claimNo attribute to 1234. Then it creates a string version of the key
and finds Lou's Claim using the Claim primary key and the Claim Home.

The Component Broker programming model mandates Key Helper Classes for managed objects to make
things easier for you. The keys are passed as strings. You need to use the available setxxxx() methods
on the helper class to prepare the key information. No string manipulation to concatenate pieces of
multi-valued keys is necessary. Using a Key Helper Class enables type errors to be detected at
compilation time, as well as provides knowledge of the field ordering and algorithm for defining a key.

Finding a Managed Object by Methods on Held Objects

Some business objects have interfaces that include methods or attributes that return other business
objects. If this is the case, then when you have an object, you can use its methods to find related objects.
Continuing the previous example, after finding Lou's Claim, you can find other objects that the Claim
references. The following example returns a reference to Lou's Policy:

// Find Lou's Policy

Policy_ptr louPolicy; // declare a local variable

louPolicy = louClaim->policy();

Using a Managed Object

When you find a reference to a managed object, you can invoke methods on it. For example,

 person->name("Lou Smith");

calls the name() method on the person object identified by the person object reference to set the value of
the name attribute. The Component Broker server handles the use of remote objects in a way that is
transparent to you.

Creating a Managed Object

Component Broker managed objects can be created in a number of ways. The following sections describe
the default ways of creating managed objects.

 Chapter 4. MOFW Client Programming Model 41

Creating a New Object – Create From Key

Every Component Broker managed object class has an instance of a Factory associated with it. The
Factory provides a set of interfaces for creating instances of a managed object. The Factory gets some of
its interface from the base class CosLifeCycle::GenericFactory. The method used in
createFromPrimaryKeyString is introduced in the IManagedClient::IHome interface supplied by Component
Broker. This interface specializes the COSLifeCycle::GenericFactory interface and plays the role of factory
for Component Broker managed objects. Object providers can implement and provide a tailored subclass
of this interface, or they can use the implementation of IHome provided.

All you need to know is how to find the right IHome for creation. This is done using a factory finder. The
input required for the factory finder is the name of the intrface of the class that you want this factory to
make instances of. The following code segment gets a reference to the Claim Factory for the Life
Insurance application.

 CORBA::Object_var obj;

 IManagedClient::IHome_var claimHome;

 IExtendedLifeCycle::FactoryFinder_var myFinder;

obj = CBSeriesGlobal::nameService()->resolve_with_string(

 "host/resources/factory-finders/host-scope");

myFinder = IExtendedLifeCycle::FactoryFinder::_narrow(obj);

obj = myFinder->find_factory_from_string("Claim.object interface")

claimHome = IManagedClient::IHome::_narrow(obj);

Notice the usage of both the IExtendedNaming::NamingContext interface, the resolve_with_string() method
and the IExtendedLifeCycle::FactoryFinder interface, the find_factory_from_string() method. These
interfaces are extensions to the corresponding CORBA interfaces, which should be easier to use. The
IExtendedNaming::NamingContext interface is described in “Navigating the Name Space Using the
Naming Service” on page 36. The IExtendedLifeCycle::FactoryFinder interface introduces the previous
methods beyond the CosLifeCycle::FactoryFinder interface, providing simpler and more flexible ways to
find a factory:

 module IExtendedLifeCycle

 {

interface FactoryFinder : CosLifeCycle::FactoryFinder

 {

CosLifeCycle::Factory find_factory (in

 CosLifeCycle::Key factory_key)

 raises (CosLifeCycle::NoFactory);

CosLifeCycle::Factory find_factory_from_string (in

 FactoryKeyString factory_key)

 raises (CosLifeCycle::NoFactory,

 NamingStringSyntax::IllegalStringSyntax,

 NamingStringSyntax::UnMatchedQuote);

CosLifeCycle::Factories find_factories_from_string (in

 FactoryKeyString factory_key)

 raises (CosLifeCycle::NoFactory,

 NamingStringSyntax::IllegalStringSyntax,

 NamingStringSyntax::UnMatchedQuote);

 };

 };

42 Component Broker: Programming Guide

Having found an IHome by a FactoryFinder, you must provide the IHome with information necessary to
manufacture a new object instance. At a minimum, the primary key must be provided. An example of
creating a new Claim with a claimNo of 1234 is shown in the following example:

// Create an instance of the Primary Key Class

ClaimPrimaryKey_var claimKey = ClaimPrimaryKey::_create();

// Set the claimNo attribute in the key

 claimKey->claimNo(1234);

// Call createFromKey on the Factory to create Lou's Claim

 IManagedClient::IManageable_var theMO;

 Claim_var theClaim;

ByteString\ claimString = claimPrimaryKey->toString();

theMO = claimHome->createFromPrimaryKeyString(\claimString);

theClaim = Claim::_narrow(theMO);

This example is almost identical to the example in “Using a PrimaryKey Helper Class to Find an Object”
on page 40. First, create a primary key object to define the identity of the object that will be made. Then,
call createFromPrimaryKeyString on the Home to pass the Key as a string.

The createFromPrimaryKeyString method is defined by the IHome class, and all business objects can be
created by this method. An object provider provides you with a subclass that introduces other, easier to
use creation methods. Additional object creation techniques are described, with examples, in Chapter 6,
“MOFW Client Programming Model – Advanced Concepts” on page 83.

Creating a New Object – Create from Copy

Setting and getting the attributes of a managed object can be expensive. There are several reasons for
this. First, if the managed object is implemented in another language, each get or set method is actually a
cross-language call. Cross-language calls are more expensive than simple, same-language calls. The get
and set overhead is even worse if the managed object is remote because each call is actually a remote
procedure call and involves significant overhead. Consider the following code fragment:

// Let's assume that 'theClaim' is declared and created as in the

// previous code snippet.

// Creating 'theClaim' above required one RPC. Setting the rest of the

// object's attributes involves one RPC per attribute. The following

// lines of code show four such RPCs. This could, of course, be any

// number of RPCs, depending on the complexity of the object.

 theClaim->date("1ð/14/96");

 theClaim->state(entered);

 theClaim->reason(accident);

theClaim->description("Side-swiped by teenager in a red convertible.");

This fragment could involve the following remote method calls:

� The client to Home of Claims to create the Claim.
� The client to Claim MO to set its date attribute.
� The client to Claim MO to set its state attribute.
� The client to Claim MO to set its reason attribute.
� The client to Claim MO to set its description attribute.

 Chapter 4. MOFW Client Programming Model 43

These calls could be reduced to a single remote method call by using the createFromCopyString() method
on an IHome instead of createFromPrimaryKeyString(). In order for you to use the createFromCopyString()
method, the object provider must provide you with a Copy Helper Class. The following code segment
rewrites the previous example using this design pattern.

// Create a new "local" Claim in my process and language.

// Use a Copy Helper Class that the Claim MO provider gave me.

ClaimCopy_var claimCopy = ClaimCopy::_create();

// Now initialize the Claim's attributes. Note that these methods

// execute locally, within the same language.

 claimCopy->date("1ð/14/96");

 claimCopy->state(entered);

 claimCopy->reason(accident);

claimCopy->description("Side-swiped by teenager in a red convertible.");

// Pass this local copy to the Home and have it return a new Claim MO

// whose attributes are initialized from the local copy's values. Because

// not all ORBs support Pass-By-Value, we first convert the local copy

// helper object to a string.

 IManagedClient::IManageable_var theMO;

 Claim_var theClaim;

ByteString\ claimString = claimCopy->toString();

theMO = claimHome->createFromCopyString(\claimString);

theClaim = Claim::_narrow(theMO);

Like a Key Helper Class, a Copy Helper Class instance is always local to your process and implemented
in the language you are using. The helper class interface and implementation is given to you by the object
provider.

Copy Helper Classes are especially useful if the client application needs to interact with an object during
initialization, and then create a managed object from the attributes. A common scenario for this is entering
data for the object from a GUI. The GUI updates the local copy helper object, and then the
createFromCopyString() method is called when the Do push button is pressed on the end user interface
(EUI) to do the action.

Note: All of the attributes that make up the Primary Key must be set in the Copy Helper instance before
using it for creation.

Using Sets of Objects

An IHome represents a set of managed objects, all of the same type, whose relationship to one another is
defined by the object provider, and maintained by the fact that they were all created in the same home.
Sometimes an application needs to define (and maintain) the relationships between managed objects,
based on the particular business task at hand. This might even include relationships between managed
objects of different types (for example, Policy Holder and Beneficiary). This can be done using an
IManagedCollections::IReferenceCollection, as shown in the following code segments.

First, create a Reference Collection. The following code shows how to do this from a client. Notice that
because a Reference Collection is itself a managed object, it is created using a Home. Component Broker
provides a specialized home which makes it easy to create a Reference Collection. Specialized homes
are described in greater detail in “Creating Specialized Homes” on page 133.

44 Component Broker: Programming Guide

 CORBA::Object_var obj;

 IManagedCollections::ICollectionHome_var rcHome;

 IManagedCollections::ICommonCollection_var cc;

 IManagedCollections::IReferenceCollection_var rc;

obj = myFinder->find_factory_from_string(

 "IManagedCollections::IReferenceCollection.object

 interface/PersistentReferenceCollectionFactory.object home");

rcHome = IManagedCollections::ICollectionHome::_narrow(obj);

cc = rcHome->createCollection();

rc = IManagedCollections::IReferenceCollection::_narrow(cc);

Note: The collection created in the previous example is capable of containing objects of any
IManagedClient::IManageable subclass. If the collection is to contain elements of a specific type
(for example, PolicyHolder), and you would like the collection to enforce this, you can use the
createCollectionFor call instead of createCollection.

Having created the Reference Collection, it is now ready to be used. The following code segment shows
how a client application adds a PolicyHolder object to the Reference Collection:

 PolicyHolder_var policyHolder;

 // ...

// Find or create the PolicyHolder object to add to the collection.

 // ...

 try

 {

 rc->addElement(policyHolder);

 }

catch (ICollectionsBase::IInvalidElement &ex)

 {

cout << "ERROR: Caught Exception: " << ex.id() << endl;

cout << "ERROR: Trying to add object to a Reference Collection";

 }

Having possibly added many interesting business objects to the Reference Collection, it seems reasonable
that at a later time it might be necessary to iterate over every object in the Reference Collection to perform
some action. The following code shows one way of doing this:

 IManagedCollections::IReferenceCollection_var theMixedCollection;

 IManagedCollections::IIterator_var theIterator;

 IManagedClient::IManageable_var theBO;

// Create an iterator on the reference collection that was found above.

// Note that when an iterator is created, it is automatically positioned

// preceding the first element.

theIterator = theMixedCollection->createIterator();

 try

 {

// Loop through the collection. The "nextElement" method advances

// the iterator to the next element (on the first invocation, this

// will advance to the first element) and then return the element

// pointed to by the iterator.

while (theIterator->more())

 {

theBO = theIterator->next();

if (theBO->is_a("PolicyHolder"))

// Send him a bill

 Chapter 4. MOFW Client Programming Model 45

if (theBO->is_a("Beneficiary"))

// Send him a check

 }

 catch (...)

 {

cerr << "ERROR: Problem occurred using iterator." << endl;

 }

// After iterating over the entire collection, the iterator is no

// longer needed. As such, it must be removed.

 theIterator->remove();

The combination of the IManagedCollections::IReferenceCollection and the IManagedCollections::IIterator
are used in the above code segment. An IManagedCollections::IReferenceCollection is a generalized
collection of object references that can be iterated. IManagedCollections::IIterator supports advancement
of the iterator and retrieval of elements by the next() method. IManagedCollections::IReference Collection
supports adding and removing elements by addElement() and removeElement().
IManagedCollections::IManagedReferenceCollection is the most basic kind of collection supported in
Component Broker. Combining this with the capabilities of IHome provides the basis for writing simple
applications and the foundations for the more advanced query and collections capabilities provided by
Component Broker. For more information on collections and query capabilities, see Chapter 6, “MOFW
Client Programming Model – Advanced Concepts” on page 83.

The try/catch block in the previous code segment is created after the iterator is created. The purpose of
the try/catch block is to ensure, even if an exception is thrown during iteration, that the iterator that was
created is removed when it is no longer needed. Without this try/catch block, if an exception is thrown
during iteration, the remove() method is not invoked and the storage associated with the iterator on the
server is not deallocated.

Note: The while loop in the example of iterating through the collection is shown as follows:

while (theIterator->more())

 {

theBO = theIterator->next();

 ...

Although this works, it is inefficient because it requires two calls to the server for each element that
is retrieved. It would be better to use a more efficient approach when possible:

while (theBO = theIterator->next()) ...

 Transient Sets

Component Broker supports transient collections. Transient collections do not require transactions; they
reside in transient containers and thus have no dependency or overhead on database connections. DB2
and Transient collections provide identical programming interfaces. They differ only in their persistence
characteristics. Users can find transient collections by passing an interface string to the factory finder as
defined in the next section.

46 Component Broker: Programming Guide

Specifying Reference Collection Interfaces

A variety of interfaces for use with factory finders are provided for specifying the type of reference
collections that you want to use.

For example, calling find_factory_from_string passing the argument
IManagedCollections::IReferenceCollection.object

interface/PersistentReferenceCollectionFactory.object home, as in the previous example, creates a
DB2 backed reference collection. Using the generic string
IManagedCollections::IReferenceCollection.object interface returns whichever collection is configured
as the default.

Transient Collections

 IManagedCollections::IReferenceCollection.object interface/
 TransientReferenceCollectionFactory.object home

Transient Collections Keyed

 IManagedCollections::IKeyedReferenceCollection.object interface/
 TransientKeyedReferenceCollectionFactory.object home

Persistent Collections

 IManagedCollections::IReferenceCollection.object interface/
 PersistentReferenceCollectionFactory.object home

Persisent Collections Keyed

 IManagedCollections::IKeyedReferenceCollection.object interface/
 PersistentKeyedReferenceCollectionFactory.object home

Remembering your Favorite Objects

Assume you need to remember an interesting or important managed object instance. Ideally, you need to
save the reference or pointer to the object. There are several complexities, however.

� The object might be implemented in another language or on a remote system.

� If the client application shuts down and restarts later, the object may have been removed from
memory because of a lack of use. If the object is restarted, or reactivated, it probably will not be
located in exactly the same place in memory.

Component Broker solves these problems, as does CORBA, by introducing the concept of an object
reference. An object reference is opaque and you cannot set its internal structure. However, a reference
always and uniquely refers to a managed object regardless of where it resides in the network. Continue
the example from the previous section, and assume that you run the following code segment:

 ofstream fout("SOMEFILE.DAT");

// Get a "string" version of my reference to Steve

// steve points to Steve or a proxy to Steve

char\ steveStringifiedReference = CBSeriesGlobal::orb()->object_to_string(steve)

// Save the string to a file using a "pseudo" file routing

fout << steveStringifiedReference;

 fout.close();

// I do not need Steve anymore

 Chapter 4. MOFW Client Programming Model 47

 steve->release();

You saved a reference to Steve as a stringified object reference, and can use this string to re-access
Steve at a later time. The following code segment is an example of re-accessing the Steve object.

char\ infile = "SOMEFILE.DAT";

 ifstream fin(infile);

 char steveStringifiedReference[1ð24];

memset(steveStringifiedReference, 1ð24, '\ð');

// Get back the string I saved

fin >> steveStringifiedReference;

// Make an object reference for Steve

 CORBA::Object_var obj;

 PolicyHolder_var steve;

obj = CBSeriesGlobal::orb()-> string_to_object(steveStringifiedReference);

steve = PolicyHolder::_narrow(obj);

// I can now work with Steve.

 steve->name("Steven");

Releasing and Deleting Objects

Eventually, you no longer need to use an object that you found or created. Component Broker supports
two interpretations of “no longer needs.”

� The remove() method deletes the object and its persistent instance data.

� The release() method informs the object that the client application no longer plans to reference the
object. The object still exists in the server, and other applications may be using it, but the client calling
the release() method will no longer use the object.

In order to better understand what happens as a result of a remove() or release() request, and the
difference between the two, refer to “Finding a Managed Object” on page 38 and “Creating a Managed
Object” on page 41. To illustrate this, use an example which has a relational database table of information
about people, the policy holders from the Life Insurance application. This table persistently stores the state
data for objects of the PolicyHolder class.

As described in “Finding a Managed Object” on page 38, managed objects may be found by invoking the
findByPrimaryKeyString() method on a home. The result of this operation is two-fold:

� If an object matching the primary key is not currently active in the server, that is, in use by some other
user or application, then one is activated and brought into memory on the server. Figure 24 on
page 49 shows the case where the Robert object is currently not active.

� An object reference, also referred to as a proxy, to the object on the server is returned to the client. In
CORBA, a proxy is itself an object: it is an object on the client which identifies an object on the server,
and has the same interface as the object on the server.

48 Component Broker: Programming Guide

Client

AfterBefore

Server

ID
3579
2239
1721

Name
Danny
Robert
Steve

ID
3579
2239
1721

Name
Danny
Robert
Steve

Home Home Robert

findByPrimaryKeyString()

Figure 24. Finding Managed Objects

When creating a new managed object, there is no object on the server, active or otherwise, with a
matching primary key. If there is, the creation will fail. A new object is created in memory on the server, a
new row is added to the database table, and a proxy is created on the client as shown in Figure 25.

Client

AfterBefore

Server

ID
3579
2239
1721

Name
Danny
Robert
Steve

ID
3579
2239
1721
1234

Name
Danny
Robert
Steve
Lou

Home Home Robert
Lou

Robert

createFromPrimaryKeyString()

Figure 25. Creating Managed Objects

Having found or created a managed object, the client application has a pointer to a proxy, not to the actual
managed object. (A memory pointer to the actual managed object out in some server on the network has
no meaning in the client's address space.) However, because the proxy has the same interface as the
managed object on the server, the client application uses it just like the object itself. The Component
Broker ORB and server take care of routing all method calls and parameters from the client proxy to the
server object.

Figure 26 on page 50 shows how a client application changes the name attribute of an object on the
server.

 Chapter 4. MOFW Client Programming Model 49

Client

AfterBefore

Server

ID
3579
2239
1721
1234

Name
Danny
Robert
Steve
Lou

ID
3579
2239
1721
1234

Name
Danny
Bob
Steve
Lou

Home Home Bob
LouLou

Robert

name("Bob")

Figure 26. Using Managed Objects

Now, assume that Robert or, as he prefers to be called, Bob calls up and says he would like to cancel his
only insurance policy. At this point, the client application concludes that Bob is no longer a policy holder,
and proceeds to delete the Bob object. The method for deleting an object in Component Broker is called
remove(). Invoking the remove() method on a managed object has the following effect:

� The managed object's persistent state is removed from the database table.
� The managed object is removed from memory on the server.

Client

AfterBefore

Server

ID
3579
2239
1721
1234

Name
Danny
Bob
Steve
Lou

ID
3579
2239
1721
1234

Name
Danny
Bob
Steve
Lou

Home Home
LouLou

Bob

remove()

Figure 27. Removing Managed Objects

There are one important thing to take note of here:

� The proxy (object) is not removed from memory on the client as a result of invoking remove() on the
proxy. At this point, the proxy is not pointing to a valid object on the server. In order to delete the
proxy (object) from memory, you must explicitly invoke CORBA::release(), passing it the proxy (object).

50 Component Broker: Programming Guide

Client

AfterBefore

Server

ID
3579
2239
1721
1234

Name
Danny
Bob
Steve
Lou

ID
3579
2239
1721
1234

Name
Danny
Bob
Steve
Lou

Home Home
LouLou

CORBA::release()

Figure 28. Releasing (Removed) Object References

Figure 28 shows the result of invoking CORBA::release() on the object reference which was removed. Of
course, a client application will also want to release references to objects which it is not removing. This
would be the case if customer Lou called up to increase his insurance coverage. In this scenario, the
client application performs the following steps:

1. Invoke the findByPrimaryKeyString() method to find Lou's policy.
2. Invoke the amount() method on the policy to increase the coverage.
3. Release (not remove) the policy object after calculating the new premium.

Client

AfterBefore

Server

ID
3579
2239
1721
1234

Name
Danny
Bob
Steve
Lou

ID
3579
2239
1721
1234

Name
Danny
Bob
Steve
Lou

Home Home
LouLou

CORBA::release()

Figure 29. Releasing Object References

Figure 29 shows that the proxy is deleted from the client's memory space, but the object remains on the
server. Eventually, if there are no other references to the object within the server, the server deletes the
object from the server's memory space but not from the database table. Note that the client application
has no control over when the server decides to remove an active object that is, one that has not been
deleted by the remove() method. In fact, if the client application is waiting for user input, a server may
decide to delete from memory an object to which the client application holds a reference. When the client
application finally receives input from the user and attempts to use the object, the server reactivates the
object by putting it back in memory.

The remove() method is essential for supporting application logic. Client applications need a way to
destroy and delete objects and their instance data. In the previous example, Bob no longer exists as far
as the applications are concerned. The release() method on the other hand, helps implement memory
management. In a client/server system, applications span multiple servers, processes, and languages.

 Chapter 4. MOFW Client Programming Model 51

Traditional memory management techniques such as garbage collection or relying on clean-up when a
process terminates do not work. The client garbage collector does not see the server memory, and the
server does not contain references to the objects because they are on the client. Therefore, the server
needs to be told when clients no longer reference objects.

Because the server does not maintain a list of every object reference that every client application has
requested, you might try to use an object reference to an object on which another client application has
already invoked remove(). If this happens, an exception is triggered. The same thing would happen if a
client application tried to invoke a method on an object on which it had previously invoked the release()
method.

Coding Tips for proper CORBA Memory Management

The rule for proper CORBA memory management is the following: The caller owns all storage.

The general model on the client is to use _var objects. This means that when an _ptr is returned, it should
be placed into an _var by the client. The _var assumes responsibility for the storage pointed to the _ptr
that is placed into the _var. The _var is a class and its destructor runs when the _var goes out of scope.

The other option for clients is to use the duplicate() and release() methods. The duplicate() method is
available for making a copy of a proxy, while the release() method is used to free the local memory used
by a pointer.

None of this should be confused with the LifeCycle Service remove() method. This has different
semantics. It involves actually deleting the server object that is at the other end of a proxy.

More information on CORBA coding style and conventions, especially as they pertain to memory
management, can be found in Appendix C, “C++ CORBA Programming” on page 299.

Using Object References

Managing the storage of object references is one of the areas where proper memory management is
required. You must use the _duplicate and release operations as described above or use _var variables.

There are also special considerations when passing object references as parameters. The caller is always
responsible for allocating storage for object references. The caller is also responsible for releasing of all
inout and returned object references.

For inout parameters the caller provides an initial value. If the callee wants to reassign the inout
parameter, it must first all the release() operation on the initial input value. To continue to use an object
reference passed as an inout, the caller must first duplicate the reference.

See the section titled "Storage Management and _var variables" in Appendix C, “C++ CORBA
Programming” on page 299 for details on memory management.

Commonly Used CORBA Interfaces

References have already been made to interfaces that are not directly defined by the Programming Model
that is provided by Component Broker, for example _narrow(). This is because the Programming Model is
built on top of CORBA and relies on the interfaces that are already defined by CORBA. This section
describes the most commonly used CORBA interfaces that Component Broker developers will use.

52 Component Broker: Programming Guide

For further information on these and other operations defined by these interfaces, see the appropiate
section in the Object Request Broker section of the Component Broker Programming Reference.

CORBA Class Interfaces

The CORBA interface also provides some class operations that are commonly used. These are used like
a C++ class reference (e.g. CORBA::is_nil(somePointer);)

is_nil
This operation returns a boolean that indicates if the input object reference is nil. This is useful for
many operations involving object references, including those operations that do not throw exceptions
when they fail - for example CORBA::Object::_narrow().

release
This operation releases resources associated with an object or pseudo-object reference.This
operation may or may not perform a C++ delete operation. A reference count is used by this
operation and CORBA::Object::_duplicate(). When the reference count reaches zero then the
appropriate delete operations are performed. Care must be taken when using the release and
_duplicate operations to ensure that objects are neither inadvertently deleted or are leaked.
Alternatively use the _var technique described in the next section.

string_dup
This operation copies a string. The resulting string should be subsequently freed using the
CORBA::string_free operation or assign the string to a _var variable which will free the string
appropriately. Strings and wide strings, unlike the other basic CORBA types, have associated
allocated memory. Care must be taken when using these variables. A common example is when
returning a string from an operation.

 CORBA::Object Interfaces
_duplicate

This operation duplicates an object reference. This is particularly useful when passing references to
objects to resolve memory ownership issues. For every _duplicate that is performed on an object an
equal number of release() must also be performed for proper memory management. An alternative to
the _duplicate() and release() logic is to use _var support as described in the next section of this
chapter.

get_current
This operation returns the CORBA::Current. This object reflects the execution context of the currently
executing thread. Information about the Security, Sessions and Transactions services can be
retrieved using this interface. For example, see “Transactions” on page 83.

_is_a
This operation is used to determine whether an object reference supports a given IDL interface. If
the object supports the interface the _narrow operation can be successfully performed.

_is_equivalent
This operation is used to determine whether two object references refer to the same object.

_narrow
This operation is used to narrow a more generic interface to a more specific interface. This operation
will return an empty pointer without throwing an exception if the interface cannot be narrowed to the
requested type. Care must be taken to check the returned value before using it.

_nil This operation returns a nil CORBA::Object. This object could be used for comparison operations.

_non_exsistent
This operation determines whether an object reference refers to a valid object. This will result in
verification of the object reference only, no other operations are performed on the requested object.

 Chapter 4. MOFW Client Programming Model 53

object_to_string
This operation converts an object reference to an external form that can be stored for later use or
exchanged between processes. The string_to_object operation can be used to reconstruct the object
reference.

string_to_object
This operation converts an stringified object reference to an reconstructed object reference. The
object_to_string operation must have been used to create the input stringified data.

Note: Although object_to_string is the way to save object references for future usage, the returned data
should only be used with string_to_object to reconstruct that object reference. Do not use the
string for comparing equivalence of object references.

The string is an IOR which can composed of several pieces of data - some the ORB generates and some
contributed by other components. The object_to_string operation may return different values at different
times because various Object Services may be adding information to this IOR.

Summary: The Client Programmer's Check List

When using a set of managed objects to implement an application, you need to know how to use the
following things about managed objects and the Managed Object Framework which encapsulates and
interoperates with the managed objects. Table 1 is organized around the tasks outlined in “Client
Programming Model: Basic Tasks” on page 35. Note that xxx is used to represent the name of the
managed object. For example, Claim and Policy were used in this chapter as examples of domain-specific
business objects. This also provides a good clue as to whether or not the classes were constructed by the
business object provider or whether they came as part of the Component Broker system.

Table 1 (Page 1 of 2). Summary of Interfaces

Task Class Types Methods Purpose

General Use StandardSyntaxModel stringToName Converts strings to CORBA
name types.

Find an
object

NamingContext resolve Finds an object in the
namespace

IHome findByPrimaryKeyString Finds an object in a home

xxxPrimaryKey setxxx methods and toString Sets the key value

Create or
delete an
object

FactoryFinder findFactory Finds the factory object.

IHome createFromKeyString Creates an object with a key
only.

xxxPrimaryKey setxxx and toString Passes information on key to
the server.

xxxCopyHelper setxxx and toString Passes copy information to the
server.

any xxx ManagedObject
subclass

remove and release Deletes or releases object from
memory.

Use sets of
objects

IReferenceCollection createIterator Creates an iterator object.

IIterator next Iterates over a collection and
gets the objects.

54 Component Broker: Programming Guide

Table 1 (Page 2 of 2). Summary of Interfaces

Task Class Types Methods Purpose

Remember
interesting
and
important
objects

NamingContext bind Binds an object into the name
space with a name.

resolve Finds an object in the name
spece by its name.

theORB object_to_string Creates a stringified form of an
object reference.

string_to_object Creates an object reference
from a string.

This is the basic set of methods needed to work with Component Broker managed objects. More
advanced methods for a C++ client are discussed in Chapter 6, “MOFW Client Programming Model –
Advanced Concepts” on page 83.

 Chapter 4. MOFW Client Programming Model 55

56 Component Broker: Programming Guide

Chapter 5. MOFW Server Programming Model

This chapter describes the interfaces and processes you follow to create a business object based on the
Managed Object Framework (MOFW) interfaces. The first section introduces these abstractions and the
relationship that they have to the domain-specific interfaces and implementations that make up the
business logic and business data inherent in a business object.

After this brief overview, the basic steps involved in developing a business object are described.

Business Object Basics

Each business object in Component Broker consists of a number of pieces. The primary interface to the
business object and its implementation are shown in Figure 30.

IManagedObjectWithCachedDataObject
(From IManagedServer)

IManageable
(from IManagedClient)

IManagedObject
(from IManagedServer)

BusinessObjectInterface

BusinessObjectImplementation

Figure 30. Business Object Basic Structure

The BusinessObjectInterface abstraction in Figure 30 represents the interface as specified by the domain
expert involved in the object-oriented analysis and object-oriented design (OOA/OOD) activities for the
system under construction. This is represented by IDL and is an interface-only class from a run-time
perspective. It is also the interface that you are most likely to interact with this business object. These
types of interfaces always inherit from the IManageable interface in the IManagedClient module.

The BusinessObjectImplementation abstraction is an IDL file which is used to generate implementation
bindings that are for the business logic that implements the BusinessObjectInterface described previously.
The BusinessObjectImplementation inherits from one of the abstractions contained in the IManagedServer
module. The example shows inheritance from the IManagedObjectWithCachedDataObject interface. This
name indicates a number of things about how the BusinessObjectImplementation object will appear. The
IManagedServer module interfaces prescribe additional responsibilities that must be met in the
BusinessObjectImplemetation that deal with Component Broker and the infrastructure.

The two key modules involved are IManagedClient and IManagedServer. IManagedClient represents
those abstractions that are generally accessible to clients, and subclassed by business object builders
when they want to expose an interface to client programmers. As described in Chapter 2, “Personal Life
Insurance Application Example” on page 15, this includes abstractions such as IHome, IHandle, and
IManageable.

 Copyright IBM Corp. 1997, 1998 57

IManagedServer is a module that contains interfaces used only by object providers and customizing
applications to run in particular environments. The abstractions in IManagedServer enable business
objects to run in the Component Broker server and properly take advantage of the Component Broker
server capabilities. Examples of this are the IDataObject abstraction and the abstractions that deal with
enabling the basic business object for a specific data object pattern. Understanding these two modules
and the different purposes they serve is important.

Before a business object can be unit tested, you need to complete the construction of its classes, namely
primary keys and copy helpers. The additional steps involved in preparing a business object to be installed
in a Component Broker server for further testing, and eventual deployment, are discussed in Chapter 11,
“Assembling and Installing Business Objects on AIX and Windows NT” on page 197. These are found in
the module named IManagedLocal, and are the local-only objects which assist in making MOFW work
across clients and servers.

There are also other considerations with respect to factoring of the interfaces for various clients. Before
proceeding with the steps to develop a simple business object, it is important to establish some common
terminology.

Business Object State

In object-oriented programming, an object has both behavior and state. An object's behavior is manifested
in the implementations of the methods on the public and private interfaces of the object. The state of an
object, on the other hand, is predominantly manifested in the public and private data members of the
object. The state can be divided into categories of non-essential or essential.

An object's non-essential state consists of the subset of the state that can be calculated or derived from
other state, and the subset of the state which is transient and does not need to be persistent because it
can be recreated as necessary. A state that is not non-essential is considered to be essential state. To
illustrate, assume a Policy business object consists of the following:

 � Policy number
� Amount (of coverage)

 � Premium
� Insured (policy holder)

 � Comment
� Risk calculator (helper object)

Furthermore, assume that the premium can be calculated by dividing the amount by 100. The risk
calculator is a helper object which itself has no state, and a new one can be created if the Policy business
object is passivated and subsequently reactivated. The insured, on the other hand, is another business
object of type PolicyHolder. If the Policy business object is passivated and reactivated, the Policy business
object must find the same PolicyHolder as it had before passivation.

Given the previous assumptions, Figure 31 on page 59 shows that the policy number, amount, insured,
and comment are part of the essential state of the Policy object, whereas the premium and risk calculator
are part of the non-essential state.

58 Component Broker: Programming Guide

fPolicyNo

fAmount

fInsured

fComment

12345

100,000.00

Contemplating cancellation

fRiskCalc

float premium()

{

return fAmount/100;

}

Essential

Non-Essential

PolicyHolder

Risk Calculator

Figure 31. Essential and Non-Essential States

Business Object Attributes

In C++, the term attribute is often used synonymously with the term data member to describe a piece of
data which is part of an object's state. In CORBA or, more precisely, in IDL, attribute has a different
meaning altogether. In CORBA, IDL describes the interface of an object. Because CORBA is all about
distributed objects, and because there is no way to directly address data inside an object from across a
network, IDL does not support the notion of having data as part of an object's interface. Thus, in IDL,
attribute refers to a pair of methods for accessing and changing the value of a specific type. For instance,

attribute string comment;

defines the following methods in C++

virtual char\ comment ();

virtual ::CORBA::Void comment (const char\ comment);

The first of these two methods retrieves the value of the comment. The second allows the client to change
it. A business object often has a state which is necessary to support the implementation of the business
logic, but which is not directly accessible by an attribute on the object's interface. In object-oriented design
(OOD), this is referred to as encapsulation.

Now you should be able to go through the steps necessary to specify and implement a business object
based on the MOFW set of Component Broker interfaces. The goal of this chapter is to present enough
material for you to create the minimum set of artifacts necessary to support the basic client programming
model as described in “Client Programming Model: Basic Tasks” on page 35.

Developing a Business Object

The minimal set of required activities for developing a business object is described in this section. The real
business objects that you deploy will probably leverage some of the additional interfaces and capabilities
of Component Broker described in subsequent sections. This section helps you get started and
understand the basics involved in constructing a business object. This section describes more details
about the abstractions of the MOFW, how they are implemented, and what options exist when constructing
business objects based on the MOFW.

The minimal set of steps is:

 Chapter 5. MOFW Server Programming Model 59

1. Develop an interface to the business object.
2. Choose a pattern for handling essential state.
3. Implement the business object methods.
4. Implement the methods required by the MOFW interfaces.
5. Implement the necessary primary key class.
6. Implement the optional copy helper class. Implementation of a copy helper class is optional, but

strongly recommended. Copy helper objects can greatly improve the performance of creating a
business object in a server from a client application.

At the end of these tasks, the business object should be ready for unit testing. Details on how to unit test
business objects can be found in Appendix D, “Unit Test Environment” on page 333.

Developing an Interface to the Business Object

In this and the following sections, the Policy business object is used as an example. The Policy business
object has the following interface:

 #include <IManagedClient.idl>
 #include "Beneficiary.idl"

exception InvalidAmount {};

interface Policy : IManagedClient::IManageable

 {

void addBeneficiary(Beneficiary benRef);

void delBeneficiary(Beneficiary benRef);

readonly attribute long policyNo; // Primary key for 'Policy'

void changeAmount(float newAmount) raises(InvalidAmount);

 float getAmount();

attribute string comment;

readonly attribute float premium;

 }

This represents an interface that clients of the Policy business object can look at, understand, and design
to language bindings and is used for compiling client applications.

Note: The previous interface would be contained in a file named Policy.idl.

This is a standard looking IDL file. It declares some methods and attributes. What makes this a
Component Broker MOFW-specific interface is the fact that it inherits from IManagedClient::IManageable,
which is included from the IManagedClient.idl file.

This interface is of particular interest from a Component Broker MOFW perspective because of the
read-only attribute called policyNo. “Implementing the Primary Key Class” on page 73 describes how to
develop a primary key class for the Policy business object. However, even as early as this, the first step
in developing a business object, you should already be thinking about primary keys.

A primary key class encapsulates the data that makes one instance of a class of objects unique from
other instances of the same class of objects. Occasionally, the data that uniquely identifies an object is
not part the object's state. In such cases, the data which uniquely identifies an object would probably be
something like a Universally Unique IDentifier (UUID). However, typically, it is a subset of the state of an
object which makes the object unique. In the Policy business object example, the policy number is used to
distinguish amoung seperate instances.

60 Component Broker: Programming Guide

As described earlier, attributes on an object's interface define methods for accessing the state of an
object. For example, attribute long policyNo; defines the following methods in C++:

virtual ::CORBA::Long policyNo ();

virtual ::CORBA::Void policyNo (::CORBA::Long policyNo);

The first method retrieves the value of the policy number. The second allows the client to set it. A
business object gets its identity set in its data object from its primary key as part of creation or
reactivation. For more information, see “Implementing the Primary Key Class” on page 73. Changing an
object's identity after creation by setting one of the attributes which make up the key to a new value is not
allowed in Component Broker. Applying the readonly qualifier to the policyNo attribute prevents the
generation of the set method shown in the previous example, which means a client application has no
interface for changing a Policy object's identity.

Changing an object's identity after creation requires the following multi-step process:

1. Create a new object with the new identity.
2. Copy the state of the old object into the new object.
3. Delete the old object by invoking the remove() method.

This allows the application adaptor to properly keep track of, and manage, instances of business objects
on a Component Broker server.

 Module Scoping

Although the examples used in this book do not show it, wherever possible, IDL interfaces and types
should be enclosed inside a module scope. IDL declared outside of a module scope takes up name space
in the global IDL name space and risks having name collisions with names declared by other IDL
developers.

For example, if two groups in an organization write IDL interfaces without placing them in different
modules, and happen to choose names for their interfaces that overlap with each other, the result is name
collision when the IDL is loaded into a shared Interface Repository. However, if each group chooses a
unique module name, perhaps based on a combination of company name and group name, each group's
IDL is able to co-exist with all other IDL interfaces.

This example is even more useful when Java and the Internet are considered. In the IDL-to-Java mapping
specification adopted by the Object Management Group (OMG), IDL module names are mapped directly
into Java package names. IDL declared outside a module is mapped into classes and interfaces that are
not contained in any package. Because one of the purposes of packages in Java is to partition the Java
name space for the entire worldwide Internet, it is particularly important that IDL that might be mapped into
Java be contained within a module. Similar reasoning applies to C++, but because C++ classes are
typically not downloaded and shared among all users of the Internet, the risk is somewhat lessened.

For example:

 module XYZCompany_Finance

 {

 interface Receivable

 {

attribute long customerID;

attribute long amountCents;

 };

 };

The Receivable interface has the fully-scoped name XYZCompany_Finance::Receivable.

 Chapter 5. MOFW Server Programming Model 61

Design Tips for Business Objects

As discussed in “Business Object Attributes” on page 59, in C++, the term attribute describes a piece of
data which is part of an object's state. Good C++ object-oriented design (OOD) principles discourage
putting attributes on the public interface of an object. Public attributes allow the user of a C++ object to
directly manipulate the state of the object, without any control by the object itself. C++ OOD uses the term
encapsulation to mean putting an object's data members in the protected or private sections.

Because CORBA and IDL do not allow specifying data as part of an object's interface, public data is not a
problem. In CORBA, attributes on an object's interface (as specified using IDL) define methods for
accessing the state of an object. Because IDL does not allow the specification of exceptions to be thrown
as the result of an attribute, IDL attributes do not provide the same level of protection as encapsulation in
C++. To see why, continue with the Policy example. For illustration purposes, assume that the insurance
company does not want to issue a policy unless the amount is over $10,000.00. As shown previously, if
amount had been defined as an attribute, it would result in the following two methods being declared:

virtual ::CORBA::Float amount ();

virtual ::CORBA::Void amount (::CORBA::Float amount);

Look at the implementation of the method for setting the attributes value:

virtual ::CORBA::Void amount (::CORBA::Float amount)

 {

if (amount > 1ðððð.ðð)

fAmount = amount; // save value in private data member

 else

// What shall we do here...?

 };

IDL does not allow us to raise an exception on an attribute. The method signature, as emitted by the IDL
compiler, has no return value or output parameters. All you can do is not save the new value, return to the
caller, and hope that the caller notices that the value was not changed. A better way to truly encapsulate
the amount is to not make it an attribute in IDL, but rather a pair of get and set methods. This lets the
business object do constraint checking and communicate error conditions to the client of the business
object.

On the other hand, this needs to be balanced against performance. The Query Service of Component
Broker performs best when a query is specified in terms of attributes, and furthermore, that the attributes
of the business object map one-to-one to the attributes of the business object's data object. Doing so lets
the Query Service of Component Broker push down the query to the underlying resource manager.
Resource managers such as relational database managers perform queries much faster than Component
Broker can without any other help.

Module and interface names must be different. Although identical names are valid IDL syntax, it gets
mapped to nested classes by the C++ emitter, and the C++ compiler does not allow the name of a
Container class to be the same as a Contained class.

Selecting a Pattern for Handling Essential State

This step introduces another interface that looks like this:

 #include "Policy.idl"

 #include <IManagedServer.idl>

interface PolicyBO : Policy,

 IManagedServer::IManagedObjectWithDataObject

 {

 };

62 Component Broker: Programming Guide

Note: This interface is contained in a file named PolicyBO.idl.

This interface is small and straightforward. By inheriting from
IManagedServer::IManagedObjectWithDataObject a decision has been made about the pattern to be used
for handling the essential state of this business object. There are two interfaces in IManagedServer that
correspond to the two patterns that the Component Broker MOFWs support for handling the essential
state of a business object.

IManagedObjectWithDataObject
This interface implies that this business object has its state managed by a data object.
Because this business object has a data object, and no implied caching as in the next
interface, this is called the delegating pattern. There are implications here for the implementor
of the business logic methods. These are described in “Implementing Business Object Methods
and Attributes” on page 64.

IManagedObjectWithCachedDataObject
This interface implies the presence of a data object and support from Component Broker for
fetching this data into a cached set of state data maintained by the business object at the
appropriate times throughout the lifetime of a business object. This is called the caching
pattern, because the business object is caching the state being maintained by the data object.

The Data Object

For the patterns described previously, a data object is necessary. A data object manages the essential
state of a business object. For the working example, assume that the data object for the Policy is as
follows:

 interface PolicyDO

 {

attribute long policyNo;

attribute float amount;

attribute string comment;

attribute PolicyHolder insured;

 }

The interface for the data object contains one attribute for each piece of the business object's essential
state, as shown in Figure 31 on page 59, and that there are no attributes for the business object's
non-essential state. Also notice that this interface is not a one-to-one mapping of the attributes on the
business object. The premium attribute from the business object is not present here because it is not part
of the essential state. Also, although amount and insured were not attributes on the business object, they
are attributes on the data object because they are part of the business object's essential state.

This interface is enough to let you develop the object's business logic, without having to actually
implement the underlying data access methods. However, before the business logic can be tested, the
data object interface must in fact be implemented. “Implementing the Data Object” on page 337 describes
the implementation of the data object interface to unit test an object's business logic. “Data Object
Customization” on page 204 describes how to customize the data object to allow the business object to
be installed into a particular application adaptor.

Design Tips for Data Objects

There are several considerations when defining and naming the data object and its attributes. First, be
careful when naming the attributes for the data object. The Query Service of Component Broker operates
more efficiently if the attribute names on the business object are the same as the attribute names on the
data object. Second, while attributes on the business object's interface may not be a good idea, depending
on the amount of encapsulation desired, they are a convenient way of declaring get and set methods on

 Chapter 5. MOFW Server Programming Model 63

the data object. Because the data object is used only by the business object, and by the application
adaptor, encapsulation in the data object is not a consideration.

Implementing Business Object Methods and Attributes

In this step, the implementation bindings for PolicyBO are filled in with the business logic required to
support the Policy interface specified in the Policy.idl file in C++ code. The implementation bindings
generate a class called PolicyBO_Impl in this case. The emitted files, named PolicyBO.ih and
PolicyBO_I.cpp, do not have any of the methods that are introduced by the parents of PolicyBO, but which
need to be implemented by PolicyBO.

Note: This is a limitation of IDL as defined by CORBA: there is no way to specify in IDL whether an
interface has been implemented. Without this knowledge, an IDL compiler must make an
assumption. The IDL compiler provided with Component Broker assumes that every interface is
implemented.

These methods must be introduced to PolicyBO.ih and PolicyBO_I.cpp after emitting.

The Object Builder is going to ensure that the .ih and _I.cpp files at the business object level get the
method declarations and implementation stubs that are introduced at the level above. Additional C++
methods and data can be introduced as needed to meet the requirements of the implementation.
However, anything additional that is added is not accessible remotely from clients because the interface
used by clients is described in the client bindings. For C++, the client usage bindings are specified in .hh
files according to the CORBA 2.0 C++ mappings.

A sample implementation of the addBeneficiary() method follows:

// somewhere at the top

 #include "PolicyBO.ih"

// a business logic method implementation

::CORBA::Void PolicyBO_Impl::addBeneficiary(Beneficiary benRef)

 {

// Assume that beneficiaries was declared as a private C++ data

// member of type IManagedCollections::IReferenceCollection_var.

 beneficiaries->addElement(benRef);

 }

Each of the business logic methods needs to be implemented in a similar fashion. Handling of attributes
from the interface is more involved, and is described in the following sections.

Using C++ 'this' References in Business Objects

Care must be taken when programming all methods in business objects that use references to themselves
when communicating with other objects. Methods must use the programming model as described in this
section when using these self references. The technique of using “this” is no longer supported in the
programming model in these circumstances.

A local proxy class is created for each interface defining the managed object implementation, the
managed object interface, the business object interface, and every other interface that they may support.
Only instances of the local proxy of the managed object implementation are instantiated and these proxies
must be used for self references. The _this() method can be used to access this proxy in the business
object.

64 Component Broker: Programming Guide

The home provides a copy reference to a local proxy for the create() and findBy() methods that return
object references. The following example shows the set of rules to follow when an object passes itself as
an argument or returns itself as a return argument:

I_ptr I::foo(Bar_ptr bar)

 {

// When using normal sequences and structs

sequence[1] = _this();

struct.i = _this();

// We recommend using sequences that release object references automatically.

// If you must use sequences that do not automatically release their

// references, there must be another mechanism to free them.

I_var objref = _this(); // The var will release the objref upon exiting

// from this scope. This is just one of many

// possible ways to release the object reference.

specialSequence[1] = objref; // Sequence instantiated with no release indication.

// return value

 return _this();

 }

For backwards compatibility, the _self() method is retained in this release of Component Broker. The
following example shows the set of rules to follow when using _self():

 I_ptr I::foo(Bar_ptr bar)

 {

// When using normal sequences and structs the reference must be

// duplicated because these structures own the objects stored in them.

 sequence[1]= I::_duplicate(_self());

struct.i = I::_duplicate(_self());

// For sequences which do not release the objects within it.

specialSequence[1] = _self(); // Sequence instantiated

// with no release indication

// The reference must be duplicated for returning the value

 return (I::_duplicate(_self()));

 }

Warning: We will be deprecating the _self() method in a future release of Component Broker in order to
maintain CORBA compatibility via the _this() method. We encourage the user to migrate existing
code, and to start using the _this() method in any new code.

Option 1 – Patterns for Handling State (Caching)

If IManagedObjectWithCachedDataObject was chosen as the data object pattern, then all essential state,
and all non-derived non-essential state, is stored or cached in the business object. To store this state in
the business object, protected or private data should be declared inside of the implementation binding
header (.ih) file. For Policy and PolicyBO previously mentioned, add the following in the PolicyBO.ih file:

class PolicyBO_Impl : public virtual ::PolicyBO_Skeleton

 {

 ...

// methods being implemented go here

 ...

 protected:

 ::CORBA::Long fPolicyNo;

 Chapter 5. MOFW Server Programming Model 65

 ::CORBA::Float fAmount;

PolicyHolder _var fInsured;

 ::CORBA::String_var fComment;

RiskCalculator \ fRiskCalc; // C++ helper object

 };

Attributes: The implementation bindings getter and setter methods for each of the attributes specified in
an interface. In the PolicyBO_I.cpp file, the getter and the setter for the comment attribute are
implemented as follows:

::CORBA::Void PolicyBO_Impl::comment (const char\ comment)

 {

fComment = comment; // ::CORBA::String class will make copy

 }

char\ PolicyBO_Impl::comment ()

 {

 return ::CORBA::string_dup(fComment);

 }

The previous example is a simple implementation of getters and setters. More complex logic and
exception handling may be required. In fact, getters and setters might actually have logic in them to write
to resource managers or get data from resource managers. However, as described previously under
“Design Tips for Business Objects” on page 62, if the logic required in the implementation of getters and
setters includes any sort of bounds checking or error checking, then the attribute should be changed to a
pair of methods in the IDL file.

Other Methods: Other business logic methods which access state data do so similarly to the comment
attribute mentioned previously: they use the data that is cached in the business object.

Option 2 – Patterns for Handling State (Delegating)

If IManagedObjectWithDataObject was chosen as the data object pattern, then all essential state is
accessed by the data object: when the business logic needs to get or set its essential state, it does so by
using the attributes on the data object. This is called the delegating pattern because the maintenance of
the business object's state is being delegated to the data object. All non-derived non-essential state is still
cached in the business object. Using this pattern, the implementation binding header (.ih) file for PolicyBO
(PolicyBO.ih) would look something like this:

class PolicyBO_Impl : public virtual ::PolicyBO_Skeleton

 {

 ...

// methods being implemented go here

 ...

 protected:

 PolicyDO_ptr fDataObject;

RiskCalculator \ fRiskCalc; // C++ helper object

 };

Attributes: The implementation bindings generate getter and setter methods for each of the attributes
specified in an interface. In the PolicyBO_I.cpp file, the getter and setter for the comment attribute would
be implemented as follows:

::CORBA::Void PolicyBO_Impl::comment (const char\ comment)

 {

 fDataObject->comment(comment);

 }

66 Component Broker: Programming Guide

char\ PolicyBO_Impl::comment ()

 {

return ::CORBA::string_dup(fDataObject->comment());

 }

Other Methods: Other business logic methods which access essential state data do so similarly to the
comment attribute mentioned previously: they use the general fDataObject->datamember pattern.

An advantage of this programming model is that the business logic can be written independent of the
exact implementation of the DataObject. At this point, you only know which data is to be persistently
stored, not where it is stored or how it is accessed. This encapsulation of information inside of the
DataObject makes business logic more stable.

Implementing the IManageable Required Methods

You need to implement the following methods, which are described in the IManagedClient::IManageable
interface and its parents.

 IManageable::getPrimaryKeyString Method

This method returns a ByteString that contains the contents (in the form of a string) of the
IManagedLocal::IPrimaryKey subclass for the business object type being implemented. This could be used
to extract the identity of a business object for the purpose of using it at a later time to locate the same
business object using a findByPrimaryKeyString() method on a Home.

Note: A ByteString created from an object on one machine may not bytewise compare equal to a
ByteString created from the same object on a different machine.

You have several options in implementing this method. The best way to implement this method is to
create an instance of the IManagedLocal::IPrimaryKey subclass, set the values into this object, and return
the ByteString value. Here's an example of how this would be done for the Policy example:

 ::ByteString\ PolicyBO_Impl::getPrimaryKeyString()

 {

//Insert Method modifications here

PolicyKey_var policyKey = PolicyKey::_create();

 policyKey->policyNo(iDataObject->policyNo());

 return policyKey->toString();

//End Method modifications here

 }

The previous example assumes that the pattern for dealing with data is either caching, or that there is no
data object. A delegating pattern would cause the k->policyNo(fPolicyNo); statement to change to a call
to the data object. This method must be overridden. No default implementation is provided by the MOFW.

 IManageable::getHandleString Method

CORBA provides the ability to invoke object_to_string() on any object. This might be useful for persistently
storing a reference to an object. Component Broker introduces the concept of a handle. Handles provide a
way to keep track of an object using a mechanism different than that of a stringified object reference, if
this is desired.

You are not required to implement handles. The Component Broker default implementation of this method
uses a stringified object reference.

 Chapter 5. MOFW Server Programming Model 67

There are many ways to define a more stable handle. The following code is an example of an
implementation of the getHandleString method for a handle that combines the primary key and the name
of the home into a handle.

ByteString\ Policy BO_Impl::getHandleString

 {

PKHomeHandle_var myHandle = PKHomeHandle::_create();

myHandel->home(getHome()); // set value of home into handle

myHandel->primaryKey(getPrimaryKeyString()); // set value of primary key into handle

return myHandle->to String();

 }

 CosStream::Streamable::externalize_to_stream Method

Component Broker managed objects are always streamable. Streaming can be the basic mechanism
used for copying and moving objects.

The externalize_to_stream method is the CosStream::Streamable method that writes the state data of an
object into a stream. For business objects that are not using a data object or for those that use a cached
data object, streaming is done as follows:

 ::CORBA::Void PolicyBO_Impl::externalize_to_stream

 (::CosStream::StreamIO_ptr targetStreamIO)

 {

targetStreamIO->write_long(fPolicyNo);

targetStreamIO->write_float(fAmount);

targetStreamIO->write_string(fComment);

CORBA::String_var stringifiedInsured =

CBSeriesGlobal::orb()->object_to_string(fInsured);

targetStreamIO->write_string(stringifiedInsured);

 }

For business objects that use a cached data object, use the data in the business object's cache instead of
the data in the data object, because the data in the cache is likely to be more up-to-date.

Do not externalize the pointer to the data object that exists in the private data of the implementation
interface in the cases where a data object is being used.

If the business object is delegating its state to a data object, it is the data in the data object that is
extracted and placed into the stream. The implementation of this for the Policy example is as follows:

 ::CORBA::Void PolicyBO_Impl::externalize_to_stream

 (::CosStream::StreamIO_ptr targetStreamIO)

 {

targetStreamIO->write_long(fDataObject->policyNo());

targetStreamIO->write_float(fDataObject->amount());

targetStreamIO->write_string(fDataObject->comment());

CORBA::String_var stringifiedInsured = CBSeriesGlobal::orb()->

object_to_string(fDataObject->fInsured());

targetStreamIO->write_string(stringifiedInsured);

 }

If the data for an object involves references to other objects, there are two possible approaches: shallow
and deep. In the shallow approach to streaming, references to contained objects are stringified, and then
the string is written out to the stream. This is the approach shown in the previous two code segments. In

68 Component Broker: Programming Guide

the deep approach, contained objects are asked to stream themselves into the same stream as the rest of
the object's attributes by invoking externalize_to_stream() on the contained objects.

You should use the shallow approach. If a contained object has many attributes, such as lots of state
data, and if it contains references to other objects, it is likely that the deep approach is slower and results
in a larger stream (object). In addition, the shallow approach makes internalization more straightforward,
as discussed in the following section.

 CosStream::Streamable::internalize_from_stream Method

The internalize_from_stream method on CosStream::Streamable needs to be written so that it can read
the values that the externalize_to_stream method placed into the stream. The values must be read in the
same order that they were written. The example for the caching case and the case when no data object is
present follows:

 ::CORBA::Void PolicyBO_Impl::internalize_from_stream(::CosStream::StreamIO_ptr

 sourceStreamIO, ::CosLifeCycle

 ::FactoryFinder_ptr, there)

 {

::CORBA::Long tempPolicyNo = sourceStreamIO->read_long();

if (fPolicyNo == tempPolicyNo)

 {

fAmount = sourceStreamIO->read_float();

fComment = sourceStreamIO->read_string();

CORBA::String_var stringifiedInsured =

 sourceStreamIO->read_string();

CORBA::Object_var obj = CBSeriesGlobal::orb()->

string_to_object(stringifiedInsured);

fInsured = PolicyHolder::_narrow(obj);

 }

 else

// throw an exception which says that this is the

// wrong object to load this stream into

 }

Note: Do not change the key attributes of a Component Broker business object.

In the delegating data object case, the code for the Policy example is as follows:

 ::CORBA::Void PolicyBO_Impl::internalize_from_stream(::CosStream::StreamIO_ptr

 sourceStreamIO, ::CosLifeCycle

 ::FactoryFinder_ptr,

there) {

::CORBA::Long tempPolicyNo = sourceStreamIO->read_long();

if (fDataObject->policyNo()==tempPolicyNo)

 {

 fDataObject->amount(sourceStreamIO->read_float());

 fDataObject->comment(sourceStreamIO->read_string());

CORBA::String_var stringifiedInsured =

 sourceStreamIO->read_string();

CORBA::Object_var obj = CBSeriesGlobal::orb()->

string_to_object(stringifiedInsured);

 fDataObject->insured(PolicyHolder::_narrow(obj));

 }

 else

// throw an exception which says that this is the

 Chapter 5. MOFW Server Programming Model 69

// wrong object to load this stream into

 }

If the data in the stream is a stringified object reference, as it would be using the shallow approach
described in the previous example, then run the string_to_object method on the ORB with the string that is
read in from the stream. This is shown in the previous two code segments.

If, however, the data in the stream represents the entire contents of a contained object, as would be the
case in the deep approach mentioned previously, then the internalize_from_stream() method would have
to do the following:

� Read all of the contained object's attributes from the stream.
� Create a primary key object for the contained object type.
� Initialize the primary key with data from the stream.
� Find a home for the contained object type.
� Find the contained object by invoking findByPrimaryKeyString() on the home.

The extra work involved in the deep approach could be minimized by writing the contained object's primary
key string into the stream instead of its contents, but it would still not be as simple as the shallow
approach, and would no longer really be a deep approach, but an alternate shallow approach.

The assumption for the internalize_from_stream method is that the object was created before reading in
the stream. This also implies that the initForCreation() method was run on the business object.

Summary of IManageable Methods

IManageable and its ancestors introduce a number of methods into the interface of a business object.
Table 2 summarizes these methods and the implementation of each. Only the methods that you must
implement or may choose to implement are enumerated here. Other methods exist on these interfaces
which are not intended to be overridden by the object provider. This table provides a summary:

Table 2. IManageable Method Implementations Table

interface::MethodName Unit Test Environment Production

IManageable::getPrimaryKeyString object provider object provider

IManageable::getHandleString default provided by Component
Broker

default provided by Component
Broker

IManageable::getHome object provider default provided by Component
Broker

Streamable::externalize_to_string object provider object provider

Streamable::internalize_from_stream object provider object provider

This might seem like a lot of methods to implement but they are simple methods to implement. Tools can
assist in implementing all of the methods described in Table 2. The tool-generated implementation of
these methods is sufficient to begin testing in most cases, and can be customized as needed for specific
business reasons.

Implementing IManagedObject Required Methods

In addition to the business logic methods, there are MOFW-required methods that must be implemented
regardless of which kind of IManagedObject class is chosen as the base class.

70 Component Broker: Programming Guide

 initForCreation() Method

The Managed Object FrameWork invokes this method on every managed object when the object is initially
created. This method is the MOFW equivalent of a C++ constructor. Unlike a C++ constructor, by the time
this method is called, the object's essential state has already been initialized. In Component Broker, an
object's state is initialized by a primary key on a createFromPrimaryKey() method, or a copy helper object
on a createFromCopy() method.

In addition, if you are inheriting from the IManagedObject interfaces that have a data object
(IManagedObjectWithDataObject and the IManagedObjectWithCachedDataObject), then you must get the
input parameter that is provided on this method. It is the first thing you should do in the method. The
::_narrow is used so that the business object has access to specific methods introduced for dealing with
domain dependent state data.

 ::CORBA::Void PolicyBO_Impl::initForCreation(

 ::IManagedServer::IDataObject_ptr theDO);

 {

// keep the data object for later use

fDataObject = PolicyDO::_narrow(theDO);

// then put other initForCreation code here

 ...

 }

If you chose a pattern for handling essential state that requires a DataObject, then you need to have a
data member in the .ih file (for example, PolicyBO.ih) to hold the pointer to the data object. This is what is
set in the previous code segment.

 PolicyDO\ fDataObject;

The data object can be used for any initialization tasks that need to be done. There is no guarantee as to
the number of attributes in the data object that are validly set. That would be based on whether a copy
helper or primary key was used to do the create. Caching business objects should take this opportunity to
load the cache for the business object with any relevant values from the data object. At this point, the data
object has values for any key or copy helper data that was passed along during the create. In fact, the
primary key information must be extracted from the data object and placed into the cache of the business
object.

Given that the data object has a default constructor with reasonable initialization, as recommended and as
generated by the tools, these lines of code should be in the initForCreation() method:

fPolicyNo = fDataObject->policyNo();

fAmount = fDataObject->amount();

fComment = fDataObject->comment();

fInsured = fDataObject->insured();

 uninitForDestruction() Method

The Managed Object FrameWork invokes this method on every managed object when the object is being
destroyed. This method is the MOFW equivalent of a C++ destructor. If the managed object were
managing its own resources, this is where it would remove them.

The data object can be used for anything that is needed. Information can be pulled out of the data object
at this point. This is also the opportunity to enforce any referential integrity constraints. For example, this
might mean removing an object to which it is pointed.

 Chapter 5. MOFW Server Programming Model 71

In addition to initForCreation() and uninitForDestruction(), the IManagedObjectWithDataObject and the
IManagedObjectWithCachedDataObject interfaces introduce the initForReactivation() and
uninitForPassivation() methods. These are described next.

 initForReactivation() Method

The Managed Object FrameWork (MOFW) invokes this method on every managed object when the object
is being recreated in storage. This is the MOFW equivalent of an operating system paging storage in from
disk. Because the managed object is being put into storage, it needs to make sure that any resources
that it was managing are ready to be used. For example, if the managed object were managing its own
network connection, the implementation of this method would re-establish the connection.

In addition, if you are inheriting from the IManagedObject interfaces that have a data object
(IManagedObjectWithDataObject and the IManagedObjectWithCachedDataObject), then you must get the
input parameter that is provided on this method. This is the first thing you should do in the method. The
::_narrow is used so that the business object has access to specific methods introduced for dealing with
domain dependent state data.

 ::CORBA::Void PolicyBO_Impl::initForReactivation(

 ::IManagedServer::IDataObject theDO);

 {

// keep the data object for later use

fDataObject = PolicyDO::_narrow(theDO);

// then put other initForReactivation code here

 ...

 }

While it is necessary to get the pointer to the data object in this method, the data object should not be
used in any way during this method. This method has no access to the essential state stored in the data
object.

 uninitForPassivation() Method

The Managed Object FrameWork invokes this method on every managed object when the object is
temporarily removed from storage. This is the MOFW equivalent of an operating system paging storage
out to disk. Because the managed object is removed from storage, it clearly is not using any resources
that it is holding. You have the choice of releasing any held resources at this time, or continuing to hold on
to them. If the managed object is not managing any resources, or if you choose to hold onto those
resources, then no implementation for this method is required.

The data object cannot be used or accessed during the execution of this method.

In addition to the methods already described, IManagedObjectWithCachedDataObject introduces two
additional methods. These are the syncToDataObject() and syncFromDataObject() methods.

 syncFromDataObject() Method

The purpose of syncFromDataObject() is to load the business object with the data that is contained in the
data object. In “initForCreation() Method” on page 71 and “initForReactivation() Method,” a pointer to the
data object fDataObject is set. In this method, the data object must be accessed to load up the local state
data into its cache, as the name of the base class for this business object implies
(IManagedObjectWithCachedDataObject). The following code is placed in the syncFromDataObject for the
Policy example:

72 Component Broker: Programming Guide

fPolicyNo = fDataObject->policyNo();

fAmount = fDataObject->amount();

fComment = fDataObject->comment();

fInsured = fDataObject->insured();

Look in the implementation interface for the business object being constructed and ensure that all of the
data is properly loaded from the data object. This method is called by the Component Broker server, but
must be implemented by the object provider.

MOFW does not let you invoke other methods on the business object's public interface from within the
implementation of this method.

Observe that the following lines of code are the same in initForCreation() and syncFromDataObject().

fAmount = fDataObject->amount();

fComment = fDataObject->comment();

fInsured = fDataObject->insured();

To avoid duplicating this code, introduce a method in your business object called initializeState() that is
called from both initForCreation() and syncFromDataObject().

 syncToDataObject()

The purpose of syncToDataObject() is to flush the data from the business object back to the data object.
This puts the data object in a state in which it can deal with the underlying resource manager, and ensure
that this data is properly stored persistently, using the right transaction interfaces to the underlying
resource manager. The syncToDataObject() method for the Policy example would look like:

 fDataObject->policyNo(fPolicyNo);

 fDataObject->amount(fAmount);

 fDataObject->comment(fComment);

 fDataObject->insured(fInsured);

This method is called by the Component Broker server, but must be implemented by the object provided.

The syncFromDataObject() and syncToDataObject() methods are called by the Component Broker server
at the appropriate times. They should not be called by the business object in any of its methods. The
server calls syncToDataObject() at all appropriate times before passivation to ensure the data is properly
stored back to the underlying resource manager. It calls syncFromDataObject() at all appropriate times
after reactivation to properly load the business object's cache. These methods should only contain logic
that pertains to the values of the business object's cache.

Summary of IManagedObject Methods

All of the methods defined in the IManagedObject subclass chosen must be implemented. They have been
described in the previous sections. These methods should be called only by the Component Broker server.
See “Sample Framework Flows” on page 203 for further information.

Implementing the Primary Key Class

Each business object must have an associated primary key class to be used in Component Broker. There
are several ways to develop a key class. The most prevalent way is to create a key class based on the
MOFW base class IManagedLocal::IPrimaryKey.

The IManagedLocal.idl file provides a set of interfaces for keys. IPrimaryKey is the class that you want to

 Chapter 5. MOFW Server Programming Model 73

subclass from in order to create a key class that works with your business object class. For example, in
the insurance policy case, a key class like this:

interface PolicyKey : IManagedLocal::IPrimaryKey

 {

attribute long policyNo;

#pragma meta PolicyKey localonly

}; // end interface PolicyKey

In this example, the Primary Key of the Policy object consists of a single attribute, policyNo. The Primary
Key of an object can consist of one or more public attributes. Protected or private attributes cannot be
used as part of a primary key. For example, the Primary Key of a Beneficiary object consists of both the
name of the beneficiary and the policy number of the policy for which the person is a beneficiary.

To accommodate the key attributes, protected or private data should be declared inside of the
implementation binding header file (.ih). For the PolicyKey in the previous example, put the following in the
PolicyKey.ih file:

 ::CORBA::Long fPolicyNo;

In the PolicyKey_I.cpp file, the attributes would be implemented as follows:

::CORBA::Void PolicyKey_Impl::policyNo(::CORBA::Long policyNo)

 {

fPolicyNo = policyNo;

 }

 ::CORBA::Long PolicyKey_Impl::policyNo()

 {

 return fPolicyNo;

 }

 CosStream::Streamable Methods

The other main requirements for the implementation of this class are the streaming methods as shown in
the following example:

 ::CORBA::Void PolicyKey_Impl::externalize_to_stream

 (::CosStream::StreamIO_ptr targetStreamIO)

 {

// Insert Method modifications here

 targetStreamIO->write_long(fPolicyNo);

// End Method modifications here

 }

 ::CORBA::Void PolicyKey_Impl::internalize_from_stream

 (::CosStream::StreamIO_ptr sourceStreamIO,

 ::CosLifeCycle::FactoryFinder_ptr there)

 {

// Insert Method modifications here

 fPolicyNo=sourceStreamIO->read_long();

// End Method modifications here

 }

Although the CosStream::Streamable methods and the toString() and fromString() methods introduced by
Component Broker might appear to work independently, they actually work well together. Object providers
generally implement the internalize_from_stream() and externalize_to_stream() methods on all objects that

74 Component Broker: Programming Guide

are constructed. For primary keys and copy helpers, call toString() and fromString() when an object must
be flattened to bits or revived from bits. The toString() and fromString() are actually implemented by the
MOFW by calling the Streamable methods. This ensures proper flattening of all CORBA types and proper
handling of code pages when the bits are moved between machines. The ByteString data type used by
fromString() and toString() is really a wrapper over the data format used by CORBA, and therefore
Component Broker, to move data between processes.

 Implementing IKey::getName

The implementation of this method returns the class name. For the PolicyKey class, the implementation
would look something like this:

 char\ PolicyKey_Impl::getName()

 {

//Insert Method modifications here

 return CORBA::string_dup("PolicyKey");

//End Method modifications here

 }

 Implementing IKey::isEqualToKey

Component Broker provides a default implementation of this method that compares the stringified values
of the keys. It can be optionally implemented by the object provider. The implementation of this method
should use the get method on the keys and compare the values to see if the key is for the same object.
The following would be an implementation of this for the PolicyKey class.

::CORBA::Boolean PolicyKey::isEqualToKey(IKey inKey)

 {

PolicyKey_var pk = PolicyKey::_narrow(inKey);

if (pk->policyNo() == fPolicyNo)

 return 1;

 else

 return ð;

 }

 Implementing IKey::isEqualToKeyString

Component Broker provides a default implementation of this method that compares the stringified values
of the keys. It can be optionally implemented by the object provider. This method is similar to the previous
one, but deals with the stringified version of the key. The implementation is shown in the following
example:

::CORBA::Boolean PolicyKey::isEqualToKeyString(ByteString inString)

 {

PolicyKey_var tempKey = PolicyKey::_create();

 tempKey->fromString(inString)

if (tempKey->policyNo() == fPolicyNo)

 return 1;

 else

 return ð;

 }

 Chapter 5. MOFW Server Programming Model 75

Summary of Key Class Construction

This primary key class enables you to use the createFromPrimaryKeyString() and
findByPrimaryKeyString() methods that are part of the IManagedClient::IHome interface. To pull it all
together now, the following shows the creation of a key, the creation of an object based on this key, and
usage of this object.

// show a simple usage of createFromKeyString assuming you have a home

PolicyKey_var aPolicyKey = PolicyKey::_create();

 aPolicyKey->policyNo(1234);

 Policy_var aNewPolicy;

 IManagedClient::IManageable_var aManageable;

aManageable = thePolicyHome->

 createFromPrimaryKeyString(aPolicyKey->toString()));

aNewPolicy = Policy::_narrow(aManageable);

 aNewPolicy->amount(123.45);

 ...

 ...

Information about how the value of a key gets mapped to a specific business object is contained in
Component Broker and in the DataObject implementation. Details on the data object implementation and
this important mapping are in Chapter 11, “Assembling and Installing Business Objects on AIX and
Windows NT” on page 197.

Other Ways to get the KeyClass

Some containers come with a predefined subclass of IManagedLocal::IPrimaryKey that works for all
business object types that are to be stored in a particular container. If you are planning to install the
business object into this kind of container, then you should consult the documentation for that container to
determine the kind of key that needs to be used when dealing with business objects that live in that
container.

See “Local-Only Development Process” on page 78 for information on building local-only objects such as
primary keys.

Implementing the Optional Copy Helper Class

In addition to the createFromPrimaryKeyString() method that is part of the IManagedClient::IHome
interface, there is also a method called createFromCopyString(), which supports another creation method
for a business object. creation. This method is available to make creating objects more efficient. Rather
than running createFromPrimaryKeyString() on the IManagedClient::IHome followed by a series of remote
setxxxx() methods to load an object, createFromCopyString() enables the creation of a local transient
object that is externalized and passed in its entirety to the server in one call.

To create a copy helper class, subclass from IManagedLocal::INonManageable. This is the base class for
local-only objects that interact with and act like CORBA objects, support streaming, but are not accessible
remotely. Following is an example of the interface that gets declared in IDL for the PolicyCopy class.

76 Component Broker: Programming Guide

interface PolicyCopy : IManagedLocal::INonManagable

 {

 attribute long policyNo;

 attribute float amount;

 attribute float comment;

 }

In many ways, the development process for simple copy helper classes is the same as that required for
implementing primary key classes. The only difference is the fact that typically more attributes are placed
into a copy helper class. A pragmatic suggestion for building your first copy helper class is to borrow
pieces of the PrimaryKey subclass and modify it to become a copy helper. What is added is probably
based on the pieces of the basic business object, for example Policy, that might be present in a copy.

This interface implies that the copy helper class allows the loading of all of the state of the Policy business
object interface.

This interface then has an implementation with setters and getters for each of the attributes. In addition,
the internalize_from_stream and externalize_to_stream methods need to be implemented. These
implementations are shown in the following code segments.

class PolicyCopy_Impl : public virtual ::PolicyCopy_Skeleton,

public virtual IManagedLocal_INonManageable_Impl

 {

 public:

// excerpts from the C++ interface used for implementation

// which is probably named PolicyCopy.ih

 ...

virtual ::CORBA::Void externalize_to_stream(

 CosStream::StreamIO targetStreamIO);

virtual ::CORBA::Void internalize_from_stream(

 CosStream::StreamIO sourceStreamIO,

 CosLifeCycle::FactoryFinder there);

// add getters/setters and isReady() to this list

 ...

 ...

 protected:

 ::CORBA::Long copyPolicyNo;

 ::CORBA::Float copyAmount;

 ::CORBA::String_var copyComment;

 };

Then, the implementation class for this copy object has this:

 ::CORBA::Void PolicyCopy_Impl::externalize_to_stream(

 CosStream::StreamIO targetStreamIO)

 {

 targetStreamIO->write_long(copyPolicyNo);

 targetStreamIO->write_float(copyAmount);

 targetStreamIO->write_string(copyComment);

 }

 ::CORBA::Void PolicyCopy_Impl::internalize_from_stream(

 CosStream::StreamIO sourceStreamIO,

 CosLifeCycle::FactoryFinder there)

 {

copyPolicyNo = sourceStreamIO->read_long();

 Chapter 5. MOFW Server Programming Model 77

copyAmount = sourceStreamIO->read_float();

copyComment = sourceStreamIO->read_string();

 }

// add getters/setters and isReady() to this list

 ...

 ...

The copy helper is complete. It is a lightweight object that encapsulates the subset of the business object's
state data that is fed in on a createFromCopyString() call. In addition to this, the implementation of the
CosStream::Streamable methods enables this class to use the Externalization Service to get the contents
ready for sending to the server.

A copy helper class should have a default constructor that initializes values to appropriate default values.
This should help in the case where only partial information is available when the copy is built. A copy
helper must contain all the information necessary to create a primary key which allows a home to create a
unique business object from the copy data.

See “Local-Only Development Process” for more details on building these local-only copy helper objects.

Local-Only Development Process

Both the Copy Helper classes and the Primary Key classes are developed using a variant of the
development processes used for building the business object implementations. It is actually a simpler
process because these are local-only objects which are not accessible remotely. All interfaces (specified in
IDL), inheriting specifically from IManagedLocal::ILocalOnly, IManagedLocal::INonManageable, or any
other subclass of IManagedLocal::ILocalOnly follows this development process. A more detailed
description of this process is discussed in “The Local-Only Development Process” on page 252.

For special local-only notes for copies and keys, every helper class must be written in IDL and generate a
C++ binding (and implementation) because the Component Broker server is built using C++ and these
classes get used on the server by the Component Broker run time. It is up to the object provider to
determine if a Java version (binding and implementation) of the helper classes is also desired for use on a
Java client.

 Summary

This chapter explained the minimum important artifacts necessary to implement a business object. At the
end of these activities, you should have the following:

 � IDL Files

– Interface for client (Policy.idl).
– Interface for implementation (PolicyBO.idl).
– Interface for essential state (PolicyDO.idl).
– Interface for Primary Key class (PolicyKey.idl).
– Interface for Copy Helper class (PolicyCopy.idl).

 � Implementation Files

– Implementation of business logic and MOFW-required methods (for example, PolicyBO.ih and
PolicyBO_I.cpp that contains the PolicyBO_Impl C++ class).

– Implementation of the Primary Key class (for example, PolicyKey.ih and PolicyKey_I.cpp).

– Implementation of the CopyHelper class (for example, PolicyCopy.ih and PolicyCopy_I.cpp).

78 Component Broker: Programming Guide

� Client and server bindings (for example xxxx_C.cpp and xxxx_S.cpp files) for the interface classes and
implementation classes. The IDL emitter generates these bindings. Because Primary Key and Copy
Helper classes are local-only, they only require _C.cpp files for bindings.

 � Usage Bindings

 – Policy.hh
 – PolicyBO.hh
 – PolicyKey.hh
 – PolicyCopy.hh

These are the artifacts necessary to begin either testing the business object in the Unit Test Environment,
or preparing a real managed object to be installed into an application adaptor. Table 3 on page 80
summarizes what is specified and from where in the MOFW the abstractions in the IManagedServer
module are inherited.

Figure 32. Basic Artifacts in Business Object Development and their MOFW Inheritances

 Chapter 5. MOFW Server Programming Model 79

Table 3. Artifacts Table for Business Object

Interface Name Implementor Server DLL
Name

Client DLL Name Comments

Policy Object provider PolicyBO.dll
should hold
Policy_S.obj

PolicyClient.dll
should hold
Policy_C.obj

Interface only

PolicyBO Object provider PolicyBO.dll
should hold
PolicyBO_S.obj

See note 1 Real business logic
and MOFW
required methods

PolicyDO n/a See note 1 Documents
essential state

Data object n/a See note 1 Interface only

Manageable Component Broker
provides some

Manageable.dll ManageableClient.dll Interface and some
default
implementation

Object provider
must do some in
its PolicyBO

PolicyBO.dll

Identifiable Object Services Identifiable.dll IdentifiableClient.dll

LifeCycle n/a

Streamable Component Broker
provides some

Manageable.dll StreamableClient.dll

Object provider
must do some in
its PolicyBO

PolicyBO.dll

IManagedObject See note 1 Interface only

IManagedObjectWith-
DataObject

Object Provider (in
its PolicyBO)

See PolicyBO.dll See note 1

PolicyCopy Object Provider PolicyCopy.dll Same DLL on client
and server

ILocalOnly

PolicyKey Object Provider PolicyKey.dll Same DLL on client
and server

ILocalOnly

Notes:

1. Not needed. You do not need a separate DLL or OBJ file for these as they are used only from inside the
server and going through the _S.cpp is sufficient.

For the client DLL name you need to have the _C.cpp client side binding that corresponds to the IDL file
when it is introduced regardless of where the actual implementation takes place. When it is server only,
the _C.cpp included by the _S.cpp is sufficient.

Additional Information Business Object Creators Should Know

Developing the business logic that implements business object interfaces is done using as much of the
C++ language as is appropriate for optimally supporting the interfaces. Use native language class libraries
to assist when needed. Choices on how to best implement the business logic are yours to make.

Note: Do not create separate threads. The Component Broker server environment in which the business
objects reside is complex. Component Broker must control the threading environment. Creation of
additional threads from within business logic could cause unexpected results on the Component
Broker server.

80 Component Broker: Programming Guide

Where to Next?

In order to have a business object that can be tested and installed into a Component Broker server, some
additional steps must be taken. First, however, you might want to unit test the business object. If you are
ready to unit test, proceed to Appendix D, “Unit Test Environment” on page 333. If you want to provide
more advanced features for clients to use and to leverage additional MOFW features as part of the
implementation of your managed object, then see Chapter 6, “MOFW Client Programming Model –
Advanced Concepts” on page 83. See Chapter 7, “MOFW Server Programming Model – Advanced
Concepts” on page 105 for information on how to add these advanced features to a business object.

 Chapter 5. MOFW Server Programming Model 81

82 Component Broker: Programming Guide

Chapter 6. MOFW Client Programming Model – Advanced
Concepts

This chapter includes the following topics:

 � “Transactions”
� “Session Service” on page 89
� “Queries, Iterations and Specialized Homes” on page 91
� “Using Keyed Reference Collections” on page 96
� “Conventions and Guidelines” on page 99
� “The create_object() Method” on page 100

For further information on Quality of Service Interfaces, see “Expanding the Client Programming Interface”
on page 246.

 Transactions

Transactions are like a contract that binds a client to one or more servers. They bracket a set of system
behaviors or actions that have the following properties:

Atomicity
A group of actions behave in an all-or-none fashion as an indivisible unit of work.

Consistency
After a transaction executes, the system is left in a correct state, assuming that the system was
in a correct state prior to the transaction.

Isolation A given transaction's behavior is unaffected by other transactions and system activity occurring
concurrently.

Durability
When a transaction commits, its effects are permanent or persistent. Because transactional
models involve the concept of bracketing system behaviors, they provide commands for
indicating transaction boundaries. All transactions have a start and an end that can involve
committing to a change in system state or aborting the changes and rolling back to the
pre-transaction state of the system.

The Component Broker Object Transaction Service provides standard primitives for transactional
applications in a distributed object environment. When the Transaction Service is used in conjunction with
a persistent storage medium and with some control over concurrent access to resources, you have the
basics for creating robust business applications. Key elements of the Transaction Service are:

� Basic Transaction Service operations.
� Integration with the server run time.

 � Client support.

Note: For additional information about the Transaction Service, see the Component Broker Advanced
Programming Guide.

 Copyright IBM Corp. 1997, 1998 83

 CosTransactions Module

The Component Broker CosTransactions module provides the Transactions interface defined by OMG.
Some of the operations supported by CosTransactions include:

� Controlling the scope and duration of a transaction.
� Allowing multiple objects to be involved in a single, atomic transaction.
� Coordinating the completion of transactions.
� Performing recovery of transaction states following restart of failed processes.

The primary interfaces in the CosTransactions Module are:

Current Interface
The Current interface defines methods that allow a client of the Transaction Service to explicitly
manage the association between threads and transactions. It also defines methods that simplify
the use of the Transaction Service for most applications. These methods can be used to begin
and end transactions, and to obtain information about the current transaction (see “A Simple
Example” on page 85).

TransactionFactory Interface
The TransactionFactory interface defines a single create method that allows the transaction
originator to create a new top-level transaction without it being associated with the current
thread. It is primarily intended for creating transactions remotely.

Control Interface
The Control interface defines methods to allow a program to explicitly manage or propagate a
transaction. An object supporting the Control interface is implicitly associated with one
transaction only.

Terminator Interface
The Terminator interface defines methods to complete a transaction, either by requesting
commitment or demanding rollback. Typically, these methods are used by the transaction
originator. An object that supports the Terminator interface is implicitly associated with one
transaction only.

Coordinator Interface
The Coordinator interface provides common methods for top-level transactions and
subtransactions. Participants in a transaction are typically either recoverable objects or agents
of recoverable objects, such as subordinate coordinators. An object supporting the Coordinator
interface is implicitly associated with one transaction only.

RecoveryCoordinator Interface
The RecoveryCoordinator interface allows recoverable objects to drive the recovery process in
certain situations. Each instance of this class is implicitly associated with a single resource
registration, and can only be used by that resource in the particular transaction for which it is
registered.

Resource Interface
The Resource interface defines the operations invoked by the Transaction Service, during
transaction completion, on each resource registered using the register_resource() method of
the Coordinator interface.

SubtransactionAwareResource Interface
The SubtransactionAwareResource interface defines the operations invoked by the Transaction
Service, during subtransaction completion, on each resource registered using the
register_subtran_aware method (or register_resource) of the Coordinator interface.

84 Component Broker: Programming Guide

Synchronization Interface
The Synchronization interface defines the operations invoked by the Transaction Service during
transaction completion on each resource registered using the register_synchronization method
of the Coordinator interface.

TransactionalObject Interface
The TransactionalObject interface is used by an object to indicate that it is transactional. By
inheriting from the TransactionalObject interface, an object indicates that it wants the
transaction context associated with the client thread to be propagated on requests to the
object.

These interfaces show the breadth of function available within the CosTransactions Module. The MOFW
encapsulates the transactional interfaces and provides a programming interface to transactions. Most of
what you need to know is shown in “A Simple Example.”

A Simple Example

Code segments in this section show how a client could use some of the Transaction Services. The
example uses Policy objects.

The following code segment performs the initialization that is required to use transactions.

 #include <CosTransactions.hh>

CosTransactions::Current_ptr currentTransaction = NULL;

CORBA::Current_ptr orbCurrentPtr = NULL;

 CBSeriesGlobal::Initialize();

CORBA::ORB_ptr orb = CBSeriesGlobal::orb();

orbCurrentPtr = orb->get_current("CosTransactions::Current");

currentTransaction = CosTransactions::Current::_narrow(orbCurrentPtr);

You can proceed to find, create, and use a factory as shown in earlier examples. Before attempting to
create a Policy managed object, the begin() method can be called on the currentTransaction pointer to
indicate the start of a transaction. When using transactions it is advisable to be begin the transaction early
in the processing cycle. All method calls that might result in a database access must be always called
within the scope of a transaction. For example, methods such as 'findByPrimaryKeyString' and
'createFromPrimaryKeyString' may result in database accesses, it is safer to begin the transaction before
making these calls. Beginning transactions early in the processing cycle will hide differences in
implementation differences between Application Adapters and other specific implementations in later
releases.

PolicyKey_var keyVar = PolicyKey::_create();

 keyVar->PolicyNo(55555);

theKeyString = keyVar->toString();

// Start the transaction now

 currentTransaction->begin();

...

/\ Assume that the policy home is found \/

mVar = myPolicyHome->createFromPrimaryKeyString(\theKeyString);

myPolicy = Policy::_narrow(mVar);

 myPolicy->amount(25ððð.ðð);

 Chapter 6. MOFW Client Programming Model – Advanced Concepts 85

When the Managed Object has been created, methods can be called on it and its data can be
manipulated as desired, all within the scope of the transaction that was started in the previous example.
To indicate the termination of the transaction, the commit method is called and the Policy is released.

CORBA::Boolean inValue = 1; // Report heuristic exceptions

// End the transaction now

 currentTransaction->commit(inValue);

The previous segments assume that the data manipulations resulted in desired updates to the data. The
commit method completes the current transaction by making these changes to the data permanent. But
what if a condition occurred in which the client wanted to end the transaction without any changes?

The following code example shows how the rollback method can be used to terminate a transaction
without an update to the data. Two policies are created and have their data set. An if test determines
whether the changes are committed or rolled back.

 Policy_var aPolicy;

 Policy_var aPolicy2;

 IManagedClient::IManageable_var moVar;

 IManagedClient::IManageable_var moVar2;

 ByteString \theKeyString;

 IExtendedLifeCycle::FactoryFinder_var myFinder;

 CORBA::Object_var it;

 IManagedClient::IHome_var policyHomeVar;

 float inAmount;

 CORBA::Boolean inValue;

CosTransactions::Current_ptr currentTransaction = NULL;

CORBA::Current_ptr orbCurrentPtr = NULL;

 CBSeriesGlobal::Initialize();

CORBA::ORB_ptr orb = CBSeriesGlobal::orb();

orbCurrentPtr = orb->get_current("CosTransactions::Current");

currentTransaction = CosTransactions::Current::_narrow(orbCurrentPtr);

 currentTransaction->set_timeout(6ðð);

it = CBSeriesGlobal::nameService()->resolve_with_string(

 "host/resources/factory-finders/host-scope");

myFinder = IExtendedLifeCycle::FactoryFinder::_narrow(it);

it = myFinder->find_factory_from_string(

 "PolicyDefaultTransDB2.object interface");

policyHomeVar = IManagedClient::IHome::_narrow(it);

PolicyKey_var theKey = PolicyKey::_create();

 theKey->policyNo(12345);

theKeyString = theKey->toString();

// Start the transaction now

 currentTransaction->begin();

moVar = policyHomeVar->createFromPrimaryKeyString(\theKeyString);

 theKey->policyNo(99999);

theKeyString = theKey->toString();

moVar2 = policyHomeVar->createFromPrimaryKeyString(\theKeyString);

aPolicy = Policy::_narrow(moVar);

86 Component Broker: Programming Guide

aPolicy2 = Policy::_narrow(moVar2);

cout << "Enter amount for first policy" << endl;

cin >> inAmount;

 aPolicy->amount(inAmount);

cout << "Enter amount for second policy" << endl;

cin >> inAmount;

 aPolicy2->amount(inAmount);

if(aPolicy->amount() == aPolicy2->amount())

 {

// End transaction now with now changes to data

 try

 {

 current->rollback();

 }

 catch(CosTransactions::NoTransaction)

 {

// No Transaction to rollback. ...

 }

 catch(...)

 {

// Rollback failed ...

 }

 }

 else

 {

// End transaction now and update data

 currentTransaction->commit(inValue);

 }

Transactions, Exceptions, and Timeouts

“A Simple Example” on page 85 provides a basic usage view of the transactional interfaces. This section
provides additional guidelines on application structuring in the area of timeouts and exception handling.

Consider the following code example to explain why the code is structured in this way:

// get current See note 1

 CBSeriesGlobal::Initialize();

CORBA::Current_var orb_current = CBSeriesGlobal::orb()->get_current("CosTransactions::Current");

 CosTransactions::Current_ptr current;

 current= CosTransactions::Current::_narrow(orb_current)

current->set_timeout(18ð); // See note 3

// you could have a loop starting here...

 try

 {

current->begin(); // See note 2

.... do work

 if (businessLogicSaysCommit)

current->commit(1); // See note 2

 else

try // See note 4

 {

 current->rollback();

 }

 catch(CosTransactions::NoTransaction)

 {

 Chapter 6. MOFW Client Programming Model – Advanced Concepts 87

// No Transaction to rollback. ...

 }

 catch(...)

 {

// Rollback failed ...

 }

 }

catch (const ::CORBA::SystemException &se) // See note 5

 {

cout << "System Exception" << se.id() << endl;

 try

 {

 current->rollback();

 }

 catch(CosTransactions::NoTransaction)

 {

// No Transaction to rollback. ...

 }

 catch(...)

 {

// Rollback failed ...

 }

 }

 catch(...) // See note 6

 {

 try

 {

 current->rollback();

 }

 catch(CosTransactions::NoTransaction)

 {

// No Transaction to rollback. ...

 }

 catch(...)

 {

// Rollback failed ...

 }

// do whatever you want to do next..

 }

What does all of this mean? In the previous example, the numbers in the comments correspond to the
following list items:

1. Get the current. This is the same as always. Get it once for performance reasons.

2. Begin and Commit transactions. Bracket units of work in accordance with the requirements of your
business logic and domain needs. In other words, if you want to be able to rollback a set of
operations, put them in a begin or commit block. The issue is how much time is normally expected
between the begin and commit. You must realize that there is some level of resource locking that goes
on while there is a transaction inflight. Shorter transactions will increase throughput, and so on.

3. This is an important line of code. This code signals to the server that this is how long (in seconds) the
server should wait before taking matters into its own hands. This means that the server will roll back
without any user code having specified rollback. If a timeout is not specified via this method call, a
platform-dependent default value is used.

4. Rollback can be issued at any time based on the needs of the business logic. This undoes changes
made since the last begin.

88 Component Broker: Programming Guide

5. When a system exception occurs, you should code a rollback() in the catch block or some routine that
the catch block calls.

6. The exceptions that make it to the final catch block, by definition, were thrown from within the client
program. Anything that flowed over a wire would have been remapped to a CORBA exception and
would have been caught in item number 5. A rollback here will also work properly and release locks.
You should note that a rollback can be issued for exceptions that are not system exceptions that come
back from the server. Things like IManagedClient:INoObjectWithKey can be caught and followed by a
rollback().

 Session Service

 OS/390 Component Broker does NOT support session service.

The session service defines the notion of a session. It provides a mechanism for grouping a set of
operations together as a logical unit. A session is conceptually similar to a transaction as defined and
supported by the transaction service. Sessions differ from transactions in the following ways:

� A session is defined on an application scope rather than on an individual transaction scope. This
provides a mechanism for checkpointing groups of persistent objects for which no externally
coordinated transactional update is available.

� Sessions do not define an atomically recoverable commit scope as do transactions; sessions provide
some services for checkpointing and clean conclusions of applications but do not provide the same
level of application durability as transactions.

� A session can use an application profile. An application profile consists of attributes that define its
properties, such as requirements for data concurrency, duration, visibility, update, execution priority,
and resource dependencies.

Sessions and transactions can be used together. Transactions can be used within sessions to provide
greater levels of durability within applications.

For additional information about the session service, see the Component Broker Advanced Programming
Guide.

A Simple Example

The following example demonstrates how a single-threaded client can begin a session, perform some
work, and end the session, checkpointing any non-transactional work that occurs within the session.

 CORBA::Current_var current;

 ISessions::Current_var sessionCurrent;

// Get the current for this thread of execution

// from the ORB and narrow to the session current.

current = CBSeriesGlobal::orb()->get_current("ISessions::Current");

sessionCurrent = ISessions::Current::_narrow(current);

 Chapter 6. MOFW Client Programming Model – Advanced Concepts 89

Set a Time Limit for All New Sessions

The ISessions::Current interface has a setSessionTimeout() operation that enables the application to set a
time limit for all sessions that are subsequently started. The default time limit is zero. That is, sessions can
run indefinitely. To set a time limit for all new sessions, invoke the setSessionTimeout() operation on the
ISessions::Current object, passing the new timeout value.

// Set the session timeout.

 sessionCurrent->setSessionTimeout(1ðð);

Begin a Session

You begin a session by invoking the beginSession() operation on the ISessions::Current interface. You
should supply a text string representing the name of your application or the application profile under which
you want the session to operate. If the specified profile cannot be found or if you specify an empty string,
then a default application profile is used.

The application profile specifies certain expectations about how the session will behave. This information
can be used in combination with the capabilities and policies of the running system to produce a set of
execution decisions that optimize the total performance and throughput of the system. Once the session
has been started you can perform any number of operations on business objects within the session. All
operations invoked within the session are performed with the same session context.

// Begin a session context.

 sessionCurrent->beginSession("LifeInsuranceApplication");

 try

 {

// ... do the methods that will be executed under the

// session ...

 }

 catch (ISessions::SessionResetForced)

 {

// The session was forced to reset mid-stream, probably the

// session timeout tripped, or a session resource

// encountered a significant error and had to force the session

 // reset.

 };

End a Session

You complete the session by invoking the endSession() operation on the sessionCurrent. Normally, you
specify the EndModeCheckpoint end-mode with this operation. This drives all the sessionable resources
used within the session to save their state changes persistently, through embedded operations on the
underlying data system.

To reset the session, end it without saving any of the changes that occurred since your last checkpoint (or
since the beginning of the session if you did not perform any checkpoints). Specify the EndModeReset
end-mode with the endSession() request.

EndModeCheckpoint and EndModeReset have no bearing on any transactions issued within the session
other than to ensure that the session is terminated before it ends. However, if you encounter severe errors
in your processing, you can end the session with EndModeResetForce. This forces the session to be reset
immediately, including rolling back any outstanding transactions.

90 Component Broker: Programming Guide

// End the session context, including checkpointing any activity that

// occurred during the session.

 try

 {

 sessionCurrent->endSession(EndModeCheckpoint,1);

 }

// Catch a variety of exceptions. See the Advanced Programming Guide

// for details.

 Other Information

Further information on these and other topics regarding the sessions service can be found in the
Component Broker Advanced Programming Guide. For example, the following information is available:

Suspending and resuming sessions
There may be occasions when you want to switch the session under which you are operating.
You can do this by suspending the current session and starting a new one. Later, you can
resume the original session.

Explicit and implicit propagation of session context
This section describes different techniques of assigning context information for multi-threaded
applications.

Checkpoint and reset a session context
Sessions can be checkpointed to save intermediate results to persistent data storage. Sessions
can also be reset to revert the state of operations performed within the session.

Registering sessionable resources
An application can introduce resources and explicitly register the resources with a session.

Visibility rules
Sessions can be run concurrently. Visibility rules define how the data interactions between
these concurrent sessions are defined.

Queries, Iterations and Specialized Homes

Chapter 4, “MOFW Client Programming Model” on page 33 introduced generic homes as a facility for
creating business objects and for finding business objects based on their primary key. This chapter
discusses how a client of a business object could use other features that a home could support.

If the object provider has built a specialized home, the usage pattern for that home is different than that of
a generic home, because a specialized home has additional methods that can be used by clients. Besides
the additional methods available to the client, there is also a change in how this specialized home is
found.

Using Iterated Homes-Specific Functions

Many times an application needs access to multiple objects. In “Using Sets of Objects” on page 44, an
example of iterating through an arbitrary collection of business objects is presented. This iteration
assumes that all the objects are inserted into an IManagedReferenceCollection.

If you wanted to examine a group of homogenous objects (for example, every Claim) and perform actions
on those objects that met certain criteria, the Component Broker programming model extends the concept
of iteration to IHomes. The following code segment shows the usage of an iterated home.

 Chapter 6. MOFW Client Programming Model – Advanced Concepts 91

 CORBA::Object_var obj;

 IExtendedLifeCycle::FactoryFinder_var myFinder;

 IManagedAdvancedClient::IIterableHome_var policyHome;

 IManagedCollections::IIterator_var theIterator;

obj = CBSeriesGlobal::nameService()->resolve_with_string(

 "host/resources/factory-finders/host-scope");

myFinder = IExtendedLifeCycle::FactoryFinder::_narrow(obj);

obj = myFinder->find_factory_from_string(

 "PolicyDefaultTransDB2.object interface");

policyHome = IManagedAdvancedClient::IIterableHome::_narrow(obj);

if (CORBA::is_nil(policyHome))

 {

cerr << "ERROR: Application improperly configured. " <<

"Home for Policies is not iterable." << endl;

 }

 else

 {

 IManagedClient::IManageable_var aBO;

// Repeat transactional setup.

 currentTransaction->begin();

// Create a new iterator on the Claim home

theIterator = policyHome-> createIterator();

 try

 {

// Loop through the objects in the home

while (aBO = theIterator->next())

 {

// Get the next element

 Policy_var aPolicy;

aPolicy = Policy::_narrow(aBO);

// Do something useful with it.

cout << "Policy no = " << aPolicy->policyNo() << endl;

cout << "Policy amount = " << aPolicy->amount() << endl;

 }

 }

 catch (...)

 {

cerr << "ERROR: Problem occurred using iterator." << endl;

 try

 {

 current->rollback();

 }

 catch(CosTransactions::NoTransaction)

 {

// No Transaction to rollback. ...

 }

 catch(...)

 {

// Rollback failed ...

 }

 }

// After iterating over the entire collection, the iterator is no

// longer needed. Remove it.

92 Component Broker: Programming Guide

 theIterator->remove();

 currentTransaction->commit(inValue);

 }

In addition to the next() method, IManagedCollections::IIterator provides the following methods with similar
functionality (albeit next() is much more concise): hasMoreElements(), more(), nextElement(), nextOne().

While the previous examples are functionally identical (with identical performance), there is another
interface for iterating which is functionally similar, but with different performance characteristics. The
nextN() method is similar to the nextOne() method, except that instead of returning only one element,
nextN() returns as many elements as you request.

This interface might be useful if, for example, an application wants to display information about a fixed
number of business objects at a time (limited by the size of a window on a screen). Here is an example of
how to use this interface in the same application as the previous example:

 char c;

 ICollectionsBase::MemberList_var theBOlist;

// Loop through the objects in the home.

while (theIterator->nextN(5, theBOlist) || theBOlist->length() > ð)

 {

for (int n = ð; n < theBOlist->length(); ++n)

 {

// Narrow the next element obtained by nextN()

aPolicy = Policy::_narrow(theBOlist[n]);

// Do something useful with it

cout << "Policy # " << aPolicy->policyNo();

cout << "amount is " << aPolicy->amount() << endl;

 }

// Having displayed as many policies as would fit in the window,

// the application now waits for user input before getting the

// next N policies and displaying them.

cout << "press any key (and hit enter) to continue." << endl;

cin >> c;

 }

// Because the nextN() call might not have been able to return each time.

The previous examples illustrate several ways to iterate through the objects in a home. To understand
iteration better, a few general notes about iterators follow:

� When an iterator is created, it is positioned so as to precede the first element.

� The various types of next methods (next(), nextElement(), nextOne() and nextN()) all move the
position of the iterator forward, then return the element at the current position.

� There is a current() method that returns the element at the current position without moving the position
of the iterator forward. Because the initial position of an iterator precedes the first element, it is an
error to invoke current() prior to invoking one of the next methods.

� There is a reset() method which moves the position back to its initial position.

� A home that is iterated is not guaranteed to return its elements in the same order on successive
iterations, but it is guaranteed to return each element once only on a given iteration.

Members of Component Broker Homes are always accessible through at least one key (the Primary Key),
but may or may not be iteratable. If the collection is based on or wrappers a relational or object-oriented

 Chapter 6. MOFW Client Programming Model – Advanced Concepts 93

database, then both keys and iterator can be supported. The same is true for most data back-ends (such
as files, IMS DL/1 or CICS File Control). If the collection wrappers a set of applications (such as the
Customer Management Application in Chapter 2, “Personal Life Insurance Application Example” on
page 15), iteration might not be supported by the application. Therefore, the wrappering collection cannot
be iterated. Check with your System Administrator to see if your home supports iteration.

Because the LifeCycle object service factory finder interface is used to find homes and this interface has
no way of telling an iteratable home from a generic home, a client must be properly configured if its
function depends on access to an iteratable home. The client can protect itself against misconfiguration by
verifying that the home returned by the factory finder supports the
IManagedAdvancedClient::IIterableHome interface. A verification example is:

policyHome = IManagedAdvancedClient::IIterableHome::_narrow(obj);

if (CORBA::is_nil(policyHome))

 {

// Insert error message here to be displayed here.

 }

Using Queryable Homes-Specific Functions

Iterating over the business objects in an IIterableHome is fine for some applications. Specifically, if the
goal is to perform some operation on every element in the home, then iteration is a good approach.
However, if the reason for iterating is to select a subset of all the business objects in the home (and then
work with only that subset), then there is a more efficient way to accomplish the same thing: query.

Here the iteration example is used again; however, instead of iterating against all of the objects in a home,
you select only the objects in which you are interested (by evaluating a query), and then you iterate over
the subset in which you are interested. Because it is sometimes possible for the query to be performed in
the database (without bringing into memory every object in the home), using query offers the possibility of
significant performance increases over iterating against every object in the home.

 CORBA::Object_var obj;

 IExtendedLifeCycle::FactoryFinder_var myFinder;

 IManagedAdvancedClient::IQueryableIterableHome_var policyHome;

 IManagedCollections::IIterator_var theIterator;

obj = CBSeriesGlobal::nameService()->resolve_with_string(

 "host/resources/factory-finders/host-scope");

myFinder = IExtendedLifeCycle::FactoryFinder::_narrow(obj);

obj = myFinder->find_factory_from_string("PolicyDefaultTransDB2.object interface");

policyHome = IManagedAdvancedClient::IQueryableIterableHome::_narrow(obj);

if (CORBA::is_nil(policyHome))

 {

cerr << "ERROR: Application improperly configured. "

<< "Home for Policies is not queryable."

 << endl;

 }

 else

 {

// Evaluate a query on the Policy home. The results of the query

// are returned in the form of an iterator.

int minPolicyNo = 3;

 char theQuery[8ð];

sprintf(theQuery,"policyNo>%d",minPolicyNo); /\ specifies the query itself \/

94 Component Broker: Programming Guide

// Set up for transactions

 currentTransaction->begin();

theIterator = policyHome->evaluate(theQuery);

 try

 {

// Loop through the results of the query

while (aBO = theIterator->next())

 {

// Narrow the element obtained by nextOne()

aPolicy = Policy::_narrow(aBO);

// Do something useful with it.

cout << "Policy no = "

 << aPolicy->policyNo()

 << endl;

cout << "Policy amount = "

 << aPolicy->amount()

 << endl;

 }

 }

 catch (...)

 {

cerr << "ERROR: Problem occurred using iterator."

 << endl;

 try

 {

 current->rollback();

 }

 catch(CosTransactions::NoTransaction)

 {

// No Transaction to rollback. ...

 }

 catch(...)

 {

// Rollback failed ...

 }

 }

// After iterating over the entire collection, the iterator is no

// longer needed. Remove it.

 theIterator->remove();

 currentTransaction->commit(inValue);

 }

The query language used to express the query is SQL with extensions and provisions for being able to
query against objects (instead of data only in a database).

Using Atomic Transactions with Query Evaluator

The programming model for method duration transactions (called atomic or automatically start a new
transaction) occurs when a method is invoked on the object; the method then will be wrapped within a
transaction. That is, prior to invoking the method, a transaction will automatically start. When the method
returns the transaction will be committed. The programming model has been extended so that creating or
finding an object that is in a container (supporting method duration transactions then creation or finding)
will also be wrapped in a transaction.

The programming model has not been expanded to include the query service.

 Chapter 6. MOFW Client Programming Model – Advanced Concepts 95

Important: A transaction must have been started prior to using the query service.

For additional information about the query service, see the Component Broker Advanced Programming
Guide .

More on Iterators

This information addresses the following:

� how iterators over homes and collections are used
� how query iterators work
� how atomic containers are configured
� side effect of end transaction

Managed Object iterators over home collections, iterators over persistent reference collections, query
iterators over persistent managed objects and query data array iterators over persistent objects become
invalid at the end of the current transaction in which they were created.

When designing objects that will be configured into an atomic container, the object interface should not
have attributes or methods which return to the client any of the above types of iterators.

If the object interface does have such iterators, they can be retrieved by a client only if the client explicitly
starts a transaction and retrieves and uses the iterator in the same transaction scope.

Note the following example:

 interface X

 {

 IMangagedCollections::IIterator methodX();

 }

If this interface is implemented by an MO, configured into an atomic container and if my client does not
start a transaction, the following statements will result in an exception because the iterator is being used
outside the scope of a transaction.

IManagedCollections::IIterator_var i = x_ptr -> methodX();

IManagedClient::IManageable_var mo = x_ptr->next();

However if the client does the following, it will be valid because the iterator is being retrieved and used in
the same transaction scope.

 currentTransaction->begin();

IManagedCollections::IIterator_var i = x_ptr -> methodX();

IManagedClient::IManageable_var mo = x_ptr->next();

Using Keyed Reference Collections

“Using Sets of Objects” on page 44 describes how to use a Reference Collection (that is,
IManagedCollections::IReferenceCollection) to maintain references to a set of Managed Objects. If the
elements in a Reference Collection require keyed access (that is, Hashtable-like access), a Keyed
Reference Collection can be used instead. Keyed Reference Collections are defined by the
IManagedCollections::IKeyedReferenceCollection interface.

Keyed and non-keyed Reference Collections have many similarities. Both the IReferenceCollection and
IKeyedReferenceCollection interfaces derive from the ManagedCollections::ICommonCollection common
base interface that defines a number of methods that apply to both keyed and non-keyed collections. The

96 Component Broker: Programming Guide

interfaces include many commonly used methods such as containsElement(), isEmpty(),
numberOfElements(), and createIterator(). In addition, Keyed Reference Collections are created using the
same specialized home (that is, IManagedCollections::ICollectionHome) as non-keyed collections. The
following code segment illustrates the creation of a Keyed Reference Collection:

 CORBA::Object_var obj;

 IManagedCollections::ICollectionHome_var kcHome;

 IManagedCollections::ICommonCollection_var cc;

 IManagedCollections::IKeyedReferenceCollection_var kc;

obj = myFinder->find_factory_from_string(

 "IManagedCollections::IKeyedReferenceCollection.object

 interface/TransientKeyedReferenceCollectionFactory.object home");

kcHome = IManagedCollections::ICollectionHome::_narrow(obj);

cc = kcHome->createCollection();

kc = IManagedCollections::IKeyedReferenceCollection::_narrow(cc);

This code is identical to that shown in “Using Sets of Objects” on page 44 to create non-keyed collections
except that the IReferenceCollection interface name is replaced by IKeyedReferenceCollection.

The difference between keyed and non-keyed collections is the way objects are added and accessed.
Instead of calling IReferenceCollection::addElement(), the
IKeyedReferenceCollection::addElementByString() method is used to add elements to the collection. The
addElementByString() method requires two arguments, the object to be added and a stringified key (that
is, a ByteString) that is used for identifying the object in the collection. The key can be any appropriate
subclass of IManagedLocal::IKey, either general purpose (for example, StringKey), application specific (for
example, PolicyHolderIdentifierKey), or, for that matter, the primary key (PolicyHolderPrimaryKey).

For example, assume a general purpose IKey subclass has been defined:

interface StringKey : IManagedLocal::IKey

 {

attribute string value;

#pragma meta StringKey localonly

 }

Using this key, elements can be added to the Keyed Reference Collection as follows:

// Get some policy holders

 PolicyHolder_var policyHolderJohn;

 PolicyHolder_var policyHolderKatherine;

// Create a key object

StringKey_var theKey = StringKey::_create();

 ByteString_var keyString;

// Add policyHolderJohn to the collection with key "John"

 theKey->value("John");

keyString = theKey->toString();

 kc->addElementByString(policyHolderJohn, keyString);

// Add policyHolderKatherine to the collection with key "Katherine"

 theKey->value("Katherine");

keyString = theKey->toString();

 kc->addElementByString(policyHolderKatherine, keyString);

An element can be retrieved using the getElementByString() method. For example, the following code
segment retrieves the policy holder “John”:

 Chapter 6. MOFW Client Programming Model – Advanced Concepts 97

 theKey->value("John");

keyString = theKey->toString();

IManagedClient::IManageable_var mo = kc->getElementByString(keyString);

PolicyHolder_var thePolicyHolder = PolicyHolder::_narrow(mo);

To remove an element from the collection, the removeElementByString() method is used:

 kc->removeElementByString(keyString);

Iterating through the elements in a Keyed Reference Collection is done in exactly the same way as for
non-keyed collections. In fact, if the collection is referenced using the
IManagedCollection::ICommonCollection base interface, as shown in the following code segment, the
same code can be used to iterate over elements of either keyed or non-keyed collections. Note that if the
variable theCollection were of type ICollectionsBase::IMIterable_var, the same code segment could be
used to iterate over an iterable home.

// Get a keyed or non-keyed collection from somewhere

 IManagedCollections::ICommonCollection_var theCollection;

IManagedCollections::IIterator_var theIterator =

 theCollection->createIterator();

 IManagedClient::IManageable_var theBO;

while (theBO = theIterator->next())

 {

if (theBO->is_a("PolicyHolder"))

// Send him a bill

if (theBO->is_a("Beneficiary"))

// Send him a check

 }

 try

 {

//Loop through the collection. The "nextElement" method advances

//the iterator to the next element (on the first invocation, this

//will advance to the first element) and then return the element

//pointed to by the iterator.

while (theIterator->more())

 {

theBO = theIterator->next();

if (theBO->is_a("PolicyHolder"))

// Send him a bill

if (theBO->is_a("Beneficiary"))

// Send him a check

 }

 catch (...)

 theIterator->remove();

Each element in the keyed or non-keyed collection is accessed only once and in no defined order.

A number of other methods are available on the IKeyedReferenceCollection interface:

containsKeyString() Determines if an element with a given key exists.

getElementKeyString() Determines the key of a given element.

98 Component Broker: Programming Guide

replaceElementWithKeyString() Replaces an element (that is associated with a specified key) with
another object.

With these and the other Keyed Reference Collection methods, an arbitrary set of keyed references to
Component Broker managed objects can be maintained easily.

Conventions and Guidelines

This section provides additional information on what is happening on the server when client programs are
invoking methods on the business objects. This section does not describe new interfaces but provides
additional technical details on what actually occurs. Some of these topics are guidelines or coding
techniques that can be useful when interacting with the Component Broker server.

The Component Broker server plays a unique role among application servers: it serves objects. A
database server, on the other hand, serves data and a file server serves files. However, the Component
Broker server also interacts with database or file servers in cases where these are the chosen options for
persistence. In a database server, interaction with the data is direct and the semantics of creating,
deleting, and finding are straightforward because you use the methods to the resource manager directly.
In the case of an object server, from a programming perspective you encapsulate interaction with a
database to get persistence. However, to provide this encapsulation, the decisions about how the
database is used are unknown to the clients. Sometimes expectations are not met.

The following sections discuss the interaction patterns that the Component Broker has with various
resource managers and the coding patterns that you can use to meet various client requirements.

Finding Persistent Objects

When you want to find an object using the findByPrimaryKeyString() method on the IHome, Component
Broker follows a specific algorithm. This algorithm is:

1. Convert parameter into internal key format.
2. Look in the container cache of the active objects.
3. If not found, go to the database or database cache and look.
4. Return the object reference as soon as it is found.

The programming implications of this are:

� If the object exists, the object reference returned is valid and is ready to use.

� If the object was being cached by the container or the cache manager and had subsequently been
deleted by a non-object program, an exception is thrown when the object reference is used.

� The probability of getting an exception when using the returned reference is directly proportional to the
amount of deleting that is done by existing non-Component Broker applications that are running
concurrently with Component Broker applications.

Creating Persistent Objects

When you want to create an object using the createFromPrimaryKeyString() or other create methods,
Component Broker follows a specific algorithm with respect to the creation.

1. Create the managed object and its parts.
2. Put it in the container's cache of active objects.
3. Return the object reference to the client.
4. Wait for transaction commit().

 Chapter 6. MOFW Client Programming Model – Advanced Concepts 99

5. When the transaction commits, insert the row in the table.

The implications of this algorithm for you are as follows. If the row already exists in the underlying
database, an exception is thrown when the transaction completes.

In many cases the exception is desired and should be planned for accordingly. To alter this behavior for
create, you can either:

� Do a findByPrimaryKeyString() before issuing the createFromPrimaryKeyString(). Remember from the
previous discussion that findByPrimaryKeyString() looks in the database if necessary to find objects
and in this instance would return notFound. If there is a slim chance that the object already exists, the
performance penalty for the findByPrimaryKeyString() might be too high. Select a technique based on
the needs of the application.

� Bracket createFromPrimaryKeyString() in a transaction by itself. This ensures that the exception for
alreadyExists is thrown before operations on the newly-created object are started.

These techniques do not reduce the amount of written code but are alternatives for structuring client code.

The create_object() Method

 The following create_object() method is platform-dependent and does NOT apply to OS/390
Component Broker.

You can use the create_object() method to replicate the function of the createFromPrimaryKeyString() and
createFromCopyString() method. The reason for using the create_object() method is to be OMG
compliant.

The create_object() method takes two parameters:

key Consists of:

kind The object interface for BOIM Homes.

id The name of the business object interface, such as Policy. It is the same value with
which the Home is configured for managed object class (interface name) for the
particular managed object image in question.

criteria A name-value pair. The name parameter tells the Home what kind of creation is to take place.

BOIM Homes support two names:

primary key string
A signal to use the contents of the value to perform a createFromPrimaryKeyString() using this
data.

copy string
A signal to use the contents of the value to perform a createFromPrimaryCopyString() using
this data.

An example follows:

100 Component Broker: Programming Guide

 ::CosLifeCycle::Key k;

 ::CosLifeCycle::Criteria crit;

k.length(1);// set the length of the key to 1

char\ idString=new char[7];// allocate storage for the id string

strcpy(idString, "Policy");// set it to the object class interface name

char\ kindString=new char[17];// allocate storage for the kind string

strcpy(kindString,"object interface");//set it to object interface

k[ð].id=idString;// assign the id of the key

k[ð].kind=kindString;// assign the kind of the key

crit.length(1);// set the size of the critieria to 1

char\ critname = new char[19];// allocate space for criteria name

strcpy(critname,"primary key string");

// Do a createFromPrimaryKeyString using create_object

crit[ð].name=critname;//assign the name

PolicyKey_var theKey = PolicyKey::_create();// build a key

theKey->policyNo(12345);// fill in needed information

ByteString\ theKeyString = theKey->toString();//create a bytestring

 crit[ð].value<<=(\theKeyString);

// Assume that you already found the policy home in "myHome"

 try

 {

::CORBA::Object_var policy = myHome->create_object(k,crit);

// call create_object

// notice that a CORBA::Object is returned

 }

 catch(CosLifeCycle::NoFactory)

 {

// The key passed in does not match that of the home. Check

// that the kind is "object interface" and the id is the same

// as that of the managed object interface in the MO Image.

// Insert recovery code goes here.

 }

 catch(CosLifeCycle::InvalidCriteria &ic)

 {

// The criteria length was ð.

// Insert recovery code goes here.

 }

 catch(CosLifeCycle::CannotMeetCriteria &cmc)

 {

 // Recovery:

// 1) You may have sent in two name-value pairs that could both

// create objects, but the home can only create one object at a time.

// 2) The ByteString may have failed to internalize into the Key

// for this type of object.

// 3) A duplicate or invalid key error may have occurred.

// In all cases, check the error log.

 }

 Chapter 6. MOFW Client Programming Model – Advanced Concepts 101

 catch(CORBA::Exception)

 {

// The home may not have been configured.

// An unknown error may have occurred.

// Insert recovery code goes here.

 }

To perform a createFromCopyString, the code is similar:

...

PolicyCopy_var theCopy = PolicyCopy::_create();

/\ builds a key \/

// Fill in the needed information.

 theCopy->policyNo(12345);

// Fill in the other values.

 theCopy->amount(1ðððð.ðð);

 theCopy->premium(25ð.ðð);

ByteString \theCopyString = theCopy->toString();

/\ creates a bytestring \/

 crit[ð].value<<=(\theCopyString);

CORBA::Object_var myObject = create_object(k,crit);

...

 Using Handles

Component Broker supports a notion called Object Handles. A given object in the distributed system can
be accessed by using an Object Handle using one of a variety of techniques. There are three main access
patterns and there is handle class for each of them along with a base handle class present a consistent
interface for accessing the object. It provides streaming support so handle strings can be stored
persistently. Given a handle string user can locate/activate the object no matter which type of handle was
used for the object.

Each of the access patterns have their merits and limitations. The Component Broker user can decide
which pattern should be used for their circumstances.

SORHandle
This pattern encapsulates a stringified object reference (SOR). This pattern requires the most
storage space, however it does provide the most efficient access. This pattern should be used
only for objects which will never be relocated to other servers.

Note: In Component Broker for Windows NT and AIX, when SORHandle is used with objects
that are not Workload Managed (WLM), the object is scoped to a specific server. When
used with objects that are Workload Managed, the object can be moved to different
servers in the same Server Group.

HomeKeyHandle
This pattern uses the home name and primary key of object. This pattern requires lesser
amounts of storage but is slightly less efficient access due to additional path length required to
find the home. However, this pattern provides a more flexible solution since homes, and
therefore the objects that they manage, can be moved to other servers and hosts. This pattern
should be used for all objects that may be required to be moved to other servers or hosts in
the future.

102 Component Broker: Programming Guide

Name Handle
This pattern is similar to the HomeKeyHandle pattern except it is explicitly registered in the
name space and can therefore be assigned a well-known name to the user. This pattern should
be used for well known objects only.

 Chapter 6. MOFW Client Programming Model – Advanced Concepts 103

104 Component Broker: Programming Guide

Chapter 7. MOFW Server Programming Model – Advanced
Concepts

The Component Broker server programming model is based on programming by framework completion.
Component Broker introduces its APIs as sets of classes and frameworks. Developers implement their
business functions by defining business objects that subclass from Component Broker frameworks and
use the frameworks in their implementation.

This chapter provides business object builders with additional options for providing function in business
objects. Some of the material in this chapter offers alternative ways of accomplishing some of the tasks
described in Chapter 5, “MOFW Server Programming Model” on page 57.

Some of the topics in this chapter assume the presence of specific application adaptors and other features
within Component Broker. In other words, some of the techniques described might increase the cost of
porting or targeting business objects and associated applications to other back-end databases and
resource managers.

Extending a Business Object

Chapter 5, “MOFW Server Programming Model” on page 57 presents a basic model for building business
objects. Most of the discussion and examples in that chapter center around implementing a new business
object interface. Careful examination of the examples shows that there are several meaningful layers of
inheritance in the business objects that were presented. Often multiple levels of domain inheritance exist
and need to be implemented.

This chapter addresses the addition of a subclass to existing business objects using data object
inheritance as the implementation technique. This is the model supported by Component Broker through
Object Builder. This is not as simple as adding a single class. This chapter revisits each of the steps used
to develop a business object in the context of adding another subclass of domain functionality. These
steps are:

1. Developing an interface to the business object.
2. Choosing an inheritance pattern.
3. Implementing the business object methods.
4. Implementing the methods required by the MOFW interfaces.
5. Implementing the key classes.
6. Implementing the copy helper classes.

When you create a child component (that is, a component that inherits behavior or data from another
component in your application), the child component objects generally inherit from their equivalent parent
objects:

� The child business object file must include the parent business object file.

� The child business object interface must inherit from the parent interface.

� The child key and copy helper can inherit from their equivalents in the parent component, or they can
contain selected attributes of the parent interface, without inheriting from the parent key or copy
helper.

� The child business object implementation must inherit from the parent implementation.

� The child data object interface must inherit from the parent data object interface.

� The child data object implementation must inherit from the parent data object implementation.

 Copyright IBM Corp. 1997, 1998 105

� The child managed object must inherit from the parent managed object.

For data inheritance to work, the type of persistence provided by the parent and child data object
implementations must be the same.

Many variations involve extending a business object. The next sections give examples of an extreme case
where it inherits as much interface and implementation as possible. There are variations that involve less
implementation inheritance that can be extrapolated from the examples given.

Extending Business Object Interfaces

v

The first step in building a business object is to construct the interface. In this case, the interface is
extended. In the following example, a CarPolicy class extends the Policy.

Policy
(from PolicyModule)

CarPolicy

Figure 33. Inheritance of Interface for Extended Business Object

The IDL for CarPolicy should look like the following example.

 #include <Policy.idl>
interface CarPolicy : Policy

 {

attribute long year;

attribute string make;

attribute string model;

attribute long serialNumber;

attribute float collisionDeductible;

attribute boolean glassCoverage;

long riskQuotient();

 };

The interface looks like almost any other business object interface. However, because the Policy already
inherits from IManagedClient::IManageable, the CarPolicy interface does not need to.

Essential State Extensions

Extending the essential state is similar to extending the interface. The data object interface of Policy is
extended as shown in the following figure.

106 Component Broker: Programming Guide

PolicyDO

CarPolicyDO

Figure 34. Extending the Interface for Essential State

The IDL for this interface looks like the following example.

 #include <PolicyDO.idl>
interface CarPolicyDO : PolicyDO

 {

attribute long year;

attribute string make;

attribute string model;

attribute long serialNumber;

attribute float collisionDeductible;

attribute boolean glassCoverage;

#pragma meta CarPolicyDO localonly ,abstract

 };

“Data Object Customization and Inheritance” on page 233 shows the decisions that must be made when
customizing data objects from an implementation perspective.

Choosing an Inheritance Pattern

The choice of inheritance pattern is based on three concerns:

� Identity: whether parent and child have the same identity (that is, they share the same key)

� Performance tradeoffs: whether performance or space efficiency is more important.

� Form of persistence: whether the parent has data to be persisted, and where and how the parent's
and child's data is persisted.

If the parent and child have different keys, you should probably use the Attributes Duplication Pattern. This
means that the child's datastore provides persistence for all of its data, including inherited data. The
parent's datastore only provides persistence for instances of the parent, never for instances of the child. If
you do not use the overriding persistence pattern, the parent's datastore will have two primary keys: the
parent's key for the parent's data, and the child's key for the child's inherited data. It then becomes
problematic to determine which data belongs to which object type.

If the parent and child have the same key, you can choose between the Key Duplication Pattern and the
Single Datastore Pattern. The Key Duplication Pattern will generally be more efficient in its use of space
(because the persistent objects for each component contain only the data required for that component),
and the Single Datastore Pattern will generally provide faster look-up time (because both local and
inherited data are mapped to the same persistent object and underlying datastore).

If the parent and child are both persisted in a database, you can compromise between the Key Duplication
Pattern and the Single Datastore Pattern, by using the Single Datastore with Views Pattern. This pattern
uses unique persistent objects for retrieval (the Key Duplication Pattern), and a shared persistent object

 Chapter 7. MOFW Server Programming Model – Advanced Concepts 107

for all other uses (the shared persistence pattern). This pattern is based on views of the underlying
database table, and requires that there be some unique attribute of the child that can be used to select
appropriate views of the database.

This example will use the Key Duplication Pattern for illustrations purposes. This is the default pattern
supported by Object Builder.

See the “Inheritance” section in theComponent Broker Application Development Tools for further
information on the inheritance patterns.

Implement the Additional Business Logic

Next, you must add the implementation of the business logic for the additional methods necessary in the
subclass. Introducing another interface for the CarPolicyBO is shown in the following figure and in the
following example.

PolicyBO CarPolicy

CarPolicyBO

Figure 35. Extending the Business Logic Interface

 #include <CarPolicy.idl>
 #include <PolicyBO.idl>

interface CarPolicyBO : CarPolicy, PolicyBO

 {

 };

Consider using the same pattern (delegating versus caching) in the subclass as was used in the base
class.

The actual implementation interface has the inheritance of the PolicyBO built right into it, as shown in the
following example.

class CarPolicyBO_Impl : public virtual ::CarPolicyBO_Skeleton

,public virtual PolicyBO_Impl

 {

 public:

 CarPolicyBO_Impl();

 ::CORBA::Long year();

::CORBA::Void year(::CORBA::Long year);

 char\ make();

::CORBA::Void make(const char\ make);

 char\ model();

::CORBA::Void model(const char\ model);

 ::CORBA::Long serialNumber();

108 Component Broker: Programming Guide

::CORBA::Void serialNumber(::CORBA::Long serialNumber);

 ::CORBA::Float collisionDeductible();

::CORBA::Void collisionDeductible(::CORBA::Float collisionDeductible);

 ::CORBA::Boolean glassCoverage();

::CORBA::Void glassCoverage(::CORBA::Boolean glassCoverage);

virtual ::CORBA::Long riskQuotient();

virtual ::CORBA::Void initForCreation(::IManagedServer::IDataObject_ptr theDO);

virtual ::CORBA::Void uninitForDestruction();

virtual ::CORBA::Void initForReactivation(::IManagedServer::IDataObject_ptr theDO);

virtual ::CORBA::Void uninitForPassivation();

virtual ::CORBA::Void syncToDataObject();

virtual ::CORBA::Void syncFromDataObject();

virtual ::CORBA::Void externalize_to_stream(::CosStream::StreamIO_ptr targetStreamIO);

virtual ::CORBA::Void internalize_from_stream(::CosStream::StreamIO_ptr

 sourceStreamIO,::CosLifeCycle::FactoryFinder_ptr there);

virtual ::ByteString\ getPrimaryKeyString();

 protected:

 private:

 CarPolicyDO\ iDataObject;

 ::CORBA::Void initializeState();

 };

This section is focused on business logic. The entire implementation interface is shown in the previous
example. How the non-business logic or MOFW framework methods are to be handled is shown in
upcoming sections.

The getters and the setters are implemented as they would be in any business object. The only difference
in the other methods is that they can choose to access or use state data from the parent class. The
following method implementation shows utilization of state data from both the Policy and CarPolicy class.

::CORBA::Long CarPolicyBO_Impl::riskQuotient ()

 {

if (iGlassCoverage())

 {

if (iYear() > 196ð)

 return 1;

else if (policyNo() < 1ððð)

 return 2;

 else

 return 5;

 }

 else

if (amount() > 1ððð)

 return 1ð;

 else

 return 1ðð;

 }

In the previous code segment, the accessor or getter methods are used to access the state data that is
needed from Policy. This is the most encapsulated way of doing this. However, if the members are
declared as protected instead of private in the PolicyBO_Impl class, then direct access would be possible.

 Chapter 7. MOFW Server Programming Model – Advanced Concepts 109

The previous example shows the caching data object case. In the delegating case, the same
CarPolicyDO_ptr would be used to access all of the state data regardless of whether or not it resides in
the CarPolicy or the Policy.

Meet the MOFW IManageable Requirements

The following methods are required to be overridden in the simple case:

 � getPrimaryKeyString
 � getHandleString
 � externalize_to_stream
 � internalize_from_stream

Note: getHandleString() is not actually required to be overridden in the simple case, unless this object is
going to be the target of a one-to-one relationship from another object.

The next section discusses considerations for the inheritance case.

 getPrimaryKeyString

This method implementation in the inheritance case depends on the decision made about the key to be
used for the new subclass. That is, what will the key be for the CarPolicy? If a new key class is
introduced, then this method must be overridden. If the existing key class can be used, that is, use the
PolicyKey for the CarPolicy class, then this method does not need to be overridden and can be inherited
directly.

See “More Key Classes” on page 113 for help in determining if another key class is needed.

 getHandleString

A default implementation of this method is provided by the managed object framework. Overriding this
method in a subclass of a business object should be done based on the same criteria that are used to
determine if an override is needed in the base class.

 externalize_to_stream

This method needs to be implemented. The general direction is to call the parent class method and add
those things which are necessary for the subclass.

 ::CORBA::Void CarPolicyBO_Impl::externalize_to_stream(

::CosStream::StreamIO_ptr targetStreamIO)

 {

// Insert Method modifications here

 PolicyBO_Impl::externalize_to_stream(targetStreamIO);

 targetStreamIO->write_long(iDataObject->year());

 targetStreamIO->write_string(iDataObject->make());

 targetStreamIO->write_string(iDataObject->model());

 targetStreamIO->write_long(iDataObject->serialNumber());

 targetStreamIO->write_float(iDataObject->collisionDeductible());

 targetStreamIO->write_boolean(iDataObject->glassCoverage());

// End Method modifications here

 }

110 Component Broker: Programming Guide

While the previous example is for a caching business object, the pattern for a delegating data object is
similar.

 internalize_from_stream

This method needs to be implemented. The general direction is to call the parent class method and then
add those things which are necessary for the subclass.

 ::CORBA::Void CarPolicyBO_Impl::internalize_from_stream(

 ::CosStream::StreamIO_ptr sourceStreamIO,

 ::CosLifeCycle::FactoryFinder_ptr there)

 {

// Insert Method modifications here

 PolicyBO_Impl::internalize_from_stream(sourceStreamIO, there);

 iDataObject->year(sourceStreamIO->read_long());

 iDataObject->make(sourceStreamIO->read_string());

 iDataObject->model(sourceStreamIO->read_string());

 iDataObject->serialNumber(sourceStreamIO->read_long());

 iDataObject->collisionDeductible(sourceStreamIO->read_float());

 iDataObject->glassCoverage(sourceStreamIO->read_boolean());

// End Method modifications here

 }

While the previous example is for a caching business object, the pattern for a delegating data object is
similar.

MOFW Requirements – IManagedServer

The following methods must be overridden in the simple case:

 � initForCreation
 � uninitForDestruction
 � initForReactivation
 � uninitForPassivation
 � syncFromDataObject
 � syncToDataObject

The next section discusses considerations for the inheritance case.

 initForCreation

Code this method following the same guidelines that were specified for building business objects
independent of this inheritance case. If the subclass introduces additional state data, as the CarPolicy
example does, then the data object must be set into a data member of the object.

If the subclass does not introduce additional state data, it does not need to save a pointer to the data
object that is passed as a parameter. In the delegating case, the subclass might still want to hold a pointer
to the data object rather than going through parent class get and set methods. However, regardless of
whether the subclass introduces additional state or not, the parent class' initForCreation() method must be
called at the beginning of the subclass' initForCreation() method.

 Chapter 7. MOFW Server Programming Model – Advanced Concepts 111

::CORBA::Void CarPolicyBO_Impl::initForCreation(::IManagedServer::IDataObject_ptr theDO)

 {

// Insert Method modifications here

 PolicyBO_Impl::initForCreation(theDO);

iDataObject = CarPolicyDO::_narrow(theDO);

// End Method modifications here

 }

 uninitForDestruction

Implement this method following the guidelines described previously. It is also a good practice to call the
parent class' uninitForDestruction() at the beginning of the subclass' uninitForDestruction() method if
needed.

 initForReactivation

Code this method following the same guidelines that were specified for building business objects
independent of this inheritance case. If the subclass introduces additional state data, as the CarPolicy
example does, then the data object must be set into a data member of the object.

If the subclass does not introduce additional state data, it does not need to save a pointer to the data
object which is passed as a parameter. In the delegating case, the subclass might still want to hold a
pointer to the data object rather than going through parent class get and set methods. However,
regardless of whether the subclass introduces additional state or not, the parent class' initForReactivation()
method must be called at the beginning of the subclass' initForReactivation() method.

::CORBA::Void CarPolicyBO_Impl::initForReactivation(::IManagedServer::IDataObject_ptr theDO)

 {

// Insert Method modifications here

 PolicyBO_Impl::initForReactivation(theDO);

iDataObject = CarPolicyDO::_narrow(theDO);

// End Method modifications here

 }

 uninitForPassivation

This method should be implemented following the normal guidelines described earlier. It is also good
practice to call the parent class' uninitForPassivation() at the beginning of the subclass'
uninitForPassivation() method if needed.

 syncFromDataObject

The pattern for implementing this method is similar to that used for the internalize_from_stream() method.
The parent method must be called first, followed by the code necessary to prime the subclassing business
object cache with values from the data object.

This method is also a good place for any initialization logic that is dependent on the presence of an active
and usable data object. The act of loading up the business object cache ensures that the state data of the
object is ready to be used.

112 Component Broker: Programming Guide

 syncToDataObject

The pattern for implementing this method is similar to that used for the externalize_to_stream() method.
The parent method must be called first, followed by the code necessary to push the subclassing business
object cache values back into the data object.

It is a good practice to always implement all of these IManagedServer methods even if they are not
explicitly required based on the particular subclass being introduced. This practice results in consistently
generated code which is less prone to error if future changes are made to the subclass that introduces
new attributes.

More Key Classes

The MOFW requires that every managed object have a primary key class associated with it. When
extending a business object, there are several possibilities you can use as a primary key class. The
business object subclass can:

� Use its base class' primary key class.
� Extend its base class' primary key class.
� Introduce its own primary key class.

The simplest approach is to reuse the existing key. This approach is applicable if the attributes that
uniquely identify objects of the subclass are the same ones that identify objects of the base class. This is
most likely the case if the subclass introduces no additional state (that is, the subclass only re-implements
the base class methods, or introduces new methods). Even if the subclass introduces an additional state
beyond that of the base class, this additional state might not contribute anything to object identity.

If the subclass introduces additional state, some of which, combined with the key attributes of the base
class, is used to uniquely identify objects of the subclass, then the best approach is to extend the base
class' primary key class. When extending the primary key class of a base class, interface and
implementation inheritance can be used. Implementation inheritance allows for the reuse of the base class
key functionality (specifically, its getters and setters, as well as its streaming code).

Finally, if the attributes that uniquely identify objects of the subclass are neither the same ones as the
base class, nor a superset of the base class' key attributes, then the subclass must introduce its own
primary key class.

However, if the existence of new state data has altered the way in which the object is uniquely identified,
then a new primary key class is necessary.

Note: If the subclass does not use the base class' primary key class, then the subclass' data object
needs to be able to handle this extended or new key class.

More Copy Helper Classes

If the subclassing business object introduces additional state data, then a new copy helper class might be
useful. The data object needs to be able to handle this new copy helper. The copy helper can inherit
interface and implementation from the base class' copy helper, or it can be written from scratch.

 Chapter 7. MOFW Server Programming Model – Advanced Concepts 113

 Extension Summary

In the managed object framework based programming model, there are a number of inheritance activities
to follow. Interfaces should be inherited consistently. Implementations should be inherited when the base
class' implementation can be reused to some degree. The simplest model is to inherit at all levels of the
MOFW architecture and add in additional business logic as necessary. Additional requirements from the
MOFW are also added in the new implementation subclass.

Managed object customization and data object customization are also different for business objects that
inherit from other business objects. These topics are discussed in “Data Object Customization and
Inheritance” on page 233.

Other Variations to Consider

There are other variations to consider. Some are restrictions and others are tips for leveraging inheritance
in the MOFW-based programming environment:

� Do not change data object patterns. It is possible to change data object patterns from caching to
delegating at various levels of the data object hierarchy but this adds undue complexity in most cases.

� There might be cases when the subclasser does not know the data object pattern being used by the
base class.

 Object Relationships

Component Broker applications often require persistent relationships between business objects. For
instance, in the personal life insurance sample application, a Claim object has a relationship with a Policy
object representing the insurance policy against which the claim has been filed. Also, a Policy object has a
relationship with Claim objects for pending claims against the insurance policy.

Relationships between objects can be described in many ways. First, there is the cardinality of the
relationship. If an object has a relationship to one other object at most, the relationship is considered to be
cardinality-1. On the other hand, if an object has a relationship with more than one other object at a time,
the relationship is considered to be cardinality-N. In a business object, relationships to other objects are
implemented as object references (cardinality-1), or as collections of object references (cardinality-N).

A relationship can also be described as optional or required. If a relationship is optional, then an object is
considered to be in a valid state even when it is not related to (linked to) another object. If the relationship
is required, then the object must always be linked to another object. This distinction is often combined with
cardinality to form the following combinations:

Class Relationship Cardinality Required

An instance of class X is related to 0..1 instances of class Y -1 No

An instance of class X is related to 1 instance of class Y -1 Yes

An instance of class X is related to 0..n instances of class Y -N No

An instance of class X is related to 1..n instances of class Y -N Yes

Finally, a relationship can also be described in terms of ownership. An object which is related to another
object might or might not be considered to be the owner of the related object. If the first object is not
considered to be the owner of the second object, then the relationship is often referred to as a uses a
relationship, as in, for example, the first object uses the second object. This is sometimes also called an
association. On the other hand, if the first object is considered to be the owner of the second object, then

114 Component Broker: Programming Guide

the relationship is often referred to as a has a relationship, as in, for example, the first object has (or
contains) the second object. This is sometimes also called an aggregation.

The cardinality-1 or cardinality-N distinction results in much more fundamental differences in the business
object code than the optional or required distinction and the uses or has distinction. Cardinality-1
relationships are discussed separately from cardinality-N relationships.

 Cardinality-1 Relationships

The following diagram shows an example of a cardinality-1 relationship, a simple link from a Claim object
to a Policy object.

Claim Policy

Figure 36. Cardinality-1 Relationship

The relationship depicted in the previous figure is that of an optional cardinality-1 uses a relationship. In a
business object interface, a cardinality-1 relationship is declared as a CORBA attribute whose type is a
reference to the interface of the target object. For example, an attribute called thePolicy on a Claim
business object could be used to link to the Policy object as follows:

interface Claim : ...

 {

attribute Policy thePolicy;

 ...

 };

Clients can establish and traverse the link using the attribute set and get methods respectively:

Policy_var aPolicy = ... // Find or create a Policy object

Claim_var aClaim = ... // Find or create a Claim object

// Set the claim's policy to "aPolicy".

 aClaim->thePolicy(aPolicy);

// Get the claim's policy as "somePolicy".

Policy_var somePolicy = aClaim->thePolicy();

Using the Component Broker delegating pattern, the business object implementation of the access
methods for thePolicy passes the object pointer to or from the data object:

::CORBA::Void ClaimBO_Impl::thePolicy(Policy_ptr policy)

 {

 fDataObject->thePolicy(policy);

 }

 Policy_ptr ClaimBO_Impl::thePolicy()

 {

 return fDataObject->thePolicy();

 }

Because the relationship is optional it is possible that the data object will return either a valid pointer to a
policy object or a null pointer.

 Chapter 7. MOFW Server Programming Model – Advanced Concepts 115

To speed up the performance of link access, caching the Policy pointer might be appropriate. The Claim
business object implementation class could cache a pointer to the Policy object as shown in the following
example:

class ClaimBO_Impl ...

 {

 public:

 ...

 private:

 ...

 Policy_var fCachedPolicy;

 ...

 }

The access methods for thePolicy would now use the cached pointer:

::CORBA::Void ClaimBO_Impl::thePolicy(Policy_ptr policy)

 {

fCachedPolicy = Policy::_duplicate(policy);

 }

 Policy_ptr ClaimBO_Impl::thePolicy()

 {

return Policy::_duplicate(fCachedPolicy);

 }

In this case it is not necessary to invoke the release() method on the previous Policy object prior to saving
the new one. This is because the Policy object is being saved in a Policy_var object. This Policy_var
object ensures that the previous Policy object is released when it is no longer needed, including when it is
being assigned a new Policy object.

The general Component Broker business object caching pattern uses the methods syncFromDataObject
and syncToDataObject respectively to load and flush the cached values. See the description of
“syncFromDataObject() Method” on page 72 and “syncToDataObject()” on page 73. The implementation
of the syncFromDataObject method calls data object get methods to retrieve the thePolicy pointer as well
as all other data contained in the Claim object. The implementation of the syncToDataObject method calls
all the data object set methods. These methods appear as follows:

 ::CORBA::Void ClaimBO_Impl::syncToDataObject()

 {

 ...

 fDataObject->thePolicy(fCachedPolicy);

 ...

 }

 ::CORBA::Void ClaimBO_Impl::syncFromDataObject()

 {

 ...

fCachedPolicy = fDataObject->thePolicy();

 ...

 }

It is not necessary to use the _duplicate() method in the implementations of the syncToDataObject() and
syncFromDataObject() methods because the Policy object is neither an input parameter nor a return value
of these methods.

Because links can be expensive to compute, and sometimes are not needed, a better pattern for caching
object references is to leave them out of the syncTo/FromDataObject methods and instead compute and

116 Component Broker: Programming Guide

cache them in the get method on first use. This lazy evaluation approach can be implemented using the
following pattern:

::CORBA::Void ClaimBO_Impl::thePolicy(Policy_ptr policy)

 {

fCachedPolicy = Policy::_duplicate(policy);

// Synchronize the new Policy in the BO with (to) the DO

 fDataObject->thePolicy(fCachedPolicy);

 }

 Policy_ptr ClaimBO_Impl::thePolicy()

 {

// If this is the first access of the Policy, get it from the DO.

if (CORBA::is_nil(fCachedPolicy))

fCachedPolicy = fDataObject->thePolicy();

return Policy::_duplicate(fCachedPolicy);

 }

Assuming fCachedPolicy is initialized to nil in the constructor, this pattern results in the data object get
method being called the first time the Policy is accessed, or not at all if the Policy is set in the same
session as the get call. Subsequent accesses return the cached pointer value.

Optional or Required Cardinality-1 Relationships

The previous section discusses how an optional relationship is implemented in a business object. An
optional relationship is more flexible than a required relationship, and thus requires less code. However, if
the relationship is required, the following diagram represents a required cardinality-1 uses a relationship.

Claim Policy

Figure 37. Required Cardinality-1 "Uses a" Relationship

If the relationship is truly required, then the link from a Claim to its Policy must exist throughout the life
cycle of the Claim. Specifically, a Policy must be linked to a Claim as part of creating a Claim, and the link
must be broken when a Claim is removed. The Policy that must be linked to a Claim as part of creation
might exist prior to creating the Claim, or it might be created in the process of creating the Claim.

When reviewing a Claim, the link to its Policy must be broken, but the Policy is not necessarily removed. If
the claim uses a (knows about a) Policy, then it is sufficient to release the Policy when a Claim is
removed. However, if the Claim to Policy relationship is one of ownership (that is, a has a relationship),
then when a Claim is removed, its associated Policy must also be removed.

When a Claim is removed, the link to its Policy must be broken. If the Claim is implemented using the
caching pattern, then the link is automatically broken if it is being cached in a Policy_var. Otherwise, it
must be explicitly broken using CORBA::release(). Changes between an optional and a required
relationship depend on one of four different scenarios (discussed over the next several pages). However,
there is one change which is common to all four. Under any scenario, if the relationship is required instead
of optional, the code for the set method for the Policy attribute must make sure that the link is not broken

 Chapter 7. MOFW Server Programming Model – Advanced Concepts 117

by setting the Policy reference to nil. The following example shows the changes necessary in the case of
the delegating pattern. The changes for the caching pattern are analogous.

::CORBA::Void ClaimBO_Impl::thePolicy(Policy_ptr policy)

 {

if (! CORBA::is_nil(policy))

 {

 fDataObject->thePolicy(policy);

 }

 }

To understand how a link from a Claim to its Policy gets established as part of creating a Claim, it is
necessary to recall that there are several ways to create a business object:

� Using a generic home configured for the appropriate type of business object. See “Creating a Claim
With an Existing Policy Using a Generic Home” and “Creating a Claim With a New Policy Using a
Generic Home” on page 120.

� Using a specialized home developed by the business object provider. See “Creating a Claim With an
Existing Policy Using a Specialized Home” on page 122 and “Creating a Claim With a New Policy
Using a Specialized Home” on page 123.

Creating a Claim With an Existing Policy Using a Generic Home: Using a generic home, a business
object is created using the createFromPrimaryKeyString() method. If an object provider has provided a
copy helper class, then a business object can also be created using the createFromCopyString() method.
However, this has no effect on this discussion because a copy helper class' attributes are defined as being
a superset of the primary key class' attributes. The only input to this method is a stringified version of the
business object's primary key helper object. This means that the primary key helper class for Claim must
contain enough information in it such that the link to its (preexisting) Policy can be established. There are
many ways in which this can be done, but the two most straightforward ways are the following:

� The primary key for Claim contains a reference to the Policy object. See “Primary Key Contains
Reference to Related Object.”

� The primary key for Claim contains all of the Policy object's primary key attributes. See “Primary Key
Contains Key Attributes of Related Object” on page 119.

Primary Key Contains Reference to Related Object: In this case, the interface of the primary key for
Claim would look like the following example:

interface ClaimKey : IManagedLocal::IPrimaryKey

 {

attribute long claimNo; // key attribute for Claim

attribute Policy thePolicy; // associated Policy

 }

The implementation binding header file (.ih) would include the following private or protected data
members:

 ::CORBA::Long fClaimNo;

 Policy_var fPolicy;

The attribute for the associated Policy object would be implemented as follows:

::CORBA::Void ClaimKey_Impl::thePolicy(Policy \thePolicy)

 {

fPolicy = Policy::_duplicate(thePolicy);

 }

118 Component Broker: Programming Guide

 Policy ClaimKey_Impl::thePolicy()

 {

return Policy::_duplicate(fPolicy);

 }

For a primary key to flow over the wire from the client to the server, the primary key must be able to
externalize and internalize all of its attributes, including those which are necessary for establishing
relationships to other objects. In the case of the primary key class for the Claim object, it must externalize
and internalize a stringified object reference to the Policy object as follows:

 ::CORBA::Void ClaimKey_Impl::externalize_to_stream

 (::CosStream::StreamIO_ptr targetStreamIO)

 {

// Insert Method modifications here

 targetStreamIO->write_long(fClaimNo);

CORBA::String_var policyRefString= CBSeriesGlobal::orb()-> object_to_string(fPolicy);

 targetStreamIO->write_string(policyRefString);

// End Method modifications here

 }

 ::CORBA::Void ClaimKey_Impl::internalize_from_stream

 (::CosStream::StreamIO_ptr sourceStreamIO,

 ::CosLifeCycle::FactoryFinder_ptr there)

 {

// Insert Method modifications here

fClaimNo = sourceStreamIO->read_long();

CORBA::String_var policyRefString = sourceStreamIO->read_string();

CORBA::Object_var policyRef = CBSeriesGlobal::orb()-> string_to_object(policyRefString);

fPolicy = Policy::_narrow(policyRef);

 targetStreamIO->write_string(policyRefString);

// End Method modifications here

 }

The streaming code in the previous example allows the primary key for Claim to flow from the client
application to the Claim home on the server. When the primary key reaches the Claim home on the
server, it eventually gets passed to the data object implementation for Claim. The link has been
established by invoking the string_to_object() method on the ORB while internalizing the Claim primary
key from its stream.

Primary Key Contains Key Attributes of Related Object: In the second case, the interface of the primary
key for Claim would look like the following example:

interface ClaimKey : IManagedLocal::IPrimaryKey

 {

attribute long claimNo; // key attribute for Claim

attribute long policyNo; // key attribute for Policy

 }

The implementation binding header file (.ih) would include the following private or protected data
members:

 ::CORBA::Long fClaimNo;

 ::CORBA::Long fPolicyNo;

The attribute for the associated Policy object would be implemented as follows:

 Chapter 7. MOFW Server Programming Model – Advanced Concepts 119

::CORBA::Void ClaimKey_Impl::policyNo(::CORBA::Long policyNo)

 {

fPolicyNo = policyNo;

 }

 ::CORBA::Long ClaimKey_Impl::policyNo()

 {

 return fPolicyNo;

 }

Again, in order for a primary key to go from the client to the server, the primary key must be able to
externalize and internalize all of its attributes, including those which are necessary for establishing
relationships to other objects. In this case, the primary key class for the Claim object must externalize and
internalize the key attributes of its related Policy object as follows:

 ::CORBA::Void ClaimKey_Impl::externalize_to_stream

 (::CosStream::StreamIO_ptr targetStreamIO)

 {

// Insert Method modifications here

 targetStreamIO->write_long(fClaimNo);

 targetStreamIO->write_long(fPolicyNo);

// End Method modifications here

 }

 ::CORBA::Void ClaimKey_Impl::internalize_from_stream

 (::CosStream::StreamIO_ptr sourceStreamIO,

 ::CosLifeCycle::FactoryFinder_ptr there)

 {

// Insert Method modifications here

fClaimNo = sourceStreamIO->read_long();

fPolicyNo = sourceStreamIO->read_long();

// End Method modifications here

 }

As with the previous scenario, the streaming code in this example allows the primary key for Claim to flow
from the client application to the Claim home on the server. However, that is the end of the similarity. The
previous scenario shows that the cardinality-1 relationship is established as part of internalizing the Claim
primary key inside the Claim home on the server.

In this scenario, because the Claim primary key class contains the key attributes of the related Policy
object, the relationship must be established in the Claim data object implementation. The Claim data
object implementation would do so by extracting the Policy key attributes from the Claim primary key,
finding a home of Policy objects, and invoking the findByPrimaryKeyString() method on the home.

Creating a Claim With a New Policy Using a Generic Home: In the previous scenario, the application
domain specified a constraint that a Claim can only be created for an existing Policy. It is possible that the
application domain, while requiring that a relationship between two objects exist, does not require one
object to already be created when creating the second. While an insurance company which allows a Policy
to be created at the same time as a Claim would probably not stay in business long. That scenario is used
here for consistency.

Like the previous scenario, this scenario assumes that the Claim object provider has chosen not to
develop a specialized home and instead expects clients of the Claim business object to use a generic
home. Because the only input to the createFromPrimaryKeyString() method of a generic home is a
stringified version of the business object's primary key helper object, this scenario could be implemented in

120 Component Broker: Programming Guide

a similar fashion to the previous scenario, where the Claim primary key class contains the key attributes of
a Policy. However, the one difference is what happens when the Claim primary key containing information
about a Policy reaches the Claim home on the server.

In the previous scenario, where the Claim is being created with an existing Policy, there is no need for the
Claim data object implementation to differentiate between when the business object is being created for
the first time, and when it is being reactivated after having been previously passivated. In other words, in
either case, the Claim data object implementation uses the Policy key attributes from its own key to find
the existing Policy object.

In this scenario, however, the Policy is being created during the creation of a Claim. As such, the Claim
data object implementation must distinguish between the creation and reactivation of a Claim as follows:

� If a Claim is being created, then a new Policy object must be created.
� If a Claim is being reactivated, then the previously created Policy object must be found.

A data object does not know if the business object is being created or reactivated. However, the business
object itself does know if it is being created or reactivated. If the business object is being created the
home invokes the initForCreation() method on it; if the business object is being reactivated the home
invokes the initForReactivation() method.

In its implementation of the initForCreation() method, the Claim business object would do the following:

� Use a factory finder to find a Policy home

� Use the Policy key attributes from the Claim data object to create a new Policy by invoking the
createFromPrimaryKeyString() method on the Policy home.

In its implementation of the initForReactivation() method, the Claim business object would do the following:

� Use a factory finder to find a Policy home.

� Use the Policy key attributes from the Claim data object to find its related Policy by invoking the
findByPrimaryKeyString() method on the Policy home.

There is an alternate way to implement this scenario. Assuming that the client of a Claim is not required to
provide the identity of its Policy, then the primary key class for Claim does not need to contain any
information about the Policy. The primary key class for Claim would look like the following example:

interface ClaimKey : IManagedLocal::IPrimaryKey

 {

attribute long claimNo; // key attribute for Claim

 }

In this case, it is the responsibility of the Claim business object, not the data object, to create the Policy
during its own creation. A data object has no way to distinguish between object creation and object
reactivation. However, a business object knows it is being created when its home invokes the
initForCreation() method on it. Thus, the implementation of ClaimBO_Impl::initForCreation() would need to
somehow create a Policy object. Because the Claim business object was not provided with any
information on how to identify the Policy object, it would probably do one of the following:

� Create a primary key for Policy based on some combination (or function) of its own attributes.

� Create a primary key for Policy based on some random number generator or UUID (Universal Unique
Identifier).

� Use a specialized home for Policy (if one was provided).

 Chapter 7. MOFW Server Programming Model – Advanced Concepts 121

Because the relationship of Claim to Policy is required, if the Claim business object is unable to create a
Policy for some reason, then it should cause its own creation to fail. The following example shows how
this would be done:

 ::CORBA::Void ClaimBO_Impl::initForCreation(

 ::IManagedServer::IDataObject_ptr theDO)

 {

// Save the data object for later use

fDataObject = ClaimDO::_narrow(theDO);

try // to create the Claim's Policy somehow

 {

fCachedPolicy = ...

 }

 catch(...)

 {

 throw IManagedServer::ICreationFailed();

 }

// Other initialization...

 }

Creating a Claim With an Existing Policy Using a Specialized Home: Using a specialized home, it is
even easier to establish a link from a Claim to its Policy as part of creating the Claim. With a specialized
home, there is no need to add any information about the Policy to the primary key for Claim. Adding
information about one object to the primary key of another in the previous scenarios was done for the sole
purpose of establishing the required relationship. The primary key was being used not just to establish
unique identity, but also as a vehicle for communicating information about the relationship from the client
to the home. This is not what primary key classes were intended for, but was done out of necessity given
that a specialized home was not provided.

Unfortunately, doing so introduced the following unwanted side-effect. Using the generic home configured
for Claim objects at some later time to find a previously created Claim object required the client to have
some information about the Policy too (at least some of the key attributes, if not a reference to the Policy
object itself, depending on the scenario). This might not be an acceptable constraint in the application
domain. If not, then the solution is to have the Claim object provider provide a specialized home as well.

Using a specialized home, the link between a Claim and its Policy is established in the specialized home
itself, as opposed to in the Claim business object or data object. In order to support the required
cardinality-1 relationship to a Policy, the specialized home for Claim would introduce new methods for
creating a Claim. These new methods would have parameters which would allow the specialized home to
establish the link between a Claim and its Policy. The following shows two examples of such create
methods:

 Claim_ptr ClaimHomeBO_Impl::createClaimWithPolicyRef(

 long claimNo,

 Policy_ptr policy)

 {

// Before we get too far, let's make sure that we have a valid

// Policy reference for the required cardinality-1 relationship.

if (CORBA::is_nil(policy))

 throw ClaimHome::MissingPolicy();

ClaimKey_var claimKey = ClaimKey::_create();

 claimKey->claimNo(claimNo);

122 Component Broker: Programming Guide

ByteString_var claimKeyString = claimKey->toString();

// For an inheriting specialized home, pass the claimKeyString

// to the parent of the specialized home on creatFromPrimaryKey-

// String(). For a delegating specialized home, pass the claim-

// KeyString to the contained home on createFromPrimaryKeyString().

 Claim_ptr newClaim = ...

// Now that the Claim has been created, establish the link to its

// Policy using the Policy which was passed in on createClaim().

 newClaim->thePolicy(policy);

 return newClaim;

 }

 Claim_ptr ClaimHomeBO_Impl::createClaimWithPolicyNo(

 long claimNo,

 long policyNo)

 {

// Assume that in the ClaimHomeBO_Impl::initForCreation()

// the specialized home for Claim objects has used a factory

// finder to find the home for Policy objects, and saved

// its reference in fPolicyHome

PolicyKey_var policyKey = PolicyKey::_create();

 policyKey->policyNo(policyNo);

ByteString_var policyKeyString = policyKey->toString();

Policy_var aPolicy; // Assume fPolicyHome is a specialized home...

aPolicy = fPolicyHome->findByPrimaryKeyString(policyKeyString);

ClaimKey_var claimKey = ClaimKey::_create();

 claimKey->claimNo(claimNo);

ByteString_var claimKeyString = claimKey->toString();

// For an inheritting specialized home, pass the claimKeyString

// to the parent of the specialized home on creatFromPrimaryKey-

// String(). For a delegating specialized home, pass the claim-

// KeyString to the contained home on createFromPrimaryKeyString().

 Claim_ptr newClaim = ...

// Now that the Claim has been created, establish the link to its

// Policy using the Policy which was passed in on createClaim().

 newClaim->thePolicy(policy);

 return newClaim;

 }

Creating a Claim With a New Policy Using a Specialized Home: This scenario is similar to the
previous scenario. However, because in this scenario the Policy is not created prior to creating a Claim,
the createClaimWithPolicyRef() method from the previous scenario is not applicable and the
implementation of the createClaimWithPolicyNo() method is different. Instead of invoking the
findByPrimaryKeyString() method on the Policy home it must invoke the createFromPrimaryKeyString()
method as illustrated in the following example:

 Chapter 7. MOFW Server Programming Model – Advanced Concepts 123

 Claim_ptr ClaimHomeBO_Impl::createClaimWithPolicyNo(

 long claimNo,

 long policyNo)

 {

// Assume that in the ClaimHomeBO_Impl::initForCreation()

// the specialized home for Claim objects has used a factory

// finder to find the home for Policy objects, and saved

// its reference in fPolicyHome'.

PolicyKey_var policyKey = PolicyKey::_create();

 policyKey->policyNo(policyNo);

ByteString_var policyKeyString = policyKey->toString();

Policy_var aPolicy; // Assume fPolicyHome is a specialized home...

aPolicy = fPolicyHome->createFromPrimaryKeyString(policyKeyString);

ClaimKey_var claimKey = ClaimKey::_create();

 claimKey->claimNo(claimNo);

ByteString_var claimKeyString = claimKey->toString();

// For an inheriting specialized home, pass the claimKeyString

// to the parent of the specialized home on creatFromPrimaryKey-

// String(). For a delegating specialized home, pass the claim-

// KeyString to the contained home on createFromPrimaryKeyString().

 Claim_ptr newClaim = ...

// Now that the Claim has been created, establish the link to its

// Policy using the Policy which was passed in on createClaim().

 newClaim->thePolicy(policy);

 return newClaim;

 }

"Uses a" and "Has a" Cardinality-1 Relationships

Now that the differences between optional and required cardinality-1 relationships have been described,
especially as they pertain to developing a business object, the uses a and has a cardinality-1 relationships
are described.

Previous sections discuss how uses a relationships are represented. The following figure illustrates an
optional cardinality-1 has a relationship.

Claim Policy

Figure 38. Optional Cardinality-1 "Has a" Relationship

The following diagram, on the other hand, illustrates a required cardinality-1 has a relationship.

Claim Policy

Figure 39. Required Cardinality-1 "Has a" Relationship

124 Component Broker: Programming Guide

A uses a relationship means that one object has a reference to another object. In the example, a Claim
object has a reference to a Policy object. In fact, there might be more than one Claim object with a
reference to the same Policy object and there might also be objects of other types with references to the
same Policy object. In any case, any object with a reference to this Policy object is capable of invoking
any method on the Policy object's client interface. This includes the remove() method. Of course, things
could get chaotic if any object with a uses a relationship to the same Policy object were allowed to invoke
the remove() method on it. To avoid such confusion, Component Broker recommends that an object be
removed only by its owner, and that an object be owned only by a single object. All other objects with
references to that object should only release the reference.

A has a relationship is what is used to represent the concept of ownership. In other words, an object with
a has a relationship to another object is said to own that object. In the previous two diagrams, a Claim
object has a reference to a Policy object. Although the relationship would most likely be reversed in the
insurance application domain, this scenario continues with the original example instead of introducing two
new objects. Thus, a Claim is considered to be the owner of a Policy and as such is responsible for
removing the Policy should this become necessary. One case in which it becomes necessary for a Claim
to remove the Policy is when the Claim itself is being removed. A business object knows it is being
removed when its home invokes the uninitForDestruction() method on it. The following example shows
how the Claim business object would implement this:

 ::CORBA::Void ClaimBO_Impl::uninitForDestruction()

 {

// Remove the (owned) Policy object

 fCachedPolicy->remove();

// If fCachedPolicy is declared as a Policy_ptr, then it is also

// necessary to release the reference.

 fCachedPolicy->release();

// If fCachedPolicy is declared as a Policy_var, then this happens

// automatically when the BO is destructed.

// Other un-initialization...

 }

Another case in which it becomes necessary for a Claim to remove the Policy is if the Claim interface has
a method that gives its clients the opportunity to request that the Policy be removed. This is similar to the
cancelPolicy() method in the following example:

 ::CORBA::Void ClaimBO_Impl::cancelPolicy()

 {

// Remove the (owned) Policy object

 fCachedPolicy->remove();

// If fCachedPolicy is declared as a Policy_ptr, then it is also

// necessary to release the reference.

 fCachedPolicy->release();

// If fCachedPolicy is declared as a Policy_var, then this happens

// automatically when the BO is destructed.

// Other clean-up associated with the Policy cancellation

 }

Of course, the cancelPolicy() method makes sense only in an optional has a relationship.

In any case, if one business object is responsible for the removal of another business object as the result
of a has a relationship, then the reverse must not also be the case. In other words, in Component Broker,
two objects might not have a has a relationship with one another. If such a bi-directional relationship is

 Chapter 7. MOFW Server Programming Model – Advanced Concepts 125

required, then one object must release the other, while the other object removes the first one as described
in this section.

Making Cardinality-1 Relationships Persistent

Because object references are really just memory addresses, they cannot be made persistent in that form.
Therefore, object references must be converted to other forms that can be made persistent. Because
persistence of all attributes, not just object relationships, is implemented in the data object, not the
business object, this conversion is described further in “Data Object Customization for Cardinality
Relations” on page 239.

As previously mentioned, in the Component Broker architecture, a business object's persistent state is
managed by its associated data object. Links (1-1 and 1-N object relationships) are no different. The
persistent representation of a link is also typically managed by a data object. However, there might be
cases where it makes more sense for the business object to manage the link itself. For instance, if the link
can be computed based on some application domain business logic, then it makes sense not to burden
the data object with managing the link.

For example, assume that a claim maintains a cardinality-1 link to the insurance policy with which it is
associated. Assume as well that the design of the application is such that the primary key of a Claim (the
claim number) includes the policy number of its associated Policy, for example, claim numbers are actually
prefixed by their associated policy number. In this situation, implementing the Policy reference involves no
additional persistent data. The Policy get method could be implemented directly in the business object as
follows:

 Policy_ptr ClaimBO_Impl::thePolicy()

 {

 ByteString_var pkString;

// get my primary key

ClaimPrimaryKey_var myKey = ClaimPrimaryKey::_create();

myKey->fromString(pkString = this->getPrimaryKeyString());

// extract the policy number from my primary key

long myPolicyNo = myKey->policyNo();

// get the policy home somehow (for example, using a factory finder)

IHome_var policyHome = ...

// create and initialize a policy primary key

PolicyPrimaryKey_var policyKey = PolicyPrimaryKey::_create();

 policyKey->policyNo(myPolicyNo);

// get the policy from the policy home

 IManagedClient::IManageable_var moPtr;

return Policy::_narrow(moPtr = policyHome->findByPrimaryKey(policyKey));

 }

As shown, this algorithm does not involve an explicit representation of the converted pointer. It is extracted
from the key and is based on the application-level knowledge that claim numbers are prefixed by their
associated policy number. In this situation the persistent representation of the link is actually maintained
as part of another one of the object's attributes. Also, when a link can be computed based on some
business logic, the object reference is often considered to be a read-only attribute of the business object.

While it is possible for a business object to manage object references itself, more commonly the business
object passes the pointer to the data object and it performs the required conversion. With this approach,
every data object that is used with a particular business object is free to use whatever conversion

126 Component Broker: Programming Guide

algorithm (and persistent representation) it chooses. This approach allows the business object to remain
de-coupled from the persistent storage mechanism and thus possibly be re-used in different scenarios with
a wide range of back-end data stores.

 Cardinality-N Relationships

The previous section shows how to link an insurance Policy to a single Claim object. If, instead, the Policy
object needs to reference multiple Claims, a cardinality-N relationship is required.

ClaimPolicy

Figure 40. Cardinality-N Relationship

There are two approaches for providing a type-safe implementation for a cardinality-N relationship in
Component Broker. Both approaches rely on a persistent collection object to manage the references,
although one hides the collection in the implementation, while the other exposes it to clients as a first
class object.

With the first approach, where the collection is hidden, the interface for adding and removing elements is
provided on the Policy object itself. With this approach, the Policy business object interface would provide
a set of methods for establishing, deleting, and accessing the links to Claim objects. The interface could
be defined as follows:

interface Policy : ...

 {

void addClaim(in Claim claim);

void removeClaim(in Claim claim);

 IManagedCollections::IIterator listClaims();

 ...

 };

Clients would then use this interface to add, access, and remove claims, as follows:

Policy_var aPolicy = ...

Claim_var aClaim1 = ...

Claim_var aClaim2 = ...

 //

// Add a couple of claims to the policy's set of claims

 //

 aPolicy->addClaim(aClaim1);

 aPolicy->addClaim(aClaim2);

 //

// Iterate through the policy's set of claims

 //

// Get an iterator for the set of claims

IManagedCollections::IIterator_var iter = aPolicy->listClaims();

 IManagedClient::IManageable_var element;

while (element = iter->next())

 {

// iterate through the set of claims

Claim_var aClaim = Claim::_narrow(element);

// do something with (for example, process) "aClaim"

 Chapter 7. MOFW Server Programming Model – Advanced Concepts 127

 ...

 }

 //

// Remove a claim from the policy's set of claims

 //

 aPolicy->removeClaim(aClaim1);

As shown, although the underlying implementation of the relationship methods might use a collection
object to manage the references, the client program is completely shielded from this fact. The Policy
object encapsulates the collection behind the type-safe relationship interface methods, addClaim(),
removeClaim(), and listClaims().

The second approach for implementing the cardinality-N relationship exposes the collection in the client
programming model. Instead of referencing multiple Claim objects directly, the Policy object references a
single collection object using a cardinality-1 link. The collection, in turn, references the multiple claims.

IReference
Collection ClaimPolicy

Figure 41. Cardinality-1 link to a collection object that references claims.

This picture actually applies to the previous approach as well, although there the reference collection is
hidden in the implementation. One difference is that when the collection is hidden, the Policy interface is
the only client interface for adding elements to the collection and therefore it provides static type checking
for the elements in the collection. If, on the other hand, the collection is visible to clients, the collection
itself must prevent clients from adding objects other than Claims to the relationship.

When using the explicit collection approach for implementing a cardinality-N relationship, the Policy
business object interface includes an attribute whose type is a reference to the collection.

interface Policy : ...

 {

readonly attribute IManagedCollection::IReferenceCollection claims;

 ...

 };

The relationship of the collection object to the Policy object can be considered to be a standard
cardinality-1 link as described in “Cardinality-1 Relationships” on page 115, with one exception, the
attribute is read-only. The readonly attribute allows clients to add and remove elements in the collection
but prevents them from replacing the collection itself. In some situations this latter operation might be
warranted, in which case, the readonly tag would be removed. In general, however, you should prevent
clients from modifying the reference to the collection.

A client program uses the claims attribute access method to access the collection of claims. Methods on
the collection can then be called to manipulate and access the actual Claim references.

Policy_var aPolicy = ...

Claim_var aClaim1 = ...

Claim_var aClaim2 = ...

 //

// Get the set of claims;

IManagedCollections::IReferenceCollection_var claims =

 aPolicy->claims();

128 Component Broker: Programming Guide

 //

// Add a couple of claims to the policy's set of claims

 //

 claims->addElement(aClaim1);

 claims->addElement(aClaim2);

 //

// Iterate through the policy's set of claims

 //

IManagedCollections::IIterator_var iter = claims->createIterator();

// get a claims iterator

 IManagedClient::IManageable_var element;

while (element = iter->next())

 {

// iterate through the set of claims

Claim_var aClaim = Claim::_narrow(element);

// do something with (for example, process) "aClaim"

 ...

 }

 //

// Remove a claim ("aClaim1") from the policy's set of claims

 //

 claims->removeElement(aClaim1);

Implementing the Relationship Interface

Depending on the interface requirements and possibly the back-end datastore being used, many different
implementations of the Policy/Claim relationship are possible. Some common approaches include
implementing the relationship using:

� A simple Non-keyed reference collection. See “Implementing a Relationship with a Simple Reference
Collection.”

� A Keyed reference collection. See “Implementing a Relationship with a Keyed Reference Collection”
on page 130.

� A Home or Collection and some additional information that is used to identify a subset of the entries in
the collection. Some examples include a non-unique secondary key supported by the Home or
Collection and a query evaluation string if the Home or Collection is queryable. See “Subsetting a
Home or Collection” on page 131.

The following sections describe each of these implementation approaches.

Implementing a Relationship with a Simple Reference Collection: The relationship collection is
exposed in the data object interface as a readonly attribute of type IReferenceCollection:

interface PolicyDO : ...

 {

readonly attribute IManagedCollections::IReferenceCollection claims;

 ...

 };

The relationship interface methods, addClaim(), removeClaim(), and listClaims(), would be implemented as
shown in the following example:

 Chapter 7. MOFW Server Programming Model – Advanced Concepts 129

::CORBA::Void PolicyBO_Impl::addClaim(Claim_ptr claim)

 {

IManagedCollections::IReferenceCollection_var claims = claims();

 claims->addElement(claim);

 }

::CORBA::Void PolicyBO_Impl::removeClaim(Claim_ptr claim)

 {

IManagedCollections::IReferenceCollection_var claims = claims();

 claims->removeElement(claim);

 }

 IManagedCollections::IIterator_ptr PolicyBO_Impl::listClaims()

 {

IManagedCollections::IReferenceCollection_var claims = claims();

 return claims->createIterator();

 }

In each of the methods, the method claims is used to return a pointer to the reference collection
containing the claims. Each method then delegates to its corresponding method on the reference
collection.

The persistent object reference for the reference collection itself can be implemented using any of the
design patterns described in “Cardinality-1 Relationships” on page 115. Using the lazy evaluation caching
pattern in the business object, the claims method would be implemented as follows:

 IManagedCollections::IReferenceCollection_ptr PolicyBO_Impl::claims()

 {

// first time?

if (fCachedClaims == IManagedCollections::IReferenceCollection::_nil())

fCachedClaims = fDataObject->claims();

 return fCachedClaim;

 }

Before the data object claims method can return a collection, a reference collection must actually be
created. This is typically done in the data object claims method the first time it is called. As previously
discussed, the reference collection used to implement a relationship may be required to guarantee that the
type of elements added to it are of a specific type (for example, Claims). A type-specific reference
collection can be created by calling the createCollectionFor method on the
IManagedCollections::ICollectionHome interface:

// get the collection home (for example, using a factory finder)

IManagedCollections::ICollectionHome_var cHome = ...

// create a reference collection that will only hold claims

IManagedCollections::IReferenceCollection_var rc =

 cHome->createCollectionFor(Claim::Claim_RID);

Alternatively, the simpler createCollection method can be used when no restriction on the type of collection
element is required:

 rc = cHome->createCollection();

Implementing a Relationship with a Keyed Reference Collection: A Keyed reference collection can
be used to implement relationships where the individual links are accessed using some kind of identifier.
For example, if the claims associated with a given insurance policy are identified by, for example, a claim
ID, the relationship interface might appear in the Policy business object as follows:

130 Component Broker: Programming Guide

interface Policy : ...

 {

void addClaim(in Claim claim, in long id);

void removeClaim(in long id);

Claim getClaim(in long id);

 IManagedCollections::IIterator listClaims();

 ...

 };

This relationship is most easily implemented using a keyed collection. For example, the data object
interface might now include an attribute of type IKeyedReferenceCollection:

interface PolicyDO : ...

 {

readonly attribute IManagedCollections::IKeyedReferenceCollection claims;

 ...

 };

The addClaim method could be implemented as follows:

::CORBA::Void PolicyBO_Impl::addClaim(Claim_ptr claim, ::CORBA::Long id)

 {

NumberKey_var key = NumberKey::_create();

 key.setValue(id);

IManagedCollections::IKeyedReferenceCollection_var claims = claims();

::ByteString_var keyString = key.toString();

 claims->addElementByString(claim, keyString);

 }

In this example, a key helper class (see Chapter 4, “MOFW Client Programming Model” on page 33),
NumberKey, is used to add the element to the collection. The class NumberKey wrappers the ID in a key
class that is capable of being stringified. When the key is created and initialized, the add operation is
delegated to the reference collection.

The removeClaim and getClaim methods would be implemented similarly. The remaining method,
listClaims, as well as the claims method that is used to access the collection object, would be
implemented as shown in the non-keyed reference collection example.

Subsetting a Home or Collection: This approach uses a home augmented with information that
identifies a subset of the objects in the home. This approach is particularly applicable in bottom-up
development scenarios where related data already exists in legacy applications.

For example, an RDB-based insurance application might contain two related tables, one for policies and
one for claims. The claims registered against a particular policy are identified by a policy# column in the
claim table. This column, a foreign key in the claim table, is the primary key for the policy table.

Policy#
12
34
56
78

Owner
"Joann"
"John"
"Katherine"
"Katherine"

... Claim#
87
65
43
21

Policy#
100

34
101

34

...

POLICY TABLE CLAIM TABLE

Figure 42. RDB-based Insurance Application Tables

 Chapter 7. MOFW Server Programming Model – Advanced Concepts 131

In Component Broker object space, these tables represent a cardinality-N relationship between a policy
object and its associated claims. For example, policy number 34 would have links to claim numbers 21
and 65.

Policy#
12
34
56
78

Owner
"Joann"
"John"
"Katherine"
"Katherine"

... Claim#
87
65
43
21

Policy#
100

34
101

34

...

POLICY TABLE CLAIM TABLE

has
claims

Policy #34

Claim #21

Claim #65

Figure 43. Links Between Policy and Claims

Normally these links are stored as converted pointers maintained by a persistent reference collection of
some type. In this case, the relationship information stored in the claim table itself eliminates the need for
a persistent reference collection. The set of claim links for a particular policy can be derived using a query
on the claim table. In Component Broker object space, this can be implemented by evaluating an OOSQL
query (for example, policyNo == 34) on a queryable claim home.

IManagedAdvancedClient::IQueryableIterableHome_var claimHome = ...

IManagedCollections::IIterator_var iter = claimHome->evaluate("policyNo=34");

// iterate over the claims

...

In this example, the home object would be retrieved using the Naming Service. The home name could be
hard coded in the application, available in an environment variable, or stored persistently in the policy
table.

The particular pattern used for finding the home might or might not be dictated by legacy requirements.

Because the relationship is derived from other data, adding and removing claims often involve side effects.
For example, adding a claim to the reference collection would require a change in state to the claim object
(for example, policy# field must be updated). If the claim is already in a relationship with another policy, it
would be implicitly removed from it as a result of the add operation here. To avoid this kind of change in
semantics of the addClaim method, the relationship interface could be changed to one that is more
semantically consistent with the underlying implementation. For example:

interface Policy : ...

 {

Claim createClaim(in long id);

void deleteClaim(in long id);

Claim getClaim(in long id);

 IManagedCollections::IIterator listClaims();

 ...

 };

132 Component Broker: Programming Guide

By replacing the addClaim and removeClaim operations with createClaim and deleteClaim methods, the
relationship semantics map well to the home-based implementation.

Creating Specialized Homes

Component Broker provides a default IManagedClient::IHome implementation. There might be
specializations of this interface specific to an underlying application adaptor. These include
IManagedAdvancedClient::IQueryableIterableHome and IManagedAdvancedClient::IIteratableHome. This
section explains how to extend a home with domain-specific methods for create and find.

There are a number of cases where the usage of IManagedClient::createFromPrimaryKeyString,
IManagedClient::createFromCopyString and IManagedClient::findByPrimaryKeyString might not present the
optimal interface for clients wishing to interact with the home to create and find business objects.

This section describes the process of extending the home and follows the pattern set out in “Extending a
Business Object” on page 105.

Extending the Interface to IHome

For the example, PolicyHome is an interface that specializes the IHome interface with some specific
create and find methods. The goal is to provide methods specific to the insurance policy abstraction.
These methods are shown in the IDL in the following example:

Policy create(in float premium, in float amount);

// create a policy passing in the attribute values

 Policy defaultCreate();

// default create method - policyNumber is assigned

Policy createWithNumber(in long policyNo);

// create a new policy with this number

Policy findPolicyByNumber(in long policyNo);

// find a policy by number

You must first decide which IHome interface should be specialized. This seems to have a simple solution:
Inherit from the IHome in the managed object framework and get an interface that looks like this:

 #include <IManagedClient.idl>
 #include "Policy.idl"

interface PolicyHome : IManagedClient::IHome

 {

Policy create(in float premium, in float amount)

 raises(IManagedClient::IInvalidKey, IManagedClient::IDuplicateKey);

 Policy defaultCreate()

 raises(IManagedClient::IInvalidKey, IManagedClient::IDuplicateKey);

Policy createWithNumber(in long policyNo)

 raises(IManagedClient::IInvalidKey, IManagedClient::IDuplicateKey);

Policy findPolicyByNumber(in long policyNo)

 raises(IManagedClient::IInvalidKey, IManagedClient::INoObjectWKey);

 };

 Chapter 7. MOFW Server Programming Model – Advanced Concepts 133

 Details

IManagedClient::IHome is being extended because it is the interface that is supported by all of the
application adaptors provided by the server.

Exceptions have also been put on the methods that are introduced. For completeness, creation methods
should raise the IManagedClient::IInvalidKey and IManagedClient::IDuplicateKey exceptions. Find related
methods should raise the IManagedClient::IInvalidKey and IManagedClient::INoObjectWKey exceptions.
Additional exceptions can also be introduced and raised as appropriate.

An alternative exception strategy is to have the specialized home implementations actually handle some of
the exceptions. For example, catching the IManagedClient::IDuplicateKey exception on methods where the
key is not passed in could be appropriate.

Alternatives to IManagedClient::IHome

Other alternatives for extending homes are IManagedAdvancedClient::IIterableHome and
IManagedAdvancedClient::IQueryableIterableHome. This is true only if the additional interface supported
by these extended homes is to be a proper superset of that which is available for the particular application
adaptor configuration. Not all homes support these IManagedAdvancedClient interfaces.

Implement the Extended IHome Interface

The IHome itself is a managed object and the development of an extended home should be done like
creating any subclass of a managed object. This is described in “Extending a Business Object” on
page 105. This section highlights things that are specific to the IHome interface and extension.

 Implementation Interface

The PolicyHomeBO.idl file inherits according to the pattern described in “Extending a Business Object” on
page 105. It is shown in the following example:

 #include <PolicyHome.idl>
 #include <IManagedAdvancedServer.idl>

interface PolicyHomeBO : PolicyHome, IManagedAdvancedServer::ISpecializedHome

 {

 };

The PolicyHomeBO.ih file contains the PolicyHomeBO_Impl class. This class inherits the implementation
from the IManagedAdvancedServer::ISpecializedHome_Impl that it plans to extend. This might vary from
what was described previously, but this example continues to use the extension to the default Home
implementation provided by the Managed Object Framework. The implementation interface is shown in the
following example:

 #include <IManagedAdvancedServer.ih>
 #include "PolicyHomeBO.hh"

class PolicyHomeBO_Impl : public virtual ::PolicyHomeBO_Skeleton,

public virtual IManagedAdvancedServer::ISpecializedHome_Impl

 {

 public:

::Policy_ptr create (::CORBA::Float premium, ::CORBA::Float amount);

::Policy_ptr defaultCreate ();

::Policy_ptr createWithNumber (::CORBA::Long policyNo);

::Policy_ptr findByPolicyNumber (::CORBA::Long policyNo);

// Methods from IManagedServer

134 Component Broker: Programming Guide

virtual ::CORBA::Void initForCreation (::IManagedServer::IDataObject_ptr theDO);

virtual ::CORBA::Void initForReactivation (::IManagedServer::IDataObject_ptr theDO);

virtual ::CORBA::Void uninitForDestruction();

virtual ::CORBA::Void uninitForPassivation);

virtual ::CORBA::Void syncToDataObject();

virtual ::CORBA::Void syncFromDataObject();

 private:

// superclass pointer of DO we are using

 IManagedAdvancedServer::ISpecializedHomeDataObject_ptr myDO;

 };

To create a specialized home that has query and iterable capabilities, simply replace
IManagedAdvancedServer::ISpecializedHome with
IManagedAdvancedServer::ISpecializedQueryableIterableHome in the PolicyHomeBO.idl and replace
IManagedAdvancedServer::ISpecializedHome_Impl with
IManagedAdvancedServer::ISpecializedQueryableIterableHome_Impl in the PolicyHomeBO.ih file.

 The Implementation

The implementation of the new create methods involves careful usage of keys, copies, and the basic
interface supported by home. All of the create methods end up using createFromCopyString or
createFromPrimaryKeyString, passing a key or copy that has been loaded with the proper information to
all proper creation of the object. The findByNumber() method follows a similar pattern.

Note: Care should be taken with CORBA types returned by these methods. Some types such as
CORBA::String require special operations be used for return values. See the Appendix C, “C++
CORBA Programming” on page 299 for additional information.

 create()

::Policy_ptr PolicyHomeBO_Impl::create(::CORBA::Float premium, ::CORBA::Float amount)

 {

CORBA::Long policyNo = getUnique();

cout << "The pseudo-unique policyNo will be: " << policyNo << endl;

// create a key from that number

PolicyKey_var theKey = PolicyKey::_create();

 theKey->policyNo(policyNo);

// do findBy with that number to ensure that it isn't a duplicate

 Policy_var tPolicy;

 tPolicy=NULL;

 try

 {

tPolicy=Policy::_narrow(IManagedClient::IManageable_var moPtr =

findByPrimaryKeyString(ByteString_var findKeyStr = theKey->toString()));

 if (tPolicy)

 {

// The Object already exists..

 throw IManagedClient::IDuplicateKey();

 }

 }

 catch(IManagedClient::INoObjectWKey &nowk)

 {

// The Object does not exist. Good we can create it

// just eat this exception and continue

// If object not found on server, go ahead and create one.

// create a copy object

PolicyCopy_var theCopy = PolicyCopy::_create();

 Chapter 7. MOFW Server Programming Model – Advanced Concepts 135

// load it up with the right stuff

 theCopy->policyNo(policyNo);

 theCopy->premium(premium);

 theCopy->amount(amount);

// call createFromCopyString

 IManageable_var aManageable;

aManageable=createFromCopyString(ByteString_var findKeyStr = theCopy->toString());

 return Policy::_narrow(aManageable);

 }

 }

 defaultCreate()

::Policy_ptr PolicyHomeBO_Impl::defaultCreate ()

 {

 ::CORBA::Long policyNo;

// There is a userData' attribute on each home. User specific

// information can be stored in this field. We have chosen to

// store the key generation algorithm type that should be used

// when creating a new key.

// Go to my DO to get the userData attribute value out of the

string_var phUserData = myDO->getConfigInfo();

if (strcmp(phUserData,"KeyAlgorithm1") == ð)

 {

// use the first key algorithm

policyNo = getUniqueKey();

 }

 else

 {

// use the second key algorithm

policyNo = 1ðð + getUniqueKey();

 }

// create a key from that number

PolicyKey_var theKey = PolicyKey::_create();

 theKey->policyNo(policyNo);

// do findBy with that number to ensure that it isn't a duplicate

 Policy_var tPolicy;

 tPolicy=NULL;

 try

 {

tPolicy=Policy::_narrow(IManagedClient::IManageable_var moPtr =

findByPrimaryKeyString(ByteString_var findKeyStr = theKey->toString()));

 if (tPolicy)

 {

 throw IManagedClient::IDuplicateKey();

 }

 }

 catch(IManagedClient::INoObjectWKey &nowk)

 {

// object does not exist... we can create

// call createFromPrimaryKeyString

return Policy::_narrow(IManagedClient::IManageable_var moPtr =

createFromPrimaryKeyString(ByteString_var findKeyStr = theKey->toString()));

 }

136 Component Broker: Programming Guide

 }

 createWithNumber()

::Policy_ptr PolicyHomeBO_Impl::createWithNumber (::CORBA::Long policyNo)

 {

// create a key

PolicyKey_var theKey = PolicyKey::_create();

 theKey->policyNo(policyNo);

// call createFromPrimaryKeyString

return Policy::_narrow(IManagedClient::IManageable_var moPtr =

createFromPrimaryKeyString(ByteString_var findKeyStr = theKey->toString()));

 }

Note that this method does not perform exception checking. If something other than
IManagedClient::IDuplicate should be thrown when the number provided as input is already in use, then a
try/catch block and associated logic would be required.

 findByNumber()

::Policy_ptr PolicyHomeBO_Impl::findByPolicyNumber (::CORBA::Long policyNo)

 {

// create a key

PolicyKey_var theKey = PolicyKey::_create();

 theKey->policyNo(policyNo);

// call findByPrimaryKeyString

return Policy::_narrow(IManagedClient::IManageable_var moPtr =

findByPrimaryKeyString(ByteString_var findKeyStr = theKey->toString()));

 }

Meet MOFW IManageable Requirements

Because this extension to the home introduces no new additional methods and no new key for the home
itself, getPrimaryKeyString, getHandleString, externalize_to_stream, and internalize_from_stream do not
need to be implemented.

MOFW Requirements – IManagedObject Interfaces

This section includes the following:

 � “initForCreation()”
� “initForReactivation” on page 138
� “uninitForDestruction” on page 138
� “uninitForPassivation” on page 138
� “syncFromDataObject” on page 138
� “syncToDataObject” on page 138

initForCreation(): The initForCreation method is only required to call the parent, passing the dataObject
that comes in as a parameter. Currently, homes are not actually created using this method. Homes are
configured onto systems and brought into existence as part of server initialization. This code is not
executed; the example is included for completeness.

::CORBA::Void PolicyHomeBO_Impl::initForCreation (::IManagedServer::IDataObject_ptr theDO)

 {

// call my parent

 IManagedAdvancedServer::ISpecializedHome_Impl::initForCreation(theDO);

 }

 Chapter 7. MOFW Server Programming Model – Advanced Concepts 137

initForReactivation: Set the data object using the same pattern as initForCreation. Any other specialized
home specific code that needs to execute when a home is activated goes in this method implementation.

::CORBA::Void PolicyHomeBO_Impl::initForReactivation (::IManagedServer::IDataObject_ptr theDO)

 {

//Call my parent

 ::IManagedAdvancedServer::ISpecializedHome_Impl::initForReactivation(theDO);

// set my DO

myDO = IManagedAdvancedServer::ISpecializedHomeDataObject::_narrow(theDO);

 }

uninitForDestruction: uninitForDestruction also only calls the parent method.

 ::CORBA::Void PolicyHomeBO_Impl::uninitForDestruction()

 {

// call my parent

 ::IManagedSystemObject::IHome_Impl::uninitForDestruction(theDO);

 }

uninitForPassivation: Call the parent following the same pattern as uninitForDestruction.

syncFromDataObject: Call the parent following the same pattern as uninitForDestruction.

syncToDataObject: Call the parent following the same pattern as uninitForDestruction.

 Keys

The same class used for the MOFW home works here. Homes are found generally using factory finders
and are not created. Keys are not used in the programming model. Keys are used in the internal server
run time.

 Copy Helper

The same class used for the MOFW home works here. Homes are not created, and therefore no copy
helper is needed or usable based on the life cycle of homes.

Leveraging Server Provided Essential State Extensions

A specially defined attribute is passed through from the object builder or DDL that represents this
specialized home. Rather than having a separate data object for the specialized home, it is much more
efficient to access this data when it is needed. This is done as follows:

char\ x = myDO->getConfigInfo();

if (/\ some evaluation of x \/)

 {

// make up a number using srand or some program that helps with this

policyNo = /\whatever;

 }

 else

policyNo=/\ whatever \/

This data is read-only and cannot be changed.

138 Component Broker: Programming Guide

Overriding Specific Methods on Specialized Homes

In addition to supplying specific methods that allow clients to create and find objects without using keys
and copy helper, specialized homes also provide the mechanism for overriding other interfaces supported
by the IManagedClient::IHome interface. The following specific methods that can be overridden are
described below:

 � IManagedClient::IHome::createFromPrimaryKeyString
 � IManagedClient::IHome::createFromCopyString
 � IManagedClient::IHome::findByPrimaryKeyString

The IManagedClient::IHome::createFromPrimaryKeyString and createFromCopyString can be overridden
to prevent creation of objects of a particular type. There are cases when using implementation inheritance
and polymorphism where homes are configured onto a system even when the class is abstract. This is
usually to facilitate polymorphic findByPrimaryKeyString operations. While findByPrimaryKeyString is
desired as a polymorphic operation, the create capabilities may in fact be prohibited. Other reasons
include special checking that needs to be done before the actual create is issued. While this can be done
with specialized create methods, using the base programming model methods of
createFromPrimaryKeyString and createFromCopyString may be desirable in some situations.

Overriding IManagedClient::findByPrimaryKeyString is done to facilitate special find logic. This is most
common in cases where polymorphic relationships exist between business objects. For example, if an
abstract class of a has subclasses of “b” and “c,” it would be reasonable to try to find an “a” with a given
key. While there are no “a” instance because it is abstract, it is reasonable to have an overridden
findByPrimaryKeyString that would look at all concrete subclasses of “a” to properly execute the find
operation. By overriding findByPrimayKeyString instead of using a specialized find method, data objects
that deal with polymorphic relationships can work unchanged. They depend on findByPrimaryKeyString as
part of the attribute getter implementation.

The contacts of these methods must be maintained even when they are overridden. The exceptions
thrown must still be honored by the specialized home. For example, IManagedClient::IDuplicateKey must
still be thrown by create and IMangedClient::INoObjectWKey should be returned. These are integral to
much of the mainline programming practice in Component Brokerclient programs. This contract must be
maintained even in the specialized home overridden versions of these methods. New exceptions cannot
be introduced on these methods as there is not overriding or overloading of interface specification allowed
in IDL.

Summary of Home Extension

Extending a home is much like extending any business object but simpler. Refer to “Create the Managed
Object Class and Implementation” on page 197 for more details.

Copy Helpers – Sharing Opportunities

Examination of the examples presented in this book might raise some questions about redundancy and
duplication of interface and implementation. When the Policy example was originally described, there
were separate classes for the Copy Helper Class (PolicyCopy) and for the actual interface that clients
generally code to for business logic purposes (Policy). These classes look alike, yet have no inheritance or
other meaningful relationship between them. They are essentially in separate class hierarchies partially
because the CopyHelper classes are ILocalOnly types of classes while the real business objects are true
CORBA objects.

 Chapter 7. MOFW Server Programming Model – Advanced Concepts 139

While sharing implementations might not make sense, it is possible to share interfaces between the actual
business object interface and the CopyHelper class. In the example, a new abstraction called
PolicyCommon was introduced. This is an abstract class that introduces that which is common between
the Policy Copy Helper and the Policy interface used for building the business object. Notice that Policy
remains an IManageable, PolicyCopy remains an INonManageable, and PolicyCommon has no parent.

Although this example might not appear to simplify and reduce complexity, more realistic cases that
include more methods and attributes might make this reasonable.

It is mostly attributes that go into the xxxxBase class, although methods could also be included. All
attributes that are part of the real business object that are meaningful as part of a transient copy are
candidates. If there are methods that apply to both the real business object and a transient copy, then
those methods can go into this xxxxBase class. Methods that are used to validate and edit the attributes
are the best candidates for inclusion into the xxxxBase class.

Figure 44 shows an example of how this might be done.

attr1
attr2
attr3
attr4

PolicyCommon

Policy PolicyCopy

IManageable
(from IManagedClient)

INonManageable
(from IManagedLocal)

PolicyBO

Figure 44. Example of Interface Sharing Opportunities

Moving Object Data in Bulk

One of the important design points in any distributed system is to “reduce trips over the wire.” This basic
guideline will cause a number of low level design and implementations decisions to be made in object
systems. There is always the risk of exposing too much data and violating encapsulation. However,
performance often times takes precedence over design purity.

During the life-cycle of an object there are a number of points where the “reduce trips over the wire”
guidelines should be considered. These will be explained in the following paragraphs.

Object creation is the first opportunity to reduce trips over the wire. The createFromCopyString method on
all Component Broker homes is the simple answer to creating objects with multiple attributes from remote
clients in an efficient way. If a business object has five attributes, of which only one is the key, then it is
obviously more efficient to use createFromCopyString as opposed to a createFromPrimaryKeyString
followed by four setter methods on the newly-created business object. Specialized homes can also offer

140 Component Broker: Programming Guide

create methods that gather up as much from the client as is reasonable and take it over the wire on one
method call to the specialized home.

Once created, the ability to move bulk data for objects becomes more complicated. Some of the possible
patterns are described.

For situations where a subset of the state is needed to prime user interfaces a data array query
(evaluate_to_data_array method on a query evaluator) should be considered. This returns tuples, not
objects that represent the data for the objects. If usage of the actual objects is also expected to occur,
then the object reference should be requested as a return value from the evaluate_to_data_array call. This
reduces trips over the wire. However, there is another opportunity. Even when using a data array query,
there is no way to update multiple object attributes in one call. The evaluate_to_data_array got lots of
data, but there is no obvious way to use it to update the objects they represent.

In our example of a business object with five attributes, an update(a1,a2,a3,a4,a5) method on the
business object could perform this 'update all attributes' function. The implementation of this method in the
business object would probably validate that the key is the same and update all non-key attributes.
Remember, keys cannot change on managed objects. A variation on update is to use an update of the
form update(copyHelperString). This does not change the trips over the wire, but offers a different style for
client programmers to use.

As with any copies or caches, be very precise about when the copy is update to date and when it might
be considered 'dirty'. Responsibility for keeping the business object synchronized with the copy falls to the
business object provider. Additional logic may be appropriate in the update() method to ensure data
integrity and to prevent unnecessary updates to the third-tier resource managers.

Treating object data as structures or buffers should be done as a performance optimization. It should not
be a general practice when doing object-oriented programming due to the reduction in encapsulation that
is introduced. This is a performance tuning and optimization technique.

Multiple Interfaces to Business Objects

There are situations where a business object has different sets of clients. Good object-oriented analysis
and design generally leads developers to interfaces that start with a base or minimal set of capabilities
and then introduces additional interfaces that have an increasing set of methods. Be careful defining these
interfaces and when handing them out to clients to avoid compromising the encapsulation that is
necessary for a robust object design.

Figure 45 on page 142 is an example of factoring the interface to be used by clients.

 Chapter 7. MOFW Server Programming Model – Advanced Concepts 141

ForAllMethod1()
ForAllMethod2()

FriendsOnlyM1()
FriendsOnlyM3()

PolicyForEveryone

PolicyForFriendsOnly

IManageable
(from IManagedClient)

PolicyBO

Figure 45. Example of Interface Factory

The previous example factors the Policy interface into PolicyForEveryone and PolicyForFriendsOnly. For
clients that need access only to the PolicyForEveryone interface, the client side DLL (in the C++ case)
should include only bindings for the PolicyForEveryone interface. Clients that want to access all of the
methods in both the PolicyForEveryone interface and PolicyForFriendsOnly would need a client side DLL
(in the C++ case) that contained C++ bindings for both of these interfaces.

Other factorings are possible.

 Circular References

Business object interfaces that have circular references should all be contained within a module. This
means that if interface A includes interface B, and interface B refers to something from interface A, both of
these interfaces are required to be in the same module. While not recommended, it is also possible to
have circular references like this at the global scope.

142 Component Broker: Programming Guide

Chapter 8. MOFW – ActiveX Client Programming Model

This chapter discusses the specifics of:

� Using an ActiveX client to access managed objects on a Component Broker server.
� Developing code using managed object proxies in an ActiveX environment

This chapter follows the format of Chapter 4, “MOFW Client Programming Model” on page 33, excluding
the discussions of abstract concepts.

ActiveX Client View of Component Broker Applications

The intent is to keep the interface to Component Broker objects as familiar to the ActiveX developer as
possible.

Microsoft
Visual C++

idl2com

.dll

.obj .idl

Component Broker
Server Store

Client Store

Figure 46. ActiveX Client View

The development view of the managed object (MO) proxies that are used on the client platform starts on
the server. When developers are programming managed objects for Component Broker, they are obliged
to create IDL files which represent those managed objects. Typically, the Component Broker developers
use the Object Builder to help them coordinate these files, but that is not required.

The key, for an ActiveX client developer, is that the IDL for the MOs must be run through the idl2com
compiler. The idl2com compiler takes the interface definitions in the IDL, and produces the managed
object proxies that are used from the client. The proxies are produced in C++. Supporting files that need
to be compiled are placed on the client for client applications to use. See Developing the Component
Broker ActiveX Client for further information.

As in Figure 46, the route to producing the C++ files for the managed object proxies is by calling idl2com.

 Copyright IBM Corp. 1997, 1998 143

Once the C++ files for the managed object proxy are available, the proxy class can be treated as any
other C++ class, with the exception of the specific requirements added to the class based on its
involvement with the CORBA based Component Broker server. These are detailed throughout this chapter.
Look at the run-time elements of the solution.

Application
Adaptor

.obj .idl

Component Broker
Server Store

C++
ORB

C++
ORB

Visual Basic
Application

COM

COM

MO

MO

proxy

proxy Managed
Objects

ServerClient

IIOP

Figure 47. ActiveX Client Run-time Scenario

A run-time scenario for an ActiveX client begins when the managed object proxy is accessed. All managed
objects accessed from the ActiveX client are wrapped at run time by a COM object. The first order of
business is to connect to the ORB and establish a reference to the root of the system name space. From
there, the issues of finding and using the managed objects through the proxy are issues related to how the
Component Broker programing model is set up. Only the syntax changes for the ActiveX environment.

Developing the Component Broker ActiveX Client

To produce a DLL containing an ActiveX accessible interface to a CORBA object, perform the following
basic steps:

1. Create your IDL.
2. Process IDL using idlc to produce the client side bindings.
3. Process IDL to generate the .ih and _I.cpp files if needed.
4. Generate a GUID using guidgen.exe.
5. Process IDL using idl2com to produce the ActiveX accessible interfaces.
6. Compile and link the bindings.
7. Register the interfaces using regsvr32.

At this point the interfaces are now available for application usage.

Generating and Registering DLLs

More detailed steps on generating and registering DLLs follow:

 1.

Create your IDL either manually or by using Object Builder. See “Object Builder” in Component Broker
Application Development Tools and Component Broker for Windows NT and AIX Online
Documentation for details. If you choose to use Object Builder to create your IDL, it is important to

144 Component Broker: Programming Guide

know that you cannot use the client-side usage bindings generated by Object Builder. You can only
use the *.idl, *_I.cpp and *.ih files. The *_I.cpp and *.ih files are only needed when you have defined
localonly objects.

 2.

Emit the client-side usage bindings from the IDL. Use the idlc command to emit the client-side usage
bindings from the IDL, specifying the -mcpponly and -suc:hh options on the command. For example:

idlc -mcpponly -suc:hh Policy.idl

Important: If you did not emit the client-side usage bindings into your ActiveX build directory, you
must copy or move them there now.

See the “idlc Command” in the Component Broker Programming Referencefor details on idlc.

3. If you have defined localonly objects (that is your IDL contains #pragma localonly), you need to create
the implementation headers and templates from the IDL. This step is only necessary if you have
defined localonly objects. You have two options:

� If you used Object Builder to create the IDL, use the *.ih and *_I.cpp files that Object Builder
automatically generated.

� Otherwise, manually generate the *.ih and *_I.cpp files using the idlc command.

If using the idlc command to produce the *.ih and *_I.cpp files from the IDL, specify the -mcpponly and
-sih:ic options on the command. For example:

idlc -mcpponly -sih:ic Policy.idl

You must now copy or move the *_I.cpp and *.ih files into your ActiveX build directory.

4. Generate a GUID using the guidgen.exe utility included with Microsoft Visual C++.

5. Use the idl2com command to produce the ActiveX accessible interfaces from the IDL. For example:

idl2com -g AE3E2131-C6DE-11dð-92AF-ð8ðð5ACE818D Policy.idl

See the idl2com Command in the Component Broker Programming Reference for details on idl2com.

6. Use nmake -f [filename] to compile and link the ActiveX accessible interface DLL for the CORBA
object. Use the IDL name, appended with the .mak extension for [filename]. For example:

nmake -f Policy.mak

When producing the DLL for the CORBA object, ensure that all required IDL for the object (including
IDL referenced by the object's IDL) has been processed by the idl2com command into the same
directory. This ensures that the correct header and library files are available when the .mak file is
processed.

7. Use regsvr32 [filename] to register the DLL in the Windows system registry. Use the IDL name,
appended with the .dll extension for [filename]. For example:

 regsvr32 Policy.dll

Unregistering and Moving DLLs

If you find in the future that you wish to move or no longer need the DLL(s) you have registered, perform
the following steps:

1. Use regsvr32 /u [filename] to unregister the DLL. Use the IDL name, appended with the .dll extension
for [filename]. If you no longer need the DLL, you are finished.

2. If the DLL produced in step 6 above is to be moved to a different directory, do the following steps:

a. Move the DLL file and its corresponding TLB file to the new directory. The TLB file was generated
during the makefile processing (step 4 above).

 Chapter 8. MOFW – ActiveX Client Programming Model 145

b. Reregister the DLL.

Component Broker ActiveX Client Application Development
Information

Using COM or OLE objects Conformance to the OMG's COM-CORBA Interworking Part A specification
is not complete. CORBA objects can be accessed through COM and OLE automation-produced
interfaces, but CORBA objects can not access COM or OLE objects.

Using OLE automation interfaces While the produced OLE Automation interfaces are intended to be
generic OLE automation interfaces available to any OLE controller, only Visual Basic 5.0 has
been used to test these at this time.

Using remote CORBA objects During installation, several OMG COM-CORBA Interworking Specification
interfaces are installed and registered. Of key importance are the CORBA Factory interfaces:
GetObject and CreateObject. Use these interfaces to get started using remote CORBA objects.
The samples provide guidance on using these interfaces.

Using IBM-supplied COM wrappers During installation, several pre-built COM/OLE Automation interface
DLLs for some of the Object Services are provided and registered for you. These DLLs are
contained within the installed bin directory, and supporting TLB, LIB, and header files are
installed as well. The specific list of DLLS which are shipped is contained in the RegActX.bat
file found in the installed bin directory. This file registers the DLLs.

Using VBScript and Internet Explorer A sample is provided that shows the use of a CORBA object from
VBScript and Internet Explorer. This sample is available in the samples subdirectory
(InstallVerification/ProgrammingModel/Applications/ActiveX) under the directory where
Component Broker was installed.

Only the following data types may be passed to a CORBA object from a VBScript script:

� primitives (ie. long, short, char, boolean, etc)
 � strings
 � objects
� structures containing only primitives, strings or objects
� unions containing only primitives, strings or objects

Do not use arrays or sequences in a VBScript for this release. Exception Handling In Visual Basic, there
are 2 means of working with exceptions: You can pass an “exception object” (a VARIANT type) as the last
parameter to a method. The last parameter is always optional. If an exception occurs, this object will be
filled in with the necessary exception information (a CCORBAException object.). You can pass a null for
the last parameter which tells the bindings that there is no exception object to be filled in. The method
instead needs to pass back an HRESULT which is then mapped by Visual Basic. The Visual Basic
application has to put in place the ON ERROR code (similar to a C++ or Java try/catch block) to catch the
exception.

Client Programming Model: Basic Tasks

In Chapter 4, “MOFW Client Programming Model” on page 33, the following tasks that a client is likely to
want to do are discussed:

� Find an object.
� Use an object.
� Create an object.
� Use a set of object.

146 Component Broker: Programming Guide

� Remember an object.
� Release or delete an object.

This chapter explores the same topics (with the same examples) but presents them from the perspective
of ActiveX development. The examples are primarily in Visual Basic. An ActiveX client application
developer can use the COM class output of the idl2com compiler directly from C++, and following COM
rules, as well.

Initializing The Component Broker Client Environment

Initializing the Component Broker client environment is discussed in detail in Chapter 4, “MOFW Client
Programming Model” on page 33. Initialization provides access to the ORB and Naming Service.

The following Visual Basic code accomplishes this task:

Dim corbaFactory as Object

Dim orb as Object

Dim NameService as Object

Dim genericObject as Object

Set corbaFactory = CreateObject("CORBA.Factory")

Set orb = CreateObject("CORBA.ORB")

Set NameService = CreateObject("IDL:IExtendedNaming.NamingContext")

Set genericObject = orb.ResolveInitialReference("NameService")

 NameService.narrow genericObject

After initialization, the client has access to the orb and nameService variables. You can see how the client
might use these in subsequent sections.

Remember that the IExtendedNaming is used to make things go a little easier.

The previous example shows how you can initialize the environment, and specifically, how access to the
NameService can be achieved. However, see “Bound in the Naming Service” for information on how
access to objects can be obtained without these steps, if the object is well-known in the name space. The
ActiveX client run time performs the previous sequence of operations automatically on
CreateObject/GetObject methods calls to the Corba.Factory COM object.

Finding a Managed Object

You can find an object in one of two ways. In the first technique, the object may have a Name and the
client can use the Component Broker Naming Service to look up the object by its Name. In general, only a
small subset of the object instances in a distributed system are in the Naming Service. These are typically
large, well-known objects such as collections of business objects or important object instances in the
Object Model.

The second technique for finding an object is to use the Naming Service to find a well-known object, for
example, a collection, and then navigate to the desired object from the well-known object. Navigation
occurs by looking in collections or following references to other objects.

Bound in the Naming Service

Assume the insurance company in the example placed several important Claim objects in the Naming
Service. The following Visual Basic code example shows how to find such a Claim, belonging to a
customer named Lou.

 Chapter 8. MOFW – ActiveX Client Programming Model 147

' nameService initialized as above

Dim tempObj as Object

Dim louClaim as Object

Set louClaim = CreateObject("IDL:Claim")

Set tempObj = nameService.resolve_with_string(".:/Applications/LifeInsurance/Claim/LouClaim")

 louClaim.narrow tempObj

Set tempObj = Nothing

 ...

' No longer need louClaim

Set louClaim = Nothing

The Component Broker server run time initializes the global object instance nameService to refer to the
root of the installation's Naming Service.

For a refresher on determining the naming context, and details on how the name space is specified, see
Chapter 4, “MOFW Client Programming Model” on page 33.

Recall that in addition to the resolve_with_string() method, Naming Contexts also support the
bind_with_string() method which associates a name with an object instance. The following Visual Basic
code example could have been used to name the Lou Claim object.

' Declare and create louClaim prior to the following code segment

 ...

' Add Lou to the Name Space

 nameService.bind_with_string("/.:/Applications/LifeInsurance/Claim/LouClaim", louClaim);

For additional information on the Component Broker Naming Service, see References in the Component
Broker Online Documentation.

By Methods on Held Objects

Once you have an object, you can use its methods to find related objects. Continuing the previous
example, after finding Lou's Claim, you can find other objects that the Claim references. The following
Visual Basic example gets you a reference to Lou's Policy:

' Find Lou's Policy

Dim louPolicy as Object

Set louPolicy = louClaim.policy

Using the PrimaryKey Helper Class

The preceding example was simplified in that LouClaim was in the Naming Service. In the event that you
do not have a well-known name for the claim, you can use Homes to find a specific claim.

Homes are instances of the IHome class. The managed object provider might decide to implement and
provide a tailored subclass of IHome, or might use an instance of the base class. The relationship
between managed objects and collections is explained in “Using Sets of Objects” on page 153.

For the overview, you can find the Home for Claim objects by the following Visual Basic code segment

Dim claimHome as Object

Dim myFinder as Object

Dim tempObj as Object

Set claimHome = CreateObject("IDL:Claim")

Set myFinder = CreateObject("IDL:IExtendedLifeCycle.FactoryFinder")

Set tempObj= nameService.resolve_with_string("/.:/Applications/LifeInsurance/Homes/Claim")

148 Component Broker: Programming Guide

 myFinder.narrow tempObj

Set tempObj = Nothing

Set tempObj = myFinder.find_factory_from_string("Claim.object interface")

 claimHome.narrow tempObj

Set tempObj = Nothing

 ...

' claimHome is now usable

 ...

' No longer need myFinder

Set myFinder = Nothing

Now you need to find Lou's Claim. If you know the Claim number, all you need is the Primary Key Helper
class for the Claim. Every managed object class has a set of local helper classes that let you use its keys.
An instance of a Key Helper Class is always local to the client's process.

The provider of the managed object that you are working with has given you access to source for, or
actual .DLL files containing the code for the Key Helper Class. Regardless, it is up to you to ensure that
you have access to them and can use them in your applications.

Key Helpers, like all helper classes are created with a static method on the class named _create(). This
static method gets generated by the bindings that accompany all subclasses of ILocalOnly. As an ActiveX
client programmer, you can create a helper object by instantiating the ActiveX wrapper for the helper
class.

Having created an instance of a Primary Key, the key must be set by one or more attributes on the
Primary Key object. When all of the key attributes have been set, the Primary Key object is now usable.
The Claim Home uses this Primary Key to find the previously created Claim object. Remember, the
PrimaryKey is on the client system, but the Claim object and the Claim Home are on the server system. If
the client passes a Primary Key object as a parameter to the Home, and the Home is on a remote system,
the remote system might get a proxy back to the client's PrimaryKey instance. This would turn the client
into a server and unpredictable results could occur. Therefore, the Component Broker programming
model uses strings as the method for passing keys to potentially remote objects.

Continuing the example, the following Visual Basic code segment would find Lou's Claim in the Home
(assuming his number is 1234).

' Create an instance of the Key Helper Class

Dim ClaimPrimaryKey as Object

Set ClaimPrimaryKey = CreateObject("IDL:ClaimPrimaryKey")

' Set the claimNo attribute in the key

claimPrimaryKey.ClaimNo = 1234

' Get the data out of the Stream to go onto the wire to the server

Dim claimStringvar as Variant.

claimStringvar = claimPrimaryKey.toString()

' Turn the variant returned by toString() method into a safearray of shorts

Dim claimString() as Integer

 ReDim claimString(UBound(claimStringVar))

For counter = ð to UBound(claimStringVar)

claimString(counter) = claimStringvar(counter)

 next counter

' Call find by key on the Home to find Lou's Claim

Dim tempObj as Object

Dim louClaim as Object = CreateObject("IDL:Claim")

 Chapter 8. MOFW – ActiveX Client Programming Model 149

Set tempObj = claimHome.findByPrimaryKeyString(claimString)

 louClaim.narrow tempObj

Set tempObj = Nothing

 ...

' No longer need louClaim

Set louClaim = Nothing

The object provider of a public managed object always provides you with a set of helper classes for using
the Homes that contain his managed objects. There is always exactly one Primary Key helper class. The
object provider gives a client developer the:

� The interface definitions for the Key Classes. In addition to the Primary Key, there might be a
secondary Key Helper Classes. A Secondary Key might also uniquely identify an object, or multiple
instances may have the same value.

� An implementation of the Key Classes.

� Documentation for their use.

Using a Managed Object

When you find a reference to a managed object, you can invoke methods on it. For example,

 person.set_Name("Lou Smith");

Calls the set_Name method on the person object identified by the person. The Component Broker internal
implementation handles the use of remote objects.

Creating a Managed Object

Component Broker managed objects can be created in a number of ways. The following sections describe
the default way in which you can easily create managed objects.

Creating a New Object – Create From Key

Every Component Broker managed object class has an instance of a Factory associated with it. The
Factory provides a set of interfaces for creating instances of a managed object. The Factory gets some of
its interface from the base class CosLifeCycle::GenericFactory. The createFromPrimaryKeyString method
is introduced in the IManagedClient::IHome interface supplied by Component Broker. This interface
specializes the CosLifeCycle::GenericFactory interface and plays the role of factory for Component Broker
managed objects. Object providers might implement and provide a tailored subclass of this interface, or
might use the implementation of IHome provided. You need to know how to find the right IHome for
creation. Homes are at well-known locations in the Naming Service. The input required for the factory
finder is the name of the interface of the class that you want this factory to make instances of. The
following Visual Basic code fragment gets a reference to the Claim Factory for the Life Insurance
Application.

Dim myFinder as Object = CreateObject("IDL:IExtendedLifeCycle.FactoryFinder")

Dim tempObj as Object

Set tempObj = nameService.resolve_with_string("/.:/Applications/LifeInsurance/FactoryFinders")

 myFinder.narrow tempObj

Set tempObj = Nothing

Dim claimHome as Object = CreateObject("IDL:ClaimHome")

Set tempObj = myFinder.find_factory_from_string("Claim.object interface")

 claimHome.narrow tempObj

Set tempObj = Nothing

 ...

150 Component Broker: Programming Guide

' No longer need claimHome

Set claimHome = Nothing

You need to provide the IHome with information necessary to manufacture a new object instance. At a
minimum, the Primary Key must be provided. A Visual Basic example of creating a new Claim with a
claimNo of 1234 is:

' Create an instance of the Primary Key Helper Class

Dim ClaimPrimaryKey as Object

Set ClaimPrimaryKey = CreateObject("IDL:ClaimPrimaryKey")

' Set the claimNo attribute in the key

claimPrimaryKey.ClaimNo = 1234

' Get the data out of the Stream to go onto the wire to the server

Dim claimStringvar as Variant.

claimStringvar = claimPrimaryKey.toString()

' Turn the variant returned by toString() method into

' safearray of shorts

Dim claimString() as Integer

 ReDim claimString(UBound(claimStringVar))

For counter = ð to UBound(claimStringVar)

claimString(counter) = claimStringvar(counter)

 next counter

' Call createFromPrimaryKeyString on the Factory to create Lou's Claim

Dim tempObj as Object

Dim theClaim as Object = CreateObject("IDL:Claim")

Set tempObj = claimHome.createFromPrimaryKeyString(claimPrimaryKey)

 theClaim.narrow tempObj

Set tempObj = Nothing

 ...

' No longer need theClaim

Set theClaim = Nothing

The previous two examples are almost identical. Create a Primary Key Object to define the identity of the
object that is made. Then, the createFromPrimaryKeyString call is made on the Home and the Key is
passed.

The createFromPrimaryKeyString method is defined by the IHome class, and all business objects can be
created by this method.

An object provider might provide you with a subclass that introduces other, easier to use creation
methods. Additional create methods are described, with examples, in Chapter 6, “MOFW Client
Programming Model – Advanced Concepts” on page 83.

Creating a New Object - Create from Copy

Setting and getting the attributes of a managed object can be expensive. There are two main reasons for
this. First, if the managed object is implemented in another language, each get or set method is actually a
cross-language call. Cross language calls are more expensive than simple, same language calls. The get
and set overhead is even more expensive if the managed object is remote because each call is actually a
remote procedure call and involves significant overhead. Consider the following code segment:

 Chapter 8. MOFW – ActiveX Client Programming Model 151

' Assume that 'theClaim' is declared and created as in the

' previous code segment.

' Creating 'theClaim' above required one RPC. Setting the rest of the

' objects attributes involves one RPC per attribute. The following

' lines of code show four such RPC's. This could, of course, be any

' number of RPC's, depending on the complexity of the object.

' Now initialize the Claim's attributes

theClaim.date = "1ð/14/96"

 theClaim.state= entered

theClaim.reason = accident

theClaim.description = "Side-swiped by teenager in a red convertible."

This segment could involve the following remote method calls:

� The client to Home of Claims to create the Claim.
� The client to Claim managed object to set its date attribute.
� The client to Claim managed object to set its state attribute.
� The client to Claim managed object to set its reason attribute.
� The client to Claim managed object to set its description attribute.

The previous calls could be reduced to a single remote method call by using the createFromCopyString()
method on an IHome instead of the createFromPrimaryKeyString() method. To use the
createFromCopyString() method, the object provider must provide you with a Copy Helper Class. The
following Visual Basic code segment presents the code from the previous example rewritten using this
design pattern.

' Create a new "local" Claim in my process and language.

' Use a Copy Helper Class that the Claim MO provider gave me.

Dim ClaimCopy as Object

Set ClaimCopy = CreateObject("IDL:ClaimCopy")

' Now initialize the Claim's attributes. Note that these methods

' execute locally, within the same language.

claimCopy.date = "1ð/14/96"

claimCopy.state = entered

 claimCopy.reason= accident

claimCopy.description= "Side-swiped by teen-ager in a red convertible."

' Pass this local copy to the Home and have him return a new Claim

' MO whose attributes are initialized from the local copy's values.

' Since not all ORBs support Pass-By-Value, we first convert the

' local copy helper object to a string.

Dim tempObj as Object

Dim theClaim as Object = CreateObject("IDL:Claim")

Dim claimStringvar as Variant.

claimStringvar = claimCopy.toString()

' Turn the variant returned by toString() method into

' safearray of shorts

Dim claimString() as Integer

 ReDim claimString(UBound(claimStringVar))

For counter = ð to UBound(claimStringVar)

claimString(counter) = claimStringvar(counter)

 next counter

152 Component Broker: Programming Guide

Set tempObj = claimHome.createFromCopyString(claimString)

 theClaim.narrow tempObj

Set tempObj = Nothing

Set classClaimCopy = Nothing

Set claimCopy = Nothing

 ...

' No longer need theClaim

Set theClaim = Nothing

Like a Key Helper Class, a Copy Helper Class instance is always local to your process and implemented
in the language you are using. The object provider gives you the interface and implementation of the
helper class.

Copy Helper Classes are especially useful if the client application needs to interact with an object during
initialization, and then create a managed object from the attributes. A common scenario for this is entering
data for the object from a GUI. The GUI updates the local Copy Helper Object, and then the
createFromCopyString() method is called when the Do button is clicked on the end user interface (EUI).

Releasing and Deleting Objects

Eventually, you no longer need to use an object that was created or found. Component Broker supports
two interpretations on "no longer needs".

� The remove() method deletes the object and its persistent instance data.

� The release() method informs the object that the client application no longer plans to reference the
object. The object still exists in the server, and other applications may be using it, but the client calling
the release() method is done with the object.

Using Sets of Objects

An IHome represents a set of managed objects, all of the same type, whose relationship to one another is
defined by the object provider, and maintained by the fact that they were all created in the same home.
Sometimes an application needs to define (and manage) the relationships between managed objects,
based on the particular business task at hand. This might even include relationships between managed
objects of different types (for example, PolicyHolder and Beneficiary). This can be done using an
IManagedReference Collection, as shown in the following Visual Basic code segment:

Dim mixedCollection as Object

Set mixedCollection = CreateObject("IDL:IManagedCollections.IReferenceCollection")

' Find a collection in the name space which contains PolicyHolders and Beneficiaries

' Create an iterator on the reference collection that was found above. When an iterator is

' created, it is automatically positioned preceeding the first element.

Dim anIterator as Object

Set anIterator = mixedCollection.createIterator()

Dim element as Object

Set element = CreateObject("IDL:IManagedClient.IManageable")

' Loop through the collection. The "next" method advances the iterator

' to the next element (on the first invocation, this will advance to the

' first element). If the iterator is now past the end of the collection,

' the "next" method returns FALSE; otherwise, returns TRUE and sets the output

' parameter to the element at which it is now positioned.

 Chapter 8. MOFW – ActiveX Client Programming Model 153

Do While anIterator.next(element)

If element.is_A(PolicyHolder) Then

' Send him a bill

 End If

If element.is_A(Beneficiary) Then

' Send him a check

 End If

 Loop

The combination of the IManagedCollections::IReferenceCollection and the IManagedCollections::IIterator
were used in the previous code segment. An IManagedCollections::IReferenceCollection is a generalized
collection of object references that is iteratable. IManagedCollections::Iterator supports advancement of
the iterator and retrieval of elements by the next() method. IManagedCollections::IReferenceCollection
supports adding and removing elements using the addElement() and the removeElement() methods.
IManagedCollections::IManagedReferenceCollection is the most basic kind of collection supported in
Component Broker. Combining this with the capabilities of IHome provides the basis for writing simple
applications and the foundations for the more advanced query and collections capabilities provided by
Component Broker. For more information on collections and query, see Chapter 6, “MOFW Client
Programming Model – Advanced Concepts” on page 83.

Remembering your Favorite Objects

Component Broker allows you to remember a managed object instance, by introducing the concept of an
object reference. An object reference is opaque and you cannot set its internal structure. However, a
reference always and uniquely refers to a managed object regardless of where it resides in the network.

Continuing the example, assume that you perform the following Visual Basic code segment.

' This example just creates the string containing the object reference

' This string could be written to a file using normal VB conventions if

 ' desired

' Get a "string" version of my reference to Robert

' robert points to Robert or a proxy to Robert

Dim corbaFactory as Object

Set corbaFactory = CreateObject("CORBA.Factory")

Dim orb as Object

Set orb = corbaFactory.GetObject("CORBA.ORB.2") ' Get access to the orb

Dim robertStringifiedReference as String

robertStringifiedReference = orb.ObjectToString(robert)

' Save the string to a file using normal VB file IO

' I do not need Robert anymore

set robert = nothing

If you save a reference to Robert as a Stringified Object Reference, then you can use this string to
re-access Robert at a later time. The following Visual Basic code segment presents an example of
re-accessing the Robert object.

154 Component Broker: Programming Guide

' Get back the string from the file I saved earlier into

 ' robertStringifiedReference

' Make an object reference for Robert

Dim tempObj as Object

Dim robert as Object = CreateObject("IDL:Robert")

 Set tempObj = orb.StringToObject(robertStringifiedReference)

 robert.narrow tempObj

' I can now work with Robert.

 robert.Name()

When References Explode

Another application may call the remove() method on objects referenced by a client application.
Component Broker supports a Concurrency Control Service to regulate sharing of objects. If a client does
not lock an object, it can be deleted. Language environments like ActiveX prevent this from happening in
simple, single process applications, but achieving the same level of function is impossible in a
cross-system, multi-language environment. If you are operationally reusing data and applications, some
legacy code not under the object-oriented application's control can delete the instance data for objects. An
object to which you have a reference can vanish unless you use Concurrency Control.

Therefore, if you do not use Concurrency Control, you need to be prepared for exceptions. If an invalid
object reference is used, an exception is thrown. While not perfect, this is a substantial improvement over
the semantics of languages like C++ that can result in unpredictable behavior if invalid references are
used.

 Chapter 8. MOFW – ActiveX Client Programming Model 155

156 Component Broker: Programming Guide

Chapter 9. MOFW - Java Client Programming Model

This chapter deals with the specifics of using a Java Client to access managed objects on a Component
Broker server. It follows the format laid out in omitting the lengthy discussion of abstract concepts, and
instead dealing with the specifics of developing code using managed object proxies in Java. Read
Chapter 4, “MOFW Client Programming Model” on page 33 before you use this chapter.

Throughout this chapter, there are references to one of the components of the solution as the idl.toJava
(com.ibm.idl.toJava.Compile is the full name) compiler. IBM's compiler is based on Java.

Note:

To allow Component Broker to use multiple character sets, you must use only the Portable
Character Set supported by the seven-bit ASCII code set when developing client and server code.

The Portable Character Set supported by Component Broker follows:

 ð 1 2 3 4 5 6 7 8 9

 : ; < = > ? @ [\] ∧ _ ' { | } ! " # $ % & () \ + , - . / <space>

 a b c d e f g h i j k l m n o p q r s t u v w x y z

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Java Client View of Component Broker Applications

The development view of the managed object (MO) proxies that are used on the client platform starts on
the server. When developers are programming managed objects for Component Broker, they are obliged
to create IDL files that represent those managed objects. Typically, the Component Broker developers use
the Object Builder to help them coordinate these files, but that is not required.

The key, for a Java client developer, is to run the IDL for the managed objects through the idl.toJava
compiler. The idl.toJava compiler takes the interface definitions in the idl, and produces the managed
object proxies that are used from the client. The proxies are produced in the form of .java files, that need
to be compiled and placed either in a location where the Web server has access for applets, or on the
client for applications.

As in Figure 48 on page 158, there are two routes to producing the .java files for the managed object
proxies. Whether you process the IDL files generated by the Object Builder tool, or process IDL files that
you wrote, the results should be the same.

 Copyright IBM Corp. 1997, 1998 157

.obj .idl

javac

IDL-to-Java

.class

Component Broker
Server Store

Web Server Store

Object
Builder

Managed
Objects

Figure 48. Java Client View

When the .class files for the managed object proxy are available, the proxy class can be treated as any
other Java .class, with the exception of the specific requirements added to the class, based on its
involvement with the CORBA-based Component Broker server. These are explained in this chapter. Look
at the run-time elements of the solution.

158 Component Broker: Programming Guide

Application
Adaptor

.obj .idl

Component Broker
Server Store

.class

Web Server Store

Java
ORB

(JavaIDL)

C++
ORB

Java
Application

Java
Enabled
Browser

Java

Java

Java

Java

Java
MO

Java
MO

Java
MO

proxy

proxy

proxy Managed
Objects

IIOP

ServerClient

Web
Server

HTTP

Figure 49. Java Client Run-time Scenario

A run-time scenario for a Java client begins when either the applet, or the application containing the
managed object proxy is accessed. In either case, the first order of business is to connect to the ORB,
and establish a naming context. From there, the issues of finding and using the managed objects through
the proxy are really issues related to how the Component Broker programing model is set up. Only the
syntax changes for the Java environment.

Since only one Object Request Broker (ORB) is started per Java Virtual Machine (JVM), the ORB will be
shared among all applets running in the JVM. Applets intended to run with other applets in the same Java
Virtual Machine should be designed to efficiently and safely use the shared ORB.

Client Programming Model: Basic Tasks

Chapter 4, “MOFW Client Programming Model” on page 33 describes the following tasks that a client is
likely to want to do:

� Find an object.
� Use an object.
� Create or delete an object.
� Use a set of objects.
� Remember an object.

This chapter explores the same kinds of tasks as in Chapter 4, “MOFW Client Programming Model” on
page 33, with the same examples, but presents them from the unique perspective of a Java client

 Chapter 9. MOFW - Java Client Programming Model 159

developer. There is, however, one additional step that is discussed prior to getting into the programming
model for the client.

Preparing to Use VisualAge for Java for Development of Component
Broker Java Clients

Before using VisualAge for Java for development of Component Broker Java clients, it is necessary to
import the IBM Java ORB into a VisualAge for Java project. Do this using the following steps:

1. Start VisualAge for Java.

2. Insert your Component Broker Client CD into your CD drive.

3. From the VisualAge for Java Workbench, select File → Import.

4. Select “Jar file” as the input source.

5. Browse to your CD drive and navigate to the \jclient directory.

6. Select the file somojor.zip.

7. Select .class and resource as the file types to import.

8. Enter the name of a new project or browse to an existing one.

9. Click the Finish button.

Since somojor.zip is a large file, it may take a few minutes for the importation process to complete.

Preparing Managed Objects for Remote Access

The client programming model is based on the idea of having remote proxies available for managed
objects on the server which are represented in IDL files. Depending on how managed objects are created
in your organization, you may not be the one who performs this step. Even if that is the case, it is helpful
to know what is going on.

The first thing that you need to do is to make sure that the proxy is available to the client. Given that there
is an IDL definition for the managed object, there are two ways to generate the Java proxy for the client.
The first way to generate a proxy is by instructing Object Builder that you would like a Java client proxy for
the managed object you are dealing with. The second way to generate the Java client proxies is to use
the idl.toJava compiler directly. The syntax for the idl.toJava compiler is:

java com.ibm.idl.toJava.Compile [options] idl file

where idl file is the name of a file containing IDL definitions, and [options] is any combination of the
following options. The options may appear in any order; idl file is required and must appear last.

Options:

-bean Generate classes that can be used as Java beans. By default, the client stubs are not beans.

-d symbol This is equivalent to the following line in an IDL file: #define symbol.

-emitAll Emit all types, including those found in #included files. By default, only those types found in idl
file are emitted.

-fside Define what bindings to emit. side is one of the following: client, server, all, serverTIE, or allTIE.
serverTIE and allTIE cause delegate model skeletons to be emitted. If this flag is not used,
-fclient is assumed.

160 Component Broker: Programming Guide

-i include path
By default, the current directory is scanned for included files. This option adds another
directory.

-keep If a file to be generated already exists, do not overwrite it; by default it is overwritten.

-m Generate information to be included in a make description file; the output goes to a .u file. By
default, this information is not generated.

-pkgPrefix t pkg
Wherever the type or module t is encountered, ensure it resides within pkg in all generated
files. t is a fully-qualified Java-style name.

-sep string
This option is only valid with the -m option. Replace the file separator character with string in
the file names listed in the .u file.

-stateful Warning : Non-standard IDL! Parse stateful interface objects (used for objects-by-value).

-td target_directory
Emit bindings to target directory rather than to the current directory.

-v Verbose mode. By default, unless there are errors, no messages are output.

In most cases, the invocation of this compiler is straightforward. Regardless of which method you use, the
tools should generate several Java proxy files. The rest of this chapter describes how to use these files.

Depending on whether you intend to use the proxies in an application, or in an applet served up by a Web
server, you have to decide where to put, or where to tell the tools to put, the proxies. When you have
made these decisions, and generated the proxies, you can start developing the code that uses the proxies
for the managed objects on the server.

Initializing the Component Broker Client Environment

The CBSeriesGlobal interface is provided as a convenience. A Component Broker client could make the
same set of calls as is encapsulated in the Initialize() method independently, and in some cases, this
allows more flexibility. To use the CBSeriesGlobal interface, you must include the following line:

 import com.ibm.CBUtil.CBSeriesGlobal

The CBSeriesGlobal interface provides a number of different Initialize methods depending on your needs
as a Java applet or application. All of these Initialize methods encapsulate the calls to initialize the ORB
and get an initial reference to the Name Service. Therefore, initializing a Component Broker Java
application client requires a single line of code, one of the following:

 CBSeriesGlobal.Initialize(host);

 CBSeriesGlobal.Initialize(host, port);

 CBSeriesGlobal.Initialize(arguments);

 CBSeriesGlobal.Initialize(arguments, properties);

To initialize a Component Broker Java applet client also requires a single line of code:

 CBSeriesGlobal.Initialize(applet);

 CBSeriesGlobal.Initialize(applet, properties);

Only after the client has called the Initialize method, can they use the static methods orb() and
nameService(). Subsequent sections discuss how the client might use these methods.

 Chapter 9. MOFW - Java Client Programming Model 161

The CBSeriesGlobal interface encapsulates the call to initialize the ORB, which appears in
CBSeriesGlobal as:

java.util.Properties props = new java.util.Properties();

 props.put("org.omg.CORBA.ORBClass", "COM.ibm.CORBA.iiop.ORB");

orb = (COM.ibm.CORBA.iiop.ORB) ORB.init (naught, props);

Where naught is a null array of strings, which could be the command line arguments passed in to initialize
the ORB. props is a properties object filled in with the host name and port of the Bootstrap server to which
the client should connect. The Bootstrap server is installed as part of the Component Broker server. If you
are unsure of the host and port for this Bootstrap server, contact your Component Broker system
administrator. The property names for the Bootstrap server's host and port are
com.ibm.CORBA.BootstrapHost and com.ibm.CORBA.BootstrapPort. These properties would be added to
the properties object in the following manner:

 props.put("com.ibm.CORBA.BootstrapHost", host);

 props.put("com.ibm.CORBA.BootstrapPort", port);

Where host and port are Java String objects containing the values for the Bootstrap server's host and port.
In addition to host and port, to avoid conflicts with other Java ORBs, a property is added to the property
list to make a direct reference to the Component Broker Java ORB. This prevents problems with
inadvertently using other ORBs. This problem can occur most often when using Java applets in Web
browsers. To avoid the problem, modify the code for your Java applet to include an explicit cast to the
Component Broker Java ORB, com.ibm.CORBA.iiop.ORB.

Within CBSeriesGlobal, the Naming Service is resolved in the following manner:

obj = fOrb.resolve_initial_references("NameService");

fNameService = NamingContextHelper.narrow(obj);

As you can tell, there are many ways to use these interfaces. The Initialize() methods allow the user to
use CBSeriesGlobal to eliminate concern over such intricacies.

CBSeriesGlobal is a convenience interface that is not required for all client programs. However, if the
client program uses either a CopyHelper or PrimaryKey that contains an object as one of its attributes
then initializing CBSeriesGlobal is a requirement. This is because the implementation of the CopyHelper
and PrimaryKey depend on CBSeriesGlobal:orb() when using the ORB object_to_string() operation.

IExtendedNaming is used to make things go a little easier. If you need a refresher on it, refer to
References in the Component Broker Online Documentation.

Finding a Managed Object

You can find an object in one of two ways. The object might have a Name and the client can use the
Component Broker Naming Service to look up the object by its Name. In general, only a small subset of
the object instances in a distributed system are in the Naming Service. These are typically large,
well-known objects such as collections of business objects or important object instances in the Object
Model.

The second technique for finding an object is to use the Naming Service to find a well-known object, for
example a collection, and then navigate to the desired object from the well-known object. Navigation
occurs by looking in collections or following references to other objects.

162 Component Broker: Programming Guide

Finding a Well-known Object Using the Naming Service

Assume that the insurance company in the example placed several Claim objects in the Naming Service.
The following code segment shows how to find such a Claim, belonging to a customer named Lou.

Claim louClaim = Claim.narrow(

 CBSeriesGlobal.nameService().resolve_with_string(

 ".:/Applications/LifeInsurance/Claim/LouClaim"));

The Component Broker client and server run times initialize the global object instance nameService to
refer to the root of the installation's Naming Service.

For a refresher on determining the naming context, and details on how the name space is specified, refer
to Chapter 4, “MOFW Client Programming Model” on page 33.

Recall that in addition to the resolve_with_string() method, Naming Contexts also support the
bind_with_string() method which associates a name with an object instance. The following code segment
could have been used to name the Lou Claim object.

// Assume all of the appropriate imports have been done.

// Do a bunch of stuff with a reference to Lou's Claim

Claim louClaim; // declared somewhere prior to the next set of code

 louClaim.

 ...

// Get a reference to the Life Insurance Application's

// Claim Naming Context using IBM's Extended Naming

// (com.ibm.IExtendedNaming is syntactically optional)

 com.ibm.IExtendedNaming.NamingContext nc;

// getting the naming context for Claim Objects

nc = com.ibm.IExtendedNaming.NamingContextHelper.narrow(

 CBSeriesGlobal.nameService().resolve_with_string(

 "/.:/Applications/LifeInsurance/Claim"));

// Add Lou to the Name Space

 nc.bind_with_string("LouClaim",louClaim);

Finding an Object Using Collections and Navigation

When you have an object, you can use its methods to find related objects. Continuing the previous
example, after finding Lou's Claim, you can find other objects that the Claim references. The following
example gets you a reference to Lou's Policy:

// Find Lou's Policy

Policy louPolicy; // declare a local variable

louPolicy = louClaim.policy();

The example is simplified in that LouClaim is in the Naming Service. In the event that you do not have a
well-known name for the claim, how do you find a specific claim? Homes are instances of the IHome
class. The managed object provider may decide to implement and provide a tailored subclass of IHome, or
might use an instance of the base class. The relationship between managed objects and collections is
explained in “Using Sets of Objects” on page 167.

 Chapter 9. MOFW - Java Client Programming Model 163

You can find the Home for Claim objects by using the following code segment:

import com.ibm.IManagedClient.\ ;

 IHome claimHome;

claimHome = IHomeHelper.narrow(CBSeriesGlobal.nameService().resolve_with_string(

 "/.:/Applications/LifeInsurance/Homes/Claim"));

Now you need to find Lou's Claim. If you know the Claim number, all you need is the Primary Key Helper
class for the Claim. Every managed object class has a set of local helper classes that let you use its keys.
An instance of a Key Helper Class is always local to the client's process and language.

The provider of the managed object that you are working with has given you access to source for, or
actual, .class files for the helper class. Regardless, it is up to you to ensure that you have access to them
and can use them in your applications.

Key Helpers, like all helper classes are created with a static method on the class named _create(). This
static method gets generated by the bindings that accompany all subclasses of ILocalOnly. The same rule
is in place for copy helpers and objects of other classes.

Having created an instance of a Primary Key, the key must be set by one or more attributes on the
Primary Key object. When all of the key attributes have been set, the Primary Key object is now usable.
The Claim Home uses this Primary Key to find the previously created Claim object. Remember, the
PrimaryKey is on the client system, but the Claim object and the Claim Home or on the server system. If
the client passes a Primary Key object as a parameter to the Home, and the Home is on a remote system,
the remote system might get a proxy back to the client's PrimaryKey instance. This would turn the client
into a server and unpredictable results could occur. Therefore, the Component Broker programming model
uses strings as the method for passing keys to potentially remote objects.

Continuing the example, the following code segment finds Lou's Claim in the Home (assuming his number
is 1234).

 import <package>.ClaimPrimaryKeyHelper;
// Package containing ClaimPrimaryKey and Helper;

// Create an instance of the Key helper Class

ClaimPrimaryKey claimPrimaryKey = ClaimPrimaryKeyHelper._create();

// Set the claimNo attribute in the key

 claimPrimaryKey.setClaimNo(1234);

// Must get data out of the Stream to go onto the wire to the server

String claimString = claimPrimaryKey._toString();

// Call find by key on the Home to find Lou's Claim

Claim louClaim = ClaimHelper.narrow(claimHome.findByPrimaryKeyString(claimString)) ;

The object provider of a public managed object always provides you with a set of helper classes for using
the Homes that contain his managed objects. There is always exactly one Primary Key helper class. The
object provider gives a client developer:

� Interface definitions for the Key Classes. In addition to the Primary Key, there may be Secondary Key
Helper Classes. A Secondary Key may also uniquely identify an object, or multiple instances may
have the same value.

� Implementation of the Key Classes.

� Documentation for their use.

164 Component Broker: Programming Guide

The Component Broker programming model mandates Key Helper Classes for managed objects. The
helper classes make things easier for you. The keys are passed as strings. You only need to use the
available setxxxx() methods on the Helper Class to prepare the key information. String manipulation to
concatenate pieces of multi-valued keys is not necessary. Using a Key Helper Class enables type errors
to be detected at compilation time, and alleviates the need for you to know the field ordering and algorithm
for defining a key.

A Note on Security

Setting the client up to work with a secure server is primarily a configuration and administration issue. For
additional information, see Security under Concepts in the Component Broker Online Documentation.

The client programming implications of security are fairly limited. Although there is much that you can do
with security, there is little that you must do. The Concepts and Procedures sections under Advanced
Topics in the Component Broker Online Documentation describe many of the features available to
someone needed to handle complex security issues. For the most part, however, you need to know that
any request to a Component Broker object on the server can be denied if the client does not have the
necessary security tokens.

Using a Managed Object

When you have found a reference to a managed object, you can use it by invoking methods on it. For
example:

 person.setName("Lou Smith");

This example calls the setName() method on the person object identified by person. The Component
Broker internal implementation handles the use of remote objects.

Creating a New Object

Component Broker managed objects can be created in a number of ways. The following sections describe
the default ways to easily create managed objects.

Create From Key

Every Component Broker managed object class has an instance of a Factory associated with it. The
Factory provides a set of interfaces for creating instances of a managed object. The Factory gets some of
its interface from the base class CosLifeCycle.GenericFactory. The createFromPrimaryKeyString() method
is introduced in the IManagedClient.IHome interface supplied by Component Broker. This interface
specializes the COSLifeCycle.GenericFactory interface and plays the role of factory for Component Broker
managed objects. Object providers may implement and provide a tailored subclass of this interface, or
they might use the implementation of IHome provided.

You need to know how to find the right IHome for creation. Homes are at well-known locations in the
Naming Service. The input required for the factory finder is the name of the implementation class that this
factory makes instances of. The following code fragment gets a reference to the Claim Factory for the Life
Insurance Application.

 Chapter 9. MOFW - Java Client Programming Model 165

 import com.ibm.IExtendedLifeCycle.\;

 import org.omg.CosLifeCycle.;

// (com.ibm.IExtendedLifeCycle is syntactically optional)

 com.ibm.IExtendedLifeCycle.FactoryFinder myFinder;

myFinder = (com.ibm.IExtendedLifeCycle.FactoryFinderHelper.narrow(

 CBSeriesGlobal.nameService().resolve_with_string(

 "/.:/Applications/LifeInsurance/FactoryFinders")));

IHome claimHome = IHomeHelper.narrow(myFinder.find_factory_from_string(

 "Claim.object interface"));

You need to provide the IHome with information necessary to manufacture a new object instance. At a
minimum, the Primary Key must be provided. An example of creating a new Claim with a claimNo of 1234
is:

// Create an instance of the Primary Key Class

ClaimPrimaryKey claimKey = ClaimPrimaryKeyHelper._create();

// Set the claimNo attribute in the key

 claimKey.setClaimNo(1234);

// Call createFromKey on the Factory to create Lou's Claim

 Claim theClaim;

theClaim = ClaimHelper.narrow(claimHome.createFromPrimaryKeyString(claimKey._toString()));

This example is almost identical to the previous example. First, create a Primary Key Object to define the
identity of the object to be made. Then, call createFromPrimaryKeyString on the Home to pass the Key.

The createFromPrimaryKeyString method is defined by the IHome class, and all business objects can be
created by this method. An object provider might provide you with a subclass that introduces other, easier
to use creation methods. Additional create methods are described, with examples in Chapter 6, “MOFW
Client Programming Model – Advanced Concepts” on page 83.

Create from Copy

Setting and getting the attributes of a managed object can be expensive. There are two main reasons for
this. First, if the managed object is implemented in another language, each get or set method is actually a
cross-language call. Cross-language calls are more expensive than simple, same language calls. The get
and set overhead is even worse if the managed object is remote because each call is actually a remote
procedure call and involves significant overhead. Consider the following code segment:

// Assume that 'theClaim' and 'theClaimHome' are declared in the previous code

// segment, and that 'theClaimHome' is located as in the previous code segment.

// Create a new Claim with a Home generated claimNo

theClaim = theClaimHome.create();

// Now initialize the Claim's attributes

 theClaim.setDate("1ð/14/96");

 theClaim.setState(entered);

This fragment could involve the following remote method calls:

� The client to Claim Home (specialized IHome) to create the Claim.
� The client to Claim managed object to set its date attribute.
� The client to Claim managed object to set its state attribute.

166 Component Broker: Programming Guide

An object provider must provide you with a Copy Helper Class for use with the createFromCopy() method
on an IHome. The following code segment rewrites the previous example using this design pattern.

 import <packagename>.ClaimCopyHelper;
// Package with ClaimCopy and Helper;

// Create a new "local" Claim in my process and language.

// Use a Copy Helper Class that the Claim MO provider gave me.

ClaimCopy claimCopy = ClaimCopyHelper._create();

// Now initialize the Claim's attributes.

 claimCopy.setDate("1ð/14/96");

 claimCopy.setState(entered);

// Pass this local copy to the Home and have him return a new Claim

// MO whose attributes are initialized from the local copy's values.

// Since not all ORBs support Pass-By-Value, we first convert to a string.

Claim theClaim = ClaimHelper.narrow(claimHome.createFromCopyString(claimCopy._toString()));

Like a Key Helper Class, a Copy Helper Class instance is always local to your process and implemented
in the language you are using. The object provider gives you the helper class interface and
implementation.

Copy Helper Classes are especially useful if the client application needs to interact with an object during
initialization, and then create a managed object from the attributes. A common scenario for this is entering
data for the object from a GUI. The GUI updates the local Copy Helper Object, and then
createFromCopy() is called when the Do button is pushed on the end user interface (EUI).

Releasing and Deleting Objects

Eventually, you no longer need to use an object that you created or found. Component Broker supports
two interpretations on “no longer needs.”

� The remove() method deletes the object and its instance data.

� The release() method informs the object that the client application no longer plans to reference the
object. The object still exists in the server, and other applications may be using it, but the client calling
the release() method is done with the object

Using Sets of Objects

An IHome represents a set of managed objects, all of the same type, whose relationship to one another is
defined by the object provider, and maintained by the fact that they were all created in the same home.
Sometimes an application needs to define and manage the relationships between managed objects, based
on the particular business task at hand. This might even include relationships between managed objects of
different types (that is, PolicyHolder and Beneficiary). This can be done using an IManagedReference
Collection, as shown in the following code segment:

 import com.ibm.IManagedCollections.\

 com.ibm.IManagedCollections.IReferenceCollection mixedCollection;

// Find a collection in the name space which contains PolicyHolders and Beneficiaries

 ...

// Create an iterator on the reference collection that was found above. When

// an iterator is created, it is automatically positioned preceding the first element.

IManagedCollections.IIterator anIterator = mixedCollection.createIterator();

 Chapter 9. MOFW - Java Client Programming Model 167

 IManagedClient.IManageable element;

// Loop through the collection. The "next" method advances the iterator to the next

// element (on the first invocation, this advances to the first element). If the

// iterator is now past the end of the collection, the "next" method returns NULL.;

// otherwise, the "next" method returns the element the iterator

// at which it is now positioned.

while (anIterator.next(element))

 {

if (element.is_A(PolicyHolder)) // Send a bill

if (element.is_A(Beneficiary)) // Send a check

 }

The combination of the IManagedCollections.IReferenceCollection and the IManagedCollections.IIterator
are used in the previous code segment. An IManagedCollections.IReferenceCollection is a generalized
collection of object references that is iteratable. IManagedCollections.Iterator supports advancement of the
iterator and retrieval of elements by the next() method. IManagedCollections.IReferenceCollection
supports adding and removing elements by addElement() and removeElement().
IManagedCollections.IManagedReferenceCollection is the most basic kind of collection supported in
Component Broker. Combining this with the capabilities of IHome provides the basis for writing simple
applications and the foundations for the more advanced query and collections capabilities provided by
Component Broker. For more information on collections and query, see Chapter 6, “MOFW Client
Programming Model – Advanced Concepts” on page 83.

Remembering your Favorite Objects

The Component Broker allows you to remember an interesting or important managed object instance by
introducing the concept of an object reference. An object reference is opaque and you cannot set its
internal structure. However, a reference always and uniquely refers to a managed object regardless of
where it resides in the network.

Object references are available to the Java programmer without regard to what kind of Java programming
you are doing. Applet restrictions on the use of the file system, however, render this feature unusable for
the applet programmer. The following example assumes that the work is being done from an application.

Continuing the example, assume that you run the following code segment.

File output_file = new File("SOMEFILE.DAT");

FileOutputStream output = new FileOutputStream(output_file);

// Get a "string" version of my reference to Robert

// robert points to Robert or a proxy to Robert

String robertStringifiedReference = CBSeriesGlobal.orb.object_to_string(robert)

// Save the string to a file using a "pseudo" file routing

 output.write(robertStringifiedReference);

 output.close();

// I do not need Robert anymore

 robert.release();

You saved a reference to Robert as a stringified object reference, and can use this string to re-access
Robert at a later time. The following code segment presents an example of re-accessing the Robert
object.

168 Component Broker: Programming Guide

String infile = "SOMEFILE.DAT";

File input_file = new File(infile);

FileInputStream input = new FileInputStream(input_file);

// Get back the string I saved

 String robertStringifiedReference;

input.read(robertStringifiedReference); // returns the bytes read, or -1,

// if you'd like to check that.

// Make an object reference for Robert

robert = CBSeriesGlobal.orb.string_to_object(robertStringifiedReference);

// I can now work with Robert.

 robert.setName();

When References Explode

Concurrency control is not presently extended to the client proxies. You need to be prepared for
exceptions. If an invalid object reference is used, an exception is thrown.

Java Exception Handling

The Java exception handling model has some slight differences from the C++ exception handling model.
Within C++ a method can throw two types of exceptions, either exceptions that are explicitly declared on
the “raises” clause of the method or any of the CORBA standard exceptions.

In the Java Programming Language, Java exceptions are primarily checked exceptions, meaning the
compiler checks your method only throws exceptions that have been declared as throwable in the “raises”
clause. These classes extend the java.lang.Exception class. Other run time exceptions and errors extend
the classes RuntimeException and Error, which are unchecked exceptions, meaning (much like the
CORBA Standard exceptions) they can be thrown from any method.

Exceptions such as IDataKeyAlreadyExists and IDataKeyNotFound are checked exceptions while other
exceptions, such as IDataObjectFailed extends java.lang.RuntimeException and are unchecked exceptions
and can be thrown from any method.

When doing exception handling while using Java, be aware that exceptions other than those listed on the
“raises” clause of methods can be thrown by any method at any time. These unchecked exceptions
typically occur as a result of some drastic run time error.

 Chapter 9. MOFW - Java Client Programming Model 169

170 Component Broker: Programming Guide

Chapter 10. Java Server Programming Model

This chapter describes how to use Java to implement managed objects that run in a Component Broker
server.

Some aspects of server Java programming were introduced in Chapter 9, “MOFW - Java Client
Programming Model” on page 157. Managed objects access the CBSeriesGlobal object, Object Services,
and other managed objects just like client programs. This could be called the client aspect of server
programming, because the managed object acts as a client to the service or to another object. In
Component Broker, the client aspect of server Java programming is almost identical to programming in a
Java client. However, when generating Java classes from IDL, the IDLC compiler is used for server Java
but the idl.toJava compiler is used for the client.

Server Java also introduces some new constructs and procedures that have no counterparts in client
programming. Implementing a business object, adapting it to the server execution environment, and
managing its persistent data are all tasks that are specific to the server environment. This chapter deals
with those server-specific issues.

Overview of Java Managed Object Development

Component Broker lets you use Java to implement managed objects by performing the following steps.
The steps involved are the same as those listed in Chapter 5, “MOFW Server Programming Model” on
page 57; differences are discussed in this chapter:

1. Develop an interface to the business object.
2. Choose a pattern for handling essential state.
3. Implement the business object methods.
4. Implement the methods required by the MOFW interfaces.
5. Implement the necessary primary key class.
6. Implement the optional copy helper class.

After performing these steps, you will be ready to unit test the Java business object. Unit testing of Java is
described in “Unit Test for Java Business Objects” on page 347.

After unit testing, you will be ready to package the Java business object for running on a server (for
information about packaging the Java business object, see “Assembling and Installing Java Business
Objects” on page 261). This procedure changes only slightly from the non-Java procedures described in
Chapter 11, “Assembling and Installing Business Objects on AIX and Windows NT” on page 197, and
mainly involves using the Component Broker tools to generate and compile C++ code to connect the
business object into the server run-time environment.

Figure 50 on page 172 shows how the tools are used to construct the pieces of a server-installable Java
business object.

The top part of the figure represents the activities described in this chapter. The Object Builder tool and
the IDLC compiler are used to create the Java source code for the business object (_PolicyBOBase.java
in the figure), plus a collection of other related Java source files. Included here are the Java Key and Copy
helper classes required by Java clients of the business object.

Next the Java business logic is tested using the Java unit test environment. This permits exercising the
Java code in a mock-up run-time environment outside a server. Because all the code involved at this point

 Copyright IBM Corp. 1997, 1998 171

_PolicyBOBase.java PolicyKey.java
PolicyCopy.java

Policy.java
PolicyBO.java

Policy.idl
PolicyKey.idl
PolicyCopy.idl
PolicyBO.idl

User
Object
Builder

Object
Builder

User
Java

Development
Tools

IDLC
CompilerUnit Test

Environment

PolicyMO.ih PolicyMO_I.cpp

PolicyMO.idl

C++ DO implementation

Other generated
Java files

Other generated
C++ files

Unit

Test

Assembly and Installation

Figure 50. Using Tools to Construct a Server-installable Java Business Object

is Java, you can use any Java development tools to complete, test, and debug your code. For more
information, see “Unit Test for Java Business Objects” on page 347.

Finally, you return to the Object Builder tool to generate other C++ and Java code that adapts the
business object to the server environment and connect it to your chosen persistent stores, if any. For more
information, see “Assembling and Installing Java Business Objects” on page 261.

172 Component Broker: Programming Guide

Developing an Interface to the Business Object

The procedures and tips in Chapter 5, “MOFW Server Programming Model” on page 57 apply equally
well to the development of Java business objects. The interface for a business object is defined in a way
that is independent of the language used to implement it and yields an IDL interface definition. As before,
the interface should inherit from the IManagedClient::IManageable interface. If you follow the module
scoping advice from Chapter 5, “MOFW Server Programming Model” on page 57, the Policy interface
might look similar to the following segment:

 #include <IManagedClient.idl>
 #include "Beneficiary.idl"

 module XYZCompanyInsurance

 {

exception InvalidAmount {};

interface Policy : IManagedClient::IManageable

 {

void addBeneficiary(in Beneficiary benRef);

void delBeneficiary(in Beneficiary benRef);

readonly attribute long policyNo; // Primary key

void changeAmount(in float newAmount) raises (InvalidAmount);

 float getAmount();

attribute string comment;

readonly attribute float premium;

 };

 };

This IDL is mapped into Java according to the CORBA IDL-Java mapping specification when you run the
IDLC compiler with the -suj option, as follows:

idlc -suj Policy.idl

The uj in the example stands for user Java, because it tells IDLC to generate the Java classes and
interfaces needed for a client to use the declared IDL interfaces and types. Even though they are called
the user (or client) bindings, these Java artifacts are also needed on the server. For the sample Policy.idl,
the generated files are:

 � Policy.java
 � PolicyHolder.java
 � PolicyHelper.java
 � _PolicyStub.java
 � InvalidAmount.java
 � XYZCompany/InvalidAmountHelper.java

See the IOM (Interlanguage Object Model) online documentation for more information about these files.
See “Assembling and Installing Java Business Objects” on page 261 for information about the -sbj option
that generates additional business-object Java used only on the server.

The IDL exception becomes a Java final class extending a standard CORBA class for user-defined
exceptions:

 Chapter 10. Java Server Programming Model 173

 package XYZCompanyInsurance;

public final class InvalidAmount extends org.omg.CORBA.UserException

 {

public InvalidAmount() {};

 }

The UserException class, in turn, extends java.lang.Exception, and so its subclasses can all be used in a
Java throw statement, similar to:

throw new XYZCompanyInsurance.InvalidAmount();

This example also illustrates the following rules for Java package names:

� CORBA-defined classes and interfaces, like UserException above, are in the org.omg.CORBA
package.

� IBM-defined extensions all appear in packages whose names begin com.ibm.

� User-defined types and interfaces appear in a Java package that is the name of the enclosing module.

These rules are illustrated again in the Java interface created from the IDL Policy interface:

 package XYZCompanyInsurance;

public interface Policy extends com.ibm.IManagedClient.IManageable

 {

void addBeneficiary(Beneficiary benRef);

void delBeneficiary(Beneficiary benRef);

 /\\

\ Getter method for attribute "policyNo"

 \/

 int policyNo();

void changeAmount(float newAmount) throws XYZCompany.InvalidAmount;

 float getAmount();

 /\\

\ Getter method for attribute "comment"

 \/

 java.lang.String comment();

 /\\

\ Setter method for attribute "comment"

 \/

void comment(java.lang.String comment);

 /\\

\ Getter method for attribute "premium"

 \/

 float premium();

 }

The mapping of names and types is according to the CORBA specification of which the following table is a
brief summary:

174 Component Broker: Programming Guide

1. Names that conflict with Java keywords have a single underscore prepended to them. The affected
names are:

abstract default if private throw

boolean do implements protected throws

break double import public transient

byte else instanceof return try

case extends int short void

catch final interface static volatile

char finally long super while

class float native switch

const for new synchronized

continue goto package this

2. IDL names ending with the suffixes Helper, Holder, or Package, when used to define an IDL type or
interface, also have an underscore prepended in Java. Therefore, the following IDL segment:

module XYZCompanyInsurance {

interface PolicyHelper {

Yields the following Java:

package XYZCompanyInsurance;

public interface _PolicyHelper extends com.ibm.IManagedClient.IManageable

3. IDL operation names that are the same as methods of the class java.lang.Object also have
underscores prepended. These names are:

clone finalize hashcode notifyAll wait

equals getClass notify toString

4. Types are mapped according to the following table:

IDL Type Java Type IDL Type Java Type

boolean boolean long
unsigned long

int
int

char char float float

wchar char double double

octet byte array array

string java.lang.String sequence array

wstring java.lang.String void void

short short any org.omg.CORBA.Any

unsigned short short Object org.omg.CORBA.Object

Note: org.omg.CORBA.Any is an abstract class and cannot be instantiated. Each Java-CORBA ORB
provides an implementation of Any. To create an instance in a Component Broker
environment, use:

org.omg.CORBA.Any any =

 com.ibm.CBCUtil.CBSeriesGlobal.orb().create_any();

 Chapter 10. Java Server Programming Model 175

Loading C++ DLLs from Java BO

To access a managed object that may be in an application installed on another host in the network, the
Java BO programmer must explicitly load the C++ DLL to access the managed object's C++ components.
To do this in Object Builder, define a private static method on the BO, and call it something like libLoad,
and have it return a boolean. Then, define a private static attribute, say libLoaded, and invoke the libLoad
method as it's initializer.

The content of the libLoad method needs to invoke the Java System.load function to explicitly specify the
path and DLL name to be loaded. Unfortunately, this forces a tight coupling of the Java BO
implementation and the directory in which the application is installed. For example, the code generated by
Object Builder will look something like this:

static private boolean iLibLoaded = libload();

static private boolean libload()

 {

//Version identifier DCE:12457A4ð-339B-11d2-B197-ððð4ACEA9E5A:1

// Insert Method modifications here

boolean retval = false;

 try

 {

 System.load("d:\\ntapps\\PolicyApp\\bin\\PolicyC");

retval = true;

 }

 catch(UnsatisfiedLinkError u)

 {

System.out.println("ERROR:Caught a load error: " + u);

 }

 catch(Exception e)

 {

System.out.println("ERROR:Caught an exception loading the C++ DLL: " + e);

 }

 return retval;

// End Method modifications here

 }

An alternative solution is to copy the needed DLL into a directory that exists in the path, then the
System.loadLibrary function can be used, where only the DLL name is specified. This call would look like
this:

 System.loadLibrary("PolicyC");

Selecting a Pattern for Handling Essential State

This step proceeds as described in Chapter 5, “MOFW Server Programming Model” on page 57, with one
significant difference: When the Java business object is installed in the server, there is a companion C++
object created to help tie it in to the server's C++ infrastructure. In order to correctly interconnect the Java
object and its C++ companion, the Java object needs to implement the IManagedServer::IWrappable
interface. This is reflected in the IDL created during this step, as shown in the following segment:

 module XYZCompanyInsuranceBO

 {

interface PolicyBO : Policy,

 IManagedServer::IManagedObjectWithDataObject,

IManagedServer::IWrappable /\ only for Java \/

 {

176 Component Broker: Programming Guide

 };

 };

Implement Business Object Methods

In this step an implementation of the business object interface defined in “Selecting a Pattern for Handling
Essential State” on page 176 is created. In Chapter 5, “MOFW Server Programming Model” on page 57
this was done using C++, but for this implementation it must be done in Java.

Because the business object client interface was called XYZCompanyInsurance::Policy (in IDL), the
derived interface would be named XYZCompanyInsuranceBO::PolicyBO. Component Broker server Java
requires that the implementation of this interface be provided by a class named
XYZCompanyInsuranceBO._PolicyBOBase. The Base suffix is a Component Broker convention, and the
underscore ensures that this class does not collide with any IDL types whose names end with Base.

The implementation class is also required to implement the PolicyBO interface and to extend the base
class IManagedClient._IManageableBase. If you use the Object Builder to create your Java code it is
defined with the correct inheritance.

The implementation class also needs to contain implementations for the business methods of the object,
as well as some of the framework methods. Other framework methods are implemented in
_IManageableBase, and do not need to be overridden. The framework methods that do require
implementation are listed, but if you use the Object Builder to create your implementation class it
automatically generates the correct subset of framework methods.

The implementation of the PolicyBO interface could look like the following segment:

 package XYZCompanyInsuranceBO;

public class _PolicyBOBase

implements PolicyBO // See note 1

 extends com.ibm.IManagedClient._IManageableBase

 {

public void addBeneficiary(Beneficiary ben)

 {

 try

 {

beneficiaries.addElement(ben); // See note 2

 }

 catch(com.ibm.ICollectionsBase.IInvalidElement e)

 {

 }

 }

public void delBeneficiary(Beneficiary ben)

 {

 try {

 beneficiaries.removeElement(ben);

 }

 catch(com.ibm.ICollectionsBase.IElementNotFound e)

 {

 }

 }

public int policyNo() {return iPolicyNo;} // See note 3

 Chapter 10. Java Server Programming Model 177

public void changeAmount(float newAmount)

 throws InvalidAmount

 {

if(newAmount < ð.ð)

throw new InvalidAmount();

iAmount = newAmount; // See note 4

 }

public float getAmount()

 {

 return iAmount;

 }

public String comment()

 {

 return iComment;

 }

public void comment(String comment)

 {

iComment = comment;

 }

protected com.ibm.IManagedCollections.IReferenceCollection beneficiaries;

protected int iPolicyNo; // See note 5

protected float iAmount;

protected string iComment;

protected float iPremium;

/\ ... framework methods go here, we will see them later \/

 };

This segment shows one possible implementation of the business methods of the Policy interface. For
clarity, none of the framework methods are included in the example.

Notes about the implementation of the PolicyBO interface:

1. This class implements the PolicyBO interface and extends the standard implementation class
mentioned earlier. implements XYZCompanyInsurance.Policy could have been written out in full, but
because this class is part of the same Java package as the interface, the qualifying package name
can be omitted.

2. The PolicyBO interface was specified to use the IManagedObjectWithDataObject pattern, so the
business object maintains copies of all state data including the IReferenceCollection used to
implement the beneficiaries relationship. The use of collections to represent relationships is described
in Chapter 7, “MOFW Server Programming Model – Advanced Concepts” on page 105 and is not
repeated here.

The use of a try block in the addBeneficiary routine should be explained. In the IDL for the Policy
interface, there was no “raises” clause specified for this routine, so that when the IDLC compiler
generated the Java interface for Policy it did not include a “throws” clause on the corresponding Java
method. According to the rules of the Java language, implementations of addBeneficiary are then not
permitted to throw any user exceptions.

However, the addElement() method of the IReferenceCollection.interface can throw the IInvalidElement
exception. Either those exceptions must be caught and dealt with inside the addBeneficiary() method

178 Component Broker: Programming Guide

as is done in this example, or the Policy IDL must be modified to say that the addBeneficiary() method
can raise the IInvalidElement exception.

3. Because the Policy IDL declared policyNo as a read-only attribute, only a get-accessor method is
provided. Non read-only attributes also get a set-accessor. Because IDL attributes cannot take “raises”
specifications, accessors can throw only subclasses of java.lang.RuntimeException. CORBA system
exceptions do map to subclasses of RuntimeException, but user-defined IDL exceptions do not.

4. The correct pattern to use when setting or getting attributes depends on the mapped Java datatype. If
the attribute is not an IDL interface type but maps to a modifiable Java object, copies should be
created in both the getter and setter methods. This rule is also appropriate for methods like
changeAmount() that do not correspond to IDL attributes but do set or return business object instance
data.

In the case of the changeAmount() method, the data type involved is “float” which is not an object
type, and so simple assignment is appropriate. The same is true for IDL types like char, short, and
long. It is also true for IDL string and enum types because, although they map to Java objects, the
values of the objects cannot be modified.

Contrast this with an IDL struct, which maps into a Java class with public fields. If a setter method
saved a reference to the passed-in object instead of copying it, the caller could later modify the shared
object. To avoid this the business object can save a copy of the passed-in value object and make
another copy when returning a value. This is usually appropriate for objects corresponding to the IDL
struct, union, array, sequence, exception, and any complex data types. Also, the copy should be what
is usually called a deep copy so that, for example, copying an array of struct objects yields an array of
copies of all the original objects.

Any convenient deep copying technique is acceptable. Here is a standard technique that relies on the
support for marshalling these objects, using the write and read methods of the corresponding Helper
class:

org.omg.CORBA.portable.OutputStream os =

 com.ibm.CBCUtil.CBSeriesGlobal.orb().create_output_stream();

 TypeHelper.write(os, object);

Typecopy = TypeHelper,read(os);

5. These are the cached attributes as described in Chapter 7, “MOFW Server Programming Model –
Advanced Concepts” on page 105. They can be specified as private or as protected if it is likely that a
derived business object needs direct access to them. They should not be public or package access
(that is, not keyword access).

 Managing Memory

If you have already read Chapter 5, “MOFW Server Programming Model” on page 57 and Chapter 7,
“MOFW Server Programming Model – Advanced Concepts” on page 105, you have seen several
mentions of methods called _duplicate() and release() and the distinction between _var and _ptr
references and may be wondering where are the corresponding complications in Java.

The answer is that, except for the hint in the previous section about copying values, there are none. Those
complications are related to management of memory in C++, which is a manual or at best a
semi-automated process.

In Java, those worries are handled automatically by the Java garbage collector. You do not need to do
anything special.

Tip: Sometimes the garbage collector can be fooled into believing that an object is not garbage, even
though you do not need it anymore, because your program still has a variable somewhere that refers to it.

 Chapter 10. Java Server Programming Model 179

This could cause a performance degradation if a large amount of storage is involved. You can minimize
the effect by explicitly assigning null to references to large objects when you do not need them.

int[] iarray = new int[1ðððððð];

/\ work with iarray \/

iarray = null; /\ nullify the pointer \/

Using 'this' References in Business Objects

Care must be taken when programming all methods in business objects that use references to themselves
when communicating with other objects. Methods must use the programming model as described in this
section when using these self references. The technique of using “this” is no longer supported in the
programming model in these circumstances.

A local proxy class is created for each interface defining the managed object implementation, the
managed object interface, the business object interface, and every other interface that they may support.
Only instances of the local proxy of the managed object implementation are instantiated and these proxies
must be used for self references. The Helper._self(this) method can be used to access this proxy in the
business object.

The home provides a copy reference to a local proxy for the create() and findBy() methods that return
object references. The following example shows the set of rules to follow when an object passes itself as
an argument or returns itself as a return argument:

public class I

 {

 I foo()

 {

// Use IHelper._self(this)

sequence[i] = IHelper._self(this);

struct.i = IHelper._self(this);

 return IHelper._self(this);

 };

 }

 Reference Scoping

Local references to Java Business objects are not valid outside the remote method call which created the
reference. For example, it is not legal to set the value of a Java Business Object into a static variable and
then retrieve that object from the static on a subsequent method call and use it. The passivation scheme
for Java BO's and the mixin technology of the server require that interposing being done by the C++ MO
before running outside the context of the initiating remote method is not allowed.

Implement the Managed Object Framework Methods

The framework methods that need to be implemented for a Java business object are the same as those
described in Chapter 5, “MOFW Server Programming Model” on page 57, but as you would expect the
Java code looks slightly different. This section includes the Java versions of those methods for the Policy
business object.

180 Component Broker: Programming Guide

 IManageable::getPrimaryKeyString

The IDL return type of this method is ByteString, which is an IDL typedef. Because there is no typedef
capability in Java, types are mapped according to the underlying resolved type. ByteString's underlying
type is sequence of octet, which maps to byte[] in Java.

public byte[] getPrimaryKeyString()

 {

PolicyKey key = PolicyKeyHelper._create();

 key.policyNo(iPolicyNo);

 return key._toString();

 }

The PolicyKey is a locally-implemented interface that is discussed in more detail later in this chapter. The
PolicyKey interface is defined in IDL and can be implemented in either C++ or Java. You can use the
_create() method of the Helper class to create an instance because that method is available whatever the
implementation language.

The underscore on the _toString() method illustrates a rule from list item 3 on page 175, where the IDL
method name toString() would conflict with a method introduced by java.lang.Object.

 IManagedClient::IManageable::getHandleString

The Java version of this method is quite straightforward. In the following example, the stringified object
reference (SOR) standard version of the Handle is used:

public byte[] getHandleString()

 {

com.ibm.IHandlesImpl.ISORHandle iSORHandle =

 com.ibm.IHandlesImpl.ISORHandleHelper._create(this);

 return iSORHandle._toString();

 }

Note: This is the default implementation provided by the Framework. If this is sufficient (and it should be)
there is no need to override this in the business object unless this business object will participate
in relationships that are to be managed using other handle patterns.

 CosStream::Streamable::externalize_to_stream

Here is one way to externalize the Policy implementation. The following segment stores a stringified
reference to the beneficiaries object:

public void externalize_to_stream(org.omg.CosStream.StreamIO s)

 {

 s.write_long(iPolicyNo);

 s.write_float(iAmount);

 s.write_float(iPremium);

 s.write_string(iComment);

String benString = com.ibm.CBCUtil

 .CBSeriesGlobal.orb()

 .object_to_string(beneficiaries);

 s.write_string(benString);

 }

 Chapter 10. Java Server Programming Model 181

 CosStream::Streamable::internalize_from_stream

This method corresponds to the externalize_to_stream() method:

public void internalize_from_stream(org.omg.CosStream.StreamIO s,

 org.omg.CosLifeCycle.FactoryFinder ff)

 throws org.omg.CosLifeCycle.NoFactory,

 org.omg.CosStream.ObjectCreationError,

 org.omg.CosStream.StreamDataFormatError

 {

if(s.read_long() == iPolicyNo)

 {

iAmount = s.read_float();

iPremium = s.read_float();

iComment = s.read_string();

String benString = s.read_string();

beneficiaries = BeneficiariesHelper.narrow(com.ibm

 .CBCUtil.CBSeriesGlobal.orb()

 .string_to_object(benString));

 }

 else

 {

throw new org.omg.CosStream.StreamDataFormatError();

 }

 }

As noted in Chapter 5, “MOFW Server Programming Model” on page 57, this method should not modify
the key attribute iPolicyNo of the business object. Instead, it throws an exception if the key does not
match. Note that an arbitrary user exception cannot be thrown here; it must be one that was declared in
the “raises” clause in the IDL that introduced this method, which was the OMG standard interface
CosStream::Streamable.

Note also the use of BeneficiariesHelper.narrow() instead of a Java cast to convert from
org.omg.CORBA.Object (the return type of the string_to_object() method) to the Beneficiaries interface.
The Java cast is not reliable if the object is located in a remote server, or is implemented in a language
other than Java. In those situations the cast may fail when the narrow function would succeed. It is good
practice to use narrow when dealing with any IDL-defined interfaces.

The streamable method implementations shown here are examples. There is no required implementation
at this time because there is no dependency on these methods from within Component Broker.

 IManagedServer::IManagedObject::initForCreation

If the pattern chosen for handling essential state requires a data object, this method needs to save a
reference to the supplied data object. Also, if the pattern is WithCachedataObject, as it is in the PolicyBO
example, the cached values in the business object need to be initialized. Because that function is needed
elsewhere, you could split it into a separate private function as illustrated in the following segment:

private PolicyDO theDO;

private void initializeState()

 {

iPolicyNo = theDO.policyNo();

iAmount = theDO.amount();

iPremium = theDO.premium();

iComment = theDO.comment();

beneficiaries = theDO.beneficiaries();

182 Component Broker: Programming Guide

 }

public void initForCreation(com.ibm.IManagedServer.IDataObject do)

 throws com.ibm.IManagedServer.ICreationFailed

 {

theDO = PolicyDOHelper.narrow(do);

 initializeState();

 }

 IManagedServer::IManagedObject::uninitForDestruction

Nothing needs to be done for this method:

public void uninitForDestruction()

 throws com.ibm.IManagedServer.IDestructionFailed

 {

 }

 IManagedServer::IManagedObjectWithDataObject::initForReactivation()

In the example this method saves the data object reference:

public void initForReactivation(com.ibm.IManagedServer.IDataObject do)

 throws com.ibm.IManagedServer.IReactivationFailed

 {

theDO = PolicyDOHelper.narrow(do);

 }

 IManagedServer::IManagedObjectWithDataObject::uninitForPassivation()

No resources need to be released for this method:

public void uninitForPassivation()

 throws com.ibm.IManagedServer.IPassivationFailed

 {

 }

 IManagedServer::IManagedObjectWithDataObject::syncFromDataObject()
and
IManagedServer::IManagedObjectWithDataObject::syncToDataObject()

The business object uses the caching pattern so this method and the companion syncToDataObject()
method must be implemented. This is where the initializeState() method introduced earlier is reused:

public void syncFromDataObject()

 throws com.ibm.IManagedServer.ISyncronizationFailed

 {

 initializeState();

 }

public void syncToDataObject()

 throws com.ibm.IManagedServer.ISyncronizationFailed

 {

 theDO.policyNo(iPolicyNo);

 theDO.amount(iAmount);

 theDO.premium(iPremium);

 Chapter 10. Java Server Programming Model 183

 theDO.comment(iComment);

 theDO.beneficiaries(beneficiaries);

 }

Tip: Preserving the robustness of the Component Broker server environment imposes requirements on
executing threads that are not met by threads spawned by the new java.lang.Thread() method in Java.
Therefore, you should avoid creating threads in a server.

Note: The same restrictions and recomendations pertaining to initForCreation, uninitForDestruction,
initForReactivation, uninitForPassivation,syncToDataObject, and syncFromDataObject apply to the
Java BO versions of these methods. For additional information, see “Implementing
IManagedObject Required Methods” on page 70.

Implementing the Primary Key Class

A Primary Key class is used by clients of your business object, and also by the Component Broker server
infrastructure. Currently the server infrastructure needs its Primary Key to be implemented in C++, while
pure Java clients need a Primary Key class implemented in Java.

Java business objects running in the server can use either the pure Java implementation, or can access
the C++ class from Java through the interlanguage capabilities of IOM. The second alternative has slightly
poorer performance because of the expense of interlanguage calls.

As a result, whenever you implement any Component Broker business object you must supply a C++
Primary Key class. If this class is built with IOM interlanguage bindings, it is sufficient for server Java use.
However, both the pure Java client and the Java unit test environment require a second implementation of
the Primary Key in pure Java; if you build one of these, you can also use it with Java in the server. In that
case, the server environment contains both the C++ implementation, for use by the server infrastructure,
and the Java implementation for use by Java business objects.

The Component Broker Object Builder generates both C++ and Java implementations of Primary Key
classes when you use Object Builder to create the business object.

A C++ Primary Key class example was discussed in Chapter 5, “MOFW Server Programming Model” on
page 57. The equivalent Java class should not be too surprising now that you have seen what the Java
business object looked like. The following segment is an example of an IDL for the PolicyKey interface:

 #include

 module XYZCompanyInsuranceKeys

 {

interface PolicyKey : IManagedLocal::IPrimaryKey

 {

attribute long policyNo;

 };

#pragma meta PolicyKey localonly

 };

The following segment illustrates the Java classes implementing the XYZCompany::PolicyKey interface:

 package XYZCompanyInsuranceKeys;

public class _PolicyKeyImpl // See note 1

extends com.ibm.IManagedLocal._IPrimaryKeyImpl // See note 2

implements PolicyKey // See note 3

184 Component Broker: Programming Guide

 {

int fPolicyNo = ð; // See note 4

public int policyNo ()

 {

 return fPolicyNo;

 }

public void policyNo (int policyNo)

 {

fPolicyNo = policyNo;

 }

// Methods from Streamable

public void externalize_to_stream (// See note 5

 org.omg.CosStream.StreamIO targetStreamIO)

 {

 {

 targetStreamIO.write_long(fPolicyNo);

 }

 }

public void internalize_from_stream (

 org.omg.CosStream.StreamIO sourceStreamIO,

 org.omg.CosLifeCycle.FactoryFinder there)

 throws org.omg.CosStream.StreamDataFormatError

 {

fPolicyNo = sourceStreamIO.read_long();

 }

public java.lang.String getName()

 {

 return "XYZCompanyInsuranceKeys::PolicyKey";

 }

 } // _PolicyKeyImpl

 package XYZCompanyInsuranceKeys;

public class PublicKeyHelper // See note 6

 {

public static PublicKey _create()

 {

return new _PublicKeyImpl();

 }

 }

Notes about the example:

1. Java Primary Key classes are intended for use both in the server and in a pure Java client. Because
the Java client environment does not support IOM, this class is built as a pure Java, single-language
class. One consequence is that the class name is not required to end with Base like a business object
implementation. Another consequence is that references to this object can be used only from Java and
cannot be passed successfully as a parameter of an interlanguage call. An attempt to do so generates
a run time CORBA::MARSHAL exception.

 Chapter 10. Java Server Programming Model 185

2. This Java base class provides implementations of several methods. As described in Chapter 5,
“MOFW Server Programming Model” on page 57, the IKey::isEqualToKey() and
IKey::isEqualToKeyString() methods optionally can be overridden, but the supplied implementations
should be sufficient for most needs.

3. The PolicyKey interface is defined in the file PolicyKey.java generated by the IDLC -suj

PolicyKey.idl command. No other IDLC-generated source files are needed.

4. Following normal Java practice, instance data can be initialized inline, as shown here, or in a separate
constructor. In this particular case, the initializer could have been omitted entirely and the Java default
zero initialization of instance data accepted.

5. It is essential that the internalize and externalize methods on the Java and C++ versions of the
Primary Key class must match, so that instance data can be streamed out of a Java Primary Key and
then streamed into a C++ one. The Component Broker server infrastructure does this because it
operates only with the C++ version.

6. Replace the Helper class that the idlc command generated with a simple one like this. Providing a
Helper class with a static _create method allows users of your Primary Key class to create instances
in a way consistent with other IDL-defined objects.

Implementing the Optional Copy Helper Class

You can implement a pure Java copy helper class for use with the
IManagedClient::IHome::createFromCopyString() method. Just like the pure Java Primary Key class, the
copy helper can be used in a pure Java client or on the server.

If you do create a Java copy helper, you must also produce a C++ one and install it in the server. The
Component Broker infrastructure manipulates copy helpers and requires that they be implemented in C++.

 module XYZCompanyInsuranceCopy

 {

interface PolicyCopy : IManagedLocal::INonManageable

 {

attribute long policyNo;

void changeAmount(in float newAmount)

 raises (InvalidAmount);

 float getAmount();

attribute string comment;

 };

 }

The previous example of an IDL appears to be a subset of the Policy business object interface. This is not
an accident. The purpose of the copy helper is to hold the data that is used to initialize a new Policy
object, so the copy helper needs to have similar attributes. It is also a good idea to duplicate any simple
validity checks that the Policy business object's logic would perform. The following Java implementation
corresponds to this IDL:

 package XYZCompanyInsuranceCopy;

public class _PolicyCopyImpl

 extends com.ibm.IManagedLocal._INonManageableImpl

 implements PolicyCopy

 {

public int policyNo()

 {

 return iPolicyNo;

 }

186 Component Broker: Programming Guide

public void policyNo(int no)

 {

iPolicyNo = no;

 }

public void changeAmount(float newAmount)

 throws InvalidAmount

 {

if(newAmount < ð.ð)

throw new InvalidAmount();

iAmount = newAmount;

 }

public float getAmount()

 {

 return iAmount;

 }

public String comment()

 {

 return iComment;

 }

public void comment(String comment)

 {

iComment = comment;

 }

private int iPolicyNo;

private float iAmount;

private string iComment;

public void externalize_to_stream(org.omg.CosStream.StreamIO s)

 {

 s.write_long(iPolicyNo);

 s.write_float(iAmount);

 s.write_string(iComment);

 }

public void internalize_from_stream(org.omg.CosStream.StreamIO s,

 org.omg.CosLifeCycle.FactoryFinder ff)

 throws org.omg.CosLifeCycle.NoFactory,

 org.omg.CosStream.ObjectCreationError,

 org.omg.CosStream.StreamDataFormatError

 {

iPolicyNo = s.read_long();

iAmount = s.read_float();

iComment = s.read_string();

 }

 }

The streaming methods do not need to be stream-compatible with those in the Policy business object
implementation. In fact, they cannot, because the copy helper does not contain all of the instance data
that the business object does. But, as was true for the Primary Key class, it is essential that the streaming
methods of the Java implementation be stream compatible with those of the C++ implementation.

 Chapter 10. Java Server Programming Model 187

 Advanced Concepts

This section includes the following advanced concepts:

� “Extending a Business Object” on page 188
� “Relationships” on page 191
� “Specialized Homes” on page 191

Extending a Business Object

A Java business object can be implemented as a subclass of an existing Java business object, adding
extra business methods and state data and overriding or extending the framework method
implementations of the base business object class. A Java business object cannot be defined as an
extension of a C++ business object.

Defining a CarPolicy interface as a refinement of Policy, this IDL is reproduced from Chapter 7, “MOFW
Server Programming Model – Advanced Concepts” on page 105:

 module XYZCompanyCarInsurance

 {

interface CarPolicy : Policy

 {

attribute long year;

attribute string make;

attribute string model;

attribute long serialNumber;

attribute float collisionDeductible;

attribute boolean glassCoverage;

 long riskQuotient();

 };

 };

As before, a business object interface is also defined. It is not strictly necessary to explicitly inherit from
the IManagedServer:IWrappable interface, because PolicyBO has already done so:

 module XYZCompanyCarInsurance

 {

interface CarPolicyBO : CarPolicy, PolicyBO;

 };

Development of the data object interface and implementation are unchanged from Chapter 7, “MOFW
Server Programming Model – Advanced Concepts” on page 105, and the discussion that follows assumes
an appropriate CarPolicyDO is available.

In the implementation, bodies for all the new methods must be supplied including set and get methods for
the new attributes. Any framework methods whose implementations in the base business object are no
longer appropriate must also be replaced:

 package XYZCompanyCarInsurance;

public class _CarPolicyBOBase

 extends _PolicyBOBase

 implements CarPolicyBO

 {

protected int year;

protected String make;

188 Component Broker: Programming Guide

protected String model;

protected int serialNumber;

protected float collisionDeductible;

protected boolean glassCoverage;

public int year() { return year; } // See note 1

public void year(int y) { year = y; }

public String make() { return make; }

public void make(String s) { make = s; }

public String model() { return model; }

public void model(String s) { model = s; }

public int serialNumber() { return serialNumber; }

public void serialNumber(int i) { serialNumber = i; }

public float collisionDeductible() { return collisionDeductible; }

public void collisionDeductible(float f) { collisionDeductible = f; }

public boolean glassCoverage() { return glassCoverage; }

public void glassCoverage(boolean b) { glassCoverage = b; }

public int riskQuotient() { /\ body omitted \/ }

public void externalize_to_stream(org.omg.CosStream.StreamIO s)

 {

super.externalize_to_stream(s); // See note 2

 s.write_long(year);

 s.write_string(make);

 s.write_string(model);

 s.write_long(serialNumber);

 s.write_float(collisionDeductible);

 s.write_boolean(glassCoverage);

 }

public void internalize_from_stream(org.omg.CosStream.StreamIO s,

 org.omg.CosLifeCycle.FactoryFinder ff)

 throws org.omg.CosLifeCycle.NoFactory,

 org.omg.CosStream.ObjectCreationError,

 org.omg.CosStream.StreamDataFormatError

 {

 super.internalize_from_stream(s, ff);

year = s.read_long();

make = s.read_string();

model = s.read_string();

serialNumber = s.read_long();

collisionDeductible = s.read_float();

glassCoverage = s.read_boolean();

 }

private CarPolicyDO cpDO;

private void initializeState() // See note 3

 {

year = cpDo.year();

make = cpDo.make();

 Chapter 10. Java Server Programming Model 189

model = cpDo.model();

serialNumber = cpDo.serialNumber();

collisionDeductible = cpDo.collisionDeductible();

glassCoverage = cpDo.glassCoverage();

 }

public void initForCreation(com.ibm.IManagedServer.IDataObject inputDO)

 throws com.ibm.IManagedServer.ICreationFailed

 {

super.initForCreation(inputDO); // See note 4

cpDO = CarPolicyDOHelper.narrow(inputDO);

 initializeState();

 }

public void initForReactivation(com.ibm.IManagedServer.IDataObject inputDO)

 throws com.ibm.IManagedServer.IReactivationFailed

 {

 super.initForReactivation(inputDO)

cpDO = CarPolicyDOHelper.narrow(inputDO);

 }

/\ void uninitForPassivation() See note 5 \/

public void syncFromDataObject()

 throws com.ibm.IManagedServer.ISyncronizationFailed

 {

 super.syncFromDataObject();

 initializeState();

 }

public void syncToDataObject()

 throws com.ibm.IManagedServer.ISyncronizationFailed

 {

 super.syncToDataObject();

 cpDo.year(year);

 cpDo.make(make);

 cpDo.model(model);

 cpDo.serialNumber(serialNumber);

 cpDo.collisionDeductible(collisionDeductible);

 cpDo.glassCoverage(glassCoverage);

 }

 }

Notes about the example:

1. Java permits both a field named year and one or more methods named year, so you do not need to
invent artificial prefixes for the names of the instance data as was done for the Policy object.

2. Here is an example where a method implementation that extends rather than replaces the PolicyBO
method is supplied. To get this effect, the base class (also known as the superclass) method is
invoked using Java's super keyword, which exists for this purpose. In most cases it is appropriate to
call the super method first, but sometimes it makes more sense to do it last.

3. Because the PolicyBO method of the same name was private, another can exist here without
introducing any ambiguity and without interfering with each another. Private methods exist
independently and do not override one another, so calling the initializeState() method from within

190 Component Broker: Programming Guide

_PolicyBOBase invokes its method, while calling the initializeState() method from within
_CarPolicyBOBase gets this one.

4. Another instance where implementation of the parent is extended rather than replaced.

5. There is nothing to do in the uninitForPassivation() method, so there is no need to supply an override
of the implementation in _PolicyBOBase.

 Relationships

The discussion of this topic in Chapter 7, “MOFW Server Programming Model – Advanced Concepts” on
page 105 applies almost unmodified to Java business objects:

� The discussion about the release() and _duplicate() methods does not apply because these methods
are not necessary in Java.

� The discussion about the remove() method is important because the method permanently destroys a
persistent object and is not done automatically as a result of garbage collection. Persistent data is
erased only under explicit program control.

 Specialized Homes

The basic implementation of IManagedClient::IHome provided by Component Broker provides the function
of the findByPrimaryKeyString(), createFromPrimaryKeyString(), and createFromCopyString() methods.
Although these methods are sufficient in many situations, there are cases where the user-friendliness of a
Home would be enhanced by adding methods specific to the business object that the Home is to service.
This section describes how to create these specialized Homes in Java.

Java Specialized Homes construction differs from the procedure detailed in Chapter 7, “MOFW Server
Programming Model – Advanced Concepts” on page 105. The construction also differs from the way
conventional Java business objects are built. These differences exist because the base Home
implementation provided by Component Broker is written in C++ and there is no corresponding Java
implementation for a Java derived class to extend. Since IOM does not support implementation inheritance
between languages, the approach used earlier to create a Java CarPolicy cannot be used here.

Instead, for this special case, we simulate a restricted form of inheritance where the Java derived class is
not permitted to override arbitrary base class methods, but can only add new methods. If you try to violate
the override restriction by coding an override of a method in IManagedClient::IHome into the Java derived
class, you will not get any compile time indication that anything is wrong but the resulting class will not
behave as you expect: Whenever that method is called on the resulting Home only the C++ method will be
called and the Java override will be ignored.

To use this restricted form of inheritance, which Object Builder supports only for specialized Homes, begin
by specifying the Home's interface as specified in Chapter 7, “MOFW Server Programming Model –
Advanced Concepts” on page 105. It is necessary to define an IDL interface containing the extension
methods and have this specialized Home interface PolicyHome derive from IManagedClient::IHome, as
shown here:

interface PolicyHome : IManagedClient::IHome

 {

XYZCompany::Policy create(in float premium, in float amount)

raises (IManagedClient::IInvalidKey,

 IManagedClient::IDuplicateKey,

 IManagedClient::IInvalidCopy);

// create a policy passing in the attribute values

 XYZCompany::Policy defaultCreate()

 Chapter 10. Java Server Programming Model 191

raises (IManagedClient::IInvalidKey,

 IManagedClient::IDuplicateKey);

XYZCompany::Policy createWithNumber(in long policyNo)

raises (IManagedClient::IInvalidKey,

 IManagedClient::IDuplicateKey);

XYZCompany::Policy findByPolicyNumber(in long policyNo)

raises (IManagedClient::IInvalidKey,

 IManagedClient::INoObjectWKey);

 };

Now create the implementation of this client interface as though extending a business object
implementation called IManagedAdvancedServer::ISpecializedHome:

interface PolicyHomeBO : PolicyHome,

 IManagedAdvancedServer::ISpecializedHome,

 IManagedServer::IWrappable

 {

 };

The Java implementation is pretty straightforward. Implement the extension methods, which will typically
use the find and create methods of the underlying standard Home, and narrow the reference they return
from IManagedClient::IManageable to the specific interface of the managed object, in this case Policy:

public class _PolicyHomeBOBase

extends com.ibm.IManagedAdvancedServer._IHomeBase // See note 1

 implements PolicyHomeBO

 {

public Policy create(float premium, float amount)

 throws com.ibm.IManagedClient.IInvalidKey,

 com.ibm.IManagedClient.IDuplicateKey,

 com.ibm.IManagedClient.IInvalidCopy

 {

PolicyCopy theCopy = PolicyCopyHelper._create();

theCopy.policyNo(getUnique()); // See note 2

 theCopy.premium(premium);

 theCopy.amount(amount);

 return PolicyHelper.narrow(

 createFromCopyString(theCopy._toString()));

 }

public Policy defaultCreate()

 throws com.ibm.IManagedClient.IInvalidKey,

 com.ibm.IManagedClient.IDuplicateKey

 {

PolicyKey pkey = PolicyKeyHelper._create();

 pkey.policyNo(getUnique());

 return PolicyHelper.narrow(

 createFromPrimaryKeyString(pkey._toString()));

 }

public Policy createWithNumber(int policyNo)

 throws com.ibm.IManagedClient.IInvalidKey,

 com.ibm.IManagedClient.IDuplicateKey

 {

PolicyKey pkey = PolicyKeyHelper._create();

192 Component Broker: Programming Guide

 pkey.policyNo(policyNo);

 return PolicyHelper.narrow(

 createFromPrimaryKeyString(pkey._toString()));

 }

public Policy findByPolicyNumber(int policyNo)

 throws com.ibm.IManagedClient.IInvalidKey,

 com.ibm.IManagedClient.INoObjectWKey

 {

PolicyKey pkey = PolicyKeyHelper._create();

 pkey.policyNo(policyNo);

 return PolicyHelper.narrow(

 findByPrimaryKeyString(pkey._toString()));

 }

private int counter = System.currentTimeMillis(); // See note 3

private synchronized int getUnique() // See note 4

 {

 return counter++;

 }

 private com.ibm.IManagedAdvancedServer.ISpecializedHomeDataObject

iDataObject; // See note 5

private String userData;

public void initForCreation(com.ibm.IManagedServer.IDataObject theDO)

throws com.ibm.IManagedServer.ICreationFailed // See note 6

 {

super.initForCreation(theDO); // See note 7

iDataObject = IManagedAdvancedServer.ISpecializedHomeDataObjectHelper.narrow(theDO);

userData = iDataObject->getConfigInfo();

 }

public void uninitForDestruction()

 throws com.ibm.IManagedServer.IDestructionFailed

 {

 super.uninitForDestruction();

 }

public void initForReactivation(com.ibm.IManagedServer.IDataObject

 theDO)

 throws com.ibm.IManagedServer.IReactivationFailed

 {

 super.initForReactivation(theDO);

iDataObject = IManagedAdvancedServer.ISpecializedHomeDataObjectHelper.narrow(theDO);

userData = iDataObject->getConfigInfo();

 }

public void uninitForPassivation()

 throws com.ibm.IManagedServer.IPassivationFailed

 {

 super.uninitForPassivation();

 }

public void syncToDataObject()

 throws com.ibm.IManagedServer.ISyncronizationFailed

 {

 Chapter 10. Java Server Programming Model 193

 super.syncToDataObject();

 }

public void syncFromDataObject()

 throws com.ibm.IManagedServer.ISyncronizationFailed

 {

 super.syncFromDataObject();

 }

 };

Notes about the example:

1. It was previousy stated that there is no Java implementation to extend, but that appears to be
happening in this example. Actually, this Java base class contains only dummy versions of the
IManagedAdvancedServer::ISpecializedHome methods, which need to be present in order to
successfully compile the derived class. Once the Home is installed in the server, the dummy methods
are never called because the C++ implementation is used instead.

2. This pattern of creating a Copy Helper object, calling createFromCopyHelper(), and narrowing the
result, is just what a client would write to implement this functionality if Policy didn't have a specialized
Home. This is typically what the extension methods do. That is, they encapsulate client code
sequences so the client does not need to contain them anymore.

3. A simple way to get an initial value for a unique ID generator. If something like this is not sufficient
and you find you need a more robust mechanism that involves persistent storage, you should
implement a normal Java business object to manage that data. This second object can then be
located through the Naming Service using a fixed name known to this Home.

4. This method is marked synchronized to ensure that multiple requests running on different threads in
the server do not get the same ID value.

5. This example does not make use of the Home's Data Object. For more information, see “Server
Provided Essential State Extensions” on page 195.

6. The following framework methods are given special treatment so that both the methods in the C++
Home base class (IBOIMExtSystemObject::IHome_Impl) and the Java methods will be executed:

 � initForCreation()

 � uninitForDestruction()

 � initForReactivation()

 � uninitForPassivation()

 � syncToDataObject()

 � syncFromDataObject()

This special treatment applies only to these methods. The general rule remains: For methods
introduced in the specialized Home interface PolicyHome, only the Java versions will be called; for
inherited methods, only the C++ versions will be called. “The Managed Object for a Java Specialized
Home” on page 265explains this more fully and discusses how the Home is installed into the server.

7. You may be confused by this super call because it calls up to the Java base class whose methods, as
was previously explained, are dummy methods. However, these calls are here for future compatibility.

After the Java Home extension is configured into the server environment, calls are routed to the C++ code
for methods in IBOIMExtSystemObject::IHome and to the Java side for the extension methods introduced
in PolicyHome, and to both implementations for those six special case framework methods. This occurs

194 Component Broker: Programming Guide

whether the call originates in C++ or Java, and whether the client is another business object or an
application on a remote system.

Server Provided Essential State Extensions

This facility, described in “Leveraging Server Provided Essential State Extensions” on page 138, is also
available in Java. It allows a single string of read-only data to be associated with each Home; the value is
supplied under the name of userData in the Object Builder dialog and as an attribute of the same name in
the generated DDL file that defines a Home.

This data is accessed by calling the ISpecializedHomeDataObject::getConfigInfo() method on the Home's
Data Object. Because this is a fairly expensive operation, you should call this function only once and keep
a copy of the result in your Home, as demonstrated in the previous example.

 Chapter 10. Java Server Programming Model 195

196 Component Broker: Programming Guide

Chapter 11. Assembling and Installing Business Objects on
AIX and Windows NT

 The following chapter is platform-dependent and does NOT apply to OS/390 Component
Broker. See OS/390 Component Broker Programming: Assembling Applications for further information.

Previous chapters in this book have outlined how business objects are created and unit tested. Examples
of various techniques for structuring business objects have been shown. However, details about how data
objects are implemented, how business objects are customized for installation and how business objects
become manageable by the server have been vague or omitted.

Much of the material in this chapter is reference only. Component Broker tools generate most of the code
that this chapter proclaims as necessary to have a running business object. The intention of this chapter is
to provide a detailed perspective of what is happening under the covers so that additional customization
can be done and a more thorough understanding of the total Programming Model can be gained. The
general approach for this chapter is to use the Policy example and explain for each of these sections what
additional customization is necessary to have a running business object.

Create the Managed Object Class and Implementation

This section describes how the Managed Object Class is constructed. To complete the rest of the “Not
ready to use at this point” things from Table 3 on page 80, a new class is introduced. This is called the
managed object class. It adds management capabilities to the business object. It is called the PolicyMO in
the example.

However, it does much more than filling out the rest of the things labeled “Not ready to use at this point” in
Table 3 on page 80. There are additional methods that are implemented in the PolicyMO. These deal
specifically with the application adaptor into which a business object is installed. In some cases, behavior
is added or the business logic is surrounded. In others, there are additional methods that assist in
implementing the quality of service provided by the application adaptor.

The example managed object is for use in BOIM Based application adaptors.

From an interface perspective, the managed object mixes together the business object interface and some
additional things from the application adaptor in which the business object resides.

 Copyright IBM Corp. 1997, 1998 197

IBOIMInstanceManagerFriendQOS::IMOnlyForMO

IBOIMInstanceManagerFriendQOS::IMForMixinAndMO

PolicyBO
(fromPolicyModule)

IManageable
(from IManagedClient)

IManageableObjectWithDataObject
(from IManagedServer)

PolicyMO

PolicyBO
(fromPolicyImplementation)

Figure 51. IDL Hierarchy View of Managed Object

The new abstraction being introduced is the PolicyMO. The IDL for the Policy managed object is as
follows:

 #ifndef _PolicyTransMO_idl

 #define _PolicyTransMO_idl

 #include <PolicyBO.idl>

 #include <IBOIMAInstanceManagerFriendQOS.idl>

 #include <IBOIMServerFriendQOS.idl>

interface PolicyMO : PolicyBO,

 IBOIMInstanceManagerFriendQOS::IMOnlyForMO,

 IBOIMInstanceManagerFriendQOS::IMForMixinAndMO

 IBOIMServiceFriendQOS::IMDynamicDispatching

 {

 };

 #endif

This is a pretty simple interface that mixes together the IDL for the business object and some additional
interfaces that need to be implemented. These additional interfaces are represented by
IBOIMInstanceManagerFriendQOS::IMOnlyForMO, IBOIMInstanceManagerFriendQOS::IMForMixinAndMO
and IBOIMServiceFriendQOS::IMDynamicDispatching. They need to be implemented by the managed
object. The implementation of these methods in the managed object is most often just a delegation to
another object called the mixin.

Implementing the new PolicyMO interface requires inheritance of the PolicyBO_Impl and implementing the
other interfaces of the PolicyMO generated by the emitters. The implementation interface is as follows:

198 Component Broker: Programming Guide

 #ifndef _PolicyMO_ih_included

 #define _PolicyMO_ih_included

 #ifdef SOMCBNOLOCALINCLUDES

 #include <PolicyBO.ih>

 #include <PolicyTransMO.hh>

 #include <IBOIMInstanceManagerFriendQOS_IMixinImpl.ih>

 #else

 #include "PolicyBO.ih"

 #include "PolicyTransMO.hh"

 #include "IBOIMInstanceManagerFriendQOS_IMixinImpl.ih"

 #endif

class PolicyTransMO_Impl : public virtual ::PolicyTransMO::Skeleton,

public virtual PolicyBO_Impl

 {

 public:

 PolicyMO_Impl();

virtual ::CORBA::Float amount ();

virtual ::CORBA::Void amount (::CORBA::Float amount);

virtual ::CORBA::Long policyNo ();

virtual ::CORBA::Float premium ();

virtual ::CORBA::Void premium (::CORBA::Float premium);

virtual ::CORBA::Void addBeneficiary ();

virtual ::CORBA::Void delBeneficiary ();

 #ifdef CBS_TRACE_DEBUG

virtual ::CORBA::Void initForCreation(::IManagedServer::IDataObject_ptr theDO);

virtual ::CORBA::Void initForDestruction();

virtual ::CORBA::Void initForReactivation(::IManagedServer::IDataObject_ptr theDO);

virtual ::CORBA::Void initForPassivation();

virtual ::CORBA::Void externalize_to_stream(::CosStream::StreamIO_ptr targetStreamIO);

virtual ::CORBA::Void internalize_from_stream(::CosStream::StreamIO_ptr sourceStreamIO,

 ::CosLifeCycle::FactoryFinder_ptr there);

 #endif

virtual ::ByteString\ getPrimaryKeyString();

//Methods from Framework

virtual ::IManagedClient::IHome_ptr getHome();

virtual ::CosLifeCycle::Key\ external_form_id();

virtual ::CosObjectIdentity::ObjectIdentifier constant_random_id();

virtual ::CORBA::Boolean is_identical(::CosObjectIdentity::IdentifiableObject_ptr other_object);

virtual ::CosLifeCycle::LifeCycleObject_ptr copy(::CosLifeCycle::FactoryFinder_ptr there,

const ::CosLifeCycle::Criteria & the_critera);

virtual ::CORBA::Void move(::CosLifeCycle::FactoryFinder_ptr there,

const::CosLifeCycle::Criteria & the_critera);

virtual ::CORBA::Void remove();

virtual ::IExtendedObjectIdentity::AbsoluteIdentity\ get_absolute_identity();

//Application Adaptor Methods

virtual ::CORBA::Void checkpointToDatastore();

virtual ::CORBA::Void refreshFromDatastore();

virtual ::CORBA::Void externalizeKey(::IIMFLocalToServer::IKeyStream_ptr keyStream,

 ::IIMF::IContainer_ptr container);

virtual ::IIMF::IContainer_ptr getContainer();

virtual ::CORBA::Void before_completion();

 Chapter 11. Assembling and Installing Business Objects 199

virtual ::CORBA::Void after_completion(::CosTransactions::Status status);

 //Special Methods

virtual ::CORBA::Void setMixin(::IIMFLocalToServer::IMMixinForDelegatingMO_ptr mixinPtr);

virtual ::IBOIM::InstanceManagerFriendQOS::IMixin_ptr getMixin();

virtual ::CORBA::Void _incref();

virtual ::CORBA::Void _decref();

virtual ::CORBA::Void callMethodByName(const char \ method_name, ::IBOIM ServiceFriendQOS::ArgList

& method_arguments, ::CORBA::Any\& method_return_value);

virtual CORBA::Object_ptr _localReference();

virtual void _localReference(CORBA::Object_ptr objectPointer);

 protected:

 IBOIMInstanceManagerFriendQOS_IMixinImpl mixinPointer;

 private:

 PolicyBO_var _localProxy;

 };

#endif /\ _PolicyTransMO_ih_included \/

The following are a few kinds of methods in this interface.

� Methods defined in the business object interface (for example, Policy). These are the domain specific
methods and the get and set methods associated with public attributes.

� Methods defined by the OMG Object services that are supported by the application adaptor. This also
includes extensions to the OMG Object services interfaces which have been made.

� Methods defined by the BOIM application adaptor interfaces. These are augmentations made to the
interface so that application adaptors can manage the business objects.

� Special Methods. These are necessary to make the infrastructure work correctly. This set of methods
is actually implemented directly in the managed object.

Each of these kinds of methods are described in sections, with an example of the implementation pattern
that is used.

Business Object Methods in the Managed Object Implementation

All business domain specific methods which are introduced need to have additional implementation in the
managed object. This implementation makes a call to the mixin object before and after calling the real
business logic. An example follows:

 ::CORBA::Float PolicyTransMO_Impl::amount()

 {

 ::CORBA::Float retval;

 IBOIMExtLocalToServer_IMixinPointerImpl mixinPointer(getMixin());

 CALL_MIXIN_BEFORE2(mixinPointer,"getamount");

 #ifdef CBS_TRACE_DEBUG

void \ trc_handle = BOSS_TRACE_SERVER_START_2(this, "getamount");

 #endif

//call the real business logic

retval = PolicyBO_Impl::amount();

 #ifdef CBS_TRACE_DEBUG

 BOSS_TRACE_SERVER_STOP(trc_handle,"getamount");

200 Component Broker: Programming Guide

 #endif

 CALL_MIXIN_AFTER2(mixinPointer, "getamount");

 return retval;

 }

There are some #ifdef statements in here for enabling remote debugging. These are only included in the
compiled code when there is a desire for a version of the managed object that is enabled for debug mode.

The method on the mixinPointer to constMethod (“getamount”) is a special method call. This method will
be generated on all attribute getters and on all methods which are marked as “constant method” using the
objectBuilder business object interface wizard. This method is processed by the mixin. If every method
called in a unit of work is a constMethod, then the datastore will not be unnecessarily updated. The
applies only to business objects that cache in the business object.

This basic pattern for the implementation of the xxxxxMO_Impl methods applies to all business logic
methods.

OMG Services Methods in the Managed Object Implementation

There is a set of methods defined by the OMG Object Services, for which the mixin object has an
implementation. The pattern of implementation for these methods follows:

 ::CORBA::Boolean PolicyTransMO_Impl::is_identical(

 ::CosObjectIdentity::IdentifiableObject_ptr other_object)

 {

 IBOIMExtLocalToServer_IMixinPointerImpl mixinPointer(getMixin());

 return mixinPtr->is_identical(other_object);

 }

The mixin object reference holder (returned by mixin()) is used to construct a mixin pointer object. The
mixin pointer object adjusts a counter in the mixin reference to prevent it from being removed while it is in
use. The mixin pointer “->” operator selects the mixin or alternate mixin if the mixin no longer exists.

Application Adaptor Methods in the Managed Object Implementation

Another set of methods is introduced by the application adaptor framework. The implementation pattern
for these is the same as the pattern used for the object services. An example implementation follows:

 void PolicyTransMO_Impl::checkpointToDatastore()

 {

 IBOIMExtLocalToServer_IMixinPointerImpl mixinPointer(getMixin());

 mixinPointer->checkpointToDatastore();

 }

Special Methods in the Managed Object Implementation

The setMixin(), _incref(), and _decref() methods in the managed object have special forms. The setMixin
method is implemented as follows:

void PolicyMO_Impl::setMixin(IIMFLocalToServer::IMMixinForDelegatingMO_ptr theMixin)

 {

 mixin_.setMixin(theMixin);

 }

 Chapter 11. Assembling and Installing Business Objects 201

The setMixin method stores the pointer to the mixin in the mixin holder (mixin_). The holder is used when
delegating to the mixin. If this pointer is not set correctly, attempting to use the managed object would
likely raise a CORBA::INV_OBJREF exception.

The _incref() method is implemented as follows:

 void PolicyMO_Impl::_incref()

 {

 IBOIMExtLocalToServer_IMixinPointerImpl mixinPointer(mixin());

 mixinPointer._incref();

 }

The _decref() method is similar. The mixin pointer class delegates the _incref() and _decref() methods to
the mixin, if it exists, or to the ORB otherwise. Thus, the _incref() and _decref() methods work correctly
even before the setMixin() method is called and after the remove() method is called.

Handling Business Object Augmentation of OMG Services Methods

In some cases, you may need to augment the behavior of some OMG Services methods in the business
object. This requires you to manually change the specific managed object method to invoke both the
business object and the mixin. The following is an example of the augmented remove() method:

 ::CORBA::Void PolicyMO_Impl::remove()

 {

 IBOIMExtLocalToServer_IMixinPointerImpl mixinPointer(getMixin());

 mixinPointer->remove();

 }

The above example is simplified to remove any exception handling that should be done.

Managed Objects and Specialized Homes

In most cases, subclassing is done from a base class which is also created by the object provider. Some
cases, however, such as the one described in this section, require extending objects which are part of the
Component Broker server.

The interface for the home, used at the Managed Object Customization phase of developing an extended
home, is named IManagedAdvancedServer::ISpecializedHome. This is located in the
IManagedAdvancedServer.idl file.

The interface name that is inherited for implementation is
IManagedAdvancedServer_ISpecializedHome_Impl and is located in the
IManagedAdvancedServer_ISpecializedHome_Impl.ih files.

Managed Objects for Specialized Homes are very similar to other Managed Objects except for the
interfaces that it inherits. The following IDL is for the Specialized Home for Policy.

 #ifndef _PolicyHomeMO_idl

 #define _PolicyHomeMO_idl

 #include <PolicyHomeBO.idl>

 #include <IManagedAdvancedServer.idll>

interface PolicyHomeMO : PolicyHomeBO,

 IManagedAdvancedServer::ISpecializedHome

 {

 };

202 Component Broker: Programming Guide

 #endif

The implementation is very similar. The standard framework methods that have been previously described
for Managed Objects are required along with the implementation of any business methods defined for that
home. In this case:

virtual ::Policy_ptr createWithNumber(::CORBA::Long policyNo);

virtual ::Policy_ptr findByPolicyNumber(::CORBA::Long policyNo);

Sample Framework Flows

The following samples show the order in which the framework invokes the IManagedObject methods for a
given scenario.

Create – Business Object has Cached Data Object

1. Framework calls internalizeFromPrimaryKey or internalizeFromCopyHelper on data object.
2. Framework calls initForCreation on business object passing data object.
3. Framework calls syncToDataObject on business object.
4. Framework tells “DataObject” to insert.
5. Object is created and can now be used by client.

Create – Business Object has Data Object (Delegating)

1. Framework calls internalizeFromPrimaryKey or internalizeFromCopyHelper on data object.
2. Framework calls initForCreation on business object passing data object.
3. Framework tells “DataObject” to insert.
4. Object is created and can now be used by client.

Reactivation – Business Object has Cached Data Object (first touch)

1. Framework calls internalizeFromPrimaryKey or internalizeFromCopyHelper on data object.
2. Framework calls initForReactivation on business object passing data object.
3. Object reference returned to client.
4. Client invokes a method.
5. Framework tells “DataObject” to retrieve.
6. Framework calls syncFromDataObject on business object.

Reactivation – Find Scenario with Cached Data Object

1. Framework calls internalizeFromPrimaryKey or internalizeFromCopyHelper on data object.
2. Framework calls initForReactivation on business object passing data object.
3. Framework tells “DataObject” to retrieve.
4. Framework calls syncFromDataObject on business object.
5. Object reference return to client.
6. Client invokes a method.

Remove Object

1. Framework calls uninitForDestruction on business object.
2. Framework tells “DataObject” to deleteFromDataStore.
3. Client can no longer use the object reference.

 Chapter 11. Assembling and Installing Business Objects 203

Passivation – Business Object with Cached Data Object

1. Framework calls syncToDataStore on business object.
2. Framework tells “DataObject” to update.
3. Framework calls uninitForPassivation.

Passivation – Business Object with Data Object

1. Framework tells “DataObject” to update.
2. Framework calls uninitForPassivation.

Data Object Customization

The PolicyDO which is described in Chapter 2, “Personal Life Insurance Application Example” on page 15
is just an interface to the essential state of the business object. PolicyDO is not ready to run yet. In order
to get that ready to run, PolicyDO must inherit from one of the subclasses of the abstract IDataObject
class. While tools generate the implementations of the data objects, the sections that follow describe what
is going on under the covers.

The IManagedServer::IDataObject interface and its subclasses provided augmentation of the basic
interface to the data which was described by the object provider. Additional methods are available on the
data objects that the application adaptors need to use. These interfaces are oriented around what is
necessary to interact with the underlying data store. This is encapsulated from the object provider. As
much as possible, a key goal of Component Broker is to encapsulate the differences in the underlying
data store.

Customization, therefore, is not necessarily the job of the object provider. It is more probably the job of an
application or business object customizer. The customizer has some familiarity with the domain of the
business objects, but is an expert on the particular environment and resource managers into which the
applications and business objects are to be installed.

Data object Customization is a key part of turning a business object into a runnable managed object.
Depending on the server environment into which the business object is installed, different options for the
data objects present themselves. This section goes through each of the options available for Component
Broker. These are presented starting at the simplest and working towards the more complex data object
customizations.

For Component Broker, there are a number of choices for data object customization. These choices are
based on the support available in the server. Refer to Component Broker for Windows NT and AIX Online
Documentation and Component Broker Application Development Tools for further information on data
object customization.

The choices include:

Persistent Data Object - Static SQL (production use)
This is the choice to make if the data object is being customized for installation into an
application adaptor that is configured to use Static SQL backed by either DB2 on NT or DB2 on
MVS. This choice provides data objects with SQL included in their implementations. Optionally,
if the business object is developed to be queryable (that is, returned as part of the result set of
a query), then the data object must be developed to support query pushdown. Query pushdown
refers to queries on objects in a home that can be done in the database rather than object
space. The Primary Keys in this case are a subclass of the IManagedClient::IPrimaryKey base

204 Component Broker: Programming Guide

class. For customization activity, see “BOIM Data Object Customization – Static SQL” on
page 210.

Persistent Data Object -- Cache Service (production use)
An alternative to Static SQL that uses the Component Broker cache service for improved
concurrency, optimistic caching. See the discussion about cache service in the Component
Broker Advanced Programming Guide for more details. This implementation replaces the SQL
statements in the DataObject with calls to the cache service. The business object developed to
work with this type of DataObject is expected to be queriable and to use the delegating pattern.
For more information, see “BOIM Data Object Customization – Cache Service” on page 217.

Transient Data Object -UUID Key (production use)
This is the choice to make if the data object is going to be targeted for an application adaptor
that supports transient managed objects. Primary Keys in this case are a subclass of the
IBOIMExtLocal::IUUIDPrimaryKey base class. This type of data object customization is
described in “Transient Data Object Customization – UUID Key (Production Use)” on
page 223.

Transient Data Object - (production use)
This choice is similar to the previous choice, except that any domain specific key that ensures
uniqueness can be used. This type of data object customization is described in “Transient Data
Object – Any Key (Production Use)” on page 225.

Transient Data Object (Unit Test)
This is the tactical choice to make if the final target of the business object is an application
adaptor that is configured for persistent data such as the first two choices in the list. Primary
Keys in this case are a subclass of the IManagedClient::IPrimaryKey base class. This is the
first type of customization explained in this chapter, starting at “Data Objects (Unit Test)” on
page 207.

Table 4 on page 206 summarizes these data object customization choices and the interfaces they use as
part of the customization.

 Chapter 11. Assembling and Installing Business Objects 205

Notes

This interface adds the internalizeData() method that
must be implemented.

This interface adds the setHome() method whose
implementation is provided by the Component Broker
implementation of the
IRDBIMExtLocalToServer::ICachingServiceDataObject
interface. For the Caching DAO data object with query
pushdown, this interface is inherited by
IRDGMIMExtLocalTOServer::ICachingServiceDataObject
and so does not have to be explicitly inherited.

This interface adds the setConnection() method that
should be implemented in the persistent object. This
persistent object is a companion object to the SQL
data object that allows the database specific code, in
this case SQL, to be isolated from non-specific data
object code.

This interface adds the getMOInterfaceName(),
getMapExpression(), and setHome() methods. These
method implementations are provided by the interface
implementation.

Caching
Cache

Service
data

object
with query

push
down

Yes

Yes

No

Yes

Static SQL
with query

push
down

Yes

Yes

Yes

No

Data Object Customization

Static SQL
data

object

No

No

Yes

No

Table 4. Interfaces Needed by Persistent Data Objects

Interface Required

IBOIMExtLocalToServer::IQueryable Data Object

IBOIMExtLocalToServer::IHomeAwareDataObject

IRDBIMExtLocalToServer::IDataObject

IRDBIMExtLocalToServer::ICachingServiceDataObject

206
C

om
ponent B

roker:
P

rogram
m

ing G
uide

Data Objects (Unit Test)

To test business logic using the unit test environment, the data object must have a simple and
self-contained data object customization. For information on creating a self-contained data object, see
Appendix D, “Unit Test Environment” on page 333.

Transient Data Object Interfaces

At the IDL level, the implementation diagram is simple. The following figure is an implementation diagram
for a transient data object.

-policyNo
-premium
-amount

PolicyDO
(from PolicyImplementation)

PolicyTransientDO

IDataObject
(from IManagedServer)

Figure 52. Transient Data Object Implementation

The PolicyDO interface is:

 interface PolicyDO

 {

attribute float amount;

attribute long policyNo;

attribute float premium;

#pragma meta PolicyDO localonly ,abstract

 };

PolicyTransientDO is an interface that mixes together the interface to the essential state and the data
object implementation which is desired. In this case, the IManagedServer::IDataObject interface is all that
is required.

The IDL for this is:

 #include "PolicyDO.idl"

 #include <IManagedServer.idl>

interface PolicyTransientDO : PolicyDO, IManagedServer::IDataObject

 {

#pragma meta PolicyTransientDO localonly abstract

 }

PolicyTransientDO is the interface that is implemented. The implementation must support the get and set
methods that come from the attributes described in PolicyDO and must also support the interface required
by IManagedServer::IDataObject. The implementation interface of PolicyTransientDO is:

 Chapter 11. Assembling and Installing Business Objects 207

 #ifndef _PolicyTransientDO_ih_included

 #define _PolicyTransientDO_ih_included

 #include "PolicyTransientDO.hh"

class PolicyTransientDO_Impl : public virtual ::PolicyTransientDO_Skeleton

 {

 public:

 PolicyTransientDO_Impl::PolicyTransientDO_Impl();

::CORBA::Long policyNo ();

::CORBA::Void policyNo (::CORBA::Long policyNo);

::CORBA::Float premium ();

::CORBA::Void premium (::CORBA::Float premium);

::CORBA::Float amount ();

::CORBA::Void amount (::CORBA::Float amount);

virtual ::CORBA::Void internalizeFromPrimaryKey(::IManagedLocal::IPrimaryKey_ptr inKey);

virtual ::CORBA::Void internalizeFromCopyHelper(::IManagedLocal::INonManageable_ptr inCopy);

 private:

// Store the values of the public attributes transiently.

::CORBA::Long tPolicyNo; // Store value of "policyNo" attribute

::CORBA::Float tPremium; // Store value of "premium" attribute

::CORBA::Float tAmount; // Store value of "amount" attribute

 };

#endif /\ _PolicyTransientDO_ih_included \/

This is the minimal implementation interface required for this data object. In the transient case, there is no
implementation to inherit.

The implementation of this interface is the final part of the transient data object customization. This is
shown in the following sections.

Transient Data Object Implementation

This section includes the following topics:

� “Framework Required Method internalizeFromPrimaryKey”
� “Framework Required Method internalizeFromCopyHelper” on page 209
� “Framework Required create() function” on page 209
� “Methods To Support Attributes – Getters” on page 209
� “Methods to Support Attributes – Setters” on page 210
� “Additional Methods – Default Constructor” on page 210

Framework Required Method internalizeFromPrimaryKey: The MOFW requires the data object to
implement the IManagedServer::IDataObject::internalizeFromPrimaryKey() method. The in parameter is an
IManagedLocal::IPrimaryKey. This key is how the business object is uniquely identified. In the case of the
example, the in parameter is narrowed to a PolicyKey and the policy number is extracted and stored as
part of the data object. This method is important because it establishes the linkage between the key and
the data object that supports the business object being constructed.

208 Component Broker: Programming Guide

 ::CORBA::Void PolicyTransientDO_Impl::internalizeFromPrimaryKey(

 ::IManagedLocal::IPrimaryKey_ptr inKey)

 {

PolicyKey_var pk = PolicyKey::_narrow(inKey);

/\ Stores the key attribute in the DO data attribute \/

tPolicyNo = pk->policyNo();

/\ Stores the value of the "policyNo" attribute \/

 }

This method is called by the unit test environment during construction of objects and during reactivation of
objects (although reactivation doesn't really make sense in the transient case).

Framework Required Method internalizeFromCopyHelper: The MOFW requires the data object to
implement the IManagedServer::IDataObject::internalizeFromCopyHelper() method. The in parameter is an
IManagedLocal::INonManageable. This copy contains state data, including the key that shows how the
business object is uniquely identified. In the case of the example, the in parameter is narrowed to a
PolicyCopy and the data is extracted and stored as part of the data object.

 ::CORBA::Void PolicyTransientDO_Impl::internalizeFromCopyHelper(

 ::IManagedLocal::INonManageable_ptr inCopy)

 {

PolicyCopy_var pc = PolicyCopy::_narrow(inCopy);

tPolicyNo = pc->policyNo(); /\ Stores the value of the "policyNo" attribute \/

tAmount = pc->amount();

tPremium = pc -> premium();

 }

This method is called by the unit test environment during construction of objects.

Framework Required create() function: This method is called by the unit test environment or
application adaptor when an empty uninitialized data object is required. This happens during business
object creation and reactivation.

The implementation must have an external entry point so that when the application adaptor loads the
DLLs required for a particular business object (which happens dynamically), it can access the create()
function. The code for the example looks like:

// The following extern "C" function is required so that a (generic) home can be

// configured to load the Policys DLL and create a PolicyTransientDO without knowing

// anything about the Policy business objects.

 extern "C"

 {

SOMDLLEXPORT void\ PolicyTransientDO_create()

 {

return (void\) (PolicyTransientDO::_create());

 }

 }

Methods To Support Attributes – Getters: All of the attributes need to have a getter method on them.
A getter method for one of the attributes of the PolicyDO follows:

// \ Method from the IDL attribute statement: "attribute Float amount"

 ::CORBA::Float PolicyTransientDO_Impl::amount()

 {

 return tAmount;

 }

 Chapter 11. Assembling and Installing Business Objects 209

Methods to Support Attributes – Setters: All of the attributes need to have a set method on them. A
setter method for one of the attributes of the PolicyDO follows:

// Method from the IDL attribute statement: "attribute Float amount"

::CORBA::Void PolicyTransientDO_Impl::amount(::CORBA::Float amount)

 {

tAmount = amount;

 }

Additional Methods – Default Constructor: The transient data object implementation has values for
each of the attributes that the business object is interested in. If the business object is caching, the values
from the data object are loaded into the business object when the business object methods first require
access to state data. In the delegating case, values in the data object are accessed directly, as needed.
Either way, when the managed object is originally created, these default constructor values can be used.
This ensures that uninitialized data does not get used during the period of time where the key or copy
helper is known to the data object, but the data object has not yet been created into or refreshed from the
data store. Therefore the values in the data object should be initialized properly in a default constructor. It
is required that a default constructor be developed.

// Default constructor

 PolicyTransientDO_Impl::PolicyTransientDO_Impl()

: tAmount(ð), /\ initialization \/

 tPolicyNo(ð),

 tPremium(ð)

 {

 }

 Another Option

Beyond this transient view of a data object implementation, there are a number of possibilities for data
objects that don't require any additional infrastructure from the server. A file-based implementation of a
data object could be constructed by extending the transient business object that has been described. File
naming might be based on the key to the object. Opening the file would be put in the internalizeXXXX
methods. Closing the file would be done in the constructor. Updating the file could be done at the end or
after every setter. Reading the file could be done upon opening the file or when a getter is done. Various
options exist. It is not the intention of this section to point out all of the possibilities.

More complex backing stores could be leveraged following the same pattern that would be appropriate for
files. However, the unit test environment in which these sorts of data objects run does not provide the
object server function that is available from a real application adaptor. There is no consideration for
security and transactions in these scenarios. There is also limited support for reactivation. Finding objects
is based only on those objects that have been activated. It might be necessary to activate all objects
before running them in this sort of configuration.

BOIM Data Object Customization – Static SQL

If the data object customization is going to target Static SQL data objects that run in a DB2 application
adaptor, then you should read this section. In this section, the PolicyDO interface is used as the basis for
describing the customization necessary.

SQL Data Object Interfaces

The IDL-based picture for SQL-backed BOIM data objects follows:

210 Component Broker: Programming Guide

IRDBIMExtLocalToServer::IDataObject

IBOIMExtLocalToServer::IQueryableDataObject

PolicyDO IBOIMExtLocalToServer::IDataObjectBase

PolicyEmSQLDO

Figure 53. SQL BOIM Data Object IDL Interface View

The example shows the case where the business object is also configured to be queryable. (that is,
IBOIMExtLocalToServer::IQueryableDataObject should be inherited if the data object is to be used with
queryable homes otherwise it should not be inherited.) Here is the IDL for this:

 #include <PolicyDO.idl>
 #include <IRDBIMExtLocalToServer.idl>

 #include <IBOIMExtLocalToServer.idl>

interface PolicyEmSQLDOImpl : PolicyDO,

 IRDBIMExtLocalToServer::IDataObject,

 IBOIMExtLocalToServer::IQueryableDataObject

 {

#pragma meta PolicyEmSQLDO localonly

 };

In fact there is more implementation inheritance as well. The interfaces added to the basic PolicyDO
include those required for all two-level store application adaptors (BOIM) and those specific to the
relational database adaptor (RDBIM) This is shown in the implementation view following:

 Chapter 11. Assembling and Installing Business Objects 211

IBOIMExtLocalToServer::IDataObjectBase_Impl

IRDBIMExtLocalToServer::IDataObject_ImplPolicySQLDO_Skeleton

IRDBIMExtLocalToServer::IDataObject_Skeleton

PolicyEmSQLDO_Impl

Figure 54. SQL BOIM Data Object Implementation Interface Inheritance

The IRDBIMExtLocalToServer::IDataObject_Impl in combination with
IBOIMExtLocalToServer::IDataObjectBase_Impl provides an implementation for some of the methods that
are described in the IBOIMExtLocalToServer::IDataObject and IRDBIMExtLocalToServer::IDataObject
interfaces. The following methods have implementations which are inherited:

 � string connection()
� void connection(string value)

 � void markDirty()
 � void clearDirty()
 � boolean isDirty()
 � void updateToDataStore()
 � void insertToDataStore()
 � void retrieveFromDataStore()
 � void deleteFromDataStore()

These methods should not be overridden.

Given this base, the PolicyEmSQLDO_Impl implementation interface should look like this:

 #include <PolicyEmSQLPO.hpp>

 #ifdefSOMCBNOLOCALINCLUDES

 #include <IRDBIMExtLocalToServer.ih>

 #include <PolicyEmSQLDOImpl.hh>

 #else

 #include "IRDBIMExtLocalToServer.ih"

 #include "PolicyEmSQLDOImpl.hh"

 #endif

class PolicyEmSQLDOImpl_Impl : public virtual ::PolicyEmSQLDOImpl_Skeleton,

public virtual IRDBIMExtLocalToServer_IDataObject_Impl

 {

 public:

//default constructor doimpl

 PolicyEmSQLDOImpl_Impl();

212 Component Broker: Programming Guide

 ::CORBA::Float amount();

::CORBA::Void amount(::CORBA::Float amount);

 ::CORBA::Long policyNo();

::CORBA::Void policyNo(::CORBA::Long policyNo);

 ::CORBA::Float premium();

::CORBA::Void premium(::CORBA::Float premium);

virtual ::CORBA::Void insert();

virtual ::CORBA::Void update();

virtual ::CORBA::Void retrieve();

virtual ::CORBA::Void del();

virtual ::CORBA::Void setConnection(const char\ dataBaseName);

virtual ::CORBA::Void internalizeFromPrimaryKey(

 ::IManagedLocal::IPrimaryKey_ptr inKey);

virtual ::CORBA::Void internalizeFromCopyHelper(

 ::IManagedLocal::INonManageable_ptr inCopy);

virtual ::CORBA::Void internalizeKeyAttributes(

 ::IIMFLocalToServer::IKeyComponent_ptr keyComp);

virtual ::CORBA::Void externalizeKeyAttributes(

::IIMFLocalToServer::IKeyComponent_ptr & keyComp);

virtual ::CORBA::Void internalizeData(

const ::IBOIMLocalToServerMetadata::dataSequence & dataSeq);

virtual ::CORBA::Boolean verifyKey();

 protected:

 private:

 ::PolicyEmSQLPO iPolicyEmSQLPO;

 ::CORBA::Boolean iKeyValueSet;

 };

Static SQL Data Object Implementation

The following methods need to be implemented in order for the Static SQL data object to work properly in
the server.

Framework Required Method – internalizeFromPrimaryKey: See the description in “Framework
Required Method internalizeFromPrimaryKey” on page 208. It is similar for Static SQL data objects.

In addition, the tKeyValueSet flag should be set to true when valid key values are successfully retrieved
from the key.

 ::CORBA::Void PolicyEmSQLDOImpl_Impl::internalizeFromPrimaryKey

 (::IManagedLocal::IPrimaryKey_ptr inKey)

 {

// Insert Method modifications here

PolicyKey_var iPolicyKey = PolicyKey::_narrow(inKey);

long iPolicyNoTemp = iPolicyKey->policyNo();

iKeyValueSet = 1;

 PolicyEmSQLPOKey iPolicyEmSQLPOKey;

 iPolicyEmSQLPOKey.policyNo(iPolicyNoTemp);

 iPolicyEmSQLPO.internalizeFromPrimaryKey(iPolicyEmSQLPOKey);

// End Method modifications here

 }

 Chapter 11. Assembling and Installing Business Objects 213

Framework Required Method – internalizeFromCopyHelper: See the description in “Framework
Required Method internalizeFromCopyHelper” on page 209. It is the similar for static SQL data objects.

In addition, the tKeyValueSet flag should be set to true when valid key values are successfully retrieved
from the key.

Framework Required Code – create() Function: See the description in “Framework Required create()
function” on page 209. It is similar for static SQL-based data objects.

 extern "C"

 {

SOMDLLEXPORT IBOIMExtLocalToServer::IDataObject_ptr PolicyEmSQLDOImpl_create()

 {

return new PolicyEmSQLDOImpl_Impl();

 }

 }

Methods To Support Attributes – Getters: See the description in “Methods To Support Attributes –
Getters” on page 209. It is similar for static SQL-based data objects. For example, the getter for amount
would be:

 ::CORBA::Float PolicyEmSQLDOImpl_Impl::amount()

 {

// Insert Method modifications here

 ::CORBA::Float iAmountTemp;

iAmountTemp = iPolicyEmSQLPO.amount();

 return iAmountTemp;

// End Method modifications here

 }

Methods to Support Attributes – Setters: All of the attributes need to have a set method on them. A
setter method for one of the attributes of the PolicyEmSQLDO follows:

::CORBA::Void PolicyEmSQLDOImpl_Impl::amount(::CORBA::Float amount)

 {

// Insert Method modifications here

::CORBA::Float iAmountTemp = amount;

 iPolicyEmSQLPO.amount(iAmountTemp);

 markDirty();

// End Method modifications here

 }

The difference here from the transient case is where the markDirty() method is run. This indicates to the
application adaptor that it is necessary to update the underlying data store at prescribed times.

Additional Methods – Default Constructor: See the description in “Additional Methods – Default
Constructor” on page 210. It is the same for BOIM-based data objects. Additionally, the iKeyValueSet
should be initialized to false. The updated constructor looks like this:

 PolicyEmSQLDOImpl_Impl::PolicyEmSQLDOImpl_Impl()

 :iKeyValueSet(ð)

 {

 }

Required Method – verifyKey: This method returns a boolean to indicate whether or not the key values
in the data object have been acquired and are valid. This method is used by the application adaptor to
validate the key before an object reference for the object is built.

214 Component Broker: Programming Guide

::CORBA::Boolean PolicyEmSQLDOImpl_Impl::verifyKey ()

 {

//Insert Method modifications here

 return iKeyValueSet;

//End Method Modifications here

 }

Required Method – externalizeKeyAttributes: This method is used by the application adaptor as an
object reference for the business object being created. The code in this method writes out the key values
into the outKey that is provided on the parameter list.

 ::CORBA::Void PolicyEmSQLDOImpl_Impl::externalizeKeyAttributes

 (::IIMFLocalToServer::IKeyComponent_ptr& keyComp)

 {

// Insert Method modifications here

 long iPolicyNoTemp;

 PolicyEmSQLPOKey iPolicyEmSQLPOKey;

 iPolicyEmSQLPO.externalizeKeyAttributes(iPolicyEmSQLPOKey);

iPolicyNoTemp = iPolicyEmSQLPOKey.policyNo();

 keyComp->write_long(iPolicyNoTemp);

// End Method modifications here

 }

Required Method – internalizeKeyAttributes: This method is used by the application adaptor for
reactivating objects. This method should pull information out of the inKey provided and set the flag
indicating that the key is valid to true. Additional logic may be placed in this method to further verify that
the key value is good.

 ::CORBA::Void PolicyEmSQLDOImpl_Impl::internalizeKeyAttributes

 (::IIMFLocalToServer::IKeyComponent_ptr keyComp)

 {

// Insert Method modifications here

long iPolicyNoTemp = keyComp->read_long();

iKeyValueSet = 1;

 PolicyEmSQLPOKey iPolicyEmSQLPOKey;

 iPolicyEmSQLPOKey.policyNo(iPolicyNoTemp);

 iPolicyEmSQLPO.internalizeKeyAttributes(iPolicyEmSQLPOKey);

// End Method modifications here

 }

Required Method – update: This is the code that puts data back into the database. This is .sqx code
that needs to run through the SQL preprocessor before it is compiled.

::CORBA::Void PolicyEmSQLDOImpl_Impl::update ()

 {

// Insert Method modifications here

 iPolicyEmSQLPO.update();

// End Method modifications here

 }

Required Method – insert: The insert is called when a create is done. The code looks like this:

::CORBA::Void PolicyEmSQLDOImpl_Impl::insert ()

 {

// Insert Method modifications here

 iPolicyEmSQLPO.insert();

// End Method modifications here

 }

 Chapter 11. Assembling and Installing Business Objects 215

Required Method – retrieve: The retrieve gets the data from the database and looks like this:

::CORBA::Void PolicyEmSQLDOImpl_Impl::retrieve ()

 {

// Insert Method modifications here

 iPolicyEmSQLPO.retrieve();

// End Method modifications here

 }

Required Method – del

::CORBA::Void PolicyEmSQLDOImpl_Impl::del ()

 {

// Insert Method modifications here

 iPolicyEmSQLPO.del();

// End Method modifications here

 }

Required Method – setConnection: This method defines the database to which the SQL in the insert(),
del(), retrieve(), and update() methods is directed.

::CORBA::Void PolicyEmSQLDOimpl_Impl::setConnection(const char\ dataBaseName)

 {

// Insert Method modifications here

 iPolicyEmSQLPO.setConnection(dataBaseName);

// End Method modifications here

 }

Required Method – internalizeData: This method enables query to work on the data object.

 ::CORBA::Void PolicyEmSQLDOImpl_Impl::internalizeData(

const::IBOIMLocalToServerMetadata::dataSequence & dataSeq)

 {

// Insert Method modifications here

 PolicyEmSQLPOCopy iPolicyEmSQLPOCopy;

 long PolicyEmSQLPO_policyNoTemp;

if (!((((dataSeq[ð]))) >>= PolicyEmSQLPO_policyNoTemp))

PolicyEmSQLPO_policyNoTemp = NULL;

 iPolicyEmSQLPOCopy.policyNo(PolicyEmSQLPO_policyNoTemp);

 double PolicyEmSQLPO_amountTemp;

if (!((((dataSeq[1]))) >>= PolicyEmSQLPO_amountTemp))

PolicyEmSQLPO_amountTemp = NULL;

 iPolicyEmSQLPOCopy.amount(PolicyEmSQLPO_amountTemp);

 double PolicyEmSQLPO_premiumTemp;

if (!((((dataSeq[2]))) >>= PolicyEmSQLPO_premiumTemp))

PolicyEmSQLPO_premiumTemp = NULL;

 iPolicyEmSQLPOCopy.premium(PolicyEmSQLPO_premiumTemp);

 iPolicyEmSQLPO.internalizeData(iPolicyEmSQLPOCopy);

iKeyValueSet = 1;

// End Method modifications here

 }

216 Component Broker: Programming Guide

 Additional Considerations

The Static SQL data object could contain the SQL code within the update(), insert(), retrieve(), and
delete() methods. It is more convenient to put this code into a C++ helper object that is referred to as the
persistent object. The persistent object has many of the same methods as the data object and the data
object just deals with the data in the data object and lets the persistent object take care of using SQL.

BOIM Data Object Customization – Cache Service

If the data object customization is going to target cache service data objects that run in a DB2 application
adaptor, then you should read this section. In this section, the PolicyDO interface is used as the basis to
describe the necessary customization.

To create a data object implementation that uses the cache service, you must use Object Builder to create
the data object. When defining the data object implementation and persistent object, be sure to check the
Use Cache Service check box.

Managed Objects that use the cache service must also be configured to use Containers with the Use
Cache Service option.

Cache Service Data Objects Interfaces

The IDL-based picture for cache service data objects follows:

IBOIMExtLocalToServer::IDataObject

IBOIMExtLocalToServer::IDataObjectBase

IBOIMExtLocalToServer::IHomeAwareDataObject

IRDBIMExtLocalToServer::ICachingServiceDataObject

IBOIMExtLocalToServer::IQueryableDataObjectPolicyDO

PolicyCacheDOImpl

Figure 55. Cache Service Data Object IDL Interface View

The example shows the case where the business object is also configured to be queryable. (That is,
IBOIMExtLocalToServer::IQueryableDataObject should be inherited because the data object is to be used
with queryable homes.) The IDL is:

 Chapter 11. Assembling and Installing Business Objects 217

 #include <PolicyDO.idl>
 #include <IRDBIMExtLocalToServer.idl>

 #include <IBOIMExtLocalToServer.idl>

interface PolicyCacheDOImpl : PolicyDO,

 IRDBIMExtLocalToServer::ICachingServiceDataObject,

 IBOIMExtLocalToServer::IQueryableDataObject

 {

#pragma meta PolicyCacheDOImpl localonly

 };

From this, it can be seen that at the IDL level, the difference between the embedded SQL case and the
cached DAO case is whether to inherit IRDBIMExtLocalToServer::IDataObject or
IRDBIMExtLocalToServer::ICachingServiceDataObject.

These differences are also apparent from looking at the implementation interfaces and how they interact to
provide the basis for the PolicyCacheDOImpl class which is used to implement the PolicyCacheDOImpl
interface shown in the previous figure. The implementation interface inheritance picture follows.

IBOIMExtLocalToServer::IDataObject_Skeleton

IBOIMExtLocalToServer_IDataObjectBase_Impl

IRDBIMExtLocalToServer::ICachingServiceDataObject_Skeleton

IRDBIMExtLocalToServer_ICachingServiceDataObject_Impl

PolicyCacheDAODO_Skeleton

PolicyCacheDOImpl

Figure 56. BOIMDO Implementation Interface Inheritance

The IBOIMExtLocalToServer_IDataObjectBase_Impl provides an implementation for some of the methods
that are described in the IBOIMExtLocalToServer::IDataObject interface which is represented in C++ in the
previous figure by the IBOIMExtLocalToServer::IDataObject_Skeleton. The following methods have
implementations which are inherited:

 � string connection()
� void connection(string value)

 � void markDirty()
 � void clearDirty()
 � boolean isDirty()
 � void updateToDataStore()

218 Component Broker: Programming Guide

 � void insertToDataStore()
 � void retrieveFromDataStore()
 � void deleteFromDataStore()

These methods should not be overridden.

Given this base, the PolicyCacheDOImpl_Impl implementation interface should look like this:

 #include "PolicyCachePO.hpp"

 #ifdefSOMCBNOLOCALINCLUDES

 #include <IRDBIMExtLocalToServer.ih>

 #include <PolicyCacheDOImpl.hh>

 #else

 #include "IRDBIMExtLocalToServer.ih"

 #include "PolicyCacheDOImpl.hh"

 #endif

class PolicyCacheDOImpl_Impl : public virtual ::PolicyCacheDOImpl_Skeleton,

public virtual IRDBIMExtLocalToServer_ICachingServiceDataObject_Impl

 {

 public:

//default constructor doimpl

 PolicyCacheDOImpl_Impl();

 ::CORBA::Float amount();

::CORBA::Void amount(::CORBA::Float amount);

 ::CORBA::Long policyNo();

::CORBA::Void policyNo(::CORBA::Long policyNo);

 ::CORBA::Float premium();

::CORBA::Void premium(::CORBA::Float premium);

virtual ::CORBA::Void insert();

virtual ::CORBA::Void update();

virtual ::CORBA::Void retrieve();

virtual ::CORBA::Void del();

virtual ::CORBA::Void internalizeFromPrimaryKey(

 ::IManagedLocal::IPrimaryKey_ptr inKey);

virtual ::CORBA::Void internalizeFromCopyHelper(

 ::IManagedLocal::INonManageable_ptr inCopy);

virtual ::CORBA::Void internalizeKeyAttributes(

 ::IIMFLocalToServer::IKeyComponent_ptr keyComp);

virtual ::CORBA::Void externalizeKeyAttributes(

::IIMFLocalToServer::IKeyComponent_ptr & keyComp);

virtual ::CORBA::Void internalizeData(

const ::IBOIMLocalToServerMetadata::dataSequence & dataSeq);

virtual ::CORBA::Boolean verifyKey();

 protected:

 private:

 ::PolicyCachePO iPolicyCachePO;

 ::CORBA::Boolean iKeyValueSet;

 };

Most of the methods are the same as the Static SQL implementation. Only the methods that differ are
described here.

 Chapter 11. Assembling and Installing Business Objects 219

Required Method - default constructor:: This method uses a different initialization technique by using
the PO capabilities of attribute initialization.

 PolicyTransDOImpl_Impl::PolicyTransDOImpl_Impl()

 :iKeyValueSet(ð)

 {

 policyNo(ð);

 amount(ð);

 premium(ð);

 }

Required Method - internalizeFromPrimaryKey:: This method must handle the exceptions throw by the
PO and map them to exceptions that are accepted by the framework. Since this method is called for both
the create and find scenarios, additional logic is required to either initialize the PO or retrieve the already
existing values. The isNew() method is used to make this determination.

 ::CORBA::Void PolicyCacheDOImplCache_Impl::internalizeFromPrimaryKey(

 ::IManagedLocal::IPrimaryKey_ptr inKey)

 {

// Insert Method modifications here

PolicyKey_var iPolicyKey = PolicyKey::_narrow(inKey);

long iPolicyNoTemp = iPolicyKey->policyNo();

iKeyValueSet = 1;

 PolicyCacheDOImplCachePOKey iPolicyCacheDOImplCachePOKey;

 iPolicyCacheDOImplCachePOKey.policyNo(iPolicyNoTemp);

 try

 {

 iPolicyCacheDOImplCachePO.internalizeFromPrimaryKey(

 iPolicyCacheDOImplCachePOKey);

 if (isNew())

 {

 iPolicyCacheDOImplCachePO.create();

 amount(ð);

 premium(ð);

 }

 else

 {

 iPolicyCacheDOImplCachePO.retrieve();

 }

 }

catch (IBOIMException::IDataKeyAlreadyExists &dkae)

 {

 throw IManagedClient::IDuplicateKey();

 }

catch (IBOIMException::IDataKeyNotFound &dknf)

 {

 throw IManagedClient::INoObjectWKey();

 }

catch (IBOIMException::IDataObjectFailed &dof)

 {

throw CORBA::PERSIST_STORE(ð, CORBA::COMPLETED_NO);

 }

 catch (...)

 {

throw; // home will handle

 }

// End Method modifications here

 }

220 Component Broker: Programming Guide

Required Method - internalizeFromCopyHelper:: This method must handle the exceptions throw by the
PO and map them to exceptions that are accepted by the framework.

 ::CORBA::Void PolicyCacheDOImplCache_Impl::internalizeFromCopyHelper(

 ::IManagedLocal::INonManageable_ptr inCopy)

 { // Insert Method modifications here

PolicyCopy_var iPolicyCopy = PolicyCopy::_narrow(inCopy);

long iPolicyNoTemp = iPolicyCopy->policyNo();

float iAmountTemp = iPolicyCopy->amount();

float iPremiumTemp = iPolicyCopy->premium();

iKeyValueSet = 1;

 PolicyCacheDOImplCachePOCopy iPolicyCacheDOImplCachePOCopy;

 iPolicyCacheDOImplCachePOCopy.policyNo(iPolicyNoTemp);

 iPolicyCacheDOImplCachePOCopy.amount(iAmountTemp);

 iPolicyCacheDOImplCachePOCopy.premium(iPremiumTemp);

 try

 {

 iPolicyCacheDOImplCachePO.internalizeFromCopyHelper(

 iPolicyCacheDOImplCachePOCopy);

 }

catch (IBOIMException::IDataKeyAlreadyExists &dkae)

 {

 throw IManagedClient::IDuplicateKey();

 }

catch (IBOIMException::IDataKeyNotFound &dknf)

 {

 throw IManagedClient::INoObjectWKey();

 }

catch (IBOIMException::IDataObjectFailed &dof)

 {

throw CORBA::PERSIST_STORE(ð, CORBA::COMPLETED_NO);

 }

 catch (...)

 {

throw; // home will handle

 }

// End Method modifications here

 }

Required Method - getters:: Many of the methods are required to handle exceptions that may be thrown
by the PO and mapping them to exceptions that are supported by the calling framework. For getters the
exception that is used as the CORBA standard exception PERSIST_STORE.

 ::CORBA::Long PolicyCacheDOImplCache_Impl::amount()

 {

// Insert Method modifications here

 ::CORBA::Float iAmountTemp;

 try

 {

iAmountTemp = iPolicyCachePO.id();

 }

catch (CORBA::UserException &cue)

 {

throw CORBA::PERSIST_STORE(ð, CORBA::COMPLETED_NO);

 }

 return iAmountTemp;

// End Method modifications here

 }

 Chapter 11. Assembling and Installing Business Objects 221

Required Method - setters:: Many of the methods are required to handle exceptions that may be thrown
by the PO and mapping them to exceptions that are supported by the calling framework. For getters the
exception that us used is the CORBA standard exception PERSIST_STORE.

::CORBA::Void PolicyCacheDOImplCache_Impl::amount(::CORBA::Float amount)

 {

// Insert Method modifications here

::CORBA::Float iAmountTemp = amount;

 try

 {

 iPolicyCache.amount(iAmountTemp);

 }

catch (CORBA::UserException &cue)

 {

throw CORBA::PERSIST_STORE(ð, CORBA::COMPLETED_NO);

 }

 markDirty();

// End Method modifications here

 }

Required Method - internalizeKeyAttributes:: This method must also handle the exceptions throw by
the PO and map them to exceptions that are accepted by the framework.

 ::CORBA::Void PolicyCacheDOImplCache_Impl::internalizeKeyAttributes(

 ::IIMFLocalToServer::IKeyComponent_ptr keyComp)

 {

// Insert Method modifications here

iKeyValueSet = 1;

 try

 {

 iPolicyCacheDOImplCachePO.internalizeKeyAttributes(keyComp);

 }

catch (IBOIMException::IDataKeyAlreadyExists &dkae)

 {

 throw IManagedClient::IDuplicateKey();

 }

catch (IBOIMException::IDataKeyNotFound &dknf)

 {

 throw IManagedClient::INoObjectWKey();

 }

catch (IBOIMException::IDataObjectFailed &dof)

 {

throw CORBA::PERSIST_STORE(ð, CORBA::COMPLETED_NO);

 }

 catch (...)

 {

throw; // home will handle

 }

// End Method modifications here

 }

Required Method - externalizeKeyAttributes:: This method must also handle the exceptions throw by
the PO and map them to exceptions that are accepted by the framework.

 ::CORBA::Void PolicyCacheDOImplCache_Impl::externalizeKeyAttributes(

::IIMFLocalToServer::IKeyComponent_ptr & keyComp)

 {

// Insert Method modifications here

 try

222 Component Broker: Programming Guide

 {

 iPolicyNoDOImplCachePO.externalizeKeyAttributes(keyComp);

 }

catch (CORBA::UserException &cue)

 {

 throw IBOIMException::IExternalizeKeyAttributesFailed();

 }

// End Method modifications here

 }

Required Method - internalizeData:: This method must also handle the exceptions throw by the PO and
map them to exceptions that are accepted by the framework but is also much simpler due to the support
provided by the PO.

 ::CORBA::Void PolicyCacheDOImplCache_Impl::internalizeData(

const ::IBOIMLocalToServerMetadata::dataSequence & dataSeq)

 {

// Insert Method modifications here

 iPolicyCacheDOImplCachePO.internalizeData(dataSeq[ð]);

iKeyValueSet = 1;

// End Method modifications here

 }

Transient Data Object Customization – UUID Key (Production Use)

This section includes the following topics:

 � “Interfaces”
� “Implementation” on page 224
� “Additional Considerations” on page 225

 Interfaces

The interface view follows. The IBOIMExtLocalToServer::IUUIDDataObject is the interface that should be
supported for data object implementations using UUID Keys for Transient Objects.

IBOIMExtLocalToServer::IUUIDDataObject

PolicyDO

IBOIMExtLocalToServer::IDataObjectBase

PolicyUUIDDO

Figure 57. UUID Data Object Interface View

The implementation interface follows.

 Chapter 11. Assembling and Installing Business Objects 223

IBOIMExtLocalToServer::IDataObjectBase_Impl

IBOIMExtLocalToServer::IUUIDDataObject__ImplPolicyUUIDDO_Skeleton

IBOIMExtLocalToServer::IUUIDDataObject_Skeleton

PolicyUUIDDO_Impl

Figure 58. UUID Data Object Implementation Interface Inheritance

 Implementation

This section includes the following topics:

� “Framework Required Method – internalizeFromPrimaryKey”
� “Framework Required Method – internalizeFromCopyHelper”
� “Framework Required Code – create() function”
� “Methods To Support Attributes – Getters”
� “Methods to Support Attributes – Setters”
� “Additional Methods – Default Constructor” on page 225
� “Required Method – verifyKey” on page 225
� “Required Method – externalizeKeyAttributes” on page 225
� “Required Method – internalizeKeyAttributes” on page 225
� “Required Method – update” on page 225
� “Required Method – insert” on page 225
� “Required Method – retrieve” on page 225
� “Required Method – del” on page 225

Framework Required Method – internalizeFromPrimaryKey: This method should not be implemented.
It is implemented by the framework. It works with a IBOIMExtLocal::IUUIDPrimaryKey.

Framework Required Method – internalizeFromCopyHelper: This method must be implemented. It
should copy its attributes and call it's parent's internalizeFromCopyHelper method which copy the UUID
primary key value.

Framework Required Code – create() function: See the description in “Framework Required create()
function” on page 209. It is the same for UUID based data objects.

Methods To Support Attributes – Getters: See the description in “Methods To Support Attributes –
Getters” on page 209.

Methods to Support Attributes – Setters: See the description in “Methods to Support Attributes –
Setters” on page 214.

224 Component Broker: Programming Guide

Additional Methods – Default Constructor: See the description in “Additional Methods – Default
Constructor” on page 210.

Required Method – verifyKey: This method should not be implemented. The framework takes care of it.

Required Method – externalizeKeyAttributes: This method should not be implemented. The framework
takes care of it.

Required Method – internalizeKeyAttributes: This method should not be implemented. The framework
takes care of it.

Required Method – update: This method should not be implemented. The framework takes care of it.

Required Method – insert: This method should not be implemented. The framework takes care of it.

Required Method – retrieve: This method should not be implemented. The framework takes care of it.

Required Method – del: This method should not be implemented. The framework takes care of it.

 Additional Considerations

Using the UUIDDO and UUIDKey limits the Programming Model for the business objects.
FindByPrimaryKeyString is not meaningful because the UUIDKey does not contain business logic
attributes. UUID support is most useful when there are short-lived business objects that do not need to be
found after they are created.

Transient Data Object – Any Key (Production Use)

If the data object customization is targeting transient data objects that run in a BOIM application adaptor
and leverage business object information for making up the key, then you should read this section. In this
section, the PolicyDO interface is used as the basis to describe the necessary customization.

BOIM Data Object Interfaces

The IDL-based picture for BOIM data objects follows:

IBOIMExtLocalToServer::IDataObjectBase

IBOIMExtLocalToServer::IDataObjectPolicyDO

IDataObject
(from IManagedServer)

PolicyTransDO

Figure 59. BOIM Data Object IDL Interface View

 Chapter 11. Assembling and Installing Business Objects 225

The example does not show objects capable of being included in queries. The PolicyDO_Impl class
implements the PolicyDO interface shown in the previous figure. The implementation interface inheritance
picture follows.

IBOIMExtLocalToServer::IDataObjectBase_Impl

IBOIMExtLocalToServer::IDataObjectBase_Skeleton

PolicyTransDO_Skeleton

PolicyTransDO_Impl

Figure 60. BOIM Data Object Implementation Interface Inheritance

The IBOIMExtLocalToServer::IDataObjectBase_Impl provides an implementation for some of the methods
that are described in the IBOIMExtLocalToServer::IDataObject interface. The following methods have
implementations which are inherited:

 � string connection()
� void connection(string value)

 � void markDirty()
 � void clearDirty()
 � boolean isDirty()
 � void updateToDataStore()
 � void insertToDataStore()
 � void retrieveFromDataStore()
 � void deleteFromDataStore()
 � initDO()

These methods should not be overridden.

Given this base, the PolicyDO_Impl implementation interface should look like this:

 #ifdef SOMCBNOLOCALINCLUDES

 #include <IBOIMExtLocalToServer>

 #include <PolicyTransDOImpl.hh>

 #else

 #include "IBOIMExtLocalToServer.ih"

 #include "PolicyTransDOImpl.hh"

 #endif

class PolicyTransDOImpl_Impl : public virtual ::PolicyTransDOImpl_Skeleton,

public virtual IBOIMExtLocalToServer_IDataObjectBase_Impl

 {

 public:

//default constructor doimpl

 PolicyTransDOImpl_Impl();

 ::CORBA::Float amount();

::CORBA::Void amount(::CORBA::Float amount);

 ::CORBA::Long policyNo();

226 Component Broker: Programming Guide

::CORBA::Void policyNo(::CORBA::Long policyNo);

 ::CORBA::Float premium();

::CORBA::Void premium(::CORBA::Float premium);

virtual ::CORBA::Void insert();

virtual ::CORBA::Void update();

virtual ::CORBA::Void retrieve();

virtual ::CORBA::Void del();

virtual ::CORBA::Void internalizeFromPrimaryKey(

 ::IManagedLocal::IPrimaryKey_ptr inKey);

virtual ::CORBA::Void internalizeFromCopyHelper(

 ::IManagedLocal::INonManageable_ptr inCopy);

virtual ::CORBA::Void internalizeKeyAttributes(

 ::IIMFLocalToServer::IKeyComponent_ptr keyComp);

virtual ::CORBA::Void externalizeKeyAttributes(

::IIMFLocalToServer::IKeyComponent_ptr & keyComp);

virtual ::CORBA::Boolean verifyKey();

 protected:

 private:

 ::CORBA::Float iAmount;

 ::CORBA::Long iPolicyNo;

 ::CORBA::Float iPremium;

 ::CORBA::Boolean iKeyValueSet;

 };

BOIM Data Object Implementation

The following methods need to be implemented in order for the BOIM data object to work properly on the
server.

Framework Required Method – internalizeFromPrimaryKey: See the description in “Framework
Required Method internalizeFromPrimaryKey” on page 208. It is the same for BOIM-based data objects.

In addition, the keyValueSet flag should be set to true when valid key values are successfully retrieved
from the key.

Framework Required Method – internalizeFromCopyHelper: See the description in “Framework
Required Method internalizeFromCopyHelper” on page 209. It is the same for BOIM-based data objects.

In addition, the iKeyValueSet flag should be set to true when valid key values are successfully retrieved
from the key.

Framework Required Code – create() Function: See the description in “Framework Required create()
function” on page 209. It is the same for BOIM based data objects.

Methods To Support Attributes – Getters: See the description in “Methods To Support Attributes –
Getters” on page 209. It is the same for BOIM based data objects.

Methods to Support Attributes – Setters: All of the attributes need to have a set method on them. A
setter method for one of the attributes of the PolicyDO follows.

::CORBA::Void PolicyTransDOImpl_Impl::amount(::CORBA::Float amount)

 {

// Insert Method modifications here

iAmount = amount;

 markDirty();

 Chapter 11. Assembling and Installing Business Objects 227

// End Method modifications here

 }

The difference from the transient case is where the markDirty() method is run. This indicates to the
application adaptor that it is necessary to update the underlying datastore at prescribed times.

Additional Methods – Default Constructor: The default constructor needs to initialize the attributes and
synchronize the DataObject with the PO. This is best done by calling the setters for these attributes.
However, a side effect of calling the setters is that the 'dirty' bit is set. Leaving this bit set would cause
invalid updates to the datastore when the business object is passivated. To solve this problem the
clearDirty() method is called at the end of the method. Also, the iKeyValueSet() attribute is set to a value
that indicates the primary key attributes have not yet been set.

 PolicyEmSQLDOImpl_Impl::PolicyEmSQLDOImpl_Impl()

 :iKeyValueSet(ð)

 { policyNo(ð);

 amount(ð);

 premium(ð);

 clearDirty();

 }

Required Method – verifyKey: This method returns a boolean to indicate whether or not the key values
in the data object have been acquired and are valid. This method is used by the application adaptor to
validate the key before it builds reference data for the object.

 ::CORBA::Boolean PolicyTransDOImpl_Impl::verifyKey()

 {

// Insert Method modifications here

 return iKeyValueSet;

// End Method modifications here

 }

Required Method – externalizeKeyAttributes: This method is used by the application adaptor as it
creates reference data for the object reference that is being created. The code in this method writes out
the key values into the outKey that is provided on the parameter list.

 ::CORBA::Void

 PolicyTransDOImpl_Impl::externalizeKeyAttributes(

::IIMFLocalToServer::IKeyComponent_ptr & keyComp)

 {

// Insert Method modifications here

 keyComp->write_long(iPolicyNo);

// End Method modifications here

 }

Required Method – internalizeKeyAttributes: This method is used by the application adaptor for
reactivating objects. This method should pull information out of the inKey provided and set the flag
indicating that the key is valid to true. Additional logic may be placed in this method to further verify that
the key value is good.

 ::CORBA::Void

 PolicyTransDOImpl_Impl::internalizeKeyAttributes(

 ::IIMFLocalToServer::IKeyComponent_ptr keyComp)

 {

// Insert Method modifications here

iPolicyNo = keyComp->read_long();

iKeyValueSet = 1;

// End Method modifications here

 }

228 Component Broker: Programming Guide

Required Methods – del, insert, retrieve, and update: For true transient objects, the del(), insert(),
retrieve(), and update() methods are empty. For situations where the transient object adaptor is being
used to manage the object references, but not the persistent state data, these methods contain code that
removes, creates, retrieves, or updates a new entry in the persistent store.

Summary of DataObject Customization

Table 5 on page 230 enumerates the general strategy for each data object method or data object method
type as it applies to each of the kinds of data object customization that are possible using Component
Broker.

 Chapter 11. Assembling and Installing Business Objects 229

Transient - Any
Key
(production)

Required, uses
local cache

Required, uses
local cache

Required

Required, uses
local cache

Required, uses
markDirty(),
uses local cache

Required

Implemented by
framework

Implemented by
framework

Implemented by
framework

Implemented by
framework

Implemented by
framework

Implemented by
framework

Transient
(production) -
UUID

Implemented by
framework

Required

Required

Required

Required, uses
markDirty(), uses
local cache

Required

Implemented by
framework

Implemented by
framework

Implemented by
framework

Implemented by
framework

Implemented by
framework

Implemented by
framework

Persistent
Cache Service
data object
Cache

Required, talks
to Cache
Service data
object

Required, talks
to Cache
Service data
object

Required

Required, talks
to Cache
Service data
object

Required, talks
to Cache
Service data
object

Required

Implemented by
framework

Implemented by
framework

Implemented by
framework

Implemented by
framework

Implemented by
framework

Implemented by
framework

Persistent data
object Static
SQL

Required, uses
local cache

Required, uses
local cache

Required

Required, uses
local cache

Required, uses
markDirty(), uses
local cache

Required

Implement by
framework

Implemented by
framework

Implemented by
framework

Implemented by
framework

Implemented by
framework

Implemented by
framework

Transient data
object (unit
test)

Required

Required

Required

Required

Required

Required

n/a

n/a

n/a

n/a

n/a

n/a

Table 5 (Page 1 of 3). Summary of Data Object Customization Methods.

Method

IManagedServer::IDataObject:: internalizeFromPrimary

IManagedServer::IDataObject::
internalizeFromCopyHelper

_create

Attribute getters

Attribute setters

Default constructor

IBOIMExtLocalToServer::IDataObject::connection()

IBOIMExtLocalToServer::IDataObject::
connection(string)

IBOIMExtLocalToServer::IDataObject::markDirty()

IBOIMExtLocalToServer::IDataObject::isDirty()

IBOIMExtLocalToServer::IDataObject::
updateToDataStore()

IBOIMExtLocalToServer::IDataObject::
insertToDataStore

230
C

om
ponent B

roker:
P

rogram
m

ing G
uide

Transient - Any
Key
(production)

Implemented by
framework

Implemented by
framework

Required

Required

Required

Required

Required

Required

Required

n/a

Transient
(production) -
UUID

Implemented by
framework

Implemented by
framework

Implemented by
framework

Implemented by
framework

Implemented by
framework

Implemented by
framework

Implemented by
framework

Implemented by
framework

Implemented by
framework

n/a

Persistent
Cache Service
data object
Cache

Implemented by
framework

Implemented by
framework

Required

Required, talks
to Cache
Service data
object

Required, talks
to Cache
Service data
object

Required, null
implementation
Cache Service
data object
handles

Required, null
implementation
Cache Service
data object
handles

Required, null
implementation

Required, does
markDelete on
Cache Service
data object

n/a

Persistent data
object Static
SQL

Implemented by
framework

Implemented by
framework

Required

Required

Required

Required, has
SQL

Required, has
SQL

Required, has
SQL

Required, has
SQL

Required

Transient data
object (unit
test)

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

Table 5 (Page 2 of 3). Summary of Data Object Customization Methods.

Method

IBOIMExtLocalToServer::IDataObject::
retrieveFromDataStore

IBOIMExtLocalToServer::IDataObject::
deleteFromDataStore

IBOIMExtLocalToServer::IDataObject::verifyKey()

IBOIMExtLocalToServer::IDataObject::
externalizeKeyAttributes

IBOIMExtLocalToServer::IDataObject::
internalizeKeyAttributes

IBOIMExtLocalToServer::IDataObject::update()

IBOIMExtLocalToServer::IDataObject::insert()

IBOIMExtLocalToServer::IDataObject::retrieve()

IBOIMExtLocalToServer::IDataObject::del()

IRDBIMExtLocalToServer::setConnection

C
hapter

11.
A

ssem
bling and Installing B

usiness O
bjects

231

Transient - Any
Key
(production)

Optional

Optional

Transient
(production) -
UUID

Optional

Optional

Persistent
Cache Service
data object
Cache

Optional

Optional

Persistent data
object Static
SQL

Optional

Optional

Transient data
object (unit
test)

n/a

n/a

Table 5 (Page 3 of 3). Summary of Data Object Customization Methods.

Method

IBOIMExtLocalToServer::IQueryableDataObject::internalizeData()

IBOIMExtLocalToServer::IDataObject::initDO()

232
C

om
ponent B

roker:
P

rogram
m

ing G
uide

Data Object Data Management Patterns

In the MOFW, decisions are made about how to deal with the data object. This is done when choosing
between IManagedServer::IManagedObjectWithCachedDataObject and
IManagedServer::IManagedObjectWithDataObject. Programming style influences the choice. Performance
and other design considerations also come into play.

Data objects also do a level of “caching.” This is not a programming style issue. It is related to the
underlying store, or lack thereof, for which the data object is the abstraction that is used by the business
object. Transient objects definitely need to have some cache in the data object as that is the only way
that they can work correctly. Data objects that are abstractions over persistent storage, however, have
choices to make about the caching pattern that is chosen.

Data Object Customization and Inheritance

It is necessary to inherit the parent data object interface. It is not necessary and may not even be
desirable to inherit implementation of the base class data object. However, if you are inheriting data object
implementation, then parent methods need to be called for internalizeFromPrimaryKey,
internalizeFromCopyHelper, verifyKey, and externalizeKeyAttributes. Call the parent method first, before
executing the subclass function. Other methods may also need to call parent methods. This varies based
upon the kind of data object being used.

The following example assumes that the PolicyEmSQLDOImpl interface is inherited. (See “Transient Data
Object – Any Key (Production Use)” on page 225 for details on the BOIM data object type of data object
customization.)

CarPolicy BOIM Data Object Interfaces

The IDL-based picture for the CarPolicy BOIM data object follows:

PolicyEmSQLDOImplCarPolicyDO

CarPolicyEmSQLDOImpl

Figure 61. CarPolicy BOIM Data Object IDL Interface View

The PolicyEmSQLDOImpl_Impl class implements the Policy interface as shown in Figure 61. The
implementation interface inheritance is shown in Figure 62.

PolicyEmSQLDOImpl_ImplCarPolicyEmSQLDOImpl_Skeleton

CarPolicyEmSQLDOImpl_Impl

Figure 62. BOIMDO Implementation Interface Inheritance

Given this base, the CarPolicyEmSQLDOImpl_Impl implementation interface should look like this:

 Chapter 11. Assembling and Installing Business Objects 233

 #include "CarPolicyEmSQLPO.hpp"

 #ifdef SOMCBNOLOCALINCLUDES

 #include <PolicyEmSQLDOImpl.ih>

 #include <CPEmSQLDOImpl.hh>

 #else

 #include "PolicyEmSQLDOImpl.ih"

 #include "CPEmSQLDOImpl.hh"

 #endif

class CarPolicyEmSQLDOImpl_Impl : public virtual::CarPolicyEmSQ LDOImpl_Skeleton

,public virtual PolicyEmSQLDOImpl_Impl

 {

 public:

//default constructor doimpl

 CarPolicyEmSQLDOImpl_Impl();

 ::CORBA::Long year();

::CORBA::Void year(::CORBA::Long year);

 char\ make();

::CORBA::Void make(const char\ make);

 char\ model();

::CORBA::Void model(const char\ model);

 ::CORBA::Long serialNumber();

::CORBA::Void serialNumber(::CORBA::Long serialNumber);

 ::CORBA::Float collisionDeductible();

::CORBA::Void collisionDeductible(::CORBA::Float collisionDeductible);

 ::CORBA::Boolean glassCoverage();

::CORBA::Void glassCoverage(::CORBA::Boolean glassCoverage);

 ::CORBA::Long policyNo();

::CORBA::Void policyNo(::CORBA::Long policyNo);

virtual ::CORBA::Void insert();

virtual ::CORBA::Void update();

virtual ::CORBA::Void retrieve();

virtual ::CORBA::Void del();

virtual ::CORBA::Void setConnection(const char\ dataBaseName);

virtual ::CORBA::Void internalizeFromPrimaryKey(

 ::IManagedLocal::IPrimaryKey_ptr inKey);

virtual ::CORBA::Void internalizeFromCopyHelper(

 ::IManagedLocal::INonManageable_ptr inCopy);

virtual ::CORBA::Void internalizeKeyAttributes(

 ::IIMFLocalToServer::IKeyComponent_ptr keyComp);

virtual ::CORBA::Void externalizeKeyAttributes(

::IIMFLocalToServer::IKeyComponent_ptr & keyComp);

virtual ::CORBA::Void internalizeData(

const ::IBOIMLocalToServerMetadata::dataSequence & dataSeq);

virtual ::CORBA::Boolean verifyKey();

 protected:

 ::CarPolicyEmSQLPO iCarPolicyEmSQLPO;

 private:

 ::CORBA::Boolean iKeyValueSet;

 };

234 Component Broker: Programming Guide

CarPolicy BOIM Data Object Implementation

The following methods need to be implemented for the data object to work properly on the server.

Framework Required Method – internalizeFromPrimaryKey

The policyNo attribute needs to be internalized. The keyValueSet flag should be set to true when valid
key values are successfully retrieved for both attributes.

 ::CORBA::Void

 CarPolicyEmSQLDOImpl_Impl::internalizeFromPrimaryKey(::IManagedLocal::IPrimaryKey_ptr inKey)

 {

// Insert Method modifications here

PolicyKey_var iPolicyKey = PolicyKey::_narrow(inKey);

long iPolicyNoTemp = iPolicyKey->policyNo();

iKeyValueSet = 1;

 PolicyEmSQLPOKey iPolicyEmSQLPOKey;

 CarPolicyEmSQLPOKey iCarPolicyEmSQLPOKey;

 iPolicyEmSQLPOKey.policyNo(iPolicyNoTemp);

 iCarPolicyEmSQLPOKey.policyNo(iPolicyNoTemp);

 iPolicyEmSQLPO.internalizeFromPrimaryKey(iPolicyEmSQLPOKey);

 iCarPolicyEmSQLPO.internalizeFromPrimaryKey(iCarPolicyEmSQLPOKey);

// End Method modifications here

 }

Framework Required Method – internalizeFromCopyHelper

internalizeFromCopyHelper() should first be called using PolicyEmSQLDOImpl_Impl. Then copy the
attributes from the copy helper object to those stored in the CarPolicyEmSQLDOImpl_Impl. In addition, the
keyValueSet flag should be set to true when valid key values are successfully retrieved from the key.

 ::CORBA::Void

 CarPolicyEmSQLDOImpl_Impl::internalizeFromCopyHelper(

 ::IManagedLocal::INonManageable_ptr inCopy)

 {

// Insert Method modifications here

CarPolicyCopy_var iCarPolicyCopy = CarPolicyCopy::_narrow(inCopy);

long iYearTemp = iCarPolicyCopy->year();

::CORBA::String_var iMakeTemp = iCarPolicyCopy->make();

::CORBA::String_var iModelTemp = iCarPolicyCopy->model();

long iSerialNumberTemp = iCarPolicyCopy->serialNumber();

float iCollisionDeductibleTemp = iCarPolicyCopy->collisionDeductible();

::CORBA::Boolean iGlassCoverageTemp = iCarPolicyCopy->glassCoverage();

float iAmountTemp = iCarPolicyCopy->amount();

long iPolicyNoTemp = iCarPolicyCopy->policyNo();

float iPremiumTemp = iCarPolicyCopy->premium();

iKeyValueSet = 1;

 PolicyEmSQLPOCopy iPolicyEmSQLPOCopy;

 CarPolicyEmSQLPOCopy iCarPolicyEmSQLPOCopy;

 iPolicyEmSQLPOCopy.amount(iAmountTemp);

 iPolicyEmSQLPOCopy.policyNo(iPolicyNoTemp);

 iCarPolicyEmSQLPOCopy.policyNo(iPolicyNoTemp);

 iPolicyEmSQLPOCopy.premium(iPremiumTemp);

 iCarPolicyEmSQLPOCopy.year(iYearTemp);

 {

 Chapter 11. Assembling and Installing Business Objects 235

 DB2VarCharMap maketemp;

 CARPOLICYEMSQLPO_MAKEDB2VARCHAR maketemp2;

maketemp.maxLen = 2ððð;

maketemp.dataP = maketemp2.data;

 if (iMakeTemp)

 DB2MappingHelper::stringToVarChar(iMakeTemp, maketemp);

 else

maketemp.length = ð;

maketemp2.length = maketemp.length;

 iCarPolicyEmSQLPOCopy.make(maketemp2);

 }

 {

 DB2VarCharMap modeltemp;

 CARPOLICYEMSQLPO_MODELDB2VARCHAR modeltemp2;

modeltemp.maxLen = 2ððð;

modeltemp.dataP = modeltemp2.data;

 if (iModelTemp)

 DB2MappingHelper::stringToVarChar(iModelTemp, modeltemp);

 else

modeltemp.length = ð;

modeltemp2.length = modeltemp.length;

 iCarPolicyEmSQLPOCopy.model(modeltemp2);

 }

 iCarPolicyEmSQLPOCopy.serialNumber(iSerialNumberTemp);

 iCarPolicyEmSQLPOCopy.collisionDeductibl(iCollisionDeductibleTemp);

 iCarPolicyEmSQLPOCopy.glassCoverage(iGlassCoverageTemp);

 iPolicyEmSQLPO.internalizeFromCopyHelper(iPolicyEmSQLPOCopy);

 iCarPolicyEmSQLPO.internalizeFromCopyHelper(iCarPolicyEmSQLPOCopy);

// End Method modifications here

 }

Framework Required Code – create() Function

See the description in “Framework Required create() function” on page 209. It is the same for this data
object.

Methods To Support Attributes – Getters

All of the attributes need to have a getter method for them. Methods that support getting attributes work in
the usual way. For example, the getter for make would be:

 char\ CarPolicyEmSQLDOImpl_Impl::make()

 {

// Insert Method modifications here

 ::CORBA::String_var iMakeTemp;

 {

 DB2VarCharMap maketempR;

maketempR.maxLen = 2ððð;

maketempR.length = iCarPolicyEmSQLPO.make().length;

maketempR.dataP = (char \)iCarPolicyEmSQLPO.make().data;

iMakeTemp = new char[2ðð1];

 DB2MappingHelper::varCharToString(maketempR, iMakeTemp);

 }

 return CORBA::string_dup(iMakeTemp);

// End Method modifications here

 }

236 Component Broker: Programming Guide

Methods to Support Attributes – Setters

All of the attributes need to have a setter method for them. Methods that support setting attributes work in
the usual way. For example, the setter for make would be:

::CORBA::Void CarPolicy_Impl::make(const char\ make)

 {

fMake = make;

 markDirty();

 }

Additional Methods – Default Constructor

The implementation for this method is similar to other data objects.

 CarPolicyEmSQLDOImpl_Impl::CarPolicyEmSQLDOImpl_Impl()

 :iKeyValueSet(ð)

 {

 year(ð);

 make(CORBA::string_dup(""));

 model(CORBA::string_dup(""));

 serialNumber(ð);

 collisionDeductible(ð);

 policyNo(ð);

 clearDirty();

 }

Required Method – externalizeKeyAttributes

The implementation for this method is similar to other data objects, except that it first calls
externalizeKeyAttributes on the parent data object.

 ::CORBA::Void

 CarPolicyEmSQLDOImpl_Impl::externalizeKeyAttributes(

::IIMFLocalToServer::IKeyComponent_ptr & keyComp)

 {

// Insert Method modifications here

 long iPolicyNoTemp;

 PolicyEmSQLPOKey iPolicyEmSQLPOKey;

 CarPolicyEmSQLPOKey iCarPolicyEmSQLPOKey;

 iPolicyEmSQLPO.externalizeKeyAttributes(iPolicyEmSQLPOKey);

 iCarPolicyEmSQLPO.externalizeKeyAttributes(iCarPolicyEmSQLPOKey);

iPolicyNoTemp = iPolicyEmSQLPOKey.policyNo();

iPolicyNoTemp = iCarPolicyEmSQLPOKey.policyNo();

 keyComp->write_long(iPolicyNoTemp);

// End Method modifications here

 }

Required Method – internalizeKeyAttributes

The implementation for this method is similar to other data objects, except that it first calls
internalizeKeyAttributes on the parent data object. In addition, all keys need to be verified that the values
are good.

 Chapter 11. Assembling and Installing Business Objects 237

 ::CORBA::Void

 CarPolicyEmSQLDOImpl_Impl::internalizeKeyAttributes(

 ::IIMFLocalToServer::IKeyComponent_ptr keyComp)

 {

// Insert Method modifications here

long iPolicyNoTemp = keyComp->read_long();

iKeyValueSet = 1;

 PolicyEmSQLPOKey iPolicyEmSQLPOKey;

 CarPolicyEmSQLPOKey iCarPolicyEmSQLPOKey;

 iPolicyEmSQLPOKey.policyNo(iPolicyNoTemp);

 iCarPolicyEmSQLPOKey.policyNo(iPolicyNoTemp);

 iPolicyEmSQLPO.internalizeKeyAttributes(iPolicyEmSQLPOKey);

 iCarPolicyEmSQLPO.internalizeKeyAttributes(iCarPolicyEmSQLPOKey);

// End Method modifications here

 }

Required Method —del

The del method is called when the object is removed. Both of the POs need to be called in this method.

 ::CORBA::Void CarPolicyEmSQLDOImpl_Impl::del()

 {

// Insert Method modifications here

 iPolicyEmSQLPO.del();

 iCarPolicyEmSQLPO.del();

// End Method modifications here

 }

Required Method —insert

The insert is called when a create is done. Both of the POs need to be called in this method.

 ::CORBA::Void CarPolicyEmSQLDOImpl_Impl::insert()

 {

// Insert Method modifications here

 iPolicyEmSQLPO.insert();

 iCarPolicyEmSQLPO.insert();

// End Method modifications here

 }

Required Method —retrieve

The retrieve gets data from the database. Both of the POs need to be called in this method.

 ::CORBA::Void CarPolicyEmSQLDOImpl_Impl::retrieve()

 {

// Insert Method modifications here

 iPolicyEmSQLPO.retrieve();

 iCarPolicyEmSQLPO.retrieve();

// End Method modifications here

 }

Required Method —update

The update is called when data is put into the database. Both of the POs need to be called in this method.

238 Component Broker: Programming Guide

 ::CORBA::Void CarPolicyEmSQLDOImpl_Impl::update()

 {

// Insert Method modifications here

 iPolicyEmSQLPO.update();

 iCarPolicyEmSQLPO.update();

// End Method modifications here

 }

Required Method —setConnection

The setConnection is called when initializing connections. Both of the POs need to be called in this
method.

::CORBA::Void CarPolicyEmSQLDOImpl_Impl::setConnection(const char\ dataBaseName)

 {

// Insert Method modifications here

 iPolicyEmSQLPO.setConnection(dataBaseName);

 iCarPolicyEmSQLPO.setConnection(dataBaseName);

// End Method modifications here

 }

Data Object Customization for Cardinality Relations

The data object implementation for a business object that contains a reference to another business object
requires getters and setters that are more complex than those that implement attributes with simple
mappings to back-end resource managers such as SQL tables. This section describes the reference
mapping patterns, what the purpose of each pattern is, and how best to apply the patterns to specific
relationship situations.

Top-Down Versus Bottom-Up Relations

The business object interface that contains references does not know how the relationship is implemented.
This is a key part of the encapsulation provided by the Managed Object Framework. In this section,
implementation strategies and how they appear on the data object implementation are introduced.

There are two basic strategies that are applied to implementing object references which appear in the
business object:

Top-down This approach allows alteration or definition of the database schema that underly the class of
business object that has references to other business objects.

Bottom-up This approach implies preservation of an existing schema.

While there are times when the object resolution approach characterized as bottom-up can be used for
new top-down applications, the inverse is not true. The two strategies apply equally well to cardinality-1
and cardinality-n types of relationships.

 Top-Down Customizations

The top-down approach is characterized by the presence of a string in the database table of the
containing object. This string contains information which the data object can use to produce the object
reference required by the business object interface. Data object getter methods take on the general form
of:

 Chapter 11. Assembling and Installing Business Objects 239

Claim_ptr PolicyDO_Impl::currentClaim()

{

// retrieve the stored value for persistent store

 ...

// convert the retrieved value into a pointer and return it

 ...

}

The Data object setter methods take on the general form of:

::CORBA::Void PolicyDO_Impl::currentClaim(Claim_ptr claim)

{

// map the claim pointer into a storable form

 ...

// invoke and/or notify the application adaptor regarding

// the change to persistent data

 ...

}

The implementation of these methods is variable in the following dimensions:

� Mapping or conversion design pattern dimension
� Persistent storage dimension

CORBA provides conversion interfaces that assist in the mapping. These interfaces are string_to_object
and object_to_string. The string form of an object reference (often called a Stringified Object Reference, or
SOR), must stand alone and may be quite large, because it must contain enough information to locate and
materialize a remote object. It is, however, a simple way to get the string representation of an object that
can then be stored persistently and later used to bring an object reference back to life.

Conceptually, storing a stringified reference sounds reasonable. However, more efficient mechanisms with
dimensions that possess different levels of robustness are also possible. These patterns take advantage of
abstractions introduced by the managed object framework. The patterns are generally preferable to SORs
for the following reasons:

� They require less storage to implement.

� They are based on the applications object model, instead of the objects physical location in the
network, making them more robust and allowing them to be maintained more easily than SORs. For
example, moving a Home from one container to another would not break the Home/key reference (this
pattern is described later), but would break an outstanding SOR.

There are many different combinations of CORBA and Component Broker abstractions that could be used
to map object references. The following useful patterns have been identified by the programming model:

Stringified Object Reference
Stores the Stringified Object Reference as a variable length string. It is the simplest form in
structure and the largest in size. Multiple references to the same object or other objects in the
same application adaptor environment store duplicate prefix data.

Object Name
Stores a Name Service name of an object as a variable length string. This string is much
shorter than the SOR. Only objects that are named in the Name Service can be referenced
using this pattern.

Home Name and Key
Used for objects that are not named in the Name Service. Instead of the object name, it stores
the name of the object home and its primary key within the home. The stored representation for
this pattern is a pair of variable length strings: the home name and the stringified primary key.

240 Component Broker: Programming Guide

Queryable Collection Name and Query String
Used for objects that are contained in a queryable home or named collection. It stores a pair of
variable length strings: the collection name and a query string that uniquely returns the object.

This is not an exhaustive list. Many other patterns and variants of these patterns are possible. The intent
here is to describe some of the more generally applicable patterns.

 Bottom-Up Customizations

In the bottom-up case, in addition to knowing that the business object interface has a getter and a setter,
there is also a known value in an existing database table or other resource to which the data object is
mapped. The value in the existing resource manager is not a mapped object reference as described in
“Top-Down Customizations” on page 239. It is most probably a foreign-key, a value that can be used,
along with other Component Broker system function, to render the object reference which is being
rrquested in the upper level (business object) interface. The methods take on the same form as in the
top-down case excepting this additional restriction of the value used to do the mapping.

Conceptually, there are a number of patterns that can be used to map the foreign-key into the object
reference and back again:

FindByPrimaryKeyString
Using this pattern, a value (or values) from the underlying resource manager is used to
formulate a key. The home for the kind of object being found is determined. The key is used to
do a findByPrimaryKeyString on the object. The resulting reference is returned back to the
business object. On the setter side, the object reference primary key is extracted and stored for
later use when the containing object is again activated and the referred to object is requested.
A basic structure is shown in the following segments:

 Claim_ptr PolicyDO_Impl::currentClaim()

 {

// retrieve the stored foreign key from the PolicySQL table

// create a claim key

ClaimKey_var theKey = Claim::_create();

// set foreign key from table into primary key for claim

 theKey->claimNo(n);

// find the object via its home

 IMananagedClient::IManageable_var aMgbl;

aMgbl = claimHome->findByPrimaryKeyString(\theKey->toString());

 return Claim::narrow(aMgbl);

 ...

 }

::CORBA::Void PolicyDO_Impl::currentClaim(Claim_ptr claim)

 {

// map the claim pointer into a storable form

// n is part of a struct used to talk to the database

 n=claim->claimNo;

// invoke and/or notify the application adaptor regarding

// the change to persistent data

 markDirty();

 ...

 }

The above segments have exception handling and NULL checks removed to allow a more
simplified view. They are also incomplete in how they deal with the conditionality aspect of the

 Chapter 11. Assembling and Installing Business Objects 241

relationship. If, for example, there is always total ownership of the referenced object, then the
setter has to consider removing the referenced object.

The other issue is that of finding the home that is used in the getter method. This is discussed
in later sections.

Query
This pattern leverages the query service. In this case, the foreign-key is used as the basis to
formulate a query into the table that contains the data for the referred to objects. The result set
can then be used to return values to the business object interface. This pattern works for both
1-to-1 and 1-to-n relationships with various exception handling required.

The following segment shows conceptually what happens in the 1-to-1 case:

 Policy_ptr ClaimDOImpl::policy()

 {

 PolicyKey_var iPolicyKey;

 iPolicyKey=PolicyKey::_create();

// set the foreign key into a policy key

 iPolicyKey->policyNo(iClaimPO.policyNo());

 ::ByteString_var\iPolicyKeyString iPolicyKey->toString();

// find the home to use

 char buf[128];

sprintf(buf, "/host/resources/servers/%s/collections/%s", serverName(),

 "Insurance::Policy");

CORBA::Object_var obj = nameService()->resolve_with_string(buf);

 iPolicyHome=IManagedClient::IHome::_narrow(obj);

// find the object using the key

temp = iPolicyHome->findByPrimaryKeyString(\iPolicyKeyString);

 return Policy::_narrow(temp);

 }

::CORBA::Void ClaimDOImpl::policy(Policy_ptr policy)

 {

// get the primary key string from the in object

::ByteString_var iPolicyKeyString = policy->getPrimaryKeyString();

// make a key

PolicyKey_var iPolicyKey = PolicyKey::_create();

// set string into the key

 iPolicyKey->fromString(\iPolicyKeyString);

// get number from key and tell PO about it

iPolicyPolicyNoFK = iPolicyKey->policyNo();

 iClaimPO.policyNo(iPolicyPolicyNK);

In the example above, the getter method creates the reference to return by issuing
findByPrimaryKeyString with the key that is created from the foreign key value. On the setter,
the foreign key determined by examining the key that comes with a reference is extracted and
pushed back down to the database. The value for the home Insurance::Policy represents the
value that is used by client programs for the factory finder and is part of the management
information that is found in the Home Image under the name of managed object interface.

The general patterns that can be used for top-down and bottom-up relationships are described
in previous sections. The following sections detail what is done for each specific combination.

242 Component Broker: Programming Guide

 Cardinality-1 Relationships

For the top-down case , using the handle-pattern that is supported by Object Builder is recommended.
The handle concept of Component Broker encapsulates the actual pattern that is used to store the object
reference. From this perspective, each 1-to-1 relationship in the top-down case stores a handle. Using the
handle pattern requires that some decisions be made about the nature of the handle.

When a business object that will be referred to by other business objects is constructed, the
handle-pattern that it supports must be decided. If no choice is made, then the handle implementation that
encapsulates a stringified object reference is the default. This means that it is essential that the Stringified
Object Reference pattern be selected on Object Builder whenever constructing relationships to this
business object from other business objects. If, when constructing the referenced business object, the
managedObjectName or Home Name and Key handles are selected, then the corresponding mapping
pattern must be used when making relationships to these objects.

The Home Name and Key pattern should be used when appropriate. This allows creation of database
tables that hold shorter handles than is possible with the stringified reference version of handles. For
example, the Home Name and Key can generally be stored in 200 bytes (plus or minus 20 bytes) but the
SOR version of handles can require more than 1000 bytes.

An optimization for this pattern that can be used when the object being linked is always in a specific
known home, is to store only the key string in the database and to hard code the home name (for
example, with an installation-time settable environment variable) in the access methods. This reduces the
storage overhead per link tremendously but can be used only to link to objects in the same home.
Attempts to set the link to point to an object of the same type in another home cannot be statically
checked and would therefore need to fail at run time.

Alternatively, a factory finder can be used to implement this pattern. This variant of the pattern also
eliminates the home name from the stored representation by using a factory finder instead of the Name
Service to retrieve the home object in the get method. This approach can be used only if the factory finder
can be guaranteed to always return the same home object (for example, when there is known to be one
and only one home for a certain managed object type).

The following figure summarizes what happens at the object (top of figure) and database level (bottom of
figure) to make this relationship happen.

For the bottom-up case , Object Builder supports the foreign key pattern suggested and described
previously. This is the recommended pattern.

The following figure summarizes what happens at the object (top of figure) and database level (bottom of
figure) to make this relationship happen.

 Cardinality-N Relationships

For the top-down case , two patterns are supported by Object Builder for Cardinality-N relationships.
Conceptually they involve either keeping a reference collection of the object relationships or resolving the
object relationships using the query service.

The reference collection method is useful if there is no query predicate from which a results set can be
calculated. This option creates a reference collection of object relationships. A handle to this reference
collection is stored in the business object that contains the reference to the objects. This reference
collection is then accessed whenever the members of the object relationship are used.

The query solution for 1-to-M (described following) is also useful in some top-down scenarios.

 Chapter 11. Assembling and Installing Business Objects 243

attribute long claimNo
attribute float claimAmount
.....
attribute Policy policy

mapping occurs in DO Impl,
no direct mapping here

claimNo INTEGER NOT NULL
claimAmount DOUBLE
......
policyHandle VARCHAR(1200) FOR BIT DATA,
PRIMARY KEY (claimNo)
Claim refers to Policy Example of 1-to-1 Cardinality,

policyNo INTEGER NOT NULL
amount DOUBLE
premium DOUBLE,
PRIMARY KEY (policyNo)

attribute long policyNo

attribute float amount
attribute float premium

mapping
here

Claim Policy

Figure 63. Claim refers to Policy Example of 1-to-1 Cardinality (Top Down)

For the bottom-up case , the solution for 1-to-M relationships is to use the query service. Objects are
retrieved using a code segment similar to the following:

 ::IManagedCollections::IIterator_ptr PolicyDOImple::myClaims()

 {

 char buf[1ð24];

 sprintf(buf2, "/host/resources/servers/%s/query-evaluators/default",

 serverName());

::CORBA::Object_var obj = nameService()->resolve_with_string(buf2);

IExtendedQuery::QueryEvaluator_var qe = IExtendedQuery::QueryEvalutor::_narrow(obj);

 ICollectionsBase::IIterator_ptr qIter;

 IExtendedQuery::MemberList_var members;

 char buf[1ð24];

sprintf(bufm,"select a from %s a where

 a.\policy\"..policyNo=d%;","Insurance::Policy",policyNo());

 qe->evaluate_to_iterator(buf,NULL,NULL,NULL,ð,members,qIter);

 return qIter;

 }

Object Builder currently supports a pattern similar to this. The difference is that the code to do the query is
actually located in the business object implementation. This is a tactical statement. Either way, the general
concept of the query code being used to resolve the relationship is the same.

This option allows query to be used to determine membership. This is required in cases where there are
other legacy programs that could affect membership in any given relationship. This also has the advantage
of using less storage in the business object that has a relationship to many other objects of a different
type.

Summarizing Relationships Implementations

The patterns described above are summarized in the following table.

244 Component Broker: Programming Guide

attribute long claimNo
attribute float claimAmount
.....
attribute Policy policy

foreign key

mapping here

claimNo INTEGER NOT NULL
claimAmount DOUBLE
......
policyNo INTEGER,
PRIMARY KEY (claimNo)

policyNo INTEGER NOT NULL
amount DOUBLE
premium DOUBLE,
PRIMARY KEY (policyNo)

attribute long policyNo

attribute float amount
attribute float premium

Claim Policy

Figure 64. Claim refers to Policy Example of 1-to-1 Cardinality (Bottom Up)

Top-Down Bottom-Up

Cardinality-1 Store the reference

� Uses handles support to store a
stringified version of the object
reference

Foreign key

� Uses findByPrimaryKeyString to
locate referenced object

Cardinality-n Reference collection

� Uses handles support to store a
reference to a collection that
contains the “object relationships”

Foreign key

� Uses query service to return the
“object relationships”

� Requires a 1-to1 reference to
implement the other way

 Additional Customizations

Additional Data Object Customizations are possible. If the customization options that are optimal for a
given relationship are not supported directly, it is possible to alter the mapping patterns that are used in
such a way that Object Builder round-tripping is still preserved. This is done through the use of a mapping
helper.

 Mapping Helpers

A mapping helper is a class that contains mapping methods. Mapping methods provide the conversion
between the attribute types of the two objects. You can either use the mapping helpers provided by Object
Builder, or you can define your own. Object Builder provides the default mapping helper (the class and its
methods) in the following cases:

� When a Stringified Object Reference (SOR) of the data object is mapped to a persistent object
attribute of type VARCHAR.

� When a data object attribute of type string is mapped to a persistent object attribute of type
VARCHAR. A data object attribute of type string is normally mapped to a persistent object attribute of
C++ string type, for example, a string of length 20 is mapped to char[21].

Object Builder does not provide the default mapping between complex data types (any, wchar, and wstring
and types defined as constructs, that include typedefs, structures, and unions) and DB2 database types.
You must provide your own helper class for these mappings.

 Chapter 11. Assembling and Installing Business Objects 245

You cannot use a mapping helper to map many data object attributes to either one or many persistent
object attributes; however you can use one to map many data object attributes to one persistent object
attribute. Refer to Component Broker for Windows NT and AIX Online Documentation and Component
Broker Application Development Tools for further information on mapping helpers.

Example Usage of a Mapping Helper

Object Builder integrates the usage of Mapping Helpers into the Data Object implementation files as part
of the customization of the application. Following is an example of a VARCHAR-to-string conversion:

::CORBA::String_var iAStringTemp = aString;

 {

 DB2VarCharMap aStringtemp;

 MAPPINGHELPERPO_ASTRINGDB2VARCHAR aStringtemp2;

aStringtemp.maxLen = 1ð;

aStringtemp.dataP = aStringtemp2.data;

 if (iAStringTemp)

 DB2MappingHelper::stringToVarChar(iAStringTemp, aStringtemp);

 else

aStringtemp.length = ð;

aStringtemp2.length = aStringtemp.length;

 iMappingHelperPO.aString(aStringtemp2);

 }

Expanding the Client Programming Interface

In Chapter 4, “MOFW Client Programming Model” on page 33 there was one interface described that
could be used to access the business logic functions of a managed object. That is the easiest way to get
started and should be used when possible. Object providers, when they are building business objects,
need to subclass from the appropriate interfaces in MOFW and follow a set of rules for building business
objects. The client interface that has been discussed so far is the one that is the first subclass of
IManageable or one of its Component Broker Frameworks provided dependents. The figure below shows
this interface.

IdentifiableObject
(from CosObjectIdentity)

Streamable
(from CosStream)

IManageable
(From IManagedClient)

Policy
(from PolicyModule)

LifeCycleObject
(from CosLifeCycle)

Figure 65. Primary Client Programming Interface

246 Component Broker: Programming Guide

This figure shows the interface of a managed object. There is much to this interface that is described in
other chapters. The important thing to recognize here is that the Policy interface introduces the business
logic methods and provides access to other methods that can be useful.

Quality of Service Interfaces

Each business object that is constructed by the object provider is installed and run in a particular
application adaptor or container. These are Component Broker server concepts that deal with how
resource managers are used beneath the MOFW. The MOFW provides a consistent programming model
for clients and for object providers, encapsulating the details of the underlying resource managers when
possible and practical. However, there are cases where accessing the additional capabilities afforded by a
particular implementation of the Component Broker server application adaptor may be desirable. To
accommodate this, a different client programming interface is available to you. The intent is to call this the
client Quality Of Service (QOS) interface. Some clients are considered to be “friends” and might have
access to additional methods. Friends are probably other business objects playing the role of clients.

The following interfaces fall into this category:

 � IBOIMManagedObjectQOS::IMMixin
 � IBOIMManagedObjectFriendQOS::IMMixin

These interfaces collect a number of interfaces which are supported by the BOIM Container.
IBOIMManagedObjectQOS::IMMixin brings in CosTransactions::TransactionalObject;
IBOIMManagedObjectFriendQOS::IMMixin brings in the checkpointToDataStore() and
refreshFromDataStore() methods.

Normally, a client program deals with a client interface by specifying it when the object is found in the
IHome, retrieving from some other collection, creating, or reviving from a stringified object reference.

 Policy \myPolicy;

 ByteString \theKeyString;

 IManagedClient::IManageable _ptr mptr;

 IManagedClient::IHome_var myPolicyHome;

// Get the primary key (string) of the object in "theKeyString"

// Get the home configured for Policy objects in "myPolicyHome"

mptr = myPolicyHome->findByPrimaryKeyString(\theKeyString);

myPolicy = Policy::_narrow(mptr);

// invoke business logic or IManageable methods on "myPolicy"

 myPolicy->amount(25ððð.ðð);

Narrow the QOS interface to access specific methods introduced by that interface:

 IBOIMManagedObjectFriendQOS::IMMixin_ptr myPolicyAsMOFQOS;

 ByteString \theKeyString;

IManagedClient::IManageable _ptr mptr;

 IManagedClient::IHome_var myPolicyHome;

// Get the primary key (string) of the object in "theKeyString"

// Get the home configured for Policy objects in "myPolicyHome"

mptr = myPolicyHome->findByPrimaryKeyString(\theKeyString);

 myPolicyAsMOFQOS =

 IBOIMManagedObjectFriendQOS::IMMixin::_narrow(mptr)

// now use a method from this quality of service interface

 Chapter 11. Assembling and Installing Business Objects 247

 myPolicyAsMOFWQOS->checkpointToDatastore();

The checkpointToDatastore() method is used as an example of a method that is available on the QOS
interface. Exactly which methods are available on this interface depends on the particular Component
Broker Installation and the container in which the managed object resides.

If you already have an object reference to a Policy and want to get at the QOS interface, use the following
code segment to narrow it down.

myPolicy->....; // run some business logic

myPolicy->....; // run some more business logic

// Now ManagedObjectFriendQOS capability is needed.

 myPolicyAsMOFQOS =

 BOIMManagedObjectFriendQOS::IMMixin::_narrow(mypolicy);

// now use a method from this quality of service interface

 myPolicyAsMOFWQOS->checkpointToDatastore();

While the previous code-segments are understandable, they leave you saddled with the responsibility of
maintaining two references to a single managed object. The first reference, myPolicy, has the business
logic and IManageable interfaces, while the second, myPolicyAsMOFQOS, has the special QOS interface
that relates to the quality of service available on this particular type of managed object.

An interface that combines the QOS quality of service interface with the business logic interface can be
introduced. This makes it possible for clients to code to one interface for the duration of an application. A
code segment of the IDL follows:

 #include <IBOIMManagedObjectFriendsQOS.idl>
 #include <Policy.idl>

interface PolicyMOFQOS: Policy, IBOIMManagedObjectFriendQOS::IMMixin

 {

 }

If the PolicyMOFQOS interface exists and is usable, then the previous code segments can be simplified as
follows:

 PolicyMOFQOS_ptr myPolicy;

 ByteString \theKeyString;

IManagedClient::IManageable _ptr mptr;

 IManagedClient::IHome_var myPolicyHome;

// Get the primary key (string) of the object in "theKeyString"

// Get the home configured for Policy objects in "myPolicyHome"

mptr = myPolicyHome->findByPrimaryKeyString(\theKeyString);

myPolicy = PolicyMOFQOS::_narrow(mptr);

// invoke business logic or IManageable methods on "myPolicy"

 myPolicy->amount(25ððð.ðð);

// invoke any ManagedObjectFriendQOS methods that you want to ...

 myPolicy->checkpointToDatastore();

You should make a decision for your applications and remain consistent. If you expect to use QOS
interfaces rarely, then choose the option implied by the first set of code segments. This has the advantage
of letting the application code be as independent as possible from the underlying implementation of the
business objects. Only surfacing the QOS type when it is needed means that changes to the methods

248 Component Broker: Programming Guide

supported on this interface have minimal impacts on the application code. This interface should not often
change. One reason to change is the movement of a particular business object from one container to
another. If application code is dependent on a specific container's quality of service interface, it must
change. The design challenge is to minimize and isolate these usages to be able to deal with change
easily when it occurs.

The advantage of using the combined interface (PolicyMOFQOS in the example) exclusively is one of
housekeeping and simplicity. When declared, it provides complete access to all methods associated with
the object. Narrowing or casting from one to the other and keeping track of two sets of references to the
same object is not necessary.

Using QOS Interfaces for Non-transactional Support

The server supports the concept of transactions in a number of ways. Containers are configured so that
all objects within them have the same transactional semantics. Besides the variations that leverage the
transaction service, one option exists in which there is no transactional capabilities.

In cases where objects live in a container that does not use transactions, use the following general
programming model:

1. Find or create objects.
2. Make changes to those objects.
3. Use QOS interface to checkpointToDataStore.
4. If you want a refresh, then do refreshFromDataStore.

Assembling the Pieces

This section describes how to pull together all of the pieces and package them for installation on the
server or various Component Broker clients.

This section recommends a packaging strategy for managed objects. Alternate packaging possibilities
exist. The Policy example is used here as the example.

Packaging for Client and Server (VA C++)

This section describes packaging recommendations for business objects.

 DLL Packaging

The Component Broker server uses DLLs created with the IBM Visual-Age C++ compiler. DLLs that
represent business object implementations are dynamically loaded by the server.

The general strategy for business object DLLs is to have two DLLs. One of the DLLs contains items
needed on clients (that is, clients running Visual-Age C++) and on the server, while a separate DLL is
created for the business object implementation on the server. The following example packages only one
business object into the DLL, although multiple business objects can be put into each DLL. For simplicity,
the example uses only Policy. There is a DLL/LIB for both client and server named policyc and a
server-side DLL/LIB named policies.

The following table shows the .o files that must be placed into one of the two LIBs that are created.

Note: In this book, “.o” means that it is an object file targeted for a LIB/DLL. An “.obj” is something that is
targeted for an .exe. For example, a client.cpp might generate a client.obj that would go into a

 Chapter 11. Assembling and Installing Business Objects 249

client.exe while all of the components associated with a managed object are .o's targeted for
LIBs/DLLs.

Table 6. Object Files Targetted for a LIB or DLL

Object File LIB/DLL Notes

PolicyKey_C policyc Bindings for the key class.

PolicyKey_I policyc Implementation for the key class.

PolicyCopy_C policyc Bindings for the copy helper.

PolicyCopy_I policyc Implementation for the copy helper.

Policy_S policyc Bindings to be used by clients for the business object.

Note: This is an _S and not an _C so that the same LIB/DLL
can work on both the client and the server. The _S has all
the function of the _C, plus the ability to dispatch on the
server. The overhead of the _S versus the _C is minimal.

PolicyBO_S policys Bindings for business object implementation.

PolicyBO_I policys Implementation of business logic.

PolicyDO_C policys Data Object interface bindings.

PolicyDOBOIM_C policys Data Object implementation bindings.

PolicyDOBOIM_I policys Data Object implementation code.

PolicyMO_S policys Manage Object bindings.

PolicyMO_I policys Managed Object implementation.

Client programs should be able to link the policy.lib into their programs (.exe or .dll) and successfully
communicate with business objects on the server. Business objects that wish to directly use references to
policies should link to policy.lib.

See systems management and application installation information about distributing and installing these
DLL files on clients and on servers.

Create Functions for Dynamic DLL Loading

The server dynamically loads the DLLs that contain the business object function. Each business object is
outfitted with a set of external functions that allow the server to create the various pieces of a managed
object. The following table summarizes the requirement for these create functions.

Table 7. Function Summmary

Class Function Name Implementation Return Type

DataObject_Imple (for
example, Policy_Impl)

Policy_create return new
Policy_Impl();

IBOIMManagedObjectCustom-
ization::IDataObject_ptr

ManagedObject_Impl
(for example,
PolicyMO_Impl)

PolicyMO_create return new
PolicyMO_Impl();

IManagedServer::
ImangedObject_ptr

Key_Impl (for example,
PolicyKey_Impl)

PolicyKey_create return
PolicyKey::_create();

IManagedLocal::
IPrimaryKey_ptr

CopyHelper_Impl (for
example,
PolicyCopy_Impl)

PolicyCopy_create return
PolicyCopy::_create

IManagedLocal::
INonManageable_ptr

250 Component Broker: Programming Guide

The general form of these functions is:

 extern "C"

 {

__declspec(dllexport) return type functionname()

 {

 return implementation;

 }

 }

Notice that the two shaded boxes for the local-only objects are using the same _create function that is
used by clients when they are making one of these objects. The others are made only by the server and
thus do not need to have similar _create methods. Do not get the _create methods that some local-only
objects have confused with the create functions that are used by the server.

Exposing Interfaces to Clients

Given the .LIB files shown previously, the next step is to list and determine which interfaces are needed
by clients of the policy class. Pure clients need access to the following interfaces:

PolicyKey.hh
To create and use the key class.

PolicyCopy.hh
To create and use the copy helper class.

Policy.hh To interact with Policy objects that are on the server.

Exposing Interfaces to Business Object Builders

If an object provider wishes to have a reference to a business object from another business object, then
the interfaces described previously are sufficient. If however, the business object provider wants to extend
or override the business object and create a new business object as described in “Extending a Business
Object” on page 105, then some additional interfaces are necessary. These are listed next:

� All of the IDL files associated with the Policy would be needed to make a subclass of policy.

� By implication of the previous item, all of the .hh files associated with Policy would be needed to make
the bindings for the new class.

� Furthermore, all of the .ih files associated with Policy would be needed if the implementation of the
new business object was to make full use of the implementation of Policy.

Packaging the DLL for the ActiveX Visual C++ Client

Packaging for a pure Visual C++ client could be as simple as taking the policyc DLL and rebuilding it for
the Microsoft Visual C++ client, and providing the same interfaces to clients. For a minimum footprint
client, the Policy_S could be replaced with Policy_C as the Microsoft version of policyc is not used on the
server.

To get from a pure Microsoft Visual C++ client to a full ActiveX/COM enabled client, COM wrappers must
be created. Run the idl2com tool on those interfaces that are to be exposed to the ActiveX/COM
programmer. The idl2com tool produces a series of files that include all of the source code necessary for
the COM wrapper for a particular IDL file, as well as a makefile for building a DLL which contains the
COM wrapper.

By default, the makefile compiles all COM wrapper source, and all _C files needed by the COM wrapper.
Because it is possible that any method inherited by Policy from other classes could be invoked by a COM

 Chapter 11. Assembling and Installing Business Objects 251

wrapper user, all _C files for any inherited classes are also compiled into the ActiveX/COM wrapper DLL.
This allows the COM wrapper to expose all methods/attributes defined by Policy, as well as those which
are inherited from other classes. Once this DLL is built, it must be registered in the Windows system
registry, so that the DLL that implements the COM wrapper can be found. Running regsvr32 dllname.dll
against the produced DLL, when it has been placed into its final destination directory, accomplishs this
task.

A set of basic LIBs must be linked to in order to get the client DLLs or EXEs made properly. This list
includes:

� somororm.lib - ORB
� sompmcim.lib - Programming Model
� somosa1m.lib - object services
� somax00m.lib (the ActiveX client run time)

Packaging the Java Client Code

Packaging for the Java Client involves taking the IDL for Policy, PolicyKey and PolicyCopy and running
them through the IDL–to–Java emitter. This generates the necessary bindings. These bindings can then
be packaged into a .zip file or exist as .class files in the CLASSPATH of the clients.

Enabling Additional Clients

Component Broker provides special support for the clients listed in the previous sections. For additional
clients such as Orbix, the appropriate set of Component Broker IDL files would have to be run through the
emitter of the client ORB. Then the IDL files for the business object (policy) would need to be run through
the emitter of the client ORB.

Note that clients not provided by IBM do not have facilities for handling INonManageable Objects. This
means that alternative means of client access are necessary. Using Stringified Object references to
business objects, creating specialized homes or wrappering homes appear as the most preferable options
for providing access to other clients.

The Local-Only Development Process

The local-only development process includes the following topics:

 � “C++ Local-Only”
� “Java Local-Only” on page 254

 C++ Local-Only

This development process applies to all keys and copy helpers. The basic process is as follows:

1. Create the IDL file inheriting from the base class specified by the programming model. This might be
IManangedLocal::IPrimaryKey (for a primary key) or IManagedLocal::INonManageable (for a copy
helper) or some other base class.

2. Introduce the appropriate #pragma to tell the tools and the world that the bindings that are to be
generated do not need to contain things that assist CORBA objects in becoming remote. These are
objects that are addressed from within the process. The #pragma to be used is: #pragma meta
<interface name> localonly. The following example code shows how to do this for a PolicyPrimaryKey
interface:

252 Component Broker: Programming Guide

 #ifndef PolicyPrimaryKey_idl

 #define PolicyPrimaryKey_idl

 #include <ILocalOnly.idl>

interface PolicyPrimaryKey : IManagedLocal::IPrimaryKey {

#pragma meta PolicyPrimaryKey localonly /\ This makes it generate local only bindings \/

/\ put your attributes methods here... \/

attribute long policyNo;

 };

Note: There is an abstract keyword supported by the emitters as well. When combined with
local-only, this keyword suppresses the generation of the _create() method declaration and
implementation stub. The abstract keyword should not be used for key and helper interfaces
that are to have an implementation. It should only be used for abstract interfaces such as the
case where you would have a PolicyKeyBase and a couple of subclasses of this for various
specific keys. Do not use abstract when you plan to implement the notifies at the same level at
which it is introduced.

3. Run the emitter against the local-only idl file.

 idlc -s"uc;hh;ih;ic"

This generates the following files:

� PolicyPrimaryKey.hh - usage bindings containing PolicyPrimaryKey and
PolicyPrimaryKey_Skeleton class. The PolicyPrimaryKey class introduces the
PolicyPrimarKey::_create() interface that is implemented later.

� PolicyPrimaryKey_C.cpp - implementation of client side usage bindings

� PolicyPrimaryKey.ih - implementation class interface

� PolicyPrimaryKey_I.cpp - implementation class stubs. Included in this file is the method
classname::_create(); which should be implemented to new up and return an instance of the
proper _Impl class (for example, PolicyPrimaryKey_Impl).

Table 8 contains a summary of the artifacts involved in this activity.

Table 8 (Page 1 of 2). Artifacts of the Local-only Development Process

Artifact Name (across) ArtifactType (down) Non-Remoteable Abstration

IDL Put these under configuration management
control.

Abstraction.idl (Use Local-Only and Abstract #pragmas
to indicate if this is a regular local-only or an abstract
local-only).

.hh (language usage binding) Never modify these –
have the makefile generate them.

Abstraction.hh (contains the Abstraction_Skeleton
class and the Abstraction C++ class). This also
contains the definition of _create() if the local-only
#pragma is used.

_C.cpp (client side binding) Never modify these – have
the makefile generate them.

Abstraction_C.cpp (The #pragma ensures that only the
necessary stuff is in here, no remotable and
dispatcher-related pieces).

.ih (implementation interface – emit once or enter
manually).

Abstraction.ih (defines Abstraction_Impl that inherits
only from Abstration_Skeleton.

_I.cpp (implementation code – emit once or enter
manually).

Abstraction_I.cpp (implementation of real logic – the
code). When the local-only #pragma is used, this file
contains an implementation of the
Abstraction::_create() method.

_C.obj (from _C.cpp – need rule in makefile). Abstraction_C.o (binding used by clients).

 Chapter 11. Assembling and Installing Business Objects 253

Table 8 (Page 2 of 2). Artifacts of the Local-only Development Process

Artifact Name (across) ArtifactType (down) Non-Remoteable Abstration

_I.o (place on servers) (from _I.cpp – need rule in
makefile).

Abstraction_I.o

Abstraction.LIB (group one more abstraction into a
LIB).

Abstraction_I.o and Abstraction_C.o can get packaged
together into one LIB that goes on both the client
(C++) and the server. See “Packaging for Client and
Server (VA C++)” on page 249 for more information
on how to assemble all of the pieces needed for a
managed object.

4. Create a Makefile - Use Table 8 on page 253 to determine proper packaging strategy.

5. Write the Code - Use the section in this book that maps to the kind of local-only object being
constructed. The implementation of the code is in the _I.cpp file with the definition of any private
variables or methods being done in the .ih file.

6. Run make from the environment with the correct paths set

7. Test and debug.

 8. Install.

 Java Local-Only

Most of the process is the same for Java. The emitter is IDL-to-Java. The results are .class files. Final
packaging might involve .zip or .jar files that go onto the Web server for downloading.

Configuring Managed Objects into Servers

This section is intended to describe what is necessary to take the artifacts that are created by the
application development process and properly configure them to run on Component Broker servers.

The container is defined as the qualities of service that are provided to managed objects. The BOIM
application adaptor provides a single container type that can be configured to provide various qualities of
service. The configuration values are described.

 Memory Management

There is a classical trade off between performance and space with respect to having objects preloaded
into memory. The BOIM and PAA application adaptors have a configuration attribute on the container that
allows an application to control this trade off. This attribute is called the memory management attribute,
and it is expressed in terms of when an object can be taken from memory.

Those objects that will be used constantly should be placed in a container that has a memory
management policy to never passivate. Those objects that are used in transactions should be placed in a
container with the memory management policy of passivate at the end of transaction. These objects that
are used in sessions should be placed in a container with the memory management policy set to passivate
at end of session. Those objects that are used where a client is controlling the synchronization of the
object and the back end store (using the checkpointToDatastore and refreshFromDatastore methods)
should be placed in a container that has a memory management policy to passivate after checkpoint.

254 Component Broker: Programming Guide

Synchronizing with the Back End

The application adaptor controls the synchronization of the data, state or objects (with the data or state
stored in back end stores). The PAA and BOIM application adaptors have many attributes in the
configuration of containers that will alter the schemes used to control this synchronization. These attributes
are dataCachedInManagedObject, dataCachedInDataObject, useCachingService, terminationPolicy,
defaultTransactionPolicy, and sessionPolicy.

 Persistence

An object has two dimensions to persistence, persistent state and persistent references. While both of
these dimensions refer to the durability, persistent state affects the business object while persistent
references affects the user of a business object. All objects are persistent with the exception of the UUID
objects.

For the UUID objects their references are either persistent or transient depending on the duration of the
usage of the reference. If the reference is expected by the client to always be valid, then the reference is
persistent. If however, once the object is passivated then the reference is not expected to be valid any
longer, then the reference is transient.

Behavior in the Absence of a Transaction or Session

The BOIM AA and PAA provide the capability of putting UUID objects and persistent objects in the same
container. For this to work then the defaultTransactionalPolicy or the sessionPolicy must be set to
ignoreCondition.

Some applications may desire a transaction to last for the duration of a method. BOIM application adaptor
provides this capability by starting a transaction prior to dispatching the method on an object, and
committing the transaction after the method has completed. For this behavior the defaultTransactionPolicy
needs to be set to Atomic.

Summary of Configuration Options on Container

 Chapter 11. Assembling and Installing Business Objects 255

Data Object Type Memory
Management
Policy

Synchronization
Policy

Persistence vs.
Transient

Include UUID, roll
your own, or
objects in the
same container

Static embedded
SQL for DB2

Passivate at end of
transaction

noSession, Data is
Cached in Data
Object

persistent
references and
persistent objects

default transaction
policy set to ignore
condition

DB2 with Caching
Service

Passivate at end of
transaction

noSession,
usesCachingService

persistent
references and
persistent objects

default transaction
policy set to ignore
condition

CICS and IMS Passivate at end of
session

noTransaction,
Data is not Cached
in Data Object

persistent
references and
persistent objects

default transaction
policy set to ignore
condition

Oracle with
Caching Service

Passivate at end of
transaction

noSession persistent
references and
persistent objects

default transaction
policy set to ignore
condition

Roll your own
passivation

neverPassivate or
Passivate after
checkpoint

noTransaction,
noSession
persistent refs

persistent
references and
persistent objects

UUID - transient
object refs

 1. neverPassivate
or

 2. noTransaction
and passivate
at end of
transaction

N/A not persistent
objects and not
persistent refs

UUID - persistent
object refs

 1. neverPassivate
or

 2. noTransaction
and passivate
at end of
transaction

not persistent
objects and
persistent refs

Configuring Application Adaptors – RDB

Business objects run in containers as described previously. Containers are part of the bigger component
of Component Broker known as application adaptors. Each application adaptor provides a different quality
of service. This quality of service manifests itself in a number of ways, one of which is through the
containers that are surfaced by any given adaptor. This section enumerates specifics about the relational
database adaptor provided by Component Broker.

Updating the Database Manager Configuration for the Transaction Processor
Monitor

To use Object Transaction Service (OTS) with DB2, the transaction processor monitor must be configured
with the Transaction Service DLL. To perform the configuration, the following should be typed at a DB2
prompt:

update database manager configuration using TP_MON_NAME somtrx1i

The request updates the configuration for the transaction processor monitor. The change does not take
effect until the database is stopped and started. To validate that the configuration has been updated, type
the following at a DB2 prompt:

256 Component Broker: Programming Guide

get dbm cfg

Look at the transaction processor monitor name to verify that it shows as somtrx1i.

Starting the Database before Executing an Application

If the application interacts with DB2, the database manager must be started before the application is run.
Either:

 DB2Start

or

start database manager

should be typed at a DB2 command line. Once this is done, the application can communicate with DB2.

 Configuring Homes

Homes that can be queried and iterated can be configured for managed objects that are using embedded
SQL data objects or for data objects that use the caching service. Data objects that use any other data
object cannot be configured into homes that can be queried or iterated, or into specialized homes that can
be queried or iterated.

The four default homes that are provided by Component Broker are as follows:

BOIMHomeOfNotRegHomes This home is used for system objects and should not be used for business
objects. Objects that are stored in this home are not registered in the Name Space and cannot
be found using Factory Finding techniques.

BOIMHomeOfRegHomes This home is for objects that are not Workload Managed and do not have
Queryable or Iterable interfaces. This home should be used for standard business objects if
they do not configured for WLM and have not be configured for Query.

BOIMHomeOfRegQIHomes This home is for objects that are not Workload Managed and are configured
for Query. This home should be used for those business objects that match this criteria.

BOIMHomeOfRegWLMHomes This home is for objects that are Workload Managed. Business objects
that have been configured for WLM support must be stored in these homes.

Object Builder allows configuration of objects into the appropriate home based on their configuration
criteria. Only those homes that match the configuration of the business objects are allowed as selections
on the appropriate configuration windows.

An Overview of Application Adaptors

An application adaptor provides a place for managed objects, much like a database system provides a
home for data or records. An application adaptor is similar to an object-oriented database; it is responsible
for providing systems capabilities (for example, identity, caching, and persistence) for its managed objects.
By providing such capabilities, an application adaptor provides a certain “quality of service” to its managed
objects. Different application adaptors may differ in the trade-off between cost and their quality of service.

An application adaptor provides the following benefits:

� It provides a higher level of abstraction than the object services interfaces for the systems capabilities
that it provides. This allows the flexibility that is very important for providing efficient support for
objects.

 Chapter 11. Assembling and Installing Business Objects 257

� It enables object services to be packaged in a more integrated and efficient manner than is possible
with object services that are provided separately.

� It can delegate many of its object services to existing resource managers, such as database systems,
that typically provide systems capabilities in a very integrated way.

� It provides a boundary for administrative functions.

A specific type of application adaptor can only handle one type of legacy store. This means that a DB2
application adaptor provides support for managed objects that are persistent in DB2 tables. However, a
different type of application adaptor would be required for managed objects that are stored through CICS.

An Overview of BOIM

Business Object Application Adaptor (BOIM) is the term used to identify IBM's first application adaptor.
BOIM fulfils the following needs:

� As an application adaptor it forms a framework for applications
� It is an implementation of the application adaptor framework

The BOIM application adaptor is targeted at a two-level store implementation model for servers and a
single-level store model for clients.

An object is fully functional only when in memory; the object returns to a dormant state when removed
from memory. The BOIM application adaptor provides memory management schemes for bringing objects
into memory and removing them from memory. Such schemes mean that clients do not need to perform
special memory management tasks. For example, the BOIM retrieves objects from the database or disk
transparently to the clients.

The environment for managed objects supported by the BOIM application adaptor is geared toward having
each data object provide its own access to the underlying back-end permanent data store.

 Adapting Applications

The simplest applications to convert to the environment targeted by the BOIM application adaptor are
those that have the following characteristics:

� The application is not widely distributed. That is, it is built with a traditional client-server model.

� The application has basic back-end access requirements, for example, accessing files or having all the
activity for an entire transaction within one database and server process.

Managed Object Assembly

The managed object assembly pattern supported by the BOIM application adaptor has a delegated mixin,
a delegated data object, and a managed object that extends the business object implementation.

The BOIM application adaptor provides interfaces (methods) to the managed object without requiring the
business object to provide implementation for those methods.

258 Component Broker: Programming Guide

 Managed Object

Adapting a business object to the BOIM application adaptor requires development of a managed object
and a function that instantiates a managed object. The basic design of the managed object is to give it the
appearance of being the managed object assembly. Developing the managed object requires support for
the following types of interfaces:

� An interface used by the BOIM application adaptor to communicate with the managed object instead
of the managed object assembly

� The business interfaces implemented in the business object

� The interface for which the BOIM application adaptor provides the implementation

� The interface for which no implementation is provided by the BOIM application adaptor but for which
the environment requires a default implementation for which no implementation is provided by the
BOIM application adaptor

 Business Object

The BOIM application adaptor supports business objects that support either of the two interfaces
IManagedServer::IManagedObjectWithDataObject or
IManagedServer::IManagedObjectWithCachedDataObject from the Component Broker programming model.
The interface supported by the business object is detected by the BOIM application adaptor and no
special configuration is required.

 Data Object

The BOIM application adaptor provides a framework for data object development by providing a base
class with implementation. All data objects are expected to extend this implementation and provide the
implementation of the methods that it has defined.

The Life Cycle of Managed Objects

Because the BOIM application adaptor is based on a two-level store, there is more to the life cycle of a
managed object than creation and deletion. There are the following additional states for a managed object:

A passivated state
There is no representation of the object in memory, however the state data for the object is
saved.

An activated state
There is no representation of the object in memory.

Qualities of Service

The BOIM provides the following qualities of service:

Sharing Data with the Database
The BOIM application adaptor provides control information that helps data objects manage their
synchronization with the database.

Objects are synchronized with the underlying data store on the following occasions:

� When the object is created, its corresponding data needs to be inserted into the underlying
data store.

 Chapter 11. Assembling and Installing Business Objects 259

� When the object is removed, its corresponding data needs to be deleted from the
underlying data store.

� When the data in the object becomes stale, the data needs to be retrieved from the
underlying data store.

� When the underlying data store becomes stale, the underlying data store needs to be
updated.

Simplifying Interaction with the Data Store
The BOIM application adaptor simplifies interaction with the underlying data store in the
following ways:

� A base class for data objects that provides a check to ensure that the key is valid before
invoking any of the database access commands

� A performance improvement by updating the database only if data has been changed

Memory Management
The BOIM application adaptor determines when objects are activated in memory and removed
from memory.

Tolerance of Programming Errors
The BOIM application adaptor tolerates programming errors within applications.

 Locking

One very useful quality of service provided by the BOIM application adaptor is an ability to have multiple
copies of a single object. This allows multiple clients access the same object simultaneously by giving
each client its own copy of the object. However, the fact that there are multiple copies is hidden from the
client and each client thinks it has the only copy of the object. Another useful quality of service provided
by the application adaptors is obtaining the locks in the database. All of this sounds great because locks
are obtained and business objects can be used simultaneously and yet do not need to be thread safe, so
what could be better? All of this does come with a price. There is a possibility of creating applications that
result in dead locks as they are accessed by multiple clients.

The following coding practices will help prevent these dead lock situations from occurring.

Identify and label those methods that are read only. Especially when data is cached in the data object.
When a method is not identified as read only, then a write lock is obtained as the transaction is
committed. This can lead to multiple clients all trying to upgrade locks form read locks to write locks
yet not being able to because of the others holding the read locks.

Delegate all data management to the data object (do not cache data in the business object). When the
management of the data is delegated to the data object then it can detect when values are changed
and only upgrade the lock when necessary.

Ensure that there is recovery code in the client to cover the case where the transaction will not
commit. When a dead lock occurs in the database, or a time out is detected in the Component Broker
runtime, then all but one of the transactions involved in the deadlock should be rolled back. Leaving
one to succeed and the others to fail. Those that failed should try again.

Use the optimistic mode of the cache. This will detect clashes immediately rather than wait for a timer
to expire to determine that a deadlock condition exists.

260 Component Broker: Programming Guide

Assembling and Installing Java Business Objects

Once the unit test activity has been completed successfully the next step is to generate and build the extra
components necessary to adapt a business object to a server environment and to a particular persistent
store, then to package and install all the necessary pieces into a server.

In Component Broker, most of the extra code that is required is C++ code and the Component Broker
tools generate almost all of it. As a result, the discussion earlier in this chapter applies with few or no
changes when the business object is implemented in Java. In addition, there are some extra steps only in
the Java business object case.

This section details the differences in the procedures and code described elsewhere in this chapter when
they are applied to a Java business object. As was the case previously, it is not normally necessary for a
business object developer to understand the tool-generated code. It is described in case unusual
circumstances require debugging.

Create the C++ Client and Server Bindings

Previously Java has been used exclusively, but in order to adapt a Java business object to the
Component Broker server environment it is necessary to create some C++ code. If you are using Object
Builder to create the business object, it generates a make utility file that does all this for you.

The first group of required C++ files are the bindings generated from the IDL that has already been
produced. These are created using the idlc command with the -shh;uc;sc option. In the case of the
Policy example this command would be used on all of Policy.idl, PolicyKey.idl, PolicyCopy.idl, PolicyBO.idl,
and PolicyDO.idl. It would also be repeated for the IDL created later in this chapter for the PolicyMO class
and the specialized data object.

Create the Managed Object Class and Implementation

This Object Builder-generated class differs only slightly from that described earlier in this chapter. Its IDL
is identical, and there are only two differences in the implementation:

 � Inheritance
� Construction and destruction

 Inheritance

The PolicyMO_Impl class constructed for a C++ business object inherits from the PolicyBO_Impl C++
class, but when the business object is implemented in Java there is no PolicyBO_Impl. Instead, the
inheritance is from a generated IOM C++ proxy class that delegates method calls to the Java business
object:

class PolicyMO_Impl : public virtual ::PolicyMO_Skeleton,

public virtual Object_SOMProxyRemotable,

public virtual PolicyBO_SOMProxy

The Object_SOMProxyRemotable base class is added to resolve some ambiguous overrides of methods
introduced in CORBA::Object, and does not contribute any new function.

Inside the business object methods of the PolicyMO_Impl, this same renaming happens for each call to
the parent BO business logic:

 Chapter 11. Assembling and Installing Business Objects 261

 ::CORBA::Float PolicyMO_Impl::amount()

 {

 ::CORBA::Float retval;

 IBOIMExtLocalToServer_IMixinPointerImpl mixinPointer(mixin());

 CALL_MIXIN_BEFORE(mixinPointer);

 #ifdef CBS_TRACE_DEBUG

void \trc_handle = BOSS_TRACE_SERVER_START_2(this, "name");

 #endif

retval = PolicyBO_SOMProxy::amount();

 #ifdef CBS_TRACE_DEBUG

 BOSS_TRACE_SERVER_STOP(trc_handle, "name");

 #endif

 CALL_MIXIN_AFTER(mixinPointer);

 return retval;

 }

Construction and Destruction

The PolicyMO_Impl for a Java BO has a more complex constructor and destructor than in the C++ case.
The constructor calls through the IOM interlanguage run time in order to create the Java business object
and to connect it to the C++ Managed Object:

static SOMRef\ _PolicyMO_Impl_helper()

 {

SOMException e = { ð,ð };

 SOMRef\ sr;

SOMClassRef\ scr = SOM_FindClass("PolicyBO", &e);

if(scr == NULL || (sr=scr->NewObject(&e)) == NULL)

 {

throw CORBA::NO_IMPLEMENT(ð, CORBA::COMPLETED_NO);

 }

 return sr;

 }

 PolicyMO_Impl::PolicyMO_Impl()

: Object_SOMProxy(_PolicyMO_Impl_helper()) , mixin_(this) // See note 1

 {

m_target_type_id = (char\)Policy_RID;

 }

PolicyMO_Impl:: PolicyMO_Impl() // See note 2

 {

if(m_somref2 != m_somref && m_somref != NULL)

 {

SOMRef\ tmp = m_somref;

m_somref = m_somref2;

 setWrapper(this);

 tmp->Destroy();

 }

 }

262 Component Broker: Programming Guide

Notes about the example:

1. A helper routine creates the corresponding Java business object and returns an interlanguage handle
that is used to tie together the C++ MO and Java BO objects.

2. The objects are eventually untied in the MO destructor, allowing them to be separately destroyed.

Data Object Customization

Data objects created for use with a Java business object are identical to those created for a C++ business
object, and the same variety of customization choices is available. For more information, see “Data Object
Customization” on page 204.

Do Not Mark Data Object Interfaces as "Abstract"

Interfaces of customized data objects, such as the PolicyEmSQLDO interface illustrated earlier in this
chapter are marked with the abstract meta information pragma in their IDL. This was done to suppress the
declaration of a static _create() method, which is not needed.

In Component Broker, this generates incorrect bindings, and such a data object is not usable with a Java
business object. Interfaces that do have corresponding implementations must not be marked abstract.
Instead, if the function of the static _create() method is not needed, you can just define a _create that
returns NULL.

Generating Server-Specific Java Classes

Two Java classes are used on the server to wrap the Java business object class and adapt it to run in the
server environment. Both classes are generated from the business object IDL by running the idlc

command with the -sbj option:

idlc -sbj PolicyBO.idl

The command generates the _PolicyBOWrapper and _PolicyBOImpl classes. _PolicyBOWrapper extends
_PolicyBOBase and is used by IOM to dispatch calls from C++ to the business logic. _PolicyBOImpl
extends _PolicyBOWrapper and delegates calls from Java code over to the C++ Managed Object class,
which is then able to add manageability and quality of service factors when the business object is called
from Java, just as when it is called from C++.

Generating Other C++ Classes

If you have not already done so, a C++ Primary Key class must now be generated and compiled. The
server infrastructure requires this, even if the business object is implemented in Java. Chapter 5, “MOFW
Server Programming Model” on page 57 describes how to do this.

If the business object makes use of a Copy Helper class, you also need to generate and compile a C++
version of the class.

In both cases, it is essential that the internalize_from_stream() and externalize_to_stream() methods of the
C++ and Java versions be consistent with one another. If the Java version reads and writes the policyNo
as a CORBA::Long, followed by the amount as a CORBA::float, the C++ version must do the same.

 Chapter 11. Assembling and Installing Business Objects 263

Debugging Java Code Running on the Server

As initially delivered, Component Broker does not contain a Java debugger capable of debugging code
running in a server. There are two options available for server debugging.

The System.out.println() standard Java method can be used to produce debugging output in the server
console log. A _PolicyBOBase class can be quickly modified to add or delete these statements,
recompiled, and replaced, and the server restarted to use it, without regenerating or replacing any of the
other Java classes or C++ DLLs.

A second option is to use the jdb debugger supplied as part of the JavaSoft Java Development Kit. This
requires that you first use the Component Broker System Manager User Interface to enable the debug
option in the server. The procedure to do this follows:

1. In System Manager, from the View menu, select User Level → Super User . This causes the System
Manager window to display more detailed information.

2. Open the Host Images folder and expand the host image that corresponds to the name of the server.

3. Expand Server Images and find the server image where the application resides. Click this image with
mouse button 2. A pop-up menu appears.

4. Select Edit . A notebook opens.

5. Select the Main tab.

6. Change the debug enabled attribute to yes.

7. Select the ORB tab.

8. Change the request timeout value to 0.

9. Select the Log Controls tab.

10. Change the Console Disposition to “Console.”

11. Click the OK button to exit the server image notebook.

You are now ready to start the Component Broker daemon, name server, and application server. To do
so, follow these steps:

1. From the Host Images folder, find the host image that corresponds to the name of the server
computer.

2. Click this image with mouse button 2. A pop-up menu appears.

3. Select Activate . This starts the communication daemon and the name server. Monitor the Action
Console window for completion status.

4. When activation is complete, select the application server and click with mouse button 2. A pop-up
menu appears.

5. Select Run Immediate . Monitor the Action Console window for completion status.

Note: If the server fails to start, it is possible that the CLASSPATH environment variable may not be
configured to include the path to your JDK installation's classes.zip file. To correct the
CLASSPATH and restart the server, perform the following steps:

1. Logon to the user ID specified for Systems Management.

2. Change the CLASSPATH environment variable to include the path to the classes.zip file either
in the System Variable or in the User Variable section of the environment setting (System
Variable is recommended to ensure that other users logging on also pick up the CLASSPATH
environment variable changes).

264 Component Broker: Programming Guide

3. Stop the CBConnector service.

4. Restart the CBConnector service.

5. Reactivate the applications using the System Manager User Interface.

You can now run a client program that uses the Java business objects. The Java environment initializes
as soon as the first Java class is used in the server, and at that time a single line of output appears in the
server console window:

 Agent password=password

Where password is a random sequence of letters and digits. You can now start the jdb debugger:

jdb -host hostname -password password

Where hostname is the Internet-style name of the server host (for example, server1.ibm.com) and
password is the agent password. The server continues to run throughout this procedure, so you should
set breakpoints in the Java business object or to explicitly halt the server using the jdb command set. See
the JDK documentation on the jdb debugger for more information.

The Managed Object for a Java Specialized Home

The Managed Object class for a Java specialized Home has the responsibility for routing method calls to
the correct implementation. Calls to methods from the IManagedAdvancedServer::ISpecializedHome
interface are passed to a C++ implementation, while calls to extension methods are forwarded to Java. To
accomplish this, the managed object class, which is implemented in C++, inherits from both the C++ base
implementation and from several IOM proxy classes:

class PolicyHomeMO_Impl : public virtual ::PolicyHomeMO_Skeleton,

public virtual Object_SOMProxyRemotable,

public virtual PolicyHomeBO_SOMProxy,

public virtual IManagedAdvancedServer_ISpecializedHome_Impl,

public virtual IManagedServer::IWrappable_SOMProxy

The second last of these is the managed object class for the base C++ Home implementation, and
provides implementations of the IManagedClient::IHome interface as well as all the usual framework
methods. The two surrounding it, PolicyHomeBO_SOMProxy and
IManagedServer::IWrappable_SOMProxy, forward their respective methods over to the Java side.
Because many of the framework methods are implemented in more than one of these classes, the
managed object class PolicyHomeMO_Impl has to override all methods and explicitly call up to the correct
base class or classes.

As a result, PolicyHomeMO_Impl has a total of 50 methods. Only a representative sample is shown here.
The constructor and destructor, and all of the framework methods that delegate to the mixin object are no
different than for any Java Business Object, so they are not discussed.

Some of the more interesting Managed Object methods correspond to methods implemented in the C++
Home class IManagedAdvancedServer_ISpecializedHome_Impl. These are delegated to that base class:

 Chapter 11. Assembling and Installing Business Objects 265

 IManagedClient::IManageable_ptr PolicyHomeMO_Impl::findByPrimaryKeyString(const ::ByteString & key)

 {

 IManagedClient::IManageable_ptr temp=NULL;

 IBOIMExtToLocalServer_IMixinPointerImpl mixinPointer(mixin());

 CALL_MIXIN_BEFORE2(mixinPointer,"findByPrimaryKeyString");

 temp= IManagedAdvanceServer_ISpecializedHome_Impl::findByPrimaryKeyString(key);

 CALL_MIXIN_AFTER(mixinPointer);

 return temp;

 }

This Managed Object method only calls up to the C++ base class, and ignores any alternate definition of
the function that may have been provided in Java. Other Managed Object methods, though, correspond
to methods introduced in the specialized PolicyHome interface, and they are delegated through the IOM
proxy class over to the Java class _PolicyHomeBOBase:

 ::Policy_ptr PolicyHomeMO_Impl::default_create()

 {

 ::Policy_ptr retval;

 IBOIMExtLocalToServer_IMixinPointerImpl mixinPointer(mixin());

 CALL_MIXIN_BEFORE2(mixinPointer,"findSomething");

 #ifdef CBS_TRACE_DEBUG

void \trc_handle = BOSS_TRACE_SERVER_START_2(this, "default_create",

 "Java");

 #endif

// call the real business logic

retval = PolicyHomeBO_SOMProxy::default_create();

 #ifdef CBS_TRACE_DEBUG

 BOSS_TRACE_SERVER_STOP(trc_handle, "default_create");

 #endif

 CALL_MIXIN_AFTER(mixinPointer);

 }

Finally, the following framework methods are special cased so that both the C++ and Java
implementations are called:

 � initForCreation()
 � uninitForDestruction()
 � initForReactivation()
 � uninitForPassivation()
 � syncToDataObject()
 � syncFromDataObject()

This ensures that both the C++ and Java portions of the composite implementation will be able to correctly
initialize and shut down, and allows them both access to the Home's Data Object:

266 Component Broker: Programming Guide

::CORBA::Void PolicyHomeMO_Impl::initForReactivation(::IManagedServer::IDataObject_ptr theDO)

 {

 #ifdef CBS_TRACE_DEBUG

 BOSS_TRACE_CREATE(this,"PolicyHome");

 #endif

 IManagedAdvanceServer_ISpecializedHome_Impl::initForReactivation(theDO);

 PolicyHomeBO_SOMProxy::initForReactivation(theDO);

 }

 Chapter 11. Assembling and Installing Business Objects 267

268 Component Broker: Programming Guide

Appendix A. Artifacts Produced in Building Objects

The following table summarizes the artifacts of the development process for object components (interface,
business, and managed objects).

Table 9 (Page 1 of 2). Artifacts of the Development Process for Object Components

Artifact Type Artifact Name

Abstraction Interface AbstractionBusiness
Object

AbstractionManaged
Object

IDL Abstraction.idl AbstractionBO.idl AbstractionMO.idl
(Object Builder builds
these automatically for
BOIM managed objects
that customers write.)

.hh (language usage
binding)

Never modify these –
have the makefile
generate them.

Abstraction.hh (contains
the Abstraction_Skeleton
class and the Abstraction
C++ class)

AbstractionBO.hh
(contains the
AbstractionBO_Skeleton
class and the
Abstractionbusiness
object C++ class)

AbstractionMO.hh
(contains the
AbstractionMO_Skeleton
class and the
Abstractionmanaged
object C++ class)

_C.cpp (client side
binding)

Never modify these –
have the makefile
generate them.

Abstraction_C.cpp AbstractionBO_C.cpp AbstractionMO_C.cpp

_S.cpp (server side
bindings) These #include
the _C.cpp.

Never modify these –
have the makefile
generate them.

Abstraction_S.cpp Abstraction_S.cpp Abstraction_S.cpp

.ih (implementation
interface - emit once or
enter manually)

Not needed AbstractionBO.ih (defines
AbstractionBO_Impl that
inherits only from
AbstractionBO_Skeleton)

(and inherits from
IManageable_Impl)

AbstractionMO.ih
(defines
AbstractionMO_Impl that
inherits from
AbstractionBO_Impl and
AbstractionMO_Skeleton)

(Object Builder builds
these automatically for
BOIM managed objects
that customers write.)

_I.cpp (implementation
code - emit once or enter
manually)

Not needed AbstractionBO_I.cpp
(implementation of real
logic – the code)

AbstractionMO_I.cpp
(delegator, traffic cop)

(Object Builder builds
these automatically for
BOIM managed objects
that customers write.)

_C.obj (from _C.cpp –
need rule in makefile)

Abstraction_C.o (primary
binding used by remote
clients. See note.)

Not needed Not needed

 Copyright IBM Corp. 1997, 1998 269

Table 9 (Page 2 of 2). Artifacts of the Development Process for Object Components

Artifact Type Artifact Name

Abstraction Interface AbstractionBusiness
Object

AbstractionManaged
Object

_S.obj (placed on
servers; from _S.cpp –
need rule in makefile)

Abstraction_S.o AbstractionBO_S.o AbstractionMO_S.o

_I.obj (placed on servers;
from _I.cpp – need rule
in makefile)

Not possible AbstractionBO_I.o AbstractionMO_I.o

CLIENT.LIB (group one
or more abstractions into
an LIB)

contributes its _C.o only
(see note)

no contribution no contribution

ASERVER.LIB (group
one or more abstractions
into an LIB)

contributes _S.o contributes _S.o and _I.o contributes _S.o and _I.o

Note: If the same DLL is to be used on both client and server (which makes sense in the VisualAge for C++
case), then using the Abstraction_S.o for the client DLL allows this same DLL to be used on both client
and server.

270 Component Broker: Programming Guide

Appendix B. Interface Definition Language

The interface to a class of objects contains the information that a caller must know to use an object,
specifically, the names of its attributes and the signatures of its operations. The interface is described in a
formal language independent of the programming language used to implement the object's operations. The
formal language used to define object interfaces is the Interface Definition Language (IDL), standardized
by CORBA.

The implementation of a class of objects (that is, the procedures that implement operations and the
variables used to store an object's state) is written in the implementor's preferred programming language
(for example, C++ or Java).

A completely implemented class definition consists of the following parts:

� An IDL specification of the interface to instances of the class: the interface definition file (or IDL file).

� Method procedures written in the implementor's language of choice: the implementation file(s).

The IDL compiler takes as input an object interface definition file (the IDL file) and produces binding files
that make it convenient to implement and use objects that support the defined interface within a particular
programming language.

Note: Component Broker is based on CORBA Version 2.0. All IDL used with Component Broker must be
CORBA 2.0-compliant without IDL extensions.

IDL Name Scoping

The IDL file forms a naming scope (or scope). Modules, interface statements, structures, unions,
operations, and exceptions form nested scopes. An identifier can only be defined once in a particular
scope. Identifiers can be redefined in nested scopes.

Names can be used in an unqualified form within a scope, and the name will be resolved by successively
searching the enclosing scopes. Once an unqualified name is defined in an enclosing scope, that name
cannot be redefined.

Fully qualified names are of the form:

 scope-name::identifier

For example, operation name meth defined within interface Test of module M1 would have the fully
qualified name:

 M1::Test::meth

A qualified name is resolved by first resolving the scope-name to a particular scope, S, and then locating
the definition of identifier within that scope. Enclosing scopes of S are not searched.

Qualified names can also take the form:

 ::identifier

These names are resolved by locating the definition of identifier within the outermost name scope.

Every name defined in an IDL specification is given a global name, constructed as follows:

 Copyright IBM Corp. 1997, 1998 271

� Before the IDL Compiler scans the IDL file, the name of the current root and the name of the current
scope are empty. As each module is encountered, the string "::" and the module name are appended
to the name of the current root. At the end of the module, they are removed.

� As each interface, struct, union, or exception definition is encountered, the string "::" and the
associated name are appended to the name of the current scope. At the end of the definition, they are
removed. While parameters of an operation declaration are processed, a new unnamed scope is
entered so that parameter names can duplicate other identifiers.

� The global name of an IDL definition is then the concatenation of the current root, the current scope, a
"::", and the local name for the definition.

The names of types, constants, and exceptions defined by base interfaces are accessible in a derived
interface. References to these names must be unambiguous. Ambiguities can be resolved by using a
scoped name (prefacing the name with the name of the interface that defines it, and the characters "::", as
in base-interface::identifier). Scope names can also be used to refer to a constant, type, or an exception
name defined by a base interface but redefined by a derived interface.

Type and Constant Declarations

IDL specifications may include type declarations and constant declarations as in C and C++, with the
restrictions and extensions described below. IDL supports the following declarations.

 Integral Types

IDL supports only the integral types short, long, unsigned short, and unsigned long, which represent the
following value ranges:

� short -2**15 .. (2**15)-1
� long -2**31 .. (2**31)-1
� unsigned short 0 .. (2**16)-1
� unsigned long 0 .. (2**32)-1

Floating Point Types

IDL supports the float and double floating-point types. The float type represents the IEEE single-precision
floating-point numbers; double represents the IEEE double-precision floating-point numbers.

Since returning floats and doubles by value may not be compatible across Microsoft Windows compilers,
client programs should return floats and doubles by reference.

 Character Type

IDL supports a char type, which represents an 8-bit quantity. The ISO Latin-1 (8859.1) character set
defines the meaning and representation of graphic characters. The meaning and representation of null and
formatting characters is the numerical value of the character as defined in the ASCII (ISO 646) standard.
Unlike C/C++, type char cannot be qualified as signed or unsigned. (The octet type, below, can be used in
place of unsigned char.)

 Boolean Type

IDL supports a boolean type for data items that can take only the values zero (FALSE) and one (TRUE).

272 Component Broker: Programming Guide

 Octet Type

IDL supports an octet type, an 8-bit quantity guaranteed not to undergo conversion when transmitted
between a client and server process. The octet type can be used in place of the unsigned char type.

 Any Type

IDL supports an any type, which permits the specification of values of any IDL type. Conceptually, an any
consists of a value and a TypeCode that represents the type of the value. The TypeCode class provides
functions for obtaining information about an IDL type.

Constructed Types (struct, union, enum)

In addition to the above basic types, IDL also supports three constructed types: struct, union, and enum.
The structure and enumeration types are specified in IDL just as they are in C and C++, with the following
restrictions:

� Unlike C/C++, recursive type specifications are allowed only through the use of the sequence template
type (see below).

� Unlike C/C++, structures, discriminated unions, and enumerations in IDL must be tagged. For
example, struct { int a; ... } is an invalid type specification (because the tag is missing). The tag
introduces a new type name.

� In IDL, constructed type definitions need not be part of a typedef statement; furthermore, if they are
part of a typedef statement, the tag of the struct must differ from the type name being defined by the
typedef. For example, the following are valid IDL struct and enum definitions:

struct myStruct {

 long x;

 double y;

}; /\ defines type name myStruct \/
enum colors { red, white, blue }; /\ defines type name colors \/

The following IDL definitions are not valid:

typedef struct myStruct { /\ NOT VALID \/

long x; /\ Tag myStruct is the same \/

double y; /\ as the type name below; \/

} myStruct; /\ myStruct has been redefined \/

typedef enum colors { red, white, blue } colors; /\ NOT VALID \/

 Union Type

IDL also supports a union type, which is a cross between the C union and switch statements. The syntax
of a union type declaration is as follows:

union identifier switch (switch-type) { case+ }

The identifier following the union keyword defines a new legal type. (Union types may also be named
using a typedef declaration.)

The switch-type specifies an integral, character, boolean, or enumeration type, or the name of a
previously defined integral, boolean, character or enumeration type.

Each case of the union is specified with the following syntax:

case-label+ type-spec declarator;

Where

 Appendix B. Interface Definition Language 273

� Each caselabel has one of the following forms:

case const-expr:

default: The const-expr is a constant expression that must match or be automatically castable to
the switch-type. A default case can appear no more than once.

� type-spec is any valid type specification.

� declarator is an identifier or an array declarator (such as, foo[3][5]).

Template Types (sequences and strings)

IDL defines two template types not found in C and C++: sequences and strings. A sequence is a
one-dimensional array with two characteristics: an optional maximum size (specified at compile time) and
a length (determined at run time). Sequences permit passing unbounded arrays between objects.
Sequences are specified as follows:

� sequence < simple-type [, positive-integer-const] >

where simple-type specifies any valid IDL type, and the optional positive-integer-const is a constant
expression that specifies the maximum size of the sequence (as a positive integer).

A string is similar to a sequence of type char. It can contain all possible 8-bit quantities except NULL.
Strings are specified as follows:

� string [< positive-integer-const >]

where the optional positive-integer-const is a constant expression that specifies the maximum size of
the string (as a positive integer, which does not include the extra byte to hold a NULL as required in
C/C++).

� CORBA does not prescribe specific rules on how to process blanks contained within strings. Thus,
Component Broker needs help in determining whether keys “ABC” and “ABC” (Insert three trailing
blanks after the second “ABC.”) refer to the same or different managed objects. To aid with this
decision, Component Broker offers multiple semantic choices for processing string attributes when
they are defined on a business object. When multiple string attributes exist within a single business
object, mixing and matching of the various semantics will be allowed. The three semantic choices are:

– CORBA - this is consistent with the support provided through release 1.3 of Component Broker.
No rules are defined for processing blanks within these strings.

– Trailing blanks stripped - Object Builder will generate code that removes trailing blanks.

– Pad with blanks to fixed length - Object Builder will generate code that adds trailing blanks to
some bounded string length.

Customers are discouraged from using the CORBA semantics for strings to be used as key attributes.
Customers must follow similar semantic rules as enforced by our generated code for any string extensions
they implement.

 Arrays

Multidimensional, fixed-size arrays can be declared in IDL as follows:

identifier { [positive-integer-const] }+

where the positive-integer-const is a constant expression that specifies the array size, in each
dimension, as a positive integer. The array size is fixed at compile time.

274 Component Broker: Programming Guide

 Object Types

The name of the interface to a class of objects can be used as a type name. For example, if an IDL
specification includes an interface declaration (described below) for a class (of objects) C1, then C1 can
be used as a type name within that IDL specification. When used as a type, an interface name indicates a
reference to an object that supports that interface. An interface name can be used as the type of an
operation argument, as an operation return type, or as the type of a member of a constructed type (a
struct, union, or enum). In all cases, the use of an interface name indicates a reference to (as opposed to
an instance of) an object that supports that interface.

 Constants

Constants are declared in IDL just as in C++, except that the type of the constant must be a valid IDL
type. IDL Constant declarations take the following form:

const <const-type> identifier=<constant-expression];

The const-type must be a valid IDL integer, char, boolean, floating point, string, or user-defined type
name. The identifier is the name of the constant being defined. The constant-expression is a constant
expression as in C/C++, and can include the usual C/C++, unary and binary operators (|, ^, &, >>, <<,
+, -, *, /, %, ˜), parentheses for controlling operator precedence, literal values (integer, string,
character, and floating point) as in C/C++, and the boolean literal values TRUE and FALSE.

 Interface Declarations

The IDL specification for a class of objects must contain a declaration of the interface these objects will
support. When objects are implemented using classes, the interface name is used as a class name as
well. In addition to the interface name and its base interface names, an interface indicates new methods
(operations), and any constants, type definitions, and exception structures that the interface exports. An
interface declaration has the following syntax:

 interface interface-name [: base-interface1, base-interface2, ...]

 {

 constant declarations (optional)

 type declarations (optional)

 exception declarations (optional)

 attribute declarations (optional)

 operation declarations (optional)

 };

The base-interface names specify the interfaces from which interface-name is derived. Parent-interface
names are required only for the immediate base interface(s). Each base interface must have its own IDL
specification (which must be #included in the IDL file). A base interface cannot be named more than once
in the interface statement header.

In general, an interface header must precede any subsequent references to . For a discussion of multiple
interface statements, see Multiple IDL Interfaces and Modules.

The topics listed below describe the various declarations/statements that can be specified within the body
of an interface declaration. The order in which these declarations are specified is usually optional, and
declarations of different kinds can be intermixed. Although all of the declarations/statements are listed
above as optional, in some cases using one of them may mandate another. For example, if an operation
raises an exception, the exception structure must be defined beforehand. In general, types, constants, and
exceptions, as well as interface declarations, must be defined before they are referenced, as in C/C++.

 Appendix B. Interface Definition Language 275

� “Attribute Declarations” on page 278
� “Comments” on page 281
� “Type and Constant Declarations” on page 272

 � “Operation Declarations”

Constant, Type, and Exception Declarations Within an Interface

The form of a constant, type, or exception declaration within the body of an interface declaration is the
same as described in “Interface Declarations” on page 275. Constants and types defined within an
interface are transferred by the IDL compiler to the binding files it generates for that interface.

Types, constants, and exceptions defined in a base interface are accessible to the derived interface.
References to them, however, must be unambiguous. Ambiguities can be resolved by using a fully
scoped name, (prefacing a name with the name of the interface that defines it) separated by the
characters "::" as illustrated below:

 MyBaseInterface::myType

A leading "::" can be used to fully-qualify a reference starting from the outermost name scope.

The derived interface can redefine any of the type, constant, and exception names that were inherited.
The derived interface cannot, however, redefine attributes or operations. To refer to a constant, type, or
exception "name" defined by a base interface and redefined by "interface-name," use the
"parent-name::name" syntax.

 Operation Declarations

Operation declarations define the interface of each operation introduced by the interface. (An IDL
operation is typically implemented by a method in the implementation programming language. Hence, the
terms operation and method are often used interchangeably.) An operation declaration is similar to a C++
virtual function definition:

[oneway] type-spec
identifier (parameter-list) [raises-expr] [context-expr] ;

where

identifier is the name of the operation.

type-spec is any valid IDL type, except a sequence, or the keyword void, indicating that the operation
returns no value. (Although the return type cannot be a sequence, it can be a user-defined type that is
a sequence.) Unlike C and C++ procedures, operations that do not return a result must specify void as
their return type.

The remaining syntax of an operation declaration is elaborated in the following subtopics.

 "oneway" Keyword

The optional oneway keyword specifies that when a caller invokes the operation, no reply is expected or
received. The invocation semantics of a oneway operation are best-effort, which does not guarantee
delivery of the call. Best-effort implies that the operation will be invoked at most once. A oneway operation
must not have any output parameters and must have a return type of void. A oneway operation also must
not include a raises expression (see below).

If the oneway keyword is not specified, then the operation has at-most-once invocation semantics if an
exception is raised, and it has exactly-once semantics if the operation succeeds. This means that an

276 Component Broker: Programming Guide

operation that raises an exception has been executed zero or one times, and an operation that succeeds
has been executed exactly once.

 Parameter List

The parameter-list contains zero or more parameter declarations for the operation, delimited by commas.
(The target object for the operation is not explicitly specified as an operation parameter in IDL.) If there
are no explicit parameters, the syntax "()" must be used, rather than "(void)". A parameter declaration has
the following syntax:

{ in | out | inout } type-spec declarator

where type-spec is any valid IDL type (except a sequence), and declarator is an identifier or an array
declarator. Although the type of a parameter cannot be a sequence, it can be a user-defined type that
is a sequence.

The required in|out|inout directional attribute indicates whether the parameter is to be passed from caller to
callee (in), from callee to caller (out), or in both directions (inout). The following are examples of valid
operation declarations:

short meth1(in char c, out float f);

oneway void meth2(in char c);

 float meth3();

An operation's implementation should not modify an in parameter. If a change must be made by the
implementation, the implementation should copy the parameter and only modify the copy.

If an operation raises an exception, the values of the return result and the values of the out and inout
parameters (if any) are undefined.

 "raises" Expression

The optional raises expression in an IDL operation declaration indicates which exceptions the operation
may raise. A raises expression is specified as follows:

raises (identifier1, identifier2, ...)

where each identifier is the name of a previously defined exception. In addition to the exceptions listed in
the raises expression, an operation may also signal any of the standard exceptions. Standard exceptions,
however, should not appear in a raises expression. If no raises expression is given, then an operation can
raise only the standard exceptions. “Exception Declarations” on page 278 contains further information on
defining exceptions and the list of standard exceptions.

 "context" Expression

The optional context expression (context-expr) in an operation declaration indicates which elements of the
caller's context the operation's implementation may consult. A context expression is specified as follows:

context (identifier1, identifier2, ...)

where each identifier is a string literal made up of alphanumeric characters, periods, underscores and
asterisks. The first character must be alphabetic, and an asterisk can only appear as the last character,
where it serves as a wildcard matching any characters. If convenient, identifiers may consist of
period-separated valid identifier names, but that form is optional.

The Context is a special object that is specified by the CORBA standard. It contains a property list: a set
of property-name/string-value pairs that the caller can use to store information about its environment that

 Appendix B. Interface Definition Language 277

operations may find useful. It is used in much the same way as environment variables. It is passed as an
additional parameter to operations that are defined as context-sensitive in IDL.

The context expression of an operation declaration in IDL specifies which property names the operation
uses. If these properties are present in the Context object supplied by the caller, they will be passed to the
object implementation, which can access them via the interface of the Context object.

The argument that is passed to the operation having a context expression is a Context object, not the
names of the properties. The caller must create a Context object and use the interface of the Context
object to set the context properties. The caller then passes the Context object in the operation invocation.
The CORBA standard allows properties in addition to those in the context expression to be passed in the
Context object.

 Attribute Declarations

Declaring an attribute as part of an interface is equivalent to declaring one or two accessor operations:
one to retrieve the value of the attribute (a get or read operation) and (unless the attribute specifies
readonly) one to set the value of the attribute (a set or write operation).

Attributes are declared as follows:

[readonly] attribute type-spec declarators;

where:

type-spec specifies any valid IDL type (except a sequence).

declarators is a list of identifiers, delimited by commas. An array declarator cannot be used directly
when declaring an attribute, but the type of an attribute can be a user-defined type that is an array.
Although the type of an attribute cannot be a sequence, it can be a user-defined type that is a
sequence. The optional readonly keyword specifies that the value of the attribute can be accessed but
not modified. (In other words, a readonly attribute has no set operation.) Below are examples of
attribute declarations, which are specified within the body of an interface statement:

interface Goodbye: Hello

 {

 void sayBye();

attribute short xpos;

attribute char c1, c2;

readonly attribute float xyz;

 };

Attributes are inherited from base interfaces. An inherited attribute name cannot be redefined to be a
different type.

 Exception Declarations

IDL specifications can include exception declarations, which define data structures to be returned when an
exception occurs during the execution of an operation. A name is associated with each type of exception.
Optionally, a struct-like data structure for holding error information can also be associated with an
exception. Exceptions are declared as follows:

 exception identifier
 {

 member\
 };

278 Component Broker: Programming Guide

The identifier is the name of the exception, and each member has the following form:

type-spec declarators ;

The type-spec is a valid IDL type specification and declarators is a list of identifiers or array declarators,
delimited by commas. The members of an exception structure should contain information to help the caller
understand the nature of the error. The exception declaration can be treated like a struct definition:
whatever you can access in an IDL struct, you can access in an IDL exception. Unlike a struct, an
exception can be empty, meaning the exception is just identified by its name.

If an exception is returned as the outcome of an operation, the exception identifier indicates which
exception occurred. The values of the members of the exception provide additional information specific to
the exception. “Operation Declarations” on page 276 describes how to indicate that a particular operation
may raise a particular exception.

The following is an example showing the declaration of a BAD_FLAG exception:

 exception BAD_FLAG

 {

long ErrCode; char Reason[8ð];

 };

In addition to user-defined exceptions, there are several predefined exceptions for system run-time errors.
The standard exceptions as prescribed by CORBA are subclasses of CORBA::SystemException. These
exceptions correspond to standard run-time errors that may occur during the execution of any operation
(regardless of the list of exceptions listed in the operation's IDL specification).

Each of the standard exceptions has the same structure: an error code (to designate the subcategory of
the exception) and a completion status code. For example, the NO_MEMORY standard exception has the
following definition:

 enum completion_status

 {

COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE

 };

 exception NO_MEMORY

 {

unsigned long minor;

 completion_status completed;

 };

The "completion_status" value indicates whether the operation was never initiated (COMPLETED_NO), if
the operation completed its execution prior to the exception (COMPLETED_YES), or if the operation's
completion status is indeterminate (COMPLETED_MAYBE).

 IDL Syntax

This section describes the syntax of the Interface Definition Language (IDL), as specified by the CORBA
standard. This section describes the syntax and semantics of IDL using the following conventions:

bold Indicates Literals (such as keywords).

italics Indicate user-supplied elements.

{ } Groups related items together as a single item.

[] Encloses an optional item.

* Indicates zero or more repetitions of the preceding item.

 Appendix B. Interface Definition Language 279

+ Indicates one or more repetitions of the preceding item.

| Separates alternatives.

_ Within a set of alternatives, an underscore indicates the default, if defined.

IDL is a formal language used to describe object interfaces. An IDL definition specifies, for a class of
objects, what methods (operations) are available, their return types, and their parameter types. For this
reason, we often speak of an IDL specification for a class (as opposed to simply an object interface).

IDL generally follows the same lexical rules as C and C++. Exceptions to C++ lexical rules include:

� IDL uses the ISO Latin-1 (8859.1) character set.

� White space is ignored except as token delimiters.

� C and C++ comment styles are supported.

� IDL supports standard C/C++ preprocessing, including macro substitution, conditional compilation, and
source file inclusion.

� Identifiers (user-defined names for operations, attributes, instance variables, and so on) are composed
of alphanumeric and underscore characters (with the first character alphabetic) and can be of arbitrary
length, up to an operating-system limit of about 250 characters.

� Identifiers must be spelled consistently with respect to case throughout a specification.

� Identifiers that differ only in case yield a compilation error.

� Within a particular name scope, there is a single name space for all identifiers, regardless of their
type. For example, using the same identifier for a constant and an interface name within the same
name scope yields a compilation error.

� Integer, floating point, character, and string literals are defined as in C and C++.

The terms listed in Table 10 are reserved keywords and may not be used otherwise. Keywords must be
spelled using upper- and lower-case characters exactly as shown in the table. For example, "void" is
correct, but "Void" yields a compilation error.

Table 10. Reserved Keywords for IDL

any default FALSE oneway read-only

attribute double float out sequence

boolean enum in raises short

case exception inout unsigned string

char interface union struct

const long void switch

context module TRUE

Object

octet typedef

A typical IDL specification for a single interface, residing in a single IDL file, has a form which includes the
following specifications listed.

� “Interface Declarations” on page 275 (optional)
� “Exception Declarations” on page 278 (optional)
� “Include Directives” on page 281 (optional)
� “Type and Constant Declarations” on page 272 (optional)

280 Component Broker: Programming Guide

The order is unimportant, except that interface names must be declared (or forward referenced) before
they are referenced.

For more information on the CORBA standard for IDL, see The Common Object Request Broker:
Architecture and Specification .

 Comments

IDL supports both C and C++ comment styles. The characters "//" start a line comment, which finishes at
the end of the current line. The characters "/*" start a block comment that finishes with "*/". Block
comments do not nest. The two comment styles can be used interchangeably.

Because comments appearing in an IDL specification may be transferred to the files that the IDL Compiler
generates, and because these files are often used as input to a programming language compiler, avoid
using characters that are not generally allowed in comments of most programming languages. For
example, the C language does not allow */ to occur within a comment, so its use is to be avoided, even
when using C++ style comments in the IDL file.

IDL also supports throw-away comments. They may appear anywhere in an IDL specification. Throw-away
comments start with the string "//#" and end at the end of the line. Use throw-away comments to comment
out portions of an IDL specification.

 Include Directives

The IDL specification for an interface normally contains #include statements that tell the IDL compiler
where to find the interface definitions (the IDL files) for each of the interface's parent (direct base)
interfaces and for other referenced types.

The file orb.idl can be included to access IDL types defined by the CORBA specification that are not IDL
keywords.

As in C and C++, if a filename is enclosed in angle brackets ([]), the search for the file begins in
system-specific locations. If the filename is in double quotation marks (""), the search for the file begins in
the current working directory, before searching the system-specific locations.

In addition to the #include directive, other preprocessor directives can be used in IDL.

 Pragma Directives

Component Broker supports the following pragmas.

 � localonly
 � localonly abstract
 � cpponly
 � init
 � ID
 � Prefix
 � version

 Appendix B. Interface Definition Language 281

 localonly Pragma

This Component Broker unique pragma supports the generation of bindings for objects that are known to
be local (not distributed). This pragma may occur at any point in the IDL file following the definition or
forward declaration of the designated interace.

The syntax is:

#pargma meta interface-name localonly

The IDL interface identified by interface-name is treated by generated bindings as stricktly local to the
caller's process. No calls to the CORBA ORB occur when invoking the operations defined in this interface.
interface-name may be a simple name of an interface in the current scope or a fully- or partially-qualified
interface name. The interface must be previously defined or forward declared when the pragma statement
is encountered.

localonly abstract Pragma

This Component Broker unique pragma is like the localonly pragma, but it does not produce a _create()
function.

The syntax is:

#pragma meta interface-name localonly abstract

Like the localonly pragma, but the client bindings contain no _create() function.

 cpponly Pragma

This Component Broker unique pragma suppresses the generation of IOM interlanguage bindings.

The syntax is:

#pragma meta interface_name cpponly

In the default case, without this pragma, two sets of bindings are produced:

� The standard CORBA C++ bindings suitable for use with the ORB component.
� IOM bindings suitable for interlanguage interaction.

Without this pragma, only the standard CORBA C++ bindings are produced.

 init Pragma

This Component Broker unique pragma specifies a function to use to initialize newly created objects.

The syntax is:

#pragma mets method-name init

This pragma allows the IDL to specify the name of a function to be used to initialize the newly created
method. When this pragma is not used, the emitters produce a _create() function that takes no parameters
and does no initialization after the new object is created.

For example, if the IDL contains:

282 Component Broker: Programming Guide

 interface A

 {

 void initFunction(int);

 };

#pragma meta A::initFunction init

the C++ class A that implements interface A will have a _create() function that takes an int parameter
(because initFunction takes an int). Also, the code inside _create(int) creates a new instance of class A
and then call initFunction(int) on the newly created object, passing along its int parameter.

 ID Pragma

This CORBA-defined pragma overrides the default RepositoryID for an IDL entity.

The syntax is:

#pragma ID scoped-name literal-string

which sets the RepositoryID of scoped-name to literal-string instead of the default Repository ID.

 Prefix Pragma

This CORBA-defined pragma sets the RepositoryID prefix

The syntax is:

#pragma prefix string

which sets the current prefix used in generating OMG IDL format RepositoryIDs. The specified prefix
applies to RepositoryIDs generated after the pragma until the end of the current scope is reached or
another prefix pragma is encountered.

 version Pragma

This CORBA-defined pragma sets the RepositoryID version number.

The syntax is:

#pragma version scoped-name major.minor

which uses the major.minor as the version number for RepositoryID of the scoped-name.

Multiple IDL Interfaces and Modules

A single IDL file can define multiple interfaces. When a file defines two or more interfaces that reference
one another, forward declarations can be used to declare the name of an interface before it is defined.
This is done as follows:

interface interfaceName ;

The actual definition of the interface for interfaceName must appear later in the same IDL file.

If multiple interfaces are defined in the same IDL file, they can be grouped into modules, by using the
following syntax:

module moduleName { definition+ };

 Appendix B. Interface Definition Language 283

where each definition is a type declaration, constant declaration, exception declaration, interface statement
or nested module statement. Modules are used to scope identifiers.

Alternatively, multiple interfaces can be defined in a single IDL file without using a module to group the
interfaces. Whether a module is used for grouping multiple interfaces or not, the languages bindings
produced from the IDL file will include support for all of the defined interfaces.

The idlc Command

Creates usage and implementation bindings for interfaces described in IDL files.

The Interface Definition Language Compiler (idlc) command compiles one or more files containing CORBA
2.0-compliant IDL statements, and optionally produces generated language bindings appropriate to each
named input file.

The syntax for the idlc command is:

idlc [options] <filename>...

Where:

[options]

See Options for the idlc Command for a complete list of the options, their usage, and their
restrictions.

<filename >
<filename> may be specified without a file name extension; if no file name extension is
supplied, it is assumed to be “.idl.” The wildcard character “*” is permitted to appear once in the
non-path portion of the file name. For example, the following are acceptable ways to refer to
the file “xyz.idl” in directory “E:\idl\src”:

 E:\idl\src\xyz.idl

 E:\idl\src\xyz

E:\idl\src\\.idl (this may refer to additional files as well)

E:\idl\src\x\.idl (all files starting with x)

xyz.idl (if E:\idl\src is the current directory)

 xyz

 x\

When all specified input files are compiled, the idlc command returns a value of zero if no errors were
detected; otherwise, a non-zero value is returned.

If no emitters are specified for the idlc command, then only the syntax of the named files is checked, and
any errors reported. (See the discussion of the -e option (IDLC Command options) for how to specify
emitters.) When a compilation error (but not a warning) is detected for a particular input file, the emit
phase for that file is skipped.

For additional information on emitted files, see Emitted File Names.

284 Component Broker: Programming Guide

Options for the idlc Command

Options for the idlc command are preceeded with a dash (-) character and may be specified individually or
run together. For example, -p -v -V or -pvV is acceptable.

Some options accept an argument. These options must either be specified individually or as the last option
in a run-together grouping (for example, -p -m tie or -pm tie). The space between this type of option
and its argument is optional. For example, either -mtie or -m tie is equally acceptable.

All options are case-sensitive, even on platforms where file names are not case-sensitive.

Table 11 describes each available option:

Table 11 (Page 1 of 4). idlc Command Options

Option Description

-d <directory-name> Specifies the directory in which to place emitted output files and directories. If
none is specified, the default is the current directory.

-V Shows the version number of the idlc command.

-v Specifies verbose mode. This shows all internal commands (and their arguments)
issued by the idlc command.

? Writes a brief description of the idlc command syntax to standard output.

-h Synonymous with -?.

-D <define-expression> Predefines a preprocessor variable for the IDL compiler.

-I <include-directory> Adds a directory to the list of directories used by the IDL compiler to find #include
files. In addition to the -I option, the IDLC_INCLUDE environment variable can be
used to specify a list, with <include-directory> names separated by the PATH
separator character.

-i <file-name> Specifies the name of a file to be compiled that does not have the .idl extension.
The <file-name> should not have an implicit .idl suffix added to its name.

-p Used as a shorthand for -D__PRIVATE__.

 Appendix B. Interface Definition Language 285

Table 11 (Page 2 of 4). idlc Command Options

Option Description

-e <emit-list> Specifies a list of emitters to run. Emitters are specified with a short 2- or
3-character designator. Each emitter in the list should be separated from the
others with a colon (:) or semicolon (;) character. Valid emitter names are:

hh Produces C++ usage bindings. If no modifiers are present, bindings with
support for remotable cross-language operation are produced. The
cpponly, localonly, and somthis modifiers cause specialized bindings to be
produced (see -m<name[=value]>).

sc Produces a C++ skeleton for the Basic Object Adapter of the ORB. If no
modifiers are present, bindings with support for remotable cross-language
operation are produced. The cpponly, localonly, and somthis modifiers
cause specialized bindings to be produced (see -m<name[=value]>).

uc Produces local implementations needed by the C++ usage bindings. If no
modifiers are present, bindings with support for remotable cross-language
operation are produced. The cpponly, localonly, and somthis modifiers
cause specialized bindings to be produced (see -m<name[=value]>).

ih Produces a C++ implementation header. If the mo modifier (see
-m<name[=value]>) is specified, bindings that support Component Broker
managed objects are produced; otherwise, pure CORBA C++ bindings,
suitable for use with a standalone ORB, are produced.

ic Produces a Component Broker C++ managed object implementation
template. The mo modifier has the same effect as the ih emitter.

uj Produces the cross-language Java usage bindings.

sj Produces a Java implementation skeleton.

bj Creates files needed to support business objects written in Java. The files
are

� _<interface_name>Wrapper.java that replaces
_<interface_name>Skeleton.java

� _<interface_name>Impl.java that is the implementation-side proxy for
the C++ managed object associated with the Java business object.

ir Updates the CORBA Interface Repository with the interfaces in this
compilation unit.

The idlc command looks for emitters specified by the -e or -s flags and looks for
an <emit-list> in an environment variable named IDLC_EMIT. If no <emit-list> can
be found from any source, no emitters are run, but the IDL compiler is invoked to
check for syntax errors in the input files.

-s <emit-list> Synonymous with -e.

286 Component Broker: Programming Guide

Table 11 (Page 3 of 4). idlc Command Options

Option Description

-m <name[=value]> Specifies an output modifier. A modifier may be given as a name or a
name=value expression. The emitters are sensitive to the following modifiers:

LINKAGE= <value> Used to insert customized C++ linkage modifiers into the
generated bindings.

notcconsts Eliminates the generation of C++ TypeCode constants and
overloaded any operators.

tie Generates “tie-style” bindings that assume delegation rather than
inheritance.

cpponly Suppresses the production of cross-language bindings and produces
standard CORBA C++ bindings suiitable for use with a standalone ORB.
cpponly affects the bindings produced by the hh, sc, and uc emitters.

localonly Generates bindings that can only be used to access a local object for
all of the most-derived interfaces in the IDL file. For an alternative
mechanism that also offers finer control over the affected interfaces, see
“localonly” Pragmas.

nointerface Suppresses the generation of the <interface_name>.java file that
would otherwise be created by the uj emitter.

nohelper Suppresses the generation of the <interface_name>Helper.java file that
would otherwise be created by the uj emitter.

noholder Suppresses the generation of the <interface_name>Holder.java file that
would otherwise be created by the uj emitter.

nostub Suppresses the generation of the _<interface_name>Stub.java file that
would otherwise be created by the uj emitter.

noimplbase Suppresses the generation of the _<interface_name>ImplBase.java
file that would otherwise be created by the sj emitter.

noskeleton Suppresses the generation of the _<interface_name>Skeleton.java
file that would otherwise be created by the sj emitter.

noimpl Suppresses the generation of the _<interface_name>Impl.java file that
would otherwise be created by the bj emitter.

nowrapper Suppresses the generation of the _<interface_name>Wrapper.java
file that would otherwise be created by the bj emitter.

orbadapter Generates C++ bindings that allow the C++ ORB to dispatch Java
implementations.

IRforce Forces the IR emitter to destroy objects already present in the IR with
the same name as in the IDL being produced.

dllname= <value> Puts NT import/export specifications into classes contained in
the DLL named by <value>.

preInclude= <file-name> Adds the line:

 #include <file-name>

to the .hh file, just before the line that includes corba.h.

postInclude= <file-name> Adds the line:

 #include <file-name>

just before the end of the .hh file.

 Appendix B. Interface Definition Language 287

Table 11 (Page 4 of 4). idlc Command Options

Option Description

-J Passes options through to the Java interpreter used internally. For example:

 -J"-mx32m"

sets the heap size for the interpreter to 32M.

Emitted File Names

The idlc command process IDL files and produces output files that contain language-specific usage and
implementation bindings for the IDL interface. Each emitter (see -eemit-list in Options for the idlc
Command) produces one or more output files. The rules used to generate the names of these output files
are described in the following sections.

 C++ Emitters

The names of the generated output files are derived frrom the file name of the corresonding IDL file. For a
file named filestem.idl, the following list of output files may be emitted when the idlc command is run. The
list contains the emitter and its corresponding output file name.

hh filestem.hh

sc filestem_S.cpp

uc filestem_C.cpp

ih filestem.ih

ic filestem_I.cpp

 Java Emitters

The Java emitters produce multiple output files as defined by the CORBA Java bindings. These file names
are unrelated to the name of the corresponding IDL file, and depend instead on the name of the IDL
elements being mapped. In keeping with the required correspondence between Java package names and
the directory structure where Java source files reside, subdirectories of the current directory (or the
directory specifiec by the -d command line option) are created dynamically to hold the generate .java files.

IDLC_OPTIONS Environment Variables

Any idlc command line option can be specified in the environment by adding the option to the string
named IDLC_OPTIONS environment variable. Options specified in the IDLC_OPTIONS variable are
treaeted as if they were keyed on the command line before any of the actual command line options. For
example, if:

IDLC_OPTIONS="-m cpponly -mdllname=mydll"

and the command line is:

idlc -ehh idlfile

the result is the same as if the IDLC_OPTIONS variable was not set and the command line was:

idlc -m cpponly -mdllname=mydll -ehh idlfile

288 Component Broker: Programming Guide

The IDL-to-Java Compiler

The IDL-to-Java Compiler generates Java bindings for a given IDL file.

 Quick Reference

The command to invoke the IDL-to-Java code compiler has the general form:

java com.ibm.idl.toJava.Compile [options] source_IDL

where source_IDL is the name of a file that contains IDL definitions, and [options] is any combination of
the options listed in “Compilation Options.” Options may appear in any order, but must precede the IDL file
specification.

 Compilation Options

Invoke the compiler without any arguments to view the following options:

-bean Emit client-side bindings as Java Beans.

-d This is equivalent to the following line in an IDL file: #define symbol.

-emitAll Emit all types, including those found in #include files.

-fside Defines what bindings to emit. side is one of client, server, all, serverTie, and allTie.
Assumes -fclient if the flag is not specified.

-i include_ path By default, the current directory is scanned for included files. This option adds another
directory.

-keep If a file to be generated already exists, do not overwrite it. By default it is overwritten.

-m Generate information to be included in a make description file; output goes to .u file.

-pkgPrefix type package Wherever type is encountered, ensure it resides within package in all generated
files. type is a fully qualified, Java-style name.

-sep string Only valid with -m. Replace the file separator character with string in the file names listed in
the .u file.

-stateful Emit Object by Value bindings.

-td target_directory Emit bindings to target_directory rather than to the current directory.

-v Verbose mode.

The sections that follow provide complete instructions for using each option along with tips about when to
use them.

Emitting Client and Server Bindings

To generate the Java bindings for an IDL file named My.idl, set the current working directory to that
containing My.idl and issue the following command:

java com.ibm.idl.toJava.Compile My.idl

This command generates client-side bindings only and is equivalent to:

java com.ibm.idl.toJava.Compile -fclient My.idl

Client-side bindings include all generated files except the Skeleton. If you wish to generate server-side
bindings for My.idl, issue the command:

 Appendix B. Interface Definition Language 289

java com.ibm.idl.toJava.Compile -fserver My.idl

This command generates all client-side bindings plus an inheritance-model Skeleton (ImplBase). Currently,
server-side bindings include all generated files, even the Stub. Thus, the command above is currently
equivalent to each shown below:

java com.ibm.idl.toJava.Compile -fclient -fserver My.idl

java com.ibm.idl.toJava.Compile -fall My.idl

The compiler generates inheritance-model Skeletons by default. Given an interface My defined in My.idl,
the compiler generates Skeleton _MyImplBase.java. You provide the implementation for My, which must
extend _MyImplBase.

There is another server-side model called tie. Tie Skeletons delegate method requests to the actual object
via reference rather than via extension, as with inheritance-model Skeletons. The following commands
generate tie-model bindings for My.idl:

java com.ibm.idl.toJava.Compile -fserverTIE My.idl

java com.ibm.idl.toJava.Compile -fallTIE My.idl

For the interface My, these commands will generate client-side bindings plus a tie-model Skeleton,
_MySkeleton.java. The constructor to _MySkeleton takes a My. You must provide the implementation for
My (_MyImpl), which does not have to extend any other class; it must, however, implement the My
interface. To use _MyImpl with the ORB, you must wrap it within _MySkeleton. For instance:

_MyImpl myImpl = new _MyImpl ();

_MySkeleton skel = new _MySkeleton (myImpl);

 orb.connect (skel);

The reason you might want to use the tie model over the typical inheritance model is if your
implementation must inherit some class other than the Skeleton. Java allows any number of interface
inheritance, but there is only one slot for class inheritance. If you use the inheritance model, that slot is
occupied by the Skeleton. By using a tie model Skeleton, that slot is freed up for your own use. The
drawback is that it introduces a level of indirection: one extra method call occurs when invoking a method.

Specifying an Alternate Location for Emitted Files

By default, the compiler outputs bindings to the directory from which it was invoked (the current directory).
To direct the output to another directory, specify the target directory immediately following the -td flag. The
target directory may be absolute or relative. For example, to direct the output to directory /my/bindings
while compiling My.idl, you would invoke the compiler with the following command:

java com.ibm.idl.toJava.Compile -td /my/bindings My.idl

Similarly, if /my is the current directory, you could direct the output to /my/bindings by issuing the
command:

java com.ibm.idl.toJava.Compile -td ./bindings My.idl

Specifying Alternate Locations for Include Files

If My.idl included another idl file, MyOther.idl, the compiler assumes that MyOther.idl resides in the local
directory. If it resides in directory /includes, for example, you would invoke the compiler with the following
command:

java com.ibm.idl.toJava.Compile -i /includes My.idl

If My.idl also included Another.idl that resided in /moreIncludes, then you would invoke the compiler as:

290 Component Broker: Programming Guide

java com.ibm.idl.toJava.Compile -i /includes -i /moreIncludes My.idl

You can begin to see that if you have a number of places where included files may come from, the
command will become long and unmanageable. So there is another means of indicating to the compiler
where to search for included files. This technique is very similar to the idea of an environment variable.
You must create a file called idl.config in a directory that is listed in your CLASSPATH. Inside of idl.config
you must provide a line of the following form:

 includes=/includes;/moreIncludes

The compiler take the first version of the file it locates and read in its includes list. Note that in this
example, the separator character between the two directories is a semicolon (;). This separator character
is platform dependent: On NT it is a semicolon, on AIX it is a colon, and so on.

Note: Some platforms will fail when issuing a long command line. If the command line to invoke the
compiler becomes too long, use the idl.config file.

Emitting Bindings for Include Files

By default, only those interfaces, structs, and so on, that are defined in the idl file on the command line
have the Java bindings generated for them. The types defined in included files are not generated. For
example, assume the following two idl files:

 My.idl

 #include MyOther.idl
 interface My

 {

 };

 MyOther.idl

 interface MyOther

 {

 };

The following command will only generate bindings for types within My:

java com.ibm.idl.toJava.Compile My.idl

To generate bindings for all of the types in My.idl and all of the types in files that My.idl includes (in this
example, MyOther.idl), use the following command:

java com.ibm.idl.toJava.Compile -emitAll My.idl

There is a caveat to the default rule. #include statements which appear at the global scope are treated as
described. These #include statements can be thought of as import statements. #include statements which
appear within some enclosing scope are treated as true #include statements, meaning that the code within
the included file is treated as if it appeared in the original file and, therefore, Java bindings are emitted for
it. Here is an example:

 My.idl

 #include MyOther.idl
 interface My

 {

 #include Embedded.idl
 };

 Appendix B. Interface Definition Language 291

 MyOther.idl

 interface MyOther

 {

 };

 Embedded.idl

enum E {one, two, three};

Running the following command:

java com.ibm.idl.toJava.Compile My.idl

will generate the following list of Java files:

 ./MyHolder.java

 ./MyHelper.java

 ./_MyStub.java

 ./MyPackage

 ./MyPackage/EHolder.java

 ./MyPackage/EHelper.java

 ./MyPackage/E.java

 ./My.java

Notice that MyOther.java was not generated because it is defined in an import-like #include. But E.java
was generated because it was defined in a true #include. Notice also that since Embedded.idl was
included within the scope of the interface My it appears within the scope of My (that is, in MyPackage).

If the -emitAll flag were used in the previous example, all types in all included files would be emitted.

Inserting Package Prefixes

Say you work for a company called ABC and that company has constructed the following IDL file:

 Widgets.idl

 module Widgets

 {

 interface W1 {...};

 interface W2 {...};

 };

Running this file through the IDL-to-Java compiler will place the Java bindings for W1 and W2 within the
package Widgets. But there is an industry convention that states that a company's packages should reside
within a package named com.company name. The Widgets package is not good enough. To follow the
convention, it should be com.abc.Widgets. To place this package prefix onto the Widgets module, execute
the following:

java com.ibm.idl.toJava.Compile -pkgPrefix Widgets com.abc Widgets.idl

You should be aware that, if you have an IDL file which includes Widgets.idl, the -pkgPrefix flag must
appear on that command as well. If it does not, then your IDL file will be looking for a Widgets package
rather than a com.abc.Widgets package.

If you have a number of these packages that require prefixes, it might be easier to place them into the
idl.config file described above. Each package prefix line should be of the form:

 PkgPrefix.type=prefix

292 Component Broker: Programming Guide

So the line for the above example would be:

 PkgPrefix.Widgets=com.abc

Emitting Client-side Bindings as JavaBeans

You might like the client-side bindings to be JavaBeans:

java com.ibm.idl.toJava.Compile -bean My.idl

This will generate another file, _MyProxy.java, which can be used as a JavaBean, and
_MyProxyBeanInfo.java which is the auxiliary bean file. All Beans generated in this manner have three
properties: _initialHost, _initialPort, _name. These properties must be filled in with the server bootstrap
host, bootstrap port, and name the server-side object was bound to in the Name Server. When these are
filled in, _initProxy() must be called. When that returns, _MyProxy is a usable proxy.

Note that this proxy only works with an object that has already been bound with the Name Server. At the
point when this was implemented, the Lifecycle service was not fully defined, so there is no way in which
a Bean can create an object on a server (unless the developer writes one). Expect a create method to
appear on Bean proxy's in the future.

Emitting Object by Value (Stateful) Bindings

CORBA Objects are passed by reference, never by value. There is a proposal before OMG to add the
ability to pass an object by value. This compiler has attempted to guess what this mechanism will be.
Since it is only a guess, and the proposal is still changing, pass-by-value objects should not be depended
upon unless you are willing to change in the future. To pass an object by value, it must have state. The
following is an example of the changes made to the IDL language to support stateful objects:

 StatefulA.idl

 interface A

 {

 state

 {

 long x;

 short y;

 };

 void proc1 ();

 };

Within the curly braces, the syntax for the state block is identical to the syntax for a struct. To direct the
compiler to correctly parse this code, specify the -stateful option when invoking the compiler, like so:

java com.ibm.idl.toJava.Compile -stateful StatefulA.idl

A new interface file will be generated: _AState.java. To correctly interact with the other bindings (Helpers,
Holders, Stubs, Skeletons), _AState must be used instead of A. This is because A does not contain the
state while _AState does. And the other bindings all depend on the state to marshal and demarshal the
stateful data.

Emitting Makefiles and Specifying the Path Separator Character

When the Java bindings will be compiled using a makefile, it can become tedious to build the makefile by
hand. There are two arguments to the IDL-to-Java compiler which help in building the makefile.

java com.ibm.idl.toJava.Compile -m My.idl

 Appendix B. Interface Definition Language 293

This will generate, besides the usual bindings, file My.u which will contain the following lines:

 MyHelper.java: My.idl

 My.java: My.idl

 MyHolder.java: My.idl

 MyPackage/E.java: Embedded.idl

 MyPackage/EHelper.java: Embedded.idl

 MyPackage/EHolder.java: Embedded.idl

 _MyStub.java: My.idl

 MyHelper.java \

 My.java \

 MyHolder.java \

 MyPackage/E.java \

 MyPackage/EHelper.java \

 MyPackage/EHolder.java \

 _MyStub.java

If you are building a makefile that will run on multiple platforms, the slash '/' character will not necessarily
be the file separator character. Perhaps the build environment has a special variable for the file separator
character. If this variable were $(Sep), then the compiler can place this in place of the slash in My.u with
the following command:

java com.ibm.idl.toJava.Compile -m -sep \$\(Sep\) My.idl

So that My.u now contains:

 MyHelper.java: My.idl

 My.java: My.idl

 MyHolder.java: My.idl

 MyPackage$(Sep)E.java: Embedded.idl

 MyPackage$(Sep)EHelper.java: Embedded.idl

 MyPackage$(Sep)EHolder.java: Embedded.idl

 _MyStub.java: My.idl

 MyHelper.java \

 My.java \

 MyHolder.java \

 MyPackage$(Sep)E.java \

 MyPackage$(Sep)EHelper.java \

 MyPackage$(Sep)EHolder.java \

 _MyStub.java

Defining Symbols Before Compilation

You may wish to define a symbol for compilation that is not defined within the idl file, perhaps to include
debugging code in the bindings. The command

java com.ibm.idl.toJava.Compile -d MYDEF My.idl

is the equivalent to putting the line '#define MYDEF' inside My.idl itself.

Preserving Pre-existing Bindings

If the Java binding files already exist, this argument will keep the compiler from overwriting them. The
default is to generate all files without considering if they already exist. If you've customized those files
(which you should not do unless you are very comfortable with their contents), then the -keep option is
very useful. The command

294 Component Broker: Programming Guide

java com.ibm.idl.toJava.Compile -keep My.idl

emit all client-side bindings that do not already exist.

Viewing Progress of Compilation

The IDL-to-Java compiler will generate status messages as it progresses through its phases of execution.
Use the -v option to activate this “verbose” mode:

java com.ibm.idl.toJava.Compile -v My.idl

By default the compiler does not operate in verbose mode.

The idl2com Command

The idl2com Command Creates usage and implementation bindings for interfaces described in IDL files.

The Interface Definition Language Compiler-to-COM (idl2com) command compiles one file containing
CORBA 2.0-compliant IDL statements, and produces generated language bindings appropriate to the
named input file.

The syntax of the idl2com command is:

idl2com [options] <-g GUID_VALUE> <filename>

Where:

[options]

See Options for the idl2com Command for a complete list of the options, their usage, and their
restrictions.

<-g GUID_VALUE>
-g is a mandatory parameter. See Options for the idl2com Command for a complete description
of this parameter.

<filename >
<filename> is the name of a file containing IDL definitions. It is a mandatory parameter and
must appear last. It must be specified with a file name extension. For example, the following
are acceptable ways to refer to the file “Policy.idl” in directory “E:\idl\src”:

 E:\idl\src\Policy.idl

Policy.idl (if E:\idl\src is the current directory)

If no parameters are specified, idl2com will write its syntax and options to standard output.

When the specified IDL file is compiled, the idl2com command returns a java exception if an error has
occurred. Warnings may also be given. For instance, if the IDL contains a constant of type float or double,
idl2com issues a warning statement to standard output and continues processing. The result is that the
definition for the constant in the .bas file will be lacking, otherwise the bindings will be complete.

For additional information on emitted files, see Emitted File Names.

 Appendix B. Interface Definition Language 295

Options for the idl2com Command

Options to the idl2com command may be specified in any combination. The -g option is mandatory, all
other options are optional. The options may appear in any order. The IDL filename is required and must
appear last. A maximum of 9 parameters can be specified, including the IDL filename. If more than 9
parameters need to be specified, the user can resort to invoking java directly. Examine the contents of
idl2com.bat to see how to do this. If no parameters are specified, idl2com will write its syntax and options
to standard output.

With the exception of the IDL filename, options to the idl2com command are preceded with a dash (-)
character and must be specified individually. For example, -emitAll -keep -v. Some options accept an
argument. The space between this type of option and its argument is mandatory. For example, -d DEBUG.
All options are case-sensitive, even on platforms where file names are not case-sensitive.

Table 12 describes each available option:

Table 12. idl2com Command Options

Option Description

-d <symbol> This is equivalent to the following line in an IDL file: #define <symbol>

-emitAll Emit all types, including those found in included files. The default is to emit only the
types that are part of the IDL being processed.

-g <GUID> The GUID seed to be used for GUID generation in the registry file format of:
xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx This value is generated by using the
guidgen.exe utility included with Microsoft Visual C++. See Generating Interfaces
Using the idl2com Command for more information.

-i <include path> By default, the current directory is scanned for included files. This option adds
another directory. Multiple -i <include path> options may be specified.

-keep If a file to be generated already exists, do not overwrite it. By default it is
overwritten.

-v Verbose mode. Default is non-verbose mode.

Generating Interfaces Using the idl2com Command

When an IDL file is processed by the idl2com command, a unique GUID seed value (-g parameter) is
required. This GUID is used to register within the Windows system registry the various interfaces, etc
produced by idl2com. Many interfaces may be contained within the IDL, and idl2com uses the provided
GUID parameter as a starting point for the to-be registered interfaces. If multiple items produced from the
IDL file need to have GUIDs, idl2com increments using the first 8 digits (AE3E2131 in the example below)
as needed. idl2com will use all eight of those digits when incrementing and will fail if it hits “FFFFFFFF.” It
will not roll over to 00000000 since this is the start of reserved GUID ranges held by Microsoft. For
example, if the IDL file results in three interfaces being registered, the following GUIDs would be used:

 � AE3E2131-C6DE-11d0-92AF-08005ACE818D
 � AE3E2132-C6DE-11d0-92AF-08005ACE818D
 � AE3E2133-C6DE-11d0-92AF-08005ACE818D

This is important to know because all registered items need to be unique within the registry. Use the
guidgen.exe program included with Microsoft Visual C++ to provide the -g parameter, but be careful not to
conflict with the internally-generated values that idl2com will use based on the -g parameter. To avoid this
potential conflict, you need to exit and restart guidgen.exe prior to generating a new GUID for another run
of idl2com. Be sure to include a space between the -g and the GUID value on the idl2com command line.

296 Component Broker: Programming Guide

Emitted File Names

The idl2com command processes an IDL file and produces output files that contain language-specific
usage and implementation bindings for the IDL interface. The list of generated files is dependent on the
contents of the IDL. However, the following is a general list of what can be expected given an IDL file
called Policy:

Table 13. idl2com Emitted Files

File Name Content

Policy.odl the Object Description file for the IDL

Policy.def definition file

Policy.bas Visual Basic file containing any constants that were defined in the IDL

Policy.mak makefile

Policy.rc resource definition

*.cpp a set of implementation files which will vary based on the contents of the IDL

*.h a set of header files which will vary based on the contents of the IDL

The names of the generated .cpp and .h files vary depending on the contents of the IDL.

Data Type Restrictions

The idl2com command has the following limitations:

� IDL constants of datatype float or double are not supported.
� IDL types long long, unsigned long long, long double and fixed are not supported.

idl2com Generated Makefile

As part of the idl2com processing, a makefile is automatically generated. The makefile is named .mak. In
most cases it will be complete. If however, the developer extends the code in a way that is not reflected
within the IDL, the makefile may require some additional hand coding. Also, if the IDL makes use of other
IDL whose bindings are linked into a different .dll, the developer will have to modify the generated .mak
file to add the other .LIB to the list of .LIBs.

 Appendix B. Interface Definition Language 297

298 Component Broker: Programming Guide

Appendix C. C++ CORBA Programming

This appendix includes the following C++ topics:

 � “C++ Bindings”
� “Name Scoping and Modules in the C++ Bindings” on page 319
� “C++ Bindings for Interfaces” on page 319
� “Storage Management and _var Types” on page 322
� “C++ Client Bindings” on page 327
� “C++ Server Bindings” on page 328
� “C++ Binding Restrictions” on page 330

 C++ Bindings

CORBA 2.0 specifies standard forms by which client C++ code can manipulate data whose types are
described using IDL. C++ bindings that support these forms are termed compliant and client code that
uses (only) these forms is termed conformant. The bindings in Component Broker are compliant.

C++ Bindings for Constants

Constants can be defined within the IDL either of the following ways:

� Within the module or interface
 � Globally

Within the Module

An IDL constant declaration contained with a module or an interface is mapped to a static constant data
member of the C++ class to which the module or interface is mapped. For example, consider the following
IDL:

 module M

 {

const string name = "testing";

 };

After compiling the client bindings, a C++ programmer could use the following expression to denote the
previous name constant:

 M::name

 Globally

Globally-defined constants are mapped to static data local to a single compilation unit. For example, if the
following IDL appeared globally, un-nested within a module or interface:

const string name = "testing";

The code that includes the corresponding .hh file refers to the name constant using the expression name.

CORBA Types and Business Objects

Most of the CORBA types are straightforward and can be easily used in business objects. Other CORBA
types are more difficult to use but are still useful if care is taken.

 Copyright IBM Corp. 1997, 1998 299

 Basic Types

The basic C++ types are mapped directly into CORBA types. These include:

 � Boolean
 � Char
 � Double
 � Enum (enumerations)
 � Float
 � Long
 � Octet (hexadecimal)
 � Short
 � Struct
� UShort (unsigned short)
� ULong (unsigned long)
� WChar (wide character)

All types are scoped to the class CORBA and must be declared accordingly. They are used transparently
to C++ and are straightforward. For example:

 CORBA::Short aShortvariable;

 ...

aShortVariable = 12;

 ...

Types and Object References

Other CORBA types are more complex to use because they return object references to the caller. It is the
responsibility of the caller to manage these object references and their associated memory. There are two
facilities provided by CORBA to do this:

A_var This is most frequently used by client code because it is a smart pointer and automatically
releases its object reference when it is deallocated or when assigned a new object reference.
This is the most straightforward and safest approach to managing these types.

Note: You should avoid declaring C++ Static variables as _var. The _var holds a reference to
an object. During process termination, this object could reference another object that
was removed before termination processing is completed for this Static type. As a
result, the _var could reference an invalid address or null pointer and thereby cause
bad termination.

A_ptr This is a pointer type and provides the most basic object reference, which has similar
semantics to a standard C++ pointer.

The CORBA types that return object references include:

 � Any
 � Array
 � Sequence
 � String
 � Union
� WString (wide string)

300 Component Broker: Programming Guide

C++ Bindings for Data Types

The following are C++ bindings for data types:

� “Any Type” on page 301
� “Array Types” on page 306
� “Atomic Data Types” on page 308
� “Enums” on page 308
� “Sequence Types” on page 309
� “Strings” on page 312
� “Struct Types” on page 314
� “Union Types” on page 315
� “Using WStrings” on page 316

 Any Type

The purpose of the IDL “any” type is to encapsulate data of some arbitrary IDL type. The C++ bindings
provide a C++ class named CORBA::Any that provides this functionality. A CORBA::Any object
encapsulates a void* pointer and a CORBA::TypeCode object that describes the thing pointed to by the
void*.

The Any type can be used with many of the CORBA types and is useful when different types can be used
that are unknown to the receiver of the data or as a common storage mechanism for passing a variety of
types. It is used easily with many of the CORBA types but has a unique method of redirection operators
for setting and retrieving data.

The following types are handled in this manner:

 � Double
 � Enumerations
 � Float
 � Long
 � Short
 � ULong
 � UShort
 � Unbounded Strings
 � Object References

 ::CORBA::Any anything;

anything <<= (::CORBA::Long) 123456;

 ::CORBA::Long anythingStart = 123456;

::CORBA::Long anythingLongResult = ð;

 policyVar->anything(anything);

 ::CORBA::Any_var anythingResult_var(policyVar->anything());

 ::CORBA::Any anythingResult(anythingResult_var);

anythingResult >>= anythingLongResult;

if (anythingStart != anythingLongResult)

 {

cout << "Anything not set" << endl;

 return 1;

 }

 else

 {

cout << "Anything set correctly..." << endl;

 }

 Appendix C. C++ CORBA Programming 301

There are also specialized structures provided for the following types for conversion with Any:

 � Boolean
 � Char
 � Octet
 � String

The data in an Any object is initialized and accessed using insertion (<<=) and extraction (>>=) operators
defined by the C++ bindings. These operators are provided (using overloading) by CORBA::Any for each
primitive data type, and are provided by the generated C++ bindings for each user-defined IDL type. As a
result, there is usually no need to indicate a typecode when inserting or extracting data from a
CORBA::Any (although the CORBA::Any class does provide methods for manipulate the data using an
explicit TypeCode).

Types that cannot be distinguished by C++ overloading are inserted into and extracted from Any's using
special wrapper classes. These wrapper classes are not transparent to the application; the application
must explicit create and use them when inserting/extracting ambiguous types into/from Any's. For primitive
IDL types that do not map to distinct C++ types (boolean, octet, and char), the wrapper classes are
defined within the CORBA::Any scope; they are called from_boolean, to_boolean, from_octet, to_octet,
from_char, and to_char. For information on the scope see “IDL Name Scoping” on page 271. Because
bounded strings cannot be distinguished in C++ from unbounded strings, CORBA::Any provides the
from_string and to_string wrapper classes, for inserting/extracting bounded strings. For extracting object
references from Any's as the base CORBA::Object type, CORBA::Any provides a to_object wrapper class.

For application-specific arrays, the bindings provide a special forany class, for inserting/extracting the array
into/from an Any. For example, given the following IDL array definition:

typedef long LongArray[4][5];

the emitted bindings define the following:

typedef CORBA::Long LongArray[4][5];

typedef CORBA::Long LongArray_slice[5];

typedef LongArray_slice\ LongArray_slice_vPtr;

typedef const LongArray_slice\ LongArray_slice_cvPtr;

 class LongArray_forany

 {

 public:

 LongArray_forany();

LongArray_forany(LongArray_slice\, CORBA::Boolean nocopy=ð);

 LongArray_forany(const LongArray_forany&);

LongArray_forany & operator= (LongArray_slice\);

LongArray_forany & operator= (const LongArray_forany &);

 ˜LongArray_forany();

const LongArray_slice& operator[] (int) const;

const LongArray_slice& operator[] (CORBA::ULong) const;

LongArray_slice & operator[] (int);

LongArray_slice & operator[] (CORBA::ULong);

operator LongArray_slice_cvPtr () const;

operator LongArray_slice_vPtr& ();

 };

void operator<<=(Any&, const LongArray_forany &);

CORBA::Boolean operator>>=(Any&, LongArray_forany &);

Note that the nocopy optional parameter of the _forany's second constructor indicates whether the _forany
makes a copy of the input array or assumes ownership of it. (The default is for the _forany to assume
ownership of the input array; that ownership will then be transferred to the Any when the _forany is
inserted into the Any.)

302 Component Broker: Programming Guide

To determine what kind of data is in Any, invoke the type method on a CORBA::Any to access a
TypeCode that describes the data it holds. Alternatively, you can simply try to extract data of a particular
type from the Any; the extraction operator returns a boolean to indicate success. If the extraction operation
fails, the Any doesn't hold data of the type you tried to extract.

A CORBA::Any object always owns the data that its void* points to, and deletes (or releases) it when the
Any is given a new value or deleted. The only question is whether this data is a copy of the data that was
inserted into the Any. When primitives (including strings and enums) are inserted, a copy is made, and a
copy is returned when the data is extracted.

For non-primitive (constructed) data, extraction from an Any always updates a pointer (owned by the
caller) so that it points to the data owned by the Any. The caller should not, therefore, free this data or
reference it after the Any has been given a new value or deleted. For constructed IDL type T, the emitted
bindings define the following extraction operator:

CORBA::Boolean operator>>=(Any&, T\&);

When a reference to constructed data is inserted into an Any (when the C++ syntax looks as if you are
inserting a value instead of a pointer) a copy is made. In this case, the caller retains ownership of the
original data. For example, for constructed type T and interface I, the emitted bindings define the following
insertion operators, which copy (or, in the case of object references, _duplicate) the inserted value):

void operator<<=(Any&, const T&);
void operator<<=(Any&, T_ptr);

When a pointer to constructed data is inserted into an Any, as when using the following insertion operators
emitted for type T and interface I:

void operator<<=(Any&, T\);
void operator<<=(Any&, T_ptr\);

The Any takes ownership of the constructed type's top-level storage only; however, the Any makes no
copy of the top-level storage or any embedded storage. All further use of the pointer that was inserted is
forbidden; the Any now owns it and is free to delete it at any time. The next time data is inserted into the
Any, or when the Any is destroyed, the Any deletes the previously-inserted pointer. However, if the
constructed type consists of multiple dynamically-allocated regions of memory, only the top-level storage is
deleted. (The Any deletes arrays using a single array delete; other constructed types are deleted using a
single, normal delete.) Further, the top-level storage is deleted as a void*, rather than its true type, which
means that the constructed type's destructor will not be run. Due to these restrictions, insertion by pointer
of constructed types into an Any should be used with caution.

In summary, when extracting data from an Any, the caller does own the data for primitive types, but does
not own the data for constructed types. When inserting data into an Any, the caller retains ownership of
the data for primitive types, for constructed types inserted by value, and for storage embedded within
constructed types inserted by pointer. The caller does not retain ownership of the top-level contiguous
storage for a constructed type inserted into an Any by pointer.

The followng is an example that illustrates the previously discussed aspects of CORBA::Any usage. The
IDL for this example appears immediately below. It defines a struct and an array that will be inserted into
an Any.

 Module M

 {

 Struct S

 {

 string str;

 longlng;

 };

 Appendix C. C++ CORBA Programming 303

typedef long long1[2][3];

 }

A C++ program illustrating Any insertion and extraction appears below:

 #include <stdio.h>
 #include <any_C.cpp>

 main()

 {

CORBA::Any a; // the Any that we'll be using

// test a long

long l = 42;

a <<= l;

 if (a.type()->equal(CORBA::_tc_long))

 {

 long v;

a >>= v;

printf("the any holds a long = %d\n", v);

 }

 else

printf("failure: long insertion\n");

// test a string

char \str = "abc";

a <<= str;

 if (a.type()->equal(CORBA::_tc_string))

 {

 char \ch;

a >>= ch;

printf("the any holds the string = %s\n", ch);

 delete ch;

a >>= ch;

printf(" the any still holds the string = %s\n", ch);

 delete ch;

 }

 else

printf("failure: string insertion\n");

// test a bounded string -- note we don't use a typecode here

char \bstr = "abcd";

 char \rstr;

a <<= CORBA::Any::from_string(bstr, 6);

if (a >>= CORBA::Any::to_string(rstr,6))

printf("the any holds a bounded string<6> = %s\n", rstr);

 else

printf("failure: bounded string insertion\n");

// test a user-defined struct

M::S \s1 = new M::S;

char \saveforlater = CORBA::string_dup("abc");

s1->str = saveforlater;

s1->lng = 42;

a <<= s1; // insertion by pointer

 if (a.type()->equal(_tc_M_S))

 {

 M::S \sp;

a >>= sp;

printf("the any holds an M::S = {%s, %d}\n", sp->str, sp->lng);

 }

 else

304 Component Broker: Programming Guide

printf("failure: struct insertion by pointer\n");

 M::S s2;

s2.str = CORBA::string_dup("def");

s2.lng = 23;

a <<= s2; // note: this deletes \s1, but not saveforlater

printf("saveforlater still = %s\n", saveforlater);

 CORBA::string_free(saveforlater);

 if (a.type()->equal(_tc_M_S))

 {

 M::S \sp;

a >>= sp;

printf("the any holds an M::S = {%s, %d}\n", sp->str, sp->lng);

 }

 else

printf("failure: struct insertion by value\n");

M::S_var s3 = new M::S;

s3->str = CORBA::string_dup("ghi");

s3->lng = 96;

a <<= \s3;

 if (a.type()->equal(_tc_M_S))

 {

 M::S \sp;

a >>= sp;

printf("the any holds an M::S = {%s, %d}\n", sp->str, sp->lng);

 }

 else

printf("failure: struct insertion by ref to value\n");

// test an array

M::long1_var l1v = M::long1_alloc();

 for (i=ð;i<2;i++)

 for (j=ð;j<3;j++)

l1v[i][j] = (i+1)\(j+1);

a <<= M::long1_forany(l1v);

 if (a.type()->equal(_tc_M_long1))

 {

 M::long1_forany l1s;

a >>= l1s;

printf("the any holds the array: ");

 for (i=ð;i<2;i++)

 for (j=ð;j<3;j++)

 printf("%d ",l1s[i][j]);

 printf("\n");

 }

else printf("failure: array insertion\n");

 }

Output from the above program is:

the any holds a long = 42

the any holds a string = abc

the any still holds a string = abc

the any holds a bounded string<6> = abcd

the any holds an M::S = {abc, 42}

saveforlater still = abc

the any holds an M::S = {def, 23}

the any holds an M::S = {ghi, 96}

the any holds the array: 1 2 3 2 4 6

 Appendix C. C++ CORBA Programming 305

 Array Types

An IDL array type is mapped to the corresponding C++ array definition. There is also a corresponding _var
type. For example, given the following IDL definition:

typedef long LongArray [4][5];

The C++ bindings provide the following definitions:

typedef CORBA::Long LongArray[4][5];

typedef CORBA::Long LongArray_slice[5];

typedef LongArray_slice\ LongArray_slice_vPtr;

typedef const LongArray_slice\ LongArray_slice_cvPtr;

 class LongArray_var

 {

 public:

 LongArray_var();

 LongArray_var(LongArray_slice\);

 LongArray_var(const LongArray_var&);

LongArray_var & operator= (LongArray_slice\);

LongArray_var & operator= (const LongArray_var &);

 LongArray_var();

const LongArray_slice& operator[] (int) const;

const LongArray_slice& operator[] (CORBA::ULong) const;

LongArray_slice & operator[] (int);

LongArray_slice & operator[] (CORBA::ULong);

operator LongArray_slice_cvPtr () const;

operator LongArray_slice_vPtr& ();

 };

LongArray_slice \ LongArray_alloc();

void LongArray_free (LongArray_slice\);

LongArray_slice \ LongArray_dup (const LongArray_slice\);

As shown above, array mappings provide alloc, dup, and free functions (for allocating, copying, and
freeing array storage), as static member functions of the class within which the array type name is scoped.
The alloc function dynamically allocates an array, which can be later freed using the free function. The dup
function dynamically allocates an array and copies the elements of an existing array into it. A NULL
pointer can be passed to the free function. None of these functions throws exceptions.

The type of the pointer returned from LongArray_alloc is LongArray_slice*. The C++ bindings define array
“slice” types for all arrays declared in IDL. The reason is that using the name LongArray in a program
doesn't denote the array LongArray; rather, it denotes a pointer to the array. For historical reasons (related
to the fact that arrays are not an actual data type in C and C++) the type of this pointer has one less array
dimension than the array LongArray. Thus, the bindings for LongArray include the following typedef:

typedef string LongArray_slice[5];

Hence, LongArray_slice* is the correct type for a pointer to an array of IDL type LongArray.

As with structs and sequences, arrays use special auxiliary classes for automatic storage management of
String and object reference elements. The auxiliary classes for Strings and object references manage the
storage just as the associated _var classes do.

When assigning a value to an array element that is an object reference, the assignment operator will
automatically release the previous value (if any). When assigning an object reference pointer to an array
element, the array assumes ownership of the pointer (no _duplicate is done), and the application should
no longer access the pointer directly. (If this is not the desired behavior, then the caller can explicitly
_duplicate the object reference before assigning it.) However, when assigning to an object reference array

306 Component Broker: Programming Guide

element from a _var object or from another struct, union, array, or sequence member (rather than from an
object reference pointer), a _duplicate is done automatically.

For an array of Strings, when assigning a value to an element or deleting the array, any previously held
(non-null) char* is automatically freed. As when assigning to String_vars, assigning a char* to a string
element does not make a copy, but assigning a const char * or another struct/union/array/sequence String
element does make a copy. One should never assign a string literal (for example, “abc”) to a String array
element without an explicit cast to “const char*.” When assigning a char* that occupies static storage
(rather than one that was dynamically allocated), the caller can use CORBA::string_dup to duplicate the
string before assigning it.

The following is an example that involves multidimensional arrays, and array_vars, from the IDL snippet
immediately below:

typedef string s2_3[2][3];

typedef string s3_2[3][2];

The code that exercises the C++ arrays that correspond to the above IDL is shown below. Notice that in
the following example:

� There is no need to explicitly use slice types when working with the array _var types, because the
bindings declare the pointer held by an array _var type using the appropriate slice type.

� At the end, the program explicitly frees the storage pointed to by s2_3p (using an array delete
operator), but does not do this for s3_2v, because its pointer is deleted when the destructor for s3_2v
is executed. (This is the purpose of the _var types.)

 #include <arr_C.cpp>
 #include <stdio.h>

 main()

 {

 int i,j;

 char id[4ð];

// create arrays

s2_3_slice\ s2_3p = s2_3_alloc();

s3_2_var s3_2v = s3_2_alloc();

// load the arrays

for(i=ð; i<2; i++)

 {

for (j=ð; j<3; j++)

 {

sprintf(id, "s2_3 element [%d][%d]",i,j);

// Use string_dup when assigning a char\

// if you don't want the array to own the original:

s2_3p[i][j] = CORBA::string_dup(id);

 }

 }

for(i=ð; i<3; i++)

 {

for (j=ð; j<2; j++)

 {

sprintf(id, "s3_2_var element [%d][%d]",i,j);

// Use string_dup when assigning a char\

// if you don't want the array to own the original:

s3_2v[i][j] = CORBA::string_dup(id);

 }

 }

// print the array contents

for(i=ð; i<2; i++)

 Appendix C. C++ CORBA Programming 307

 {

for (j=ð; j<3; j++)

 {

 printf("%s\n", s2_3p[i][j]);

 }

 }

for(i=ð; i<3; i++)

 {

for (j=ð; j<2; j++)

 {

 printf("%s\n", s3_2v[i][j]);

 }

 }

delete [] s2_3; // needed to prevent a storage leak.

// Nothing is needed for s3_2v, because

// it is a _var type.

 }

Output from the above program is:

s2_3 element [ð][ð]

s2_3 element [ð][1]

s2_3 element [ð][2]

s2_3 element [1][ð]

s2_3 element [1][1]

s2_3 element [1][2]

s3_2_var element [ð][ð]

s3_2_var element [ð][1]

s3_2_var element [1][ð]

s3_2_var element [1][1]

s3_2_var element [2][ð]

s3_2_var element [2][1]

Atomic Data Types

The atomic IDL data types (long, short, unsigned long, unsigned short, float, double, char, boolean, and
octet) are mapped into types defined in corba.h, nested within the CORBA scope. See “IDL Name
Scoping” on page 271 for more information. The first letter of the mapped type is capitalized. For
example, to introduce and initialize a local variable named Myvar whose type corresponds to the IDL type
named long, a C++ programmer could employ the following expression:

CORBA::Long Myvar = 1;

The mapping for the IDL boolean type (CORBA::Boolean) defines only the values 0 and 1. The unsigned
long and unsigned short IDL types are mapped to CORBA::ULong and CORBA::UShort, respectively.

 Enums

An IDL enum is mapped to a corresponding C++ enum. For example, given the following IDL:

 module M

 {

 enum Color

 {

red, green, blue

 };

 };

308 Component Broker: Programming Guide

A C++ programmer could introduce a local variable of the corresponding C++ type and initialize it with the
following code:

 {

M::Color MYCOLOR = M::red;

 }

The enumeration constant red is not denoted using the expression M::Color::red. For this reason, names
of enumeration constants must be carefully chosen.

 Sequence Types

An IDL sequence type is mapped to a C++ class that behaves like an array with a current length (how
many elements have been stored) and a maximum length (how much storage is currently allocated). The
array indexing operator [] is used to read and write sequence elements. (Indexing begins at zero.) It is the
programmer's responsibility to check the current sequence length or maximum to prevent accessing the
sequence beyond its bounds. The length and maximum of the sequence are not automatically increased
to accommodate new elements; the programmer must explicit increase them.

The maximum length of a bounded sequence is implicit in the sequence class's type and cannot be
changed. The initial maximum length of an unbounded sequence is set to zero by the default constructor,
or can be initialized by the programmer using a non-default constructor. Setting the maximum of an
unbounded sequence using the non-default constructor causes storage to be allocated for the specified
number of sequence elements.

Sequence classes provide an overloaded member function length that either returns or sets the length of
the sequence. Setting the length of an unbounded sequence to a value larger than the current maximum
causes the sequence to allocate new storage of the required size, copy any previous sequence elements
to the new storage, free the old storage (if any), and reset the maximum to the new length. Sequence
classes also provide allocbuf and freebuf member functions for explicitly allocating/freeing the sequence's
storage buffer. Decreasing a sequence's length does not cause any storage to be deallocated, but any
orphaned sequence elements are no longer accessible, even if the sequence length is subsequently
increased.

Sequences may or may not manage (own) the storage that contains their elements, and the elements
themselves By default, a sequence manages this storage, but a release constructor parameter allows
client programmers to request otherwise (when passing in a buffer explicitly allocated using the allocbuf
function).

The following IDL:

typedef sequence s1; // unbounded sequence

is mapped to the following C++ sequence class:

 class s1

 {

 public:

s1();// default constructor

s1(CORBA::ULong max);// "max" constructor

s1(CORBA::ULong max, CORBA::ULong length,

T\ data, CORBA::Boolean release=ð);

// "data" constructor

s1(const s1&);// copy constructor

s1 &operator= (const s1&); // assignment operator

 s1();// destructor

CORBA::ULong maximum() const;

CORBA::ULong length() const;

 Appendix C. C++ CORBA Programming 309

void length(CORBA::ULong len);

T& operator[] (CORBA::ULong index);

const T& operator[] (CORBA::ULong index) const;

static T\ allocbuf(CORBA::ULong nelems);

static void freebuf(T\ data);

 };

The default constructor sets the length and maximum to zero. (For a bounded sequence, the default
constructor sets the maximum to the sequence bounds and allocates storage for the maximum number of
elements, which the sequence owns.)

The “max” constructor sets the initial sequence maximum and allocates a storage buffer for the specified
number of sequence elements, which the sequence owns. The length of the sequence is initialized to
zero. (This method is not available for bounded sequences.)

The “data” constructor sets the initial length and maximum of the sequence, as well as its initial contents.
(For bounded sequences, the maximum cannot be set by the “data” constructor.) The input storage should
match the specified sequence maximum. Ownership of the input storage is indicated by the “release”
parameter. Passing release=1 specifies that the storage was allocated using s1::allocbuf, that the
sequence should delete the storage and the sequence elements when the sequence is deleted or when
the storage needs to be reallocated, and that the caller will not directly access the storage after the call
(since the sequence is free to delete it at any time). In general, sequences constructed with release=0
should not be passed as inout parameters, because the callee must assume that the sequence owns the
sequence elements.

The copy constructor creates a new sequence with the same maximum and length as the input sequence
and copies the sequence elements to storage that the sequence owns. The assignment operator performs
a deep copy, releasing the previous sequence elements if necessary. It behaves as if the destructor were
run, followed by the copy constructor.

The destructor destroys each of the sequence elements (from zero through length-1), if the sequence
owns the storage.

The allocbuf function allocates enough storage for the specified number of sequence elements; the return
value can then be passed to the “data” constructor. Each sequence element is initialized using its default
constructor; string elements are initialized to NULL; object reference elements are initialized to nil object
references. NULL is returned if storage cannot be allocated for any reason. If ownership of the allocated
buffer is not transferred to a sequence using the “data” constructor with release=1, the buffer should be
subsequently freed using the freebuf function. The freebuf function insures that each sequence element's
destructor is run (or, for strings, that CORBA::string_free is called, or for object references, that
CORBA::release is called) before the buffer is deleted. The freebuf function ignores NULL pointers passed
to it. Neither allocbuf nor freebuf throw CORBA exceptions.

As with structs, sequences that manage their elements use special auxiliary classes for automatic storage
management of String and object reference sequence elements. These auxiliary classes manage Strings
and object references just as the associated _var classes do.

For a storage-managing sequence whose elements are object references, when assigning a value to an
element, the assignment operator will automatically release the previous value (if any). When assigning an
object reference pointer to such a sequence element, the sequence assumes ownership of the pointer (no
_duplicate is done), and the application should no longer access the pointer directly. (If this is not the
desired behavior, then the caller can explicitly _duplicate the object reference before assigning it to the
sequence element.) However, when assigning to such an object reference sequence element from a _var
object or from another struct, union, array, or sequence (rather than from an object reference pointer), a
_duplicate is done automatically.

310 Component Broker: Programming Guide

For a storage-managing sequence whose elements are Strings, when assigning a value to such an
element or deleting the sequence, any previously held (non-null) char* is automatically freed. As when
assigning to String_vars, assigning a char* to a string element doesn't make a copy, but assigning a const
char *, a String_var, or another struct/union/array/sequence String member does automatically make a
copy. Thus, one should never assign a string literal (such as “abc”) to such an element without an explicit
cast to const char*. When assigning a char* that occupies static storage (rather than one that was
dynamically allocated), the caller can use CORBA::string_dup to duplicate the string before assigning it.

There is a corresponding _var type defined for every sequence class.The _var type for a sequence
provides an overloaded operator[] that forwards the operator the underlying sequence.

Following is an example that illustrates loading and accessing the elements of a sequence. This example
illustrates a recursive sequence (whose entries are structs of the same type that contain the sequence).
The IDL for the example is shown below:

 struct S

 {

 long sf1;

 sequence sf2;

 };

typedef sequence Sseq;

The following is an example program that creates and loads a sequence of type Sseq and then prints out
its contents.

 #include <seq_C.cpp>
 #include <stdio.h>

 main()

 {

 int i,j;

Sseq seq; // create an Sseq

seq.length(3); // set length of seq to 3

for (i=ð; i<3; i++) { // index the three S structs in seq

seq[i].sf1 = i; // place a number in the i-indexed struct

seq[i].sf2.length(i+1); // set length of the sequence in

// the i-indexed struct

for (j=ð; j<i+1; j++) // index the i+1 S structs in the sequence

// in the i-indexed struct

seq[i].sf2[j].sf1 = (i+1)\1ð+j; // place a number in

// the j-indexed struct

 }

// OK. Print out what we have created!

printf("seq = (%d sequence elements)\n", seq.length());

for (i=ð; i<3; i++)

 {

printf(" struct[%d] = {\n", i);

printf(" sf1 = %d\n", seq[i].sf1);

printf(" sf2 = (%d sequence elements)\n",

 seq[i].sf2[j].length());

for (j=ð; j<i+1; j++)

 {

printf(" struct[%d] = \n",j);

printf(" sf1 = %d\n", seq[i].sf2[j].sf1);

printf(" sf2 = (%d sequence elements)\n",

 seq[i].sf2[j].sf2.length());

 printf(" }\n");

 }

 printf(" }\n");

 Appendix C. C++ CORBA Programming 311

 }

 }

Note that the above program never explicitly constructs any data of type S, even though the sequences
contain structs of this type. The reason is that when a sequence buffer is allocated, default constructors
are run for each of the buffer elements. So, when the above program sets the length of a sequence of S
structs (either at the top level for the seq variable, or for the sf2 field of an S struct in seq), the resulting
buffer is automatically populated with default structs of type S.

The output from the above program is:

seq = (3 sequence elements)

struct[ð] = {

sf1 = ð

sf2 = (1 sequence elements)

struct[ð] = {

sf1 = 1ð

sf2 = (ð sequence elements)

 }

 }

struct[1] = {

sf1 = 1

sf2 = (2 sequence elements)

struct[ð] = {

sf1 = 2ð

sf2 = (ð sequence elements)

 }

struct[1] = {

sf1 = 21

sf2 = (ð sequence elements)

 }

 }

struct[2] = {

sf1 = 2

sf2 = (3 sequence elements)

struct[ð] = {

sf1 = 3ð

sf2 = (ð sequence elements)

 }

struct[1] = {

sf1 = 31

sf2 = (ð sequence elements)

 }

struct[2] = {

sf1 = 32

sf2 = (ð sequence elements)

 }

 }

 Strings

The mapping for strings is provided by corba.h, within the CORBA scope. See “IDL Name Scoping” on
page 271 for more information. The user-visible types are CORBA::String and CORBA::String_var.
CORBA::String is a typedef name for char*. The CORBA::String_var class performs storage management
of a dynamically allocated CORBA::String. The following functions are for dynamic allocation/deallocation
of memory to hold a String:

 � CORBA::string_alloc

312 Component Broker: Programming Guide

 � CORBA::string_free
 � CORBA::string_dup

A String_var object behaves as a char*, except that when it is assigned to, or goes out of scope, the
memory it points to is automatically freed by CORBA::string_free. When a String_var is constructed or
assigned from a char*, the String_var assumes ownership of the string and the caller should no longer
access the string directly. (If this is not the desired behavior, as when the char* occupies static storage,
the caller can use CORBA::string_dup to copy the char* before assigning it.) When a String_var is
constructed or assigned from a const char*, another String_var, or a String element of a struct, union,
array, or sequence, an automatic copy of the source string is done. The String_var class provides
subscripting operations to access the characters within the embedded string.

C++ compilers don't treat a string literal (such as “abc”) as a const char* upon assignment; given both a
const and a non-const assignment operator, the compiler will choose the non-const operator. As a result,
when assigning a string literal to a String_var, no copy of the string into dynamically allocated memory is
made; the pointer “owned” by the String_var will point to memory that cannot be freed. Thus, string literals
should not be assigned to a String_var without an explicit cast to const char*.

Some examples using String_var objects are:

// first some supporting functions for the examples

 char\ f1()

 {

 return "abc";

 }

 char\ f2()

 {

char\ s=CORBA::string_alloc(4);strcpy(s,"abc");return s;

 }

// then the examples

 void main()

 {

 CORBA::String_var s1;

if (ð) s1 = f1();// Wrong!! The pointer can't be freed and

// no copy is done.

if (ð) s1 = "abc"; // Also wrong, for the same reason.

const char\ const_string = "abcd"; // \const_string can't be changed

s1 = const_string; // OK. A copy of the string is made because

// it is const, and the copy can be freed.

CORBA::String_var s3 = f2();// OK. no copy is made, but f2

// returns a string that can be freed

CORBA::String_var s4 = CORBA::string_alloc(1ð); // also OK. no copy

s4 = s3; // s4 will use string_free followed by string_dup

long l4 = strlen(s4); // l4 will receive 3

long l1 = strlen(s1); // l1 will receive 4

if (l4 >= l1)

strcpy(s4,s1); // OK, but only because of the condition.

// note that s4's buffer only has size=4.

s4 = const_string; // OK. s4 will use string_free followed by

// string_dup. The copy is made because String_vars

// must reference a buffer that can be modified.

 }

// The s1, s3 and s4 destructors run successfully, freeing their buffers

 Appendix C. C++ CORBA Programming 313

 Struct Types

An IDL struct type is mapped to a corresponding C++ struct whose field names correspond to those in the
IDL declaration, and whose field types support access and storage of the C++ types corresponding to the
IDL struct field types. Dynamically allocated storage used to hold such a C++ struct must be allocated and
freed using the C++ new and delete operators.

When a new struct is created, the default constructor for each of its fields executes. Object reference
fields are initialized to nil references, and String fields are initialized to NULL. When the struct is deleted
(or goes out of scope), the destructor for each of its fields executes. The (default) copy constructor
performs a deep copy, including duplicating object references; the (default) assignment operator acts as
the destructor followed by the copy constructor.

The actual types of the fields in the C++ struct to which an IDL struct is mapped may be auxiliary classes
for the purpose of storage management. In particular, String and object reference field types are auxiliary
classes that manage Strings and object references in the same way that the associated _var classes do.
Although client code should not depend on the names of these auxiliary classes, the client code does
need to know that struct fields containing Strings and object references are managed by these auxiliary
classes.

When assigning a value to a struct field that is an object reference, the assignment operator for the struct
field will automatically release the previous value (if any). When assigning an object reference pointer to a
struct member, the struct member assumes ownership of the pointer (no _duplicate is done), and the
application should no longer access the pointer directly. (If this is not the desired behavior, then the caller
can explicitly _duplicate the object reference before assigning it to the struct member.) However, when
assigning to an object reference struct member from a _var object or from another struct, union, array, or
sequence member (rather than from an object reference pointer), a _duplicate is done automatically.

When assigning a value to a struct field that is a String, or when the struct is deleted or goes out of scope,
any previously held (non-null) String is automatically freed. As when assigning to String_vars, assigning a
char* to a String field does not make a copy, but assigning a const char *, a String_var, or another
struct/union/array/sequence String member does automatically make a copy. One should never assign a
string literal (for example, “abc”) to a String struct member without an explicit cast to “const char*.” When
assigning a char* that occupies static storage (rather than one that was dynamically allocated), the caller
can use CORBA::string_dup to duplicate the string before assigning it.

As with all constructed types, a _var type is provided for managing an instance of the C++ struct that
corresponds to an IDL struct. When assigning one struct's _var to another, the receiving _var deletes its
current pointer (thus running all contained destructors), and creates a new struct to hold the assignment
result, which is initialized using copy constructors for each of the contained fields. Thus, for example, if the
source struct has an object reference field, the struct _var assignment will automatically duplicate this
reference.

The IDL that follows is used in the succeeding example, which shows both correct and incorrect ways to
to create and manipulate the corresponding C++ struct and the corresponding _var type :

 Interface A

 {

 struct S

 {

 string f1;

 A f2;

 };

 };

314 Component Broker: Programming Guide

The following code illustrates both correct and incorrect ways to create and manipulate the corresponding
C++ struct and the corresponding _var type.

 {

A::S_var sv1 = new A::S;

A::S_var sv2 = new A::S;

// sv1->f1 = "abc"; -- Wrong! f1 can't free this pointer later

sv1->f1 = CORBA::string_alloc(2ð);

A_ptr a1 = // get an A somehow

A_ptr a2 = // get an A somehow

sv1->f2 = a1; // a1 still has ref cnt = 1

sv2->f1 = CORBA::string_alloc(2ð);

sv2->f2 = a2; // a2 still has ref cnt = 1

sv1 = sv2; // This runs copy ctors, and increments a2's ref cnt.

// Also, a1's ref count is decremented.

sv1->f1 = sv2->f1;

 }

 Union Types

Union fields are not directly accessible to C++ programmers. Instead, the C++ mapping for IDL unions
defines a class that provides accessor methods for the union discriminator and the corresponding union
fields. The union discriminator accessor is named _d. The union field accessors are named using the IDL
union field names and are overloaded to allow both reading and writing.

Setting a union's value using a field accessor automatically sets the discriminator, and releases the
storage associated with the previous value, if any. It is an error for an application to attempt to access the
union's value through an accessor that does not match the current discriminator value. It is also an error
for the application to use the discriminator modifier method to implicitly switch between difference union
members.

Unions with implicit default members (those that do not have an explicit default case and do not list all
possible values of the discriminator as cases) provide a _default method, for setting the discriminator to a
legal default value. This method causes the union's value to be composed only of the legal default value,
since there is no explicit default member in this case.

A _var type is defined, for managing a pointer to a union in dynamically allocated memory.

To illustrate the C++ bindings for IDL unions, consider the following IDL:

 module A

 {

 interface X

 {

 };

union U switch (long)

 {

case 1: long u1;

case 2: string u2;

case 3: X u3;

 };

 };

The following code illustrates usage of the C++ bindings corresponding to the previous IDL:

 Appendix C. C++ CORBA Programming 315

 {

X_ptr x = // get an X somehow

A::U_var uv = new A::U;

uv.u2((const char\) "testing"); // sets the discriminator to 2

// and copies the string

if (u._d() == 2)// the condition evaluates to true

u.u1(23); // frees the string, and sets the discriminator to 1

if (u._d() == 1) // the condition evaluates to true

u.u3(x); // duplicates x and sets discriminator to 3

 }

The default constructor of a union class does not initialize the discriminator or the union members, so the
application must initialize the union before accessing it. The copy constructor and assignment operator
perform deep copies. The assignment operator and destructor release all storage owned by the union.

With respect to memory management, accessor and modifier methods for union members work similarly to
those for struct members. Modifier methods make a deep copy of their input when passed by value (for
simple types) or by reference (for constructed types). Accessor methods that return a non-const reference
can be used by the application to update a union member's value, but only for struct, union, sequence,
and any members.

The modifier method for a string union member makes a copy when given a const char* or a String_var,
but not when given a char*. As shown in the example above, a string literal should not be assigned to a
union without an explicit “const char*” cast. The accessor method for a string union member returns a
const char*, therefore the string union member cannot be modified. (This is done to prevent the string
union member from being assigned to a String_var, resulting in memory management errors.)

The modifier method for an object reference union member always duplicates the input object reference
and releases the previous object reference value, if any. The accessor method for an object reference
union member does not duplicate the returned object reference, because the union retains ownership of it.

The accessor method for an array union member returns a pointer to the array slice. The application can
thus read or write the union-member array elements using subscript operators. If the union member is an
anonymous array (one without an explicit type name), the union defines (typedefs) the slice type, by
cocatenating a leading underscore and appending “_slice” to the union member name.

 Using WStrings

The WString type provides support for wide strings. It is fairly comparable to using strings except for type
declarations and assignments:

#include <wcstr.h> // For WChar and WString support
 ...

const wchar_t\ wcomments = L"This policy looks pretty good...";

 wchar_t\ wcommentsResult=::CORBA::wstring_alloc(wcslen(wcomments));

 ::CORBA::WString_var wcommentsResult_var(wcommentsResult);

 policyVar->wcomments(wcomments);

if (!wcscmp(wcommentsResult_var, wcomments))

 {

cout << "Wcomments not set" << endl;

 return 1;

 }

 else

 {

cout << "Wcomments set correctly..." << endl;

316 Component Broker: Programming Guide

 }

wcommentsResult = policyVar->wcomments();

 Exceptions

The preferred coding practice for handling errors in C++ and Java is by using Exceptions. The
programming model and CORBA support this coding practice using the standard try and throw logic of
exception handling. Handling exceptions is a critical part of the programming model. The exceptions that
are thrown must be understood and handled appropriately by application developers.

Note: See a standard C++ book for further information regarding exceptions and their usage.

No matter how much care an object provider takes in implementing a business object, there are times
when things go wrong. In these cases, a business object might need to throw an exception to the client to
give the client the opportunity to recover from the error.

Which Exceptions to Use

CORBA exceptions are used to communicate between business objects and client applications. Specific
rules must be followed regarding which CORBA Exceptions to use. There are several abstract CORBA
exception classes defined:

 � CORBA::Exception
 � CORBA::UserException
 � CORBA::SystemException

CORBA::Exception: This is the abstract class that is the base of all CORBA exceptions. Because this
class is abstract, it is never thrown. However, it can be used in catch blocks to process all CORBA
exceptions in one block.

CORBA::UserException: This is the abstract class for all CORBA user exceptions and is a subclass of
CORBA::Exception. This class should be used as the base class of all user-defined exception classes.
The contents of these classes have no special format. Methods that throw these classes must declare
their usage in IDL using the raises clause.

CORBA::SystemException: This is the abstract class for all CORBA standard exceptions and is a
subclass of CORBA::Exception. These exceptions can be thrown by any method regardless of the
interface specification. Standard exceptions cannot be listed in raises expressions, therefore whether or
not an interface throws a system exception is unknown. This means you should be prepared to handle
standard exceptions on all method calls. Each standard exception includes a minor code to provide more
detailed information. This field is used by Component Broker components. The definition of the minor code
values is included in the online documentation.

Note: CORBA standard exceptions are a predefined list of exceptions. These can be thrown from any
method. CORBA has defined the class that provides this support as CORBA::System Exception.
See The Common Object Request Broker: Architecture and Specification for further information
regarding CORBA exceptions.

 Throwing Exceptions

A business object might wrapper existing logic which might not be written in C++ or might not use the
exception paradigm. These business objects must convert the existing exceptions or error return codes to
CORBA exceptions that can be returned to the client program.

Any non-CORBA exception thrown by the business object is automatically mapped to
CORBA::UNKNOWN by the framework. This does not provide specific information to the client and

 Appendix C. C++ CORBA Programming 317

severely limits the error recovery capability of the client program. These C++ exceptions should be
mapped to appropriate CORBA exceptions by the business object.

 Catching Exceptions

It is a requirement to handle exceptions in client programs. Remember that any method might throw a
standard exception, therefore an exception can be thrown by these methods at any time – even if there
are no exceptions declared in the raises clause of that method. The default behavior for uncaught
exceptions is to terminate that process. If this happens, suspect an uncaught exception first. The exact
style of how or what exceptions are caught depends on what the client application does for error recovery
but there are some good general rules to follow:

� Perform as specific error recovery as makes sense. By proper structuring of catch clauses specific
error recovery can be done.

� Check for most specific exceptions first, most general exceptions last.

� Make use of information that is available in the exception. All CORBA exceptions support the .id()
method that returns the exception identifier. System exceptions also provide .minor() and .completed()
methods which return the minor code and completion status respectively.

A Simple Client Code Example

 try

 {

// Some real code goes here

 foo.boo();

 }

// Catch any specific User exceptions defined for the method in the

// raises' clause

catch (IManagedClient::INoObjectWKey &nowk)

 {

// Process the error, more specific recovery could be made here

// because the specific error is known

 }

// Catch and process any other specific User exceptions

 ...

// Catch any other User exceptions defined for the method in the

// raises' clause

catch (CORBA::UserException &ue)

 {

// Process any other User exceptions. Use the .id() method to

// record or display useful information

cout << "Caught a User Exception: " << ue.id() << endl;

 }

// Catch any System exceptions defined for the method in the

// raises' clause

catch (CORBA::SystemException &se)

 {

// Process any System exceptions. Use the .id(), and .minor()

// methods to record or display useful information

cout << "Caught a System Exception: " << ue.id() << ": " << ue.minor() << endl;

 }

 catch (...)

 {

// Process any other exceptions. This would catch any other C++

// exceptions and should probably never occur

cout << "Caught an unknown Exception" << endl;

 }

318 Component Broker: Programming Guide

Specific standard exceptions cannot be caught individually. If processing individual standard exceptions is
required it can be done within the CORBA::SystemException catch block and using the .id() method.

Name Scoping and Modules in the C++ Bindings

IDL scoped names are mapped to C++ scopes as follows.

� In the IBM C++ bindings, IDL modules are, by default, mapped to C++ classes of the same name. If
the programmer using the bindings #defines _USE_NAMESPACE before including the bindings, then
the bindings map the IDL module to a C++ namespace of the same name. IDL definitions occurring
within a module are mapped to corresponding C++ definitions within the C++ module class or
namespace.

� IDL interfaces are mapped to C++ classes. All IDL constructs defined within an interface are mapped
to corresponding C++ definitions within the C++ interface class.

� Every use in IDL of a C++ keyword (such as “class”) is mapped into the same identifier with a leading
underscore.

C++ Bindings for Interfaces

The CORBA 2.0 C++ client bindings define a variety of C++ types corresponding to a single IDL interface.
Specifically, an IDL interface I is mapped to C++ types with the following four names: I, I_ptr, IRef, I_var.
The types named I and I_var are classes. The types I_ptr and IRef are unspecified by CORBA, but are
required to name the same type; these types are the C++ form for an object reference. (The use of the
IRef types will be removed by the CORBA 2.0 specification.)

The class I is referred to as the interface class corresponding to IDL interface named I; the C++ mappings
of the typedefs, operations, and constants defined within the IDL interface I appear publicly within the C++
interface class I. For example, an IDL operation that accepts an in parameter of interface type I is mapped
to a C++ virtual member function of the class named I that has a parameter of type I_ptr. Similarly, an IDL
operation in I that returns data of type I is mapped to a C++ member function in the class I that returns
data of type I_ptr.

As with other user-defined IDL types, the I_var type is used to assist storage management. Specifically, an
I_var type holds an I_ptr and can be used as if it were an I_ptr. When a I_var type is assigned a new
value or when it goes out of scope, it releases the I_ptr it is holding at that time.

The CORBA 2.0 specification prohibits CORBA-compliant applications from:

� Explicitly creating an instance of an interface class, as in:

I my_instance; // NOT ALLOWED!

I_ptr my_instance = new I; // NOT ALLOWED!

� Declaring a pointer (I*) or a reference (I&) to an interface class.

Instead, the I_ptr, IRef, and I_var types must be used to hold object references, and object references can
only be created (by client applications) by invoking methods that return object references. The interface
class (I) is used by client applications only as a name scope.

IDL operations defined in (or inherited by) interface I are invoked in C++ using the arrow (->) operator on
either an I_ptr, IRef, or I_var type.

Nil object references of type I_ptr can be obtained using a static member function of I called _nil().
Operations cannot be invoked on nil object references. The CORBA::is_nil function is the only

 Appendix C. C++ CORBA Programming 319

CORBA-conformant way to determine whether a given object reference is nil. CORBA::release can be
invoked on a nil object reference, but is not needed. The _duplicate and _narrow functions defined by the
C++ bindings can be given a nil object reference.

In the IBM C++ bindings, the CORBA-prescribed types are implemented as follows:

1. The interface class for I is derived using virtual inheritance from the interface classes for I's IDL
parents. When I has no IDL parents, its interface class is derived using virtual inheritance from
CORBA::Object. Types, constants, and operations declared within the I interface are mapped to types,
constants, and member functions declared within the corresponding interface class.

2. The object reference types I_ptr and IRef are typedef'd to I* (for example, an I_ptr points to an object
of type I). However, CORBA 2.0 specifies that treating an I_ptr as a C++ pointer (e.g., using
conversion to void*, arithmetic and relational operators, test for equality) is not conformant, although
this is not enforced by the bindings.

3. An instance of I addressed is called a proxy, and is created by a proxy factory object of class
ProxyFactory. For each interface I, the bindings define an ProxyFactory class, and provide a global
instance of this class with the name _ProxyFactory.

4. Nil object references are represented as NULL pointers (but CORBA 2.0 conformant applications
should not assume so, and should instead use the _nil() and is_nil() functions to manipulate nil object
references).

5. The I_var class introduces an instance variable of type I_ptr. The purpose of an I_var object is to
handle release operations on the I_ptr that it holds.

6. An auxiliary class I_SeqElem class is used to return sequence elements, and is similar to the I_var
class. It is returned from array access operations on an IDL type sequence. An I_SeqElem is different
from an I_var in that it must honor the release setting of the sequence from which it is selected (that
is, it only owns the object that its I_ptr references if it was taken from a sequence that owns its buffer
storage).

Managing Object References

The mapping for interface I defines a static member function named _duplicate that takes as input an
object reference of type I_ptr and returns an object reference of type I_ptr (potentially the same reference,
when reference counting is employed, as is the case with IBM C++ bindings). The CORBA::release
function indicates that the caller will no longer access the object reference, and the resources associated
with the object reference can be deallocated. (In the IBM C++ bindings, an object reference is only deleted
when its reference count falls to zero, that occurs only if CORBA::release is called for each _duplicate or
_narrow performed on the object reference.)

Duplicating an object reference using _duplicate is analogous to copying a string before transferring
ownership of it, and releasing an object reference is analogous to deleting a string that is no longer
needed. Unlike strings, object references cannot be directly copied or deleted by the client programmer;
object references are managed by the ORB and can only be duplicated or released by the application.

Widening Object References

If interface A is a (direct or indirect) base of interface B, the following assignments do not require an
explicit C++ cast.

� B_ptr to an A_var
� B_ptr to A_ptr
� B_ptr to Object_var
� B_ptr to Object_ptr

320 Component Broker: Programming Guide

� B_var to A_ptr
� B_var to Object_ptr

B_var cannot be assigned to A_var or a compile-time error occurs. To assign B_var to A_var:

� Use B::_duplicate on B_var to create B_ptr.
� Assign B_ptr to A_var.

Narrowing Object References

The mapping for an interface I defines a static member function named _narrow that takes as input an
object reference of any type (for example, an Object_ptr) and returns an object reference of type I_ptr. If
the referenced object (the actual implementation object corresponding to the proxy addressed by the input
object reference) does not support the I interface, the result is NULL; otherwise, the I_ptr addresses an
object that also supports the I interface. In the case where the proxy addressed by the input argument
does not support interface I and the actual implementation object does, the I_ptr returned by I::_narrow
addresses a different proxy object than the input argument.

The _narrow static member function does an implicit _duplicate of the input argument. Therefore, the
caller is responsible for releasing both the object reference input to _narrow and the return result.

Narrowing to a C++ Implementation

Given an interface pointer to an object, it is sometimes useful to narrow to the implementation pointer of
the object. For example, given interface I, the C++ implementation hierarchy for I might look like:

 I

 ↑

 |

 I_Skeleton

 ↑

 |

 I_Impl

You might want to convert a pointer to I into a pointer to I_Impl.

There is no CORBA-prescribed mechanism for this conversion. Within the confines of the C++ language,
dynamic cast can be used. Since Component Broker does not require the C++ compiler to support
dynamic cast, a second mechanism is provided, with the virtual _narrow_impl() method defined in
CORBA::Object:

 class Object

 {

 ...

virtual void _narrow_impl(const char\ impl_name = NULL)

 {

 return NULL;

 }

 };

The default implementation of this method in CORBA::Object returns NULL, so that implementations that
do not support _narrow_impl() need not worry about its existence. Implementations that support
_narrow_impl() should override it, and provide an alternate implementation. The impl_name parameter is
optional, and may be used by the implementation to perform sanity checks.

For the example with interface I, I_Impl might look like:

 Appendix C. C++ CORBA Programming 321

class I_Impl: virtual public I_Skeleton ...

 {

 ...

void \ _narrow_impl(const char\ impl_name)

 {

if (impl_name != NULL && !strcmp(impl_name, "I_Impl"))

 return this;

 else

 return NULL;

 }

 }

A user of this service would do the following to issue the narrow:

I_ptr i = ...; /\ get the IDL ptr somehow \/

I_Impl \ ii = (I_Impl \) i->_narrow_impl("I_Impl");

if (ii == NULL)

 {

 // problem

 }

 else

 {

// Use ii

 ...

 }

Storage Management and _var Types

The C++ bindings try to make the programmer's storage management responsibility as easy as possible.
One aspect of this is the “_var” types. For each user-defined structured IDL type T (struct, union,
sequences, and arrays) and for interfaces, the bindings generate both a class T and a class T_var. The
classes CORBA::String and CORBA::Any also have corresponding CORBA::String_var and
CORBA::Any_var classes.

The essential purpose of a _var object is to hold a pointer to dynamically allocated memory. A _var object
can be used as if it were a pointer to the IDL type for which it is named; special constructors, assignment
operators, and conversion operators make this work in a way that is invisible to programmers. The
memory pointed to by a _var object is always considered to be owned (managed) by the _var object, and
when the _var object is deleted, goes out of scope, or is assigned a new value, it deletes (or, in the case
of an object reference, releases) the managed memory.

A typical _var object is declared by a programmer as an automatic (stack) variable within a code block,
and is then used to receive an operation result or is passed to an operation as an out parameter. Later,
when the code block is exited, the _var object destructor runs and its managed memory is deleted (or, for
object references, released).

When a pointer (rather than another _var object or struct/union/array/sequence element) is assigned to (or
used to construct) a _var object, this pointer should point to dynamically allocated memory, because the
_var object does not make a copy; it assumes ownership of the pointer and will later delete it (or, for
object references, release it). The single exception is that pointers to const data can be assigned to a _var
object. When this occurs, the _var object dynamically allocates new memory and copies the const data
into the new memory. A pointer assigned to a _var object must not be “owned” by some other data
structure, and the pointer should not be subsequently used by the application except by the _var object.

322 Component Broker: Programming Guide

The default constructor for a _var type loads the contained pointer with NULL. You must assign a value to
a _var object created by a default constructor before invoking methods on it, just as you must assign a
value to a pointer variable before invoking methods on it.

The copy constructor and _var assignment operator of a _var type perform a deep copy of the source
data. The copy is later deallocated (or released, in the case of object references) when the _var is
destroyed or when it is assigned a new value.

The following is the typical form for a T_var class, emitted for an IDL—constructed data type named T:

 class T_var

 {

 public:

 T_var ();

 T_var (T\);

T_var (const T_var&);

 ˜T_var ();

T_var &operator= (T\);

T_var &operator= (const T_var &);

T \ operator-> const ();

 ...

 };

Argument Passing Considerations for C++ Bindings

Rules must be observed when passing parameters to a CORBA object implementation. These rules are
dependent on a combination of the IDL type of the argument and the argument mode (in, inout, out or
return value), and must be followed to:

� Ensure the required access authority.
� Prevent memory leaks.
� Ensure that the allocation and deallocation of memory is performed consistently.

C++ Type Mapping for Argument Passing

The type used to pass the parameters of a method signature is dependent on the IDL type and the
directionality of the parameter (in , inout, out, or return value). The rules are dictated by CORBA OMG IDL
to C++ mapping. These mapping rules are captured in and enforced by the header files produced when an
IDL interface description is compiled. Some rules cannot be enforced by the bindings. For example,
parameters that are passed or returned as a pointer type (T*) or reference to pointer(T*&) should not be
passed or returned as a null pointer. Memory management responsibilities cannot be enforced by the
bindings. Client (caller) and implementation (callee) programmers must understand and implement
according to these rules. The argument type mappings are discussed in the following paragraphs and
summarized in the table, Table 14 on page 324. Memory management responsibilities are discussed in
“Storage Management Responsibilities for Arguments” on page 325.

For primitive types and enumerations, the type mapping is straightforward. For in parameters and return
values the type mapping is simply the C++ type representation (abbreviated as “T” in the text that follows)
of the IDL specified type. For inout and out parameters the type mapping is a reference to the C++ type
representation (abbreviated as "T&" in the text that follows).

For object references, the type mapping uses _ptr for in parameters and return values and _ptr& for inout
and out parameters. That is, for a declared interface A, an object reference parameter is passed as type
A_ptr or A_ptr&. The conversion functions on the _var type permit the client (caller) the option of using
_var type rather than the _ptr for object reference parameters. Using the _var type may have an
advantage in that it relieves the client (caller) of the responsibility of deallocating a returned object

 Appendix C. C++ CORBA Programming 323

reference (out parm or return value) between successive calls. This is because the assignment operator of
a _ptr to a _var automatically releases the embedded reference.

The type mapping of parameters for aggregate types (also referred to as complex types) are complicated
by when and how the parameter memory is allocated and deallocated. Mapping in parameters is
straightforward because the parameter storage is caller allocated and read only. For an aggregate IDL
type t with a C++ type representation of T the in parameter mapping is const T&. The mapping of out and
inout parameters is slightly more complex. To preserve the client capability to stack allocate fixed length
types, OMG has defined the mappings for fixed-length and variable-length aggregates differently. The
inout and out mapping of an aggregate type represented in C++ as T is T& for fixed-length aggregates
and as T*& for variable-length aggregates.

Table 14. Basic Argument and Result Passing

Data Type In Inout Out Return

short short short& short& short

long long long& long& long

unsigned short ushort ushort& ushort& ushort

unsigned long ulong ulong& ulong& ulong

float float float& float& float

double double double& double& double

boolean boolean boolean& boolean& boolean

char char char& char& char

wchar wchar wchar& wchar& wchar

octet Octet Octet& Octet& Octet

enum enum enum& enum& enum

object reference ptr objref_ptr objref_ptr& objref_ptr& objref_ptr

struct, fixed const struct& struct& struct& struct

struct, variable const struct& struct& struct*& struct*

union, fixed const union& union& union& union

union, variable const union& union*& union*& union*

string const char* char*& char*& char*

wstring const char* char*& char*& char*

sequence const sequence& sequence& sequence*& sequence*

array, fixed const array array array array slice*

array, variable const array array array slice*& array slice*

any const any& any& any*& any*

For an aggregate type represented by the C++ type T, the T_var type is also defined. The conversion
operations on each T_var type allows the client (caller) to use the T_var type directly for any directionality,
as opposed to using the required form of the T type (T, T& or T*&) The emitted bindings define the
operation signatures in terms of the parameter passing modes shown in Table 15 on page 325, and the
T_var types provide the necessary conversion operators to allow them to be passed directly.

324 Component Broker: Programming Guide

Table 15. T_var Argument and Result Passing

Data Type In Inout Out Return

object referenc var const object_var& objref_var& objref_var& objref_var

struct_var const struct_var& struct_var& struct_var& struct_var

union_var const union_var& union_var& union_var& union_var

string_var const string_var& string_var& string_var& string_var

sequence_var const
sequence_var&

sequence_var& sequence_var& sequence_var

sequence_var
array_var

const array_var& any_var& any_var& any_var

For parameters that are passed or returned as a pointer type (T*) or reference to pointer(T*&) the
programmer should not pass or return a null pointer. This cannot be enforced by the bindings.

Storage Management Responsibilities for Arguments

Table 16 summarizes the storage access and allocation responsibilities for argument passing. As an
overall requirement when allocating and deallocating argument storage, the storage allocation rules for the
specific type must be followed. Specifically, for strings, sequences, and arrays or for aggregate types
composed of these types, the associated memory allocation and dealloaction functions must be used. For
string types this means the use of string_alloc(), string_dup(), and string_free(), for sequence types this
means the use of allocbuf() and freebuf() and for arrays this means the use of T_alloc(), T_dup() and
T_free(). The memory deallocation responsibilities of the client can be minimized by stack allocation and
the use of the _var types when that is possible. When an argument is passed or returned as a pointer
type, a NULL pointer value should never be passed or returned.

Table 16 (Page 1 of 2). Argument Storage Responsibilities

Data Type Inout Out Return

short 1 1 1

long 1 1 1

unsigned short 1 1 1

unsigned long 1 1 1

float 1 1 1

double 1 1 1

boolean 1 1 1

char 1 1 1

octet 1 1 1

enum 1 1 1

object reference pointer 2 2 2

struct, fixed 1 1 1

struct, variable 1 3 3

union, fixed 1 1 1

union, variable 1 3 3

string 4 3 3

 Appendix C. C++ CORBA Programming 325

Table 16 (Page 2 of 2). Argument Storage Responsibilities

Data Type Inout Out Return

sequence 5 3 3

array, fixed 1 1 6

array, variable 1 6 6

any 5 3 3

in parameters
The caller (client) must allocate the input parameters. The callee (implementation) is restricted
to read access. The caller is responsible for the eventual release of the storage. Primitive types
and fixed-length aggregate types may either be heap allocated or stack allocated. By their
nature, variable-length aggregates cannot be completely stack allocated.

inout parameters
For inout parameters, the caller provides the initial value and the callee may change that value.
For primitive types and fixed-length aggregates this is straight forward. The caller provides the
storage and the callee overwrites the storage on return. For variable-length aggregates the size
of the contained data provided on input may differ than the size of the contained data provided
on output. Therefore, the callee is required to deallocate any input contained data that is being
replaced on output with callee allocated data. For object references, the caller provides an
initial value: if the callee reassigns the value the callee must first release the original input
value. The callee assumes or retains ownership of the returned parameters and must
eventually deallocate or release them.

out parameters
For primitive types and fixed-length aggregate types, the caller allocates the storage for the out
parameter and the callee sets the value. For variable-length aggregate types, the caller
allocates a pointer and passes it by reference and the callee sets the pointer to point to a valid
instance of the parameter's type. For object references the caller allocates storage for the _ptr
and the callee sets the _ptr to point to a valid instance.

Because a pointer to an array in C++ must actually be represented as a pointer to the array
element type, CORBA defines an array_slice type, where a slice is an array with all the
dimensions of the original except the first. The output parameter is typed as a reference to an
array_slice pointer. The caller allocates the storage for the pointer and the callee updates the
pointer to point to a valid instance of an array_slice.

The caller assumes or retains ownership of the output parameter storage and must eventually
deallocate it or, in the case of object references, release it.

return values
For primitive types and fixed-length aggregate types, the caller allocates the storage for the
return value and the callee returns a value for the type. For variable-length aggregate types,
the caller allocates a pointer and the callee returns a pointer to an instance of the type. For
object references the caller allocates storage for the _ptr and the callee returns a _ptr that
points to a valid object instance.

As a pointer to an array in C++ must actually be represented as a pointer to the array element
type, the array_slice type is used for returning array values. The caller allocates storage for a
pointer to the array_slice and the callee returns a pointer to a valid instance of an array_slice.

The caller assumes or retains ownership of the storage associated with returned values and
must eventually deallocate it or, in the case of object references, release it.

For definitions of the numerical values in Table 16 on page 325, refer to Table 17 on page 327.

326 Component Broker: Programming Guide

Table 17. Argument Passing Cases

Case Description

1
Caller allocates all necessary storage, except that which may be encapsulated and
managed within the parameter itself. For inout parameters, the caller allocates the storage
but need not initialize it, and the callee sets the value. Function returns are by value.

2

Caller allocates storage for the object reference. For inout parameters, the caller provides
an initial value; if the callee wants to reassign the inout parameter, it will first call
CORBA:release on the original input value. To continue to use an object reference
passed in as an inout, the caller must first duplicate the reference. The caller is
responsible for the release of all out and return object references. Release of all object
references embedded in other structures is performed automatically by the structures
themselves.

3

The callee sets the pointer to point to a valid instance of the parameter's type. For returns,
the callee returns a similar pointer. The callee is not allowed to return a null pointer in
either case. In both cases, the caller is responsible for releasing the returned storage. To
maintain local/remote transparency, the caller must always release the returned storage,
regardless of whether the callee is located in the same address space as the caller or is
located in a different address space. Following the completion of a request, the caller is
not allowed to modify any values in the returned storage: in order to do so, the caller must
first copy the returned instance into a new instance, then modify the new instance.

4

For inout strings, the caller provides storage for both the input string and the char*
pointing to it. Since the callee may deallocate the input strings and reassign the char* to
point to new storage to hold the output value, the caller should allocate the input string
using string_alloc() . The size of the out string is therefore not limited by the size of the in
string. The caller is responsible for deleting the storage for the out using string_free() .
The callee is not allowed to return a null pointer for an inout, out or return value.

5
For inout sequences and any's , assignment or modification of the sequence or any may
cause deallocation of owned storage before any reallocation occurs, depending upon the
state of the Boolean release parameter with which the sequence or any was constructed.

6

For out parameters, the caller allocates a pointer to an array slice, which has all the same
dimensions of the original array except the first, and passes the pointer by reference to
the callee. The callee sets the pointer to point to a valid instance of the array. For returns,
the callee returns a similar pointer. The callee is not allowed to return a null pointer in
either case. In both cases, the caller must always release the returned storage, regardless
of whether the callee is located in the same address space as the caller or is located in a
different address space. Following completion of a request, the caller is not allowed to
modify any values in the returned storage: in order to do so, the caller must first copy the
returned array instance into a new array instance, then modify the new instance.

C++ Client Bindings

In these bindings, the client usage picture for the IDL types declared in the file T.idl appears as follows.
Bold lines enclose files that are generated from IDL. Double lines enclose files that would normally be
produced by a programmer or development tool.

The corba.h header file defines the C++ mappings for primitive IDL data types and other types required by
the bindings, within a scope called CORBA. For more information about the scope see “IDL Name
Scoping” on page 271. These types are implemented in a shared library that can be linked with a client
application. A client application is created by compiling/linking emitted bindings and client code to produce
an executable file.

The C++ bindings for the IDL types defined in the file T.idl are represented by a set of declarations in the
emitted T.hh header file. The classes declared in T.hh that support client code are implemented by the

 Appendix C. C++ CORBA Programming 327

Figure 66. Client Usage Picture for IDL Types

code emitted into a corresponding T_C.cpp implementation file. The pair of files T.hh and T_C.cpp thus
collectively provide the client bindings for T. (To minimize the number of generated files, some types used
by servers are also declared in T.hh).

In general, the C++ bindings map non-primitive IDL types to C++ classes that implement constructors,
destructors, assignment operators, and other functionality. Auxiliary classes are also sometimes defined,
such as classes to automate storage management for array elements, sequence elements, and structure
and union fields. The names of these auxiliary classes are not specified by CORBA, because
specially-designed conversion operators and copy constructors hide their existence from client code.
These classes are not of interest to programmers that use the bindings.

C++ Server Bindings

To allow IDL interfaces to be implemented in C++, server-side bindings are emitted. The resulting classes
work with the client bindings. The following figure illustrates the module structure of the server-side
bindings, assuming that interface T is declared in the file T.idl.

The differences between this figure and the client-side figure presented in Client C++ Bindings are:

� An emitted T_S.cpp file that provides server-side implementation bindings is compiled.

� Server-side C++ code (written by a programmer) defines the implementation for the operations
introduced and inherited by the T interface.

The T_S.cpp file provides an implementation for the class T_Dispatcher. This class inherits from the
dispatcher classes corresponding to T's parents. An instance of this class contains a T_ptr that addresses
the T_Impl object upon which it will dispatch operation invocations. Each target object (for example, each
T_Impl instance) exported by a server must have a corresponding dispatcher object, whose purpose is to
receive a CORBA::Request object, determine what method is being invoked, stream the method
arguments out into local variables, invoke the method on the target object, then stream the results back
into the request so these can be returned to the caller.

The target object for a T_Dispatcher is an instance of the T_Impl class, which subclasses from (at least)
the T_Skeleton class defined by the implementation bindings (in the file T.hh). The T_skeleton class
inherits from the T interface class and the skeleton classes corresponding to T's parents. As a result,
T_skeleton inherits all the methods that T_Impl must support. Furthermore, this is done in a way that
forces T_Impl to indeed provide implementations for all of these methods.

328 Component Broker: Programming Guide

Figure 67. Module Structure of Server-Side Bindings

Take notice of the fact that the class name T_Impl is entirely arbitrary. The implementation class may
have any name. Also note that the implementation class is not nested within any of the C++ classes that
might be used to provide nesting scopes corresponding to IDL modules within which the interface T is
defined. Thus, naming conflicts are a concern. A simple solution is to use underscores to concatenate
module names with the name of the implemented interface. For example, if the interface T is defined
within module M, then the implementation class name M_T_Impl can be used.

If the programmer responsible for T_Impl desires, the implementations (and supporting instance data) for
any or all of T's parents can be inherited from their implementation classes, using C++ inheritance.
Alternatively, T_Impl can provide its own implementation for the operations inherited into T. The image
below graphically illustrates these options from an IDL snippet, using a dotted inheritance line to show
optional C++ inheritance.

 interface A

 {

 ...

 };

interface B : A

 {

 ...

 };

Figure 68 on page 330 focuses on C++ classes. The term pure is based on the use of this word in C++
to describe virtual functions that have no implementation (denoted in C++ by assigning a 0 to the name of
the virtual function). Classes with pure virtual functions cannot be instantiated. Therefore, the skeleton
classes require a subclass to provide complete implementations for all virtual functions in an interface. The
dotted line in the previous figure indicates one way that B_Impl can provide implementations for the pure
virtual functions inherited from A_Skeleton (using B_Skeleton). One way of viewing the skeleton classes is
that they “turn off” proxy behavior and require subclasses to explicitly provide an alternative (non-proxy)
implementation.

 Appendix C. C++ CORBA Programming 329

Figure 68. Inherited Implementation

C++ Binding Restrictions

When a forward reference to an interface appears within an IDL module, the IDL compiler issues an error
message if the referenced interface is not defined within the module. When a similar unresolved forward
reference appears at global (file) scope, a warning is issued that indicates the bindings being emitted won't
include a mapping for the undefined interface. For information on the scope see “IDL Name Scoping” on
page 271. The assumption is that the interface will be defined by other bindings than those being currently
generated. This approach supports IDL files with mutually-referential interfaces (as long as they appear at
global scope). The following example that illustrates how to organize the IDL files for such cases:

// file foo.idl
 #ifndef foo_idl

 #define foo_idl

interface Foo; // declare Foo so bar.idl can refer to it

 #include <bar.idl>

 interface Foo

 {

Bar foo1(); // notice the use of Bar

 };

#endif // foo_idl

// file bar.idl
 #ifndef bar_idl

 #define bar_idl

interface Bar; // declare Bar so foo.idl can refer to it

 #include <foo.idl>

 interface Bar

 {

Foo bar1(); // notice the use of Foo

 };

#endif // bar_idl

Due to problems inherent to the CORBA 2.0 mapping for C++, there are currently two known limitations
with respect to handling legal CORBA 2.0 IDL. The compiler provides informative error messages in these
two cases, and indicates that C++ bindings cannot be generated. The cases are:

� The C++ bindings map most IDL data types to C++ classes contained within a nesting scope provided
by another C++ class. However, it is not legal to define a nested C++ class (or any other type) that
has the same name as a containing C++ class. Thus, for example, the following IDL cannot be
mapped to useful C++ bindings:

330 Component Broker: Programming Guide

 module X

 {

interface X ...;

// or struct X ... ;

// or union X ...;

// or typedef sequence < > X;

 // ...

 };

� The C++ bindings map attributes into overloaded C++ accessor functions whose name is the attribute
name. As a result, for example, the following IDL will not map to useful C++ bindings (because Y's l
method interferes with the inherited mapping for X's attribute). If Y's method took any arguments, there
would not be a problem, because of C++ overloading. The compiler indicates an error only when C++
overloading won't distinguish inherited accessors from newly introduced methods (or vice versa).

 interface X

 {

attribute long l;

 }

interface Y : X

 {

 long l();

 };

 Appendix C. C++ CORBA Programming 331

332 Component Broker: Programming Guide

Appendix D. Unit Test Environment

Note: The Unit Test Environment is only available on AIX and Windows NT platforms and
does NOT apply to OS/390 Component Broker. Since the standard Component Broker
development process has matured over the past releases, the usefulness of the Unit Test
Environment has diminished. Thus, no further enhancements are planned for the Unit Test
Environment, and the support of this Environment will be removed in a future release of
Component Broker.

The purpose of the unit test process is to test business objects (BOs) without having to install them in a
Component Broker server. This lets you, the object provider test the following Component Broker
components:

 � Business logic
 � CosExternalization::Streamable implementation
� Managed object subclass implementation; for example, IManagedObjectWithCachedDataObject
� Data object interface

 � Primary key
 � Copy helper

The Unit Test environment is limited to a simple scenarios and does NOT support the full Component
Broker development environment, including the following but is not limited to:

 Persistent DOs

 Transactions

 PAA

 Query

 Security

Full Reference Collections interfaces

Full Iteration interfaces

 Naming interfaces

If the Unit Test environment does not fill your needs, then it is better to follow the standard development
process without using it.

The unit test process described here is not for testing the installation of a business object in a Component
Broker server. There is no need to build a managed object (MO) and integrate it with a mixin. Building a
managed object implies writing code that implements some interfaces, delegates to a mixin for others, and
delegates to a business object for others. There is no need to customize the data object (DO) to a
particular backing store.

 Copyright IBM Corp. 1997, 1998 333

 Environment

The goal of the unit test environment (UTE) is to make unit testing of business objects as quick and easy
as possible. As such, the unit test environment is designed to be extremely light-weight. The only
requirement for unit testing of business objects is a run-time version of the unit test environment. The
run-time version of the unit test environment is a single DLL which is dynamically linked to a unit test
program. The unit test process does not require the presence of a Component Broker server and can
even be performed on a Component Broker client.

Figure 69 shows all of the elements involved in unit testing a business object. The business object is just
one part of the overall unit test equation. It makes little sense to unit test a business object without also
unit testing the corresponding helper classes: Primary Key, and Copy Helper. The business object,
Primary Key, and Copy Helper are all considered to be implemented by the object provider as input to the
unit test process.

In addition to the previous implementations which are input to the unit test process, the process requires
the implementation of a unit test program and a data object. A data object must be implemented at this
stage because of the programming model adherence to the principle of separation of concerns.

The separation of an object into a business object and a data object allows a programmer with business
application domain expertise to develop the business logic in the business object without having to
become an expert in the persistent storage mechanisms that are used in the data object implementation.
The business object is thus dependent on the data object interface, but not its implementation. Of course,
the data object interface must eventually be implemented for the business object to be of any use.
“Implementing the Data Object” on page 337 describes how to implement a transient data object for use
in the unit test environment.

Finally, there is also some run-time support required by the unit test program and the various types of
objects being tested.

Unit Test Environment

Data Object

BO

Primary Key Copy Helper

Unit Test Program

Figure 69. Unit Test Environment

334 Component Broker: Programming Guide

 Interfaces

The unit test environment provides support for many of the interfaces that a business object client expects
to use when a business object has been installed on a Component Broker server. Expected interfaces
include:

 � IManagedClient::IHome
 � IManagedClient::IManageable
 � IManagedLocal::INonManageable

 IManagedClient::IHome

This interface gives clients a way to create business objects and locate previously-created business
objects. This interface includes the following methods:

 � createFromPrimaryKeyString()
 � findByPrimaryKeyString()
 � createFromCopyString()
 � getPrimaryKeyClass()
 � getManagedObjectClass()

These methods are described in Chapter 5, “MOFW Server Programming Model” on page 57. These
methods are supported in the unit test environment. The IManagedClient::IHome interface also supports
the CosLifeCycle::GenericFactory interface, which introduces two additional methods that the unit test
environment supports:

 � supports()
 � create_object()

Note: Create_object() is not supported by Component Broker for OS/390.

 IManagedClient::IManageable

This interface introduces some common function which every managed object is expected to be able to
do. For example, it is expected that every managed object is capable of telling its clients the Home in
which it can be found. The interface to do this includes the following methods:

 � getPrimaryKeyString()
 � getHome()
 � getHandleString()

The unit test environment provides support for the getHandleString() method which wrappers a stringified
object reference. The unit test environment does not provide support for the getHome() method; instead
an exception is thrown if this method is invoked in the unit test environment. The getPrimaryKeyString()
must be implemented by the business object provider; neither the unit test environment nor the managed
object Framework can provide a default implementation of this method.

The IManagedClient::IManageable interface also inherits three other interfaces:

CosStream::Streamable
This interface includes the following methods:

 � externalize_to_stream()
 � internalize_from_stream()

Both methods must be implemented by the business object provider.

 Appendix D. Unit Test Environment 335

CosLifeCycle::LifeCycleObject
This interface includes the following methods:

 � copy()
 � move()
 � remove()

The unit test environment does not support these methods; an exception is thrown if these
methods are invoked in the unit test environment.

CosObjectIdentity::IdentifiableObject
This interface includes the following methods:

 � constant_random_id()
 � is_identical()

The unit test environment supports these methods. The unit test environment implementation of
constant_random_id() returns the address of the object; is_identical() performs a pointer
comparison.

 IManagedLocal::INonManageable

This interface is introduced because some objects (for example, Primary Keys and Copy Helpers) do not
need all of the support that a managed object requires. They do not need to be accessed remotely, but
they do need to be passed from a client to a server. Because the ORB does not support pass-by-value of
objects, the IManagedLocal::INonManageable interface allows these objects to be converted to a string
format which the ORB is capable of passing by value. The methods that are introduced for this purpose
are toString() and fromString().

For an example of how these methods are used, refer to “Implementing the Unit Test Program” on
page 344.

Unit Test Process

The unit test process starts where the business object development process (described in Chapter 5,
“MOFW Server Programming Model” on page 57) ends. The following list is the input to the unit test
process:

IDL files

� Interface for clients (Policy.idl)
� Interface for implementation (PolicyBO.idl)
� Interface for essential state (PolicyDO.idl)
� Interface for primary key class (PolicyKey.idl)
� Interface for copy helper class (PolicyCopy.idl)

Usage header files (generated by IDL compiler)

 � Policy.hh
 � PolicyBO.hh
 � PolicyDO.hh
 � PolicyKey.hh
 � PolicyCopy.hh

Client and server binding files (generated by IDL compiler)

 � Policy_C.cpp

336 Component Broker: Programming Guide

 � Policy_S.cpp
 � PolicyBO_C.cpp
 � PolicyBO_S.cpp
 � PolicyDO_C.cpp
 � PolicyKey_C.cpp
 � PolicyCopy_C.cpp

Implementation files

 � PolicyBO.ih
 � PolicyBO_I.cpp
 � PolicyKey.ih
 � PolicyKey_I.cpp
 � PolicyCopy.ih
 � PolicyCopy_I.cpp

Note: The server binding files Policy_S.cpp and PolicyBO_S.cpp are not really needed for unit test
because the unit test environment makes no client or server distinction.

Given the previous input, the only remaining pieces to be implemented are the data object and the unit
test program itself.

Implementing the Data Object

The data object (PolicyDO) that is part of the input to the unit test process is just an interface, but before
the data object can be used during unit test, it must have an implementation. For the unit test
environment, the data object implementation is transient; that is, the essential state of the business object
is not saved across executions of the unit test program. The following are the steps for implementing a
data object for the unit test environment:

1. Create an IDL file that introduces an interface that inherits from the input data object interface
(PolicyDO), and IManagedServer::IDataObject. IManagedServer::IDataObject introduces two methods
that need to be implemented in order for the data object to work in the unit test environment.

2. Using the IDL compiler, generate a usage header file, client bindings, and implementation files from
the IDL file. Server bindings are not necessary for data objects because data objects are local-only on
the server.

3. Implement the two methods introduced by IManagedServer::IDataObject, as well as those introduced
by the input data object (PolicyDO).

The following sections use the Policy example to illustrate these steps.

Creating IDL for the Unit Test Data Object

One of the inputs to the unit test process is the interface of a data object. This data object encapsulates
all of the essential state of its corresponding business object. For the Policy object in the example, the
data object interface provided by the object provider looks like the following:

 interface PolicyDO

 {

attribute long policyNo;

attribute float amount;

attribute string comment;

 };

 Appendix D. Unit Test Environment 337

For a data object to work in the unit test environment, it must implement the IManagedServer::IDataObject
interface as well as the one required by its corresponding business object. The following IDL file
introduces an interface (PolicyUnitTestDO) that combines both of these interfaces:

 #include "PolicyDO.idl"

 #include <IManagedServer.idl>

interface PolicyUnitTestDO : PolicyDO, IManagedServer ::IDataObject

 {

#pragma meta <Name>UnitTestDO localonly, abstract

 };

Compiling IDL for the Unit Test Data Object

Compiling the IDL produces the following C++ implementation header file:

 #ifndef _PolicyUnitTestDO_ih_included

 #define _PolicyUnitTestDO_ih_included

// Generated from PolicyUnitTestDO.idl

// on Sun Feb 23 18:54:41 CST 1997

// by IBM CORBA 2.ð C++ (ih) header emitter version 2.ðð

 #include <PolicyDO.ih>

 #include <IManagedServer.ih>

 #include "PolicyUnitTestDO.hh"

class PolicyUnitTestDO_Impl :

public virtual ::PolicyUnitTestDO_Skeleton,

public virtual PolicyDO_Impl,

public virtual IManagedServer_IDataObject_Impl

 {

 public:

 };

#endif /\ _PolicyUnitTestDO_ih_included \/

However, the emitted implementation header file is not correct for the example because of the following
assumptions made by the idlc emitter:

� Every interface is implemented where it is introduced.
� All inheritance is implementation inheritance.

In the example, both PolicyDO and IManagedServer::IDataObject are interfaces without implementations.
As such, there is no implementation from which PolicyUnitTestDO can inherit. Fix the emitter's incorrect
assumptions by removing the parent classes and their corresponding implementation header files:

 ...

// Remove these implementation header files

 #include <PolicyDO.ih>

 #include <IManagedServer.ih>

 ...

// Remove these parent classes

public virtual PolicyDO_Impl,

public virtual IManagedServer_IDataObject_Impl

 ...

Compiling the IDL also resulted in the following C++ implementation file:

338 Component Broker: Programming Guide

// Generated from PolicyUnitTestDO.idl

// on Sun Feb 23 18:54:41 CST 1997

// by IBM CORBA 2.ð C++ (ic) header emitter version 2.ðð

 #include "PolicyUnitTestDO.ih"

This is an empty file because the PolicyUnitTestDO interface does not introduce any methods, it merges
together two other interfaces and the emitter assumes that all interfaces are implemented where they are
introduced. Because PolicyDO and IManagedServer::IDataObject do not have implementations, it is
necessary to implement these interfaces in PolicyUnitTestDO.

Implementing the Unit Test Data Object

The unit test data object interface described previously merges together two interfaces:

� An interface that represents the essential state of a business object (PolicyDO in the example)
 � IManagedServer::IDataObject

The step of implementing the unit test data object can be summarized as implementing the two interfaces
which it merges together. The first interface (PolicyDO) is a set of attributes, one for each data element
which makes up a business object's essential state. These IDL attributes result in get and set methods
that must be implemented. The PolicyDO.hh file declares the following methods:

virtual ::CORBA::Long policyNo()=ð;

virtual ::CORBA::Void policyNo(::CORBA::Long policyNo)=ð;

virtual ::CORBA::Float amount()=ð;

 virtual ::CORBA::Void amount(::CORBA::Float amount)=ð;

virtual char\ comment()=ð;

 virtual ::CORBA::Void comment(char\ comment)=ð;

Because these methods must be implemented in the unit test data object, they must be added to the
PolicyUnitTestDO.ih file. The second interface that must be implemented, IManagedServer::IDataObject,
introduces two methods: internalizeFromPrimaryKey and internalizeFromCopyHelper.

The IManagedServer.hh files declare them as follows:

virtual ::CORBA::Void internalizeFromPrimaryKey

(::IManagedLocal::IPrimaryKey_ptr inKey) = ð;

virtual ::CORBA::Void internalizeFromCopyHelper

(::IManagedLocal::INonManageable_ptr inCopy) = ð;

These methods must also be added to the PolicyUnitTestDO.ih file, resulting in the following:

 #ifndef _PolicyUnitTestDO_ih_included

 #define _PolicyUnitTestDO_ih_included

// Generated from PolicyUnitTestDO.idl

// on Sun Feb 23 18:54:41 CST 1997

// by IBM CORBA 2.ð C++ (ih) header emitter version 2.ðð

 #include "PolicyUnitTestDO.hh"

class PolicyUnitTestDO_Impl :

public virtual ::PolicyUnitTestDO_Skeleton

 {

 Appendix D. Unit Test Environment 339

 public:

// Implement PolicyDO interface

virtual ::CORBA::Long policyNo();

virtual ::CORBA::Void policyNo(::CORBA::Long policyNo);

virtual ::CORBA::Float amount();

 virtual ::CORBA::Void amount(::CORBA::Float amount);

virtual char\ comment();

 virtual ::CORBA::Void comment(char\ comment);

// Implement IManagedServer::IDataObject interface

virtual ::CORBA::Void internalizeFromPrimaryKey

 (::IManagedLocal::IPrimaryKey_ptr inKey);

virtual ::CORBA::Void internalizeFromCopyHelper

 (::IManagedLocal::INonManageable_ptr inCopy);

 };

#endif /\ _PolicyUnitTestDO_ih_included \/

The PolicyUnitTestDO.ih file is starting to take shape, but is not complete. The policy business object
(PolicyBO) counts on the data object to manage its essential state. Although the data object is not
persistent in the unit test environment, it requires a transient location to store the business object's
essential state. For this purpose, for each IDL attribute in PolicyDO.idl, one C++ data member is
introduced to the PolicyUnitTestDO.ih resulting in the following implementation header file which is ready
to be implemented:

 #ifndef _PolicyUnitTestDO_ih_included

 #define _PolicyUnitTestDO_ih_included

// Generated from PolicyUnitTestDO.idl

// on Sun Feb 23 18:54:41 CST 1997

// by IBM CORBA 2.ð C++ (ih) header emitter version 2.ðð

 #include "PolicyUnitTestDO.hh"

class PolicyUnitTestDO_Impl :

public virtual ::PolicyUnitTestDO_Skeleton

 {

 public:

// Implement PolicyDO interface

virtual ::CORBA::Long policyNo();

virtual ::CORBA::Void policyNo(::CORBA::Long policyNo);

virtual ::CORBA::Float amount();

 virtual ::CORBA::Void amount(::CORBA::Float amount);

virtual char\ comment();

virtual ::CORBA::Void comment(char\ comment);

340 Component Broker: Programming Guide

// Implement IManagedServer::IDataObject interface

virtual ::CORBA::Void internalizeFromPrimaryKey

 (::IManagedLocal::IPrimaryKey_ptr inKey);

virtual ::CORBA::Void internalizeFromCopyHelper

 (::IManagedLocal::INonManageable_ptr inCopy);

 private:

// Store the values of the above public attributes transiently.

::CORBA::Long tPolicyNo; // Store value of "policyNo" attribute

::CORBA::Float tAmount; // Store value of "amount" attribute

::CORBA::String_var tComment;// Store value of "comment" attribute

 };

#endif /\ _PolicyUnitTestDO_ih_included \/

Implementing PolicyDO Methods

The policy business object (PolicyBO) uses the methods on the PolicyDO interface to access its essential
state. The transient implementation of the PolicyDO interface in PolicyUnitTestDO can be described by the
following rules:

� For each get method in the C++ implementation header file PolicyUnitTestDO.ih resulting from the IDL
attributes in PolicyDO.idl, return the corresponding C++ data attribute.

� For each set method in the C++ implementation header file PolicyUnitTestDO.ih resulting from the IDL
attributes in PolicyDO.idl, assign the value of the parameter to the corresponding C++ data attribute.

Following is the code that these two rules produce for the first of the IDL attributes in PolicyDO.idl
(amount). For the get method:

 ::CORBA::Float PolicyUnitTestDO_Impl::amount()

 {

 return tAmount;

 }

For the set method:

::CORBA::Void PolicyUnitTestDO_Impl::amount(::CORBA::Float amount)

 {

tAmount = amount;

 }

The policyNo attribute follows the same pattern. The comment attribute is a little different, because its IDL
data type is string. The implementation of the comment attribute follows:

 char\ PolicyUnitTestDO_Impl::comment()

 {

return CORBA::string_dup(tComment); // return a copy

 }

::CORBA::Void PolicyUnitTestDO_Impl::comment(char\ comment)

 {

tComment = comment; // ::CORBA::String_var will copy parameter

 }

 Appendix D. Unit Test Environment 341

Implementing IManagedServer::IDataObject Methods

The unit test implementation of IHome requires that the internalizeFromPrimaryKey() and
internalizeFromCopyHelper() methods of the IManagedServer::IDataObject interface be implemented. To
understand why these methods are required, look at the Primary Key case.

The Home receives a Primary Key helper object (a stringified version of a Primary Key helper object) on a
createFromPrimaryKeyString() request. The Home first creates (or recreates) the original Primary Key
helper object from its stringified version. Then, it creates a data object and passes the Primary Key helper
object to the data object on an internalizeFromPrimaryKey() call. When the data object is created, it has
no state associated with it. It is this internalizeFromPrimaryKey() method that associates an initial state
with the data object.

The implementation of internalizeFromPrimaryKey() must do the following: for each attribute that makes up
the Primary Key, get the value from the Primary Key and set the corresponding value in the data object.
An example of the implementation of internalizeFromPrimaryKey() method for the unit test policy data
object follows:

 ::CORBA::Void PolicyUnitTestDO_Impl::internalizeFromPrimaryKey

 (::IManagedLocal::IPrimaryKey_ptr inKey)

 {

// Convert the input parameter Primary Key reference

// to a policy Primary Key reference

PolicyKey_var pk = PolicyKey::_narrow(inKey);

// Store the key attributes in the DO data attributes.

// Get value from the Primary Key and set it in the DO private state

// variable. Repeat as needed for additional Primary Key attributes

tPolicyNo = pk->policyNo(); // Store value of "policyNo" attribute

 }

A Copy Helper can be thought of as a super-set of a Primary Key. As such, a Copy Helper would have
the same attributes as a Primary Key plus some additional ones (possibly up to and including every
attribute on a data object). Given that, the implementation of internalizeFromCopyHelper() would look
similar to that of internalizeFromPrimaryKey(). Here is an example of the unit test policy data object:

 ::CORBA::Void PolicyUnitTestDO_Impl::internalizeFromCopyHelper

 (::IManagedLocal::INonManageable_ptr inCopy)

 {

PolicyCopy_var pc = PolicyCopy::_narrow(inCopy);

// Store the copy attributes in the DO data attributes

tPolicyNo = pc->policyNo(); // Store value of "policyNo" attribute

tAmount = pc->amount(); // Store value of "amount" attribute

tComment = pc->comment(); // Store value of "comment" attribute

 }

Having implemented both the PolicyDO and IManagedServer::IDataObject interfaces, the
PolicyUnitTestDO_I.cpp file looks like this:

// Generated from PolicyUnitTestDO.idl

// on Sun Feb 23 18:54:41 CST 1997

// by IBM CORBA 2.ð C++ (ic) header emitter version 2.ðð

 #include "PolicyUnitTestDO.ih"

342 Component Broker: Programming Guide

 /\

\ Method from the IDL attribute statement:

\ "attribute Long policyNo"

 \/

 ::CORBA::Long PolicyUnitTestDO_Impl::policyNo()

 {

 return tPolicyNo;

 }

 /\

\ Method from the IDL attribute statement:

\ "attribute Long policyNo"

 \/

::CORBA::Void PolicyUnitTestDO_Impl::policyNo(::CORBA::Long policyNo)

 {

tPolicyNo = policyNo;

 }

 /\

\ Method from the IDL attribute statement:

\ "attribute Float amount"

 \/

 ::CORBA::Float PolicyUnitTestDO_Impl::amount()

 {

 return tAmount;

 }

 /\

\ Method from the IDL attribute statement:

\ "attribute Float amount"

 \/

::CORBA::Void PolicyUnitTestDO_Impl::amount(::CORBA::Float amount)

 {

tAmount = amount;

 }

 /\

\ Method from the IDL attribute statement:

\ "attribute string comment"

 \/

 char\ PolicyUnitTestDO_Impl::comment()

 {

return CORBA::string_dup(tComment); // return a copy

 }

 /\

\ Method from the IDL attribute statement:

\ "attribute string comment"

 \/

::CORBA::Void PolicyUnitTestDO_Impl::comment(char\ comment)

 {

tComment = comment; // ::CORBA::String_var will copy parameter

 }

 ::CORBA::Void PolicyUnitTestDO_Impl::internalizeFromPrimaryKey

 (::IManagedLocal::IPrimaryKey_ptr inKey)

 {

 Appendix D. Unit Test Environment 343

PolicyKey_var pk = PolicyKey::_narrow(inKey);

// Store the key attributes in the DO data attributes

tPolicyNo = pk->policyNo(); // Store value of "policyNo" attribute

 }

 ::CORBA::Void PolicyUnitTestDO_Impl::internalizeFromCopyHelper

 (::IManagedLocal::INonManageable_ptr inCopy)

 {

PolicyCopy_var pc = PolicyCopy::_narrow(inCopy);

// Store the copy attributes in the DO data attributes

tPolicyNo = pc->policyNo(); // Store value of "policyNo" attribute

tAmount = pc->amount(); // Store value of "amount" attribute

tComment = pc->comment(); // Store value of "comment" attribute

 }

Implementing the Unit Test Program

Now that there is a fully implemented transient data object for the business object, you are ready to write
a unit test program. As discussed previously, the purpose of this unit test process is to test business
objects. To do this, the unit test environment enables a subset of the client programming model. This
subset is described in “Environment” on page 334; the client programming model is described in
Chapter 4, “MOFW Client Programming Model” on page 33.

However, the unit test environment has requirements that must be filled by a unit test program:

1. For each business object that a unit test program tests, the unit test program must define and create a
factory object that takes no parameters for each of the following types of objects:

 � Business object
 � Data object
 � Primary Key
 � Copy Helper

These factory objects all have a single create() method that takes no parameters, and returns the
appropriate object from the application domain. The factory objects return the objects as the more
general type from which they inherit. For instance, the factory object for a policy business object would
look like this:

class PolicyBOFactory: public

 IUnitTestClient:IBusinessObjectFactory_Skeleton

 {

 ::IManagedClient::IManageable_ptr create()

 {

return (IManagedClient::IManageable\) new PolicyBO_Impl();

 };

 };

2. For each business object class that a unit test program tests, the unit test program is responsible for
creating and initializing a Home that can be used to create and locate business objects of that class.
Before a Home can be used in a unit test program, it must be initialized with references to the factory
objects described previously, plus the class name of the business objects it creates (and finds). The
following code segment shows how this would be done:

344 Component Broker: Programming Guide

IUnitTestClient::IHome_var myHome =

 IUnitTestClient::IHome::_create();

PolicyBOFactory\ f1 = new PolicyBOFactory();

PolicyDOFactory\ f2 = new PolicyDOFactory();

 PolicyKeyFactory\ f3 = new PolicyKeyFactory();

PolicyCopyFactory\ f3 = new PolicyCopyFactory();

myHome->initForTesting("Policy", f1, f2, f3, f4);

Having fulfilled the requirements, a unit test program would proceed to use the Home to create and locate
business objects, exercising all of the functions provided by the business object. Following is an example
of a simple unit test program that tests the policy business object:

 #include <iostream.h>

 #include <IUnitTestClient.ih>

 #include "PolicyBO.ih"

 #include "PolicyDO.ih"

 #include "PolicyKey.hh"

 #include "PolicyCopy.hh"

class PolicyBOFactory : public

 IUnitTestClient::IBusinessObjectFactory_Skeleton

 {

 ::IManagedClient::IManageable_ptr create()

 {

return (IManagedClient::IManageable\) new PolicyBO_Impl();

 };

 };

class PolicyDOFactory : public

 IUnitTestClient::IDataObjectFactory_Skeleton

 {

 ::IManagedServer::IDataObject_ptr create()

 {

return (IManagedServer::IDataObject\) new

 PolicyUnitTestDO_Impl();

 };

 };

class PolicyKeyFactory : public

 IUnitTestClient::IPrimaryKeyFactory_Skeleton

 {

 ::IManagedLocal::IPrimaryKey_ptr create()

 {

 return (IManagedLocal::IPrimaryKey\)PolicyKey::_create();

 };

 };

class PolicyCopyFactory : public

 IUnitTestClient::ICopyHelperFactory_Skeleton

 {

 ::IManagedLocal::INonManageable_ptr create()

 {

 return (IManagedLocal::INonManageable\)PolicyCopy::_create();

 };

 };

 Appendix D. Unit Test Environment 345

 main()

 {

IUnitTestClient::IHome_var myHome =

 IUnitTestClient::IHome::_create();

PolicyBOFactory\ f1 = new PolicyBOFactory();

PolicyDOFactory\ f2 = new PolicyDOFactory();

PolicyKeyFactory\ f3 = new PolicyKeyFactory();

PolicyCopyFactory\ f3 = new PolicyCopyFactory();

myHome->initForTesting("Policy", f1, f2, f3, f4);

cout << "Creating a Policy primary key object...";

PolicyKey_var pk = PolicyKey::_create();

 pk->policyNo(12345);

cout << "Creating Policy BO using home and primary key...";

 IManagedClient::IManageable_ptr temp;

ByteString \ tempBS = pk->toString();

temp = myHome->createFromPrimaryKeyString(\tempBS);

PolicyBO_var myPolicy = PolicyBO::_narrow(temp);

CORBA::release(temp);

 delete tempBS;

cout << "\\\\\\\\\\\\ Object Created Successfully \\\\\\\\\\\\";

::CORBA::Long pNo = myPolicy->policyNo();

cout << "Policy number - should be 12345. It is " << pNo << endl;

 }

Compiling, Linking, and Executing the Unit Test Program

Having implemented both a unit test data object and a unit test program, you must compile and link all of
the pieces and execute the resulting .EXE file. The files that need to be compiled are:

Input to Unit Test Process

 � Policy_C.cpp
 � PolicyBO_C.cpp
 � PolicyBO_I.cpp
 � PolicyDO_C.cpp
 � PolicyKey_C.cpp
 � PolicyKey_I.cpp
 � PolicyCopy_C.cpp
 � PolicyCopy_I.cpp

Output of Unit Test Process

 � PolicyUnitTestDO_C.cpp
 � PolicyUnitTestDO_I.cpp
 � UnitTest.cpp

The objects that need to be linked to build the executable unit test program are:

346 Component Broker: Programming Guide

Input to Unit Test Process

 � Policy_C.obj
 � PolicyBO_C.obj
 � PolicyBO_I.obj
 � PolicyDO_C.obj
 � PolicyKey_C.obj
 � PolicyKey_I.obj
 � PolicyCopy_C.obj
 � PolicyCopy_I.obj

Output of Unit Test Process

 � PolicyUnitTestDO_C.obj
 � PolicyUnitTestDO_I.obj
 � UnitTest.obj

Unit Test Environment

 � sompmuli.lib

Note: These lists represent only one possible packaging scheme. Other packaging schemes include:

1. All of the .cpp files that were input to the unit test process are compiled and linked into a single
LIB/DLL which is then linked in like the unit test environment LIB/DLL.

2. All of the client usage binding (_C.cpp) files that were input to the unit test process are
compiled and linked into one LIB/DLL, and all of the implementation (_I.cpp) files that were
input to the unit test process are compiled and linked into a second LIB/DLL. Both of these
LIB/DLLs are then linked in like the unit test environment LIB/DLL.

3. PolicyUnitTestDO_C.cpp and PolicyUnitTestDO_I.cpp are compiled and linked together into a
LIB/DLL which is then linked in like the unit test environment LIB/DLL.

Regardless of the packaging decision, at this point, you are ready to execute the unit test program.

Unit Test for Java Business Objects

After successfully writing and compiling a Java business object and some related classes, unit testing is
the next step. Unit testing exercises the business logic in a scaffolded, pure Java environment outside of
the Component Broker server, and can accomodate any Java development toolset.

 Files

The previous set of development steps resulted in a number of IDL files and some Java files that were
written (probably using the Object Builder). Since the unit test environment (UTE) is a pure Java
environment, you need to run java com.ibm.idl.toJava.Compileto generate the bindings for the following
IDL files:

IDL Files

 � Policy.idl
 � PolicyBO.idl
 � PolicyDO.idl
 � PolicyKey.idl
 � PolicyCopy.idl

 Appendix D. Unit Test Environment 347

Written Java Packages

 � XYZCompany/_PolicyBOBase.java
 � XYZCompany/_PolicyKeyImpl.java
 � XYZCompany/_PolicyCopyImpl.java

Generated Java needed for Unit Test

� XYZCompany/Policy.java (from Policy.idl)
 � XYZCompany/PolicyHelper.java
� XYZCompany/PolicyBO.java (from PolicyBO.idl)

 � XYZCompany/PolicyBOHelper.java
� XYZCompany/PolicyDO.java (from PolicyDO.idl)

 � XYZCompany/PolicyDOHelper.java
� XYZCompany/PolicyKey.java (from PolicyKey.idl)

 � XYZCompany/PolicyKeyHelper.java
� XYZCompany/PolicyCopy.java (from PolicyCopy.idl)

 � XYZCompany/PolicyCopyHelper.java

Generated Java saved for later

 � XYZCompany/_PolicyStub.java
 � XYZCompany/_PolicyBOStub.java
 � XYZCompany/_PolicyDOStub.java

Component Broker supplies the Java scaffolding that simulates the server execution environment. In
addition to the implementations required by the unit test process, the object provider must supply the unit
test data object and the unit test program iteslf.

Implementing a Java Unit Test Data Object

Unit testing performs locally (outside the Component Broker server), and does not require a persistent
data store. The unit test data object, therefore, is a transient object; that is, the essential state of the
business object is not saved across executions of the unit test program. The unit test data object for the
Policy business object must implement the PolicyDO interface as well as the IManagedServer::IDataObject
interface.

 interface PolicyDO

 {

attribute long policyNo;

attribute float amount;

attribute float premium;

attribute string comment;

attribute com.ibm.IManagedCollections.IReferenceCollection beneficiaries;

 };

You can combine this data object interface with the IManagedServer::IDataObject interface to construct
the implementation of the transient data object as follows:

 package XYZCompany;

public class _PolicyTransientDOImpl

 extends com.ibm.IManagedClient._IManageableBase

implements PolicyDO, com.ibm.IManagedServer.IDataObject

 {

private int policyNo;

private float amount;

private String comment;

348 Component Broker: Programming Guide

private float premium;

public int policyNo() { return policyNo; }

public void policyNo(int no) { policyNo = no; }

public float amount() { return amount; }

public void amount(float amt) { amount = amt; }

public float premium() { return premium; }

public void premium(float amt) { premium = amt; }

public String comment() { return comment; }

public void comment(String com) { comment = com; }

public void internalizeFromPrimaryKey(com.ibm.IManagedLocal.IPrimaryKey key)

 {

PolicyKey pk = (PolicyKey)key; // See note 1

policyNo = pk.policyNo();

 }

public void internalizeFromCopyHelper(com.ibm.INonManageable copy) // See note 2

 {

PolicyCopy pc = (PolicyCopy)copy;

policyNo = pc.policyNo();

amount = pc.getAmount();

comment = pc.comment();

 }

public byte[] getPrimaryKeyString () { return null; }

public void externalize_to_stream (org.omg.CosStream.StreamIO s) {}

public void internalize_from_stream (org.omg.CosStream.StreamIO f1,

org.omg.CosLifeCycle.FactoryFinder f2 {}

 }

This is a simple data object that expects to receive all of its state data from a unit test program using a
PrimaryKey or CopyHelper object or by explicit calls to set the data object attributes. If the test scenarios
you plan to use require considerable amounts of data, you may want to consider other methods of
initializing unit test data objects. For example, when a data object key has been set, the data object could
then scan a text file that has, on each line, a key value followed by initial values for the other data object
attributes. You can provide test data in any of several ways; you can choose one with which you are
comfortable.

Notes about the data object:

1. Remember that you must have implemented a pure Java version of the PrimaryKey class in order to
use the Java unit test process.

2. Copy Helper classes are optional; if you do not have one you can leave the body of this method
empty.

Implementing the Unit Test Factories

The Java unit test environment requires that you provide factory objects to create instances of the
business object, unit test data object, Primary Key, and optional Copy Helper classes. Each factory has a
single create() method that takes no parameters and implements an interface in the IUnitTestClient
package.

 Appendix D. Unit Test Environment 349

Following are examples of factory classes suitable for the Policy business object class:

public class PolicyBOFactory

 implements com.ibm.IUnitTestClient.IBusinessObjectFactory

 {

public com.ibm.IManagedClient.IManageable create()

 {

return new _PolicyBOBase();

 }

 }

public class PolicyDOFactory()

 implements com.ibm.IUnitTestClient.IDataObjectFactory

 {

public com.ibm.IManagedServer.IDataObject create()

 {

return new _PolicyTransientDOImpl();

 }

 }

public class PolicyKeyFactory()

 implements com.ibm.IUnitTestClient.IPrimaryKeyFactory

 {

public com.ibm.IManagedLocal.IPrimaryKey create()

 {

 return PolicyKeyHelper._create();

 }

 }

public class PolicyCopyFactory()

 implements com.ibm.IUnitTestClient.ICopyHelperFactory

 {

public com.ibm.IManagedLocal.INonManageable create()

 {

 return PolicyCopyHelper._create();

 }

 }

Because these classes are only used in the controlled unit test environment, they are not constrained to
use only the XXXHelper._create() pattern to create instances of these classes. In cases where the name
of the implementation class is known, it can be used directly in unit test, although that is not
recommended for code that executes on the server.

These factory objects are used in the unit test program to configure the unit test Home, as shown in the
next section.

Implementing the Unit Test Program

When the preparation is complete a unit test program can now be written to exercise the business logic of
the Policy object. This test program is written as a Java application and, like any Java application, is a
class containing a public static main() method.

The unit test program uses an instance of IUnitTestClient::IHome interface configured to act as a mockup
Home for the business object. If the test scenario involves more than one type of business object, one unit
test Home instance needs to be configured for each. Because IUnitTestClient::IHome extends the normal
Home client programming interface IManagedClient::IHome, the test Home can be used within the
business object. However, the test Home is not an IterableHome nor is it a QueryableHome.

350 Component Broker: Programming Guide

Each unit test program performs the following steps:

 1. Create Homes
2. Configure Homes with unit test factory objects
3. Create business objects
4. Initialize business objects, if necessary
5. Call business objects business methods and validate results

An example of a unit test program for the Policy implementation follows:

 import XYZCompany.\;

public class PolicyUnitTest

 {

public static void main(String args[])

 {

com.ibm.IUnitTestClient.IHome home =

 com.ibm.IUnitTestClient.IHomeHelper._create();

 home.initForTesting("Policy",

 new PolicyBOFactory(),

 new PolicyDOFactory(),

 new PolicyKeyFactory(),

 new PolicyCopyFactory());

System.out.println("Creating Policy Key");

PolicyKey pk = PolicyKeyHelper._create();

 pk.policyNo(12345);

System.out.println("Creating Policy using key");

Policy p = PolicyHelper.narrow(

 home.createFromPrimaryKeyString(pk._toString()));

System.out.println("Policy object created");

System.out.print("Checking key == 12345: ");

if(p.policyNo() == 12345)

 System.out.println("Pass");

 else

 System.out.println("Fail");

 }

 }

Running the Test Program

To run the unit test program, the Java client must be installed on the system. You can run the Java unit
test program using the java command or from within your favorite Java development environment.
However you run it, the proper Java classes must be available. In some cases Component Broker
includes several Java implementations of the same class for use in different run time environments. It is
important to ensure that the version that is appropriate for the unit test environment is used when you run
your unit test program.

The order that the java command searches directories and ZIP archives for Java classes is established by
the CLASSPATH environment variable. If you are running your unit test program in a Java development
environment you should consult the documentation for that product to determine how to set the search
path. The path should contain, in order:

 Appendix D. Unit Test Environment 351

1. The directory containing the class files for the unit test program, business object, unit test data object,
and other related classes.

2. The path to the installed SOMOJUT.ZIP file (the unit test class archive) containing special unit test
simulation classes such as the IUnitTestClient package.

3. The path to the installed SOMOJOR.ZIP file (the pure Java ORB and bindings archive) providing
access to remote objects and services using the Java client ORB.

4. The path to the installed IBMCBJS.ZIP file (the Server Java bindings archive) providing Java interface
definitions but no classes that are usable in the unit test.

5. The path to the install SOMOJIJ.ZIP file providing the idl-to-Java compiler.

6. Any other ZIP files or directories required by your application or your Java run time environment.

Unit Test Supported Function

The unit test environment is basically a simulation of a server environment, and as such, has limitations.
Certain facilities and code patterns that can be used in server code are not supported by the unit test
simulation. Therefore, business object code that attempts to use them could suffer failures at unit test
execution time, or could fail to load correctly. If your business object uses these unsupported features,
you may still be able to unit test other business methods or you may need to perform all of your
debugging and testing activity in a true server environment.

Setting the CLASSPATH as described earlier provides access to the following facilities in the unit test
environment, subject to the following limitations:

� Your business object, running in simulated mode
� Objects running in simulated mode that support the following interfaces:

 – IManagedClient::IHome
 – CosObjectIdentity::IdentifiableObject
 – CosLifeCycle::GenericFactory

� Objects and services running in client mode:
 – CBSeriesGlobal

– Other object services
– Remote business objects running in servers

Restrictions on the use of these objects are implied by their modes.

Simulated mode means that a reference to the object cannot be passed on a remote call and cannot be
used with an Object Service unless that service is also simulated. The operations introduced by the
CORBA::Object interface are not supported in the UTE.

Client mode means that the objects referenced must execute in a configured, separately running server.
The objects are accessed remotely through the ORB using a proxy.

 Summary

This chapter described the unit test process and environment. Unit test was defined as testing of business
objects. More specifically, it is the testing of all the code that is described in Chapter 5, “MOFW Server
Programming Model” on page 57 and in Chapter 10, “Java Server Programming Model” on page 171. As
in those chapters, this chapter explains the steps involved if you were to do everything manually. Tools
support should make both development and unit test of business objects much easier: the Object Builder
tool should be able to generate a unit test data object, and it should be able to assist in the writing of a
unit test program.

352 Component Broker: Programming Guide

Regardless of whether unit test was completed manually, or with the help of tools, when a business object
has been tested, it is ready to be installed into a Component Broker server. For more information about
installing a business object, see Chapter 11, “Assembling and Installing Business Objects on AIX and
Windows NT” on page 197.

 Appendix D. Unit Test Environment 353

354 Component Broker: Programming Guide

 Appendix E. Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the information. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
U.S.A.

 Copyright IBM Corp. 1997, 1998 355

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been
made on development-level systems and there is no guarantee that these measurements will be the same
on generally available systems. Furthermore, some measurement may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written.

These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these
sample programs in any form without payment to IBM for the purposes of developing, using, marketing, or
distributing application programs conforming to IBM's application programming interfaces.

 Trademarks

The following are trademarks of International Business Machines Corporation in the United States, or other
countries, or both:

AIX
CICS
DB2
IBM
IMS
MVS/ESA

356 Component Broker: Programming Guide

OS/2
OS/390
PowerPC
VisualAge

AFS and DFS are trademarks of Transarc Corporation in the United States, or other countries, or both.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Microsoft, Windows, and the Windows 95 logo are trademarks or registered trademarks of Microsoft
Corporation.

Oracle and Oracle8 are registered trademarks of the Oracle Corporation.

UNIX is a registered trademark in the United States and other countries licensed exclusively through
X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks of others.

 Appendix E. Notices 357

358 Component Broker: Programming Guide

 Index

Special Characters
_var Types, Storage Management and 322
(Caching), Patterns for Handling State 65
(Delegating), Patterns for Handling State 66
(IDL), Interface Definition Language 271

attribute declarations 278
emitted file names 288
exception declarations 278
IDL syntax 279
idlc command 284
IDLC_OPTIONS environment variable 288
interface declarations 275
multiple IDL interfaces and modules 283
name scoping 271
operation declarations 276
options for the idlc command 285
reserved keywords for IDL 280
type and constant declarations 272

(MOFW) client programming model 33

A
ActiveX Client Programming Model 143
ActiveX Client Programming Model: Basic Tasks 146

concurrency control 155
creating a managed object 150

Creating a New Object - Create from Copy 151
Creating a New Object — Create From Key 150

finding a managed object 147
bound in the naming service 147
by methods on held objects 148
using the PrimaryKey helper class 148

initializing the CB client environment 147
releasing and deleting objects 153
remembering your favorite objects 154
using a managed object 150
using sets of objects 153
When References Explode 155

ActiveX Client View of Component Broker
Applications 143

Advanced Concepts, MOFW Client Programming
Model 83

conventions and guidelines 83
create_object() method 83
expanding the client programming interface 83
queries, iterations and specialized homes 83
session service 83
transactions 83
using keyed reference collections 83

Agent 19

and Modules in the C++ Bindings, Name Scoping 319
application development, object-oriented

bottom-up 3, 17
combined approaches 7
meet in the middle 6, 16
top-down 2, 15

application example, personal life insurance
application model 16
design model 17
object model 15

Applications, ActiveX Client View of Component
Broker 143

Applications, Client View of Component Broker 33
architecture overview, three-tier 7
Artifacts Produced in Building Objects 269
Assembling and Installing Business Objects 197

application adaptor methods 201
augmentation of OMG services methods 202
business object methods 200
Create the Managed Object Class and

Implementation 197
OMG services methods 201
special methods 201
specialized homes 202

Attributes, Business Object 59
Attributes, Implementing Business Object Methods

and 64

B
Basic Tasks, Client Programming Model: 35
Beneficiary 20
Bindings for Data Types, C++ 301
Bindings for Interfaces, C++ 319
Bindings, Name Scoping and Modules in the C++ 319
bottom-up application development 3, 17
Building Objects, Artifacts Produced in 269
business logic, life insurance example

Create Customer 26
Modify Beneficiary 27
ModifyPolicy 26
Process Claim 27

Business Object Attributes 59
Business Object Basics 57, 79

Artifacts Table for Business Objects 57, 79
summary 57, 78

Business Object Methods and Attributes,
Implementing 64

Business Object State 58
business object, developing a 59
Business Object, Developing an Interface to the 60

 Copyright IBM Corp. 1997, 1998 359

Business Object, Extending a
choosing an inheritance pattern 107
essential state extensions 106
Extending a Business Object Interface 106
extension summary 114
implement the additional business logic 108
MOFW IManageable requirements 110
MOFW requirements — IManaged server 111
more copy helper classes 113
more key classes 113
other variations to consider 114

Business Objects, Assembling and Installing 197
application adaptor methods 201
augmentation of OMG services methods 202
business object methods 200
Create the Managed Object Class and

Implementation 197
OMG services methods 201
special methods 201
specialized homes 202

Business Objects, CORBA Types and 299
Business Objects, Design Tips for 62
Business Objects, Multiple Interfaces to 141
Business Objects, Unit Test for Java 347

Files 347
Implementing a Java Unit Test Data Object 348
Implementing the Unit Test Factories 349
Implementing the Unit Test Program 350

running the test program 351
unit test supported function 352

Business Objects, Using C++ 'this' References in 64

C
C++ 12
C++ 'this' References in Business Objects, Using 64
C++ bindings 299
C++ Bindings for Data Types 301
C++ Bindings for Interfaces 319
C++ Bindings, Name Scoping and Modules in the 319
C++ CORBA Programming 299

C++ binding restrictions 330
C++ bindings for data types 301
C++ bindings for interfaces 319
C++ client bindings 327
C++ server bindings 328
CC++ bindings 299
CORBA types and business objects 299
exceptions 317
name scoping and modules in the C++

bindings 319
storage management and _var types 322
storage management responsibilities for

arguments 325
C++ local-only development process 252

Cardinality Relations, Data Object Customization
for 239

Bottom-Up Customizations 241
Cardinality-1 Relationships 243
Cardinality-N Relationships 243
enabling additional clients 252
mapping helpers 245
packaging for client and server (VA C++) 249

create functions for dynamic DLL loading 250
DLL packaging 249
exposing interfaces to business object

builders 251
exposing interfaces to clients 251

packaging the DLL for the ActiveX visual C++
client 251

packaging the Java client code 252
summarizing relationships implementations 244
Top-Down Customizations 239
Top-Down Versus Bottom-Up Relations 239

circular references 142
Claim 25
Class Construction, Key 76
class interfaces, CORBA 52
class, primary key 73
Client Environment, Initializing the 35
Client Programming Interface 246

QOS interfaces for non-transactional support 246,
249

Quality of Service Interface 246, 247
Client Programming Model — Advanced Concepts,

MOFW 83
conventions and guidelines 83
create_object() method 83
expanding the client programming interface 83
queries, iterations and specialized homes 83
session service 83
transactions 83
using keyed reference collections 83

client programming model, (MOFW) 33
Client Programming Model, ActiveX 143
Client Programming Model: Basic Tasks 35
Client View of Component Broker Applications 33
Client View of Component Broker Applications,

ActiveX 143
Coding Tips for proper CORBA Memory

Management 52
Collection Interfaces, Reference 47
Collection, Reference 44
Collections, Keyed Reference 96
combined development approaches 7
Component Broker Applications, ActiveX Client View

of 143
Component Broker Applications, Client View of 33
configuring managed objects into servers 254

back end synchronization 255
configuration option summary 256

360 Component Broker: Programming Guide

configuring managed objects into servers (continued)
memory management 254
persistence 255

Construction, Key Class 76
Conventions and Guidelines 99

creating persistent objects 99
finding persistent objects 99

conventions, naming 12
conventions, programming

C++ 12
Interface Definition Language 10
Java 12
naming conventions 12
other 12

Copy Helper Class, Optional 76
Copy Helpers Sharing Opportunities 139
CORBA class interfaces 52
CORBA Memory Management, Coding Tips for

proper 52
CORBA Programming, C++ 299

C++ binding restrictions 330
C++ bindings for data types 301
C++ bindings for interfaces 319
C++ client bindings 327
C++ server bindings 328
CC++ bindings 299
CORBA types and business objects 299
exceptions 317
name scoping and modules in the C++

bindings 319
storage management and _var types 322
storage management responsibilities for

arguments 325
CORBA Types and Business Objects 299
CORBA::Object Interfaces 53
CosTransactions module 84
Create Customer 26
Create from Copy, Creating a New Object — 43
Create From Key, Creating a New Object — 42

Factory 42
factory finder 42

create_object() method 100
creating a managed object 41
Creating a New Object — Create from Copy 43
Creating a New Object — Create From Key 42

Factory 42
factory finder 42

Creating Specialized Homes
extending the interface to IHome 133

alternatives to IManagedClient IHome 134
details 134

Implement the Extended IHome Interface 134
copy helper 138
implementation 135
Implementation Interface 134
keys 138
leveraging server provided essential state

extensions 138

Creating Specialized Homes (continued)
Implement the Extended IHome Interface (continued)

MOFW IManageable Requirements —
implementation 137

MOFW Requirements – IManagedObject
Interfaces 137

summary of home extension 139
Customer 21
Customization and Inheritance, Data Object 233

Additional Methods – Default Constructor 237
CarPolicy BOIM Data Object Implementation 235
CarPolicy BOIM Data Object Interfaces 233
Framework Required Code – create() Function 236
Framework Required Method –

internalizeFromCopyHelper 235
Framework Required Method –

internalizeFromPrimaryKey 235
Methods To Support Attributes – Getters 236
Methods to Support Attributes – Setters 237
required method 237

Required Method —del 238
Required Method —insert 238
Required Method —retrieve 238
Required Method —setConnection 239
Required Method —update 238
Required Method – externalizeKeyAttributes 237
Required Method – internalizeKeyAttributes 237

Customization for Cardinality Relations, Data
Object 239

Bottom-Up Customizations 241
Cardinality-1 Relationships 243
Cardinality-N Relationships 243
enabling additional clients 252
mapping helpers 245
packaging for client and server (VA C++) 249

create functions for dynamic DLL loading 250
DLL packaging 249
exposing interfaces to business object

builders 251
exposing interfaces to clients 251

packaging the DLL for the ActiveX visual C++
client 251

packaging the Java client code 252
summarizing relationships implementations 244
Top-Down Customizations 239
Top-Down Versus Bottom-Up Relations 239

customization, data object 204
additional considerations 217, 245
BOIM data object customization – cache

service 217
BOIM data object customization – static SQL 210
BOIM data object implementation 227
BOIM data object interfaces 225
data object data management patterns 233
data objects (unit test) 207
interfaces needed by persistent data objects 206

 Index 361

customization, data object (continued)
SQL data object interfaces 210
static SQL data object implementation 213
summary of data object customization 229
transient data object customization – UUID key

(production use) 223
transient data object implementation 208
transient data object interfaces 207
transient data object-any key (production use) 225

D
data object 63
data object customization 204

additional considerations 217, 245
BOIM data object customization – cache

service 217
BOIM data object customization – static SQL 210
BOIM data object implementation 227
BOIM data object interfaces 225
data object data management patterns 233
data objects (unit test) 207
interfaces needed by persistent data objects 206
SQL data object interfaces 210
static SQL data object implementation 213
summary of data object customization 229
transient data object customization – UUID key

(production use) 223
transient data object implementation 208
transient data object interfaces 207
transient data object-any key (production use) 225

Data Object Customization and Inheritance 233
Additional Methods – Default Constructor 237
CarPolicy BOIM Data Object Implementation 235
CarPolicy BOIM Data Object Interfaces 233
Framework Required Code – create() Function 236
Framework Required Method –

internalizeFromCopyHelper 235
Framework Required Method –

internalizeFromPrimaryKey 235
Methods To Support Attributes – Getters 236
Methods to Support Attributes – Setters 237
required method 237

Required Method —del 238
Required Method —insert 238
Required Method —retrieve 238
Required Method —setConnection 239
Required Method —update 238
Required Method – externalizeKeyAttributes 237
Required Method – internalizeKeyAttributes 237

Data Object Customization for Cardinality
Relations 239

Bottom-Up Customizations 241
Cardinality-1 Relationships 243
Cardinality-N Relationships 243
enabling additional clients 252

Data Object Customization for Cardinality Relations
(continued)

mapping helpers 245
packaging for client and server (VA C++) 249

create functions for dynamic DLL loading 250
DLL packaging 249
exposing interfaces to business object

builders 251
exposing interfaces to clients 251

packaging the DLL for the ActiveX visual C++
client 251

packaging the Java client code 252
summarizing relationships implementations 244
Top-Down Customizations 239
Top-Down Versus Bottom-Up Relations 239

Data Types, C++ Bindings for 301
Deleting Objects, Releasing and 48
Design Tips for Business Objects 62
developing a business object 59
Developing an Interface to the Business Object 60
Development Process, Local-Only 78
development, object-oriented application

bottom-up 3, 17
combined approaches 7
meet in the middle 6, 16
top-down 2, 15

E
Essential State, Selecting a Pattern for Handling 62
example, personal life insurance application

application model 16
design model 17
object model 15

Exceptions, and Timeouts, Transactions, 87
Extending a Business Object

choosing an inheritance pattern 107
essential state extensions 106
Extending a Business Object Interface 106
extension summary 114
implement the additional business logic 108
MOFW IManageable requirements 110
MOFW requirements — IManaged server 111
more copy helper classes 113
more key classes 113
other variations to consider 114

F
Favorite Objects, Remembering your 47
finding a managed object 38
Finding a Managed Object Bound in the Naming

Service 38
Finding a Managed Object by Methods on Held

Objects 41, 53

362 Component Broker: Programming Guide

Finding a Managed Object Using the PrimaryKey Helper
Class 39

finding persistent objects 99
forward engineering application development 2, 15

G
Guidelines, Conventions and 99

creating persistent objects 99
finding persistent objects 99

H
Handle, Object 102
Handling Essential State, Selecting a Pattern for 62
Handling State (Caching), Patterns for 65
Handling State (Delegating), Patterns for 66
Helper Class, Optional Copy 76
Helper Class, PrimaryKey 39

I
identity, object 19
IDL 10
IManageable Method Implementations Table 70
IManageable Methods 70
IManageable Required Methods 67
IManagedObject Methods 73
IManagedObject Required Methods 70
Implementations Table, IManageable Method 70
Implementing Business Object Methods and

Attributes 64
incremental application development 6, 16
Inheritance, Data Object Customization and 233

Additional Methods – Default Constructor 237
CarPolicy BOIM Data Object Implementation 235
CarPolicy BOIM Data Object Interfaces 233
Framework Required Code – create() Function 236
Framework Required Method –

internalizeFromCopyHelper 235
Framework Required Method –

internalizeFromPrimaryKey 235
Methods To Support Attributes – Getters 236
Methods to Support Attributes – Setters 237
required method 237

Required Method —del 238
Required Method —insert 238
Required Method —retrieve 238
Required Method —setConnection 239
Required Method —update 238
Required Method – externalizeKeyAttributes 237
Required Method – internalizeKeyAttributes 237

Initialization and Object References 36
Initializing the Client Environment 35
Installing Business Objects, Assembling and 197

application adaptor methods 201

Installing Business Objects, Assembling and (continued)
augmentation of OMG services methods 202
business object methods 200
Create the Managed Object Class and

Implementation 197
OMG services methods 201
special methods 201
specialized homes 202

insurance application example, personal life
application model 16
design model 17
object model 15

interface definition language 10
Interface Definition Language (IDL) 271

attribute declarations 278
emitted file names 288
exception declarations 278
IDL syntax 279
idlc command 284
IDLC_OPTIONS environment variable 288
interface declarations 275
multiple IDL interfaces and modules 283
name scoping 271
operation declarations 276
options for the idlc command 285
reserved keywords for IDL 280
type and constant declarations 272

Interface to the Business Object, Developing an 60
Interface, Client Programming 246

QOS interfaces for non-transactional support 246,
249

Quality of Service Interface 246, 247
Interfaces to Business Objects, Multiple 141
Interfaces, C++ Bindings for 319
interfaces, CORBA class 52
Interfaces, CORBA::Object 53
Interfaces, Reference Collection 47
interfaces, summary of 54
introduction 1
Iterations and Specialized Homes, Queries, 91

using iterated homes — specific function 91
using queryable homes — specific functions 91, 94

iterators 96

J
Java 12
Java Business Objects, Unit Test for 347

Files 347
Implementing a Java Unit Test Data Object 348
Implementing the Unit Test Factories 349
Implementing the Unit Test Program 350

running the test program 351
unit test supported function 352

Java Client Programming Model 157
Basic Tasks 159

 Index 363

Java Client Programming Model (continued)
Component Broker Applications 157
creating a new object 165
Finding a Managed Object 162
Initializing the Component Broker Client

Environment 161
Java exception handling 169
Preparing Managed Objects for Remote

Access 160
releasing and deleting objects 167
remembering your favorite object 168
using a managed object 165
using sets of objects 167
when references explode 169

Java local-only development process 254
Java Server Programming Model

advanced concepts 188
essential state extensions 195
extending a business object 188
relationships 191
specialized homes 191

business object methods 177
'this' references in business objects 180
managing memory 179
reference scoping 180

CosStream::Streamable::externalize_to_stream 181
CosStream::Streamable::internalize_from_stream 182
developing an interface to the business object 173,

176
IManageable::getPrimaryKeyString 181
IManagedClient::IManageable::getHandleString 181
IManagedServer::IManagedObject

initForCreation 182
uninitForDestruction 183

IManagedServer::IManagedObjectWithDataObject
initForReactivation() 183
syncFromDataObject() 183
syncToDataObject() 183
uninitForPassivation() 183

managed object framework methods 180
overview 171
Primary Key Class 184, 186

K
Key Class Construction 76
key class, primary 73
Keyed Reference Collections 96

L
languages, programming

C++ 12
Interface Definition Language 10
Java 12
naming conventions 12

languages, programming (continued)
other 12

life insurance application example, personal
application model 16
design model 17
object model 15

Local-Only Development Process 78, 252

M
Managed and Non-Managed Objects 30
Managed Object Framework (MOFW) 29

Introduction 29
overview 29

managed object, creating a 41
managed object, finding a 38
managed object, using a 41
Managed Objects for Remote Access, Preparing 160
meet in the middle application development 6, 16
Memory Management, Coding Tips for proper

CORBA 52
Method Implementations Table, IManageable 70
method, create_object() 100
Methods and Attributes, Implementing Business

Object 64
Methods, IManageable 70
Methods, IManageable Required 67
Methods, IManagedObject 73
Methods, IManagedObject Required 70
model, object

Agent 19
Beneficiary 20
Claim 25
Customer 21
object identity 19
PayoutFraction 21
Person 22
Policy 22
PolicyHolder 24

model, programming
overview 1
submodels 1

Modify Beneficiary 27
ModifyPolicy 26
Module Scoping 61
module, CosTransactions 84
Modules in the C++ Bindings, Name Scoping and 319
MOFW (Managed Object Framework) 29

Introduction 29
overview 29

MOFW Client Programming Model — Advanced
Concepts 83

conventions and guidelines 83
create_object() method 83
expanding the client programming interface 83
queries, iterations and specialized homes 83

364 Component Broker: Programming Guide

MOFW Client Programming Model — Advanced
Concepts (continued)

session service 83
transactions 83
using keyed reference collections 83

MOFW Objects, understanding 31
MOFW Server Programming Model 57, 78
MOFW Server Programming Model Advanced

Concepts 105
Multiple Interfaces to Business Objects 141

N
Name Scoping and Modules in the C++ Bindings 319
name space 36

NamingStringSyntax 36
Navigating 36
using the naming service 36

naming conventions 12
Naming Service 36

NamingStringSyntax 36
navigating 36
using the naming service 36

New Object — Create from Copy, Creating a 43
New Object — Create From Key, Creating a 42

Factory 42
factory finder 42

Non-Managed Objects, Managed and 30

O
Object — Create from Copy, Creating a New 43
Object Attributes, Business 59
Object Basics, Business 57, 79

Artifacts Table for Business Objects 57, 79
summary 57, 78

Object Customization for Cardinality Relations,
Data 239

Bottom-Up Customizations 241
Cardinality-1 Relationships 243
Cardinality-N Relationships 243
enabling additional clients 252
mapping helpers 245
packaging for client and server (VA C++) 249

create functions for dynamic DLL loading 250
DLL packaging 249
exposing interfaces to business object

builders 251
exposing interfaces to clients 251

packaging the DLL for the ActiveX visual C++
client 251

packaging the Java client code 252
summarizing relationships implementations 244
Top-Down Customizations 239
Top-Down Versus Bottom-Up Relations 239

Object Handle 102
object identity 19
Object Methods and Attributes, Implementing

Business 64
object model

Agent 19
Beneficiary 20
Claim 25
Customer 21
object identity 19
PayoutFraction 21
Person 22
Policy 22
PolicyHolder 24

object references 36, 52
Object References, Initialization and 35, 36
object relationships

cardinality-1 relationship 115
"uses a" and "has a" cardinality-1

relationship 124
implementing the relationship interface 129
making cardinality-1 relationships persistent 126
optional or required cardinality-1

relationships 117
cardinality-N relationship 127

Object State, Business 58
object-oriented application development

bottom-up 3, 17
combined approaches 7
meet in the middle 6, 16
top-down 2, 15

object, data 63
object, developing a business 59
Object, Developing an Interface to the Business 60
Object, Extending a Business

choosing an inheritance pattern 107
essential state extensions 106
Extending a Business Object Interface 106
extension summary 114
implement the additional business logic 108
MOFW IManageable requirements 110
MOFW requirements — IManaged server 111
more copy helper classes 113
more key classes 113
other variations to consider 114

object, finding a managed 38
object, using a managed 41
Objects, Artifacts Produced in Building 269
Objects, Design Tips for Business 62
objects, finding persistent 99
Objects, Managed and Non-Managed 30
Objects, Releasing and Deleting 48
Objects, Remembering your Favorite 47
Optional Copy Helper Class 76
other programming languages 12

 Index 365

overview 1
overview, three-tier architecture 7

P
Pattern for Handling Essential State, Selecting a 62
Patterns for Handling State (Caching) 65
Patterns for Handling State (Delegating) 66
PayoutFraction 21
persistent objects, finding 99
Person 22
personal life insurance application example

application model 16
design model 17
object model 15

Policy 22
PolicyHolder 24
Preparing Managed Objects for Remote Access 160
primary key class 73
PrimaryKey Helper Class 39
Process Claim 27
Process, Local-Only Development 78
Programming Interface, Client 246

QOS interfaces for non-transactional support 246,
249

Quality of Service Interface 246, 247
programming languages and conventions

C++ 12
Interface Definition Language 10
Java 12
naming conventions 12
other 12

programming model
overview 1
submodels 1

Programming Model — Advanced Concepts, MOFW
Client 83

conventions and guidelines 83
create_object() method 83
expanding the client programming interface 83
queries, iterations and specialized homes 83
session service 83
transactions 83
using keyed reference collections 83

Programming Model Advanced Concepts, MOFW
Server 105

programming model, (MOFW) client 33
Programming Model, ActiveX Client 143
Programming Model, Java Client 157

Basic Tasks 159
Component Broker Applications 157
creating a new object 165
Finding a Managed Object 162
Initializing the Component Broker Client

Environment 161
Java exception handling 169

Programming Model, Java Client (continued)
Preparing Managed Objects for Remote

Access 160
releasing and deleting objects 167
remembering your favorite object 168
using a managed object 165
using sets of objects 167
when references explode 169

Programming Model, Java Server
advanced concepts 188

essential state extensions 195
extending a business object 188
relationships 191
specialized homes 191

business object methods 177
'this' references in business objects 180
managing memory 179
reference scoping 180

CosStream::Streamable::externalize_to_stream 181
CosStream::Streamable::internalize_from_stream 182
developing an interface to the business object 173,

176
IManageable::getPrimaryKeyString 181
IManagedClient::IManageable::getHandleString 181
IManagedServer::IManagedObject

initForCreation 182
uninitForDestruction 183

IManagedServer::IManagedObjectWithDataObject
initForReactivation() 183
syncFromDataObject() 183
syncToDataObject() 183
uninitForPassivation() 183

managed object framework methods 180
overview 171
Primary Key Class 184, 186

Programming Model, MOFW Server 57, 78
Programming Model: Basic Tasks, ActiveX Client 146

concurrency control 155
creating a managed object 150

Creating a New Object - Create from Copy 151
Creating a New Object — Create From Key 150

finding a managed object 147
bound in the naming service 147
by methods on held objects 148
using the PrimaryKey helper class 148

initializing the CB client environment 147
releasing and deleting objects 153
remembering your favorite objects 154
using a managed object 150
using sets of objects 153
When References Explode 155

programming roles and responsibilities 10
Programming, C++ CORBA 299

C++ binding restrictions 330
C++ bindings for data types 301
C++ bindings for interfaces 319

366 Component Broker: Programming Guide

Programming, C++ CORBA (continued)
C++ client bindings 327
C++ server bindings 328
CC++ bindings 299
CORBA types and business objects 299
exceptions 317
name scoping and modules in the C++

bindings 319
storage management and _var types 322
storage management responsibilities for

arguments 325
pseudo-code, life insurance example

Create Customer 26
Modify Beneficiary 27
ModifyPolicy 26
Process Claim 27

Q
Queries, Iterations and Specialized Homes 91

using iterated homes — specific function 91
using queryable homes — specific functions 91, 94

R
Reference Collection 44
Reference Collection Interfaces 47
Reference Collections, Keyed 96
references, circular 142
references, object 52
Releasing and Deleting Objects 48
Remembering your Favorite Objects 47
Remote Access, Preparing Managed Objects for 160
Required Methods, IManageable 67
Required Methods, IManagedObject 70
responsibilities, programming 10
reverse engineering application development 3, 17
roles, programming 10

S
Sample Framework Flows 203
Scoping, Module 61
Selecting a Pattern for Handling Essential State 62
Server Programming Model Advanced Concepts,

MOFW 105
Server Programming Model, MOFW 57, 78
Service, Naming 36

NamingStringSyntax 36
navigating 36
using the naming service 36

service, session 89
session service 89
Sets of Objects 44
Sets, Transient 46

space, name 36
NamingStringSyntax 36
Navigating 36
using the naming service 36

Specialized Homes, Queries, Iterations and 91
using iterated homes — specific function 91
using queryable homes — specific functions 91, 94

Storage Management and _var Types 322
summary of interfaces 54

T
Test Process, Unit 336

Implementing the Data Object 337
Compiling IDL for the Unit Test Data Object 338
Creating IDL for the Unit Test Data Object 337
Implementing IManagedServer::IDataObject

Methods 342
Implementing PolicyDO Methods 341
Implementing the Unit Test Data Object 339

Implementing the Unit Test Program 344, 346
three-tier architecture overview 7
Timeouts, Transactions, Exceptions, and 87
Tips for Business Objects, Design 62
Tips for proper CORBA Memory Management,

Coding 52
top-down application development 2, 15
Transactions 83, 91

CosTransactions Module 83
transactions, exceptions, and timeouts 83
using iterated homes — specific function 91
using queryable homes — specific functions 91, 94

Transactions, Exceptions, and Timeouts 87
Transient Sets 46

U
unit test 333
unit test environment 334

interfaces 335
IManagedClient::IHome 335
IManagedClient::IManageable 335
IManagedLocal::INonManageable 336

Unit Test for Java Business Objects 347
Files 347
Implementing a Java Unit Test Data Object 348
Implementing the Unit Test Factories 349
Implementing the Unit Test Program 350

running the test program 351
unit test supported function 352

Unit Test Process 336
Implementing the Data Object 337

Compiling IDL for the Unit Test Data Object 338
Creating IDL for the Unit Test Data Object 337
Implementing IManagedServer::IDataObject

Methods 342
Implementing PolicyDO Methods 341

 Index 367

Unit Test Process (continued)
Implementing the Data Object (continued)

Implementing the Unit Test Data Object 339
Implementing the Unit Test Program 344, 346

using a managed object 41
Using C++ 'this' References in Business Objects 64

368 Component Broker: Programming Guide

IBM

Part Number: 04L2376

Printed in the United States of America

ð
4
L
2
3
7
6

Gð4L-2376-ð4

