
Component Broker

Application Development Tools Guide
Release 2.0

SC09-2705-03

IBM

Component Broker

Application Development Tools Guide
Release 2.0

SC09-2705-03

IBM

Fourth Edition (December 1998)

This edition applies to Release 2.0 of IBM Component Broker and to all subsequent releases and modifications until
otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

© Copyright International Business Machines Corporation 1997, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the
general information under “Notices” on page xiii.

Contents

Notices . xiii
Trademarks and Service Marks xiv

About This Book . xvii
Who Should Read This Book xvii
How This Book is Organized xvii
Component Broker Information. xviii

Chapter 1. Object Builder Overview 1
Object Builder . 1

What’s New. 2
Design Principles for Component Broker Applications 3
Projects and Models . 4
DBCS and Binary Data Support 5

Set up Object Builder . 6
Open a Project . 6
Set Object Builder Preferences 7
Migrate Old Projects . 7
Requirements for Java Development 8

Work with Object Builder . 9
Filters . 9
Filter the Tasks and Objects Pane 9
Create a Filter for the Tasks and Objects Pane. 10
Search the Tasks and Objects Pane. 10
Run Object Builder in Batch Mode 11
Import C++ or Java Classes. 13

Chapter 2. Component Overview 15
Components . 15

Component Assembly . 16
Component Execution . 16

Objects . 17
Business Object . 17
State Data . 18
Data Object. 18
Persistent Object . 19
Schema Group . 20
Schema . 20
Key. 21
Copy Helper . 21
Managed Object . 22
Key Assistant . 22

Methods and Attributes . 23
User-Defined Methods . 23
Get and Set Methods . 23
Framework Methods . 24
Special Framework Methods 24
Push-Down Methods . 25
Relationship Methods . 25
Attributes. 26
Constructs . 26

Business Object Behavior . 27
Pattern for Handling State Data 27

© Copyright IBM Corp. 1997, 1998 iii

Object Reference . 29
Data Object Interface . 29
Session Service . 30

Data Object Behavior . 30
Environment . 31
Form of Persistent Behavior and Implementation 32
Data Access Pattern . 34
Handle for Storing Pointers 35
Data Object Implementation Inheritance 36

Chapter 3. Getting Started with Object Builder 39
Getting Started with Object Builder 39
Create a Component - Scenario 39
Build DLLs or Shared Library Files - Scenario 47
Package an Application - Scenario 50
Install and Run an Application Using InstallShield - Scenario. 57
Install and Run an Application - Scenario 61
Trace and Debug an Application - Scenario 65
Uninstall an Application Using InstallShield - Scenario 70
Uninstall an Application - Scenario 71

Chapter 4. Working with Rose 73
Using Rational Rose with Object Builder 73

Rose . 74
Set up Rose 98 . 74
The Rose Bridge . 76
IDL Name Scoping in Rose 77
Constructs You Can Export from Rose 79
Class Properties You Can Export from Rose. 81
Class Relationships You Can Export from Rose 84
Import Component Broker Frameworks 86
Mapping Rules: Object Builder to Rose 87
Component Broker Frameworks in Rose 89
Export a Design from Rose 89
Work with an Exported Design 91
Import a Project into Rose 92

Export from Rose - Scenario 95
Import into Rose - Scenario . 98

Chapter 5. Creating Components in Object Builder 101
Create a Component for Transient Data 101
Create a Component for New DB Data. 101
Create a Component for New DB Data - Scenario 102
Create a Component for Existing DB Data 104

Mapping Helper . 105
Design Patterns and Iterators 107
Customize Referential Integrity. 108
Data Encoding Schemes . 109
DB2 Data Type Mappings 110
Oracle Data Type Mappings. 113
DDL . 114

Create a Component for PA Data 115
Enterprise Access Builder (EAB) 116
Transaction Object . 116
Transaction Record . 116
Procedural Adaptor Bean (PA Bean). 117

iv Application Development Tools Guide

Add endResource() to a Sessional Business Object 117
Create a Component for PA Data - Scenario. 118
Unit Test for Procedural Adaptors - Scenario. 126

Chapter 6. Components Working Together 129
Create a Relationship . 129

Dependencies within an IDL File 129
Define a One-to-One Relationship 130
Define a One-to-Many Relationship 131
Define a Circular Relationship 132
Foreign Key Patterns . 132
Define a Foreign Key Pattern 133
Store an Object Reference 135

Create a Child Component . 136
Inheritance . 137
Inheritance and Overriding in Helper Objects 138
Inheritance and Overriding in Business Objects 138
Inheritance and Overriding in Data Objects 139
Abstract Base Class Inheritance 140
Choosing an Inheritance Pattern for Persistence 140
Inheritance with Attributes Duplication 141
Define a Child with Attributes Duplication 142
Inheritance with Attributes Duplication - Scenario 144
Inheritance with Key Duplication 147
Define a Child with Key Duplication 149
Inheritance with Key Duplication - Scenario 151
Inheritance with a Single Datastore 155
Define a Child with a Single Datastore 156
Inheritance with a Single Datastore - Scenario 158
Inheritance with Views . 162
Define a Child with Views 164
Inheritance with Views - Scenario. 165

Create a Composite Component - Overview 172
Composite Component . 173
Composition . 174
Composite Business Object 175
Composite Key . 176

Composite Component Creation - Scenario 177

Chapter 7. Multi-Platform Development 187
Platform Differences . 188
Set Platform Constraints . 189
Develop a Multi-Platform Application - Scenario 190

Chapter 8. Team Development 201
Change Control . 202
Model Interchange with XML 203
Set up a Team Environment. 204

Export a Rose Design to a Team Environment 204
Split up a Project for Team Development 206
Add an Integration Project to a Team Environment 208
Set up a Change Control Process 209
Set up an Automated Build Process 210
Set up a Team Development Environment 211

Work in a Team Environment 212
Import Projects from a Team Environment 212

Contents v

Create a Project in a Team Environment 215
Edit a Project in a Team Environment 216
Delete a Project in a Team Environment 217
Build DLLs in a Team Environment 217
Package an Application in a Team Environment 218
Team Development with Rose - Scenario 218

Maintain a Team Environment 223
Export XML . 224
Import XML . 225
Move a Project . 227
Change Project Divisions . 227
The Compare and Merge Tool for XML. 228
Compare Files with the Compare and Merge Tool for XML 228
Merge Files with the Compare and Merge Tool for XML 229
Manage Cross-Project Dependencies 230

Chapter 9. XML Wizards . 233
Create an XML Wizard . 233

Start the SmartGuide Customizer for XML 234
Define XML Wizard Macros 235
Customize Value Lists in an XML Wizard 237
Derive Values in an XML Wizard 237
Propagate Values in an XML Wizard 239
Constrain Values in an XML Wizard 240
XML Wizard Constraints . 241
Define the Layout of an XML Wizard 242
Test an XML Wizard . 243

Run an XML Wizard . 243
Edit an XML Wizard. 244
Distribute an XML Wizard . 245

Chapter 10. Object Development Tasks 247
Work with Attributes. 247

Add an Attribute . 247
Edit an Attribute . 248
Delete an Attribute . 249
Map a Data Object to a PA Persistent Object 249
Map a Data Object to a DB Persistent Object 251
Map a Data Object to the Parent’s Persistent Object. 254
Map a Data Object to the Child’s Persistent Object 255

Map Data Object Attributes to Persistent Object Attributes. 256
Map Attributes Using the Default Mapping Pattern 257
Map Attributes Using a Key 258
Map Attributes Using a Mapping Helper 260
Complex Attributes and Mapping Patterns 263
Map Complex Attributes Using the Primitive Pattern 264
Map Complex Attributes Using the Explode Pattern 265

Work with Methods . 267
Add Code for User-Defined Methods 267
Add an Initializer Method . 268
Edit a User-Defined Method. 269
Edit Get and Set Methods 270
Edit Framework Methods . 270
Edit Special Framework Methods 271
Import Changes to Methods 272
External Files for Method Bodies 273

vi Application Development Tools Guide

Use Push-Down Methods with PA Persistent Objects 274
Customize Business Object OO-SQL Implementation Methods 275
Customize Persistent Object ESQL Framework Methods 276
Delete a Method . 277

Work with Constructs . 277
Define Constructs with File Scope 278
Define Constructs with Module Scope 279
Define Constructs With Interface Scope 279
Edit a Construct . 280
Delete a Construct . 280

Work with Business Objects. 281
Create a Business Object File 282
Add a Business Object Module 282
Add a Business Object Interface 283
Add a Business Object Implementation and Data Object Interface. 284
Add a Business Object from a Data Object 287
Map a Business Object to a Data Object 288
Create a Business Object Interface by Importing an IDL File 289
Edit a Business Object Interface 290
Edit a Business Object Implementation. 290
Delete a Business Object Interface 291
Delete a Business Object Implementation. 291

Work with Keys . 292
Add a Key . 292
Edit a Key . 293
Delete a Key . 293

Work with Copy Helpers . 294
Add a Copy Helper . 294
Edit a Copy Helper . 295
Delete a Copy Helper . 295

Work with Data Objects - Overview 296
Create a Data Object Interface. 297
Add a Data Object Implementation 299
Add a Data Object From a Business Object 302
Create a Data Object File 303
Add a Data Object Module 304
Add a Data Object from a DB Persistent Object 304
Add a Data Object from a PA Persistent Object 305
Create a Data Object Interface by Importing an IDL File 306
Edit a Data Object Interface 309
Edit a Data Object Implementation 310
Delete a Data Object Interface 312
Delete a Data Object Implementation 313

Work with DB Persistent Objects 313
Add a Persistent Object and Schema 313
Add a Persistent Object from a DB Schema 316
Edit a DB Persistent Object 317
Delete a DB Persistent Object 317

Work with DB Schema Groups. 318
Create a DB Schema Group 318
Edit a DB Schema Group 319
Delete a DB Schema Group. 320

Work with DB Schemas . 320
Create a DB Schema by Importing an SQL File 321
SQL View Editor . 323
Create a View with the SQL View Editor 324

Contents vii

Edit a View with the SQL View Editor 325
Use Complex Relationships in SQL Clauses. 326
Edit a View . 328
Edit a DB Schema . 329
Re-import an SQL File . 330
Edit a Generated SQL File 331
Delete a DB Schema . 333

Work with PA Persistent Objects - Overview 333
Add a Persistent Object from a PA Schema 334
Map a Data Object to a PA Persistent Object 334
Edit a PA Persistent Object 336
Delete a PA Persistent Object 336

Work with PA Schemas - Overview 337
Create a PA Schema by Importing a PA Bean 337
Edit a PA Schema . 339
Delete a PA Schema . 339

Work with Managed Objects - Overview 339
Add a Managed Object . 340
Edit a Managed Object . 341
Delete a Managed Object 341

Work with Customized Homes - Overview 342
Home . 342
Create a Customized Home. 343
Edit a Customized Home . 344
Delete a Customized Home 345

Work with Container Instances - Overview 345
Container . 345
Create a Container Instance 346
Edit a Container Instance. 348
Delete a Container Instance. 348

Work with Compositions - Overview 348
Create a Composition File 349
Add a Composition Module 349
Add a Composition . 350
Edit a Composition . 352

Work with Composite Business Objects - Overview 353
Add a Composite Business Object Interface 354
Add a Composite Business Object Implementation and Data Object Interface 355
Edit a Composite Business Object Interface 359
Edit a Composite Business Object Implementation 360

Work with Composite Keys - Overview 360
Add a Composite Key . 360
Edit a Composite Key . 362

Chapter 11. Configuration Tasks 363
Build DLLs - Overview . 363

Generate Code . 363
Define a Client DLL . 364
Define a Server DLL . 366
Generate a Makefile . 367
Build the DLLs. 368
Build Configuration Options 370

Remote Build Configuration (OS/390) Remote Build 372
Remote Build . 372
Pass Ticket . 372
Profile . 372

viii Application Development Tools Guide

Launch a Remote OS/390 Build 373
Launch a Remote OS/390 Build - Scenario 373

Package an Application . 375
Create an Application Family 375
Add a Client Application . 376
Add a Server Application . 377
Configure a Managed Object 377
Edit a Managed Object Configuration 379
Delete a Managed Object Configuration 379
Generate the Install Image 379

Application DDL Files . 381
The DDL Editor . 382
Creating and Editing DDL Files 384
Edit an Application DDL File. 387
The Structure of a DDL file 389

Chapter 12. Access a Component through FlowMark 395
FlowMark . 395

FDL . 395
Bag. 395
Add a Bag . 396
Data Structure . 396
Add a Data Structure . 397
Program . 397
Activity . 398
Add a Program . 398

Map a Component to a Data Structure 400
Map Input Parameters to the Input Data Structure 400
Map Output Parameters to the Output Data Structure 401
Map Find Parameters to the Input Data Structure 402

Work with FlowMark Business Objects - Overview 403
Create a Component Instance through FlowMark 404
Call a Component Method from FlowMark 404
Delete a Component Instance through FlowMark 405

Work with Bags - Overview . 406
Edit a Bag . 406
Delete a Bag . 407

Work with Data Structures - Overview 408
Edit a Data Structure . 408
Delete a Data Structure . 408

Work with Programs - Overview 409
Edit a Program . 409
Delete a Program . 410

Chapter 13. Troubleshooting 411
Check a Model for Consistency 412
Consistency Checker Errors. 412
Restrictions for R2.0 . 419
Composition Restrictions . 425

Chapter 14. Debug Local Applications 427
Write Programs for Debugging 427

Compile a Program for Debugging 427
Environment Variables . 429

Set Environment Variables for the Debugger. 429
Start or Stop Debugging a Program 433

Contents ix

Invoke the Debugger . 433
Start the Debugger . 433
Debugger Options . 434
Attach to a Process . 435
Specify Command-Line Parameters for Your Program 436
Attach to a Running Java Virtual Machine 437
Start Debugging a Java Applet. 437
Debug on Demand . 438
When You Start Debugging 439
Search Order . 439
Debugger Windows . 440

Remote Debugging . 442
Start the Debugger and the Remote Program 443
Start the Debugger and the Remote Java Program 444

Breakpoints . 446
Set Breakpoints . 446
Set Breakpoints in the Breakpoints List Window 447
Set and Delete Breakpoints from a Source Window 447
Set Function or Method Breakpoints from the Session Control Window . . . 448
Set a Line Breakpoint . 448
Set a Deferred Breakpoint 449
Set Multiple Breakpoints . 449
Delete Breakpoints . 450
Enable and Disable Breakpoints 450
Modify Breakpoint Characteristics. 450

Debug a DLL . 451
Start Debugging a DLL from a Load Occurrence Breakpoint Dialog 451
Start Debugging a DLL from a Source Window. 452
Start Debugging a DLL from the Breakpoints List Window. 452
Start Debugging a DLL from the Session Control Window 452

Run, Step Through, or Stop a Program 453
Run a Program . 453
Step Commands . 453
Skip over Sections of Code 455
Halt Execution of a Debuggee Program 455
Restart Your Program . 455
Terminate a Debug Session 456

Debugger Monitors . 457
Differences between Program and Private Monitors 458
Add Expressions and Variables to a Monitor 458
Open a New Storage Monitor 458
Open Other Debugger Windows from a Source Window 459

View Variables, Memory, Registers, and the Stack 460
View Variable Contents . 460
View a Location in Storage 461
View the Contents of Registers 461
View the Contents of the Call Stack 462
Change the Representation of Storage. 462
Change the Contents of Storage, Variables, and Registers 463

Debug Heap Use. 465
Heap Errors . 466

Debug Optimized Code . 467
Notes on Debugging Optimized Code 468

Debugging Threads . 468
Critical Sections . 469
Deadlocks and Timing Problems 470

x Application Development Tools Guide

Must Complete Sections . 471
Race Conditions . 471
Threads and C++ Class Members 472
Threads and Load Occurrence Breakpoints 472
Threads and Source Language Statements 473
Windowing System Lockups. 473

Troubleshooting and Limitations 474
C++ Expressions Supported. 474
Limitations when Debugging Visual C++ Programs 476
Interpreted Java Expressions Supported 477
Limitations When Debugging Interpreted Java 477
Debugger Is Using a Different Executable Version 478
Debugger Cannot Find Source Code 478
Values that Are Valid for the Current Representation 479
Valid Addresses and Expressions. 479
Right Mouse Button Behavior 480
Change Right Mouse Button Behavior 480

Chapter 15. Trace and Debug Distributed Applications 481
Object Level Trace . 481

What’s New. 483
Supported Platforms and Languages 484
Monitoring Modes . 485

Prepare for Distributed Tracing and Debugging. 486
Compile Application Code with OLT Flags 486
Enable Remote Tracing and Debugging 488

Trace a Distributed Application 489
Start the OLT Server and Viewer on Separate Machines 490
Use OLT with OS/390 . 492

Debug a Distributed Application 494
Set Breakpoints on the Trace 494
Debug Business Objects . 495

Reading the Trace . 499
Trace Symbols . 500
Selected Event . 501
Partial-order Display . 502
Real-time Display . 503
Performance Analysis . 504

Navigate the Trace . 504
Scroll the Trace . 505
Reorder Trace Lines . 506
Tag an Event . 507

Save the Current Trace to a File 508
Open an Existing Trace File 508

OLT Scenarios . 509
Trace and Debug a Java Client and C++ BO - Scenario 512
Debug a Java Client from Startup - Scenario 515
Debug a C++ Client and C++ BO in Step by Step Mode - Scenario 518
Trace and Debug a C++ Client and C++ BO on AIX - Scenario 522

OLT Reference . 525
OLT Environment File . 525
OLT Command-line Arguments. 527
OLT Troubleshooting . 527

Chapter 16. IR Browser . 533
Start the IR Browser . 533

Contents xi

Configure Online Help . 533
View Objects in the Repository. 533

View the Definition of an Object 533
View Relationships Between Objects 533
View the Operations of an Interface 534

Search the Repository . 534
Find An Object . 534
Search Using Wildcards . 535
Find an Interface’s Referencing Operations 535
Search by Object Type . 535

Modify the Repository . 536
Delete Objects from the Repository 536

Index . 537

xii Application Development Tools Guide

Notices

This publication was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter in this
publication. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
DOCUMENT “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OR CONDITIONS OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express
or implied warranties in certain transactions, therefore, this statement may not apply
to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the document. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this document at any
time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
U.S.A.

© Copyright IBM Corp. 1997, 1998 xiii

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This document may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Trademarks and Service Marks

The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:

AIX
CICS
DB2
IBM
IMS
MVS/ESA
OS/2
PowerPC
VisualAge

AFS and DFS are trademarks of Transarc Corporation in the United States, or other
countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.

xiv Application Development Tools Guide

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

Oracle and Oracle8 are registered trademarks of the Oracle Corporation in the
United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks
of others.

Notices xv

xvi Application Development Tools Guide

About This Book

The Application Development Tools Guide covers information about the Component
Broker Toolkit (CBToolkit), which includes the following tools:

v Object Builder

v Local Debugger

v Object Level Trace

v Interface Repository (IR) Browser

The guide provides conceptual information, as well as a detailed explanation of how
to generate and test multi-tier applications.

Who Should Read This Book

The Application Development Tools Guide is intended for administrators and
application programmers who want to:

v understand the IBM Component Broker development environment

v create, execute and manage distributed applications across network computing
environments

v connect multiple backend systems to dynamic, new applications

v capture information from database systems, transaction processing systems, and
applications, as highly manageable components

How This Book is Organized

Chapter 1. Object Builder provides a list of newly-introduced features, an overview
of Object Builder projects and models, and instructions on setting up and working
with Object Builder.

Chapter 2. Component Overview provides an overview of the components,
component objects, methods, attributes, and object properties from an Object
Builder perspective.

Chapter 3. Getting Started with Object Builder provides a series of scenarios that
walk you through the creation and deployment of a simple Component Broker
application. These scenarios were formerly part of the Quick Beginnings book.

Chapter 4. Working with Rose provides instructions for using Rational Rose 98 with
Object Builder, including set up, export, import, mapping rules, and some simple
scenarios.

Chapter 5. Creating Components in Object Builder provides an overview of the
steps involved in creating various types of component, based on the kind of data
persistence they provide.

Chapter 6. Components Working Together covers object relationships (one-to-one,
one-to-many, circular, and foreign key pattern), component inheritance (including
overriding, inheritance patterns for persistence, and scenarios), and creating
composite components.

Chapter 7. Multi-Platform Development describes how to create an application for
deployment on multiple platforms.

© Copyright IBM Corp. 1997, 1998 xvii

Chapter 8. Team Development describes how to use Object Builder in a team
environment, including set up, change control process, build processes, working
with Rose, and maintenance of a team environment.

Chapter 9. XML Wizards describes how to create your own wizards for development
in Object Builder, using Object Builder’s exported XML format as a base.

Chapter 10. Object Development Tasks provides coverage of the various tasks you
can perform (creating, editing, mapping, deleting) in the course of working with
components.

Chapter 11. Configuration Tasks describes how to define and build component
libraries (DLLs), and configure applications.

Chapter 12. Access a Component through FlowMark describes how to access
components from FlowMark client processes.

Chapter 13. Troubleshooting describes how to validate your project model and find
consistency errors, and covers some of the Object Builder restrictions for this
release.

Chapter 14. Debug Local Applications explains how to prepare programs for local
debugging, how to start and stop a debugging session, and how to interact with the
debugger interface.

Chapter 15. Trace and Debug Distributed Applications describes how to use Object
Level Trace to trace and debug multilingual, distributed applications. Several
scenarios are provided to walk you through a typical OLT session.

Chapter 16. IR Browser provides instructions on how to view object definitions and
relationships in the interface repository, how to perform various types of searches
on the repository, and how to modify the contents of the repository.

Component Broker Information

The following information is available as part of Component Broker for Windows
NT, AIX, and OS/390:

v

Help information is available from Component Broker product panels, by pressing
the F1 key.

v

The Component Broker online library can be viewed using a frames-compatible
Web browser:

http://localhost:49213/cgi-bin/cbwebx.exe/en_US/cbdoc/Extract/0/index.htm

v

Component Broker for Windows NT and AIX Quick Beginnings, G04L-2375
explains how to easily create and verify a starter Component Broker
environment. These instructions walk the user through a typical server and client
installation. Users can extend this configuration using the information in the
Component Broker for Windows NT and AIX Planning, Performance, and
Installation Guide.

v

xviii Application Development Tools Guide

Component Broker for Windows NT and AIX Planning, Performance, and
Installation Guide, SC09-2798 provides a comprehensive overview of the
Component Broker environment, then guides the user through planning
considerations including capacity planning, performance tuning, prerequisites,
and migration. It also leads the user through installation options for all
Component Broker environments.

v

Component Broker for Windows NT and AIX CICS and IMS Application Adaptor
Quick Beginnings, GC09-2703 provides a brief technical overview of the CICS
and IMS application adaptor and guides the user through its installation and
configuration. Step-by-step instructions guide the user through creating an initial
CICS and IMS application using application development tools included in the
CBToolkit package.

v

Component Broker for Windows NT and AIX Oracle Application Adaptor Quick
Beginnings, GC09-2733 provides a brief technical overview of the Oracle
application adaptor and guides the user through its installation and configuration.
Step-by-step instructions guide the user through creating an initial Oracle
application using application development tools included in the CBToolkit
package.

v

Component Broker for Windows NT and AIX System Administration Guide,
SC09-2704 provides information about configuring and operating one or more
hosts managed by Component Broker. It also provides general information about
using the System Manager User Interface.

v

Component Broker Programming Guide, G04L-2376 describes the programming
model including business objects, data objects, and information about MOFW,
IDL, and C++ CORBA programming.

v

Component Broker Advanced Programming Guide, SC09-2708 describes the
Component Broker implementation for the CORBA Object Services and the
Component Broker Object Request Broker (including remote method invocation
and the Dynamic Invocation Interface (DII) procedures), Session Service, Cache
Service, Notification Service, Interlanguage Object Model (IOM), and work-load
management (WLM).

v

Component Broker Programming Reference, SC09-2810 contains information
about the APIs available to Component Broker application developers.

v

Component Broker for Windows NT and AIX Problem Determination Guide,
SC09-2799-00 explains how to identify and resolve problems within a Component
Broker environment using the tools provided with Component Broker. The book
includes information on installation problems, run time errors, debugging of
applications, and analysis of log messages.

v

Component Broker Glossary, SC09-2710 contains terms and definitions relating
to Component Broker.

v

About This Book xix

OS/390 Component Broker Introduction, GA22-7324 describes the concepts and
facilities of Component Broker and the value it has on the OS/390 platform. The
audience is a knowledgeable decision maker or a system programmer.

v

OS/390 Component Broker Planning and Installation, GA22-7331 describes the
planning and installation considerations for Component Broker on OS/390.

v

OS/390 Component Broker System Administration, GA22-7328 describes system
administration tasks and operations tasks, as provided in the system
administration user interface for OS/390.

v

OS/390 Component Broker Programming: Assembling Applications, GA22-7326
provides information for assembling applications using Component Broker on
OS/390.

v

OS/390 Component Broker Operations: Messages and Diagnosis, GA22-7329
provides diagnosis information and describes the messages associated with
Component Broker on OS/390.

xx Application Development Tools Guide

Chapter 1. Object Builder Overview

Object Builder

The CBToolkit Object Builder is the development environment for the Component
Broker product. You can use it to develop your application from start to finish, or
start by designing in Rose and then import the design into Object Builder, where
you add the final objects and program logic.

Object Builder supports the CORBA programming model using IDL, C++, and Java.
You can generate complete working applications, including unit test versions and full
client-server packages complete with server setup scripts.

You can use Object Builder to:

v develop new applications

v wrapper existing applications

v add new function to existing applications

v package an application

In order to build the application DLLs you define in Object Builder, you will need the
Component Broker Server SDK installed, as well as any prerequisite application
development software.

The model for your application is constructed out of components. Many of the
development tasks in Object Builder revolve around defining components.

The Object Builder user interface is divided into panes, which provide access to
different views of your application. Most interactions with Object Builder are through
the panes and the pop-up menus for the objects in these panes. The Object Builder
panes are:

Tasks and Objects pane
This pane contains multiple folders. These folders organize the component objects
as they are created. The objects in these folders represent a rough task flow
through your use of Object Builder.

v The Framework Interfaces folder shows the framework interfaces provided by
Object Builder.

v The User-Defined Business Objects folder, the User-Defined Data Objects folder,
the DBA-Defined Schemas folder, and the User-Defined Compositions folder are
the folders you use to define component objects and show the component
objects already defined.

v The Non-IDL Type Objects folder is the folder for C++ and Java objects defined
outside of Object Builder.

v The Build Configuration folder is the folder where you configure component
objects into the DLL files.

v The Application Configuration folder is the folder where you configure the DLL
files into applications.
For AIX only: The DLL files are called “shared library” files and are in the format
lib*.so.

v The Container Definition folder and the Default Homes folder show the container
and homes with which your applications can be configured.

© Copyright IBM Corp. 1997, 1998 1

Inheritance pane
This pane shows the inheritance structure for the selected component object. You
can switch between the interface inheritance view and the implementation
inheritance view. You can also turn off this pane, giving more room to the Methods
pane, by either using View - Minimize Pane , or clicking the Minimize button on the
upper left corner of the pane. You can also detach the pane from the Object Builder
main window using View - Detach Pane .

Methods pane
This pane lists the methods and attributes for the object selected in the Tasks and
Objects pane.

Source pane
This pane is used to edit the implementations for the selected method from the
Methods pane. When a method is selected, its source code is displayed in this
pane. It also displays the generated code for a particular object, when you select
the View Source option from an object’s pop-up menu.

To start Object Builder from the command line, enter ob. Object Builder takes a
few moments to start. The Specify Directory wizard is opened. Enter a directory
name (for example, $HOME/MyProject) and click the Finish button. If this directory
does not yet exist, a message is displayed asking if you want to create it. Click the
Yes button, and provide a name for the new model.

To start Object Builder from the Windows NT Start menu, select Programs >
IBM Component Broker for Windows NT > Object Builder . Object Builder takes
a few moments to start. The Specify Directory wizard is opened. Enter a directory
name (for example, x:\CBroker\MyProject) and click the Finish button. If this
directory does not yet exist, a message is displayed asking if you want to create it.
Click the Yes button, and provide a name for the new model.

“Components” on page 15
“Projects and Models” on page 4
“Design Principles for Component Broker Applications” on page 3

“Open a Project” on page 6
“Getting Started with Object Builder” on page 39
“Filter the Tasks and Objects Pane” on page 9
“Using Rational Rose with Object Builder” on page 73
“Create a Component for Transient Data” on page 101
“Create a Component for New DB Data” on page 101
“Create a Component for Existing DB Data” on page 104
“Create a Component for PA Data” on page 115

What’s New

The following major changes have taken place in Object Builder since R1.3:

Team development
Team environments, including cross-project references and builds, are now easier
to set up and maintain. A general process for team development is documented,
from set up to maintenance.

2 Application Development Tools Guide

Troubleshooting
A model consistency checker helps you locate problems in your project model. An
XML compare and merge tool lets you resolve differences between out-of-synch
project versions.

General Ease-of-Use
You can now rename most elements in Object Builder (for example, files, interfaces,
implementations, attributes, methods - but not PA schemas). You can search and
filter the Tasks and Objects pane.

Cross-Platform Development
You can constrain development options for multi-platform objects, and generate
code simultaneously for multiple platforms. You can develop for multiple platforms at
once, and dynamically switch your view between the different target platforms.

Extended OS/390 Support
You now have more PA development options available for your OS/390 applications.
You can configure and start remote builds from within Object Builder.

Rational Rose Integration
You can use Rational Rose in a team environment, exporting to multiple projects at
once. You can selectively export elements of your design. You can also import from
Object Builder, creating a Rose design based on an Object Builder project.

FlowMark Integration
You can integrate FlowMark client applications with Component Broker components,
mapping data structures of the client application to attributes and methods of your
Component Broker components.

Design Your Own Wizard
You can extend Object Builder’s functionality by creating your own wizards. Create
a sample component or file in Object Builder, then export the XML and use the
SmartGuide Customizer for XML to define a wizard that creates components or
files, using your sample as a template.

Additional Minor Changes
There have been numerous smaller changes throughout Object Builder. For
example, protected and private attributes are now defined only on the
implementation level, not as part of a business object interface.

Design Principles for Component Broker Applications

A typical design for a Component Broker application has three architectural layers:

v Application
Consists of components that provide business logic for the application, but do not
deal directly with data persistence.

v Consolidation
Consists of components that consolidate the interfaces of a number of related
components, through relationships or references. These components fill the same
role as composite components (which are not currently definable in Rose).

v Base
Consists of components that provide base-level behavior and data persistence.

Within each of these layers, you can have categories of related components. These
categories, or packages, are the basic organizing principle in UML, and can map to

Chapter 1. Object Builder Overview 3

separate projects in a team environment. You would typically have multiple
packages for each layer, with each package containing a number of related
components. A package should not mix components from different layers.

“Rose” on page 74
“The Rose Bridge” on page 76
“Object Builder” on page 1
“Components” on page 15

“Using Rational Rose with Object Builder” on page 73
“Export a Design from Rose” on page 89
“Export a Rose Design to a Team Environment” on page 204

Projects and Models

A project provides the directory structure that organizes your work. It can contain
any number of components, organized into applications and application families.
Each project contains a single model, which can be used to generate code for
multiple platforms. When you create a new project, you need to name the model,
and also identify any dependencies your work will have on other, existing, projects.
The model name you provide will be used to identify the project for team
environment builds.

Within the project directory, your work is stored in several subdirectories:

v project/Model
Contains the .uni files that Object Builder uses to store your work between
sessions, or when you select File - Save . Each model directory includes the
following files:

– obp.uni
The project file. Defines project metadata. Defines the models that the project
accesses in read-write and read-only modes. May itself be accessed by other
projects in read-write mode (so that projects can exchange dependency
information).

At minimum, the project model has a dependency on obfram.uni and
obprim.uni, models that define Component Broker framework interfaces and
Component Broker primitive elements.

This file should not be deleted, except as part of the entire project directory, or
directly edited.

– project.cfg
If you are using the OBModelPath environment variable to manage your
dependencies, then this file is not used. If you are not using the environment
variable, then this file provides an ASCII version of the depends and usedby
relationships this project’s model maintains with other projects’ models. You
can manually change the dependencies by directly editing this file. Generally
you should manage cross-project dependencies through the Project
Dependencies page of the Open Project wizard, and through the
OBMODELPATH environment variable.

– obm.uni
The model file that contains your work. Accessed in read-write mode by the
project. Other obm.uni files in other project/Model directories may be
accessed in read-only mode.

4 Application Development Tools Guide

This file should not be deleted, except as part of the entire project directory, or
directly edited.

If you are using external files to provide the implementations for some methods,
these external files are also stored here.

v project/Working
Contains the platform subdirectories for generated source files by platform (for
example, project/Working/NT, project/Working/AIX). Source files are generated for
the platforms selected on the Platform menu of Object Builder. You can generate
source files by selecting Generate - Selected or Generate - All from the pop-up
menus of folders or objects in the Tasks and Objects pane.

v project/Export
Contains any exported model elements, in XML format. You can import these
files into other projects, using the Import menu item on folder pop-up menus in
the Tasks and Objects pane.

v project/Import
Contains any XML files that were used by the Rose Bridge to export a Rose
model into Object Builder.

v project/XMI
Contains the file xmi.xml, which holds any model information that is not directly
translatable between Rose and Object Builder. When you import or export from
Rose, this file maintains the extra information that would otherwise be lost in the
transfer.

“Components” on page 15
“Rose” on page 74
“The Rose Bridge” on page 76
“Chapter 8. Team Development” on page 201

“Open a Project” on page 6

DBCS and Binary Data Support

Double Byte Character Set (DBCS) is an encoding scheme for Asian characters
such as Japanese. DB2 allows you to store both database meta-data (for example:
table names and column names) and database data in DBCS format. It also
supports binary data storage.

Object Builder R2.0 enables the following storage patterns:

v Database meta-data names are in DBCS format

v Database data is stored in either DBCS or Binary format

Database meta-data names are in DBCS format
When you create a persistent object from a schema that was imported, if the given
column name in the schema is an ASCII name (a legal C++ identifier), Object
Builder will use the same name as the attribute name for the persistent object;
otherwise, Object Builder generates names such as POAttribute1, POAttribute2.
You can change these tool-generated names.

Database data is stored in either DBCS or Binary format
Object Builder uses the following data encoding schemes (page 109) for data of
string type that is stored in database meta-data:

Chapter 1. Object Builder Overview 5

v DBCS

v Single Byte Character Set (SBCS) or Multi Byte Character Set (MBCS)

v Binary data

Note the following points when you do database queries:

v You can do database queries using DBCS or binary data just as you do queries
with any other data type.

v You cannot do queries over large object types such as LONG VARCHAR and LONG
VARGRAPHIC if they are used as either primary or foreign keys.

“Schema” on page 20
“Persistent Object” on page 19

“Add a Persistent Object and Schema” on page 313

“Data Encoding Schemes” on page 109
“DB2 Data Type Mappings” on page 110
“Oracle Data Type Mappings” on page 113

Set up Object Builder

Open a Project

To start Object Builder from the Windows NT desktop, select Start - Programs
- IBM Component Broker - Object Builder . The Open Project wizard opens to the
Specify Project Directory Page.

To start Object Builder on AIX (or on Windows NT from a command prompt), type
the command

ob <project_directory>

A project directory has a model subdirectory, where Object Builder stores an
internal model of your work. The project directory also has a working directory,
where Object Builder generates the code (such as .idl and .cpp files) for your work.

If you are creating a new project, you will be prompted to provide a model name.
The name you provide will be used to identify the project in a team environment,
regardless of any changes in directory structure.

If you are working with a large project (more than 30 components), you may need
to increase the maximum heap size of the Java virtual machine. You can do so by
editing the ob.bat file:

1. Make sure Object Builder is closed.

2. Edit \Cbroker\bin\ob.bat

3. Change the parameter -mx255m, increasing the number by 5m for each
additional component in your project (this number is approximate, and assumes
components of average complexity).

6 Application Development Tools Guide

For example, if your project contains 100 component, change the parameter to
-mx605m (70 additional components multiplied by 5m each, plus the original
255m).

4. Start Object Builder. The new parameter is used, and the maximum size of the
Java virtual machine is increased.

Note : Do not alter the contents of the directories: <path>\Cbroker\obprime and
<path>\Cbroker\obframe . These directories contain definitions for IDL primitive
types and for the Component Broker frameworks, both of which are used by the
project models you create in Object Builder.

“Object Builder” on page 1
“Projects and Models” on page 4

“Migrate Old Projects”

Set Object Builder Preferences

You can customize the appearance and behavior of Object Builder using the
Preferences notebook. To access the notebook and set preferences for Object
Builder, follow these steps:

1. Click File - Preferences . The Preferences notebook opens.

2. Click on a folder or node in the tree view on the left. The General folder
organizes general settings for Object Builder’s appearance and behavior. The
other folders organize specific settings for the different panes in Object Builder
(for example, the Tasks and Objects pane). You can select from the following
folders or nodes:

v General Page

v Appearance Page

v Toolbars Page

v Help Page

v Tasks and Objects Page

v Source Page

v Text Style Page

v Keyboard Support Page

3. Specify the settings you want.

4. Click OK to apply your settings and return to Object Builder.

“Object Builder” on page 1

Migrate Old Projects

You can work with projects created with Object Builder 1.3. However, when you
save your changes, the project can no longer be worked with in Object Builder 1.3.

Note : There is no direct way to migrate from 1.0, 1.1, or 1.2 to 2.0. You can only
migrate through immediately subsequent versions, until you reach 2.0 (for example:
from 1.1 to 1.2 to 1.3 to 2.0).

Chapter 1. Object Builder Overview 7

For information on migrating existing NT or AIX projects to OS/390 targets, consult
the OS/390 Component Broker Planning and Installation Guide.

To migrate your work from 1.3 to 2.0, follow these steps:

1. Start Object Builder.

2. Specify the location of your old project (for example, Cbroker\my1.3Project) on
the Specify Project Directory Page of the Open Project wizard.

3. Click Finish .

4. Save the project. The Model Conversion dialog opens.

You have several options in how you convert the model:

v By default, the model is saved in the 2.0 format, replacing the old version.

v If you check the Compress 2.0 version option, Object Builder will save the
model in compressed form. This may take some time, but can result in
considerable space savings.

v If you check the Retain 1.3 version option, Object Builder will create a
backup version of the old model, in the directory \Model13, before saving the
model in the new format.

5. Click Save.

The saved project is now updated to the 2.0 version.

If you open a 1.3 project as a project dependency from a 2.0 project (by selecting it
on the Project Dependencies Page of the Open Project wizard), then it remains at
the 1.3 level, until you open and save it directly.

“Projects and Models” on page 4

“Set Object Builder Preferences” on page 7
“Open a Project” on page 6

Requirements for Java Development

To develop Java business objects, you need JDK version 1.1.6.

The configuration to support Java business objects includes setting the
CLASSPATH environment variable to include the path to the classes.zip file of the
JDK.

The CLASSPATH environment variable must be set in the User Variables section of
the user ID specified to be used by system management during the Component
Broker install. To insure that this variable is correctly set:

1. Logon to Windows NT as the user specified for system management.

2. Set the CLASSPATH variable in the User Variables section of the environment
setting to the value:
x:\1.1.6\lib\classes.zip;.;%classpath%

where x:\1.1.6 is the JDK base install directory.

3. Stop the CBConnector service.

4. Restart the CBConnector service.

5. Reactivate the configuration using the System Manager User Interface.

8 Application Development Tools Guide

If the path does not already exist, you may need to add a path to libjava.a.

Programming Languages and Conventions (Programming Guide)

Work with Object Builder

Filters

You can use filters in Object Builder to exclude information from the Tasks and
Objects pane. You can use the filters provided with Object Builder, or define your
own.

Object Builder provides the following filters or views:

v Business Objects View
Displays the User-Defined Business Objects folder, the Non-IDL Types folder,
and the Build Configuration folder. Use this view if you are creating or working
with components for new data, and do not need to work with data objects
separately or import existing DB or PA schemas.

v Data Objects View
Displays the User-Defined Data Objects folder, the Non-IDL Types folder, and the
Build Configuration folder. Use this view if you are working primarily with data
objects, and do not need to create business objects or import existing DB or PA
schemas.

v Schema View
Displays the DBA-Defined Schemas folder, the Non-IDL Types folder, and the
Build Configuration folder. Use this view if you are working primarily with existing
DB schemas, and do not need to work with data objects separately or create
business objects.

The views hide other information, but do not prevent reference to it. For example,
while using the data objects view, you can still define a data object attribute with the
type of a hidden business object interface.

You can customize these views, or add new ones. For example, you could create a
new view for working primarily with PA schemas, or for packaging (showing only the
Build Configuration and Application Configuration folders).

“Object Builder” on page 1
“Component Assembly” on page 16

“Filter the Tasks and Objects Pane”“Create a Filter for the Tasks and Objects Pane”
on page 10
“Search the Tasks and Objects Pane” on page 10

Filter the Tasks and Objects Pane

You can apply a filter to the Tasks and Objects pane in Object Builder, to show only
the tasks that you are doing or the objects that you are using.

To apply a filter, follow these steps:

Chapter 1. Object Builder Overview 9

1. From Object Builder’s menu bar, select View - Set Filter .

2. Select a filter from the cascade of available views. Your selection is indicated
with a checkmark.

3. Select View - Turn Filter On .

The filter you selected is applied to the Tasks and Objects pane. You can switch
filters at any time, and turn the currently selected filter off and on.

You can customize the existing filters, or add new filters as required.

While a filter is in effect, some menu items may be unavailable. This product’s task
documentation assumes an unfiltered view.

“Object Builder” on page 1
“Filters” on page 9

“Create a Filter for the Tasks and Objects Pane”

Create a Filter for the Tasks and Objects Pane

You can create your own filter for the Tasks and Objects pane, to hide folders or
objects that you are not using. Once you create a filter, it is available from the View
- Set Filter menu, and you can turn it on or off with the View - Turn Filter On/Off
menu choice.

To create a filter, follow these steps:

1. From Object Builder’s menu bar, select View - Set Filter - Create New . The
Filter Tree window opens.

2. Select one of the existing filters from the filter list, to use as a starting point.

3. Select the folders and objects you want included in the new view. Folders or
objects that are not checked will be excluded by the filter.

4. Click Save As . The Save Filter Scheme window opens.

5. Name the filter.

6. Click OK.

7. Click Finish .

The new filter now appears in the View - Set Filter menu, and is automatically
selected and applied.

“Object Builder” on page 1
“Filters” on page 9

“Filter the Tasks and Objects Pane” on page 9

Search the Tasks and Objects Pane

When you are working with a large or complex application, it can be difficult to
locate a particular component object or element of the application in Object Builder.
To find a particular item in the Tasks and Objects pane, follow these steps:

10 Application Development Tools Guide

1. Select Edit - Find . The Find dialog box opens.

2. Type the name of the item in the Find Next field.

3. Set any search options you want in effect:

v Match case
Only find items with names that have the same capitalization as the name
you specified.

v Whole word
Only find items with the exact name you specified. Do not find items whose
names merely include the string you specified.

v Wrap
Search the entire pane. If you do not select Wrap , the search only occurs
from the currently selected item to the bottom of the pane.

4. Click Find Next .

The first item with a matching name is selected in the Tasks and Objects pane.
The tree view is expanded as necessary to show the item.

5. When you are finished searching, click Cancel in the Find dialog box.

The Find function will not find any items that do not appear in the Tasks and
Objects pane. If you have applied a filter to the pane, the search will not find items
that are excluded from the pane by the filter.

“Object Builder” on page 1

“Filter the Tasks and Objects Pane” on page 9

Run Object Builder in Batch Mode

You can generate code from Object Builder from the command line, using the
obgen.bat utility. You can also import and export XML files in batch mode. Those
tasks are described in the Import XML and Export XML tasks.

The utility has the following command-line syntax:

obgen -p<project_directory> [-d <destination_directory>] -a<object_type> [-changed]
[-linked] [-t<platform_name>]

The options are as follows:

v -ProjectDirectory (required)
-DestinationDirectory (optional)

v -Artifact (required)

v -Changed (optional)

v -Linked (optional)

v -Target (optional)

-ProjectDirectory
The project directory you want to generate code for.

For example: -pE:\myproject

Chapter 1. Object Builder Overview 11

-DestinationDirectory
The directory you want to generate code into. By default, code is generated into the
listed project’s \Working directory.

-Artifact
The type of objects you want to generate. The object type must be one of the
following:

v All
Generate all objects in the project (equivalent to selecting Generate - All from
the pop-up menus of the User-Defined Business Objects folder, the Build
Configuration folder, and the Application Configuration folder).

v BO
Generate all business objects (equivalent to selecting Generate - Selected from
the pop-up menu of each business object interface and business object
implementation).

v DO
Generate all data objects (equivalent to selecting Generate - All from the pop-up
menu of the User-Defined Data Objects folder).

v Make
Generate all makefiles (equivalent to selecting Generate Makefiles from the
pop-up menu of the Build Configuration folder).

v SM
Generate all SM DDL (equivalent to selecting Generate - All from the pop-up
menu of the Application Configuration folder).

-Changed
Generate only code for files that have changed. By default, all files are regenerated.

-Linked
Generate code for the current project only (not for projects listed as dependencies).
Generate makefiles that refer to the \Working directories of other projects for any
dependencies on other projects. This is equivalent to setting the Team
Environment option in the Object Builder Preferences notebook (on the Tasks and
Objects page of the notebook).

If you do not specify the -linked option, then code is generated for objects in the
specified project, and for projects listed as dependencies, and for their
dependencies, and so on. This is not equivalent to the Standalone Environment
option in Object Builder: when you generate code from within Object Builder, for a
standalone environment, only objects in the current project, and their direct
dependencies, are included.

For example, the command:

obgen -pe:\myproject -aBO

generates the code for all business objects in the project e:\myproject , code for
business objects in projects it depends on, and code for projects they depend on,
until all dependencies are fulfilled. The generated code for all projects is placed in
the e:\myproject\Working directory.

-Target
Specify platforms to generate code for. By default, code is generated for the current
platform only. Options are NT, AIX, and 390.

12 Application Development Tools Guide

“Projects and Models” on page 4

“Generate Code” on page 363
“Generate a Makefile” on page 367
“Generate the Install Image” on page 379
“Export XML” on page 224
“Import XML” on page 225
“Set Object Builder Preferences” on page 7

Import C++ or Java Classes

If you have an existing C++ or Java class that you want your component to use,
and you do not want to create an IDL interface for it, you can import the class into
Object Builder as a non-IDL type.

Once the class is imported, you can select it as an interface type within Object
Builder (that is, as a method return type, method parameter, or attribute type).

Note: Because this is not an IDL type, it cannot be accessed through the distributed
environment. The component’s managed object will not expose methods or
attributes that use this type. Methods or attributes that use the type should be
added to the business object implementation, not the business object interface.

To import a non-IDL type, follow these steps:

1. In the Tasks and Objects pane, find the Non-IDL Types folder.

2. From the folder’s pop-up menu, click Import Non-IDL Type . The Import
Non-IDL Type wizard opens to the Name and Language Page.

3. Type the name of the class you want to import.

4. Select whether the class is implemented in C++ or Java.

5. Provide implementation details for the class:

v For a C++ class, provide the name of the header file that defines the class
and the name of the library file that contains its object code. Include the file
extensions.

v For a Java class, provide the name of the package.

6. Click Finish .

The class now appears in the Non-IDL Types folder, and you can select it as the
type of a method parameter, a method return type, or an attribute type.

Progamming Languages and Conventions (Programming Guide)

“Add a Business Object Interface” on page 283

Chapter 1. Object Builder Overview 13

14 Application Development Tools Guide

Chapter 2. Component Overview

Components

In Component Broker, a component consists of a distributed set of objects that
client applications access as a single entity. To a client application, a component
appears to be a single class, with methods and attributes and relationships like any
other class. Behind this single interface, however, each component consists of
multiple objects on both the client and the server. This separation provides flexibility
and control in the way data is stored and accessed, and in the way that business
processes are distributed. The objects can exist on any number of different servers
and databases, but to the client they present a single interface, with a single set of
attributes.

Typically, a component consists of the following objects in Object Builder:

v business object interface

v business object implementation

v data object interface

v data object implementation

v persistent object and schema

v key

v copy helper

v managed object

At execution time, a call to the component (for example, a call to a CarPolicy
component to get the value of the attribute make) resolves in the following order:

1. The managed object accepts the call, and calls its associated container for
object services before passing the call on to the business object.

2. The business object accepts the call, and either returns the value of the
attribute based on a cached copy of the data, or delegates the call to the data
object.

3. The data object accepts the call, and either returns the value of the attribute
based on a cached copy of the data, or delegates the call to the persistent
object.

4. The persistent object retrieves the value from a database, and returns it.

5. The value is returned up the component tree until it reaches the managed
object, which calls the container again for object services before returning the
value to the caller.

A component has no real existence: it is merely a convenient way to refer to a set
of related objects.

“Object Builder” on page 1
“Business Object” on page 17
“Data Object” on page 18
“Persistent Object” on page 19
“Schema” on page 20
“Key” on page 21
“Copy Helper” on page 21
“Managed Object” on page 22

© Copyright IBM Corp. 1997, 1998 15

Component Assembly

When you assemble a component, you can start from the business object, data
object, or schema. The following diagram shows the relationships among
component objects as you assemble them. When you configure the objects into a
unified component, you select a subset of these objects to form a particular
component on the server. The deployed component is accessed through its
managed object, by client applications or other components that require access to
the server data.

“Components” on page 15
“Component Execution”

Component Execution

At execution time, a call to the component on the server (for example, a call to a
CarPolicy component to get the value of the attribute make) resolves in the
following order:

1. The managed object accepts the call (from the client or from another
component), and calls its associated container for object services before
passing the call on to the business object.

2. The business object accepts the call, and either returns the value of the
attribute based on a cached copy of the data, or delegates the call to the data
object.

3. The data object accepts the call, and either returns the value of the attribute
based on a cached copy of the data, or delegates the call to the persistent
object.

16 Application Development Tools Guide

4. The persistent object retrieves the value from a database, and returns it.

5. The value is returned up the component tree until it reaches the managed
object, which calls the container again for object services before returning the
value to the caller.

“Components” on page 15
“Component Assembly” on page 16

Objects

Business Object

A business object represents a business function. Business objects contain
attributes that define the state of the object, and methods that define the behavior
of the object. A business object also has relationships with other business objects. It
can cooperate with other business objects to perform a specific task. Business
objects are independent of any individual application. They can be used in any
combination to perform a desired task. Typical examples of business objects are:
Customer, Invoice, or Account.

In Component Broker, a business object functions as part of a component, which is
a collection of related objects that work together to represent the logic and data
relationships of the business function.

Chapter 2. Component Overview 17

A business object’s interface is defined in an IDL file. Its implementation can be in
either C++ or Java. You can set the default implementation language for business
objects in the Preferences notebook, on the Tasks and Objects page. You can set
the implementation language for a specific business object in the Business Object
Implementation wizard, on the Implementation Language page.

“Components” on page 15

“Add a Business Object Interface” on page 283

State Data

Every object has a state and a behavior, and presents an interface. An object’s
behavior is manifested in the implementation of the methods on the object’s private
and public interfaces. An object’s state is manifested in its public and private data
members and can be divided into two categories: essential and non-essential. The
essential state makes up the state data of an object and consists of data that is
persistent and not calculated or derived from other data members. The
non-essential state consists of transient data that can be recreated as required. The
non-essential state is usually derived from other state data and complements the
essential state.

“Data Object”

“Add a Business Object Implementation and Data Object Interface” on page 284

Data Object

A data object is responsible for managing the persistence of a component’s
essential state information (state data). It provides an interface for getting and
setting the state data.

A data object isolates its business object from having to:

1. Know which of many datastores to use to make its state persistent.

2. Know how to access the datastore.

3. Manage access to the datastore.

A data object has two parts: the data object interface, which defines the state data
of the component, and the data object implementation, which defines the form of
persistence and access patterns for the data.

“Components” on page 15

“Add a Business Object Interface” on page 283
“Add a Data Object Implementation” on page 299

18 Application Development Tools Guide

Persistent Object

A persistent object is a C++ object that provides a mechanism for storing a
component’s state in a datastore. Every persistent object has an identifier or a key
that is used for locating its corresponding record within the datastore.

There are two kinds of persistent objects: DB persistent objects and PA persistent
objects.

Database (DB) Persistent Objects
This type of persistent object represents a record of a table or a view in a relational
database. The component’s state data that is stored in the relational database by
means of a persistent object lasts longer than the execution time of the application
that calls the component.

In a relational database such as an SQL database, all records are persistent
because they are stored on disk in the form of database tables. A datastore,
whether it is an Object-Oriented Database Management System (OODBMS) or a
Relational Database Management System (RDBMS), stores an object’s persistent
data.

There are two kinds of DB persistent object implementations:

v Persistent objects that use embedded static SQL to access and update the data
they represent in a database. The generated files are of type .hpp and .sqx. You
can edit the embedded SQL clauses that Object Builder provides for the methods
of these objects, but Object Builder will not validate your entries.

v Persistent objects that use the caching capabilities of the server for accessing
and updating data from the datastores they represent. The generated files are of
type .hpp and .cpp.

In Object Builder, you can create these type of objects at the time of schema
creation (top-down) or after a schema has been imported into Object Builder
(bottom-up).

Procedural Adaptor (PA) Persistent Objects
This type of persistent object encapsulates not only the data associated with an
application but also the application’s transaction logic. It is usually an embodiment
of IMS and CICS transactions and data. A PA persistent object too is responsible for
storing the data and transactions of a reusable application (which is bundled
together as a component), much longer than the execution time of the application
that calls the component.

Object Builder creates a PA persistent object for every Procedural Adaptor bean
that is imported. The Procedural Adaptor bean exists as the PA schema in Object
Builder and you can create additional PA persistent objects for a PA schema.

The generated files for a PA persistent object are of type .hpp and .cpp.

“Schema” on page 20
“Procedural Adaptor Bean (PA Bean)” on page 117
Cache Service (Advanced Programming Guide)
Session Service (Advanced Programming Guide)
Transaction Service (Advanced Programming Guide)

Chapter 2. Component Overview 19

“Add a Persistent Object and Schema” on page 313
“Add a Persistent Object from a DB Schema” on page 316“Customize Referential
Integrity” on page 108
“Add a Persistent Object from a PA Schema” on page 334

Schema Group

A schema group is an organization of the different database schemas that you
either create for a data object or import from the DDL file.

When the generate action is used on a schema group, an SQL file is created. It
contains the subset of the definitions of the schemas that Object Builder requires to
do table to persistent object mapping.

Note the following points about schema groups in Object Builder:

v All schemas in a schema group must belong to the same database type. That is,
within a schema group, you cannot have some schemas that are of the DB2
database type and others that are of the Oracle database type. However, you
can arrange schemas that exist in the same database, into different schema
groups.

v Schema groups cannot be nested.

Note the following points about schema group names:

v Group names must contain only alphanumeric characters, the blank space, and
the underscore.

v They are case sensitive.

“Schema”
“Persistent Object” on page 19

“Work with DB Schema Groups” on page 318

Schema

A schema is a description of the structure of a table or a view in a relational
database. It is a structural and behavioral abstraction of the real physical data, and
focuses on information relevant to users of the applications that use the database.

In CBConnector, DB2 is the relational datastore supported, and the schemas are
described using the SQL language.

In Object Builder, there are two kinds of schemas: database (DB) schemas and
procedural adaptor (PA) schemas.

DB schemas can either be created from data object implementations (the top-down
approach) or imported from SQL DDL files (the bottom-up approach). For
organizational purposes, DB schemas are found in schema groups. All schemas
within a group must be of a single database type. That is, they must all either be of
the DB2 database type, or of the Oracle database type.

Follow these rules when you name a DB schema:

20 Application Development Tools Guide

v The name must not exceed 18 characters for DB2; 30 characters for Oracle.

v All alphanumeric and DBCS characters are allowed, and there’s no case
sensitivity for names containing these characters.

v Non-alphanumeric names must be enclosed in double-quotes, and their case is
maintained internally.

PA schemas are created when a procedural adaptor bean is imported into Object
Builder from Enterprise Access Builder (EAB).

“Schema Group” on page 20
“Procedural Adaptor Bean (PA Bean)” on page 117

“Add a Persistent Object and Schema” on page 313
“Create a DB Schema by Importing an SQL File” on page 321
“Edit a DB Schema Group” on page 319
“Create a PA Schema by Importing a PA Bean” on page 337

Key

A component’s key object defines which attributes are to be used to find a particular
instance of the component on the server. The key consists of one or more of the
business object attributes, which must contain enough information to uniquely
identify an instance.

The key is defined as a separate class (rather than simply flagging one or more of
the attributes directly on the business object) for two reasons. First, CORBA does
not permit passing a mix of different data types in one call; by defining the key in a
separate class, you can mix multiple attributes and data types in whatever
combination you require. Second, you gain the flexibility of changing the key, or
having more than one key for different situations, without affecting the rest of the
component.

When you define a key in Object Builder, its implementations are generated in both
Java and C++.

“Components” on page 15
“Composite Key” on page 176

“Work with Keys” on page 292

Copy Helper

A copy helper is an optional object that provides an efficient way for the client
application to create new instances of the component on the server. The copy
helper contains the same attributes as the business object, or a subset of them.
Without a copy helper, the client might need to make many calls to the server for
each new instance: one call to create the instance, and then an additional call to
initialize each of the instance’s attributes. With a copy helper, the client can create a
local instance of the copy helper, set values for its attributes, and then create the
server component and initialize its attributes in one call, by passing it the copy
helper.

Chapter 2. Component Overview 21

When you define a copy helper in Object Builder, its implementations are generated
in both Java and C++.

Copy helper instances are created using the _create function. The client developer
sets values locally, then creates a managed object from the copy helper using the
createFromCopy function.

“Components” on page 15

“Add a Copy Helper” on page 294

Managed Object

A class of objects that defines the set of methods that must be implemented by the
business object to work with the appropriate application adaptor. Managed objects
are enabled to work with two level storage containers and delegate to the data
object the attributes of the object.

A managed object represents the component to the client application, and handles
all calls from the client to the component on the server.

An application is defined by adding and configuring managed objects. By creating a
managed object for a business object, you specify that it will be installed on the
server. The managed object handles communication with other classes, and
initialization, de-initialization, activation, and passivation of the business object.

“Components” on page 15

“Work with Managed Objects - Overview” on page 339

Key Assistant

A key assistant is a new key helper class. It is a concrete subclass that is
associated with a managed object assembly and has knowledge of the primary key
that is configured for the assembly.

The interface of the key assistant supports creating keys from various existing
objects. Currently, Object Builder supports creation of primary keys from a copy
helper or a data object.

Object Builder optimizes performance by creating multiple copies of proxies of an
object that every client can access. The way it does this is by generating a set of
new IManagedServer::IKeyAssistant objects which introduce new sets of idl, ih and
.cpp files.

“Key” on page 21
“Copy Helper” on page 21“Data Object” on page 18
“Managed Object”

22 Application Development Tools Guide

Methods and Attributes

User-Defined Methods

You can define methods on the following objects:

v Business object interfaces
Methods you define here are available to other components and applications,
through the managed object. The method implementation is defined in the
business object implementation.

v Business object implementations
Methods you define here are specific to the implementation, and not exposed in
the component’s interface.

v Data object interfaces
Methods you define here are available to other objects, but are not exposed in
the managed object. The method implementation is defined in the data object
implementation.

v Data object implementations
Methods you define here are specific to the implementation, and not exposed in
the component’s interface.

Once you define a method on an object, it appears in the Methods pane when you
click on the object.

When you define a method for an interface, its definition is automatically added to
any associated implementation objects.

To provide the method body for a method, click on the business object
implementation or data object implementation, and then click the method in the
Methods list. You can now type the method body directly in the Source pane.

You can also provide a method body by referencing an external file in the method’s
Method Implementation wizard (accessed from the method’s pop-up in the Methods
pane). The external file can be a template, with macros that you can substitute
values for.

“Business Object” on page 17
“External Files for Method Bodies” on page 273

“Add a Business Object Interface” on page 283
“Add Code for User-Defined Methods” on page 267
“Add an Initializer Method” on page 268
“Edit a User-Defined Method” on page 269
“Delete a Method” on page 277

Get and Set Methods

Object Builder adds get and set methods to objects for each public attribute you
define, as follows:

v Business object implementation:
Has get and set methods for each public attribute in the business object
interface.

Chapter 2. Component Overview 23

v Key:
Has get and set methods for each attribute that makes up the key.

v Copy helper:
Has get and set methods for each attribute that makes up the copy helper.

v Data object implementation:
Has get and set methods for each attribute defined in the data object interface.

v Persistent object:
Has get and set methods for each attribute in the data object that it provides
persistence for.

The implementations for get and set methods are provided by Object Builder,
although you can edit them if necessary.

“Attributes” on page 26
“Special Framework Methods”

“Edit Get and Set Methods” on page 270

Framework Methods

Framework methods are added to an object by Object Builder. Generally, framework
methods are only called by other framework methods, or by Component Broker
services.

Framework methods provide the functionality your objects need to work in a
Component Broker distributed environment.

There are also special framework methods, which are a particular kind of framework
method that let a component access its persistent data.

“Special Framework Methods”

“Edit Framework Methods” on page 270

Special Framework Methods

Data objects and persistent objects that access a schema have the special
framework methods insert, update, retrieve, del, and setConnection. The
implementations for these methods are calculated based on the mapping between
the persistent object methods and the data object methods.

The order in which the data object methods call their equivalent methods in
persistent objects can affect the integrity of the references.

“Edit Special Framework Methods” on page 271
“Customize Referential Integrity” on page 108

24 Application Development Tools Guide

Push-Down Methods

Push-down methods are those that are “pushed down” from the persistent object to
the data object and finally to the business object. Depending on whether they are
used along with DB persistent objects, or PA persistent objects, it is either the
Relational Database Application Adaptor (RDBAA), or the Procedural Application
Adaptor (PAA) that handles the pass-through processing.

In Object Builder, push-down methods are used to expose functionality to the client.
In particular, they are used for the following purposes:

v To transmit transactional data of existing applications (when they are used with
PA persistent objects)

v To transmit data that is contained in databases used by existing applications
(when they are used with DB persistent objects, or when they are used as stored
procedures).

Note: Push-down methods in Object Builder are editable at the data object
implementation level.

In Enterprise Access Builder (EAB), a push-down method is one that is written on
the procedural adaptor bean. In Object Builder, it is a mapping to the
implementation of the method in EAB.

When these methods are executed using the HOD mechanism for accessing IMS
applications, the changes resulting from their execution are visible to other
sessions.

When these methods are executed using the ECI mechanism for accessing CICS
applications, the changes resulting from their execution are not visible to other
sessions.

“Enterprise Access Builder (EAB)” on page 116
“Persistent Object” on page 19
“Data Object” on page 18
An Overview of Application Adaptors (Programming Guide)

“Use Push-Down Methods with PA Persistent Objects” on page 274

Relationship Methods

When you define a relationship from one business object to another, there is a set
of methods created for the relationship. They are the add, list, and remove
methods, that enable you to access the relationship.

For example, if you have a one to many relationship between the Policy business
object and the Claim object, you can use the add method to add claims for a policy,
the list method to list claims in the policy, and the remove method to remove claims
from a policy.

You can customize the implementation of the list method by providing your own
OO-SQL code for it. (Use the OO-SQL Customization Page of the Method
Implementation wizard.)

Chapter 2. Component Overview 25

“Business Object” on page 17

“Add a Business Object Implementation and Data Object Interface” on page 284
“Create a Relationship” on page 129
“Customize Business Object OO-SQL Implementation Methods” on page 275

Attributes

Public attributes of a component are defined in the business object interface. You
can define protected or private attributes in the business object implementation.
When you change an attribute in a business object interface, the change is applied
automatically to the business object implementation, and is applied to the key, copy
helper, and managed object the next time you edit them (open and finish their
properties wizard). When you change an attribute in a data object interface, the
change is applied automatically to the data object implementation.

You can also define implementation-only attributes in a Business Object
Implementation wizard or Data Object Implementation wizard. These attributes are
not available in the IDL and are not exposed in the managed object for the
component.

Attributes are defined in component objects as follows:

v Behavior:

– Business object interface: IDL attributes

– Business object implementation: get and set methods, in C++ or Java

– Key: get and set methods, in C++ and Java

– Copy helper: get and set methods, in C++ and Java

v Data:

– Data object interface: IDL attributes

– Data object implementation: get and set methods, in C++

– Persistent object: get and set methods, in C++

– Schema: table columns in a database, or methods of a procedural adaptor
bean.

“Components” on page 15
“Get and Set Methods” on page 23

“Work with Attributes” on page 247

Constructs

In Object Builder, the following items, are referred to throughout as constructs:

v Constant

v Enumeration

v Exception

v Typedef

v Structure

26 Application Development Tools Guide

v Union

They can be defined at the file, module, or interface level of a business object
interface or data object interface, or at the file or module level of a composition.

“Work with Constructs” on page 277

Business Object Behavior

Business object behavior encompasses the pattern to be used to handle the
essential state of the business object, how the business object handles object
references, whether the endResource() method is to be called on the object if it is a
sessional business object, whether the object is to be associated with a data object,
and the platform on which the business object is to be deployed.

A business object interface can have multiple implementations, depending on the
quality of service required.

The following reference topics deal with business object behavior:

v “Pattern for Handling State Data”

v “Object Reference” on page 29

v “Data Object Interface” on page 29

v “Session Service” on page 30

You can specify all these details when you define an implementation for the
business object, on the Name and Data Access Pattern Page of the Business
Object Implementation wizard. This page has the same sections as the reference
topics listed. In addition, besides providing the names for the business object
implementation’s file, module and interface, you can also specify the platform on
which the object is to be deployed. You can select from one or more of Windows
NT, AIX, and OS/390.

“Business Object” on page 17
“Data Object” on page 18
Object Relationships (Programming Guide)

“Add a Business Object Implementation and Data Object Interface” on page 284

Pattern for Handling State Data

The implementation of the business object must have the specifications as to how
the object has access to state data (data that is persistent). A business object can
either have a part to play in the maintenance of its state, or it can pass on that
responsibility entirely to its associated data object.

You can make this decision using the Name and Data Access Pattern page of the
Business Object Implementation wizard when you add a business object
implementation (Add Implementation from the pop-up menu of the business
object interface in the User-Defined Business Objects folder, in the Tasks and

Chapter 2. Component Overview 27

Objects pane), or when you edit the object’s implementation that you have defined
(Properties from the pop-up menu of the business object implementation in the
User-Defined Business Objects folder).

The Pattern for Handling State Data section on this page has the following options:

v None

v Delegating

v Caching

v Same as parent’s

None
This pattern implies that there is no data object supporting the business object, and
no essential state in the business object.
Note: This option is not yet available.

Delegating
Select this radio button if you want to use the IManagedObjectWithDataObject class
as the data access pattern. The maintenance of the business object’s state is
delegated to the data object. The essential state is passed to the data object, which
sends it back to the business object. All non-derived, non-essential state is still
stored (cached) in the business object.

Caching
This is the default pattern. This pattern uses the
IManagedObjectWithCachedDataObject class for data access. Both the business
object and the data object cache a local copy of the essential state. All essential
state, and all non-derived, non-essential state, is cached in the business object. The
business object does not delegate any calls to the data object. Additional framework
methods syncToDataObject() (which is used to load the business object with data
contained in the data object), and syncFromDataObject() (which is used to send
data from the business object back to the data object) are used to keep the cached
copy of the attributes in correspondence with the data object attributes. Once this
option is selected, the Object Reference section is activated.

Same as parent’s
The pattern for handling state data, which is used by the parent of this interface, will
be used for this implementation.
Note: This option is selected by default if the interface for this business object
inherits from another business object interface. However, you still have to indicate
the parent on the Implementation Inheritance Page of this wizard, after you delete
the default parent for business object implementations, which is IManagedClient
IManagedClient::IManageable.

“Business Object” on page 17
Object Relationships (Programming Guide)
Cache Service (Advanced Programming Guide)

“Add a Business Object Implementation and Data Object Interface” on page 284
“Add a Business Object Interface” on page 283
“Create a Customized Home” on page 343
“Create a Container Instance” on page 346

28 Application Development Tools Guide

Object Reference

When you specify Caching as the pattern to be used for handling the essential
state of the business object, you can select the Use lazy evaluation check box if
you want the first copy of object references in the essential state to be fetched only
when it is required, rather than automatically at startup.

You can make this decision using the Name and Data Access Pattern page of the
Business Object Implementation wizard when you add a business object
implementation (Add Implementation from the pop-up menu of the business
object interface in the User-Defined Business Objects folder, in the Tasks and
Objects pane), or when you edit the object’s implementation that you have defined
(Properties from the pop-up menu of the business object implementation in the
User-Defined Business Objects folder).

“Business Object” on page 17
Object Relationships (Programming Guide)
Cache Service (Advanced Programming Guide)

“Add a Business Object Implementation and Data Object Interface” on page 284
“Add a Business Object Interface” on page 283
“Create a Customized Home” on page 343
“Create a Container Instance” on page 346

Data Object Interface

You can choose to have Object Builder create a data object interface along with the
business object implementation you are defining, or you can create, or select one
later.

You can make this decision using the Name and Data Access Pattern page of the
Business Object Implementation wizard when you add a business object
implementation (Add Implementation from the pop-up menu of the business
object interface in the User-Defined Business Objects folder, in the Tasks and
Objects pane), or when you edit the object’s implementation that you have defined
(Properties from the pop-up menu of the business object implementation in the
User-Defined Business Objects folder).

You can select one of the following radio buttons:

v Create a new one now

v Add or select one later

Create a new one now
Select this option if you want the data object to be derived from the business object.
The data object is automatically created when you add a business object
implementation. This is the default option.

Add or select one later
Select this option when you want to reuse an existing data object, which is
stand-alone and not derived from a business object. This option enables you to
match the interface and function requirements of the newly created top-down model
with the classes developed from existing data.

Chapter 2. Component Overview 29

“Business Object” on page 17

“Add a Business Object Implementation and Data Object Interface” on page 284
“Add a Business Object Interface” on page 283

Session Service

390: This section is not applicable, and therefore not available when the
development platform is OS/390.

Use this section if you plan to make the business object sessional. When a
business object uses Session Service, you can provide your own code to be called
during some of the normal processing for those services. To do this, select the
Provides end resource check box in this section.

Provides end resource
Select this check box to indicate that the business object implementation inherits
from ISessions::Resource, the class that has the endResource() method in it.
Object Builder creates the endResource() method on the business object, and you
can provide your own code for it. Your code will be called when the endResource()
method is called on the managed object’s mixin.

“Business Object” on page 17
Session Service (Advanced Programming Guide)

“Add a Business Object Implementation and Data Object Interface” on page 284
“Add a Business Object Interface” on page 283
“Create a Customized Home” on page 343
“Create a Container Instance” on page 346
“Add endResource() to a Sessional Business Object” on page 117

Data Object Behavior

The behavior of a data object depends on various factors such as the environment
for the business object, the implementation type of the data object and its storage
options, and the pattern used by the data object for data access and storage of
references.

The following reference topics deal with different aspects of the behavior of data
objects:

v “Environment” on page 31

v “Form of Persistent Behavior and Implementation” on page 32

v “Data Access Pattern” on page 34

v “Handle for Storing Pointers” on page 35

You can specify all these details when you define an implementation for the data
object on the Behavior Page of the Data Object Implementation wizard. This page
has the same sections as the reference topics listed.

30 Application Development Tools Guide

“Data Object” on page 18
“Persistent Object” on page 19
Data Object Customization

“Work with Data Objects - Overview” on page 296

Environment

The environment for a component has to be either conducive to testing, or to
production or deployment. The Unit test environment is for testing the business
object; the other environments that use the Business Object Application Adaptor
(previously known as BOIM) are for production, when we implement a real
application with persistent data.

You can select the environment for your component in the Behavior Page of the
Data Object Implementation wizard either when you add a data object
implementation (Add Implementation from the pop-up menu of the data object
interface in the User-Defined Business Objects folder, in the Tasks and Objects
pane), or when you edit the data object implementation you have defined
(Properties from the pop-up menu of the data object implementation in either the
User-Defined Business Objects folder, or the User-Defined Data Objects folder).

You have the following environment options:

v Unit test

v BOIM with UUID key

v BOIM with any key

v Same as parent’s

Unit test
Select this environment to unit test the data object without configuring and installing
applications on the server. The business object is not loaded into the CBConnector
server; it can be tested on the CBConnector client machine. The form of persistent
behavior and implementation is automatically set to Transient , and cannot be
changed. This is so that the essential state of the business object is not saved
across executions of the unit test program. A local copy of the essential state is
used for data access. The unit test reference collection is used to store the object.

390: This option is not available when the target platform includes OS/390.

BOIM with UUID key
This environment uses the Business Object Instance Manager (BOIM), commonly
known as Business Object Application Adaptor, with the Universally Unique Identity
(UUID) key. Select this implementation to create unique server data objects with
transient data for supporting the business object. This option is useful for short-lived
business objects that do not have to persist after your application has finished
executing. The form of persistent behavior and implementation is automatically set
to Transient , and cannot be changed. A local copy of the essential state is used for
data access.

BOIM with any key
Select this implementation to create server data objects with persistent data for
supporting the business object. The data object will be installed in a business object

Chapter 2. Component Overview 31

application adaptor, and instances of the object will be located using keys. This is
the option to select if you want to use a relational back-end datastore, as shown in
the Life Insurance example. The set methods for the data object’s attributes have
the markDirty() method, which informs the application adaptor when the underlying
datastore has to be updated. This environment enables you to create a persistent
object or use an existing one. All the options in the Form of Persistent Behavior
and Implementation section are available for selection. The default form for
persistent behavior is set to Embedded SQL .

Note: If you use this option and create any persistent objects for this data object,
you must use a customized container instance. The default container instances are
only appropriate for objects with transient data.

Same as parent’s
Select Same as parent’s when you want to use the implementation type that is
specified for the parent of this interface. The datastore defined in the parent is
used. If the parent has no persistent object, this newly created data object has no
persistent back-end. However, if the parent uses Embedded SQL, the newly
created data object inherits that behavior. A local copy of the essential state is used
for data access.

Note: If you are defining an implementation that inherits from another, this option
will be selected.

“Data Object” on page 18
“Persistent Object” on page 19
Application Adaptor (Programming Guide)
Data Object Customization (Programming Guide)
“Container” on page 345
“State Data” on page 18
Cache Service (Advanced Programming Guide)
Using Sets of Objects (Using Reference Collections) (Programming Guide)

“Work with Data Objects - Overview” on page 296
“Add a Persistent Object and Schema” on page 313
“Customize Referential Integrity” on page 108
“Create a Container Instance” on page 346
“Configure a Managed Object” on page 377

“Form of Persistent Behavior and Implementation”
“Data Object Implementation Inheritance” on page 36

Form of Persistent Behavior and Implementation

The data object implementations you define differ from one another based on
whether the associated data object is persistent or not, and on the type of service
they use.

You can select the form of persistent behavior and implementation in the Behavior
Page of the Data Object Implementation wizard either when you add a data object
implementation (Add Implementation from the pop-up menu of the data object
interface in the User-Defined Business Objects folder, in the Tasks and Objects
pane), or when you edit the data object implementation you have defined

32 Application Development Tools Guide

(Properties from the pop-up menu of the data object implementation in either the
User-Defined Business Objects folder, or the User-Defined Data Objects folder).
Each form of persistent behavior and implementation has a unique impact in terms
of application performance, allocation of resources, and so on.

To be able to select any one of the different types of implementations, you must first
select, on the same page of the wizard, the BOIM with any key environment. See
“Environment” on page 31.

You have a choice of the following implementations:

v Transient

v Embedded SQL

v DB2 Cache Service

v Oracle Cache Service

v Procedural Adaptors

Transient
This option is automatically selected and is the only one available if the data object
does not have to be persistent, as in the case of the Unit test environment, or
when the data object implementation uses BOIM with UUID key . If you selected
BOIM with any key in step 4, select this option if you want to write your own
implementations for a persistent data object.

Embedded SQL
Select this option if embedded (static) SQL is to be used by the persistent object to
access the database.

Cache Service
Use the Cache Service options if you want the CBConnector server to hold cached
copies (instances) of the data object in memory, accessing the corresponding rows
in the relational database only when necessary. This results in improved
performance when the values in the accessed row need to be read frequently but
not updated as frequently. You can select one of the following types of Cache
services:

v DB2 Cache Service
Select this option to access rows in a DB2 database.

v Oracle Cache Service
Select this option to access rows in an Oracle database.

390
All Cache Service options are not available when the target platform is OS/390.

Procedural Adaptors
Select this option if the data object implementation is to be connected to a
persistent object that is created for an imported procedural adaptor (PA) bean.

Note the following points when you configure a managed object for your
application:

v You can select only those containers that match the data object implementation
(and the managed object). For example, if your data object implementation uses
Embedded SQL , only those containers that use embedded SQL (those without
caching services) are shown. Similarly, if you defined the data object
implementation to use Procedural Adaptors , and the related persistent object

Chapter 2. Component Overview 33

uses Session Service , the selection you made on the Names and Services
Page of the Import Procedural Adaptor Bean wizard, only containers that are
configured for sessions are shown.

v You will be able to select only those data object implementations in the model
(on the Data Object Implementations Page of the Configure Managed Object
wizard) that use the service you specified on the Names and Connectors Page of
the Import Procedural Adaptor Bean wizard.

“Data Object” on page 18
“Persistent Object” on page 19
Application Adaptor (Programming Guide)
Data Object Customization (Programming Guide)
“Container” on page 345
“State Data” on page 18
Cache Service (Advanced Programming Guide)
Using Sets of Objects (Using Reference Collections) (Programming Guide)

“Work with Data Objects - Overview” on page 296
“Add a Persistent Object and Schema” on page 313
“Customize Referential Integrity” on page 108
“Create a Container Instance” on page 346
“Configure a Managed Object” on page 377

“Data Object Implementation Inheritance” on page 36

Data Access Pattern

The data access pattern determines how the data object accesses data with the
help of its persistent object.

You can set the data access pattern in the Behavior Page of the Data Object
Implementation wizard either when you add a data object implementation (Add
Implementation from the pop-up menu of the data object interface in the
User-Defined Business Objects folder, in the Tasks and Objects pane), or when you
edit the data object implementation you have defined (Properties from the pop-up
menu of the data object implementation in either the User-Defined Business Objects
folder, or the User-Defined Data Objects folder).

Data access patterns for some data object implementations are predestined by
Object Builder, depending on the type of service used, or the transient or persistent
nature of the implementation.

If the form of persistent behavior and implementation of the data object is
Embedded SQL , you can select one of the following access patterns:

v Delegating

v Local copy

Delegating
The data object uses the attributes of its associated persistent object. The get and
set methods of the data object call the corresponding get and set methods of the
persistent object, which, in turn, access the persistent object attributes. A local copy
of the data object attributes is maintained in the private members of the data object

34 Application Development Tools Guide

class. If the implementation uses either of the Cache Service options, or
Procedural Adaptors , the data access pattern is automatically set to Delegating .
This setting cannot be changed.

If Delegating is used, the essential state is passed from the business object to the
data object, which sends it back to the business object. If you select Local copy ,
the data object caches a local copy of the essential state.

Local copy
The data object has its own local copy of its attributes. They are private members
of the data object class that can be accessed directly by the data object’s methods.
That is, the get and set methods are applied to private copies of the attributes. The
attributes of the persistent object are set only when you make a call that invokes
the database: when you implement any of the special framework methods, for
example insert(). The local copy is used for type conversion purposes as in the
case when a mapping helper is used to map the attributes of the data object to the
attributes of an associated persistent object. If the implementation is Transient ,
the data access pattern is automatically set to Local copy , and cannot be
changed.

“Data Object” on page 18
“Persistent Object” on page 19
Application Adaptor (Programming Guide)
Data Object Customization (Programming Guide)
“Container” on page 345
“State Data” on page 18
Cache Service (Advanced Programming Guide)
Using Sets of Objects (Using Reference Collections) (Programming Guide)

“Work with Data Objects - Overview” on page 296
“Add a Persistent Object and Schema” on page 313
“Customize Referential Integrity” on page 108
“Create a Container Instance” on page 346
“Configure a Managed Object” on page 377

“Data Object Implementation Inheritance” on page 36

Handle for Storing Pointers

The design pattern you use for the data object implementation determines how
object references are stored (made persistent rather than transient) for later
retrieval and use. Object references are in a format that can be stored in a
database. These persistent storage forms, when converted back to in-memory
pointers, need no further transformation in order to point to the right object. These
patterns are implemented using handles that Object Builder generates. The choice
of a pattern is based on factors such as speed of execution and storage overhead.

You can select the handle to be used for storing pointers in the Behavior Page of
the Data Object Implementation wizard either when you add a data object
implementation (Add Implementation from the pop-up menu of the data object
interface in the User-Defined Business Objects folder, in the Tasks and Objects
pane), or when you edit the data object implementation you have defined

Chapter 2. Component Overview 35

(Properties from the pop-up menu of the data object implementation in either the
User-Defined Business Objects folder, or the User-Defined Data Objects folder).

You can select one of the following handles:

v Default

v Stringified object reference

v Object name

v Home name and key

Default
Select this option if you prefer to have the default handle used as the design
pattern for swizzling pointers. The default handle is the one you select when you
define the implementation for the corresponding business object on the Handle
Selection Page of the Business Object Implementation wizard is used.

Stringified object reference (SOR)
Select this option to distribute the object reference in the CORBA environment. This
is the string form of an object reference. It helps in externalizing an object to a
stream.

Object name
Select this option only for objects named using the Naming Service. An object thus
named provides an interface that returns its name.

Home name and key
Select this option to implement specific relationships among CBConnector objects.
The handle that the data object uses to store references to other objects is
composed of a home that stores the instance of the referenced object and a key
that identifies the instance. This option is sometimes preferred over a stringified
object reference (SOR) because it takes less storage space, and can be maintained
more efficiently: transferring a home from one server to another will not break a
home name and key reference, but it would an SOR.

“Data Object” on page 18
“Persistent Object” on page 19
Using Handles (Programming Guide)
Naming Service (Advanced Programming Guide)
Application Adaptor (Programming Guide)
Data Object Customization for Cardinality Relationships (Programming Guide)
Object Relationships (Programming Guide)
Using Sets of Objects (Using Reference Collections) (Programming Guide)

“Work with Data Objects - Overview” on page 296

“Data Object Implementation Inheritance”

Data Object Implementation Inheritance

Persistence Default Parent Implementation Platforms

Transient IBOIMExtLocalToServer
IBOIMExtLocalToServer::IDataObjectBase

All

36 Application Development Tools Guide

DB2 Cache
service

IRDBIMExtLocalToServer
IRDBIMExtLocalToServer::ICachingServiceDataObject

All

Oracle Cache
service

IRDBIMExtLocalToServer
IRDBIMExtLocalToServer::ICachingServiceDataObject

All

Procedural
Adaptors

IPAAExtLocalToServer IPAAExtLocalToServer::IDataObject All

Embedded SQL RDBIMExtLocalToServer
IRDBIMExtLocalToServer::IDataObject

NT, AIX

Embedded SQL IBOIM390LocalToServer
IBOIM390LocalToServer::IDataObject

OS/390

Transient(BOIM
with UUID Key)

IBOIMExtLocalToServer
IBOIMExtLocalToServer::IUUIDDataObject

All

“Data Object” on page 18
“Persistent Object” on page 19

“Work with Data Objects - Overview” on page 296
“Add a Data Object Implementation” on page 299
“Edit a Data Object Implementation” on page 310

Chapter 2. Component Overview 37

38 Application Development Tools Guide

Chapter 3. Getting Started with Object Builder

Getting Started with Object Builder

The following scenarios introduce you to some of Object Builder’s functionality, in
the course of developing and deploying a component with data stored in a DB2
database. These scenarios are derived from the scenarios “Getting Started with
C++ Business Objects” and “Getting Started with Java Business Objects”, formerly
in the Component Broker Quick Beginnings book.

You should follow these scenarios in order.

The introductory scenarios are:

1. “Create a Component - Scenario”

2. “Build DLLs or Shared Library Files - Scenario” on page 47

3. “Package an Application - Scenario” on page 50

4. “Install and Run an Application Using InstallShield - Scenario” on page 57

5. “Install and Run an Application - Scenario” on page 61

6. “Trace and Debug an Application - Scenario” on page 65

7. “Uninstall an Application Using InstallShield - Scenario” on page 70

8. “Uninstall an Application - Scenario” on page 71

For additional scenarios, search the online information for “scenario”, or look in the
book index under “scenario”.

“Object Builder” on page 1

Create a Component - Scenario

Objectives
To create a C++ or Java component for new database (DB) data.
To write two methods that manipulate the data.
To generate the code for the component, including the DB schema that defines the
data.

Before You Begin
You need the following installed on your system:

v CBToolkit, including Samples

v DB2 Universal Database

v VisualAge for C++ and (for Java applications) VisualAge for Java

You should be familiar with the Component Broker programming model, as
described in the IBM Component Broker Programming Guide.

If you are developing a Java component, make sure your CLASSPATH is set
correctly, as described in the following topic:

v “Requirements for Java Development” on page 8

© Copyright IBM Corp. 1997, 1998 39

Description
This exercise defines the objects required to create a component named “Claim”.
For this exercise, you will:

1. Create a new business object file

2. Define a business object

3. Define a data object implementation

4. Define a persistent object and schema

5. Define a managed object

6. Generate the code

Once you have defined the objects and generated the code for them, you can
continue to the next scenario:

v “Build DLLs or Shared Library Files - Scenario” on page 47

Creating a New Business Object File
To create a new business object file to hold the interface, the Business Object File
wizard is used. This wizard contains pages where you can:

v Specify the name of the business object interface.

v Define any associated constructs that will operate on a file-scope level.

v Define any associated files.

v Include any comments.

For this exercise, the file being added is ClaimFile. The only information required is
the file name.

To define a business object file:

1. From the Task and Objects pane, select the User-Defined Business Objects
folder.

2. Open the pop-up menu of User-Defined Business Objects, and select Add File .
The Business Object File wizard is opened.

3. Type ClaimFile in the Name field.

4. Click the Next button to continue to the Constructs page.

5. Click the Next button to accept the defaults and to continue to the Files to
Include page.

6. Click the Next button to accept the defaults and to continue to the Comments
page.

7. Click the Finish button.

The ClaimFile file is displayed in the User-Defined Business Objects folder.

Defining a Business Object
After creating the new business object file, the business object needs to be defined.
A fully configured business object consists of:

v A business object interface

v An associated key object

v An associated copy helper object (optional)

v A business object implementation

40 Application Development Tools Guide

Defining a Business Object Interface
To define a business object interface for a component, the Business Object
Interface wizard is used. This wizard contains pages where you can:

v Specify the name of the business object interface

v Define any associated constructs that will operate on an interface-scope level

v Define any parent classes

v Define any user-defined attributes

v Define any user-defined methods

v Define any relationships to other objects

v Include any comments

For this exercise, the interface being added is Claim. This interface will define:

v The claimNo and state attributes.

v The approve and deny methods.

To define the business object interface:

1. From the User-Defined Business Objects folder, select the ClaimFile
business object file.

2. Open the pop-up menu of the ClaimFile business object file, and select Add
Interface . This opens the Business Object Interface wizard.

3. Type Claim in the Name field.

4. Click the Next button to continue to the Constructs page.

5. Click the Next button to accept the defaults and continue to the Interface
Inheritance page.

6. Click the Next button to accept the defaults and to continue to the Attributes
page.

7. Define the user-defined attributes.

a. Click the Add Another button.

b. Type claimNo in the Attribute Name field, and ensure that long is selected
as the attribute type.

c. Click the Add Another button. The claimNo attribute is added to the tree,
and the fields are filled with default values.

d. Type state in the Attribute Name field, and ensure that long is selected as
the attribute type.

e. Click the Next button to continue to the Methods page.

8. Define the user-defined methods.

a. Click the Add Another button.

b. Type approve in the Method Name field, and ensure that void is selected as
the return type.

c. Click the Add Another button. The approve method is added to the tree,
and the fields are filled with default values.

d. Type deny in the Method Name field, and ensure that void is selected as the
return type.

e. Click the Next button to continue to the Object Relationships page.

9. Click the Next button to accept the defaults and to continue to the Comments
page.

10. Click the Finish button.

The Claim interface is displayed in the User-Defined Business Objects folder.

Chapter 3. Getting Started with Object Builder 41

Defining a Key Object
After defining the Claim interface, define the key client object of the component.
The key object defines the attributes needed to find a particular instance of the
component on the server. It consists of one or more business object attributes, but
these attributes must provide enough information to uniquely identify the instance.

To create a key object, the Key wizard is used. By using this wizard, a key object is
defined by assigning a default name and a file name based on the equivalent
interface names. This wizard contains pages where you can:

v Specify the key.

v Define any parent classes.

v Modify any existing framework methods.

v Define any additional framework methods.

For this exercise, a key object is added for the Claim business object interface. The
ClaimFileKey and ClaimKey objects are created. The attribute used to create the
key is the claimNo attribute. This exercise assumes that each claim instance will
have a different claim number.

To define the key object:

1. From the User-Defined Business Objects folder, select the Claim interface.

2. Open the pop-up menu of Claim, and select Add Key . This opens the Key
wizard.

3. Select the claimNo attribute from the Business Object Attributes list.

4. Click the >> button to move this attribute to the Key Attributes list.

5. Click the Next button to continue to the Implementation Inheritance page.

6. Click the Next button to accept the defaults and to continue to the Summary of
Framework Methods page.

7. Click the Next button to continue to the Optional Framework Methods page.

8. Click the Finish button to accept the defaults.

The ClaimKey key is displayed in the User-Defined Business Objects folder.

Defining a Copy Helper Object
A component can have an optional copy helper class to provide an efficient way for
the client application to create new instances of the component on the server. The
copy helper object contains all or a subset of the attributes of a business object.
Without a copy helper, the client may need to make multiple calls to the server for
each new instance.

To create a copy helper object, the Copy Helper wizard is used. This wizard
contains pages where you can:

v Specify the copy helper.

v Define any parent classes.

v Modify any existing framework methods.

For this exercise, a copy helper object is being added for the Claim business object
interface. The ClaimFileCopy and ClaimCopy are created and the attributes
associated with the defined key object are defined.

To define the copy helper object:

1. From the User-Defined Business Objects folder, select the Claim interface.

42 Application Development Tools Guide

2. Open the pop-up menu of Claim, and select Add Copy Helper . This opens the
Copy Helper wizard.

3. Click the All >> button to move the attributes from the Business Object
Attributes list to the Copy Helper Attributes list.

4. Click the Next button to continue to the Implementation Inheritance page.

5. Click the Next button to accept the defaults and to continue to the Summary of
Framework Methods page.

6. Click the Finish button to accept the defaults.

The ClaimCopy copy helper is displayed in the User-Defined Business Objects
folder.

Defining a Business Object Implementation
After defining the client objects (business object interface, key object, and copy
helper object), the business object implementation needs to be defined. The
business object implementation is the first server object. This implementation
defines a full class (interface and implementation).

As part of the implementation definition, identify which attributes need to be made
persistent. These attributes define the interface to the data object. Each business
object implementation can have only one data object interface.

For this task, the Business Object Implementation wizard is used. This wizard
contains pages where you can:

v Specify the name and access implementation patterns.

v Define any parent classes.

v Specify the implementation language (C++ or Java).

v Define the key selection.

v Define how references are stored.

v Define the data object interface.

v Review the framework methods implemented by Object Builder for this object.

For this exercise, a business object implementation is added for the Claim business
object interface. The ClaimFileBO file and ClaimBO business object implementation
are created. You will define the implementation to handle the state data by caching.
This implementation creates the syncToDataObject() and syncFromDataObject()
methods.

To define the business object implementation and its data object interface:

1. From the User-Defined Business Objects folder, select the Claim interface.

2. Open the pop-up menu of Claim, and select Add Implementation . This opens
the Business Object Implementation wizard to the Name and Data Access
Pattern page.

3. Define the implementation.

a. Set the Caching radio button in the Patterns for Handling State Data
section. The business object implementation maintains a local copy of the
data object attributes instead of delegating calls to the data object.

b. Set the Use lazy evaluation check box. For attributes that are object
references, the cached copy of the attributes is synchronized with the
attributes of the data object at first use instead of during instantiation.

Chapter 3. Getting Started with Object Builder 43

c. Set the Create a new one now radio button in the Data Object Interface
section to add a page to the wizard. This page will be used to define the
business object attributes that need to be preserved in the data object.

Note the deployment platform options. By default, the deployment platforms
match those selected in the Platform - Constrain menu. By selecting a single
deployment platform, you can take advantage of a broader range of
development options (because you are not limited to cross-platform options). In
this exercise, you can ignore these options.

4. Click the Next button to continue to the Implementation Inheritance page.

5. Verify that IManagedClient IManagedClient::IManageable is selected as a
parent.

6. Click the Next button to continue to the Implementation Language page.

7. Select C++ as the implementation language.

8. Click the Next button to continue to the Attributes page.

9. Click the Next button to continue to the Methods page.

10. Click the Next button to continue to the Key and Copy Helper page.

11. Verify that the ClaimKey key and the ClaimCopy copy helper are selected.

12. Click the Next button to continue to the Handle Selection page.

13. Click the Next button to continue to the Attributes to Override page.

14. Click the Next button to accept the defaults and to continue to the Data Object
Interface page.

15. Click the All >> button to move the attributes in the Business Object Attributes
list to the State Data list.

16. Click the Next button to continue to the Data Objects Methods page.

17. Click the Next button to accept the defaults and to continue to the Summary of
Framework Methods page.

18. Verify that the syncToDataObject() and syncFromDataObject() methods are
added.

19. Click the Finish button.

The ClaimBO business object implementation and the ClaimDO data object
interface are displayed in the User-Defined Business Objects folder.

The majority of the business object implementation is now defined, but the code for
the approve() and deny() methods still needs to be provided. To provide this code:

1. From the Tasks and Objects pane, select the ClaimBO business object
interface. The Method List pane contains the methods and attributes for the
object.

2. Double-click User-Defined Methods , and select the approve() method. The
skeleton implementation is displayed in the Source pane.

3. Type the following implementation for the approve() method:
state(1);

When a claim is approved, its state changes from 0 to 1.

4. Again from the Methods pane, select the deny() method. The skeleton
implementation is displayed in the Source pane.

5. Type the following implementation for the deny method:
state(-1);

44 Application Development Tools Guide

When a claim is denied, its state changes to -1.

Defining a Data Object Implementation
Each data object interface can have multiple implementations just as a business
object interface can have multiple implementations.

For this exercise, a data object implementation is defined to access data from the
database using embedded SQL. To create the data object implementation, the Data
Object Implementation wizard is used. This wizard contains pages where you can:

v Define the environment.

v Define any parent classes.

v Specify the key and copy helper objects.

To define the data object implementation:

1. From the User-Defined Business Objects folder, select the ClaimDO data
object interface.

2. Open the pop-up menu of ClaimDO, and select Add Implementation . This
opens the Data Object Implementation wizard.

3. Set the environment.

a. Set the BOIM with any key radio button in the Environment section to
indicate that the data object is part of a component installed in a business
object application adaptor with instances being located by key objects.

b. Set the Embedded SQL radio button in the Form of Persistent Behavior and
Implementation section.

c. Set the Local copy radio button in the Data Access Pattern section.

d. Set the Home name and key radio button in the Handle for Storing Pointers
section.

Note the deployment platform options. By default, the deployment platforms
match those selected in the Platform - Constrain menu. By selecting a single
deployment platform for the data object, you can take advantage of a broader
range of development options (because you are not limited to cross-platform
options). In this exercise, you can ignore these options.

4. Click the Next button to continue to the Implementation Inheritance page.

5. Click the Next button to accept the defaults and to continue to the Attributes
page.

6. Click the Next button to continue to the Methods page.

7. Click the Next button to continue to the Key and Copy Helper page.

8. Verify that the following fields contain their associated values:

v Key contains ClaimKey.

v Copy Helper contains ClaimCopy.

9. Click the Finish button. The remaining pages in this wizard are not needed for
this exercise.

The ClaimDOImpl data object implementation is displayed in the User-Defined
Business Objects folder. Because BOIM with any key is specified on the Name and
Behavior page, a persistent object needs to be added to the implementation. The
framework methods cannot be implemented unless a persistent object is created. If
you view the method body for any of the framework method, you will see a
comment stating that a persistent object needs to be defined.

Chapter 3. Getting Started with Object Builder 45

Defining a Persistent Object and Schema
The persistent object and schema are the final layer of the component. The
database columns and SQL data types are mapped to C++ attributes and data
types. To create the persistent object and schema, the Add Persistent Object and
Schema wizard is used.

To define the persistent object and schema:

1. Expand User-Defined Data Objects - ClaimFileDO - ClaimDO , and select the
ClaimDOImpl data object implementation.

2. Open the pop-up menu of ClaimDOImpl, and select Add Persistent Object and
Schema . This opens the Add Persistent Object and Schema wizard to the
Name and Attributes page.

3. Type ClaimDBGroup in the Group Name field.

4. Type ClaimDB in the Database field.

5. Click the Finish button.

The ClaimDBGroup schema group, ClaimDB schema, and ClaimPO persistent
object appear in the DBA-Defined Schemas folder.

Defining a Managed Object
The managed object is the top layer of the component. The managed object gets
the required server objects, provides the activation controls, and ensures that data
is accessed and set reliably and securely. The managed object is defined from the
business object implementation. If multiple business object implementations are
defined, each implementation could have its own managed object.

To create a managed object, the Managed Object wizard is used. This wizard
contains pages where you can:

v Specify the file name and name of the object.

v Define any parent classes.

To add a managed object:

1. Expand User-Defined Business Objects - ClaimFile - Claim , and select the
ClaimBO business object implementation.

2. Open the pop-up menu of the ClaimBO business object implementation, and
select Add Managed Object . This opens the Managed Object wizard to the
Name and Application Adaptor page.

Note the deployment platform options. By default, the deployment platforms
match those selected in the Platform - Constrain menu. By selecting a single
deployment platform for the managed object, you can take advantage of a
broader range of development options (because you are not limited to
cross-platform options). In this exercise, you can ignore these options.

3. Click the Next button to accept the defaults and continue to the Implementation
Inheritance page.

4. Click the Finish button.

The ClaimMO managed object is displayed in the User-Defined Business Objects
folder.

Generating the Code
Generating the code creates:

v IDL files for the interfaces.

46 Application Development Tools Guide

v IDL and C++ or Java files for the implementations, the key object, and the copy
helper object.

v An .sql file for the schema that can be changed to define the table in a database.

v An .sqx and an .hpp file for the persistent object.

Until you generate the code, all the information for the objects is maintained in an
Object Builder data model. Save this data model by selecting File - Save. The data
model is saved to the current project’s model directory (for example,
f:\CBroker\MyProject\model for Windows NT or $HOME/MyProject/Model for AIX).
When you generate the code, the resulting files are placed in the current project’s
working directory (for example, f:\CBroker\MyProject\working\NT\ for Windows NT
or $HOME/MyProject/Working/AIX for AIX).

To generate the code:

1. Expand User-Defined Business Objects , and select the ClaimFile business
object file.

2. Open the pop-up menu of ClaimFile, and select Generate - All to generate
code and to generate the .sql, .sqx, and .hpp files.

You can view the source code for any defined objects, but you cannot directly edit
this source. If you want to change the source, use the wizards. The only code you
should edit directly is the implementation code for methods, which you can access
by clicking on a method in the Methods list.

For example, to view the source code for the ClaimBO business object
implementation:

1. Open the pop-up menu of the ClaimBO business object implementation, and
select View Source . The source files (.idl, .ih, and .cpp for C++, or .idl and .java
for Java) for the object are displayed in the Source pane.

2. Click the drop-down arrow of the Source pane title bar to display the list of
currently loaded files. You can switch among these files.

Before the code can be compiled, the ClaimDB database needs to be defined and a
.mak file needs to be created. The .mak file defines build options, a set of source
files that will be built into the target DLL files, and dependencies.

Summary
You have defined the objects that make up the Claim component, implemented two
methods for changing the status of the Claim, and generated the code for the Claim
objects.

You are ready to continue to the next scenario, in which you build the generated
code into DLLs or shared library files:

v “Build DLLs or Shared Library Files - Scenario”

Build DLLs or Shared Library Files - Scenario

Objectives
To configure the database that will hold your data.
To define the makefiles to build a C++ or Java component with access to DB2 data.
To build the components into DLLs (also known as shared library files).

Chapter 3. Getting Started with Object Builder 47

Before You Begin
This scenario is a continuation of the Create a Component (page 39) scenario. You
should complete the previous scenario before attempting this one.

You need the following installed on your system:

v CBToolkit, including Samples

v DB2 Universal Database

v VisualAge for C++ and (for Java applications) VisualAge for Java

v (optional) InstallShield

If you are developing a Java component, make sure your CLASSPATH is set
correctly, as described in the following topic:

v “Requirements for Java Development” on page 8

Description
This exercise provides the necessary steps to build your generated code into DLLs
or shared library files. For this exercise, you will:

1. Configure the ClaimDB database

2. Define the client DLL

3. Define the server DLL

4. Build the DLLs

Once you have created the DLLs and (for Java) .jar files, you can continue to the
next scenario:

v “Package an Application - Scenario” on page 50

Configuring the ClaimDB Database
You need to define (in DB2) the ClaimDB database and Claim table that your
component will access. You should have a database administrator perform this
procedure.

To configure the database and table, you need to enter the following commands
from a DB2 command prompt.

create database ClaimDB
connect to ClaimDB
create table Claim (claimNo integer not null, state integer, primary key(claimNo))

The syntax for the last command is provided by Object Builder in the generated .sql
file for the ClaimDBGroup schema.

Creating Client and Server DLL Files
The defined objects need to be built into two separate DLL files:

v A client DLL, which provides the client application with an interface to the
component on the server, along with a key and copy helper to simplify location
and creation of the component on the server.

v A server DLL, which contains the actual component implementation on the
server.

The client DLL file needs to be defined before the server DLL file. When the server
DLL file is defined, it needs to link to the client DLL file. After defining the objects
that comprise each DLL file, the DLL files can be built.

48 Application Development Tools Guide

AIX only:
The DLL files are called “shared library” files and are in the format lib*.so. For any
reference to a DLL file, substitute shared library file.

Defining the Client DLL File
To define the client DLL file:

1. From the Tasks and Objects pane, select the Build Configuration folder.

2. Open the pop-up menu of the Build Configuration folder, and select Add Client
DLL . This opens the Client DLL wizard to the Name and Option page.

3. Type ClaimC in the Name field.

4. Click the Next button to continue to the Client Source Files page.

5. Click the All >> button to move the client Claim files to the Items chosen list.

6. Click the Next button to continue to the Libraries to Link With page.

7. Click the Finish button to accept the defaults.

The ClaimC client DLL file is displayed in the Build Configuration folder.

Defining the Server DLL File
To define the server DLL file:

1. From the Tasks and Objects pane, select the Build Configuration folder.

2. Open the pop-up menu of the Build Configuration folder, and select Add Server
DLL . This opens the Server DLL wizard.

3. Provide the following information on this page.

a. Type ClaimS in the Name field.

b. Type IVB_TRACE_DEBUG=1 in the Make Options field to enable remote
tracing and debugging of server code.

c. Type -DCBS_TRACE_DEBUG -g in the CPP Compiler Options field, and
-livbtr10 in the Link Options field.

4. Click the Next button to continue to the Server Source Files page.

5. Click the All >> button to move the server Claim objects to the Items chosen
list.

6. Click the Next button to continue to the Libraries to Link With page.

7. Select ClaimC in the Items available list.

8. Click the >> button to move the DLL file to the Items chosen list. The library file
for ClaimC is included as a link for the ClaimS DLL file.

9. Click the Finish button.

The ClaimS server DLL file is displayed in the Build Configuration folder.

Building the DLL Files
To generate the makefiles and build the DLL files:

1. From the Tasks and Objects pane, select the Build Configuration folder.

2. Open the pop-up menu of the Build Configuration folder, and select Generate -
All - C++ Default Targets . This generates makefiles for all the DLL files defined
in the folder and generates an all.mak file that calls the DLL makefiles. Note that
the choice of C++ targets determines what the default build target is, but does
not prevent you from using all.mak to build other targets.

For a C++ component, build as follows:

Chapter 3. Getting Started with Object Builder 49

1. From the Build Configuration folder’s pop-up menu, select Build - Out-of-Date
Targets - Default .

The ClaimC.dll and ClaimS.dll files are stored in your Object Builder
working\NT directory.

The libClaimC.so and libClaimS.so files are stored in your Object Builder
working/AIX directory.

If your application contained Java components as well as C++ components, you
would also select Build - Out-of-Date Targets - Java , to create ClaimC.jar in
your \working\platform directory. The .jar file allows Java components on the
server to interact with your C++ components in the DLLs. For this exercise, your
application contains just a single C++ component, so you do not need to build
the .jar file.

For a Java component, build as follows:

1. From the Build Configuration folder’s pop-up menu, select Build - Out-of-Date
Targets - Java .

This creates ClaimC.jar and ClaimS.jar in your working\platform directory.

If you had a Java client application, regardless of the language your component is
implemented in, you would also select Build - Out-of-Date Targets - Java Client
Bindings to generate Java client bindings (working\platform\JCB\JCBClaimC.jar).
For this exercise, the client application is in C++, and you do not need to build Java
client bindings.

Summary
You have configured the database that will hold your data, created the makefiles
that define the client and server DLLs or shared library files for your component,
and built the DLLs or .jar files.

You are ready to continue to the next scenario, in which you package your client
application and server component into an application family:

v “Package an Application - Scenario”

Package an Application - Scenario

Objectives
To build the client application from provided sample files.
To define application families for the client and server applications.
To define a container for the component on the server.
To configure the component with a container and home on the server.
To generate the install information for the application family.

Before You Begin
This scenario is a continuation of the scenario series:

1. “Create a Component - Scenario” on page 39

2. “Build DLLs or Shared Library Files - Scenario” on page 47

You should complete the previous scenarios before attempting this one.

You need the following installed on your system:

v CBToolkit, including Samples

50 Application Development Tools Guide

v DB2 Universal Database

v VisualAge for C++ and (for Java applications) VisualAge for Java

v (optional) InstallShield

If you are developing a Java component, make sure your CLASSPATH is set
correctly, as described in the following topic:

v “Requirements for Java Development” on page 8

Description
This exercise provides the necessary steps for you to package your client
application and server components and prepare them for installation on the client
and server. For this exercise, you will:

1. Build the client application from provided sample files.

2. Define a client application family.

3. Add the client application to the family.

4. Define a server application family.

5. Add the server application in the family.

6. Define a container for the component on the server.

7. Configure the Claim component created in previous scenarios with the
container, and add it to the server application.

8. Generate the installation information for both application families.

Once you have defined the application and generated the installation information,
you can continue to the next scenario:

v “Install and Run an Application Using InstallShield - Scenario” on page 57

v “Install and Run an Application - Scenario” on page 61

Building the Client Application
Before packaging an application, you would normally write a fully functional client
application. However, writing this application is beyond the scope of this exercise.
For information on writing a client application, see “MOFW Client Programming
Model” in the IBM Component Broker Programming Guide.

For this exercise, the source for the client application is called “ClaimApp” and is
shipped as part of the samples.

To build ClaimApp:

1. Copy the ClaimApp.cpp and the ClaimApp.mak files from
x:\CBroker\samples\InstallVerification\ProgrammingModel\Applications\C++\Claim

to your Object Builder working directory (x:\CBroker\MyProject\working\NT).

2. From a command prompt, change directory to your Object Builder working
directory.

3. Enter:
nmake -f ClaimApp.mak

To build ClaimApp:

1. Copy the ClaimApp.cpp and ClaimApp.mak files from
$HOME/samples/InstallVerification/ProgrammingModel/Applications/C++/Claim

to your Object Builder working directory ($HOME/MyProject/Working/AIX).

Chapter 3. Getting Started with Object Builder 51

2. From a command prompt, change directory to your Object Builder working
directory.

3. Enter:
make -f ClaimApp.mak

Creating the Server Application Family
The first step in packaging the DLL files for your application is defining its
application family. An application family consists of a number of related applications
that work together and need to be running at the same code level.

Each application family has a single installation process that handles all the
applications defined in it. During installation, you can select the applications to
install or remove from a system.

In this exercise, you will create two application families. The first application family
will hold ClaimAppS. The ClaimAppS application defines the component on the
server that the client application will access.

The installation checks the version of applications in the same family and ensures
that, at the end of the installation, all applications in the family are at the same
version.

To create the application family:

1. From the Tasks and Object pane, select the Application Configuration folder.

2. Open the pop-up menu of the Application Configuration folder, and select Add
Application Family . This opens the Add Application Family wizard to the Name
page.

3. Type ClaimAppFam in the Name field. The default version number (1.0.0) is
acceptable and the description is optional.

4. Click the Next button to accept the other defaults and to continue to the
Installation Information page.

5. Click the Finish button.

The ClaimAppFam object is displayed in the Application Configuration folder.

On the Installation Information page, you could specify any additional disk space
requirements. If specified, the installation process checks to ensure that the
necessary space is available before the installation can proceed. On this page, you
could also specify the location of a README file you wanted to include, and the
installation process would include the option to open the README file as a final
step.

Defining a Server Application
To define the server application:

1. From the Tasks and Objects pane, expand the Application Configuration
folder and select the ClaimAppFam application family.

2. Open the pop-up menu of the ClaimAppFam application family, and select Add
Application . This opens the Add Application wizard to the Name and
Environment page.

3. Type ClaimAppS in the Name field.

4. Click the Next button to continue to the Additional Executables page.

5. Select the platform you are configuring the application for.

6. Add the file Claim.sql:

52 Application Development Tools Guide

a. Click the Find button to open the Executables to Include dialog.

b. Locate your Object Builder working directory.

c. Select Claim.sql

d. Click the Open button.

e. Click the OK button.

7. Add the file ClaimPO.bnd, in the same manner.

8. Click the Finish button.

The ClaimAppS application is displayed in the ClaimAppFam folder.

Creating the Client Application Family
Even though your client application is written and built outside of Object Builder, you
can still use Object Builder to package the application and to generate the
installation process for it.

You are now ready to define the client application family, that will hold the
ClaimAppC application. The ClaimAppC application will hold the client executable,
as well as its interface to the server component.

To create the application family:

1. From the Tasks and Object pane, select the Application Configuration folder.

2. Open the pop-up menu of the Application Configuration folder, and select Add
Application Family . This opens the Add Application Family wizard to the Name
page.

3. Type ClaimAppClientFam in the Name field. The default version number (1.0.0)
is acceptable and the description is optional.

4. Click the Next button to accept the other defaults and to continue to the
Installation Information page.

5. Click the Finish button.

The ClaimAppClientFam object is displayed in the Application Configuration folder.

On the Installation Information page, you could specify any additional disk space
requirements. If specified, the installation process checks to ensure that the
necessary space is available before the installation can proceed. On this page, you
could also specify the location of a README file you wanted to include, and the
installation process would include the option to open the README file as a final
step.

Defining a Client Application
To define the client application:

1. From the Tasks and Objects pane, select the Application Configuration folder
and select the ClaimAppClientFam application family.

2. Open the pop-up menu of the ClaimAppClientFam application family, and select
Add Application . This opens the Add Application wizard to the Name and
Environment page.

3. Define the application and its environment.

a. Type ClaimAppC in the Name field.

b. Click the Next button to continue to the Additional Executables page.

c. Select the platform you are configuring the application for.

d. Add the file ClaimApp.exe:

Chapter 3. Getting Started with Object Builder 53

1) Click the Find button to open the Executables to Include dialog.

2) Locate your Object Builder working directory.

3) Select ClaimApp.exe

4) Click the Open button.

5) Click the OK button.

e. Add the file ClaimC.dll, in the same manner.

Note :
If you do not see the ClaimC.dll file in the Object Builder file dialog, ensure
that the file is not hidden. Using Windows NT Explorer, select View -
Options. In the Options dialog, click the View tab and set the Show All Files
check box. Close the Object Builder file dialog and click the Browse button
again. The DLL file should now be displayed.

f. Add the file libClaimC.so in the same manner.

4. Click the Finish button.

The ClaimAppC application appears in the Application Configuration folder.

Creating a Container Instance
Before you can add the Claim component to the server application, you need to
define a new container instance that will provide object services for that component.
Although there are default containers provided with Object Builder, these default
containers are for components whose data is transient. Because Claim has
persistent data, you must define a new container.

To define a container instance:

1. From the Tasks and Objects pane, select the Container Definition folder.

2. Open the pop-up menu for the Container Definition folder, and select Add
Container Instance . This opens the Container wizard to the Name of Container
and Number of Components page.

Note the deployment platform options. By default, the deployment platforms
match those selected in the Platform - Constrain menu. By selecting a single
deployment platform for the container, you can take advantage of a broader
range of development options (because you are not limited to cross-platform
options). In this exercise, you can ignore these options.

3. Type ContainerOfClaims in the Name field.

4. Click the Next button to accept the other defaults and continue to the Workload
Management page.

5. Click the Next button to accept the defaults and continue to the Service page.

6. Define the policies:

a. Set the Use RDB Transaction Services check box.

b. Click the Next button to continue.

7. On the Service Details page:

a. Set the Throw an exception and abandon call radio button in the Behavior
for Methods Called Outside a Transaction field.

b. Click the Next button to accept the other defaults and to continue to the
Data Access Patterns page.

8. Define the data access pattern.

a. Set the Caching radio button in the Business Object field. This matches the
data access pattern you set when you created the business object.

54 Application Development Tools Guide

b. Set the Local copy radio button in the Data Object field. This matches the
data access pattern you set when you created the data object
implementation.

c. Click the Finish button.

The ContainerOfClaims container is added to the Container Definition folder.

Configuring the Managed Object
To add the Claim component to the application, you configure the component’s
managed object with the application. It also serves to confirm the objects that make
up the component (for example, if you defined more than one data object
implementation for the component, this is the point at which you choose which data
object implementation to package).

To configure the managed object:

1. From the Tasks and Object pane, expand Application Configuration -
ClaimAppFam , and select the ClaimAppS server application.

2. Open the pop-up menu of ClaimAppS, and select Add Managed Object . This
opens the Configure Managed Object wizard.

3. Ensure that ClaimFileMO ClaimMo is selected in the Managed Object field.

The Selection page should show:

v For the managed object, ClaimMO in the ClaimS DLL.

v For the key, ClaimKey in the ClaimC DLL.

v For the copy helper, ClaimCopy in the ClaimC DLL.

4. Click the Next button to continue to the Data Object Implementations page.

5. Click the Add Another button. The ClaimDOImpl implementation and the
ClaimS DLL file are selected.

6. Click the Next button to continue to the Container page.

7. Click the Next button to accept the defaults and continue to the Home page.
For the Claim component, the default home selected and the default system
management settings are sufficient.

8. Click the Finish button.

The ClaimMO managed object is displayed in the Application Configuration folder.

The Container and Home pages are used to define how the managed object will be
installed in the Component Broker run-time environment. The container selected for
the managed object determines which object services are available. The home you
define determines the interface to the home that will be used to locate and create
instances of the component. The combination of a home and a particular
component’s key uniquely identifies the component.

Generating the DDL Files
To generate the DDL files:

1. From the Tasks and Object pane, expand Application Configuration and
select the ClaimAppFam application family.

2. Open the pop-up menu for the ClaimAppFam application family, and select
Generate .

The ClaimAppFam.ddl and the SpecificClaimAppFam.ddl are generated and placed
in a subdirectory of your working directory. For example:

Chapter 3. Getting Started with Object Builder 55

x:\CBroker\MyProject\working\NT\ClaimAppFam

$HOME/MyProject/Working/AIX/ClaimAppFam

When generation is completed, the Method Implementation pane contains the
ClaimAppFam.ddl file. You can now close Object Builder.

Create the Install Image (optional)
If you are using InstallShield on Windows NT, you can create an install image, that
you can burn onto a CD-ROM and distribute.

To set the location for InstallShield:

1. From Object Builder menu bar, select File - Preferences . The Preferences
window is opened.

2. From the tree view, select Tasks and Objects .

3. Specify the version of InstallShield you are using, and provide the path for the
directory in which it is installed.

4. Click OK.

To generate the install image:

1. From the pop-up menu of ClaimAppFam, select Generate . The install scripts
are generated and placed in the working directory under a subdirectory of the
same name as the application family (for example,
x:\CBroker\MyProject\Working\NT\ClaimAppFam).

When generation is completed, the Method Implementation pane contains the
ClaimAppFam.ddl file. This DDL file is used to set up your application with
Component Broker system management.

2. From the same pop-up menu, select Build . This calls the build.bat file that
creates the Disk1 subdirectory for the Application Family directory (for example,
x:\CBroker\MyProject\Working\NT\ClaimAppFam\Disk1).

The progress of the build is displayed in a Command Window. When the build is
finished, the following message is displayed at the bottom of the window:
Ended (exit code 0)

3. Review the build record, and close the Command Window.

The Disk1 directory now contains the install image (including setup executables)
that can be burned onto a compact disc.

Summary
You have built the client application, defined an application family and server
application, defined a container for the component on the server, and configured the
component with the server application. You have generated the installation
information for the application family.

You are ready to continue to one of the next scenarios, in which you install and
configure your server application, and run the client application:

v “Install and Run an Application Using InstallShield - Scenario” on page 57

v “Install and Run an Application - Scenario” on page 61

56 Application Development Tools Guide

Install and Run an Application Using InstallShield - Scenario

Objectives
To bind a server application to a database.
To install the server application on a server machine, using InstallShield
To configure the server application with System Management.
To run a client application that accesses the server data.

Before You Begin
This scenario is a continuation of the scenario series:

1. “Create a Component - Scenario” on page 39

2. “Build DLLs or Shared Library Files - Scenario” on page 47

3. “Package an Application - Scenario” on page 50

You should complete the previous scenarios before attempting this one.

This scenario runs on a server machine. While the previous scenarios can be run
on a dedicated development machine, this scenario requires that you have
CBConnector System Manager installed. For the sake of exercises that follow this
one, it will be simpler if the client and server are on the same machine.

You need the following installed:

v CBConnector (System Management)

v DB2 Universal Database

v VisualAge for C++ and (for Java applications) VisualAge for Java

If you are deploying a Java component, make sure your CLASSPATH is set
correctly, as described in the following topic:

v “Requirements for Java Development” on page 8

Description
This exercise describes how to load, configure, and run your application, using
InstallShield. If you are not using InstallShield, see the “Install and Run an
Application - Scenario” on page 61 (without using InstallShield) scenario.

For this exercise, you will:

1. Bind the server application to a database.

2. Load the server application into System Management.

3. Configure the server application with System Management.

4. Run the client application.

Once you have installed the application and run the client successfully, you can
continue to one of the next scenarios:

v “Trace and Debug an Application - Scenario” on page 65

v “Uninstall an Application Using InstallShield - Scenario” on page 70

Binding the Application
To bind an application to the ClaimDB database:

1. Change to the working directory that contains ClaimPO.bnd
(x:\CBroker\MyProject\working\NT).

Chapter 3. Getting Started with Object Builder 57

2. Enter:
obdatapr ClaimPO.bnd ClaimDB bind

This step is necessary because the Claim component uses the Embedded SQL
pattern for persistence (as set in the data object implementation).

If your component had used the Cache Service pattern instead, you would
change to the directory x:\CBroker\etc\ and bind the files db2cntcs.bnd and
db2cntrr.bnd, with the commands:
obdatapr db2cntcs.bnd ClaimDB bind
obdatapr db2cntrr.bnd ClaimDB bind

To bind an application to the ClaimDB database:

1. Change to the working directory that contains ClaimPO.bnd (
$HOME/MyProject/Working/AIX).

2. Enter:
db2 connect to claimdb
db2 bind ClaimPO.bnd

This step is necessary because the Claim component uses the Embedded SQL
pattern for persistence (as set in the data object implementation).

If your component had used the Cache Service pattern instead, you would
change to the directory /usr/lpp/CBConnector/etc and bind the files
db2cntcs.bnd and db2cntrr.bnd, with the commands:
db2 bind db2cntcs.bnd
db2 bind db2cntrr.bnd
db2 connect reset

Running the Installation Setup
This procedure assumes that the initial activation is completed. To run the
installation setup:

1. Ensure that the name server is running.

2. From the command line, enter:
x:\CBroker\MyProject\Working\NT\ClaimAppFam\Disk1\setup.exe

The InstallShield installation begins and displays a copyright screen.

3. Click the Next button.

4. Accept the default destination directory (x:\CBroker). The applications must be
installed to the ntapps\ClaimAppFam\bin subdirectory; if you selected another
destination, then the installation process would create this subdirectory off the
specified directory.

5. Click the Next button. The Application Installation page is opened.

6. Select ClaimAppS . If you provided a description for the application (when you
defined it in Object Builder), the description is displayed.

7. Click the Next button. The Start Installing page is opened.

8. Review the installation settings. You should be installing the ClaimAppS
application.

9. Click the Next button. The install process begins and can take several minutes
(depending on the speed of the computer).

After using the compact disk for a site installation, you still need to configure the
client application and the component using the System Manager User Interface.

58 Application Development Tools Guide

Configuring the Application with System Management
To configure the application:

1. Configure the application with a management zone.

a. For ClaimAppS:

1) Expand Available Applications , and select the ClaimAppS.

2) Open the pop-up menu of ClaimAppS, and select Drag .

3) Expand Management Zones - Sample Cell and Workgroup Zone -
Configurations , and select Sample Configuration .

4) Open the pop-up menu of Sample Configuration, and select Add
Application .

b. For SpecificClaimAppS:

1) Expand Available Applications , and select SpecificClaimAppS .

2) Open the pop-up menu of SpecificClaimAppS, and select Drag .

3) Expand Management Zones - Sample Cell and Workgroup Zone -
Configurations , and select Sample Configuration .

4) Open the pop-up menu of Sample Configuration, and select Add
Application .

The ClaimAppS and SpecificClaimAppS applications were added to the
Applications folder within the Configurations folder.

2. Configure the server.

v Expand Management Zones - Sample Cell and Workgroup Zone -
Configurations , and select Sample Configuration .

v Open the pop-up menu of Sample Configuration, and select New - Server
Group . This opens a dialog box.

v Type ClaimServerGroup as the name for the server group.

v Click the OK button. The ClaimServerGroup is displayed under Server
Groups.

v Open the pop-up menu of ClaimServerGroup, and select New - Server
(member of group) . A dialog box is displayed.

v Type ClaimServer as the name for the server.

v Click the OK button. The ClaimServer is displayed under ClaimServerGroup.

3. Associate the configured application with the server.

a. For ClaimAppS:

1) Expand Management Zones - Sample Cell and Workgroup Zone -
Configurations - Sample Configuration - Applications , and select
ClaimAppS .

2) Open the pop-up menu of ClaimAppS, and select Drag .

3) Expand Management Zones - Sample Cell and Workgroup Zone -
Configurations - Sample Configuration - Server Groups , and select
ClaimServerGroup .

4) Open the pop-up menu of ClaimServerGroup, and select Configure
Application .

b. For SpecificClaimAppS:

1) Expand Management Zones - Sample Cell and Workgroup Zone -
Configurations - Sample Configuration - Applications , and select
SpecificClaimAppS .

2) Open the pop-up menu of SpecificClaimAppS, and select Drag .

Chapter 3. Getting Started with Object Builder 59

3) Expand Management Zones - Sample Cell and Workgroup Zone -
Configurations - Sample Configuration - Server Groups , and select
ClaimServerGroup .

4) Open the pop-up menu of ClaimServerGroup, and select Configure
Application .

A Configured Applications folder is displayed under ClaimServer. You can
expand the folder to display the entries for ClaimAppS and SpecificClaimAppS.

4. Associate the iDB2IMServices application with the server.

a. Expand Management Zones - Sample Cell and Workgroup Zone -
Configurations - Sample Configuration - Applications, and select
iDB2IMServices .

b. Open the pop-up menu of iDB2IMServices, and select Drag .

c. Expand Management Zones - Sample Cell and Workgroup Zone -
Configurations - Server Group s, and select ClaimServerGroup .

d. Open the pop-up menu of ClaimServerGroup, and select Configure
Application .

5. Configure the server with the host.

a. Expand Management Zones - Sample Cell and Workgroup Zone -
Configurations - Sample Configurations - Server Groups -
ClaimServerGroup - Servers (member of group) , and select
ClaimServer .

b. Open the pop-up menu of ClaimServer, and select Drag .

c. Under Hosts, select myhost for your current system.

d. Open the pop-up menu of myhost, and select Configure Server (member
of group) .

Under the myhost folder, there is now a folder called Configured Servers
(members of group) that contains an entry for the ClaimServer server.

6. Enable security services (optional).

a. Expand Management Zones - Sample Cell and Work Group Zone -
Configurations - Sample Configurations - Server Groups , and select
ClaimServerGroup .

b. Open the pop-up menu of ClaimServerGroup, and select Edit . This opens
the Object Editor.

c. Click the Security Service tab.

d. Change the security enabled field from no to yes.

e. Click the OK button.

7. Activate the configuration.

a. Expand Management Zones - Sample Cell and Workgroup Zone -
Configurations , and select Sample Configuration .

b. Open the pop-up menu of Sample Configuration, and select Activate . A
window should appear, confirming that the configuration has been activated.

Running the Application
To run the client application:

1. From a command prompt, change directory to where the ClaimApp executable
is stored:

x:\CBroker\MyProject\working\NT

60 Application Development Tools Guide

$HOME/MyProject/Working/AIX

2. Enter:
ClaimApp

When the application finishes running, the new Claim component is created (with
values for its ClaimNo and state stored in the ClaimDB database) and the get and
set accessor methods of the component.

Summary
You have bound the server application to the database, installed and configured the
server application, and run the client application.

You are ready to continue to one of the next scenarios, in which you either debug
your client and server applications, or remove the application from the server:

v Debug an Application

v Uninstall an Application Using InstallShield (page 70)

Install and Run an Application - Scenario

Objectives
To bind a server application to a database.
To install the server application on a server machine, without using InstallShield
To configure the server application with System Management.
To run a client application that accesses the server data.

Before You Begin
This scenario is a continuation of the scenario series:

1. “Create a Component - Scenario” on page 39

2. “Build DLLs or Shared Library Files - Scenario” on page 47

3. “Package an Application - Scenario” on page 50

You should complete the previous scenarios before attempting this one.

This scenario runs on a server machine. While the previous scenarios can be run
on a dedicated development machine, this scenario requires that you have
CBConnector System Manager installed. For the sake of exercises that follow this
one, it will be simpler if the Component Broker client application and the
Component Broker Application Server are on the same machine.

You need the following installed:

v CBConnector (System Management)

v DB2 Universal Database

v VisualAge for C++ and (for Java applications) VisualAge for Java

If you are deploying a Java component, make sure your CLASSPATH is set
correctly, as described in the following topic:

v “Requirements for Java Development” on page 8

Description
This exercise describes how to load, configure, and run your application, without

Chapter 3. Getting Started with Object Builder 61

using InstallShield. If you are using InstallShield, see the “Install and Run an
Application Using InstallShield - Scenario” on page 57 scenario.

For this exercise, you will:

1. Bind the server application to a database.

2. Load the server application into System Management.

3. Configure the server application with System Management.

4. Run the client application.

Once you have installed the application and run the client successfully, you can
continue to one of the next scenarios:

v “Trace and Debug an Application - Scenario” on page 65

v “Uninstall an Application - Scenario” on page 71 (without using InstallShield)

Binding the Application
To bind an application to the ClaimDB database:

1. Change to the working directory that contains ClaimPO.bnd (
x:\CBroker\MyProject\working\NT).

2. Enter:
obdatapr ClaimPO.bnd ClaimDB bind

This step is necessary because the Claim component uses the Embedded SQL
pattern for persistence (as set in the data object implementation).

If your component had used the Cache Service pattern instead, you would
change to the directory x:\CBroker\etc\ and bind the files db2cntcs.bnd and
db2cntrr.bnd, with the commands:
obdatapr db2cntcs.bnd ClaimDB bind
obdatapr db2cntrr.bnd ClaimDB bind

To bind an application to the ClaimDB database:

1. Change to the working directory that contains ClaimPO.bnd (
$HOME/MyProject/Working/AIX).

2. Enter:
db2 connect to claimdb
db2 bind ClaimPO.bnd

This step is necessary because the Claim component uses the Embedded SQL
pattern for persistence (as set in the data object implementation).

If your component had used the Cache Service pattern instead, you would
change to the directory /usr/lpp/CBConnector/etc and bind the
filesdb2cntcs.bnd and db2cntrr.bnd, with the commands:
db2 bind db2cntcs.bnd
db2 bind db2cntrr.bnd

3. Once you have bound the files, reset the connection:
db2 connect reset

Loading the Application onto System Management
Once you have bound the application to the database, you can load it onto System
Management.

62 Application Development Tools Guide

To load the application onto System Management:

1. Start the System Manager User Interface.

2. Become an Expert user (View - User Level - Expert).

3. Expand Host Images , and select myhost.austin.ibm.com .

4. Open the pop-up menu of myhost.austin.ibm.com, and select Load Application .

5. Browse for and select ClaimAppFam.ddl , in the following directory:

x:\CBroker\MyProject\working\NT\ClaimAppFam

$HOME/MyProject/Working/AIX/ClaimAppFam

6. Again open the pop-up menu for myhost.austin.ibm.com, and select Load
Application .

7. Browse for and select SpecificClaimAppFam.ddl

Configuring the Application with System Management
To configure the application:

1. Configure the application with a management zone.

a. For ClaimAppS:

1) Expand Available Applications , and select ClaimAppS .

2) Open the pop-up menu of ClaimAppS, and select Drag .

3) Expand Management Zones - Sample Cell and Workgroup Zone -
Configurations , and select Sample Configuration .

4) Open the pop-up menu of Sample Configuration, and select Add
Application .

b. For SpecificClaimAppS:

1) Expand Available Applications , and select SpecificClaimAppS .

2) Open the pop-up menu of SpecificClaimAppS, and select Drag .

3) Expand Management Zones - Sample Cell and Workgroup Zone -
Configurations , and select Sample Configuration .

4) Open the pop-up menu of Sample Configuration, and select Add
Application .

The ClaimAppS and SpecificClaimAppS applications were added to the
Applications folder within the Configurations folder.

2. Configure the server.

v Expand Management Zones - Sample Cell and Workgroup Zone -
Configurations , and select Sample Configuration .

v Open the pop-up menu of Sample Configuration, and select New - Server
Group . This opens a dialog box.

v Type ClaimServerGroup as the name for the server group.

v Click the OK button. The ClaimServerGroup is displayed under Server
Groups.

v Open the pop-up menu of ClaimServerGroup, and select New - Server
(member of group) . A dialog box is displayed.

v Type ClaimServer as the name for the server.

v Click the OK button. The ClaimServer is displayed under ClaimServerGroup.

3. Associate the configured application with the server.

a. For ClaimAppS:

Chapter 3. Getting Started with Object Builder 63

1) Expand Management Zones - Sample Cell and Workgroup Zone -
Configurations - Sample Configuration - Applications , and select
ClaimAppS.

2) Open the pop-up menu of ClaimAppS, and select Drag .

3) Expand Management Zones - Sample Cell and Workgroup Zone -
Configurations - Sample Configuration - Server Groups , and select
ClaimServerGroup .

4) Open the pop-up menu of ClaimServerGroup, and select Configure
Application .

b. For SpecificClaimAppS:

1) Expand Management Zones - Sample Cell and Workgroup Zone -
Configurations - Sample Configuration - Applications , and select
SpecificClaimAppS .

2) Open the pop-up menu of SpecificClaimAppS, and select Drag .

3) Expand Management Zones - Sample Cell and Workgroup Zone -
Configurations - Sample Configuration - Server Groups , and select
ClaimServerGroup .

4) Open the pop-up menu of ClaimServerGroup, and select Configure
Application .

A Configured Applications folder is displayed under ClaimServer. You can
expand the folder to display the entries for ClaimAppS and SpecificClaimAppS.

4. Associate the iDB2IMServices application with the server.

a. Expand Management Zones - Sample Cell and Workgroup Zone -
Configurations - Sample Configuration - Applications , and select
iDB2IMServices .

b. Open the pop-up menu of iDB2IMServices, and select Drag .

c. Expand Management Zones - Sample Cell and Workgroup Zone -
Configurations - Server Groups , and select ClaimServerGroup .

d. Open the pop-up menu of ClaimServerGroup, and select Configure
Application .

5. Configure the server with the host.

a. Expand Management Zones - Sample Cell and Workgroup Zone -
Configurations - Sample Configurations - Server Groups -
ClaimServerGroup - Servers (member of group) , and select
ClaimServer .

b. Open the pop-up menu of ClaimServer , and select Drag .

c. Under Hosts , select myhost for your current system.

d. Open the pop-up menu of myhost, and select Configure Server (member
of group) .

Under the myhost folder, there is now a folder called Configured Servers
(members of group) that contains an entry for the ClaimServer server.

6. Enable security services (optional).

a. Expand Management Zones - Sample Cell and Work Group Zone -
Configurations - Sample Configurations - Server Groups , and select
ClaimServerGroup .

b. Open the pop-up menu of ClaimServerGroup, and select Edit . This opens
the Object Editor.

c. Click the Security Service tab.

64 Application Development Tools Guide

d. Change the security enabled field from no to yes.

e. Click the OK button.

7. Activate the configuration.

a. Expand Management Zones - Sample Cell and Workgroup Zone -
Configurations , and select Sample Configuration .

b. Open the pop-up menu of Sample Configuration, and select Activate . A
window should appear, confirming that the configuration has been activated.

Running the Application
To run the client application:

1. Make sure the SOMCBENV environment variable is correctly set (for example,
myhost.myintranet.com Default Client)

2. From a command prompt, change directory to where the ClaimApp executable
is stored:

x:\CBroker\MyProject\working\NT

$HOME/MyProject/Working/AIX

3. Enter:
ClaimApp

When the application finishes running, the new Claim component is created (with
values for its ClaimNo and state stored in the ClaimDB database) and the get and
set accessor methods of the component.

Summary
You have bound the server application to the database, installed and configured the
server application, and run the client application.

You are ready to continue to one of the next scenarios, in which you either debug
your client and server applications, or remove the application from the server:

v “Trace and Debug an Application - Scenario”

v “Uninstall an Application - Scenario” on page 71 (without using InstallShield)

Load a new Application
Add a Client Application into a Configuration of your Application Environment
Configure Applications onto a Client Style

Trace and Debug an Application - Scenario

Objectives
To debug a fully deployed Component Broker application, on a client and server
(both on the same machine, for this exercise).

Before You Begin
This scenario is a continuation of the scenario series:

1. “Create a Component - Scenario” on page 39

2. “Build DLLs or Shared Library Files - Scenario” on page 47

3. “Package an Application - Scenario” on page 50

Chapter 3. Getting Started with Object Builder 65

4. “Install and Run an Application Using InstallShield - Scenario” on page 57 or
“Install and Run an Application - Scenario” on page 61 (without using
InstallShield)

You should complete the previous scenarios before attempting this one.

This scenario runs on a server machine. While the previous scenarios can be run
on a dedicated development machine, this scenario requires that you have
CBConnector System Manager installed.

The following steps assume that you are running Object Level Trace and the client
application on a single NT or AIX workstation. You must interact with the Debugger
on NT. For information on deploying Object Level Trace across multiple
workstations, please see the online documentation.

You need the following installed:

v CBConnector (System Management)

v CBToolkit

v DB2 Universal Database

v VisualAge for C++ and (for Java applications) VisualAge for Java

v Java SDK

If you are deploying a Java component, make sure your CLASSPATH is set
correctly, as described in the following topic:

v “Requirements for Java Development” on page 8

Description
The CBToolkit provides two debugging tools:

v A local debugger for testing client-side code or for debugging business objects
prior to deployment.

v Object Level Trace (OLT) which enables you to monitor the flow of a distributed
application and to debug client and server code seamlessly from a single
workstation.

To trace and debug a distributed application using OLT, you need to:

1. Enable remote tracing and debugging using the System Manager User
Interface.

2. Start Object Level Trace.

3. Start the OLT Client Controller.

4. Run your client application to produce a trace display

5. Set breakpoints on the trace display

6. Run the client application a second time to debug client and server code.

If you did not compile your server DLL with OLT flags, you must do so now, then
regenerate your code.

Once you have debugged the program, you can continue to one of the next
scenarios, depending on whether you used InstallShield to install your application:

v “Uninstall an Application Using InstallShield - Scenario” on page 70

v “Uninstall an Application - Scenario” on page 71 (without using InstallShield)

66 Application Development Tools Guide

Enabling Remote Tracing and Debugging
Your name and application servers should already be running. To enable remote
debugging, you need to stop the application server and edit your server and client
properties as follows:

1. From the System Manager User Interface, expand Host Images -
myhost.austin.ibm.com - Server Images, and select myserver. Where myserver
is your application server image.

2. Open the pop-up menu of myserver, and select Stop . You can verify that the
application server has stopped using the NT Task Manager.

3. Again open the pop-up menu of myserver, and select Edit . The Object Editor
notebook is opened.

4. Select the Main tab.

5. Change the debug enabled field to yes.

6. Select the Orb tab.

7. Change the request timeout field to 0.

8. Click the OK button to exit this notebook.

9. Expand Host Images - myhost.austin.ibm.com Client Style Images, and select
myclient image. Where myclient is your application client image.

10. Open the pop-up menu of myclient, and select Edit . The Object Editor
notebook is opened.

11. Select the Main tab.

12. Change the debug enabled field to yes.

13. Select the Orb tab.

14. Change the request timeout field to 0.

15. Click the OK button to exit this notebook.

16. From the System Manager User Interface, expand Host Images -
myhost.austin.ibm.com - Server Images, and select myserver.

17. Open the pop-up menu of myserver, and select Run Immediate . Monitor the
Action Console window for completion status.

Note:
The claimapp client application contains a transaction timeout value. You must set
this value to 0 and recompile before continuing.

1. In the claimapp.cpp file located in your Object Builder working directory, edit the
transaction timeout value as follows:

2. Change line 55 to:
current_transaction->set_timeout(0);

3. Change line 108 to:
current_transaction->set_timeout(0);

4. Save the file.

5. In your working directory, enter:

set IVB_TRACE_DEBUG=1

6. To recompile the makefile, enter:
nmake

Starting Object Level Trace
To start OLT:

Chapter 3. Getting Started with Object Builder 67

1. From the Windows NT Start menu, select Programs - IBM Component Broker
for Windows NT - Object Level Trace (OLT) . This starts the Server process
and opens the Viewer window. (On AIX, type ivbtrsrv.)

2. In the Viewer window, select Options - Online mode . An information message
is displayed.

3. Click the OK button.

Starting the OLT Client Controller
The OLT Client Controller contains settings that allow the various OLT components
(Server, Viewer, and so forth) to communicate with each other. You need to start the
OLT Client Controller before running your application.

To start the OLT Client Controller:

1. From the Windows NT Start menu, select Programs - IBM Component Broker
for Windows NT - OLT Client Controller . This opens the Client Controller
window. (On AIX, type ivbtrc.)

2. Minimize the window.

Running the Client Application

C++ Client Application:

In the OLT Viewer, select File - Start process and browse for your executable, or
start the application from the command line. On AIX, you should start the
application in a new shell.

Java Client Application (Trace only):

java
-Dcom.ibm.CORBA.BootstrapHost=labadie01.torolab.ibm.com
-Dcom.ibm.CORBA.EnableApplicationOLT=true
-Dcom.ibm.CORBA.ApplicationOLTHome=c:/winnt/profiles/labadie01
claimapp

where:
labadie01.torolab.ibm.com = your server application host name
c:/winnt/profiles/labadie01 = directory pointed to by IVB_HOME environment
variable

The client application begins calling methods on the Component Broker server. The
OLT Viewer should begin showing trace lines and event symbols. Once your
application is finished, you can use the trace display to set breakpoints on server
events.

Setting breakpoints on the trace display
Debuggable methods are represented on the display by filled circles. To set a
breakpoint:

1. Select any filled circle and click mouse button two.

2. From the popup menu, select Add to breakpoint list .

3. Repeat for each event you want to add.

To see a list of your breakpoints, select Breakpoints - Create breakpoints .

68 Application Development Tools Guide

Starting the OLT Debugger Daemon
From a Windows NT Start menu, select Programs - IBM Component Broker for
Windows NT - OLT Debugger Daemon .

The Debugger Daemon is started in a shell window. Minimize it, but do not close it.

Changing to Debug Mode

In the OLT Client Controller:

1. Select Monitoring mode from the tree view

2. Select Trace and debug with prompt .

3. Click Apply , then minimize the Client Controller.

4. If you started the OLT Debugger Daemon on another workstation, select
Remote Debugger from the tree view and enter the host name of the machine
where you started the daemon.

In the OLT Viewer window, deselect Options - Step by step debug mode
(otherwise, the debugger will open on every debuggable event, instead of stopping
only at your breakpoint).

Debugging Server and Client Code
You are now ready to rerun the application.The Java command is slightly different
this time because the Java debugger must be invoked.

C++ Client Application:

In the OLT Viewer, select File - Start process and browse for your executable, or
start the application from the command line.

Java Client Application (Trace and Debug):

java_g -debug
-Dcom.ibm.CORBA.BootstrapHost=labadie01.torolab.ibm.com
-Dcom.ibm.CORBA.EnableApplicationOLT=true
-Dcom.ibm.CORBA.ApplicationOLTHome=c:/winnt/profiles/labadie01
claimapp

where:
labadie01.torolab.ibm.com = your server application host name
c:/winnt/profiles/labadie01 = directory pointed to by IVB_HOME environment
variable

When your program reaches the first breakpoint, the debugger opens and steps into
your server method. To continue, click the Run button on the debugger toolbar. If
you execute a Step over command at the completion of your method, you can
follow the transaction back to the client code and continue debugging there.

Note:
Do not close the debugger window while your application is running. Closing this
window brings down your application server. When your application has finished
running, and you have completed your trace and debugging activities, you can
close the various OLT and debugger windows.

Summary
You have debugged your client and server application.

Chapter 3. Getting Started with Object Builder 69

You are ready to continue to one of the next scenarios, depending on whether you
used InstallShield to install your application:

v “Uninstall an Application Using InstallShield - Scenario”

v “Uninstall an Application - Scenario” on page 71 (without using InstallShield)

Uninstall an Application Using InstallShield - Scenario

Objectives
To remove a CB application from System Management, using InstallShield.

Before You Begin
This scenario is a continuation of the scenario series:

1. “Create a Component - Scenario” on page 39

2. “Build DLLs or Shared Library Files - Scenario” on page 47

3. “Package an Application - Scenario” on page 50

4. “Install and Run an Application Using InstallShield - Scenario” on page 57

5. “Trace and Debug an Application - Scenario” on page 65 (optional)

You should complete the previous scenarios before attempting this one.

You need the following installed:

v CBConnector (System Management)

v DB2 Universal Database

v VisualAge for C++ and (for Java applications) VisualAge for Java

v Java SDK

Description
Use the following procedure to uninstall a client application. Before an application
can be uninstalled, the Name server and the application server must be running, in
System Manager.

Uninstalling the Application
To clean up the results of the previous exercises and remove the Claim component
and the ClaimApp application from your system:

1. From the System Manager User Interface, expand Host Images -
myhost.austin.ibm.com - Configured Servers (member of group) , and select
ClaimServer .

2. From the pop-up menu for ClaimServer, select Stop Immediate .

3. From a DB2 command prompt, enter: drop database ClaimDB

4. Run the InstallShield uninstall.

a. Run x:\CBroker\working\NT\ClaimAppFam\Disk1\setup.exe.

b. Click the Next button to continue to the Application Installation window.

c. Select ClaimAppS.

d. Click the Next button.

e. Click the Next button on the confirmation screen.

f. Click the OK button.

70 Application Development Tools Guide

g. Click the Cancel button; otherwise, the uninstall process will begin again.
The applications are removed for system management.

Summary
You have removed the application from the server, and have completed all the
scenarios in this sequence.

For additional development scenarios, consult the index, or search the online
Component Broker information for the keyword “Scenario”.

Uninstall an Application - Scenario

Objectives
To remove a CB application from System Management, without using InstallShield.

Before You Begin
This scenario is a continuation of the scenario series:

1. “Create a Component - Scenario” on page 39

2. “Build DLLs or Shared Library Files - Scenario” on page 47

3. “Package an Application - Scenario” on page 50

4. “Install and Run an Application - Scenario” on page 61 (without using
InstallShield)

5. “Trace and Debug an Application - Scenario” on page 65 (optional)

You should complete the previous scenarios before attempting this one.

You need the following installed:

v CBConnector (System Management)

v DB2 Universal Database

v VisualAge for C++ and (for Java applications) VisualAge for Java

v Java SDK

Description
Use the following procedure to uninstall a client application. Before an application
can be uninstalled, the Name server and the application server must be running, in
System Manager.

If you installed your application on Windows NT using InstallShield, use the
procedure “Uninstall an Application Using InstallShield - Scenario” on page 70 to
remove the application.

Uninstalling the Application
Use the following procedure to uninstall a client application. Before an application
can be uninstalled, the Name server and the application server must be running.

To uninstall an application:

1. Start the System Manager User Interface and set the User Level of Expert.

2. Expand Host Images - myhost - Application Family Installs , and select
myapplicationfamily .

3. Open the pop-up menu for myapplicationfamily, and select Uninstall Family .

Chapter 3. Getting Started with Object Builder 71

Due to the number of objects that need to be accessed, updated and deleted by
this operation, you may see the application server cycle several times. Monitor the
Uninstall Action Console for a success statement before continuing. If the
application server fails and does not recycle, try restarting it. To restart the
application server:

1. Expand Host Images - myhost - Server Images , and select myserver .

2. Open the pop-up menu of myserver, and select Run Immediate .

If you wanted only to uninstall the application, you can reactivate your configuration.
To reactivate:

1. Expand Management Zones - mymanagementzone - Configurations , and
select myconfiguration .

2. Open the pop-up menu of myconfiguration, and select Activate .

Important:
If there are two application families (a basic and a specific family), only the basic
family needs to be uninstalled. The System Manager will uninstall the specific family
first, then the basic family. For example, if the specific family is
SpecificClaimAppFam and the basic family is ClaimAppFam, you should uninstall
only ClaimAppFam.

Summary
You have removed the application from the server, and have completed all the
scenarios in this sequence.

For additional development scenarios, consult the index, or search the online
Component Broker information for the keyword “Scenario”.

72 Application Development Tools Guide

Chapter 4. Working with Rose

Using Rational Rose with Object Builder

You can design your application in Rose, and then export the design to Object
Builder. You can also import an Object Builder application back into Rose. You need
to modify Rose 98 to support the import and export process, which uses the Rose
Bridge.

If you export an incomplete design to Object Builder and make changes to it in its
Object Builder form, make sure you import the Object Builder project back into
Rose before doing any more work with the Rose model. If you do not import the
changed project and continue work with the new model, your changes will be lost
the next time you export.

You can export and import the following design elements, using the Rose Bridge:

v Classes (mapped either to component objects or to IDL constructs)

v Packaging information (mapped to projects and name scoping)

v One-to-one relationships (mapped to object references)

v One-to-many relationships (mapped either to an object relationship stored in a
collection, or to a sequence attribute).

v Class inheritance (mapped to component inheritance)

By default, classes in your design are mapped to components in Object Builder.

The main design tasks are as follows:

1. “Import Component Broker Frameworks” on page 86

2. “Export a Design from Rose” on page 89

3. “Export a Rose Design to a Team Environment” on page 204

4. Import a Rose Design into Object Builder

5. “Work with an Exported Design” on page 91

6. “Import a Project into Rose” on page 92

7. “Import Projects from a Team Environment” on page 212

“The Rose Bridge” on page 76
“Design Principles for Component Broker Applications” on page 3
“Components” on page 15
“IDL Name Scoping in Rose” on page 77
“Constructs You Can Export from Rose” on page 79
“Class Properties You Can Export from Rose” on page 81
“Class Relationships You Can Export from Rose” on page 84
“Component Broker Frameworks in Rose” on page 89

“Set up Rose 98” on page 74

© Copyright IBM Corp. 1997, 1998 73

Rose

Rational Rose is an object-oriented analysis and design modeling tool. You can use
it to design your application, and then export the design to Object Builder, where
you can finish its implementation. You can also import Object Builder projects into
Rose, to work with an existing design.

Note: In order to export to and import from Object Builder, you must use the full
version of Rose 98 (Enterprise edition, Professional C++ edition, or Professional
Java edition), not just the Rose Modeller. Only the full version supports code
generation properties, which are required by the export process.

Until Rose 98 (Enterprise edition, Professional C++ edition, or Professional
Java edition) becomes available on AIX, you must do your design work on Windows
NT, then export to Object Builder on Windows NT, before you can move your model
to AIX and complete your work on it.

To use Rose with Object Builder, you must first customize it, and then import the
Component Broker frameworks. You can then use the Component Broker
frameworks in your design.

When you export, the classes and relationships you defined in Rose are mapped to
IDL equivalents in Object Builder. You can also define additional properties in Rose,
to have the Rose Bridge create additional Component Broker objects for your
design during the export process.

When you import, the elements of the Object Builder project are mapped to their
equivalents in Rose.

“The Rose Bridge” on page 76
“IDL Name Scoping in Rose” on page 77
“Constructs You Can Export from Rose” on page 79
“Class Properties You Can Export from Rose” on page 81
“Class Relationships You Can Export from Rose” on page 84
“Mapping Rules: Object Builder to Rose” on page 87
“Component Broker Frameworks in Rose” on page 89

“Set up Rose 98”
“Export a Design from Rose” on page 89
“Export a Rose Design to a Team Environment” on page 204
“Import a Project into Rose” on page 92
“Import Projects from a Team Environment” on page 212

Set up Rose 98

You can use Rose to create a design for your application, which you can then
export to Object Builder. You can also import Object Builder projects into Rose, to
work with an existing design.

Note: In order to export to and import from Object Builder, you must use the full
version of Rose 98 Enterprise edition, Professional C++ edition, or Professional
Java edition, not just the Rose Modeler. Only the full version supports code
generation properties, which are required by the export process.

74 Application Development Tools Guide

Until Rational Rose 98 (Enterprise edition, Professional C++ edition, or
Professional Java edition) becomes available on AIX, you must do your design work
with Rose on Windows NT, then export to Object Builder and move the project to
AIX, before you can complete your work on the project.

Before you can use Rose with Object Builder, you must configure its import and
export facility, the Rose Bridge. Once the Rose Bridge is configured, you can load
Component Broker frameworks into Rose, create your design, and export to and
import from Object Builder.

To configure the Rose Bridge for Rose 98, follow these steps:

1. Add the export and import options to the Rose File menu, as follows:

a. Create a backup copy of the file rose.mnu (for example, rose.bak).

b. Add the following lines to the rose.mnu file:
Menu File
{

Separator
option “Export to Object Builder”
{

RoseScript $BOSS_PATH\r982c.ebx
}
option “Import from Object Builder”
{

RoseScript $BOSS_PATH\c2r98.ebx
}

}

2. Create the Rose path map BOSS_PATH, which will point to the directory path
that contains the Component Broker model files. This allows you to import the
model files, and specifies the location of the export script (r982c.ebx) and import
script (c2r98.ebx). .

a. Click File - Edit Path Map .

b. Set the BOSS_PATH variable. For example, if you installed the product into
<path>\Cbroker, set BOSS_PATH to <path>\Cbroker\rose, which is the
directory that contains the *.cat files for the Component Broker model.

Some additional Component Broker-specific properties have been added to Rose to
enable more information exchange between Rose and Object Builder. To enable the
use of these additional properties, you must replace the roseidl.pty and roseddl.pty
files that come with Rose 98 with the Component Broker versions. To replace these
files, do the following steps:

1. Change to the directory where Rose 98 is installed

2. Create a backup copy of the file roseidl.pty (for example, roseidl.bak)

3. Create a backup copy of the file roseddl.pty (for example, roseddl.bak)

4. Copy the Component Broker versions of these files to the current directory from
the rose subdirectory of your Component Broker install:
copy <path>\CBroker\rose*.pty

“Rose” on page 74
“The Rose Bridge” on page 76

“Import Component Broker Frameworks” on page 86

Chapter 4. Working with Rose 75

“Using Rational Rose with Object Builder” on page 73
“Export a Design from Rose” on page 89
“Import a Project into Rose” on page 92

The Rose Bridge

The Rose Bridge provides the ability to export from Rose to Object Builder, and to
import from Object Builder to Rose.

Loading the Component Broker Frameworks
Before you design in Rose, you need to load the Component Broker frameworks.
The Component Broker Toolkit includes Rose .cat files for the Component Broker
frameworks. Once you import the .cat files into Rose, you can incorporate the
Component Broker Framework interfaces in your design and analysis work using
Rose.

The Rose .cat files contain the following frameworks:

v services.cat: Object Services

v boim.cat: Business Object Application Adaptor Frameworks (BOIMs)

v managed.cat: Managed Object Framework (MOFW)

Exporting a Design
Once you have completed a design, you can export it to an Object Builder project.
You can export a design for use in a single Object Builder project, or break up the
design into separate projects by top-level package name. The export process
updates the \Model subdirectory of the selected project or projects, and also creates
the XML files for the model in the project’s \Import directory. Once the export is
complete, you can use Object Builder to further refine the model and to generate
code

You should not restructure your design after exporting. If you restructure your
design (for example, move a class from one package to another), the export
process will treat the change as a combination add and delete, rather than a move.
This would result in two definitions of the class in Object Builder (a new class
definition for its new position, and the old class definition for its old position), which
is not valid.

When you export from Rose, the export process generates a file named xmi.xml in
the \XMI subdirectory of the target project, or the parent directory of a
multiple-project target. This file allows the export process to track changes to design
elements. For example, if you change the name of a method in Rose and re-export,
the information in the xmi.xml file will ensure that the change will be applied to the
appropriate method in Object Builder.

Importing a Design
You can make changes to the design in Object Builder, and then apply the changes
to the original Rose model. If you are doing work in both Object Builder and Rose,
make sure you keep the two versions synchronized. For example, if you change the
Object Builder model, import the changes into Rose before doing any more work on
the Rose model.

Re-Exporting a Design
When you re-export a model, the export process will add new elements to Object

76 Application Development Tools Guide

Builder, or update existing elements, but will not delete elements that already exist
in Object Builder. To delete existing elements, you must work directly in Object
Builder.

Directories Used
The Rose Bridge process uses subdirectories of the targetted Object Builder
projects to store information in, as follows:

v project\Model
Contains the target Object Builder project model.

v project\Import
Contains the udbo.xml file created by the export from Rose. This file defines all
the elements that are importable into Object Builder, and is used to create the
project model.

v project\XMI
Contains the xmi.xml file created by an export or import from or to Rose. This file
stores all the elements that cannot be mapped between a Rose model and an
Object Builder model.

“Rose” on page 74
“IDL Name Scoping in Rose”
“Constructs You Can Export from Rose” on page 79
“Class Properties You Can Export from Rose” on page 81
“Class Relationships You Can Export from Rose” on page 84
“Mapping Rules: Object Builder to Rose” on page 87
“Component Broker Frameworks in Rose” on page 89

“Import Component Broker Frameworks” on page 86
“Set up Rose 98” on page 74
“Export a Design from Rose” on page 89
“Export a Rose Design to a Team Environment” on page 204
“Work with an Exported Design” on page 91
“Import a Project into Rose” on page 92
“Import Projects from a Team Environment” on page 212

IDL Name Scoping in Rose

The name scoping used by Component Broker is based on CORBA IDL, where a
containment relationship exists among IDL files, modules, and interfaces. In the
Rose model, a containment relationship exists among packages (categories),
subpackages (subcategories), and classes (interfaces or data types). The export
process from Rose supports the same containment relationship as Object Builder.
For this to work, some restrictions on what gets mapped into Object Builder are
necessary.

When the Rose model is exported to Object Builder, containment relationships are
mapped in the following manner (this refers to the Logical View only):

v A top-level package can be mapped to a project, if you are exporting the design
to multiple projects. A package is top-level if it is contained directly by the Logical
View. If you are exporting the design to a single project, then the top-level
packages are not mapped to anything.

Chapter 4. Working with Rose 77

v An intermediate package is not mapped to anything. The package is considered
to be just a grouping construct in Rose. A package is intermediate if it contains
other subpackages.

v A Rose bottom-level subpackage is mapped to an IDL file that contains a module
in the Object Builder model. A bottom-level subpackage is a subpackage that
contains no other subpackages.

v A class in Rose is mapped to either an interface or an IDL complex type (such as
a struct or enumeration) in Object Builder. If the class is contained in a
bottom-level subpackage, then the class it maps to will be contained in the
corresponding module, otherwise, the class will be directly contained in a file with
the same name.

When an Object Builder model is imported into Rose, the containment relationships
are mapped as follows:

v Business object files, modules, and interfaces that already have a mapping
(because they were created by export from Rose) maintain that mapping.

v New business object files, modules, and interfaces (added directly to Object
Builder, not by export from Rose) are mapped to packages, subpackages, and
classes.

Simple Example of Export Mapping
An Insurance Application package contains the four classes Policy, PayoutFraction,
Customer, and Agent.

When you export this design, the Insurance Application package is considered a
top-level package or grouping mechanism, and is not mapped to anything. The four
classes become four business object interfaces, each with its own IDL file.

Export Example with Subpackages
An Insurance Application package contains two subpackages: Policy (containing the
classes Policy and PayoutFraction) and People (containing the classes Customer
and Agent).

When you export this design, the Insurance Application package is again ignored.
The Policy subpackage is a bottom-level subpackage, and becomes the Policy IDL
file, which contains a Policy module, which contains the interfaces Policy and
PayoutFraction. The People subpackage (also bottom-level) becomes the People
IDL file, which contains a People module, which contains the interfaces Customer
and Agent.

Policy.idl will contain the following declarations:
module Policy
{

interface Policy
{
};
interface Payout Fraction
{
};

};

People.idl will contain the following declarations:
module People
{

interface Customer
{
};

78 Application Development Tools Guide

interface Agent
{
};

};

“The Rose Bridge” on page 76
“Constructs You Can Export from Rose”
“Class Properties You Can Export from Rose” on page 81
“Class Relationships You Can Export from Rose” on page 84

“Export a Design from Rose” on page 89

Constructs You Can Export from Rose

You can specify constructs in Rose by defining classes with the
IDLSpecificationType appropriate to the construct.

The IDLSpecificationType is set on the IDL page of the Class Specification
notebook. By default, it is set to Interface (so the class will become a business
object interface in Object Builder). You can change the default to one of:

v Struct

v Enumeration

v Typedef

v Union

v Const

v Exception

The export process preserves or maps information for the following types of
constructs:

Struct
On the IDL page of the Class Specification notebook, set the IDLSpecificationType
to Struct. You can specify the following information for a struct:

v Name
Becomes the name of the struct. Should be a valid C++ name. Leading and
trailing blank spaces are removed, and embedded spaces are converted to
underscores.

v Attributes
Map to members of the struct. The members have names and types:

– Name
Should be a valid C++ name. Leading and trailing blank spaces are removed,
and embedded spaces are converted to underscores.

– Type
Should be a valid type: either a predefined IDL type (for example, char, short,
float), a type currently defined in Rose, or a type already defined in the Object
Builder model you are exporting to. When you specify the type, any leading
and trailing blank spaces are removed, and embedded spaces are converted
to underscores.

Enumeration
On the IDL page of the Class Specification notebook, set the IDLSpecificationType
to Enumeration. You can specify the following information for an enumeration:

Chapter 4. Working with Rose 79

v Name
Becomes the name of the enumeration. Should be a valid C++ name. Leading
and trailing blank spaces are removed, and embedded spaces are converted to
underscores.

v Attributes
Map to members of the enumeration. The members have names and types:

– Name
Should be a valid C++ name. Leading and trailing blank spaces are removed,
and embedded spaces are converted to underscores.

– Type
Should be a valid type: either a predefined IDL type (for example, char, short,
float), a type currently defined in Rose, or a type already defined in the Object
Builder model you are exporting to. When you specify the type, any leading
and trailing blank spaces are removed, and embedded spaces are converted
to underscores.

Typedef
On the IDL page of the Class Specification notebook, set the IDLSpecificationType
to Typedef, and set the ImplementationType to the type this is a typedef for.

You can specify the following information for a typedef:

v Name
Becomes the name of the typedef. Should be a valid C++ name. Leading and
trailing blank spaces are removed, and embedded spaces are converted to
underscores.

Union
On the IDL page of the Class Specification notebook, set the IDLSpecificationType
to Union, and set the ImplementationType to the type of the union switch.

You can specify the following information for a union:

v Name
Becomes the name of the union. Should be a valid C++ name. Leading and
trailing blank spaces are removed, and embedded spaces are converted to
underscores.

v Attributes
Map to members of the union. The members have names and types:

– Name
Should be a valid C++ name. Leading and trailing blank spaces are removed,
and embedded spaces are converted to underscores.

– Type
Should be a valid type: either a predefined IDL type (for example, char, short,
float), a type currently defined in Rose, or a type already defined in the Object
Builder model you are exporting to. When you specify the type, any leading
and trailing blank spaces are removed, and embedded spaces are converted
to underscores.

Const
On the IDL page of the Class Specification notebook, set the IDLSpecificationType
to Const, set the ImplementationType to the type of the const, and set the
ConstValue to the value of the const.

You can specify the following information for a const:

80 Application Development Tools Guide

v Name
Becomes the name of the const. Should be a valid C++ name. Leading and
trailing blank spaces are removed, and embedded spaces are converted to
underscores.

Exception
On the IDL page of the Class Specification notebook, set the IDLSpecificationType
to Exception. You can specify the following information for an exception:

v Name
Becomes the name of the exception. Should be a valid C++ name. Leading and
trailing blank spaces are removed, and embedded spaces are converted to
underscores.

v Attributes
Map to members of the exception. The members have names and types:

– Name
Should be a valid C++ name. Leading and trailing blank spaces are removed,
and embedded spaces are converted to underscores.

– Type
Should be a valid type: either a predefined IDL type (for example, char, short,
float), a type currently defined in Rose, or a type already defined in the Object
Builder model you are exporting to. When you specify the type, any leading
and trailing blank spaces are removed, and embedded spaces are converted
to underscores.

“The Rose Bridge” on page 76
“IDL Name Scoping in Rose” on page 77
“Class Properties You Can Export from Rose”
“Class Relationships You Can Export from Rose” on page 84

“Export a Design from Rose” on page 89

Class Properties You Can Export from Rose

When you define a class in Rose, it can be mapped either to a business object
interface, or to a type of construct, in Object Builder. For constructs, the name,
documentation, and attributes (when appropriate) are preserved by the export
process. For business object interfaces, both class properties and class
relationships are preserved.

A class is exported as a business object interface by default, based on the setting
of the IDLSpecificationType (which is set to Interface by default). The
IDLSpecificationType is set on the IDL page of the Class Specification notebook.
You can set additional properties of the class and of its attributes to create
additional component objects for the class (such as the business object
implementation) when you export.

The export process preserves or maps the following class information:

Name
The name you give the class becomes the name of the business object interface in
Object Builder. If, during the export process, you select to generate additional

Chapter 4. Working with Rose 81

component objects (such as a business object implementation and data object
interface), the additional objects are given names derived from the class name.

You should specify a valid C++ class name. Leading and trailing blank spaces are
removed, and embedded spaces are converted to underscores. For example, My
Class Name would become My_Class_Name.

Documentation
Any documentation you enter for the class becomes comments in Object Builder,
where they can be accessed from the last page of the Business Object Interface
wizard. Do not include /* or */ in the documentation text: the generated code from
Object Builder will provide C++ comment tags around your entries by default.

IsQueryable
Defines whether the specified interface is queryable. You can set the IsQueryable
property to true on the IDL page of the Class Specification notebook.

Component Objects
Component objects, in addition to the business object interface, are created in
Object Builder as follows:

v CreateImplementation
Defines whether a business object implementation, and its accompanying data
object interface, will be created for the specified interface. You can set the
CreateImplementation property to true on the IDL page of the Class Specification
notebook.

v CreateKey
Defines whether a key will be created for the specified interface. You can set the
CreateKey property to true on the IDL page of the Class Specification notebook.

v CreateCopyHelper
Defines whether a copy helper will be created for the specified interface. You can
set the CreateCopyHelper property on the IDL page of the Class Specification
notebook

Attributes
Attributes of the class map to attributes of the interface, as follows:

v Name
Should be a valid C++ name. Leading and trailing blank spaces are removed,
and embedded spaces are converted to underscores. For example, my Data
Name would become my_Data_Name.

v Type
Should be a valid type: either a predefined IDL type (for example, char, short,
float), a type currently defined in Rose, or a type already defined in the Object
Builder model you are exporting to. When you specify the type, any leading and
trailing blank spaces are removed, and embedded spaces are converted to
underscores.

v Initial Value
Value placed in this field is transferred to the Initializer field for the attribute in
Object Builder. This value should be consistent with the type defined for the
attribute.

v Access Control
Can be one of public, protected, or private, and maps as follows:

– Public attributes map to attributes of the business object interface. The
business object implementation will have get and set methods defined for
these attributes.

82 Application Development Tools Guide

– Protected attributes map to protected attributes of the business object
implementation. They do not appear in the business object interface.

– Private attributes map to private attributes of the business object
implementation. They do not appear in the business object interface.

v Length
Defines the string length if the attribute is of type string. You can set the Length
property to the appropriate value on the DDL page of the Attribute Specification
notebook.

v Key Attribute
Defines whether the attribute is included in the key object for the component (if
you set the CreateKey property for the class). You can set the PrimaryKey
property to true on the DDL page of the Attribute Specification notebook.

Key attributes for parents will automatically be included in the child’s key.

Note: Do not specify complex types (such as structures or unions) as keys.

v Copy Helper Attribute
Defines whether the attribute is included in the copy helper for the component
(if you set the CreateCopy property for the class). By default, all public attributes
are included in the copy helper. You can set the IsIncludedInCopyHelper property
to false on the DDL page of the Attribute Specification notebook to exclude an
attribute.

v Override
If you define an attribute in a child class that has the same name and type as an
attribute in its parent class, the attribute will be defined as an override in Object
Builder, in the Business Object Implementation wizard, Attributes to Override
Page.

v Read-Only
Defines whether the attribute is read-only. By default the attribute is not
read-only. You can set the IsReadOnly property on the IDL page of the Attribute
Specification notebook.

Operations
Operations of the class map to methods of the interface, as follows:

v Name
Should be a valid C++ name. Leading and trailing blank spaces are removed,
and embedded spaces are converted to underscores. For example, my Method
Name would become my_Method_Name.

v Return Class
Maps to the return type for the method. Should be a valid type: either a
predefined IDL type (for example, char, short, float), a type currently defined in
Rose, or a type already defined in the Object Builder model you are exporting to.
When you specify the type, any leading and trailing blank spaces are removed,
and embedded spaces are converted to underscores.

v Export Control
Can be one of public, protected, or private, and maps as follows:

– Public operations map to methods of the business object interface.

– Protected operations map to protected methods of the business object
implementation. They do not appear in the business object interface.

– Private operations map to private methods of the business object
implementation. They do not appear in the business object interface.

v Override
If you define an operation in a child class that has the same name and signature

Chapter 4. Working with Rose 83

as an operation in its parent class, the operation will be defined as an override in
Object Builder, in the Business Object Implementation wizard, Methods to
Override Page.

v Argument Name
Maps to a parameter of the method. Should be a valid C++ name. Leading and
trailing blank spaces are removed, and embedded spaces are converted to
underscores. For example, first Parameter would become first_Parameter.

v Argument Type
Maps to the parameter type. Should be a valid type: either a predefined IDL type
(for example, char, short, float), a type currently defined in Rose, or a type
already defined in the Object Builder model you are exporting to. When you
specify the type, any leading and trailing blank spaces are removed, and
embedded spaces are converted to underscores.

v Argument Default
Should be one of:

– in

– out

– inout

If you specify a different value, it will be ignored, and in will be used.

v Exceptions
Map to exceptions raised by the method. You can specify these exceptions in
Rose on the Details page of the Operation Specification notebook. The
exceptions should be of a valid type (either one defined in the current Rose
model, or one previously defined in the target Object Builder model).

v One-Way Property
Maps to the one-way property in Object Builder. Set the OperationIsOneWay
property on the IDL page of the Operation Specification notebook. The property
defaults to False.

“The Rose Bridge” on page 76
“IDL Name Scoping in Rose” on page 77
“Constructs You Can Export from Rose” on page 79
“Class Relationships You Can Export from Rose”

“Export a Design from Rose” on page 89

Class Relationships You Can Export from Rose

When you export your object model from Rose into Object Builder, the class
relationships you have defined are mapped as follows:

Inheritance
Inheritance relationships you define in Rose are preserved by the export process,
and applied to the business object interfaces that the exported classes are mapped
to. If you are generating additional component objects for a class (an option of the
export process), then the inheritance for the additional components parallels the
inheritance for the business object interface.

For example, if ChildClass inherits from ParentClass, then after the export the
ChildClass business object interface inherits from the ParentClass business object

84 Application Development Tools Guide

interface. If you added business object implementations during the export, then in
addition the ChildClassBO business object implementation inherits from the
ParentClassBO business object implementation.

Associations and Aggregations
Associations and aggregations map to attributes, object relationships, or sequences,
as explained below. Associations are only mapped if they are navigable.
Aggregations are always mapped.

The export process preserves or maps the following information about the
relationship:

v Role A and Role B
Role A and Role B are the terms in Rose that define the two ends of an
association. In the Association Specification notebook, the names you specify for
the roles (on the Role A General and Role B General pages) determine the
names of the attributes or relationships that each class has to represent its
association with the other.

The names you specify should be valid C++ names. Leading and trailing blank
spaces are removed, and embedded spaces are converted to underscores. If you
do not specify names for the roles, then default names based on the names of
the referenced interfaces are used.

For example, if a class named Agent is in Role A and a class named Customer is
in Role B, the relationship is 1..1 and no names are specified, then Agent gets an
attribute named the_Customer of type Customer, and Customer gets an attribute
named the_Agent of type Agent.

v Cardinality
The cardinality of the relationship is set on the Role A Detail or Role B Detail
page of the Association Specification notebook. If the cardinality is set to one of
0..n, 1..n, or n, then it is considered to be a cardinality of ’many’, and the
relationship will be mapped to either an object relationship (stored in a reference
collection) or an attribute of type sequence ClassName (where ClassName is the
name of the class in the n role). With all other cardinalities, the relationship will
be mapped to attributes of type ClassName.

When the cardinality is ’many’, you can choose whether to map as an object
relationship or a sequence with the MapAsObjectRelationship property.

v Class Relationship Mapping
For class relationships with role cardinality set to ’many’, the
MapAsObjectRelationship property defines whether the class relationship is
exported as an object relationship or a sequence. By default, relationships are
exported as object relationships. To export a relationship as a sequence, set the
MapAsObjectRelationship property to false on the IDL A or IDL B page of the
Association Specification notebook.

v Relationship Implementation
If the class relationship has been set to export as an object relationship
(MapAsObjectRelationship set to true in the appropriate IDL A or IDL B page of
the association notebook), you can specify the implementation type for this object
relationship. The RelationshipImplementation property on the IDL A or IDL B page
of the Association Specification notebook can be set to one of the three following
values:

– Local Persistent Reference

– User-defined OO_SQL Query

– Reference Resolved by Foreign Key

Chapter 4. Working with Rose 85

v Read Only or Read/Write
You can specify that a role in an association be read-only. When the association
is exported, then any corresponding attribute is marked accordingly. You can
specify whether an attribute is read-only on the appropriate page for the role (IDL
A and IDL B). You can set the isReadOnly property on these pages to true or
false. By default, the property is set to false (attributes have read/write access).

For example, if Role A (Agent) is read-only, then Role B’s attribute (Customer’s
attribute the_Agent of type Agent) is read-only.

When one-to-many associations are exported as relationships, the read-only
mark does not apply to the relationship. For example, if Agent has a one-to-many
relationship to Customer, and Customer’s role is read-only, the one-to-many
relationship is still read-write.

When one-to-many relationships are exported as sequence attribute, the
read-only mark does apply. For example, if Customer’s role is marked read-only,
Agent can have a read-only sequence attribute of type Customer.

v Access Control
If the relationship is being exported as an attribute, then the access control you
set is applied. For example, if Agent’s role is marked protected, then Customer’s
attribute of type Agent will be protected. The access control can be one of public,
protected, or private, and maps as follows:

– Public attributes map to attributes of the business object interface. The
business object implementation will have get and set methods defined for
these attributes.

– Protected attributes map to protected attributes of the business object
implementation. They do not appear in the business object interface.

– Private attributes map to private attributes of the business object
implementation. They do not appear in the business object interface.

“The Rose Bridge” on page 76
“IDL Name Scoping in Rose” on page 77
“Constructs You Can Export from Rose” on page 79
“Class Properties You Can Export from Rose” on page 81

“Export a Design from Rose” on page 89

Import Component Broker Frameworks

In order to use Component Broker concepts in your analysis and design, you can
import Component Broker frameworks, such as the Managed Object Framework,
into Rose.

To import Component Broker frameworks into Rose, follow these steps:

1. Start Rose.

2. Create a new model (using the File - New menu option) or load an existing
model.

3. Import the Component Broker Framework .cat files (managed.cat, services.cat,
boim.cat):

a. Click File - Units - Load . A dialog box opens, in which you can specify the
model files you want to import.

b. In the Files of type field, type *.cat.

86 Application Development Tools Guide

c. Navigate to the <path>\Cbroker\rose directory.

d. Select one of the framework .cat files.

e. Click Open . The model files are loaded into Rose, and presented in the
current view as a category or package that is selected by default.

f. Click elsewhere in the current view (to avoid importing the next .cat file into
the selected category).

g. Load the other .cat files, using the same procedure.

Note : Imported categories all appear in the same spot in the current view,
which means you often only see the last-imported category in the view. You
can drag and drop a category to reveal the categories beneath.

You can now use the framework concepts in your design.

4. Perform the analysis and design of your application in Rose and save the
design model.

If you are using Rose 98 with a model which was created in Rose 4.0, any
Component Broker-specific properties you have customized (for example,.
IDLSpecificationType) will be moved to the appropriate pages of the Rose 98
specification notebooks the first time the model is exported.

“Rose” on page 74
“Component Broker Frameworks in Rose” on page 89

“Using Rational Rose with Object Builder” on page 73
“Export a Design from Rose” on page 89

Mapping Rules: Object Builder to Rose

When you import an Object Builder model into Rose, elements in the Object Builder
model map to elements in a Rose model as follows:

v Business object files, modules, and interfaces that already have a mapping
(because they were created by export from Rose) maintain that mapping.

v New business object files, modules, and interfaces (added directly to Object
Builder, not by export from Rose) are mapped to packages, subpackages, and
classes.

Business Object File
Business object files in Object Builder that already have a mapping (because they
were created by export from Rose) maintain that mapping. New business object
files are mapped to packages. Constructs defined with file scope map to top-level
classes (for an existing mapping) or classes in the package (for new mappings).
The IDLSpecification property of the class on the IDL page of its Class Specification
notebook is set to one of:

v Struct

v Enumeration

v TypeDef

v Union

v Const

v Exception

Chapter 4. Working with Rose 87

Business Object Module
Business object modules in Object Builder that already have a mapping (because
they were created by export from Rose) maintain that mapping. New business
object modules are mapped to subpackages of the file package. Properties of the
module map as follows:

v Name
Stored as the subpackage name in the Package Specification notebook.

v Constructs
Constructs with module scope map to classes contained in the subpackage.

The IDLSpecification property of the class on the IDL page of its Class
Specification notebook is set to one of:

– Struct

– Enumeration

– TypeDef

– Union

– Const

– Exception

v Comments
Stored as documentation for the subpackage in the Package Specification
notebook.

Business Object Interface
Business object interfaces Object Builder that already have a mapping (because
they were created by export from Rose) maintain that mapping. New business
object interfaces are mapped to classes in a file package or module subpackage.
The IDLSpecification property of the class on the IDL page of its Class Specification
notebook is set to Interface. Properties of the interface map to properties of the
class as follows:

v Name
Stored as the class name in the Class Specification notebook.

v Constructs
Constructs with interface scope are not imported. Construct information is stored
in the xmi.xml file defined in the project’s \XMI directory.

v Interface Inheritance
Parent interfaces map to generalize elements in Rose 98, on the Relations page
of the Class Specification notebook.

v Attributes
Attributes map to attribute elements of the class in Rose 98.

v Sequence Attributes
If an attribute of type sequence was created in Object Builder by the Rose Bridge
(by the export of an association with the MapAsObjectRelationship property set
to false), then the import preserves this original mapping. If the attribute was
created directly in Object Builder and does not exist in Rose, it maps to an
attribute of the class.

Note: If you defined the association in Rose, exported to Object Builder to create
the sequence attribute, and then deleted the attribute in Object Builder, the
import will not delete the association in Rose, but will set the is_navigable
property of the Role to FALSE.

v Methods
Methods map to operation elements of the class in Rose 98.

v Object Relationships

88 Application Development Tools Guide

If an object relationship was created by exporting an association in Rose, the
import preserves the original mapping, to a Role in a many-to-many association
or one-to-many association in Rose 98. If the object relationship was created
directly in Object Builder and does not have an equivalent in Rose, it is not
imported, but is stored in the xmi.xml file in the project’s \/XMI directory.

Note: If you defined the association in Rose, exported to Object Builder to create
the object relationship, and then deleted the relationship in Object Builder, the
import will not delete the association in Rose, but will set the is_navigable
property of the Role to FALSE.

v Comments
Stored as class documentation in class specification notebook.

“Object Builder” on page 1
“Rose” on page 74
“The Rose Bridge” on page 76

“Import a Project into Rose” on page 92
“Import Projects from a Team Environment” on page 212

Component Broker Frameworks in Rose

The structure of the Component Broker Frameworks will appear in Rose in
accordance with the Rose-to-IDL name scoping relationship. For example, in IDL,
the Managed Object Framework contains several modules. In Rose, the Managed
Object Framework appears as a package with subpackages corresponding to the
modules that it contains. When you expand any of these subpackages in Rose, the
classes (corresponding to the interfaces) that it contains are shown. For example, if
you expand the IManagedClient subpackage, the IManageable and IHome classes
are displayed.

“Import Component Broker Frameworks” on page 86

Export a Design from Rose

Once you have completed your design work in Rose, you can export your design to
an Object Builder project or projects. Rose must first be set up to work with Object
Builder, and Object Builder must be set up to use the Component Broker
frameworks. When the export is complete, each class in your design will be
mapped to a component in Object Builder. A component consists of a number of
related objects, and, at minimum, a business object interface.

You can export the entire Rose model, or selected top-level classes or packages in
the model. The export process only deals with information in your model’s Logical
view.

This task describes how to export to a single Object Builder project. You can also
export to multiple projects in a team environment, as described in a separate task.

To export the entire model to a single project, follow these steps:

1. Load your design in Rose.

Chapter 4. Working with Rose 89

2. Select File - Export to Object Builder . The Rose Bridge wizard opens to the
Export from Rose 98 to Object Builder Page.

3. Specify the Rose model you want to export, and add any necessary virtual
symbols and associated actual path mappings to the Virtual Path Mapping
listbox.

4. Select the destination directory you want to store your project in. The directory
becomes an Object Builder project directory.

5. Select the One Project radio button.

6. Select the Entire Model radio button.

7. Click Finish.
Your model is exported to a project in the specified directory. Your model is saved in
Rose as part of the export process.

To export selected top-level classes or packages to a single project, follow these
steps:

1. Load your design in Rose.

2. Select File - Export to Object Builder . The Rose Bridge wizard opens to the
Export from Rose 98 to Object Builder Page.

3. Specify the Rose model you want to export, and add any necessary virtual
symbols and associated actual path mappings to the Virtual Path Mapping
listbox.

4. Select the destination directory you want to store your project in. The directory
becomes an Object Builder project directory.

5. Select the One Project radio button.

6. Select the Selected Packages or Classes radio button.

7. Click Next to turn to the Export from Rose 98 to Object Builder, Selection Page.

8. Use standard selection techniques (Click , Shift-Click and Ctrl-Click) to select
the top-level packages and classes you want to export.

As items are selected in the tree view on the left, the tree view on the right
displays the component objects or elements which will be created for that item.
The export process creates component objects according to the properties in
the Class Specification notebook.

9. Click Finish.

Your model is exported to a project in the specified directory. Your model is
saved in Rose as part of the export process.

If you are using Rose 98 with a model which was created in Rose 4.0, any
Component Broker-specific properties you have customized (for example,
IDLSpecificationType) will be moved to the appropriate pages of the Rose 98
specification notebooks the first time the model is exported.

Once you have completed the export process, your design is applied to the \Model
directory of the selected project. The interchange file udbo.xml used in the export
process is stored in the \Import directory of the selected project. The classes and
relationships you defined in Rose have been mapped to their Object Builder
equivalents, and any component objects you specified have been defined in
skeleton form.

The export process maintains the following design elements:

v The classes in your design

v Class inheritance

90 Application Development Tools Guide

v Class relationships

v Attributes

v Methods

The export process adds the following elements:

v File and module objects (the mapping of classes to files and modules depends
on the packaging structure used in Rose).

v Read and write methods, for each public attribute.

v Public attributes (get and set methods), to support aggregations of classes and
navigable associations among classes.

v Component Broker objects (business object implementation, data object
interface, copy helper, key), as specified during the import, in skeleton form.

When you export from Rose, the export process generates a file named xmi.xml in
the target project\XMI subdirectory. This file allows the export process to track
changes to design elements, so that if you change the name of a method in Rose
and re-export, the change will be applied to the appropriate method in Object
Builder. It also keeps track of any elements that do not have equivalents in both
models, so that these elements are not simply lost in the bridging process.

You are now ready to work in Object Builder.

“The Rose Bridge” on page 76
“Components” on page 15

“Using Rational Rose with Object Builder” on page 73
“Export a Rose Design to a Team Environment” on page 204
“Work with an Exported Design”

Work with an Exported Design

Once the export process is complete, you can start working with your design in
Object Builder. To work with an exported design, complete the following steps in
Object Builder:

1. Review the exported business object interfaces and their equivalent files.

2. Complete the skeleton objects created by the export.

3. Create data object implementations.

4. Create persistent objects and schemas (for communicating with databases).

5. Create managed objects (for packaging and instance management).

Review and edit exported objects as necessary:

1. Select the object in the Tasks and Objects pane.

2. From its pop-up menu click Properties . A wizard opens.

3. Click Next to go through all the pages of the wizard, and review its properties.
Complete or change the contents of the wizard as you require.

4. Click Finish . Any changes you made are applied to the current model.

“The Rose Bridge” on page 76

Chapter 4. Working with Rose 91

“Using Rational Rose with Object Builder” on page 73
“Add a Data Object Implementation” on page 299
“Add a Persistent Object and Schema” on page 313
“Add a Managed Object” on page 340

Import a Project into Rose

You can import an Object Builder project into Rose. If the imported project was
originally created by a Rose export, then the new Rose model created by the import
will mirror the information in the original, exported Rose model’s Logical view. If
your original model has additional information in other views, you can consolidate
the two models (the original exported one, and the newly imported one) using the
Rose 98 Visual Differencing tool.

If your Object Builder project was created directly in Object Builder (not by export
from Rose), then the Rose model is based on default import mappings of Object
Builder elements to Rose elements.

Once the import is complete, you can work with the design in Rose, and export the
changes back to Object Builder.

To import an Object Builder project into Rose 98, follow these steps:

1. Select File - Import from Object Builder . The Rose Bridge wizard opens to the
Import from Object Builder to Rose 98 Page.

2. Enter the directory of the Object Builder project you are importing.

3. Enter the name of the new Rose model file you are importing to. If you know
your project will be imported into a category file (.cat) on Rose 98, then you
need to specify the virtual path mapping information by entering the symbol and
actual path data.

4. Select the Import from: One Project option.

5. Click Finish .

The project you selected is imported into the Rose model file you specified.

The import process works as follows:

1. The import process calls the obexport command to generate an XML file for the
project (\Export\udbo.xml).

2. The import process checks to see if there is an \XMI\xmi.xml file in the project
directory. This file is created by the Rose Bridge to preserve any information
that would otherwise be lost during transfer between Rose and Object Builder.

3. The import process generates a Rose model file, based on the udbo.xml file
and the xmi.xml file.

4. The import process updates the xmi.xml file to contain any Object Builder
information that cannot be imported. For example, details of the implementation,
key, and copy helper for a component, that cannot be stored as elements in
Rose 98.

5. The import process loads the generated Rose model into Rose 98.

The import process maps Object Builder elements as follows:

v Business object files, modules, and interfaces that already have a mapping
(because they were created by export from Rose) maintain that mapping.

92 Application Development Tools Guide

v New business object files, modules, and interfaces (added directly to Object
Builder, not by export from Rose) are mapped to packages, subpackages, and
classes.

v IDL constructs with file or module scope become classes in Rose

v Attributes of an interface become attributes of a class in Rose

v Methods of an interface become operations of a class in Rose

v Parent interfaces become class relations in Rose

v Object relationships that were created by export from Rose are imported as the
role of an association.

v Sequence attributes of the interface that were created by export from Rose are
imported as the role of an association.

The import process keeps the following elements in the xmi.xml file:

v Component objects other than the business object interface (business object
implementation, data object interface, copy helper, key)

v The method bodies

v Object relationships that were created directly in Object Builder (not by export
from Rose)

v IDL constructs with interface scope

The import process updates the following properties in the Rose specification
notebooks:

v Class Specification, IDL page, CreateImplementation
property is set if the business object interface has a business object
implementation

v Class Specification, IDL page, CreateKey
property is set if the business object interface has a key

v Class Specification, IDL page, CreateCopyHelper
property is set if the business object interface has a copy helper

v Class Specification, IDL page, IsQueryable
property is set if the business object interface has the option The interface is
queryable checked, in its properties notebook

v Attribute Specification, IDL page, length
property is set if the attribute is of type string, and has associated size
information.

v Attribute Specification, DDL page, IsIncludedInCopyHelper
property is set if the attribute is part of the component’s copy helper

v Attribute Specification, DDL page, PrimaryKey property is set if the attribute is
part of the component’s key.

v Association Specification, IDL A/B pages, MapAsObjectRelationship
property is set if an object relationship or sequence attribute in the business
object interface was created by exporting the role of an association from Rose

v Association Specification, IDL A/B pages, RelationshipImplementation
property is set if the object relationship has a selected implementation type in the
business object implementation

In order to track changes between Component Broker objects and Rose elements,
the import process uses the UUID of an element as an identifier. The UUID is
stored as the uuid property of IDL page in Rose for each package, class, attribute,
operation, and role of association.

Chapter 4. Working with Rose 93

You have now imported an Object Builder project into a Rose model. If the
imported project was created by export from Rose, and the original Rose model
contains information in other views besides the Logical view, then you should
consolidate the new model with the original model before doing any more design
work.

To merge the new model with the original model, follow these steps:

1. Click File-Save to save the new model.

2. Click Tools-Visual Differencing to start the merging process.

3. When the Give reference model dialog opens, specify the original .mdl file.

The Visual Differencing tool will load both models and generate a list of
differences

4. In the Visual Differencing interface, click on the + next to the Difference found
item to expand the tree one level.

5. Since no changes have been made to any information in the Use Case View,
merge the information from the original model into the new model:

a. Click Use Case View to select it

b. Click Merge in the Use Case View pop-up

c. Make sure the Replace with reference option is selected, and click
Merge .

6. Repeat the same procedure for all other views that contain differences, except
for the Logical view.

7. In the Logical view, you do not need to merge the entire view, only selected
diagrams:

a. Click + next to the ’Logical View’ item to expand one level.

b. Click + for all Logical View subtree members until the entire subtree is
exposed.

c. In each place a blue + exists in the Logical View subtree (all diagrams in the
subtree):

1) Click the item to select it.

2) Click Merge in its pop-up menu.

3) Make sure the Replace with reference option is selected, and click
Merge .

You have now completed merging information from your original model into the
new model which contains the changes from Object Builder.

8. Click File-Save in the Visual Differencing tool and save the updated model to a
new file.

9. Click File-Exit to close the Visual Differencing tool.

10. Click File-Open in Rose 98 and open the updated .mdl file.

Your model now contains the entire updated design, and you can continue your
design work. When you are ready to switch back to Object Builder, you can export
the design back to Object Builder by selecting File - Export to Object Builder .

“Object Builder” on page 1
“Projects and Models” on page 4
“Rose” on page 74
“The Rose Bridge” on page 76
“Mapping Rules: Object Builder to Rose” on page 87

94 Application Development Tools Guide

“Export a Design from Rose” on page 89
“Import Projects from a Team Environment” on page 212

Export from Rose - Scenario

Objectives
To create a class in Rose.
To specify class and attribute properties that will affect how the class is exported.
To export a sample application from Rose into an Object Builder project.

Before You Begin
You need Rational Rose 98 installed and set up to work with Object Builder, as
described in the task “Set up Rose 98” on page 74.

You need Object Builder installed.

You should be familiar with Rational Rose 98. If you are not familiar with the tool,
take the Rose tutorial included with the software.

You should be familiar with Object Builder. If you are not familiar with the tool, run
through the “Getting Started with Object Builder” on page 39 scenarios.

Description
This exercise describes how to create a class in Rose, prepare it for export to
Object Builder, complete the export, and open the exported project. A follow-on
exercise, Import into Rose - Scenario (page 98), describes how to reverse the
process, importing the project into Rose and updating the model with any changes
that have been made to the project. A team development version, Team
Development with Rose - Scenario (page 218), describes how to use a single Rose
model with multiple Object Builder projects.

For this exercise, you will complete the following tasks:

1. Create a class in Rose.

2. Add Component Broker properties to the class and its attributes.

3. Export the model to an Object Builder project.

4. Open the project in Object Builder.

Create the Claim Class
Start Rose 98, and add a simple class with two attributes and two methods (Claim).
This is the same as the class described in the Getting Started scenarios for Object
Builder.

Add the Claim class:

1. Start Rose 98. It opens to a Class Diagram for Logical/Main.

2. From the pop-up menu of the class diagram, click Class Wizard to open the
Class wizard.

3. Name the class Claim.

4. Click Next through the remaining wizard pages, then Finish .

A class named Claim is added to the Logical View folder.

Add the attributes claimNo and state:

Chapter 4. Working with Rose 95

1. From the pop-up menu of Claim, click New Attribute . A placeholder attribute is
added (named name, type of type, initial value of initval).

2. Type over each of the values for the new attribute, naming it claimNo, with type
Integer and initial value of 0.

3. Click elsewhere in the diagram to apply the changes.

4. Add another attribute in the same way, and name it state, with type Integer and
initial value of 0.

Add the operations approve() and deny():

1. From the pop-up menu of Claim, click New Operation . A placeholder operation
is added (named opname, argument argname, return type return).

2. Type over each of the values for the new operation, naming it deny, with no
arguments, and return value void.

3. Click elsewhere in the diagram to apply the changes.

4. Add another operation in the same way, and name it approve, with no
arguments, and return value void.

You now have a class named Claim, with attributes claimNo and state, and
methods approve() and deny().

Add Component Broker Properties to the Class
You can specify properties of the class and its attributes that will affect the way it is
exported to Object Builder. Some of these properties are standard Rose properties
that have meaning for the export process, others are specific to Component Broker,
and were made available in Rose when you copied over customized .pty files
during the Rose 98 setup.

Customize the way the class will be exported, to create the following component
objects in Object Builder: business object interface, business object implementation,
key, copy helper:

1. From the pop-up menu of the class in the class diagram, click Open
Specification to open the Class Specification notebook.

2. Turn to the IDL page. The following properties map to component objects:

v IDLSpecificationType
By default, it is set to Interface. A business object interface is created for the
class. Other values you can set for this property would make the class export
as a construct (for example, a struct or enum).

v CreateImplementation
By default, it is set to False. A business object implementation and its
accompanying data object interface are not created for the class.

v CreateKey
By default, it is set to False. A key is not created for the class.

v CreateCopyHelper
By default, it is set to False. A copy helper is not created for the class.

3. Click on CreateImplementation, then click the value False, and change it to
True.

4. A business object implementation and its accompanying data object interface
will be created for the class.

5. Set the values for CreateKey and CreateCopyHelper to True as well.

A key and copy helper will now be created for the class.

6. Click OK.

96 Application Development Tools Guide

Add Component Broker Properties to the Attributes
Customize the way the attributes will be exported, to make claimNo and state public
attributes of the component, and make claimNo part of the key:

1. In the tree view, under the Logical View, select the attribute claimNo.

2. From its pop-up menu, click Open Specification to open its Class Attribute
Specification notebook.

3. On the General page, set its Export Control to public.

4. Turn to the DDL page, and set the PrimaryKey property to True.

5. Turn to the IDL page, and set the isReadOnly property to True.

6. Click OK.

The attribute claimNo will now be generated as a public read-only attribute that
is part of the business object, key, and copy helper.

7. In the tree view, under the Logical View, select the attribute state.

8. From its pop-up menu, click Open Specification to open its Class Attribute
Specification notebook.

9. On the General page, set its Export Control to public.

The attribute state will now be generated as a public attribute that is part of the
business object and copy helper.

You have added properties that specify how the class maps to component objects
and attributes in Object Builder. You are ready to export to an Object Builder
project.

Export to Object Builder
To export to Object Builder, follow these steps:

1. Save and name your model (for example, e:\scenarios\rosemodels\claim.mdl).
You cannot export an unnamed model.

2. Click File - Export to Object Builder . The Rose Bridge wizard opens.

3. Specify a directory to export to (for example, e:\scenarios\roseclaim\). The Rose
Bridge will create the directory if necessary, and turn it into an Object Builder
project directory.

4. Accept the defaults for the other settings (you do not need to select what to
export, and you are exporting to a single project, not a team environment).

5. Click Finish .

The Rose Bridge starts by saving your current Rose model. The Rose Bridge then
exports an XML version of the model, consisting of two files:
project\Import\udbo.xml, to become the Object Builder project, and
project\XMI\xmi.xml, to hold any information that would otherwise be lost in the
transfer. Finally, the Rose Bridge then imports udbo.xml into Object Builder to
create the new Object Builder model files.

You can now open the project in Object Builder and review the results of the export.

Open the Object Builder Project
Open the Object Builder project and review the exported component:

1. Start Object Builder.

2. In the Open Project wizard, type the name of the directory you exported to (for
example, e:\scenarios\roseclaim\).

3. Click Finish . The project opens.

Chapter 4. Working with Rose 97

4. In the Tasks and Objects pane, expand the User-Defined Business Objects
folder. You can see the business object file Claim.

5. Expand the file to show the Claim interface, expand the interface to show
ClaimKey, ClaimCopy, and ClaimBO, and expand ClaimBO to show ClaimDO.
These objects were created according to the property settings of the Claim
class in Rose, as follows:

v Claim file and Claim interface
Created because IDLSpecificationType was set to Interface.

v ClaimKey
Created because CreateKey was set to True.

v ClaimCopy
Created because CreateCopyHelper was set to True.

v ClaimBO and ClaimDO
Created because CreateImplementation was set to True.

6. Click on the Claim interface. You can see its attributes and methods in the
Methods pane.

7. Click on the ClaimBO implementation. You can see the get and set methods for
the attributes, and the method signatures, in the Methods pane.

8. Click on the ClaimKey key. You can see the get and set methods for claimNo,
which you set to be part of the key with the PrimaryKey DDL property.

9. Click on the ClaimCopy copy helper. You can see the get and set methods for
both attributes, which are part of the copy helper by default.

You can review the skeleton signatures for the methods, the default
implementations for get and set methods, and the framework methods added by
Object Builder, by clicking on the attribute or method in the Methods pane.

Summary
You have created a class in Rose named Claim, defined its attributes and
operations, and exported the result as a set of component objects to Object Builder.
You can now continue to the “Import into Rose - Scenario”, in which you customize
the class and then import the changes into Rose. If you want, you can skip that
scenario and continue on to the “Team Development with Rose - Scenario” on
page 218, in which you add a second class with an object relationship, and export
the two classes into separate interdependent projects.

Import into Rose - Scenario

Objectives
To add attributes to a component in Object Builder.
To edit an existing attribute in Object Builder.
To apply the change to a Rose model.

Before You Begin
This scenario is a continuation of the “Export from Rose - Scenario” on page 95.
You must complete the previous scenario before attempting this one.

You need Rational Rose 98 installed and set up to work with Object Builder, as
described in the task “Set up Rose 98” on page 74.

You need Object Builder installed.

98 Application Development Tools Guide

Description
In this exercise, you will extend the Claim component created in the previous
exercise, by adding the attributes date and explanation, and change the name of
the claimNo attribute to claimNumber. You will then apply the changes to the
original Rose model, by importing your Object Builder project into Rose. Once you
are done, you can continue on to the Team Development with Rose - Scenario
(page 218), in which you add a second class with an object relationship, and export
the two classes into separate interdependent projects.

For this exercise, you will complete the following tasks:

1. Open the project.

2. Edit the Claim component attributes.

3. Import the changes into Rose.

Open the Project
Open the project you created in the previous exercise:

1. Start Object Builder.

2. In the Open Project wizard, specify the project to open (for example,
e:\scenarios\roseclaim\)

3. Click Finish .

Add and Edit Attributes
Add the two new attributes to the business object interface, and change the name
of the existing key attribute:

1. Locate the Claim interface in the User-Defined Business Objects folder
(defined under the Claim file).

2. From the Claim interface’s pop-up menu, click Properties to open the
Business Object Interface wizard.

3. Click the title and turn to the Attributes page.

4. Click Add Another .

5. Define an attribute named dateOpened, of type string, with size 10.

6. Click Add Another .

7. Define an attribute named explanation, of type string, with size 200.

8. Click on the claimNo attribute.

9. Type over its name, changing it to claimNumber.

10. Click Refresh .

11. Click Finish .

The new attributes are automatically added to the business object implementation,
and the name change from claimNo to claimNumber is applied automatically to the
key, copy helper, and implementation.

Add the two new attributes to the copy helper:

1. Locate the ClaimCopy copy helper, under the Claim interface.

2. From ClaimCopy’s pop-up menu, click Properties to open the Copy Helper
wizard.

3. Move the two new attributes from the Business Object Attributes list to the Copy
Helper Attributes list.

4. Click Finish .

Chapter 4. Working with Rose 99

Save your changes and close Object Builder:

1. Click File - Save .

2. Click File - Exit .

You have made your changes to the project, saved them, and closed Object
Builder. You are ready to import the project into Rose.

Import the Project into Rose
Import the changed Object Builder project to a new Rose model:

1. Start Rose.

2. Click File - Open .

3. Specify a new model file to create (for example
e:\scenarios\rosemodels\importclaim.mdl).

4. Click File - Import from Object Builder . The Rose Bridge wizard opens.

5. In the Input Directory field, type the Object Builder project directory path (for
example e:\scenarios\roseclaim\).

6. In the Output field, make sure the new Rose model is listed (for example
e:\scenarios\rosemodels\importclaim.mdl).

7. Accept the defaults for the other options.

8. Click Finish .

The Rose Bridge generates the udbo.xml file in the project’s \Export directory,
updates the xmi.xml file in the project’s \XMI directory with any project information it
cannot preserve in the transfer, and then imports the two files into Rose to create a
new model file.

Review the Changes
Under the Logical View, you can see that Claim now has two new attributes,
dateOpened and explanation, and that the claimNo attribute has become
claimNumber.

Open the Attribute Specification notebook for dateOpened. On the IDL page, you
can see that the Length property has the value 10.

Save and close the model.

Because the model in the previous scenario contained information only in the
Logical View, with no additional diagrams, the new model can simply replace the
previous model. However, if your original model had contained information in other
views, or additional diagrams within the Logical view, you could consolidate that
information with the newly imported model by using the the Rose 98 Visual
Differencing tool, as described in the topic “Import a Project into Rose” on
page 92.

Summary
You have changed your component in Object Builder, and then applied the changes
to the component design in Rose. You can now continue working in Rose as part of
the Team Development with Rose - Scenario (page 218), in which you add a
second class with an object relationship, and export the two classes into separate
interdependent projects.

100 Application Development Tools Guide

Chapter 5. Creating Components in Object Builder

Create a Component for Transient Data

If your component has data that does not need to be stored, or you are providing
customized persistence rather than using Component Broker services, you can
create a component for transient data.

You can create a component for transient data in much the same way you create a
component for new DB data, starting from the business object file and working
down to the data object implementation. Because the data is transient, you do not
need a persistent object or schema.

A component is identified as containing transient data by the setting on its data
object implementation. When you create the data object implementation, set its
Persistent Behavior and Implementation (page 32) to Transient .

If you set the data object implementation’s “Environment” on page 31 to BOIM with
UUID key , you do not require a key for the component.

To create a component for transient data, complete these tasks:

1. “Create a Business Object File” on page 282

2. “Add a Business Object Module” on page 282

3. “Add a Business Object Interface” on page 283

4. “Add a Key” on page 292

5. “Add a Copy Helper” on page 294

6. “Add a Business Object Implementation and Data Object Interface” on page 284

7. “Add Code for User-Defined Methods” on page 267

8. “Add a Data Object Implementation” on page 299

“Components” on page 15

“Create a Component for New DB Data”
“Create a Component for Existing DB Data” on page 104
“Create a Component for PA Data” on page 115

Create a Component for New DB Data

If you are creating a new component, which connects to a database that does not
yet exist, you can create the entire component in Object Builder, starting with the
business object interface and working your way down.

To create a new component directly in Object Builder, follow these steps:

1. “Create a Business Object File” on page 282

2. “Define Constructs with File Scope” on page 278

© Copyright IBM Corp. 1997, 1998 101

3. “Add a Business Object Module” on page 282

4. “Define Constructs with Module Scope” on page 279

5. “Add a Business Object Interface” on page 283

6. “Define Constructs With Interface Scope” on page 279

7. “Add a Key” on page 292

8. “Add a Copy Helper” on page 294

9. “Add a Business Object Implementation and Data Object Interface” on
page 284

10. “Add Code for User-Defined Methods” on page 267

11. “Add a Data Object Implementation” on page 299

12. “Add a Persistent Object and Schema” on page 313

13. “Add a Managed Object” on page 340

“Components” on page 15

Create a Component - Overview

Create a Component for New DB Data - Scenario

In this scenario you define a simple component with database persistence, starting
from the component’s business object interface and working down to the
component’s DB schema.

After you complete the scenario, you will have defined the Person component,
including its business object, key and copy helper, data object, persistent object,
and DB schema. Once you have defined the component, you can export the result
in XML format, so you can easily retrieve and re-use the work in later scenarios that
build on this one.

The following tasks do not give explicit instructions for every step, but should at
least get you into the right wizards. If you are experiencing problems, click the Help
button within a wizard, or go to the Help pulldown in Object Builder.

Create the Project
Create a sample project to hold your work.

1. Start Object Builder.

2. In the Open Project wizard, type a name and path for the project directory (for
example, e:\scenarios\person).

3. Click Finish .

4. When asked whether you want to create a new project, click Yes.

Create the Business Object Interface
Define the Person interface:

1. From the User-Defined Business Objects folder’s pop-up menu, click Add File
to open the Business Object File wizard.

2. Name the file PFile.

102 Application Development Tools Guide

3. Click Finish . The file now appears under the folder.

4. From the file’s pop-up menu, click Add Module to open the Business Object
Module wizard.

5. Name the module PModule.

6. Click Finish . The module now appears under the file.

7. From the module’s pop-up menu, click Add Interface to open the Business
Object Interface wizard.

8. Name the interface Person.

9. Click the title bar and turn to the Attributes page.

10. Add the following attributes:

v readonly string ssNo (size 20)

v readonly string name (size 100)

v string street

v string town

11. Click Finish . The interface now appears under the module.

Add the Key and Copy Helper
Add PersonKey:

1. From the interface’s pop-up menu, click Add Key to open the Key wizard.

2. Select ssNo and name as the key attributes.

3. Click Finish . The key now appears under the interface.

Add PersonCopy:

1. From the interface’s pop-up menu, click Add Copy Helper to open the Copy
Helper wizard.

2. Select all attributes to be part of the copy helper.

3. Click Finish . The copy helper now appears under the interface.

Add the Business Object Implementation and Data Object Interface
Add PersonBO and PersonDO:

1. From the interface’s pop-up menu, click Add Implementation to open the
Business Object Implementation wizard.

2. Click the title bar and turn to the Key and Copy Helper page.

3. Select PersonKey and PersonCopy.

4. Click the title bar and turn to the Data Object Interface page.

5. Select all attributes as state data (to be preserved in the data object).

6. Click Finish . The business object implementation appears under the business
object interface, and the data object interface appears under the
implementation.

Add the Data Object Implementation
Add PersonDOImpl:

1. From the data object interface’s pop-up menu, click Add Implementation to
open the Data Object Implementation wizard.

2. Set the following patterns:

v Environment - BOIM with any key

v Form of Persistent Behavior and Implementation - Embedded SQL

v Data Access Pattern - Delegating

Chapter 5. Creating Components in Object Builder 103

3. Click the title bar and turn to the Key and Copy Helper page.

4. Select PersonKey and PersonCopy.

5. Click Finish . The data object implementation appears under the data object
interface.

Add the Persistent Object and Schema
Add PersonPO and its associated schema:

1. From the data object implementation’s pop-up menu, click Add Persistent
Object and Schema to open the Add Persistent Object and Schema wizard.

2. Name the schema group and database.

3. Click Next and review the attribute mappings.

4. Click Finish .

The persistent object and schema appear under the data object implementation.

In the DBA-Defined Schemas folder, they appear under the schema group you
named.

Add the Managed Object
Add PersonMO:

1. From the business object implementation’s pop-up menu, click Add Managed
Object to open the Managed Object wizard.

2. Click Finish . The managed object now appears under the business object
implementation.

Export as XML
You can now export the component in XML format, for re-use in other scenarios.

From the pop-up menu of the business object file (PFile), click Export . The file
PFile.xml, which holds all the component objects defined under PFile in the
User-Defined Business Objects folder, is placed in the \Working\Export directory.

This scenario does not cover build or application configuration. Refer to the other
scenarios that use Person for these additional steps.

Create a Component for Existing DB Data

You can create a component for accessing existing or legacy database information
by importing the database schema into Object Builder, and deriving a component
from it, as follows:

1. “Create a DB Schema by Importing an SQL File” on page 321

2. “Edit a DB Schema Group” on page 319

3. “Edit a Generated SQL File” on page 331

4. “Add a Persistent Object from a DB Schema” on page 316

5. “Add a Data Object from a DB Persistent Object” on page 304

6. “Add a Business Object from a Data Object” on page 287

7. “Add Code for User-Defined Methods” on page 267

8. “Add a Key” on page 292

9. “Add a Copy Helper” on page 294

104 Application Development Tools Guide

10. “Add a Managed Object” on page 340

“Components” on page 15
“Schema” on page 20
“DDL” on page 114

“Create a Component for Transient Data” on page 101
“Create a Component for New DB Data” on page 101
“Create a Component for PA Data” on page 115

Mapping Helper

A mapping helper is a class that contains mapping methods that are responsible for
type conversion between attributes of the two objects being mapped. Every
mapping helper class contains at least two static methods that always return void.
These methods must be declared public members of the class.

Type conversion is required for greater flexibility. For example, an attribute of type
string may be required to map to an attribute of type VARCHAR, so that the length of
the string is not a fixed, predetermined quantity; rather, it has the ability to take on
different values, depending on the run-time allotment of the string’s contents.

Object Builder provides the default mapping helper file (DB2MappingHelper.hpp,
which contains the mapping helper class and its methods) in the following cases:

v When a Stringified Object Reference (SOR) of the data object is mapped to a
persistent object of type char. This happens if there exists an object reference
between the selected object and another object.

v When a Stringified Object Reference (SOR) of the data object is mapped to a
persistent object of type VARCHAR. This happens if there exists an object reference
between the selected object and another one.

v When a data object attribute of type string is mapped to a persistent object
attribute of type VARCHAR. (A data object attribute of type string is normally
mapped to a persistent object attribute of C++ string type. For example, a string
of length 20 is mapped to char[21].)

v When a data object attribute of type wstring is mapped to a persistent object
attribute of type DB2VARGRAPHIC.
390 When one of the constrain platforms is 390 (you select Platform -
Constrain - 390), wchar and wstring are not available for selection as an
attribute type for your object.

v When a data object attribute of type ByteString is mapped to a persistent object
attribute of type DB2VARCHAR.

v When a data object attribute of type ByteString is mapped to a persistent object
attribute of type char[] (length greater than 0).

Note: Whenever Object Builder provides the mapping helper, it is recommended
that you use it rather than provide your own.

Restriction: Object Builder does not provide the default mapping between complex
data types (any, Object, wchar and wstring and types defined as constructs, which
include typedefs, structures, and unions) and DB2 database types. You must
provide your own helper class for these mappings.

Chapter 5. Creating Components in Object Builder 105

The mapping helper information can be viewed on the Attributes Mapping Page of
the Data Object Implementation wizard. The .cpp file generated from the data object
implementation contains the mapping helper (DB2MappingHelper.hpp) in its include
section.

If you want to provide your own mapping helper, you must create (outside Object
Builder) a .hpp file, which contains the mapping helper class. When you define the
mapping helper, follow these rules:

v Define both the mapping methods: from the persistent object to the data object,
and from the data object to the persistent object, in the mapping helper class.

v Declare both mapping methods as public members of the class.

v Define both methods as inline methods to avoid linker errors.

v Define both methods as static methods.

v Define the return type of both methods as void.

v Pass the input arguments for both methods by const reference.

v For the persistent object to data object mapping method, use the following
signature:

inline static void PO_to_DO_ mapping_method_name(att1, att2, ...attn,
attribute_of_the_data_object)

where att1, att2,... attn are the persistent object attributes that are mapped to the
data object attribute, and require the mapping helper.

v For the data object to persistent object mapping method, use the following
signature:

inline static void DO_to_PO_
mapping_method_name(attribute_of_the_data_object, att1, att2,..., attn)

where att1, att2,... attn are the persistent object attributes that are mapped to the
data object attribute, and require the mapping helper.

v Ensure that the .cpp and the .hpp files have the same name as the mapping
helper class name.

Note: When you use a mapping helper when a foreign key is used for the
mapping, the mapping methods must be defined from the key to the persistent
object, and from the persistent object to the key.

Note the following points when you provide your own mapping helper file:

v Object Builder assumes that the name you provide as the class name is the
same as the name of the mapping helper file (.hpp file) that you include in the file
adornment’s prolog. If the names are not the same, and you have all the
mapping helper classes in a separate file, you must include this file in the prolog
of the data object implementation’s file adornment (click on the prolog or epilog
object in the File Adornments folder, and type the #include statement at the
beginning of the .cpp file in the editor pane), and regenerate the DOImpl_I.cpp
file (Generate - Selected - .cpp , or Generate - All from the data object
implementation).

v When you map a data object attribute to a persistent object attribute using a
mapping helper you provide, you have to specify the name of the mapping helper
file (without the extension) as the class name, and the names of the methods
used for the mapping.

“Data Object” on page 18

106 Application Development Tools Guide

“Persistent Object” on page 19
Data Object Customization for Cardinality Relationships (Additional Customizations)
(Programming Guide)

“Map Attributes Using a Mapping Helper” on page 260
“Map a Data Object to a DB Persistent Object” on page 251
Map a Data Object to a PA Persistent Object
“Add a Data Object Implementation” on page 299
“Add a Persistent Object and Schema” on page 313

Design Patterns and Iterators

Design Patterns

A design pattern describes a problem that occurs repeatedly in our environment. It
then describes the core of the solution to the problem, in such a way that you can
use this solution innumerable times without doing it the same way twice.

Design patterns are descriptions of communicating objects and classes that are
customized to solve a general design problem in a particular context. One object’s
pattern can be another one’s building block.

Design patterns are less specialized and smaller architectural elements than
frameworks, but they are not frameworks, though they are more abstract than them.

Several design patterns can be contained in a framework, but the reverse is never
true.

Design patterns must be implemented each time they are used - they are just code
examples, whereas you can embody frameworks in code and use them directly.

Design patterns can be used in any kind of application; frameworks always have a
particular application domain.

Examples of design patterns are object factories, iterators, mediators, proxies and
bridges.

Iterators

A collection is a group of objects, and objects model real-world entities. So, very
often, you need to access either references to objects, or the objects themselves
(their references or indirection is hidden).

An iterator is a design pattern that defines three operations to traverse a collection
(access objects directly or indirectly in that collection):

v reset points to the start of a collection

v next increments the iterator’s position

v more enables you to test if there are elements left in the iteration. This method
returns true if there are more elements that you can access in the collection; it
returns false if you have reached the end of the collection.

Iterators, like all design patterns must be implemented every time they are used.

A data object iterator supports data objects that are backed directly by DB2 queries.

Chapter 5. Creating Components in Object Builder 107

Customize Referential Integrity

When every value of each foreign key of a database is valid, the database is in a
state of referential integrity. A foreign key is a subset of columns in a table whose
values match at least one primary key, or unique key value of a row of the parent
table. For a database to be in a state of referential integrity, a referential constraint
must be met. This referential constraint is that the values of the foreign key are
valid only if one of the following statements is true:

v The values of the foreign key appear as values of a parent key (the key of the
parent table).

v Some component of the foreign key is null.

Referential constraints are optional and can be defined in CREATE TABLE and ALTER
TABLE statements. Referential constraints are enforced by the database manager
during the execution of INSERT, UPDATE, DELETE, ALTER TABLE ADD constraint,
and SET CONSTRAINTS statements. Corresponding to these statements, the data
object has the set of special framework methods: insert(), update(), retrieve(), del(),
and setConnection() that perform, respectively, the same tasks as the SQL
statements:

v insert() is called when a table is created or altered.

v update() puts data back into the database when a table is altered.

v retrieve() gets data from the database.

v del() deletes a row in the table.

v setConnection() defines the database that is affected by the SQL statements in
the insert(), update(), retrieve(), and del() methods. This method is implemented
only if the data object implementation uses Embedded SQL.

You can customize referential integrity by specifying the processing order of
methods so that they conform to constraints applied by the database.

Note: You can access the Methods Mapping Page to specify the processing order
only if there is a persistent object associated with the data object. The insert(),
update(), retrieve(), and del() methods are not implemented for a transient data
object implementation.

To specify the order of the persistent object methods, follow these steps:

1. Select the data object implementation that corresponds to the persistent object
whose methods you want to arrange in a specific processing order.

2. From the data object implementation’s pop-up menu, select Properties . The
Data Object Implementation wizard opens.

3. Click the arrow to the left of the page name, and select Methods Mapping
Page from the list. The page opens.

4. The Special Framework Methods folder contains the framework methods you
can customize: insert(), update(), retrieve(), del(), and setConnection().

Note: The setConnection() method is available only if you specified the form of
persistent behavior and implementation as Embedded SQL on the Name and
Platform Page of the Data Object Implementation wizard.

5. Select the method you want customized, display its pop-up menu and select
Add Mapping . The Persistent Object Method field appears with the del()
method selected by default. The method name has the form:
POInstance_name.Method _name.

108 Application Development Tools Guide

6. Click the list button and select the persistent object methods in the order you
want them executed for the selected framework method. For each of the
methods insert(), update(), retrieve(), del(), and setConnection(), you can select
the Always complete calling sequence (ignore warnings) check box if you
want the next method to be implemented even if a warning message is issued.

7. Click Finish. The ordered list of methods is saved. You can view it later by
opening the same wizard. You can also view the order you specified by
examining the method body in the Source pane after selecting the special
framework method in the Methods pane.

“Persistent Object” on page 19

“Add a Data Object Implementation” on page 299
“Map a Data Object to a DB Persistent Object” on page 251

Data Encoding Schemes

Object Builder uses the following data encoding schemes for database data:

DBCS encoding scheme

Attribute
Type (IDL
Type)

Attribute is
a Key

SQL Type PO Type Size Dele-
gation

wchar Yes, No GRAPHIC[1] wchar_t[] ESQL

wstring Yes, No VARGRAPHIC[n] _DB2VARGRAPHIC ESQL

wstring No LONG VARGRAPHIC _DB2VARGRAPHIC ESQL

string VARCHAR char[] Caching

string No LONG VARCHAR char[] 2000 Caching

wchar GRAPHIC wchar_t[] Caching

wstring VARGRAPHIC wchar_t[] Caching

wstring No LONG VARGRAPHIC wchar_t[] 2000 Caching

Binary Data encoding scheme

Attribute
Type (IDL
Type)

Attribute is
a Key

SQL Type PO Type

ByteString Yes, No VARCHAR FOR BIT DATA ::ByteString or
DB2VARCHAR

ByteString Yes, No VARCHAR DB2VARCHAR

ByteString No LONG VARCHAR FOR BIT DATA ::ByteString or
DB2VARCHAR

ByteString No LONG VARCHAR DB2VARCHAR

ByteString Yes, No CHAR FOR BIT DATA ::ByteString

SBCS/MBCS encoding scheme

Chapter 5. Creating Components in Object Builder 109

Attribute
Type (IDL

Type)

Attribute is
a Key

SQL Type PO Type Delegation

any
void

Object
string
struct

typedef
union

No LONG
VARCHAR

DB2VARCHAR[2000] Embedded SQL

LONG
VARCHAR

char[] Caching Services

“Data Object” on page 18
“Persistent Object” on page 19
“DBCS and Binary Data Support” on page 5

“Add a Persistent Object from a DB Schema” on page 316
“Add a Data Object from a DB Persistent Object” on page 304

“DB2 Data Type Mappings”
“Oracle Data Type Mappings” on page 113

DB2 Data Type Mappings

The tables on this page show the mappings among IDL, PO and SQL data types in
different situations, assuming a DB2 backend database.

The following mappings are used when you create a schema and persistent object
from a data object implementation:

IDL Type PO Type SQL Type Encoding
scheme

boolean short SMALLINT

char char[] CHARACTER

string[n] {string
length fixed,
0< n <255}

DB2VARCHAR VARCHAR[n] SBCS or
MBCS

string[n]
{varying
length, n>255}

DB2VARCHAR[2000] LONG VARCHAR SBCS or
MBCS

string (if it
represents a
decimal
number)

char[] DECIMAL

double double DOUBLE

double DECIMAL

float double DOUBLE

long long INTEGER

unsigned long long INTEGER

octet short INTEGER

110 Application Development Tools Guide

short short SMALLINT

unsigned short long INTEGER

date char[] DATE

time

any DB2VARCHAR[2000] LONG VARCHAR SBCS or
MBCS

void DB2VARCHAR[2000] LONG VARCHAR SBCS or
MBCS

Object DB2VARCHAR[2000] LONG VARCHAR SBCS or
MBCS

string DB2VARCHAR[2000] LONG VARCHAR SBCS or
MBCS

string (if it
represents a
decimal
number)

char[] DECIMAL

wstring DB2VARGRAPHIC LONG VARGRAPHIC DBCS

wstring[n]
{fixed string
length,
1<n<128}

DB2VARCHAR[2000] VARGRAPHIC[n] DBCS

wstring[n]
{varying
length, n>128}

DB2VARCHAR[2000] LONG VARGRAPHIC DBCS

wchar wchar_t GRAPHIC(1) DBCS

struct DB2VARCHAR[2000] LONG VARCHAR SBCS or
MBCS

typedef DB2VARCHAR[2000] LONG VARCHAR SBCS or
MBCS

union DB2VARCHAR[2000] LONG VARCHAR SBCS or
MBCS

interface DB2VARCHAR[2000] VARCHAR[2000] SBCS or
MBCS

enum long INTEGER

wstring DB2VARGRAPHIC
[2000]

GRAPHIC[n] DBCS

string[n+1] char[n+1] CHAR[n] SBCS or
MBCS

IManagedClient
ByteString

::ByteString VARCHAR for bit data Binary

IManagedClient
ByteString

::ByteString LONG VARCHAR for bit
data

Binary

IManagedClient
ByteString

::ByteString VARGRAPHIC for bit data Binary

IManagedClient
ByteString

::ByteString LONG VARGRAPHIC for bit
data

Binary

All other types DB2VARCHAR[2000] LONG VARCHAR SBCS or
MBCS

Chapter 5. Creating Components in Object Builder 111

You can map each of the IDL types in the table below with each of the PO types
listed, without using a mapping helper:

IDL Type PO Type

char
enum

boolean
double

float
long

unsigned long
short

unsigned short
octet

char

long

short

float

double

Note: You can also map an IDL type string to a PO type char without using a
mapping helper.

Object Builder provides the mapping helper for the following IDL to PO type
mappings:

IDL Type PO Type Name of Mapping
Helper

DO to PO
Mapping Method

PO to DO
Mapping Method

string _DB2VARCHAR[] DB2MappingHelper stringToVarChar varCharToString

interface _DB2VARCHAR[] DB2MappingHelper byteStringToVar
Char

varCharToByte
String

interface char[] DB2MappingHelper byteStringToString stringToByteString

wchar wchar_t[] DB2MappingHelper wStringToVar
Graphic()

varGraphicTo
WString()

The following mappings are used when you create a persistent object from a
schema:

SQL Type Length PO Type Size IDL Type Size

CHARACTER n char[n] n+1 string n+1

CHARACTER[1] 1 char 1 char 1

INTEGER long integer

SMALLINT short short

DOUBLE double double

DECIMAL
NUMERIC

double double

n char[] n+2 string (n+2)*Scale

BLOB n char[] n string n*Scale

CLOB n char[] n string n*Scale

DBCLOB n char[] n string n*Scale

GRAPHIC 1 wchar_t[] 1 wchar 1

GRAPHIC n wchar_t[] n wstring n-1

DATE char[] 11 date

TIME char[] 9 time

TIMESTAMP char[] 27 timestamp

VARCHAR n DB2VARCHAR[] n string n

112 Application Development Tools Guide

VARGRAPHIC n DB2VARGRAPHIC[] n wstring n

LONG VARCHAR DB2VARCHAR[] 2000 string 2000

LONG
VARGRAPHIC

DB2VARGRAPHIC[] 2000 wstring 2000

The following mappings are used when you create a data object from a persistent
object:

PO Type IDL Type Size

char char

char[n] string n-1

wchar_t wchar 1

wchar_t[n] wstring n-1

short short

long long

double double

float float

DB2VARCHAR[n] string n

DB2VARGRAPHIC[n] wstring n

All other types string 256

“Persistent Object” on page 19

“Add a Persistent Object and Schema” on page 313
“Add a Persistent Object from a DB Schema” on page 316
“Add a Data Object from a DB Persistent Object” on page 304

Oracle Data Type Mappings

Object Builder uses the Oracle Application Adaptor (OAA) to access data in Oracle
databases on Windows NT platforms.

Restrictions:

v Only Oracle 8.0.4.0 databases are supported.

v Support for Oracle backend databases is limited to data objects that use the
Oracle Caching services only. That is, data objects that use embedded SQL, or
any other form of persistent behavior and implementation will not be able to
access data stored in Oracle databases.

v Reference collections are not supported in conjunction with Oracle backends for
Component Broker Release 1.3.

v For Oracle, only optimistic caching is supported.

v In the current release of Component Broker, only the Oracle VARCHAR2 and
NUMBER data types are supported, along with those Oracle data types that have
an equivalent type in DB2. That is, Object Builder accepts all SQL/DS and DB2
types and the Oracle NUMBER, NUMBER(p), NUMBER(p,s) and VARCHAR2
types. It will not accept any other Oracle types such as RAW(n), LONG RAW,
NCHAR(n), NVARCHAR2, and ROWID.

Chapter 5. Creating Components in Object Builder 113

v Object Builder will not accept the Oracle data type NUMBER with a negative
scale.

The following table shows the mapping to the persistent object type, Interface
Definition Language type, SQL type, and the equivalent DB2 type.

Oracle SQL
type

precision
(p)

scale (s) PO type IDL type SQL type

NUMBER(p,s) 0 0 double double double

NUMBER(p,s) 1..4 0 short short smallint

NUMBER(p,s) 5..9 0 long long integer

NUMBER(p,s) >=10 0 double / string string decimal(p,0)

NUMBER(p,s)***p <0 double / string string decimal(p,0)

NUMBER(p,s) p >38 double double double

NUMBER(p,s) p >p double double

NUMBER(p,s)* p s double / string string decimal(p,s)

VARCHAR2(n) string string varchar(n)

DATE** string** string timestamp

RAW*** ::ByteString ::ByteString varchar for bit
data****

LONG
RAW***

::ByteString ::ByteString varchar for bit
data****

* Consider NUMBER(p) = NUMBER(p,0) and NUMBER = NUMBER(38,0).

** Length 27, not 11 as in DB2.

*** Not supported by the Import SQL action in Object Builder Release 1.3.

**** Both varchar for bit data and varchar(n) for bit data are valid. If it has a
maximum length (n), you must provide it. If you do not specify n, Object Builder
allocates a buffer of 32K.

“Persistent Object” on page 19
Application Adaptor (Programming Guide)

“Add a Persistent Object and Schema” on page 313
“Add a Persistent Object from a DB Schema” on page 316
“Add a Data Object from a DB Persistent Object” on page 304

DDL

There are two types of DDLs (Data Description Languages): System Management
DDL and SQL DDL.

System Management DDL : a scripting language that defines the structure of an
application on both client and server. Object Builder can generate a DDL script for
your application family that defines the structure of the applications in the family.
This generated DDL file is found in your working directory, under a subdirectory that

114 Application Development Tools Guide

has the same name as the application family. It is this file that provides the System
Manager with information about the applications during the installation process.

SQL DDL : a language that describes data and their relationships in a database. It
is composed of data definition statements that create, alter, or destroy database
objects such as tables, aliases, views, and indexes.

A data definition is a program statement that describes the features of, specifies
relationships of, and establishes the context of data. It has information that
describes the contents and characteristics of a field, a record, or a file. A data
definition can include field names, lengths, locations, and data types.

In Object Builder, you can import an SQL DDL file to create schemas within a
schema group.

“Generate the Install Image” on page 379
“Create a DB Schema by Importing an SQL File” on page 321

Create a Component for PA Data

You can create a component for accessing existing transactional information by
importing the relevant PA bean into Object Builder, and deriving a component from
it, as follows:

1. “Create a PA Schema by Importing a PA Bean” on page 337

2. “Add a Persistent Object from a PA Schema” on page 334

3. “Add a Data Object from a PA Persistent Object” on page 305

4. “Add a Business Object from a Data Object” on page 287

5. “Add Code for User-Defined Methods” on page 267

6. “Add a Key” on page 292

7. “Add a Copy Helper” on page 294

8. “Add a Managed Object” on page 340

You can then build DLLs and package the application.

“Components” on page 15
“Schema” on page 20
“Procedural Adaptor Bean (PA Bean)” on page 117
Session Service (Advanced Programming Guide)
Transaction Service (Advanced Programming Guide)
Connections to a Tier-3 System (System Management)

Create a Component
Edit a Component
“Build DLLs - Overview” on page 363
“Package an Application” on page 375
Configure a new ECI Connection to a Tier-3 CICS Region (System Management)
Configure a new HOD Connection to a Tier-3 System (System Management)
Configure a new APPC Connection to a Tier-3 System (System Management)

Chapter 5. Creating Components in Object Builder 115

Configure the iPAAServices Application onto an Application Server (System
Management)
Configure an Application to use a Connection to a Tier-3 System (System
Management)

Enterprise Access Builder (EAB)

Enterprise Access Builder (EAB) is a set of class frameworks and development
tools in VisualAge for Java 2.0 that enable you to move your applications from a
front-end transaction system such as Customer Information Control System (CICS),
or Information Management System (IMS), to an object-oriented programming
environment. Procedural Adaptor (PA) beans that are created using EAB can be
imported into Object Builder as PA schemas and PA persistent objects.

Enterprise Access Builder (EAB) used to be referred to as CICON, which stood for
Customer Information Control System (CICS) and Information Management System
(IMS) Connection, in previous releases of Component Broker.

“Persistent Object” on page 19
“Schema” on page 20“Procedural Adaptor Bean (PA Bean)” on page 117

“Create a PA Schema by Importing a PA Bean” on page 337
“Add a Persistent Object from a PA Schema” on page 334

Transaction Object

In Enterprise Access Builder (EAB), a transaction object is a container that
encapsulates the sequence of screen panels you would navigate in order to
complete a CICS or IMS transaction. All panel states, input fields, and output fields
are modeled in the transaction object.

Note: An EAB transaction object has no connection with CORBA transactions,
neither with any of the classes defined in cosTransactions.

“Enterprise Access Builder (EAB)”
“Procedural Adaptor Bean (PA Bean)” on page 117
“Transaction Record”

Transaction Record

In Enterprise Access Builder (EAB), a transaction record is an element of the
transaction object. One transaction record models a single panel state in a CICS or
IMS transaction, including all input and output fields on that panel.

“Enterprise Access Builder (EAB)”
“Procedural Adaptor Bean (PA Bean)” on page 117
“Transaction Object”

116 Application Development Tools Guide

Procedural Adaptor Bean (PA Bean)

A PA bean is a bean in VisualAge for Java that inherits from the
CBProceduralAdapterObject class. PA beans, built using Enterprise Access Builder
(EAB), wrap existing transactions for reuse in Component Broker.

PA beans are imported into Object Builder as PA schemas. By default, a PA
persistent object is generated for each bean that you import, but you can create
one yourself, for the PA schema. The PA persistent object uses the definition of the
PA schema to make calls to the PA bean.

“Persistent Object” on page 19
“Schema” on page 20“Enterprise Access Builder (EAB)” on page 116

“Create a PA Schema by Importing a PA Bean” on page 337
“Add a Persistent Object from a PA Schema” on page 334

Add endResource() to a Sessional Business Object

When a business object uses Session Service, you can provide your own code to
be called during some of the normal processing for those services. You can do this
by calling the endResource() method that you define on the business object, in both
C++ and Java implementations.

390 You cannot call endResource() when the target platform is OS/390.

Follow these steps:

1. From the pop-up menu of the business object implementation, select
Properties. The Business Object Implementation wizard opens to the Name
and Data Access Pattern Page.

2. Under the Session Services section, select the Provides end resource check
box.
By selecting it, you indicate that you want the endResource() method on the
business object.

When you select the business object implementation in the Tasks and Objects
pane, you see the endResource() method that was created for the
implementation by Object Builder, in the Framework Methods folder. It has an
empty method body.

3. Select the method from the Framework Methods folder, and from its pop-up
menu, select Properties .

4. On the Implementation Page of the Method Implementation wizard, select the
Use the implementation defined in the editor pane radio button, and click
Finish.
The endResource() method is now editable in the Source pane, when you
select the method in the Methods pane.
Note: You can also select the Use an external file option, if you have the code
stored in either an external template file, or a normal file.

5. Provide your own code for the method body in the Source pane.
The business object implementation’s endResource() method that contains your
code is called by the framework when the endResource() method is called on
the managed object’s mixin.

Chapter 5. Creating Components in Object Builder 117

6. If you have not yet added a managed object for your component, add one now:
From the pop-up menu of the business object implementation, select Add
Managed Object . Select Session Service as the service to be used by the
business object, and specify parents, if any, for the implementation.

7. Generate code for the managed object: From the pop-up menu of the object,
select Generate - Selected - All Files , or Generate - Selected - .cpp
The .cpp file that is generated contains the endResource() method that contains
your code. If you want to write a separate method to contain your code, you
must call this method from endResource().

“Business Object” on page 17
Session Service (Advanced Programming Guide)

“Generate Code” on page 363

Create a Component for PA Data - Scenario

This scenario assumes that you have successfully installed and configured
Component Broker. You will create a component with procedural adaptor
persistence.

Restriction: Only beans created using VisualAge for Java Release 2.0 are
compatible with this release (2.0) of Component Broker.

Enable the IBM Component Broker CICS and IMS application adaptor
functionality
For the bean to be found during import, ensure that the JAR file (beans.jar), which
contains the bean class you are to import, is in your system CLASSPATH variable.

Restriction: Assuming you installed Component Broker in a directory such as
x:\Cbroker, you cannot have your CLASSPATH variable contents longer than 1780
characters. If the installation directory path is longer, you must have a
correspondingly shorter CLASSPATH value. You get a run-time error if you exceed
this limit. This is because commands (such as ob.bat), which invoke the Object
Builder functions prepend the Object Builder .jar files to the class path, and then
invoke the java code to run Object Builder.

Create a New Project

1. Start Object Builder.

2. The Open Project wizard opens to the Project Directory Page. Type a name and
path for the project directory (for example, e:\scenarios\ABeCashAcct).

3. Click Finish .
Note: If the project directory has never been used before, and contains no
models, Object Builder confirms with you if you want to create a model in the
directory. It then prompts you for a new model name. It shows you a default
model name, which it assumes is the same as the directory name for the
project. You can either accept that name, or change it. Click OK.

4. Click Yes, to create a new project.

Import the PA Bean
The class name for this bean is paa.samples.cics.appc.acct.ABeCashAcctPAO.

118 Application Development Tools Guide

1. In the Tasks and Objects pane, select the User-Defined PA Schemas folder, and
from its pop-up menu, select Import - Bean . The Import Procedural Adaptor
Bean wizard opens to the Bean Selection Page.

2. You can choose to either type the name of the bean class, or select the JAR file
containing the file, and then select the bean class. Select the Enter bean name
radio button, and type the name of the class
(paa.samples.cics.appc.acct.ABeCashAcctPAO) in the field.

3. Click Next . The Names and Connectors Page opens. Type the name of the
module and the persistent object to be associated with the PA schema. You can
also select the connector type to be used to access objects. Select ECI as the
connector type. This is the type of connector ABeCashAcctPAO uses.
390 When you choose OS/390 as the development (target) platform (Platform -
Constrain - 390), only the EXCI, OTMA and Generic connector types are
available for selection.

Note: When you select either NT and 390, or AIX and 390 as the development
platforms, all the connector types are available for selection. However, in this
scenario you must not select 390 either alone, or in combination with one of NT
or AIX, as the sample bean is for an ECI connector, and is not valid on OS/390:
if you select 390, you will not be able to select ABeCashAcctPAOPO as the type
of your persistent object.

4. Click Next . Select res_type and account_ID (two of the properties of the bean)
from the Properties box, and move them to the Key Attributes box, by clicking
the >> button.

5. Click Next . The Attribute Type Specification Page opens. Accept the defaults.

6. Click Finish , and the bean will be imported into Object Builder. The
ABeCashAcctPAO schema and its associated persistent object
ABeCashAcctPAOPO appear in the tree under User-Defined PA Schemas
folder.

Connecting the Imported Bean with an Application
We can connect the imported bean with either existing applications, or those
created after the bean is imported. We will create a new application.

Creating the application objects (business object, data object, managed
object)
Create the CashAcct business object file

1. From the pop-up menu of the User-Defined Business Objects folder, select Add
File.

2. The Business Object File wizard opens to the Name Page.

3. Type CashAcct in the Name field, and click Finish .

4. The CashAcct file appears in the User-Defined Business Objects folder.

Create the CashAcct interface

1. From the pop-up menu of CashAcct, select Add Interface.

2. The Business Object Interface wizard opens to the Name Page.

3. Type CashAcct as the name of the interface in the Name field.

4. Click the arrow to the left of the page name, and select Attributes from the list.
The page opens.

5. From the pop-up menu of the Attributes folder, select Add .

6. In the Attribute Name field, type res_type as the name of an attribute.

7. For the data type of the attribute, select string from the Type field.

Chapter 5. Creating Components in Object Builder 119

8. Type 0 in the Size field.

9. Use the Add Another button to add the next attribute.

10. Add the attribute balance, of type long and the string attributes account_ID,
acct_type, and utilities, using steps 6 - 9.

11. Click Refresh instead of Add Another , after you add the last attribute.

12. Click Next . The Methods Page opens.

13. Click Finish . The CashAcct interface appears under the CashAcct file, in the
folder.

Add the key

1. From the pop-up menu of the CashAcct interface, select Add Key .

2. The Key wizard opens to the Name and Key Attributes Page. From the
Business Object Attributes box, select res_type and account_ID, and click the
>> button to move them to the Key Attributes box.

3. Click Finish . The key CashAcctKey appears beneath the CashAcct interface.

Add the copy helper

1. From the pop-up menu of the CashAcct interface, select Add Copy Helper .

2. The Copy Helper wizard opens to the Name and Attributes Page.

3. Click the All>> button to select all the business object interface attributes as
attributes of the copy helper.

4. Click Finish . The copy helper, CashAcctCopy appears under the CashAcct
interface.

Add the business object implementation and the data object interface

1. From the pop-up menu of the CashAcct interface, select Add Implementation .

2. The Business Object Implementation wizard opens.

3. Select Delegating as the Pattern for Handling State Data.

4. From the Data Object Interface section, make sure that Create a new one
now is selected.

5. Click the arrow to the left of the page name, and select Key and Copy Helper
from the list. The page opens. Make sure that CashAcctKey is selected as the
key, and CashAcctCopy is selected as the copy helper.

6. Turn to the Data Object Interface Page.

7. Click the All>> button to select all the attributes of the business object as state
data for the data object.

8. Click Finish. The business object implementation CashAcctBO appears under
the CashAcct interface, and the data object interface CashAcctDO appears as a
node beneath the implementation.

Add the data object implementation and connect the BeCashAcctPAO persistent
object

1. From the pop-up menu of the CashAcctDO interface, select Add
Implementation .

2. The Data Object Implementation wizard opens to the Name and Platform
Page.

3. Accept the default names, and select NT and AIX as the deployment platforms.

4. Click Next . The Behavior Page opens.

5. From the Environment section, select BOIM with any key .

120 Application Development Tools Guide

6. From the Form of Persistent Behavior and Implementation section, select
Procedural Adaptors .

7. Click Next . The Implementation Inheritance Page opens.

8. Verify that the class IPAAExtLocalToServer appears under the Parents folder.

9. Click the arrow to the left of the page name, and select Associated Persistent
Objects from the list. The page opens. From the pop-up menu of the Persistent
Object Instances folder, select Add .

10. Type iABeCashAcctPAOPO in the Instance Name field.

11. Click Next . The Attributes Mapping Page opens.

12. Select the attribute res_type of the data object from the Attributes folder, and
from its pop-up menu, select Primitive.

13. Click the list button, and select the attribute iABeCashAcctPAOPO.phone of
the persistent object from the Persistent Object Attribute field. You have just
defined a one-to-one mapping between the data object and the persistent
object.

14. Repeat steps 12 and 13 for all the other attributes in the folder, mapping them
one-to-one.

15. Click Next. The Methods Mapping Page opens.

16. Select the insert() special framework method from the folder, and from its
pop-up menu, select Add Mapping .

17. Click the list box, and select iABeCashAcctPAOPO.insert() from the Persistent
Object Method field.

18. Repeat steps 16 and 17 for all the methods update(), retrieve(), del(), and
setConnection(), using a one-to-one mapping.

19. Click Finish .

The data object implementation, CashAcctDOImpl will now appear under the
CashAcctDO interface, and the ABeCashAcctPAOPO persistent object will appear
under the CashAcctDOImpl data object implementation.

Add the managed object

1. From the pop-up menu of the CashAcctBO business object implementation,
select Add Managed Object.

2. Under Service to Use , select Session Service if the development platform is
either Windows NT, or AIX. If the platform is OS/390, the Session Service
button is disabled, and Transaction Service is automatically selected.

3. Click Finish .

The managed object appears under the business object implementation.

Export as XML
If you want to reuse the component that you just created in other scenarios, you
can export it in XML format:

From the pop-up menu of the business object file (CashAcct), select Export . The
file Acct.xml is created and placed in the \Working\Export directory. This file
contains all the component objects defined under the file CashAcct in the
User-Defined Business Objects folder.

Generate the application code
From the pop-up menu of the CashAcct file in the User-Defined Business Objects

Chapter 5. Creating Components in Object Builder 121

folder, select Generate - All . Code generation will begin, and you can monitor the
progress in the bottom left corner of Object Builder’s window.

Configure the Build
Add the client DLL

1. From the pop-up menu of the Build Configuration folder, select Add Client DLL.
The Client DLL wizard opens.

2. Type CashAcctC in the Name field.

3. Click Next.

4. Click the All >> button to select all the client source files.

5. Click Finish.

The CashAcctC DLL will appear in the Build Configuration folder.

Add the server DLL

1. From the pop-up menu of the Build Configuration folder, select Add Server
DLL. The Server DLL wizard opens.

2. Type CashAcctS in the Name field.

3. Click Next.

4. Click the All >> button to select all the server source files.

5. Click Next.

6. Click the >> button to add the CashAcctC dll to the list of Libraries to link with.

7. Click Finish.

The CashAcctS DLL will appear in the Build Configuration folder.

Build the DLLs
Generate the configuration

From the pop-up menu of the Build Configuration folder, select Generate - All .
Code generation will begin.

Create a Container Instance

1. From the pop-up menu of the Container Definition folder, select Add Container
Instance. The Container wizard opens.

2. Type CashAcctContainer in the Name field.
390: If you are developing an application intended for deployment on OS/390
(the Platform - Constrain - 390 menu choice is checked), you are now done.
The rest of the container definition is handled through the System Management
user interface.

3. Click the arrow to the left of the page name, and select Service from the list.
The Service page opens. Select Use PAA Session Service .

4. On the Service Details Page, specify a name of your choice for the connection.
Select ECI for the connector type used by the session.

5. Click Finish.

The CashAcctContainer will appear in the Container Definition folder.

Configure the Application
Add an application family

122 Application Development Tools Guide

1. From the pop-up menu of the Application Configuration folder, select Add
Application Family. The Application Family wizard opens.

2. Type CashAcctApp in the Name field.

3. Click Finish.

The CashAcctApp family will appear in the Application Configuration folder.

Add an application

1. From the pop-up menu of the CashAcctApp application family, select Add
Application. The Application wizard opens.

2. Type CashAcct in the Name field.

3. Click Finish.

The CashAcct application will appear under the AcctApp family.

Add the application’s managed object

1. From the pop-up menu of the CashAcct application, select Add Managed
Object. The Managed Object Configuration wizard opens.

2. Click the list box of the Managed Object field, and select CashAcctMO
CashAcctMO from the list.

3. Click Next.

4. From the pop-up menu of the Implementations folder, select Add.

5. Click the list box of the Data Object Implementation field, and select
CashAcctDOImpl from the list.

6. Click Next.

7. Click the list box of the Name field, and select CashAcctContainer from the list.

8. Click Finish.

The CashAcctMO managed object will appear under the Acct application.

Generate the application family

From the pop-up menu of the CashAcctApp family, select Generate.

Build the CashAcct Application (Client and Server)
Set up the environment

You had added the location of the .jar file that contains the bean you import to your
system class path variable. So, reboot your system for the new environment
variables to take effect. The server will then be able to find the bean.

Start the Build

1. Go to the NT directory within the Object Builder Working directory. This should
be located in e:\scenarios\ABeCashAcct, under the Object Builder source
directory.

2. Type nmake -f all.mak

3. The CashAcct application should be built.

4. Copy CashAcctS.dll and CashAcctC.dll to the CBroker\bin directory to place
them in your system path.

Chapter 5. Creating Components in Object Builder 123

Start the System Management Tool
Select Start - Programs/IBM Component Broker/System Manager User
Interface

Install the CashAcct Server.

1. Click on the tool bar button to set the user level to Super User.

2. From the pop-up menu of Host Images/<your host name> , selectLoad DDL
File.

3. Type e:\scenarios\ABeCashAcct\Working\NT\CashAcctApp\CashAcctApp.ddl.

4. From the pop-up menu of Management Zones/Sample Cell and Work Group
Zone/Configurations/Sample Configuration/Server Groups , select New,
and then Server Group .

5. Type CashAcctServerGroup, and click OK.

6. From the pop-up menu of CashAcctServerGroup (under Server Groups),
select New, and then Server .

7. Type CashAcctServer, and click OK.

8. From the pop-up menu of Host Images/<your host name>/Application
Family Installs/CashAcctApp/ApplicationInstalls/CashAcct , select Drag .

9. From the pop-up menu of Management Zones/Sample Cell and Work Group
Zone/Configurations/Sample Configuration , select Add Application .

10. From the pop-up menu of Management Zones/Sample Cell and Work Group
Zone/Configurations/Sample Configuration/Applications/CashAcct , select
Drag .

11. From the pop-up menu of Management Zones/Sample Cell and Work Group
Zone/Configurations/Sample Configuration/Server
Groups/CashAcctServerGroup , select Configure Application .

12. Drag iPAAServices and configure it as well.

13. From the pop-up menu of Management Zones/Sample Cell and Work Group
Zone/Configurations/Sample Configuration/Server
Groups/CashAcctServerGroup/Servers/CashAcctServer , select Drag .

14. From the pop-up menu of Hosts/<your host name> , select Configure
Server .

15. From the pop-up menu of Management Zones/Sample Cell and Work Group
Zone/Configurations/Sample Configuration , select Activate .

16. The above step will take some time to complete. Once it has completed, from
the pop-up menu of Host Images/<your host name>/Server
Images/CashAcctServer , select Run Immediate .

Build and Run the Test Application

1. Copy CashAcctCli.cpp and its associated makefile, CashAcctCli.mak from
e:\CBroker\samples\InstallVerification\PAA\Application\CashAcctCli into the
e:\scenarios\ABeCashAcct\Working\NT directory under the current Object
Builder source directory, and go to that directory.

2. Type set APP=CashAcct;

3. Type nmake - f CashAcctCli.mak to build the application.

4. When the build has finished, type CashAcctCli to run the application.

Build the CashAcct Application (Client and Server)
Set up the environment

124 Application Development Tools Guide

You had added the .jar file containing your bean (ABeCashAcctPAO) to your
CLASSPATH variable. That location is required for import, and for the server to find
the bean. So, reboot your system for the new environment variables to take effect.

Start the Build

1. Go to the NT directory within the Object Builder Working directory. This should
be located in e:\scenarios\ABeCashAcct, under the Object Builder source
directory.

2. Type nmake -f all.mak

3. The CashAcct application should be built.

4. Copy CashAcctS.dll and CashAcctC.dll to the CBroker\bin directory to place
them in your system path.

Start the System Management Tool
Select Start - Programs/IBM Component Broker/System Manager User
Interface

Install the CashAcct Server.

1. Click on the tool bar button to set the user level to Super User.

2. From the pop-up menu of Host Images/<your host name> , selectLoad DDL
File.

3. Type e:\scenarios\ABeCashAcct\Working\NT\CashAcctApp\CashAcctApp.ddl.

4. From the pop-up menu of Management Zones/Sample Cell and Work Group
Zone/Configurations/Sample Configuration/Server Groups , select New,
and then Server Group .

5. Type CashAcctServerGroup, and click OK.

6. From the pop-up menu of CashAcctServerGroup (under Server Groups),
select New, and then Server .

7. Type CashAcctServer, and click OK.

8. From the pop-up menu of Host Images/<your host name>/Application
Family Installs/CashAcctApp/ApplicationInstalls/CashAcct , select Drag .

9. From the pop-up menu of Management Zones/Sample Cell and Work Group
Zone/Configurations/Sample Configuration , select Add Application .

10. From the pop-up menu of Management Zones/Sample Cell and Work Group
Zone/Configurations/Sample Configuration/Applications/CashAcct , select
Drag .

11. From the pop-up menu of Management Zones/Sample Cell and Work Group
Zone/Configurations/Sample Configuration/Server
Groups/CashAcctServerGroup , select Configure Application .

12. Drag iPAAServices and configure it as well.

13. From the pop-up menu of Management Zones/Sample Cell and Work Group
Zone/Configurations/Sample Configuration/Server
Groups/CashAcctServerGroup/Servers/AcctServer , select Drag .

14. From the pop-up menu of Hosts/<your host name> , select Configure
Server .

15. From the pop-up menu of Management Zones/Sample Cell and Work Group
Zone/Configurations/Sample Configuration , select Activate .

16. The above step will take some time to complete. Once it has completed, from
the pop-up menu of Host Images/<your host name>/Server
Images/CashAcctServer , select Run Immediate .

Chapter 5. Creating Components in Object Builder 125

Build and Run the Test Application

1. Copy CashAcctCli.cpp and its associated makefile, CashAcctCli.mak from
e:\CBroker\samples\InstallVerification\PAA\Application\CashAcctCli into the
e:\scenarios\ABeCashAcct\Working\NT directory under the current Object
Builder source directory, and go to that directory.

2. Type set APP=CashAcct;

3. Type nmake - f CashAcctCli.mak to build the application.

4. When the build has finished, type CashAcctCli to run the application.

“Business Object” on page 17
Session Service (Advanced Programming Guide)

“Generate Code” on page 363

Unit Test for Procedural Adaptors - Scenario

The stand-alone session support is used to provide a similar test environment to
that provided by the Component Broker run time.

When testing a PA bean outside of Component Broker, a stand-alone session
service is provided as part of the stand-alone Tier-3 communications (t3-comm)
classes (that is, as part of the com.ibm.ivj.communications package), and is
therefore available when you use those classes.

To use this stand-alone session service, the unit test case of the PA bean needs to
perform the following actions:

v invoke the static method com.ibm.ivj.communications.Session.startSession()
before the PA bean is constructed. This means that this method must be called
before the construction of communication objects (that is before the
setConnection method is called on the transaction object (step 3 below)), but it
can even be called before the PA bean is even created (step 1 below).

v invoke the static method com.ibm.ivj.communications.Session.endSession(tf)
when the PA bean is no longer needed (that is, just before the end of the unit
test program, or as appropriate if the unit test needs to perform more
comprehensive testing with sessions).
(The parameter tf is a boolean parameter. If its value is set to true, it indicates
that the session is to be checkpointed (which means that all changes are
committed and are to be kept); if it is set to false, it means that the session is to
be reset.)

The unit test scenario requires the following steps to be done in VisualAge for Java:

1. In the constructor of the PA bean, create the desired connectionSpec (for
example, HODConnectionSpec) and set appropriate values for the host name
and port.

2. Set the BplConnectionSpec attribute to the newly created connectionSpec. This
can be done since the the PA bean extends CBProceduralAdapterObject. (In the
CBProceduralAdapterObject class, there is a protected
com.ibm.bpl.cicon.connection.BplConnectionSpec attribute.) This is done in the
PA bean constructor also.

126 Application Development Tools Guide

3. Call the setConnection method on the transaction object immediately after
transaction objects are created in the CRUD methods of the PA bean.
Note:

v The connectionSpec passed into the TO.setConnection(connSpec) method is
the one set in the protected BplConnectionSpec attribute in
CBProceduralAdapterObject class by the PA bean constructor.

v The connectionSpec set in the CRUD methods will take precedence over any
previous connectionSpec that may have been set.

4. Once the connectionSpec is set, you can make any calls on the transaction
object, as desired.

This unit test scaffolding can be kept in place even when the PA bean is deployed
in a Component Broker scenario because connectionSpec passed in from CB will
be set in the protected BplConnectionSpec attribute of
CBProceduralAdapterObject and take precedence over any previously set
connectionSpec.

Note: The type com.ibm.ivj.communications.ConnectionSpec used in Component
Broker scenarios inherits from com.ibm.bpl.cicon.connection.BplConnectionSpec.

“Enterprise Access Builder (EAB)” on page 116
“Procedural Adaptor Bean (PA Bean)” on page 117
“Transaction Record” on page 116
“Transaction Object” on page 116
Connections to a Tier-3 System (System Management)

“Create a Component for PA Data” on page 115
“Create a Component for PA Data - Scenario” on page 118 “Create a Component
for PA Data” on page 115
“Work with Container Instances - Overview” on page 345
Configure an Application to use a Connection to a Tier-3 System (System
Management)

Chapter 5. Creating Components in Object Builder 127

128 Application Development Tools Guide

Chapter 6. Components Working Together

Create a Relationship

The following tasks cover the different types of relationship you can define between
components, in Object Builder:

v “Define a One-to-Many Relationship” on page 131

v “Define a One-to-One Relationship” on page 130

v “Define a Circular Relationship” on page 132

v “Define a Foreign Key Pattern” on page 133

v “Store an Object Reference” on page 135

Object Relationships (Programming Guide)
“Foreign Key Patterns” on page 132
Model Details (Object Identity) (Programming Guide)
Data Object Customization for Cardinality Relations (Programming Guide)
Expanding the Client Programming Interface (Using Handles) (Programming Guide)
“Inheritance” on page 137

“Create a Child Component” on page 136

Dependencies within an IDL File

When you add modules, interfaces, or constructs to an IDL file, they are
automatically re-ordered if necessary to resolve any internal dependencies.

You can view and change this order by displaying the wizard for an existing IDL file
(select a business object file or data object file in the Tasks and Objects pane, and
select Properties from its pop-up menu). The order appears on the Contents
Ordering page.

When a construct or interface references another construct or interface that comes
after it in the file, the dependency is resolved in one of two ways:

v If the dependency is within the same scope (the referencing and referenced
element are both at the file level, or both in the same module), then a forward
declaration is automatically included to resolve the reference.

v If the dependency is cross-scope (the referencing and referenced element are at
different scopes), then the order must be changed; a forward declaration in IDL
cannot be cross-scope.

You can view the type and scope dependencies for an IDL element by selecting it
on the Contents Ordering page:

v An interface dependency is listed when the interface has an attribute, method
return type, method parameter type, method exception type, object relationship
type, construct type, or construct member type that references another interface
or construct in the same file. If the referenced interface or construct is in another
module, then the dependency is listed as being on the module.

v A construct dependency is listed when the construct is of a type, or contains a
member of a type, that references another interface or construct in the same

© Copyright IBM Corp. 1997, 1998 129

file.If the referenced interface or construct is in another module, then the
dependency is listed as being on the module.

v A module dependency is listed when it contains an interface or construct that has
a dependency.

The order of the contents is automatically checked for validity, and re-ordered if
necessary, whenever you click Finish in the wizard for a module or interface
contained in the file.

Note : You cannot have circular dependencies between constructs.

Interface Definition Language (Programming Guide)

“Work with Constructs” on page 277

Define a One-to-One Relationship

When you add an attribute whose type is another business object, you create a
cardinality-to-1 relationship between the first object (which has the attribute) and the
second object (which is the type of the attribute).

To create an attribute that references an object, follow these steps:

1. Open the Business Object Interface wizard (either by adding a new business
object interface to a file or module, or by selecting Properties from the pop-up
menu of an existing business object interface).

2. Click the title bar and turn to the Attributes Page.

3. From the Attributes pop-up menu, select Add .

4. Type the name of the attribute (for example, currentClaim).

5. From the Type drop-down list, select the type for the object that you want to
reference (for example, Claim).

6. Enter any other information that defines the attribute.

7. Complete the remaining wizard pages, or click Finish .

The object you reference should already exist in Object Builder, at least in skeleton
form. If you have two objects that reference each other, create the references as
follows:

1. Define the first interface (for example, Policy) in skeleton form (without methods
or attributes).

2. Define the second interface (for example, Claim) with a reference to the first
interface.

3. Go back and edit the first interface, to add a reference to the second interface.

Expanding the Client Programming Interface (Using Handles) (Programming Guide)
“Business Object” on page 17
Object Relationships (Programming Guide)

“Define a One-to-Many Relationship” on page 131
“Add a Business Object Interface” on page 283

130 Application Development Tools Guide

Define a One-to-Many Relationship

You can define a one-to-many (1 to n) relationship between business objects. When
you define a relationship, a set of patterned methods are added to the first object to
support the relationship, to allow adding, deleting, and listing of its related objects.

To create a relationship between objects, follow these steps:

1. Open the Business Object Interface wizard (either by adding a new business
object interface to a file or module, or by selecting Properties from the pop-up
menu of an existing business object interface).

2. Click the title bar and turn to the Object Relationships Page.

3. From the Relationships pop-up menu, select Add .

4. Type a name for the relationship.

5. Select the type for the objects that you want to define a relationship with.

6. Complete the remaining wizard pages (if this is a new interface), or click Finish .

The business object interface will now have methods for adding, deleting, or listing
objects of the selected type. For example, if you established a 1-to-n relationship
from Policy to Claim, Policy would now have the methods addClaim, deleteClaim,
and listClaims. These methods allow a client to add and delete Claim instances
through the Policy class, and to iterate through a list of the Claim instances to
which Policy is related.

Now set the implementation of the relationship in the business object
implementation:

1. Open the Business Object Implementation wizard (either by adding a new
business object implementation to the previous interface, or by selecting
Properties from the pop-up menu of its existing business object
implementation).

2. Click the title bar and turn to the Object Relationships Page. This page lists the
relationships defined in the business object interface.

3. Click on the relationship you want to implement.

4. Under Reference Collection Implementation , set the type of implementation:

v Local persistent reference
The relationship will be stored in a collection accessed through a local
attribute. You should add the attribute to the data object for the component.
The attribute has the same name as the relationship. You can add the
attribute to the data object when you define the data object interface from the
business object, or when you map the business object to an existing data
object.

v User-Defined OO-SQL Reference
The relationship will be implemented using logic you provide. Only skeleton
methods will be generated.

v Reference resolved using foreign key
The relationship is implemented using the foreign key pattern. This is
described in a separate task.

5. Click Finish .

“Business Object” on page 17
Object Relationships (Programming Guide)
“Foreign Key Patterns” on page 132

Chapter 6. Components Working Together 131

“Add a Business Object Interface” on page 283
“Define a One-to-One Relationship” on page 130
“Define a Foreign Key Pattern” on page 133

Define a Circular Relationship

When two components reference each other (through attributes or one-to-many
relationships), the relationship is bidirectional, or circular.

Circular relationships cannot cross module boundaries. Both interfaces must be
defined in the same module, or else they cannot be in modules at all (though they
can be in separate files).

To create a circular relationship between two components, follow these steps:

1. Create the first interface, without its reference or relationship to the second
interface.

2. Create the second interface, with its reference or relationship to the first.

3. Edit the first interface, and add its reference or relationship to the second.

A foreign key pattern is a specific case of a circular relationship. It is documented in
full in the foreign key pattern task.

“Foreign Key Patterns”

“Create a Relationship” on page 129
“Define a Foreign Key Pattern” on page 133

Foreign Key Patterns

When a schema contains a foreign key reference (for example, the schema for
Customer has a foreign key reference to Agent), this allows for more efficient
relationships on the component level. For example, if Agent has a one-to-many
relationship with Customer, calls to find a particular customer can be resolved on
the database level, instead of on the business object level.

To take advantage of a foreign key reference on the component level, you need to
define a component with a foreign key attribute (based on the foreign key
reference), and then edit the component referenced by the foreign key attribute, to
add a one-to-many relationship in the other direction (resolving references by
foreign key).

For example, the component Agent has a one-to-many relationship with the
component Customer, and the component Customer has an inverse object
reference to the component Agent (each agent can have multiple customers, but
each customer is represented by only one agent).

Foreign key relationships give better performance with SQL queries, because the
references resolve directly to a database table, rather than indirectly through
business object and data object attributes.

132 Application Development Tools Guide

Once you define these relationships on the component level (a one-to-many
relationship with foreign key support, and inverse references based on foreign
keys), the foreign key attribute (for example, Customer’s inverse reference to Agent)
can be mapped to a foreign key in the imported .sql for the component.

Object Builder currently will not identify foreign keys in .sql files it generates. It only
allows you to build components with foreign key relationships, based on schemas
that contain foreign key references.

Object Relationships (Programming Guide)
Data Object Customization for Cardinality Relations (Programming Guide)

“Define a Foreign Key Pattern”
“Customize Referential Integrity” on page 108

Define a Foreign Key Pattern

When a schema contains a foreign key reference (for example, the schema for
Customer has a foreign key reference to Agent), this allows for more efficient
relationships on the component level. For example, if Agent has a one-to-many
relationship with Customer, calls to find a particular customer can be resolved on
the database level, instead of on the business object level.

To take advantage of a foreign key reference on the component level, you need to
define a component with a foreign key attribute (based on the foreign key
reference), and a component with a one-to-many relationship (resolving references
by foreign key).

To define these relationships, follow these steps:

1. Import the SQL DDL files that define the schemas for the related components
(for example, myDB.Customer and myDB.Agent).

2. Create persistent objects from the schemas (for example, CustomerPO and
AgentPO).

3. Create skeleton business object interfaces (for example, Customer and Agent).
Specify their names only, do not specify their attributes or relationships.

Note : If the two interfaces are defined in separate files, they cannot be
contained in modules. If they are defined in modules, they must be defined in
the same file. They cannot be defined in separate modules of separate files.

4. Complete the business object interface that owns the foreign key reference.
Make sure the interface includes an object reference equivalent to the foreign
key reference.

The object reference represents a many-to-one relationship (many Customers
share one Agent). You create this relationship in the same way you would
create a one-to-one relationship, by creating an attribute of the referenced type
(for example, the business object interface is defined with an attribute myAgent
of type Agent). This is the foreign key attribute. The foreign key attribute cannot
be read-only.

5. Create the business object implementation, data object interface and
implementation, key, and copy helper for the owner of the foreign key reference
(for example, CustomerBO, CustomerDO, CustomerDOImpl, CustomerKey,
CustomerCopy).

Chapter 6. Components Working Together 133

Make sure the foreign key attribute (for example myAgent) is part of the
component’s state data, and identified in the component’s key.

6. Complete the business object interface and implementation referenced by the
foreign key, and define its one-to-many relationship (for example, add a
one-to-many relationship from Agent to Customer, so that each agent can have
multiple customers).

To define a one-to-many relationship with references resolved by foreign key,
follow these steps:

a. Open the Business Object Interface wizard by selecting Properties from the
pop-up menu of the business object interface.

b. Click the title bar and turn to the Object Relationships Page.

c. From the Relationships pop-up menu, click Add .

d. Type a name for the relationship.

e. From the Object Type drop-down list, select the interface that has the
foreign key reference (for example, Customer).

f. Specify the name of the home that will hold the component that owns the
foreign key reference (for example, CustomerMOHome).

g. Click Finish .

h. From the pop-up menu of the interface, click Add Implementation to open
the Business Object Implementation wizard.

i. Click the title bar and turn to the Object Relationships Page.

j. Under the Relationships folder, click on the relationship you defined in the
interface. You can now set the implementation behavior for the relationship.

k. Under Reference Collection Implementation , click Reference resolved
using foreign key .

Note : This option is enabled only when the selected object type meets the
criteria for a foreign key relationship (it is either defined in the same file or
neither interface is defined in a module, and it has a reference to the current
object).

l. From the Foreign Key Attribute list, select the attribute of the object that
you want to use as the foreign key in this relationship. The list only displays
attributes with the same type as the current object (for example, Customer’s
attribute myAgent of type Agent).

m. In the Home to Query field, specify the home that will be used on the
server to find objects of the selected type. The home you select must be
the same one you configure with the target component’s managed object.

Typically the home name is derived from the target managed object’s name
(for example, CustomerMOHome).

n. Click Finish .

7. Complete the rest of the component objects (for example, AgentBO, AgentDO,
AgentDOImpl, AgentKey, AgentCopy).

8. Complete the component that owns the one-to-many relationship by mapping
the data object implementation of the component to its equivalent persistent
object (for example, map AgentDOImpl to AgentPO):

a. In the implementation’s wizard, add an instance of the persistent object to
the implementation’s Associated Persistent Objects Page.

b. Turn to the Attributes Mapping Page and map the data object attributes to
the persistent object attributes.

c. Turn to the Methods Mapping Page and map the framework methods there
to methods of the persistent object.

134 Application Development Tools Guide

9. Complete the component that owns the foreign key reference by mapping the
data object implementation of the component to its equivalent persistent object
(for example, map CustomerDOImpl to CustomerPO):

a. In the implementation’s wizard, add an instance of the persistent object to
the implementation’s Associated Persistent Objects Page.

b. Turn to the Attributes Mapping Page and map the data object attributes to
the persistent object attributes.

c. Map the foreign key attribute using the Key Home option, and then map the
key attributes to their equivalents in the persistent object.

d. Turn to the Methods Mapping Page and map the framework methods there
to methods of the persistent object.

The foreign key pattern is now established.

“Foreign Key Patterns” on page 132
“Components” on page 15
“Home” on page 342

“Define a One-to-One Relationship” on page 130
“Define a One-to-Many Relationship” on page 131
“Map a Data Object to a DB Persistent Object” on page 251
“Map Attributes Using a Key” on page 258
“Customize Referential Integrity” on page 108

Store an Object Reference

Because an object reference is literally a memory address, it needs to be converted
into a more permanent form before it can be stored persistently. Object Builder
supports the following handle patterns for a persistent reference:

v Stringified Object Reference (SOR)

v Object Name

v Home Name and Key

The handle pattern used to store references to a particular object type is set in the
business object implementation of that object. The handle pattern can be
overridden, however, by the referencing object, as set in the data object
implementation of the referencing object.

To set or change the default handle pattern for a particular object type, follow these
steps:

1. Open the Business Object Implementation wizard (either by adding a new
business object implementation to an interface, or by selecting Properties from
the pop-up menu of an existing business object implementation).

2. Click the title bar and turn to the Handle Selection Page.

3. Select the handle that will be used by default to store references to this type of
object.

4. Complete the remaining wizard pages (if this is a new business object
implementation), or click Finish .

To override the default behavior and use a single storage pattern for references to
all types of objects, follow these steps:

Chapter 6. Components Working Together 135

1. Open the Data Object Implementation wizard (either by adding a new data
object implementation to an interface, or by selecting Properties from the
pop-up menu of an existing data object implementation).

2. Turn to the Behavior page..

3. Under “Handle for Storing Pointers” on page 35, select the handle you want to
use for swizzling pointers.

4. Complete the remaining wizard pages (if this is a new data object
implementation), or click Finish .

Using Handles (Programming Guide)
Object Relationships (Programming Guide)
Data Object Customization for Cardinality Relations (Programming Guide)

“Add a Business Object Implementation and Data Object Interface” on page 284
“Add a Data Object Implementation” on page 299

Create a Child Component

You can create a child component in any of the following ways:

v “Define a Child with Attributes Duplication” on page 142

v “Define a Child with Key Duplication” on page 149

v “Define a Child with a Single Datastore” on page 156

v “Define a Child with Views” on page 164

All of these patterns assume that you are not overriding attributes in the business
object implementation.

These patterns differ primarily in the way the data object maps to the persistent
object (in other words, the way that the object hierarchy is mapped to the
datastore). The general tasks involved in that step are as follows:

v “Map a Data Object to the Parent’s Persistent Object” on page 254

v “Map a Data Object to the Child’s Persistent Object” on page 255

Once you have created the child component, you can build and package it:

1. Build a Child Component

2. Package a Child Component

“Inheritance” on page 137
“Inheritance and Overriding in Business Objects” on page 138
“Choosing an Inheritance Pattern for Persistence” on page 140
“Components” on page 15

“Inheritance with Attributes Duplication - Scenario” on page 144
“Inheritance with Key Duplication - Scenario” on page 151
“Inheritance with a Single Datastore - Scenario” on page 158
“Inheritance with Views - Scenario” on page 165

136 Application Development Tools Guide

Inheritance

You can inherit data and behavior between components in Object Builder.

You do not need to explicitly inherit between objects in the same component (for
example, a business object and data object, or business object and copy helper).
The relationship between the objects is handled by Object Builder.

You do not need to include any of the framework interface files for Component
Broker frameworks that your components inherit from. This also is handled by
Object Builder.

Child components can inherit full implementations from their parent component, or
only the interface.

When you create a child component with interface inheritance, only the child
business object interface needs to inherit from the parent. Then, in the child
business object implementation, the inherited interfaces can be implemented (by
selecting to override the parent methods and attributes in the Business Object
Implementation wizard). The rest of the child component objects do not have
inheritance.

When you create a child component with implementation inheritance, the child
component objects generally inherit from their equivalent parent objects:

v The child business object file should include the parent business object file.

v The child business object interface should inherit from the parent interface.

v It may not be necessary to have a child key and copy helper. If the child has the
same key attribute as the parent, it can re-use the parent’s key. If the child does
not add any new attributes, it can re-use the parent’s copy helper. If you do add
a child key and copy helper, then they can either inherit from their equivalents in
the parent component, or they can contain selected attributes of the parent
interface, without inheriting from the parent key or copy helper.

v The child business object implementation should inherit from the parent
implementation.

v The child data object interface should inherit from the parent data object
interface.

v The child data object implementation should inherit from the parent data object
implementation.

v The child managed object should inherit from the parent managed object.

For data inheritance to work, the type of persistence provided by the parent and
child data object implementations should be the same.

“Components” on page 15
“Inheritance and Overriding in Helper Objects” on page 138
“Inheritance and Overriding in Business Objects” on page 138
“Inheritance and Overriding in Data Objects” on page 139
“Abstract Base Class Inheritance” on page 140
“Choosing an Inheritance Pattern for Persistence” on page 140
“Inheritance and Overriding in Helper Objects” on page 138
“Inheritance with Attributes Duplication” on page 141

Chapter 6. Components Working Together 137

“Inheritance with Key Duplication” on page 147
“Inheritance with a Single Datastore” on page 155
“Inheritance with Views” on page 162

“Create a Child Component” on page 136

Inheritance and Overriding in Helper Objects

When you create the key and copy helper for a child component, you have the
option of including some or all of the parent’s equivalent attributes as part of the
helper.

For a child’s key, you have three options:

v Use the parent’s key.
If the child has the same key attributes as the parent, there is no need to create
a separate key; you can simply re-use the one created for the parent. In the
child’s Data Object Implementation wizard, on the Key and Copy Helper page,
select the parent’s key.

v Use a mix of parent key attributes and child key attributes.
In the child’s Key wizard, on the Name and Key Attributes page, you have parent
key attributes available for selection. Select some or all of these, and then select
additional identifying attributes that are unique to the child.

v Use all the parent key attributes and additional child key attributes
In the child’s Key wizard, on the Name and Key Attributes page, select the child
attributes you want to be part of the key. Do not select any of the parent
attributes. Click Next to turn to the Implementation Inheritance page, and select
the parent key to inherit from. The child’s key then inherits the parent’s key
attributes, in addition to having the child key attributes specified on the previous
page.

v Use only child key attributes.
If the parent object has no identity in common with the child, then there is no
reason for their keys to be related. You can create an entirely new key to reflect
the child’s unique identity, which includes none of the parent’s attributes, and has
default inheritance only.

For a child’s copy helper, you have the same choices. The choice that makes sense
will depend on the creation scenarios in which you intend to use the copy helper.

“Inheritance” on page 137
“Choosing an Inheritance Pattern for Persistence” on page 140
“Key” on page 21
“Copy Helper” on page 21

“Create a Child Component” on page 136

Inheritance and Overriding in Business Objects

You can inherit both business object interface and business object implementation
from the parent. In the business object implementation, you can select which
attributes and methods you want to override. Generally you would do so if you
wanted to change the way these attributes mapped to, or interacted with, the data

138 Application Development Tools Guide

object. If you override an attribute or method in the child business object, and also
choose to push it down to the child data object, then the child data object should
not inherit from the parent data object. Otherwise the overridden attributes or
methods will be defined twice, once through its association with the business object,
and once through its inheritance from the parent.

There are three main situations in which you would override in the child’s
implementation:

v Overriding all attributes and inheriting behavior
You can inherit behavior (method implementations) from a parent class, while
overriding all its attributes. This is only appropriate for parent classes that have
no data in the data object. The parent will have a business object interface,
business object implementation, and a data object interface that contains no
data. The child will inherit from each of the parent objects.

v Overriding all attributes and behavior
You can use a parent class for interface-only inheritance, by overriding all its
attributes and methods in the business object implementation. The child will
inherit from the parent business object interface only. This pattern also applies
to abstract base class inheritance.

v Overriding no attributes, overriding some or all behavior
There are no restrictions on overriding methods, except for PA push-down
methods (which have the same restrictions as attributes).

“Inheritance” on page 137
“Inheritance and Overriding in Helper Objects” on page 138
“Inheritance and Overriding in Data Objects”
“Abstract Base Class Inheritance” on page 140
“Choosing an Inheritance Pattern for Persistence” on page 140

“Create a Child Component” on page 136

Inheritance and Overriding in Data Objects

You can inherit both interface and implementation from the parent. In the data
object implementation, you can selectively map both local attributes and inherited
attributes to an associated persistent object. When you map an inherited attribute,
the mapping overrides the parent’s mapping. In other words, the parent’s mapping
will still be in effect for the parent, but will be overridden in the child.

If you map all the inherited attributes to the child’s persistent object, you are using
the attributes duplication pattern of inheritance. If you map only the parent’s key
attributes to the child’s persistent object, you are using the key duplication pattern
of inheritance.

“Inheritance” on page 137
“Inheritance and Overriding in Helper Objects” on page 138
“Inheritance and Overriding in Business Objects” on page 138
“Abstract Base Class Inheritance” on page 140
“Choosing an Inheritance Pattern for Persistence” on page 140
“Inheritance with Attributes Duplication” on page 141
“Inheritance with Key Duplication” on page 147

Chapter 6. Components Working Together 139

“Create a Child Component” on page 136

Abstract Base Class Inheritance

Abstract base classes are not supported by either the Interface Definition Language
Compiler (IDLC) or Object Builder. So, any business object interface that you
specify as a parent for another business object interface must have an
implementation, even if every method in that implementation only throws a
NO_IMPLEMENT exception.

You can create the equivalent of abstract base class inheritance by defining a
business object with a minimal implementation and an empty data object interface.
Child components can inherit from the business object interface only, and then
implement all the parent attributes and methods in the child business object
implementation (by selecting to override them in the Business Object
Implementation wizard).

A component that acts as an abstract base class for inheritance purposes should
consist of the following objects:

v Business object interface
Defines the interface to the base class. Child business object interfaces inherit
from this class.

v Business object implementation
Contains skeleton implementations for methods and attributes. Methods at
minimum throw the NO_IMPLEMENT exception.

v Data object interface
Contains no data. Allows framework inheritance to work correctly.

“Inheritance” on page 137
“Inheritance and Overriding in Helper Objects” on page 138
“Inheritance and Overriding in Business Objects” on page 138
“Inheritance and Overriding in Data Objects” on page 139
“Choosing an Inheritance Pattern for Persistence”

“Create a Child Component” on page 136

Choosing an Inheritance Pattern for Persistence

There are four main patterns for inheritance with persistence. For any of these
patterns to work, you must not be overriding attributes in the business object
implementation.

Your choice of inheritance pattern is based on three concerns:

v Identity: whether parent and child have the same identity (that is, they share the
same key)

v Performance tradeoffs: whether performance or space efficiency is more
important.

v Form of persistence: whether the parent has data to be persisted, and where and
how the parent’s and child’s data is persisted.

140 Application Development Tools Guide

If the parent and child have different keys, you should probably use the attributes
duplication pattern. This means that the child’s datastore provides persistence for all
of its data, including inherited data (that is, the parent’s attributes are duplicated in
the child’s datastore). The parent’s datastore only provides persistence for
instances of the parent, never for instances of the child. If you do not use the
attributes duplication pattern when there are different keys, the parent’s datastore
will have two primary keys: the parent’s key for the parent’s data, and the child’s
key for the child’s inherited data. It then becomes problematic to determine which
data belongs to which object type.

If the parent and child have the same key, you can choose between the key
duplication pattern and the single datastore with views pattern. The key duplication
pattern will generally be more efficient in its use of space (because the persistent
objects for each component contain only the data required for that component, and
only the parent’s key is duplicated in the child), and the views pattern will generally
provide faster look-up time (because both local and inherited data are mapped to
the same underlying datastore). The views pattern is based on views of the
underlying database table, and requires that there be some unique attribute of the
child that can be used to select appropriate views of the database.

If the parent and child have the same key and the parent never actually exists on
its own (for example, there are never any pure Person instances kept in the
datastore), you can use the single datastore pattern instead of the views pattern.
Views are only required to select out the different object types being stored, and if
the datastore only provides persistence for child and inherited attributes, the views
are unnecessary.

“Inheritance” on page 137
“Inheritance with Attributes Duplication”
“Inheritance with Key Duplication” on page 147
“Inheritance with a Single Datastore” on page 155
“Inheritance with Views” on page 162

“Create a Child Component” on page 136
“Define a Child with Attributes Duplication” on page 142
“Define a Child with Key Duplication” on page 149
“Define a Child with a Single Datastore” on page 156
“Define a Child with Views” on page 164

Inheritance with Attributes Duplication

If you have or want completely separate datastores for pure parent objects and
parent objects that are also child objects, you can duplicate the attributes of the
parent in the child’s datastore. For example, data for a Person who isn’t a
Beneficiary is stored in the Person datastore, and data for a Person who is a
Beneficiary is stored in the Beneficiary datastore.

You can duplicate the parent’s attributes in the child’s datastore when you create
the persistent object and schema from the data object. By mapping the parent’s
attributes to the child’s persistent object, you implicitly override the parent’s
mapping. In other words, the parent’s mapping will still be in effect for the parent,
but will be overridden in the child.

Chapter 6. Components Working Together 141

For example, if Person has a child Beneficiary, then Person has a datastore that
holds Person’s attributes, and Beneficiary has a datastore that holds the total of
Person’s attributes and Beneficiary’s attributes.

Advantages
The potential advantage to this approach is that you have a separate datastore for
each type of object, regardless of its inheritance relationships. If it is important to
maintain Person and Beneficiary in different datastores (for example, in different
tables, different databases, or through different PA beans), then this approach can
support that distinction, while still providing a unified object-oriented interface to the
data.

This approach also allows the parent and child to use different keys to access their
data, so the child does not have to use the parent’s key

Disadvantages
This approach takes up more space than the other patterns, because of the
duplication of attributes.

In this pattern:

v The parent’s data object attributes and special framework methods are mapped
to the parent’s persistent object.

v The child’s data object attributes, inherited attributes, and special framework
methods are mapped to the child’s persistent object.

“Inheritance” on page 137
“Choosing an Inheritance Pattern for Persistence” on page 140

“Create a Child Component” on page 136
“Inheritance with Attributes Duplication - Scenario” on page 144

Define a Child with Attributes Duplication

This task covers the main steps necessary to create a component that inherits from
another component already defined in Object Builder, and provides its own
duplicated persistence for any inherited attributes. It does not cover every step; you
should first be familiar with the tasks necessary to create a component without
inheritance.

To create a child component in Object Builder, follow these steps:

142 Application Development Tools Guide

1. Create the business object file.

2. Add the business object interface, and select the parent’s business object
interface on the Interface Inheritance Page.

3. If the child’s identity differs from the parent’s identity (in other words, it defines
its own key attributes), you can add a key for the child. You can include
attributes of the parent’s key either by selecting specific attributes on the Name
and Key Attributes Page, or include all the parent’s attributes by selecting the
parent key on the Implementation Inheritance Page. Do not do both.

If the child has the same key attributes as the parent, then you do not need to
create a key for the child. You can simply re-use the parent’s key.

4. Add the copy helper. You can include attributes of the parent’s copy helper
either by selecting specific attributes on the Name and Attributes Page, or
include all the parent’s attributes by selecting the parent copy helper on the
Implementation Inheritance Page. Do not do both.

5. Add the business object implementation:

a. Under Data Object Interface, click Add or select one later . This allows you
to add the data object interface in a separate step, and define its parent.

b. Select the parent’s business object implementation on the Implementation
Inheritance Page.

c. Do not override any attributes on the Attributes to Override page.

d. Select any methods you want to override on the Methods to Override Page.

6. Add the managed object, and select the parent’s managed object on the
Implementation Inheritance Page.

7. Add the data object interface:

a. From the business object implementation’s pop-up menu, click Add New
Data Object Interface .

b. Select the attributes and methods of the business object you want
represented in the data object.

c. You should select the parent data object interface on the Interface
Inheritance page.

8. Add the data object implementation, and select the parent data object
implementation on the Implementation Inheritance page.

9. Add a persistent object and schema:

a. On the Attributes Mapping page, click Horizontal Partitioning to map the
child’s attributes and inherited attributes to the child’s persistent object.

b. On the Methods Mapping page, map the special framework methods to the
child’s persistent object.

“Inheritance” on page 137
“Choosing an Inheritance Pattern for Persistence” on page 140
“Inheritance and Overriding in Helper Objects” on page 138
“Components” on page 15

Create a Component - Overview
“Create a Child Component” on page 136
Build a Child Component
“Inheritance with Attributes Duplication - Scenario” on page 144

Chapter 6. Components Working Together 143

Inheritance with Attributes Duplication - Scenario

In this scenario you define a child component that provides its own persistence for
inherited attributes (duplicating the persistence provided by its parent).

Before following these instructions, you should have the Person component defined
and exported in XML format (PFile.xml), as described in the Simple Database
Persistence - Scenario.

After you complete this scenario, you will have a component named Beneficiary that
inherits from Person, and which provides persistence in a database table both for
its own attributes, and for the attributes it inherits from Person.

The following tasks do not give explicit instructions for every step, but should at
least get you into the right wizards. If you are experiencing problems, click the Help
button within a wizard, or go to the Help pulldown in Object Builder.

Create the Project
Create a sample project to hold your work.

1. Start Object Builder.

2. In the Open Project wizard, type a name and path for the project directory (for
example, e:\scenarios\inheritadup).

3. Click Finish .

4. When asked whether you want to create a new project, click Yes.

Import PFile.xml
Import the definition of the Person component, as created in the Database
Persistence - Scenario:

1. From the User-Defined Business Objects folder’s pop-up menu, click Import -
XML.

2. Find and select PFile.xml.

3. Click Finish .

The component objects for Person appear in the folder.

Create the Business Object Interface
Define the Beneficiary interface:

1. From the User-Defined Business Objects folder’s pop-up menu, click Add File
to open the Business Object File wizard.

2. Name the file BFile.

3. Click Finish . The file now appears under the folder.

4. From the file’s pop-up menu, click Add Module to open the Business Object
Module wizard.

5. Name the module BModule.

6. Click Finish . The module now appears under the file.

7. From the module’s pop-up menu, click Add Interface to open the Business
Object Interface wizard.

8. Name the interface Beneficiary.

9. Click the title bar and turn to the Interface Inheritance page.

10. Add Person as a parent (replacing the default inheritance).

11. Click the title bar and turn to the Attributes page.

144 Application Development Tools Guide

12. Add the following attributes:

v readonly long id

v float claimPayments

13. Click Finish . The interface now appears under the module.

Add the Key and Copy Helper
Add BeneficiaryKey:

1. From the interface’s pop-up menu, click Add Key to open the Key wizard.

2. Select id as a key attribute.

3. Add ssNo and name as key attributes (so Beneficiary’s identity includes the key
attributes for its parent).

Beneficiary’s key now consists of the following:

v long id (defined in Beneficiary)

v string ssNo (defined in Person)

v string name (defined in Person)

4. Click Finish . The key now appears under the interface.

Add BeneficiaryCopy:

1. From the interface’s pop-up menu, click Add Copy Helper to open the Copy
Helper wizard.

2. Add all attributes to the copy helper.

3. Click Finish . The copy helper now appears under the interface.

Add the Business Object Implementation
Add BeneficiaryBO:

1. From the interface’s pop-up menu, click Add Implementation to open the
Business Object Implementation wizard.

2. Set Data Object Interface - Add or select one later (you will create a new
data object as a separate step).

3. Click Next to turn to the Implementation Inheritance page.

4. Add PersonBO as a parent.

5. Click the title bar and turn to the Key and Copy Helper page.

6. Select BeneficiaryKey and BeneficiaryCopy.

7. Click Finish . The business object implementation appears under the business
object interface.

Add the Data Object Interface
Add BeneficiaryDO:

1. From the business object implementation’s pop-up menu, click Add New Data
Object Interface to open the Data Object Interface wizard.

2. Select all the business object attributes as state data (to be preserved in the
data object).

3. Click the title bar and turn to the Interface Inheritance page.

4. Add PersonDO as a parent.

5. Click Finish . The data object interface appears under the business object
implementation.

Add the Data Object Implementation
Add BeneficiaryDOImpl:

Chapter 6. Components Working Together 145

1. From the data object interface’s pop-up menu, click Add Implementation to
open the Data Object Implementation wizard.

2. Set the following patterns:

v Environment - BOIM with any key

v Form of Persistent Behavior and Implementation - Embedded SQL

v Data Access Pattern - Delegating

3. Click Next to turn to the Implementation Inheritance page.

4. Add PersonDOImpl as a parent.

5. Click the title bar and turn to the Key and Copy Helper page.

6. Select BeneficiaryKey and BeneficiaryCopy.

7. Click Finish . The data object implementation appears under the data object
interface.

Add the Persistent Object and Schema
Add BeneficiaryPO and its associated schema:

1. From the data object implementation’s pop-up menu, click Add Persistent
Object and Schema to open the Add Persistent Object and Schema wizard.

2. Type a name for the schema group that will hold the schema, and for the
database.

3. Click Next to turn to the Attributes Mapping page. Both Beneficiary’s attributes
and Person’s attributes are displayed.

4. Click Horizontal Partitioning . This maps all attributes (both Beneficiary’s and
Person’s) to attributes of BeneficiaryPO.

In this step, two things are happening:

v Because BeneficiaryPO does not actually exist yet, this step defines what
attributes BeneficiaryPO will contain.

v By mapping Person’s attributes to BeneficiaryPO, you are implicitly overriding
the mapping in the Person component. BeneficiaryDOImpl now has its own
copy of Person’s attributes, which map to BeneficiaryPO instead of
PersonPO.

5. Click Finish . The persistent object and schema appear under the data object
implementation.

Add the Managed Object
Add BeneficiaryMO:

1. From the business object implementation’s pop-up menu, click Add Managed
Object to open the Managed Object wizard.

2. Click Finish . The managed object now appears under the business object
implementation.

Configure the Build
You have now completed the definition of the Beneficiary component, and its
inheritance from Person. The next step is to configure the client and server DLLs
that will hold the components.

Define the Client DLL
Add the PBClient DLL:

1. From the Build Configuration folder’s pop-up menu, click Add Client DLL to
open the Client DLL wizard.

2. Name the DLL PBClient.

146 Application Development Tools Guide

3. Click Next to turn to the Client Source Files page.

4. Select PFile, PFileKey, and PFileCopy (the Person client interfaces).

5. Select BFile, BFileKey, and BFileCopy (the Beneficiary client interfaces).

6. Click Finish . The client DLL appears under the folder.

Define the Server DLL
Add the PBServer DLL:

1. From the Build Configuration folder’s pop-up menu, click Add Server DLL to
open the Server DLL wizard.

2. Name the DLL PBServer.

3. Click Next to turn to the Server Source Files page.

4. Select PFileBO, PFileDO, PFileDOImpl, and PFileMO (the Person server
interfaces).

5. Select BFileBO, BFileDO, BFileDOImpl, and BFileMO (the Beneficiary server
interfaces).

6. Click Next to turn to the Libraries to Link With page.

7. Select the PBClient library file.

8. Click Finish . The server DLL appears under the folder.

Build the DLLs
Build the PBClient and PBServer DLLs:

1. From the pop-up menu of the User-Defined Business Objects folder, click
Generate - All .

2. Wait for the code generation to complete. The generated source files are placed
in the project’s \Working directory.

3. From the pop-up menu of the Build Configuration folder, click Generate - All -
All Targets .

4. From the same pop-up menu, click Build - All Targets . The DLLs are built and
placed in the project’s \Working directory.

Inheritance with Key Duplication

If your datastores are divided in a way that mirrors your component hierarchy, then
inheritance works the same for persistent data as it does for data on the object
level. In other words, a child has its own datastore for its own attributes, and uses
its parent’s datastore for inherited attributes. The only exception is for key attributes:
in this pattern, the child typically uses the same key as the parent, and the parent’s
key is duplicated in the child’s datastore.

This is the default inheritance pattern in Object Builder. If you create new parent
and child components (starting from the business object interface and working down
to persistent objects and DB schemas), then each schema holds only the definitions
for data defined in its component. The child component uses its own persistent
object for its own data, and its parent’s persistent object for inherited data.

Advantages
The advantage to this approach is its precision, and efficient use of space.

Disadvantages
Because data access can span multiple datastores, access time may be slower
than with other patterns. Also, this approach is problematic if your parent and child
use different keys. Because part of the child’s data is stored in the parent’s

Chapter 6. Components Working Together 147

datastore, the parent datastore needs to support both keys (the child’s and the
parent’s), to ensure data for the right object type is returned. Generally, you should
only use this pattern when the parent and the child use the same key.

For this pattern, the parent’s table and the child’s table must be in the same
database.

In this pattern:

v The parent’s data object attributes and special framework methods are mapped
to the parent’s persistent object.

v The child’s data object attributes, and its inherited key, are mapped to the child’s
persistent object. This creates a duplicate of the parent’s key in the child’s
persistent object, which allows it to locate the parent’s persistent object when it
needs to retrieve inherited attributes.

v The child’s data object special framework methods are mapped in one of two
ways, depending on the type of creation and deletion scenarios you want to
support.

If you want to support creation of a child with an existing parent entry, and
deletion of a child without deletion of its parent entry, map as follows:

– insert and update map to first the parent’s and then the child’s persistent
objects, with the Always complete calling sequence option checked. (For
example, insert maps to iPersonPO.insert and iBeneficiaryPO.insert.)

Because they map to both, and the calling sequence will ignore errors, you
can successfully create a Beneficiary that already exists as a Person: the
parent insert will fail, but still proceed to the child insert, which is successful.

You will not be able to set values for the attributes of an existing parent during
creation of the child. If you create the child using a copy helper, any values
you set for inherited attributes are ignored, since they are applied to the
parent’s existing records using insert, when they need to use update. You can
change the inherited attributes in a separate update call after you create the
child.

– retrieve and setConnection map to first the child’s and then the parent’s
persistent objects, with the Always complete calling sequence option not
checked. (For example, retrieve maps to iBeneficiaryPO.retrieve and
iPersonPO.retrieve.)

Because Beneficiary stores its inherited attributes in Person’s datastore, it
must be able to retrieve the parent’s data. If an error occurs on the parent’s
retrieve, it abandons the calling sequence and returns an error.

– delete maps to the child’s persistent object. (For example,
iBeneficiaryPO.delete.)

148 Application Development Tools Guide

Because the delete method maps only to the child’s persistent object, when a
child object is deleted, its record as a parent object remains. (For example,
when you delete a Beneficiary, you retain an entry for the Person, even
though the Person is no longer a Beneficiary.)

If you want to create only new parents and children, and delete the child and its
parent in the same step, map as follows:

– insert and update map to first the parent’s and then the child’s persistent
objects, with the Always complete calling sequence option not checked.
(For example, insert maps to iPersonPO.insert and iBeneficiaryPO.insert.)

This always creates a new parent along with the child.

If you wanted to create a new child from an existing parent, you could still find
the existing parent, create a copy of its attribute values, delete the parent, and
then create the child as a new object with the values of the deleted parent.

– retrieve and setConnection map to first the child’s and then the parent’s
persistent objects, with the Always complete calling sequence option not
checked. (For example, retrieve maps to iBeneficiaryPO.retrieve and
iPersonPO.retrieve.)

Because Beneficiary stores its inherited attributes in Person’s datastore, it
must be able to retrieve the parent’s data. If an error occurs on the parent’s
retrieve, it abandons the calling sequence and returns an error.

– delete maps to first the child’s and then the parent’s persistent objects, with
the Always complete calling sequence option not checked. (For example,
iBeneficiaryPO.delete and iPersonPO.delete.)

This deletes the parent along with the child.

If you wanted to delete the child and leave the parent entry, you could still
copy the existing parent values, continue with the deletion of the child, and
then recreate the parent with the copied values.

“Inheritance” on page 137
“Choosing an Inheritance Pattern for Persistence” on page 140

“Create a Child Component” on page 136
“Inheritance with Key Duplication - Scenario” on page 151

Define a Child with Key Duplication

This task covers the main steps necessary to create a component that inherits from
another component already defined in Object Builder, and duplicates its parent’s
key in the child’s datastore, so it can look up its parent and use its parent’s
persistence for other inherited attributes. It does not cover every step; you should
first be familiar with the tasks necessary to create a component without inheritance.

To use the key duplication pattern, the child must have the same key attributes as
the parent. If the child has a different key, use the attributes duplication pattern.
Also, if persistence is provided in a database, both the parent and child must use
tables in the same database.

To create a child component in Object Builder, follow these steps:

1. Create the business object file.

Chapter 6. Components Working Together 149

2. Add the business object interface, and select the parent’s business object
interface on the Interface Inheritance Page.

3. Add the copy helper. You can include attributes of the parent’s copy helper
either by selecting specific attributes on the Name and Attributes Page, or
include all the parent’s attributes by selecting the parent copy helper on the
Implementation Inheritance Page. Do not do both.

4. Add the business object implementation:

a. Under Data Object Interface, click Add or select one later . This allows you
to add the data object interface in a separate step, and define its parent.

b. Select the parent’s business object implementation on the Implementation
Inheritance Page.

c. Select the parent’s key on the Key and Copy Helper page.

d. Do not override any attributes on the Attributes to Override page.

e. Select any methods you want to override on the Methods to Override Page.

5. Add the managed object, and select the parent’s managed object on the
Implementation Inheritance Page.

6. Add the data object interface:

a. From the business object implementation’s pop-up menu, click Add New
Data Object Interface .

b. Select the attributes and methods of the business object you want
represented in the data object.

c. You should select the parent data object interface on the Interface
Inheritance page.

7. Add the data object implementation, and select the parent data object
implementation on the Implementation Inheritance page.

8. Add a persistent object and schema, and map the attributes as follows:

v On the Attributes Mapping page, click Vertical Partitioning to map the child’s
data object attributes, and its inherited key, to the child’s persistent object.

9. Open the data object implementation’s properties, and map the special
framework methods as follows:

v On the Methods Mapping page:

– delete maps to the child’s persistent object. (For example,
iBeneficiary.delete.)

– insert and update map to first the parent’s and then the child’s persistent
objects, with the Always complete calling sequence option checked.
(For example, insert maps to iPersonPO.insert and iBeneficiaryPO.insert.)

– retrieve and setConnection map to first the child’s and then the parent’s
persistent objects, with the Always complete calling sequence option
not checked. (For example, retrieve maps to iBeneficiaryPO.retrieve and
iPersonPO.retrieve.)

These mappings support creation of a child when its entry as a parent
already exists (for example, creation of a Beneficiary when a Person with the
same key value already exists). If you wanted to restrict creation to entirely
new objects, you could uncheck the Always complete calling sequence
option on the insert and update mappings. This would mean that new
children are always created with new parents.

These mappings also support deletion of the child without deletion of its
parent, leaving the parent entry behind (for example, deletion of a Beneficiary

150 Application Development Tools Guide

does not affect its Person values). If you wanted to have deletion remove the
parent along with the child, you could map the delete method to the parent’s
persistent object as well.

“Inheritance” on page 137
“Choosing an Inheritance Pattern for Persistence” on page 140
“Inheritance with Key Duplication” on page 147
“Components” on page 15

Create a Component - Overview
“Create a Child Component” on page 136
Build a Child Component
“Inheritance with Key Duplication - Scenario”

Inheritance with Key Duplication - Scenario

In this scenario you define a child component that uses its parent’s persistence for
inherited attributes (so that each component in the object hierarchy provides
persistence for its own attributes, plus its parent’s key, which is used to look up the
parent and find the value of inherited attributes). This inheritance pattern makes the
most sense when parent and child share the same key. For a scenario where
parent and child have different keys, see the Inheritance with Overriding
Persistence - Scenario.

Before following these instructions, you should have the Person component defined
and exported in XML format (PFile.xml), as described in the Simple Database
Persistence - Scenario.

After you complete this scenario, you will have a component named Beneficiary that
inherits from Person, and provides persistence in a database table for its own
attributes (plus Person’s key), and uses Person’s database table to access inherited
attributes. For example, a query on Beneficiary.name (an attribute inherited from
Person) results in a lookup on Beneficiary’s table to find the parent Person’s key
(which is duplicated in Beneficiary’s table), and then a lookup on Person’s table to
find the value of the name attribute.

Note : For this pattern, the parent’s table and the child’s table must be in the same
database.

The following tasks do not give explicit instructions for every step, but should at
least get you into the right wizards. If you are experiencing problems, click the Help
button within a wizard, or go to the Help pulldown in Object Builder.

Create the Project
Create a sample project to hold your work.

1. Start Object Builder.

2. In the Open Project wizard, type a name and path for the project directory (for
example, e:\scenarios\inheritoo).

3. Click Finish .

4. When asked whether you want to create a new project, click Yes.

Chapter 6. Components Working Together 151

Import PFile.xml
Import the definition of the Person component, as created in the Database
Persistence - Scenario:

1. From the User-Defined Business Objects folder’s pop-up menu, click Import -
XML.

2. Find and select PFile.xml.

3. Click Finish .

The component objects for Person appear in the folder.

Create the Business Object Interface
Define the Beneficiary interface:

1. From the User-Defined Business Objects folder’s pop-up menu, click Add File
to open the Business Object File wizard.

2. Name the file BFile.

3. Click Finish . The file now appears under the folder.

4. From the file’s pop-up menu, click Add Module to open the Business Object
Module wizard.

5. Name the module BModule.

6. Click Finish . The module now appears under the file.

7. From the module’s pop-up menu, click Add Interface to open the Business
Object Interface wizard.

8. Name the interface Beneficiary.

9. Click the title bar and turn to the Interface Inheritance page.

10. Add Person as a parent (replacing the default inheritance).

11. Click the title bar and turn to the Attributes page.

12. Add the following attribute:

v float claimPayments

13. Click Finish . The interface now appears under the module.

Add the Copy Helper
Add BeneficiaryCopy:

1. From the interface’s pop-up menu, click Add Copy Helper to open the Copy
Helper wizard.

2. Add all attributes to the copy helper (both parent’s and child’s).

3. Click Finish . The copy helper now appears under the interface.

Add the Business Object Implementation
Add BeneficiaryBO:

1. From the interface’s pop-up menu, click Add Implementation to open the
Business Object Implementation wizard.

2. Set Data Object Interface - Add or select one later (you will create a new
data object as a separate step).

3. Click Next to turn to the Implementation Inheritance page.

4. Add PersonBO as a parent.

5. Click the title bar and turn to the Key and Copy Helper page.

6. Select PersonKey and BeneficiaryCopy.

7. Click Finish . The business object implementation appears under the business
object interface.

152 Application Development Tools Guide

Add the Data Object Interface
Add BeneficiaryDO:

1. From the business object implementation’s pop-up menu, click Add New Data
Object Interface to open the Data Object Interface wizard.

2. Select all the business object attributes as state data (to be preserved in the
data object).

3. Click the title bar and turn to the Interface Inheritance page.

4. Add PersonDO as a parent.

5. Click Finish . The data object interface appears under the business object
implementation.

Add the Data Object Implementation
Add BeneficiaryDOImpl:

1. From the data object interface’s pop-up menu, click Add Implementation to
open the Data Object Implementation wizard.

2. Set the following patterns:

v Environment - BOIM with any key

v Form of Persistent Behavior and Implementation - Embedded SQL

v Data Access Pattern - Delegating

3. Click Next to turn to the Implementation Inheritance page.

4. Add PersonDOImpl as a parent.

5. Click the title bar and turn to the Key and Copy Helper page.

6. Select PersonKey and BeneficiaryCopy.

7. Click Finish . The data object implementation appears under the data object
interface.

Add the Persistent Object and Schema
Add BeneficiaryPO and its associated schema:

1. From the data object implementation’s pop-up menu, click Add Persistent
Object and Schema to open the Add Persistent Object and Schema wizard.

2. Type a name for the schema group that will hold the schema, and for the
database.

3. Click Next to turn to the Attributes Mapping page. Both Beneficiary’s attributes
and Person’s attributes are displayed.

4. Click Vertical Partitioning . This maps the child’s attributes and the parent’s key
to the child’s persistent object, creating a duplicate entry for the key in the
child’s persistent object.

Because Beneficiary now has a record of the parent’s key, a call to Beneficiary
for an inherited attribute (such as town) can be delegated to the parent table.
Beneficiary receives the call, then uses the parent’s key to find the right row in
the parent’s table, and retrieve the called attribute. Contrast this with the
Inheritance with Attributes Duplication - Scenario, in which all of the parent’s
data is persisted in the child’s table.

5. Click Finish . The persistent object and schema appear under the data object
implementation.

Map the Special Framework Methods
Map the way in which the data object’s special framework methods will call the
persistent objects’ special framework methods:

Chapter 6. Components Working Together 153

1. From BeneficiaryDOImpl’s pop-up menu, click Properties to open the Data
Object Implementation wizard.

2. Click the title bar and turn to the Methods Mapping page.

Because Beneficiary has its own data in one persistent object and inherited data
in a separate persistent object, the special framework methods need to access
both persistent objects in order to ensure all the right data is retrieved.

3. Map each method as follows:

v insert and update map to first iPersonPO’s methods and then
iBeneficiaryPO’s methods, with the Always complete calling sequence
option checked.

Because they map to both, and the calling sequence will ignore errors, you
can successfully create a Beneficiary that already exists as a Person: the
parent insert will fail, but still proceed to the child insert, which is successful.

You will not be able to set values for the attributes of an existing parent
during creation of the child. If you create the Beneficiary using a copy helper,
any values you set for inherited attributes of Person are ignored, since they
are applied to Person’s existing records using insert, when they need to use
update. You can change the inherited attributes in a separate update call
after you create the child.

v retrieve and setConnection map to first iBeneficiaryPO’s methods and then
iPersonPO’s methods, with the Always complete calling sequence option
not checked.

Because Beneficiary stores its inherited attributes in Person’s datastore, it
must be able to retrieve the parent’s data. If an error occurs on the parent’s
retrieve, it abandons the calling sequence and returns an error.

By mapping to both the parent and the child persistent object, you allow a
call to Beneficiary for its parent’s data (for example, Beneficiary.town) to
resolve as follows:

a. Person’s key is retrieved from iBeneficiaryPO

b. The appropriate Person is located, and Person.town is retrieved from
iPersonPO.

v delete maps to iBeneficiaryPO.delete.

Because the delete method maps only to the child’s persistent object, when a
Beneficiary is deleted, its record as a Person remains. (So you retain an
entry for the Person, even though the Person is no longer a Beneficiary.)

This scenario supports creation of a Beneficiary when its entry as a Person
already exists. If you wanted to restrict creation to entirely new objects, you
could uncheck the Always complete calling sequence option on the insert and
update mappings. This would mean that new children are always created with
new parents.

This scenario also supports deletion of the Beneficiary without deletion of its
parent Person, leaving the Person entry behind. If you wanted to have deletion
remove the parent along with the child, you could map the delete method to the
parent’s persistent object as well.

4. Click Finish .

Add the Managed Object
Add BeneficiaryMO:

1. From the business object implementation’s pop-up menu, click Add Managed
Object to open the Managed Object wizard.

154 Application Development Tools Guide

2. Click Finish . The managed object now appears under the business object
implementation.

Configure the Build
You have now completed the definition of the Beneficiary component, and its
inheritance from Person. The next step is to configure the client and server DLLs
that will hold the components.

Define the Client DLL
Add the PBClient DLL:

1. From the Build Configuration folder’s pop-up menu, click Add Client DLL to
open the Client DLL wizard.

2. Name the DLL PBClient.

3. Click Next to turn to the Client Source Files page.

4. Select PFile, PFileKey, and PFileCopy (the Person client interfaces).

5. Select BFile and BFileCopy (the Beneficiary client interfaces).

6. Click Finish . The client DLL appears under the folder.

Define the Server DLL
Add the PBServer DLL:

1. From the Build Configuration folder’s pop-up menu, click Add Server DLL to
open the Server DLL wizard.

2. Name the DLL PBServer.

3. Click Next to turn to the Server Source Files page.

4. Select PFileBO, PFileDO, PFileDOImpl, and PFileMO (the Person server
interfaces).

5. Select BFileBO, BFileDO, BFileDOImpl, and BFileMO (the Beneficiary server
interfaces).

6. Click Next to turn to the Libraries to Link With page.

7. Select the PBClient library file.

8. Click Finish . The server DLL appears under the folder.

Build the DLLs
Build the PBClient and PBServer DLLs:

1. From the pop-up menu of the User-Defined Business Objects folder, click
Generate - All .

2. Wait for the code generation to complete. The generated source files are placed
in the project’s \Working directory.

3. From the pop-up menu of the Build Configuration folder, click Generate - All -
All Targets .

4. From the same pop-up menu, click Build - All Targets . The DLLs are built and
placed in the project’s \Working directory.

Inheritance with a Single Datastore

If all the components in an inheritance hierarchy share a single datastore (for
example, both Person and its child Beneficiary store their data in the same
database table), then you can represent the datastore with a single persistent
object. You can then map the data object attributes of each component to selected
persistent object attributes.

Chapter 6. Components Working Together 155

Essentially, this approach flattens the object hierarchy into a single datastore. There
is only one entry for each unique attribute, and only one persistent object for both
parent and child components.

Advantages
The advantage of this approach is faster access to the datastore, because both
local and inherited attributes are in the same place.

Disadvantages

v This approach is problematic if you need to store pure parent objects (for
example, a Person component that is not a Beneficiary). If you need to store
both parent and child objects in the datastore, you should use the views pattern
to select the relevant data for the different component types.

v This approach is not very efficient in its use of space: each component accesses
only a small part of the datastore, leaving most of the persistent object and
schema unused for any one specific task.

v This approach is problematic if your parent and child use different keys. Because
both the parent’s data and child’s data is stored in a single datastore, the
datastore needs to support both keys (the child’s and the parent’s), to ensure
data for the right object type is returned. Generally, you should only use this
pattern when the parent and the child use the same key.

In this pattern:

v The parent’s data object attributes and special framework methods are mapped
to the shared persistent object.

v The child’s data object attributes and special framework methods are also
mapped to the shared persistent object.

“Inheritance” on page 137
“Choosing an Inheritance Pattern for Persistence” on page 140

“Create a Child Component” on page 136
“Inheritance with a Single Datastore - Scenario” on page 158

Define a Child with a Single Datastore

This task covers the main steps necessary to create a component that inherits from
another component already defined in Object Builder, and shares a single datastore

156 Application Development Tools Guide

with its parent. It does not cover every step; you should first be familiar with the
tasks necessary to create a component without inheritance.

To use the single datastore pattern, the child must have the same key attributes as
the parent, and the parent must be used for inheritance only (in other words, the
only parent data in the datastore is for the child’s inherited attributes). If the child
has a different key, use the attributes duplication pattern. If the child has the same
key but the parent is used as a real object (not just for inheritance), use the views
pattern. The views pattern uses views of the datastore to select parent data of pure
parent objects from parent data that is inherited by a child.

In the single datastore pattern, the parent’s persistent object and schema include
the attributes of the child component. Typically you would use this pattern after
importing the data in a single large datastore into Object Builder, as part of a
strategy to break up the data among several components in a class hierarchy.

To create the child component in Object Builder, follow these steps:

1. Create the business object file.

2. Add the business object interface, and select the parent’s business object
interface on the Interface Inheritance Page.

3. Add the copy helper. You can include attributes of the parent’s copy helper
either by selecting specific attributes on the Name and Attributes Page, or
include all the parent’s attributes by selecting the parent copy helper on the
Implementation Inheritance Page. Do not do both.

4. Add the business object implementation:

a. Under Data Object Interface, click Add or select one later . This allows you
to add the data object interface in a separate step, and define its parent.

b. Select the parent’s business object implementation on the Implementation
Inheritance Page.

c. Select the parent’s key on the Key and Copy Helper page.

d. Do not override any attributes on the Attributes to Override page.

e. Select any methods you want to override on the Methods to Override Page.

5. Add the managed object, and select the parent’s managed object on the
Implementation Inheritance Page.

6. Add the data object interface:

a. From the business object implementation’s pop-up menu, click Add New
Data Object Interface .

b. Select the attributes and methods of the business object you want
represented in the data object.

c. You should select the parent data object interface on the Interface
Inheritance page.

7. Add the data object implementation:

a. From the data object interface’s pop-up menu, click Add Implementation .

b. Select the parent data object implementation on the Implementation
Inheritance page.

c. Select the parent’s key and the child’s copy helper on the Key and Copy
Helper page.

d. Map the child’s attributes to the parent’s persistent object on the Attributes
Mapping page.

8. Map the child’s data object attributes and special framework methods to the
parent’s (now shared) persistent object.

Chapter 6. Components Working Together 157

“Inheritance” on page 137
“Choosing an Inheritance Pattern for Persistence” on page 140
“Inheritance with a Single Datastore” on page 155
“Components” on page 15

Create a Component - Overview
“Create a Child Component” on page 136
Build a Child Component
“Inheritance with a Single Datastore - Scenario”

Inheritance with a Single Datastore - Scenario

In this scenario you define a parent component and child component that share a
single datastore.

This inheritance pattern makes the most sense when parent and child share the
same key. For a scenario where parent and child have different keys, see the
Inheritance with Attributes Duplication - Scenario.

This scenario also does not use views, which means there is no easy way to
determine when data is for a pure parent component, or part of the inherited data
for a child component. While this is acceptable when there are no pure parent
components to take into consideration (in other words, there are no pure parent
instances to be persisted), it does not work well for datastores that contain a mix of
objects. For a scenario using views on a mixed datastore, see the Inheritance with
Views - Scenario.

Before following these instructions, you should have the Person component defined
and exported in XML format (PFile.xml), as described in the Simple Database
Persistence - Scenario.

After you complete this scenario, you will have a component named Beneficiary that
inherits from Person, and a single database table that provides persistence for both
Beneficiary’s attributes and Person’s attributes.

The following tasks do not give explicit instructions for every step, but should at
least get you into the right wizards. If you are experiencing problems, click the Help
button within a wizard, or go to the Help pulldown in Object Builder.

Create the Project
Create a sample project to hold your work.

1. Start Object Builder.

2. In the Open Project wizard, type a name and path for the project directory (for
example, e:\scenarios\inheritsh).

3. Click Finish .

4. When asked whether you want to create a new project, click Yes.

Import PFile.xml
Import the definition of the Person component, as created in the Database
Persistence - Scenario:

1. From the User-Defined Business Objects folder’s pop-up menu, click Import -
XML.

158 Application Development Tools Guide

2. Find and select PFile.xml.

3. Click Finish .

The component objects for Person appear in the folder.

Create the Shared Table and Persistent Object
You need to create a schema that contains columns for all of Person’s and
Beneficiary’s attributes.

1. Create a file with the following contents. If you are viewing this online, you can
cut and paste these lines directly into an editor:
CREATE TABLE Shared
(
ssNo VARCHAR(20) NOT NULL ,
name VARCHAR(100) NOT NULL ,
street LONG VARCHAR ,
town LONG VARCHAR ,
claimPayments DOUBLE
, PRIMARY KEY
(ssNo, name)
);

2. From the pop-up menu of the DBA-Defined Schemas folder in Object Builder,
click Import - SQL .

3. Select the file you created.

4. Name the database SharedDB (or provide the name of your own database).

5. Name the group MyGroup.

6. Click Finish .

The schema appears in the folder, under the schema group.

7. From the pop-up menu of the schema, click Add Persistent Object .

8. Name the persistent object SharedPO, and name its package file SharedPkg.

9. Set its type of persistence to Embedded SQL , to match the type of
persistence set in PersonDOImpl.

10. Click Finish .

The persistent object appears under the schema.

Map the Shared Table to the Parent
Map PersonDOImpl to SharedPO:

1. Delete PersonPO from under PersonDOImpl.

2. Delete Person’s old schema from the DBA-Defined Schemas folder.

3. Delete PGroup from the DBA-Defined Schemas folder.

4. From the pop-up menu of PersonDOImpl, click Properties to open the Data
Object Implementation wizard.

5. Click the title bar and turn to the Associated Persistent Objects page.

6. Add SharedPO as an associated persistent object, with the instance name
iPersonPO.

7. Click Next to turn to the Attributes Mapping page.

8. Map Person’s attributes to their equivalents in iPersonPO.

9. Click Next to turn to the Methods Mapping page.

10. Map Person’s methods to their equivalents in iPersonPO.

11. Click Finish .

SharedPO and its schema now appear under PersonDOImpl.

Chapter 6. Components Working Together 159

You can now define the child component.

Create the Business Object Interface
Define the Beneficiary interface:

1. From the User-Defined Business Objects folder’s pop-up menu, click Add File
to open the Business Object File wizard.

2. Name the file BFile.

3. Click Finish . The file now appears under the folder.

4. From the file’s pop-up menu, click Add Module to open the Business Object
Module wizard.

5. Name the module BModule.

6. Click Finish . The module now appears under the file.

7. From the module’s pop-up menu, click Add Interface to open the Business
Object Interface wizard.

8. Name the interface Beneficiary.

9. Click the title bar and turn to the Interface Inheritance page.

10. Add Person as a parent (replacing the default inheritance).

11. Click the title bar and turn to the Attributes page.

12. Add the following attribute:

v float claimPayments

13. Click Finish . The interface now appears under the module.

Add the Copy Helper
Add BeneficiaryCopy:

1. From the interface’s pop-up menu, click Add Copy Helper to open the Copy
Helper wizard.

2. Add all attributes to the copy helper (both parent’s and child’s).

3. Click Finish . The copy helper now appears under the interface.

Add the Business Object Implementation
Add BeneficiaryBO:

1. From the interface’s pop-up menu, click Add Implementation to open the
Business Object Implementation wizard.

2. Set Data Object Interface - Add or select one later (you will create a new
data object as a separate step).

3. Click Next to turn to the Implementation Inheritance page.

4. Add PersonBO as a parent.

5. Click the title bar and turn to the Key and Copy Helper page.

6. Select PersonKey and BeneficiaryCopy.

7. Click Finish . The business object implementation appears under the business
object interface.

Add the Data Object Interface
Add BeneficiaryDO:

1. From the business object implementation’s pop-up menu, click Add New Data
Object Interface to open the Data Object Interface wizard.

2. Select all the business object attributes as state data (to be preserved in the
data object).

3. Click the title bar and turn to the Interface Inheritance page.

160 Application Development Tools Guide

4. Add PersonDO as a parent.

5. Click Finish . The data object interface appears under the business object
implementation.

Add the Data Object Implementation, and Map It to the Shared Persistent
Object
Add BeneficiaryDOImpl, and map it to SharedPO:

1. From the data object interface’s pop-up menu, click Add Implementation to
open the Data Object Implementation wizard.

2. Set the following patterns:

v Environment - BOIM with any key

v Form of Persistent Behavior and Implementation - Embedded SQL

v Data Access Pattern - Delegating

3. Click Next to turn to the Implementation Inheritance page.

4. Add PersonDOImpl as a parent.

5. Click the title bar and turn to the Key and Copy Helper page.

6. Select PersonKey and BeneficiaryCopy.

7. Click the title bar and turn to the Attributes Mapping page.

8. Map claimPayments to SharedPO.claimPayments. SharedPO is available for
selection because it is associated with Beneficiary’s parent.

9. Click Finish . The data object implementation appears under the data object
interface.

Configure the Build
You have now completed the definition of the Beneficiary component, and its
inheritance from Person. The next step is to configure the client and server DLLs
that will hold the components.

Define the Client DLL
Add the PBClient DLL:

1. From the Build Configuration folder’s pop-up menu, click Add Client DLL to
open the Client DLL wizard.

2. Name the DLL PBClient.

3. Click Next to turn to the Client Source Files page.

4. Select PFile, PFileKey, and PFileCopy (the Person client interfaces).

5. Select BFile and BFileCopy (the Beneficiary client interfaces).

6. Click Finish . The client DLL appears under the folder.

Define the Server DLL
Add the PBServer DLL:

1. From the Build Configuration folder’s pop-up menu, click Add Server DLL to
open the Server DLL wizard.

2. Name the DLL PBServer.

3. Click Next to turn to the Server Source Files page.

4. Select PFileBO, PFileDO, PFileDOImpl, and PFileMO (the Person server
interfaces).

5. Select BFileBO, BFileDO, BFileDOImpl, and BFileMO (the Beneficiary server
interfaces).

6. Click Next to turn to the Libraries to Link With page.

Chapter 6. Components Working Together 161

7. Select the PBClient library file.

8. Click Finish . The server DLL appears under the folder.

Build the DLLs
Build the PBClient and PBServer DLLs:

1. From the pop-up menu of the User-Defined Business Objects folder, click
Generate - All .

2. Wait for the code generation to complete. The generated source files are placed
in the project’s \Working directory.

3. From the pop-up menu of the Build Configuration folder, click Generate - All -
All Targets .

4. From the same pop-up menu, click Build - All Targets . The DLLs are built and
placed in the project’s \Working directory.

Inheritance with Views

If your persistence is provided by a single datastore that stores both pure parent
objects and child objects, you can use views to select out the appropriate data from
the datastore. This combines an attributes duplication approach (one persistent
object per component, with the parent’s attributes duplicated in the child’s persistent
object) with a single datastore approach (a single datastore for all components in
the hierarchy). The attributes duplication approach is used for retrieving data
(allowing greater precision in selection of data), and the single datastore approach
is used for changing (creating, updating, or deleting) data.

To accomplish this, the table must include a mechanism for identifying which data
belongs to the parent, and which data belongs to the child. Typically, this can be
accomplished by identifying a unique attribute for each component. For example,
Beneficiary has an attribute claimPayment, and Person does not. So if the
claimPayments column contains a value, then the component must be a
Beneficiary.

Using the identifying attribute, you can create selective views of the table for each
component type, and then create a persistent object for each view. These are the
persistent objects that will be used to retrieve data, following the same pattern as
the object-oriented approach. For example, Beneficiary could have a persistent
object BeneficiaryPO, which represents a view of the table where
claimPayments=notNull, and Person could have PersonPO, with a view of the table
where claimPayments=Null.

You also need to create a single persistent object that maps all the data in the
table. This is the persistent object that all components will use to create, update, or
delete data, following the same pattern as the shared approach. For example, both
Person and Beneficiary could share the persistent object SharedPersonsPO, which
represents the table directly.

Advantages
The advantage of this approach is that it takes up less space than the pure
attributes duplication approach (because there is only one table for all attributes),
with more precision than the single datastore approach (which cannot easily
distinguish between pure parent data and inherited parent data).

Disadvantages
It is neither as efficient as the pure attributes duplication pattern, nor as fast as the

162 Application Development Tools Guide

single datastore pattern. Also, like the single datastore pattern, the views pattern is
problematic if your parent and child use different keys, because then the shared
table would need to have two primary keys at once. Generally, you should only use
this pattern when the parent and the child use the same key.

In this pattern:

v The parent’s data object attributes are mapped to first the shared persistent
object and then the parent’s persistent object.

v The parent’s retrieve method is mapped to the parent’s persistent object.

v The parent’s include, update, and delete methods are mapped to the shared
persistent object.

v The parent’s setConnection method is mapped to first the shared persistent
object and then the parent’s persistent object.

v The child’s data object attributes and its inherited attributes are mapped to first
the shared persistent object and the child’s persistent object.

v The child’s retrieve method maps to first the child’s persistent object and then the
parent’s persistent object, with the Always complete calling sequence option
not checked.

v The child’s insert, update, and delete methods are mapped to the the shared
persistent object.

v The child’s setConnection method is mapped to first the shared persistent object
and then the child’s persistent object.

This mapping creates a new parent along with the child, and deletes the parent
along with the child.

If you wanted to create a new child from an existing parent, you could find the
existing parent, create a copy of its attribute values, delete the parent, and then
create the child as a new object with the values of the deleted parent.

If you wanted to delete the child and leave the parent entry, you could copy the
existing parent values, continue with the deletion of the child, and then re-create the
parent with the copied values.

“Inheritance” on page 137
“Choosing an Inheritance Pattern for Persistence” on page 140

Chapter 6. Components Working Together 163

“Create a Child Component” on page 136
“Inheritance with Views - Scenario” on page 165

Define a Child with Views

This task covers the main steps necessary to create a component that inherits from
another component already defined in Object Builder, shares the same database
table as its parent, and uses views to select the appropriate data out of the table. It
does not cover every step; you should first be familiar with the tasks necessary to
create a component without inheritance.

This approach is a variant of the single datastore pattern. To use this pattern, the
child must have the same key attributes as the parent. If the child has a different
key, use the attributes duplication pattern.

Typically you would use this pattern after importing the data in a single large
datastore into Object Builder, as part of a strategy to break up the data among
several components in a class hierarchy.

The parent maps to its data as follows:

v A single database table stores all the attributes for both parent and child.

v A shared persistent object maps all of the attributes in the table.

v A view of the database selects out those rows in which a unique child attribute is
null (that is, the rows that do not contain data for a child component).

v A persistent object based on the view provides persistence for the parent’s
attributes.

v The parent’s data object attributes, and its retrieve method, are mapped to the
parent’s persistent object.

v The parent’s include, update, delete, and setConnection methods are mapped to
the shared persistent object.

To create the child component in Object Builder, follow these steps:

1. Create a view of the shared table, selecting out those rows in which a unique
child attribute is not null (that is, the rows that contain data for a child
component).

2. Create a persistent object based on that view.

3. Create the business object file.

4. Add the business object interface, and select the parent’s business object
interface on the Interface Inheritance Page.

5. Add the copy helper. You can include attributes of the parent’s copy helper
either by selecting specific attributes on the Name and Attributes Page, or
include all the parent’s attributes by selecting the parent copy helper on the
Implementation Inheritance Page. Do not do both.

6. Add the business object implementation:

a. Under Data Object Interface, click Add or select one later . This allows
you to add the data object interface in a separate step, and define its
parent.

b. Select the parent’s business object implementation on the Implementation
Inheritance Page.

c. Select the parent’s key on the Key and Copy Helper page.

164 Application Development Tools Guide

d. Do not override any attributes on the Attributes to Override page.

e. Select any methods you want to override on the Methods to Override
Page.

7. Add the managed object, and select the parent’s managed object on the
Implementation Inheritance Page.

8. Add the data object interface:

a. From the business object implementation’s pop-up menu, click Add New
Data Object Interface .

b. Select the attributes and methods of the business object you want
represented in the data object.

c. You should select the parent data object interface on the Interface
Inheritance page.

9. Add the data object implementation, and select the parent data object
implementation on the Implementation Inheritance page.

10. Map the data object implementation to the shared persistent object and the
view-based persistent object, as follows:

v The child’s data object attributes and its inherited attributes are mapped to
the child’s persistent object.

v the child’s retrieve method maps to first the child’s persistent object and
then the parent’s persistent object, with the Always complete calling
sequence option not checked.

v The child’s insert, update, delete, and setConnection methods are mapped
to the the shared persistent object.

This always creates a new parent along with the child, and deletes the
parent along with the child.

If you wanted to create a new child from an existing parent, you could still
find the existing parent, create a copy of its attribute values, delete the
parent, and then create the child as a new object with the values of the
deleted parent.

If you wanted to delete the child and leave the parent entry, you could still
copy the existing parent values, continue with the deletion of the child, and
then re-create the parent with the copied values.

“Inheritance” on page 137
“Choosing an Inheritance Pattern for Persistence” on page 140
“Inheritance with Views” on page 162
“Components” on page 15

Create a Component - Overview
“Create a Child Component” on page 136
Build a Child Component
“Inheritance with Views - Scenario”

Inheritance with Views - Scenario

In this scenario you define a parent component and child component that share the
same database table, but map to it selectively using component-specific views. This
inheritance pattern makes the most sense when parent and child share the same
key. For a scenario where parent and child have different keys, see the Inheritance
with Attributes Duplication - Scenario.

Chapter 6. Components Working Together 165

Before following these instructions, you should have the Person component defined
and exported in XML format (PFile.xml), as described in the Simple Database
Persistence - Scenario.

After you complete this scenario, you will have a component named Beneficiary that
inherits from Person, a single database table that provides persistence for both
Beneficiary’s attributes and Person’s attributes, and views of the table that provide
component-specific schemas.

The following tasks do not give explicit instructions for every step, but should at
least get you into the right wizard. If you are experiencing problems, click the Help
button within a wizard, or go to the Help menu in Object Builder.

Create the Project
Create a sample project to hold your work.

1. Start Object Builder.

2. In the Open Project wizard, type a name and path for the project directory (for
example, e:\scenarios\inheritvw).

3. Click Finish .

4. When asked whether you want to create a new project, click Yes.

Import PFile.xml
Import the definition of the Person component, as created in the Database
Persistence - Scenario:

1. From the User-Defined Business Objects folder’s pop-up menu, click Import -
XML.

2. Find and select PFile.xml.

3. Click Finish .

The component objects for Person appear in the folder.

Create the Shared Table and Persistent Object
You need to create a schema that contains columns for all of Person’s and
Beneficiary’s attributes.

1. Create a file with the following contents. If you are viewing this online, you can
cut and paste these lines directly into an editor:
CREATE TABLE Shared
(
ssNo VARCHAR(20) NOT NULL ,
name VARCHAR(100) NOT NULL ,
street LONG VARCHAR ,
town LONG VARCHAR ,
claimPayments DOUBLE
, PRIMARY KEY
(ssNo, name)
);

2. From the pop-up menu of the DBA-Defined Schemas folder in Object Builder,
click Import - SQL .

3. Select the file you created.

4. Name the database SharedDB (or provide the name of your own database).

5. Name the group MyGroup.

6. Click Finish .

The schema appears in the folder, under the schema group.

7. From the pop-up menu of the schema, click Add Persistent Object .

166 Application Development Tools Guide

8. Name the persistent object SharedPO, and name its package file SharedPkg.

9. Set its type of persistence to Embedded SQL , to match the type of
persistence set in PersonDOImpl.

10. Click Finish .

The persistent object appears under the schema.

Create the View for the Parent
Create SharedDB.PView:

1. From the pop-up menu of MyGroup, click Add SQL View . The SQL View
Editor opens.

2. Name the view PView.

3. Click on the View Work Area tab.

4. Click on the Shared table in the Schemas pane.

5. In the Clauses pane, click the Selected Columns tab.

6. In the Columns pane, click on the columns you want represented in the view:

v ssNo

v name

v street

v town

Their data appears in the fields of the Selected Columns page.

7. In the Clauses pane, click the Where tab.

8. In the Columns pane, click on claimPayments. Its data appears in the fields of
the Where page.

This is the column you are using to test whether the row contains data for the
parent component, and to exclude rows that are for child components.

9. Click the list button of the Conditions field on the Where page, and select Is
NULL .

This ensures that only rows without claimPayments information appear in the
view. Because the claimPayments column only contains information for
Beneficiary components, this excludes child data from the view.

If Person had additional child components, you could add additional Is NULL
conditions, based on their unique attributes, to exclude them from the parent’s
view.

10. Click on the View Summary tab.

11. Review the SQL clauses that define the view, based on your selections on the
previous page.

12. Click OK.

The view appears under MyGroup, in the DBA-Defined Schemas folder.

Create the Parent’s Persistent Object
Re-create PersonPO, based on the new view of the shared table:

1. Delete PersonPO from under PersonDOImpl.

2. Delete Person’s old schema from the DBA-Defined Schemas folder.

3. Delete PGroup from the DBA-Defined Schemas folder.

4. From the pop-up menu of SharedDB.PView, click Add Persistent Object .

5. Name the persistent object PersonPO, and name its package file PersonPkg.

Chapter 6. Components Working Together 167

6. Set its type of persistence to Embedded SQL , to match the type of persistence
set in PersonDOImpl.

7. Click Finish .

The persistent object appears under the schema.

Map the Parent’s Data Object and Persistent Objects
Map PersonDOImpl to SharedPO and PersonPO:

1. From the pop-up menu of PersonDOImpl, click Properties to open the Data
Object Implementation wizard.

2. Click the title bar and turn to the Associated Persistent Objects page.

3. Add SharedPO as an associated persistent object, with the instance name
iSharedPO.

4. Add PersonPO as an associated persistent object, with the instance name
iPersonPO.

5. Click Next to turn to the Attributes Mapping page.

6. Map each attribute of Person to first its equivalent in iSharedPO, and then its
equivalent in iPersonPO.

7. Click Next to turn to the Methods Mapping page.

8. Map Person’s retrieve method to iPersonPO.retrieve.

9. Map Person’s insert, update, and delete methods to iSharedPO.insert,
iSharedPO.update, iSharedPO.delete, and iSharedPO.setConnection.

10. Map Person’s setConnection method to first iSharedPO.setConnection, and
then iPersonPO.setConnection.

11. Click Finish .

PersonPO and SharedPO now appear under PersonDOImpl.

You can now define the child component.

Create the View for the Child
Create SharedDB.BView:

1. From the pop-up menu of MyGroup, click Add SQL View . The View Editor
opens.

2. Name the view BView.

3. Click on the View Work Area tab.

4. Click on the Shared table in the Schemas pane.

5. In the Clauses pane, click the Selected Columns tab.

6. In the Columns pane, click on the columns you want represented in the view:

v ssNo

v name

v street

v town

v claimPayments

Their data appears in the fields of the Selected Columns page.

7. In the Clauses pane, click the Where tab.

8. In the Columns pane, click on claimPayments. Its data appears in the fields of
the Where page.

168 Application Development Tools Guide

This is the column you are using to test whether the row contains data for the
child component, and to exclude rows that are for parent components.

9. Click the list button of the Conditions field on the Where page, and select Is
Not NULL .

This ensures that only rows with claimPayments information appear in the
view. Because the claimPayments column only contains information for
Beneficiary components, this excludes data of pure parent components from
the view.

10. Click on the View Summary tab.

11. Review the SQL clauses that define the view, based on your selections on the
previous page.

12. Click OK.

The view appears under MyGroup, in the DBA-Defined Schemas folder.

Create the Child’s Persistent Object
Create BeneficiaryPO, based on the new view of the shared table:

1. From the pop-up menu of SharedDB.BView, click Add Persistent Object .

2. Name the persistent object BeneficiaryPO, and name its package file BenPkg.

3. Set its type of persistence to Embedded SQL .

4. Click Finish .

The persistent object appears under the schema.

Create the Child’s Business Object Interface
Define the Beneficiary interface:

1. From the User-Defined Business Objects folder’s pop-up menu, click Add File
to open the Business Object File wizard.

2. Name the file BFile.

3. Click Finish . The file now appears under the folder.

4. From the file’s pop-up menu, click Add Module to open the Business Object
Module wizard.

5. Name the module BModule.

6. Click Finish . The module now appears under the file.

7. From the module’s pop-up menu, click Add Interface to open the Business
Object Interface wizard.

8. Name the interface Beneficiary.

9. Click the title bar and turn to the Interface Inheritance page.

10. Add Person as a parent (replacing the default inheritance).

11. Click the title bar and turn to the Attributes page.

12. Add the following attribute:

v float claimPayments

13. Click Finish . The interface now appears under the module.

Add the Child’s Copy Helper
Add BeneficiaryCopy:

1. From the interface’s pop-up menu, click Add Copy Helper to open the Copy
Helper wizard.

2. Add all attributes to the copy helper (both parent’s and child’s).

Chapter 6. Components Working Together 169

3. Click Finish . The copy helper now appears under the interface.

Add the Child’s Business Object Implementation
Add BeneficiaryBO:

1. From the interface’s pop-up menu, click Add Implementation to open the
Business Object Implementation wizard.

2. Set Data Object Interface - Select or add one later (you will create a new
data object as a separate step).

3. Click Next to turn to the Implementation Inheritance page.

4. Add PersonBO as a parent.

5. Click the title bar and turn to the Key and Copy Helper page.

6. Select PersonKey and BeneficiaryCopy.

7. Click Finish . The business object implementation appears under the business
object interface.

Add the Child’s Data Object Interface
Add BeneficiaryDO:

1. From the business object implementation’s pop-up menu, click Add New Data
Object Interface to open the Data Object Interface wizard.

2. Select all the business object attributes as state data (to be preserved in the
data object).

3. Click the title bar and turn to the Interface Inheritance page.

4. Add PersonDO as a parent.

5. Click Finish . The data object interface appears under the business object
implementation.

Add the Child’s Data Object Implementation, and Map It to Persistent Objects
Add BeneficiaryDOImpl, and map it to SharedPO:

1. From the data object interface’s pop-up menu, click Add Implementation to
open the Data Object Implementation wizard.

2. Set the following patterns:

v Environment - BOIM with any key

v Form of Persistent Behavior and Implementation - Embedded SQL

v Data Access Pattern - Delegating

3. Click Next to turn to the Implementation Inheritance page.

4. Add PersonDOImpl as a parent.

5. Click the title bar and turn to the Key and Copy Helper page.

6. Select PersonKey and BeneficiaryCopy.

7. Click the title bar and turn to the Associated Persistent Objects page.

SharedPO is already listed as an associated persistent object, because it is
associated with Beneficiary’s parent.

8. Add BeneficiaryPO as an associated persistent object, with the instance name
iBeneficiaryPO.

9. Click Next to turn to the Attributes Mapping page.

10. Map Beneficiary’s claimPayments attribute to first iSharedPO.claimPayments,
and then iBeneficiary.claimPayments.

11. Map Beneficiary’s inherited attributes to first iSharedPO and then
iBeneficiaryPO.

170 Application Development Tools Guide

For example, Person.ssNo maps to first iSharedPO.ssNo and then
iBeneficiaryPO.ssNo

12. Click Finish .

Map the Special Framework Methods
Map the way in which the data object’s special framework methods will call the
persistent objects’ special framework methods:

1. From BeneficiaryDOImpl’s pop-up menu, click Properties to open the Data
Object Implementation wizard.

2. Click the title bar and turn to the Methods Mapping page.

3. Map Beneficiary’s retrieve method first to iBeneficiaryPO.retrieve, and then to
PersonPO.retrieve, and make sure the Always complete calling sequence
option is not checked.

4. Map Beneficiary’s insert, update, and delete methods to iSharedPO.insert,
iSharedPO.update, iSharedPO.delete.

5. Map Beneficiary’s setConnection method to first iSharedPO.setConnection and
then iBeneficiaryPO.setConnection.

This creates a new parent along with the child, and deletes the parent along
with the child.

If you wanted to create a new child from an existing parent, you could find the
existing parent, create a copy of its attribute values, delete the parent, and then
create the child as a new object with the values of the deleted parent.

If you wanted to delete the child and leave the parent entry, you could copy the
existing parent values, continue with the deletion of the child, and then re-create
the parent with the copied values.

6. Click Finish .

Configure the Build
You have now completed the definition of the Beneficiary component, and its
inheritance from Person. The next step is to configure the client and server DLLs
that will hold the components.

Define the Client DLL
Add the PBClient DLL:

1. From the Build Configuration folder’s pop-up menu, click Add Client DLL to
open the Client DLL wizard.

2. Name the DLL PBClient.

3. Click Next to turn to the Client Source Files page.

4. Select PFile, PFileKey, and PFileCopy (the Person client interfaces).

5. Select BFile and BFileCopy (the Beneficiary client interfaces).

6. Click Finish . The client DLL appears under the folder.

Define the Server DLL
Add the PBServer DLL:

1. From the Build Configuration folder’s pop-up menu, click Add Server DLL to
open the Server DLL wizard.

2. Name the DLL PBServer.

3. Click Next to turn to the Server Source Files page.

4. Select PFileBO, PFileDO, PFileDOImpl, and PFileMO (the Person server
interfaces).

Chapter 6. Components Working Together 171

5. Select BFileBO, BFileDO, BFileDOImpl, and BFileMO (the Beneficiary server
interfaces).

6. Click Next to turn to the Libraries to Link With page.

7. Select the PBClient library file.

8. Click Finish . The server DLL appears under the folder.

Build the DLLs
Build the PBClient and PBServer DLLs:

1. From the pop-up menu of the User-Defined Business Objects folder, click
Generate - All .

2. Wait for the code generation to complete. The generated source files are placed
in the project’s \Working directory.

3. From the pop-up menu of the Build Configuration folder, click Generate - All -
All Targets .

4. From the same pop-up menu, click Build - All Targets . The DLLs are built and
placed in the project’s \Working directory.

Create a Composite Component - Overview

A composite component provides access to the methods and data of its member
components. The member components provide their own persistence for the data
the composite accesses. The composite can also define its own original methods
and data, and provide persistence for its key attributes and original data.

To create a composite component, you need to:

1. Group components into a composition.

2. Create a composite business object based on the composition.

3. Create a composite key for the component.

4. Complete the rest of the component.

The steps for creating a composite component are as follows:

1. “Create a Composition File” on page 349

2. “Add a Composition Module” on page 349

3. “Add a Composition” on page 350

4. “Create a Business Object File” on page 282

5. “Add a Business Object Module” on page 282

6. “Add a Composite Business Object Interface” on page 354

7. “Add a Composite Key” on page 360

8. “Add a Copy Helper” on page 294

9. “Add a Composite Business Object Implementation and Data Object Interface”
on page 355

10. “Add a Data Object Implementation” on page 299

11. “Add a Managed Object” on page 340

“Composite Component” on page 173

172 Application Development Tools Guide

“Composite Component Creation - Scenario” on page 177
Create a Component - Overview
“Work with Compositions - Overview” on page 348
“Work with Composite Business Objects - Overview” on page 353
“Work with Composite Keys - Overview” on page 360

Composite Component

A composite component is an access point to the data and behavior of one or more
other components, which the composite component’s implementation delegates to.
Typically, the other components are not directly accessible (in other words, the
client cannot use the composite component to get a reference to one of the
combined component instances); only specific data and behavior of the other
components are available through the composite component’s delegation of
attribute and method calls. The composite component may have its own data and
methods as well.

There are two kinds of composite component, based on the way its references to its
constituent components are combined:

v Conjunction composite
All of the composite component’s references exist at once. In other words, at
run-time the composite component has references to instances of each of its
constituent components. All of the instances exist at the same time, and the
composite combines their interfaces to provide a single access point to their data
and behavior. This is the most common type of composite component.

v Disjunction composite
Only one of the composite component’s references exists at run-time. In other
words, at run-time the composite component has a reference to an instance of
only one of its constituent components. The composite component acts as a
common interface for two or more mutually exclusive kinds of component, the
choice of which is made when the composite component is created.

When you create a composite component, you start by defining the constituent
components (in any of the standard ways, for example as a component for new DB
data, legacy DB data, or PA data). Then you define the way in which the constituent
components are combined in a composition object, and finally you create a new
composite component based on that composition.

A composite component consists of the same objects as a normal component, with
some differences to provide the compositing behavior:

v A (composite) business object, which is based on the composition.

v A (composite) key for the business object

v A data object, that stores the key attributes for the component, along with any
attributes that are unique to this component (not derived from the constituent
components).

v DB persistent object and DB schema (optional), that store the values of the key
attributes, and the value of any attributes that are unique to the component.

v A copy helper and managed object.

“Composition” on page 174

Chapter 6. Components Working Together 173

“Composite Business Object” on page 175
“Composite Key” on page 176
“Components” on page 15

“Composite Component Creation - Scenario” on page 177
“Create a Composite Component - Overview” on page 172

Composition

A composition defines a combined interface for a group of components. In addition,
it describes the implementation of the attributes and methods in the combined
interface, which delegate to attributes and methods of the components in the group.
For example, we might define a composition, CompositeAccount, that combines two
components, SavingsAccount and CheckingAccount. The CompositeAccount
interface might include an attribute balance that is defined as the sum of a balance
attribute on the SavingsAccount component and a balance attribute on the
CheckingAccount component.

Once you have defined the composition, you can create composite business objects
that are based on the composition.

A composition does not have its own managed object; it is only accessible as part
of the business logic of a composite component based on the composition. It is an
abstraction of the combining and delegating logic needed to access the data and
behavior of the components being combined. This logic is implemented in a
local-only helper object, for use by the composite business object that is based on
the composition.

When you package a composite component, be sure to include the source files for
the composition class in the component’s server DLL or shared library file.
Otherwise, the composition logic contained in the helper object will not be available
to the composite component.

You can create compositions under the User-Defined Compositions folder, in Object
Builder’s Tasks and Objects pane. For each component that you add to a
composition, the composition has:

v A managed object instance, of the same type as the component’s managed
object

v Attributes that delegate to the component attributes.

v Methods that delegate to the component methods.

You can edit which attributes and methods are included, and what they delegate to.
You can also define attributes and methods that contain logic or data that is unique
to the composition, and does not simply delegate to a combined component. This is
useful for adding private helper functions to hold user-defined logic. For example,
a composition AllAccounts, which combines the components CheckingAccount and
SavingsAccount, could have a private helper method addFloats, which can take the
two original balances (CheckingAccount1.balance and SavingsAccount1.balance) as
arguments, and return their sum. You can then map AllAccounts.balance to the
helper method. When you add a new method, you can supply its implementation
(for example, return arg1+arg2) in Object Builder’s Source pane (after you complete
the composition, click on it in the Tasks and Objects pane; then select the method
in the Methods pane, and complete its implementation in the Source pane).

174 Application Development Tools Guide

“Composite Component” on page 173
“Composite Business Object”

“Composite Component Creation - Scenario” on page 177
“Create a Composite Component - Overview” on page 172
“Work with Compositions - Overview” on page 348

Composite Business Object

A composite business object is part of a composite component. The business object
is based on a composition, which defines the interface to one or more combined
components.

When you base a business object on a composition, the business object
automatically gets the attributes and methods defined in the composition (except for
the composition’s references to its constituent components). The business object
attributes and methods have implementations that delegate to their equivalents in
the composition helper object. As with any other business object, you can also
define other attributes and methods that are unique to the composite component,
and do not delegate to a composition. You can make these attributes persistent
through a DB schema.

The composition has a component instance for each component it composites. It
does not, however, deal with managed object configuration issues such as how and
when to find or create these instances. This information is instead provided in the
composite business object. This allows you to re-use the pure combining logic of
the composition in multiple versions of a composite component, each version
providing different managed object configuration information. You provide the
information for finding and creating the managed object instances in the composite
business object implementation. The instances are then used by the business
object, in conjunction with the logic in the composition helper, to delegate its
attribute and method calls appropriately.

Each composite business object must have a composite key, in which the key
attributes of the composite business object can be mapped to key attributes of the
combined components. If the attributes have a simple mapping, you can define the
mapping in the Key wizard and have the appropriate logic generated by Object
Builder. If you require a more complex mapping, you can edit the provided mapping
methods (for example, get_SavingsAccount_accountNo) and provide your own
implementations.

You can use the composite component’s data object to store a secondary source
for an attribute. If a delegating call to an attribute fails (for example, because the
combined component that provides it is unavailable), the composite component will
return the value in the data object instead of fail. This is particularly useful for
composite components that use the disjunction pattern. In the disjunction pattern,
only one of the combined component instances is available at run-time, which
means that any unique attributes of the other combined components are
unavailable. The data object can provide a secondary source for these unique
attributes, which is used when the current component instance does not provide
them.

“Composite Component” on page 173

Chapter 6. Components Working Together 175

“Composition” on page 174
“Composite Key”
“Business Object” on page 17

“Composite Component Creation - Scenario” on page 177
“Create a Composite Component - Overview” on page 172
“Work with Composite Business Objects - Overview” on page 353

Composite Key

A composite key is the key object for a composite component. As with a regular
key, the composite key defines attributes of its component that are to be used to
find a particular instance of the component on the server. The key consists of one
or more of the business object attributes, which must contain enough information to
uniquely identify an instance. For a composite key, these business object attributes
may optionally be used to identify the components that make up the composition.

A common pattern for locating the contributing components of a composition is to
make the identity of the composite component the union of the identities of the
contributing components. In other words, the composite key attributes are
equivalent to the various key attributes of the components in the composition.

For example:

v A composite component AllAccounts is based on the composition
AccountComposition, that combines two other components, SavingsAccount and
CheckingAccount.

v The key attribute for SavingsAccount is accountNo.

v The key attribute for CheckingAccount is accountNo.

v The key attributes for AllAccounts are savingsAccountNo and
checkingAccountNo, each of which is mapped to its equivalent accountNo
attribute in SavingsAccount and CheckingAccount.

The composite key contains enough information to uniquely identify the AllAccounts
component, and also to locate the equivalent SavingsAccount and CheckingAccount
components. There is no need to maintain persistent references from the composite
component to its constituent components; if you can find AllAccounts, you have
enough information to find SavingsAccount and CheckingAccount.

When you use this pattern (the identity of the composite component as the union of
the identities of its constituent components), you can provide a mapping between
the attributes of the composite key and the attributes of keys for the combined
components. You can define simple mappings between the two sets of attributes in
the composite key’s Key wizard.

For example, given the following objects and key attributes:

v AllAccountsKey is the composite key for AllAccounts, and has two key attributes:

– savingsAccountNo

– checkingAccountNo

v AccountComposition is the composition on which AllAccounts is based, and
combines two components:

– SavingsAccount, with the key attribute accountNo, defined in the key object
SavingsAccountKey

176 Application Development Tools Guide

– CheckingAccount, with the key attribute accountNo, defined in the key object
CheckingAccountKey

The attributes in the composite key AllAccountsKey would be mapped as follows:

v savingsAccountNo maps to accountNo in SavingsAccountKey

v checkingAccountNo maps to accountNo in CheckingAccountKey

For simple mappings such as this one (where the attributes are of the same type,
and the mapping is one-to-one), the mapping information will be used to generate
implementations of the get_ methods (for example,
get_SavingsAccount1_accountNo) in the composite business object implementation.
If a mapping is complex or not provided at all, then you need to provide your own
implementation for these methods.

“Composite Component” on page 173
“Composition” on page 174
“Composite Business Object” on page 175
“Key” on page 21

“Composite Component Creation - Scenario”
“Create a Composite Component - Overview” on page 172
“Work with Composite Keys - Overview” on page 360
“Edit Get and Set Methods” on page 270

Composite Component Creation - Scenario

This scenario provides instructions for creating a composite component, that
consolidates the interfaces of two other components.

After you complete this scenario, you will have two ordinary components,
SavingsAccount and CheckingAccount, and a composite component, AllAcounts,
that provides access to the data in SavingsAccount and CheckingAccount through a
single combined interface.

The following tasks do not give explicit instructions for every step, but should at
least get you into the right wizards. If you are experiencing problems, click the Help
button within a wizard, or go to the Help pulldown in Object Builder.

Create the Project
Create a sample project to hold your work.

1. Start Object Builder.

2. In the Open Project wizard, type a name and path for the project directory (for
example, e:\scenarios\composite).

3. Click Finish .

4. When asked whether you want to create a new project, click Yes.

Create the SavingsAccount Component
Create a simple component representing a savings account at a bank. For the sake
of simplicity, you will be accepting the default for most of the object settings, and
using transient data (no persistent objects or schemas).

Chapter 6. Components Working Together 177

Define the SavingsAccount interface:

1. From the User-Defined Business Objects folder’s pop-up menu, click Add File
to open the Business Object File wizard.

2. Name the file SAFile.

3. Click Finish . The file now appears under the folder.

4. From the file’s pop-up menu, click Add Module to open the Business Object
Module wizard.

5. Name the module SAModule.

6. Click Finish . The module now appears under the file.

7. From the module’s pop-up menu, click Add Interface to open the Business
Object Interface wizard.

8. Name the interface SavingsAccount.

9. Click the title bar and turn to the Attributes page.

10. Add the following attributes:

v readonly long accountNo

v readonly float balance

11. Click Next to turn to the Methods page.

12. Add the following methods:

v void credit (in float amount)

v void debit (in float amount)

13. Click Finish . The interface now appears under the module.

Add a key:

1. From the interface’s pop-up menu, click Add Key to open the Key wizard.

2. Select accountNo as the key attribute.

3. Click Finish . The key now appears under the interface.

Add a copy helper:

1. From the interface’s pop-up menu, click Add Copy Helper to open the Copy
Helper wizard.

2. Select all the attributes to be part of the copy helper.

3. Click Finish . The copy helper now appears under the interface.

Add a business object implementation and data object interface:

1. From the interface’s pop-up menu, click Add Implementation to open the
Business Object Implementation wizard.

2. Click the title bar and turn to the Key and Copy Helper page.

3. Select SavingsAccountKey and SavingsAccountCopy.

4. Click the title bar and turn to the Data Object Interface page.

5. Select all attributes as state data (to be preserved in the data object).

6. Click Finish . The business object implementation appears under the business
object interface, and the data object interface appears under the
implementation.

Add a data object implementation:

1. From the data object interface’s pop-up menu, click Add Implementation to
open the Data Object Implementation wizard.

178 Application Development Tools Guide

2. For the sake of simplicity, set the environment to BOIM with any key and the
form of persistence to Transient . This saves you the step of defining the
database or procedural adaptor that would normally provide persistence for the
data.

3. Click the title bar and turn to the Key and Copy Helper page.

4. Select SavingsAccountKey and SavingsAccountCopy.

5. Click Finish . The data object implementation appears under the data object
interface.

Add a managed object:

1. From the business object implementation’s pop-up menu, click Add Managed
Object to open the Managed Object wizard.

2. Click Finish . The managed object now appears under the business object
implementation.

Create the CheckingAccount Component
Create another simple component, in the same way, that represents a Checking
account. The steps are substantially the same as for the previous task, so only the
differences are noted here.

1. Add the CAFile file and CAModule module.

2. Add the CheckingAccount interface, with the following attributes and methods:

v readonly long accountNo

v readonly float balance

v long checkCount

v void credit (in float amount)

v void debit (in float amount)

3. Add a key, with accountNo as the key attribute.

4. Add a copy helper, with all attributes selected.

5. Add a business object implementation and data object interface, with all
attributes represented in the data object interface, CheckingAccountKey
selected as the key, and CheckingAccountCopy selected as the copy helper.

6. Add a data object implementation with the BOIM with any key setting, transient
data, and CheckingAccountKey and CheckingAccountCopy selected as the key
and copy helper.

7. Add a managed object.

Create the Composition
The composition defines the combined interface and delegating implementation for
the composite component.

Add a file:

1. From the User-Defined Compositions folder’s pop-up menu, click Add File to
open the Composition File wizard.

2. Name the file ACFile.

3. Click Finish . The file appears under the folder.

Add a module:

1. From the file’s pop-up menu, click Add Module to open the Composition
Module wizard.

2. Name the module ACModule.

Chapter 6. Components Working Together 179

3. Click Finish . The module appears under the file.

Add the composition:

1. From the module’s pop-up menu, click Add Composition to open the
Composition Editor.

2. Click Add to display the Composition Palette.

3. Select SavingsAccountMO and CheckingAccountMO.

4. Click Add to add them to the Objects to Composite list.

5. Click Close to close the palette.

6. In the Objects to Composite list, you can see entries for both
SavingsAccount1 and CheckingAccount1 (the default names for the
SavingsAccountMO and CheckingAccountMO instances the composition will
hold). Under each instance entry you can see its attributes and methods.

Above the list, you can see the Composition Style that is being applied to the
selected objects to produce the resulting composition in the Results list.

7. Try selecting some other composition styles, and review the results.

8. Return to the Conjunction without name matching style.

9. In this style, attributes with conflicting names (such as accountNo and balance)
are made unique by combining them with their instance names (for example,
SavingsAccount1_accountNo). Attributes that are already unique (such as
checkCount) are not renamed.

10. Click on the checkCount attribute to see the the delegating implementation of
its getter method in the Current Republished Value pane.

11. Click Setter to see its setter method’s implementation.

12. You can use the pop-up menu of the current value to remap the method to
another value. For this exercise, simply accept the defaults.

13. Double-click on the checkCount attribute to see its properties. You can change
the name of the attribute, but you cannot change its implementation details.

14. In the Results pane, click on the parent folder (named Untitled by default).
This folder represents the composition itself.

15. Click the Properties tab to display the properties of the composition.

16. Name the composition AccountComposition.

17. Click OK. The composition appears under the module.

The composition is a complete implementation object. You can generate its IDL and
C++ code by selecting Generate - All from its pop-up menu.

Click on the composition in the Tasks and Objects pane to review its attributes and
methods in the Methods pane. Note that the managed object instances appear as
attributes under the User-Defined Attributes folder.

Add the Composite Component AllAccounts
Now that you have the composition, you can create a composite component based
on the composition. This is similar to the procedure for creating a normal
component, and only the differences are noted here.

Add an AAFile file and AAModule module, and then add the AllAccounts interface:

1. From the modules’ pop-up menu, click Add Interface to open the Business
Object Interface wizard.

2. Name the interface AllAccounts.

3. Check the Composite choice.

180 Application Development Tools Guide

4. From the Composition to Use list, select AccountComposition.

5. Click the title bar and turn to the Attributes page.

6. Review the list of attributes the component has received from its base.

7. You can delete or rename these attributes, and create new ones that are
specific to the component (rather than taken from the composition). For this
exercise, accept the default.

8. Click the title bar and turn to the Methods page.

9. Review the list of methods the component has received from its base.

10. You can delete or rename these methods, and create new ones that are
specific to the component (rather than taken from the composition). For this
exercise, accept the default.

11. Click Finish . The interface appears under the module.

Add a composite key:

1. From the interface’s pop-up, click Add Key to open the Key wizard.

2. Select SavingsAccount1_accountNo and CheckingAccount1_accountNo as key
attributes.

3. Click Next to turn to the Composite Key page. This page is added to the wizard
for keys of composite components.

4. On this page, you map the selected attributes of the composite component back
to the original attributes in the keys of the grouped components.

5. In the Composite Key list (on the right), click SavingsAccount1_accountNo to
select it.

6. In the Composite Key Element list (on the left), click the accountNo attribute of
the SavingsAccountKey object.

7. Click Add . The scoped attribute is added to the Composite Key list, under the
selected attribute.

8. Perform the same mapping for CheckingAccount1_accountNo to
CheckingAccountKey::accountNo.

9. Click Finish . The key appears under the interface.

Add a copy helper:

1. From the interface’s pop-up menu, click Add Copy Helper to open the Copy
Helper wizard.

2. Select all attributes to be part of the copy helper.

3. Click Finish . The copy helper appears under the interface.

Add a business object implementation and data object interface:

1. From the interface’s pop-up menu, click Add Implementation to open the
Business Object Implementation wizard.

2. Select Caching as the pattern for handling state data.

3. Click the title bar and turn to the Key page.

4. Select AllAccountsKey.

5. Click the title bar and turn to the Location page. This page is added to the
wizard for business object implementations of composite components.

6. On this page, you define the component’s relationship to the composited
managed object instances (SavingsAccountMO and CheckingAccountMO), and
provide information about the managed objects’ locations.

Chapter 6. Components Working Together 181

7. Accept the default settings for both components (Remove the instance when
the composition is destroyed is not checked, Add the instance to the
composition by: Find or create is selected, and Create the instance using
its copy helper is not checked).

8. The component will not destroy the composition’s instances when the
composition is destroyed. Any attempt to access a managed object instance
will be resolved by finding it, if it exists, or creating it, if it doesn’t. The instance
will be created using its primary key (i.e., not its copy helper).

9. Accept the default pattern for locating the home (Factory Finder / Principal).

10. Accept the default location for the home (Factory Finder Name).

11. This information should match the Name in Factory Finding Service Registry
for the managed object’s home, in the application configuration information for
the managed object (in the Managed Object Configuration wizard, Home
page). Because the managed objects are not yet configured, you should
accept the default for now.

12. Accept the default principal interface name.

13. Click the title bar and turn to the Data Object Interface page.

14. Add the key attributes (SavingsAccount1_accountNo and
CheckingAccount1_accountNo) to the data object.

15. Click Finish . The business object implementation and data object interface
appear under the business object interface.

Add a transient data object:

1. From the data object interface’s pop-up menu, click Add Implementation to
open the Data Object Implementation wizard.

2. Select BOIM with any key as the environment.

3. Select Transient as the form of persistence.

4. Click the title bar and turn to the Key and Copy Helper page.

5. Select AllAcountsKey and AllAccountsCopy.

6. Click Finish . The data object implementation appears under the data object
interface.

Add a managed object:

1. From the business object implementation’s pop-up menu, click Add Managed
Object to open the Managed Object wizard.

2. Click Finish . The managed object appears under the business object
implementation.

The composite component is now defined.

Edit the Composition
When you edit attributes or methods in the composition, the changes are
automatically applied to the composite components based on the composition. In
this task, you will consolidate the attributes SavingsAccount1_balance and
CheckingAccount1_balance into a single balance attribute, that returns the sum of
the two component’s balances.

Consolidate the two balance attributes:

1. Locate the AccountComposition composition, in the User-Defined Compositions
folder.

182 Application Development Tools Guide

2. From the composition’s pop-up menu, click Properties to open the Composition
Editor.

3. In the Results pane, select the attributes SavingsAccount1_balance and
CheckingAccount1_balance. Select the second attribute using the Ctrl key plus
right-click, to both select it and display its pop-up menu at the same time.

4. From the pop-up menu, select Equate . The two attributes are consolidated into
a single balance attribute.

5. Click on the new balance attribute to display its delegating behavior in the
Current Republished Value pane.

By default, the consolidated attribute delegates to a sequence of the two source
attributes. This means that it will return the balance of the last attribute in the
sequence. To customize the method and have it return the sum of the two
attributes, instead of just the last value in the sequence, you need to add some
extra processing in the form of a private helper function.

Add a private helper function:

1. In the Results pane, display the pop-up menu for the User-Defined Methods
folder and click Add . A new method with the default name newOperation1
appears.

2. Click on the Properties tab to display the properties for the method.

3. Change its name to addFloats.

4. Change its return type to float.

5. Change its implementation to Private.

6. In the Results pane, expand the method to show the Parameters folder
underneath it.

7. From the pop-up of the Parameters folder, click Add . A parameter with the
default name newParameter1 is added to the folder. The properties of the
parameter appear on the Properties page.

8. Change the parameter’s name to arg1.

9. Change the parameter’s type to float.

10. Add a second parameter named arg2, type float.

Change the delegation for balance:

1. In the Results pane, click on the balance attribute you consolidated earlier. The
delegating behavior of its Getter method (to a <sequence> of
SavingsAccount1.balance and CheckingAccount1.balance) appears in the
Current Republished Value pane. There is no delegation for the Setter method,
because the source balance attributes are read-only.

2. Delete the <sequence> node. It is replaced by an <empty> node.

3. From the pop-up menu of the <empty> node, click Set value . A list of attributes
and methods with type or return type float appear.

4. Select addFloats as the value to map to. It replaces the <empty> node, and two
parameter nodes (labelled ??) appear beneath it.

5. From the pop-up menu of the first ?? node, click Set value . Map the parameter
to SavingsAccount1.balance. The selected attribute replaces the ?? node.

6. Map the second parameter in the same way, to CheckingAccount.balance.

7. Click OK to apply your changes to the composition, and return to the Object
Builder main window.

Add the implementation for balance:

Chapter 6. Components Working Together 183

1. Click on the composition in the User-Defined Compositions folder. Its attributes
and methods appear in the Methods pane.

2. Select the addFloats method in the Methods pane. Its skeleton implementation
appears in the Source pane.

3. Add the following implementation to the Source pane:

return arg1+arg2;

The method delegation is complete. Calls to the combined balance attribute are
automatically delegated to addFloats, which takes the two source balance
attributes as parameters and returns their sum.

Review the changes in the composite component:

1. In the User-Defined Business Objects folder, locate the composite business
object implementation AllAccountsBO.

2. Click on AllAccountsBO to display its attributes and methods in the Methods list.

It now has a balance attribute, that has replaced the SavingsAccount1_balance
and CheckingAccount1_balance attributes.

3. Click on the balance attribute to display its implementation, which has already
been filled in with appropriate delegation behavior.

4. Click File - Save to save your changes.

Configure the Build
Create client and server DLLs for the components. For this exercise, all the
components will be configured into the same DLLs. The AllAccounts component is
configured like a normal component. The AccountComposition composition is a
server-only object.

If the AllAccounts component were configured into a separate DLL from the
SavingsAccount and CheckingAccount components, then the AllAccounts DLLs
would need to link with the other component’s libraries (on the Libraries to Link With
page of the wizards for the DLLs). This would be necessary to resolve the
composite component’s references to the composited managed objects.

Define the client DLL:

1. From the Build Configuration folder’s pop-up menu, click Add Client DLL to
open the Client DLL wizard.

2. Name the DLL AccountsClient.

3. Click Next to turn to the Client Source Files page.

4. Select SAFile, SAFileKey, and SAFileCopy (the SavingsAccount client
interfaces).

5. Select CAFile, CAFileKey, and CAFileCopy (the CheckingAccount client
interfaces).

6. Select AAFile, AAFileKey, and AAFileCopy (the AllAccounts client interfaces).

7. Click Finish . The client DLL appears under the folder.

Define the server DLL:

1. From the Build Configuration folder’s pop-up menu, click Add Server DLL to
open the Server DLL wizard.

2. Name the DLL AccountsServer.

3. Click Next to turn to the Server Source Files page.

4. Select SAFileBO, SAFileDO, SAFileDOImpl, and SAFileMO (the
SavingsAccount server interfaces).

184 Application Development Tools Guide

5. Select CAFileBO, CAFileDO, CAFileDOImpl, and CAFileMO (the
CheckingAccount server interfaces).

6. Select AAFileBO, AAFileDO, AAFileDOImpl, and AAFileMO (the AllAccount
server interfaces).

7. Select ACFile (the AccountComposition composition).

8. Click Next to turn to the Libraries to Link With page.

9. Select the AccountsClient library file.

10. Click Finish . The server DLL appears under the folder.

Build the DLLs:

1. From the pop-up menu of the User-Defined Business Objects folder, click
Generate - All .

2. Wait for the code generation to complete. The generated source files are placed
in the project’s \Working directory.

3. From the pop-up menu of the User-Defined Compositions folder, click Generate
- All . The code for the composition is added to the \Working directory.

4. From the pop-up menu of the Build Configuration folder, click Generate - All -
All Targets .

5. From the same pop-up menu, click Build - All Targets . The DLLs are built and
placed in the project’s \Working directory.

Configure the Application

Create the application family:

1. From the Application Configuration folder’s pop-up menu, click Add Application
Family to open the Application Family wizard.

2. Name the application AccountFamily.

3. Click Finish . The application family appears under the folder.

Create the application:

1. From the application family’s pop-up menu, click Add Application to open the
Application wizard.

2. Name the application AccountApplication.

3. Click Finish . The application appears under the application family.

Configure the SavingsAccount managed object:

1. From the application’s pop-up menu, click Add Managed Object to open the
Managed Object Configuration wizard.

2. Select SavingsAccountMO as the managed object. The other fields become
filled in with appropriate defaults.

3. Click Next to turn to the Data Object Implementations page.

4. Select SavingsAccountDOImpl.

5. Click Finish . The correct container and home are selected by default. The
managed object configuration appears under the application.

Configure the CheckingAccount managed object using the same steps, with the
following differences:

1. Select CheckingAccountMO as the managed object.

2. Select CheckingAccountDOImpl as the data object implementation.

Chapter 6. Components Working Together 185

The managed object configuration appears under the application.

Configure the AllAccounts managed object using the same steps, with the following
differences:

1. Select AllAccountsMO as the managed object.

2. Select AllAccountsDOImpl as the data object implementation.

3. Click the title bar and turn to the Home page.

4. Review the Name in Factory Finding Service Registry path, and verify that it
is the same as the location you provided in the Business Object Implementation
wizard, Location page (in the Factory Finder Name field).

5. Click Finish . The managed object configuration appears under the application.

Create the install image:

1. From the application family’s pop-up menu, click Generate . The install scripts
are created and placed in the project’s \Working\platform\AccountFamily\
directory.

2. From the application family’s pop-up menu, click Build . The install image is
created and placed in the project’s \Working\platform\AccountFamily\Disk1\
directory.

You have now completely defined two components, a composition that combines
their interfaces, and a composite component that allows access to the combined
interfaces.

186 Application Development Tools Guide

Chapter 7. Multi-Platform Development

You can use Object Builder to develop components for deployment on Windows NT,
AIX, or OS/390 servers. Most development options are the same for all platforms:
the main differences appear when you generate the code for your components.
There are three mechanisms in place for dealing with these differences:
platform-filtered views, platform-targetted code generation, and platform-specific
development constraints. You can also implement different versions of your method
implementations for different platforms.

Views
You can select a platform view from the Platform - View menu in Object Builder.
Inheritance options, framework methods, and framework method implementations
will be filtered for the selected platform. The information for all views is stored in the
same project model; you can switch between views at any time.

Code Generation
You can select platforms to generate for from the Platform - Generate menu in
Object Builder. For each platform you select, an equivalent subdirectory will be
added to the project’s \Working directory. For example, if you select AIX and 390,
you will have code generated to the directories <project>\Working\AIX and
<project>\Working\390 . Every time you select a Generate option from within the
Tasks and Objects pane, code will be generated for all selected platforms. The
more platforms you select to generate for, the longer code generation will take.

Constraints
You can set constraints to ensure that the components you develop will be
deployable on your target platforms. Select platform constraints on the Platform -
Constrain menu in Object Builder. By default, any components you develop will be
deployable on the platforms you selected. You can override these defaults on a
particular object, to create a platform-specific version of the object.

You can set object-specific platform constraints on data object implementations,
managed objects, managed object configurations, containers, and DLLs. You can
set the constraints when you create the object, or by editing its properties. On the
first page of the object’s wizard, under the heading Set Deployment Platform , you
can select a subset of the platform constraints to apply. For example, if your
platform constraints are set to AIX and 390, you can select to apply only 390
constraints, to develop a 390-specific version of the object.

Methods
In the Properties wizard for a method, you can define whether its implementation in
the Source pane is to be used for all platforms, or to be defined separately for each
platform. Access the wizard from the Methods pane, by selecting Properties from a
method’s pop-up menu. Once you have set to use different versions, you can use
the Platform - View menu option to choose which platform-specific implementation
to display and edit in the Source pane.

“Set Platform Constraints” on page 189
“Generate Code” on page 363
“Develop a Multi-Platform Application - Scenario” on page 190

“Platform Differences” on page 188

© Copyright IBM Corp. 1997, 1998 187

Platform Differences

Most development options are the same for all platforms. The main differences are
between OS/390 and the workstation platforms, NT and AIX.

The following differences apply between OS/390 and the workstation platforms:

v Inheritance
Different framework inheritance may apply for the different platforms. When you
generate code for multiple platforms, the right inheritance will automatically be
used. When you view a specific platform, the inheritance that applies to that
platform is shown. Not all inheritance options have cross-platform equivalents.

If you are developing an OS/390 component, you cannot select the parent:

IBOIMExtLocal IBOIMExtLocal::IUUIDCopyHelperBase

v Framework methods
Different framework methods may apply for the different platforms. When you
generate code for multiple platforms, the right framework methods will
automatically be implemented. When you view a specific platform, the framework
methods that apply to that platform, and the appropriate method implementations,
are shown.

v Wide types
Wide types are not available on OS/390. Do not use when you develop for
OS/390. They are not available for selection if you have 390 listed as a platform
constraint.

v Services
Cache Service are not available on OS/390. The Cache Service is intended to
provide increased performance for workstation servers, and is not needed for
OS/390 servers.

v Sessionable managed objects
You cannot create sessionable managed objects for OS/390.

v PA development
Procedural Adaptor persistent objects on OS/390 and the workstation platforms
have mutually exclusive connection types. You cannot create common PA
persistent objects for both OS/390 and any other platform. You must create
platform-specific versions of the data object implementations and persistent
objects for PA components.

v Container definition
OS/390 servers do not use any of the container information you provide when
you define a container, except for its name and description. If you are developing
an OS/390-specific container, the additional pages are not available. If you are
developing a container for multiple platforms including OS/390, the additional
pages are available, but the information on them will be ignored by the OS/390
server.

“Chapter 7. Multi-Platform Development” on page 187

“Set Platform Constraints” on page 189
“Generate Code” on page 363
“Develop a Multi-Platform Application - Scenario” on page 190

188 Application Development Tools Guide

Set Platform Constraints

In Object Builder, you can develop components that will work on Windows NT, AIX,
and OS/390. However, not all development options are available for every platform.
To ensure that your components will run on the platforms you intend to deploy on,
and to take advantage of all opportunities available for each platform, you can
constrain your development options on both a project level and on an object level.

To ensure that objects you create will run on your deployment platforms, you can
set project-wide constraints that allow access only to development options available
on all your deployment platforms. To set project-wide platform constraints, follow
these steps:

1. From the Object Builder menu bar, click Platform - Constrain .

2. From the cascade, select a platform constraint.

3. Add additional platform constraints in the same way.

Once you set these constraints, development options (such as framework
inheritance and services) are filtered to ensure that the application you develop will
be deployable to the platforms you select. This is a “least common denominator”
approach; you may want to supplement it by developing some objects in multiple
versions, to take advantage of some platform-specific options.

Within the project-wide constraints, you can develop multiple versions of an object
for your different deployment platforms. For example, in a project to be deployed on
AIX and OS/390, you could develop a data object implementation for AIX only, and
another data object implementation for OS/390 only. This would allow you to use
the Caching Service on AIX, which is unavailable for OS/390 (where the delegating
pattern performs well enough to require no alternative).

You can set object-specific platform constraints on data object implementations,
managed objects, managed object configurations, containers, and DLLs. You can
set the constraints when you create the object, or by editing its properties. To set
object-specific constraints, follow these steps:

1. Open the object’s wizard (either by creating the object, or by clicking Properties
from its pop-up menu).

On the first page of the wizard, the group box Set Deployment Platform
contains checkboxes for NT, AIX, and 390. Only platforms that are listed in your
project-wide constraints are available for selection.

By default, all the platforms in the project-wide constraints are listed.

2. Deselect any platforms you are not deploying this object on. For example, if you
are deploying the object for AIX only, make sure the NT and AIX checkboxes
are not checked.

The wizard will now allow access to all options available for the platforms you
indicated. For example, if you are deploying the object for AIX only, all
AIX-specific options will be available, even those not available on other
platforms.

3. Complete your selections in the wizard, and click Finish .

To change your project-wide platform constraints, follow these steps:

1. From the Object Builder menu bar, click Platform - Constrain .

2. From the cascade, select or deselect a platform constraint.

3. Add or remove additional platform constraints in the same way.

Chapter 7. Multi-Platform Development 189

The new constraints will affect the choices you have in developing new objects,
but do not affect any existing objects created under different constraints. To
check your application under the new constraints, run a consistency check on
the project’s model.

4. From the Object Builder menu bar, click File - Check Model .

5. Review the report, and save it if you want before closing it.

6. Edit objects as necessary to make your model consistent under the new
constraints.

“Chapter 7. Multi-Platform Development” on page 187

“Check a Model for Consistency” on page 412
“Develop a Multi-Platform Application - Scenario”

“Platform Differences” on page 188

Develop a Multi-Platform Application - Scenario

Objectives
To create a component for deployment on two different platforms.
To add platform-specific method implementations.
To create platform-specific versions of a data object implementation.
To build DLLs for the different platforms.
To define containers for use on each platform.
To create application packages for each platform.

Before You Begin
You need the following installed on your system:

v CBToolkit, including Samples

v DB2 Universal Database

v VisualAge for C++ or VisualAge for Java

You should be familiar with the Component Broker programming model, as
described in the IBM Component Broker Programming Guide.

You should be familiar with the steps involved in defining, building, and packaging
components in Object Builder, as described in the scenario sequence starting with
“Create a Component - Scenario” on page 39. For most tasks in this scenario, you
will be given only general directions. For more specific instructions, you can refer to
the referenced scenario or one of its sequels.

Description
This exercise defines the objects required to create a component named “Claim” for
deployment on the AIX and OS/390 platforms. The component will have
platform-specific versions of its data object implementation. For this exercise, you
will:

1. Create the project

2. Create a business object interface

3. Add a key and copy helper

190 Application Development Tools Guide

4. Add a business object implementation

5. Add a data object implementation for AIX

6. Define a data object implementation for OS/390

7. Define a persistent object and schema

8. Add a managed object

9. Generate the code

10. Define a client DLL and server DLL for AIX

11. Define a client DLL and server DLL for OS/390

12. Define an application family and application for AIX

13. Define an application family and application for OS/390

14. Configure the component with both applications

Create the Project
Create a sample project to hold your work.

1. Start Object Builder.

2. In the Open Project wizard, type a name and path for the project directory (for
example, e:\scenarios\multiplat\).

3. Click Finish .

4. When asked whether you want to create a new project, click Yes.

Set platform constraints and code generation for AIX and 390:

1. Click Platform - Constrain - AIX

2. Click Platform - Constrain - 390

By default, any objects that have platform-specific development options will only
allow selection of options that exist on both AIX and OS/390. These constraints
will be overridden when you create the data object implementation, to allow
separate versions for each platform.

3. Click Platform - Generate - AIX

4. Click Platform - Generate - 390

Code will be generated for both platforms, into the \Working\AIX and
\Working\390 directories.

5. Click Platform - View - AIX

When there are differences in an object’s inheritance or framework methods for
different platforms, you will see the AIX version.

Create the Business Object Interface
Define a business object file (ClaimFile):

1. From the User-Defined Business Objects folder’s pop-up menu, click Add File
to open the Business Object File wizard.

2. Name the file ClaimFile.

3. Click Finish . The file now appears under the folder.

Add an interface (Claim):

1. From ClaimFile’s pop-up menu, click Add Interface to open the Business
Object Interface wizard.

2. Name the interface Claim.

3. Click the title bar and turn to the Attributes page.

4. Add the following attributes:

Chapter 7. Multi-Platform Development 191

v readonly long claimNo

v long state

5. Add the following methods:

v void approve

v void deny

6. Click Finish . The Claim interface now appears under the ClaimFile file.

Add a Key and Copy Helper
Add a key (ClaimKey):

1. From Claim’s pop-up menu, click Add Key to open the Key wizard.

2. Accept the default name; select the claimNo attribute and add it to the Key
Attributes list.

3. Click Finish . ClaimKey appears under Claim.

Add a copy helper (ClaimCopy):

1. From Claim’s pop-up menu, click Add Copy Helper to open the Copy Helper
wizard.

2. Accept the default name; select all attributes and add them to the Copy Helper
Attributes list.

3. Click Finish . ClaimCopy appears under Claim.

Add a Business Object Implementation and Data Object Interface
Add a business object implementation (ClaimBO) and data object interface
(ClaimDO):

1. From Claim’s pop-up menu, click Add Implementation to open the Business
Object Implementation wizard.

2. Accept the default name and behavior settings.

3. Click the title bar and turn to the Data Object Interface page.

4. Select all attributes and add them to the State Data list.

5. Click Finish . ClaimBO appears under Claim, and ClaimDO appears under
ClaimBO.

Add Platform-Specific Method Implementations
For each method, you can specify whether to use a different method
implementation for each platform, or share the same implementation on all
platforms. By default, method implementations are shared.

Make the approve() method implementation platform-specific:

1. Click on ClaimBO in the Tasks and Objects pane. Its methods and attributes are
listed in the Methods pane.

2. In the Methods pane, locate the approve() method.

3. From the pop-up method for the approve() method, click Properties to open the
Method Implementation wizard.

4. Deselect the option Method body is the same for all platforms .

5. Click Finish .

Add an implementation for the approve() method on AIX:

1. Click on the approve() method in the Methods pane. The skeleton
implementation appears in the Source pane.

2. Type the following implementation for the approve() method:

192 Application Development Tools Guide

state(1);

When a claim is approved on AIX, its state changes from 0 to 1.

Add an implementation for the approve method on OS/390:

1. Click Platform - View - 390 .

2. Click on the approve() method in the Methods pane. The method
implementation you provided for AIX does not appear. Instead you see a
skeleton implementation for the 390-specific version of the implementation.

3. Type the following implementation for the approve() method:
state(2);

When a claim is approved on OS/390, its state changes from 0 to 2.

When you generate code for the business object implementation, the code in the
Working\AIX directory will use the AIX-specific implementation, and the code in the
Working\390 directory will use the OS/390-specific implementation.

In most cases, you should be able to use the same implementation for all platforms.
This example is intended to show the procedure, but is not intended as a model for
you to follow.

Add a Shared Method Implementation
Add a shared implementation for the deny method on AIX and OS/390:

1. Click on the deny() method in the Methods pane. The skeleton implementation
appears in the Source pane.

2. Type the following implementation for the approve() method:
state(-1);

When a claim is denied, its state changes from 0 to 1.

Because you did not change the default settings in the method’s Method
Implementation wizard, this implementation will apply to all platforms for which code
is generated.

Add a Data Object Implementation for AIX

1. From ClaimDO’s pop-up menu, click Add Implementation to open the Data
Object Implementation wizard.

On the first page, the Select Deployment Platforms constraints are listed:

v NT is greyed out and cannot be selected, because the project-wide platform
constraints exclude it. This prevents you from creating an NT-specific object
within project constraints for AIX and 390.

v AIX is selected by default, based on the project-wide platform constraints.

v 390 is selected by default. based on the project-wide platform constraints.

2. Deselect the 390 option. AIX-specific development options are now available.

3. Name the object ClaimAIXDOImpl, with the file name ClaimFileAIXDOImpl.

4. Click Next to turn to the Behavior page.

5. Set the following behaviors:

v Environment: BOIM with any key

v Form of Persistent Behavior and Implementation: DB2 Cache Service

Chapter 7. Multi-Platform Development 193

The Cache Service is not used on OS/390. By making this object
AIX-specific, it can take advantage of the Cache Service, while the
390-specific version can use the delegating pattern.

For more information on the Cache Service, see the IBM Component Broker
Advanced Programming Guide.

v Data Access Pattern: Delegating

6. Click Finish . ClaimAIXDOImpl appears under ClaimDO.

Add a Data Object Implementation for OS/390

1. From ClaimDO’s pop-up menu, click Add Implementation to open the Data
Object Implementation wizard.

On the first page, the Select Deployment Platforms constraints are listed:

v NT is greyed out and cannot be selected, because the project-wide platform
constraints exclude it. This prevents you from creating an NT-specific object
within project constraints for AIX and 390.

v AIX is selected by default, based on the project-wide platform constraints.

v 390 is selected by default. based on the project-wide platform constraints.

2. Deselect the AIX option.

3. Name the object Claim390DOImpl, with the file name ClaimFile390DOImpl.

4. Click Next to turn to the Behavior page.

5. Set the following behaviors:

v Environment: BOIM with any key

v Form of Persistent Behavior and Implementation: Embedded SQL

You cannot select the Cache Service option here, because it is not available
on OS/390. The embedded SQL option on OS/390 is fast enough not to
require an alternative.

v Data Access Pattern: Delegating

6. Click Finish . ClaimAIXDOImpl appears under ClaimDO.

Define a Persistent Object and Schema
Each version of the data object requires its own persistent object (one with the
Cache Service type of persistence and one with the Embedded SQL type of
persistence), but they can share the same schema definition because they are both
accessing the same data.

Add a persistent object for AIX, and a common schema for both platforms:

1. From the pop-up menu of ClaimAIXDOImpl, click Add Persistent Object and
Schema to open the Add Persistent Object and Schema wizard.

2. Type ClaimDBGroup in the Group Name field.

3. Type ClaimDB in the Database field.

4. Name the persistent object ClaimAIXPO.

5. Click the Finish button.

The ClaimDBGroup schema group, ClaimDB schema, and ClaimAIXPO persistent
object appear in the DBA-Defined Schemas folder.

Add a persistent object for OS/390:

1. From the pop-up menu of ClaimDB.Claim in the DBA-Defined Schemas folder,
click Add Persistent Object to open the Add Persistent Object wizard.

2. Make sure the type of persistence is set to Embedded SQL .

194 Application Development Tools Guide

3. Review the mappings (from SQL Type INTEGER to Attribute Type long).

4. Name the persistent object Claim390PO.

5. Click Finish .

Claim390PO appears under ClaimDB.Claim in the DBA-Defined Schemas folder.

Map the OS/390 data object implementation and persistent object:

1. From the pop-up menu of Claim390DOImpl in the User-Defined Data Objects
folder, click Properties to open the Data Object Implementation wizard.

2. Click the title bar and turn to the Associated Persistent Objects page.

3. Add a persistent object instance with the default instance name (iPO), and with
type Claim390PO.

4. Click Next to turn to the Attributes Mapping page.

5. Map claimNo to iPO.claimNo, and map state to iPO.state.

6. Click Next to turn to the Methods Mapping page.

7. Map each method to its equivalent (insert to iPO.insert, retrieve to iPO.retrieve,
and so on).

8. Click Finish .

Claim390PO appears under Claim390DOImpl, in the User-Defined Data Objects
folder and User-Defined Business Objects folder.

Add a Managed Object
While you can create separate managed objects for both platforms, there is no
need in this case. Both versions of the component can use the same managed
object.

1. From the pop-up menu of ClaimBO in the User-Defined Business Objects folder,
click Add Managed Object to open the Managed Object wizard.

2. Click Finish .

ClaimMO appears under ClaimBO, in the User-Defined Business Objects folder.

Generate the Code
You can generate all the code for the components, including the separate method
versions and data object implementations for each platform, in one step:

1. From the pop-up menu of ClaimFile in the User-Defined Business Objects
folder, click Generate - All .

This will take some time. When the code generation is complete, review the
contents of the two directories (Working\AIX and Working\390).

Configure the ClaimDB Database
You need to define (in DB2) the ClaimDB database and Claim table that your
component will access. You should have a database administrator perform this
procedure. To build on both platforms, you will need to configure the database and
table on both AIX and OS/390.

To configure the database and table, you need to enter the following commands
from a DB2 command prompt.

create database ClaimDB
connect to ClaimDB
create table Claim (claimNo integer not null, state integer, primary key(claimNo))

Chapter 7. Multi-Platform Development 195

The syntax for the last command is provided by Object Builder in the generated .sql
file for the ClaimDBGroup schema.

Define a Common Client DLL
Because the client interfaces are the same on both platforms, there is no need to
specify separate client DLLs (known on AIX as shared library files). You can define
a single client DLL, using the same build configuration options. The appropriate
makefile will be generated into both the Working\AIX and Working\390 directories.

1. From the pop-up menu of the Build Configuration folder, click Add Client DLL
to open the Client DLL wizard.

2. Name the DLL ClaimC.

3. Set the deployment platforms to AIX and 390.

4. Click Next to turn to the Client Source Files page.

5. Select all the client source files for Claim and add them to the Items Chosen
list.

6. Click Finish .

ClaimC appears under the Build Configuration folder.

Define a Server DLL for AIX
Because you have different data object implementations for the two platforms, you
need to define different server DLLs.

1. From the pop-up menu of the Build Configuration folder, click Add Server DLL
to open the Server DLL wizard.

2. Name the DLL ClaimAIXS.

3. Set the deployment platform to AIX.

4. Click Next to turn to the Server Source Files page.

5. Select all the server source files for Claim except for Claim390DOImpl, and add
them to the Items Chosen list.

6. Click Finish .

Define a Server DLL for OS/390
In addition to defining a separate server DLL for OS/390, you can also choose to
run a remote build.

1. From the pop-up menu of the Build Configuration folder, click Remote OS/390
Options to open the Remote OS/390 Options wizard.

You can specify an OS/390 host on which to build the Claim DLLs for OS/390,
using the generated source in the Working\390 subdirectory. When you build the
DLLs, the OS/390 DLL will get built on the specified host.

2. Click Finish when you have completed the configuration. If you do not configure
the remote build, then the DLLs will be built locally. You will still be able to
debug the code, but you will not be able to run it.

3. From the pop-up menu of the Build Configuration folder, click Add Server DLL
to open the Server DLL wizard.

4. Name the DLL Claim390S.

5. Set the deployment platform to 390.

6. Click Next to turn to the Server Source Files page.

7. Select all the server source files for Claim except for ClaimAIXDOImpl, and add
them to the Items Chosen list.

8. Click Finish .

196 Application Development Tools Guide

Build the DLLs
To generate the makefiles and build the DLL files:

1. From the pop-up menu of the Build Configuration folder, select Generate > All >
C++ Default Targets to generate makefiles for all the DLL files defined in the
folder and generate an all.mak file that calls the DLL makefiles.

2. From the same pop-up menu, select Build > Out-of-Date Targets > C++ to call
all.mak and display the progress of the build in a window.

3. Close this window after the build finishes.

For OS/390, the ClaimC.dll and ClaimS.dll files are stored in the specified directory
on the specified host.

For AIX, the libClaimC.so and libClaimS.so files are stored in Working\AIX

Define a Container
Define a container to hold the component on the server. You can use the same
container definition for both application families.

1. From the pop-up menu of the Container Definition folder, click Add Container
Instance to open the Add Container wizard.

2. Accept the deployment constraints of NT and 390

3. Name the container ContainerOfClaims.

The name is the only information that will be used in the OS/390 installation.
The rest of the information in the wizard will be ignored on OS/390, and can be
AIX-specific.

4. Click the title bar and turn to the Service page.

5. Click Use RDB Transaction Service .

6. Click the title bar and turn to the Data Access Patterns page.

7. Set the following patterns:

v Business Object: Delegating

v Data Object: Delegating

v Cache Service

These are based on the settings in the ClaimBO business object
implementation, and the ClaimAIXDOImpl data object implementation.

8. Click Finish .

ContainerOfClaims appears under the Container Definition folder.

Define an Application Family and Application for AIX
To define the application family and server application for AIX, follow these steps:

1. From the pop-up menu of the Application Configuration folder, click Add
Application Family to open the Add Application Family wizard.

2. Name the family ClaimAppFamAIX.

3. Click Finish . ClaimAppFamAIX appears under the Application Configuration
folder.

4. From the pop-up menu of ClaimAppFamAIX, click Add Application to open
the Add Application wizard.

5. Name the application ClaimAppAIX.

6. Set the initial state of the application to stopped .

7. Click Next to turn to the Additional Executables page.

Chapter 7. Multi-Platform Development 197

8. Click the Browse button to open the Executables to Include dialog.

9. Locate your Object Builder working directory.

10. From this directory, select:

v Claim.sql

v ClaimAIXPO.bnd

11. Click the OK button.

12. Click Finish . ClaimAppAIX appears under ClaimAppFamAIX.

Define an Application Family and Application for OS/390
To define the application family and server application for OS/390, follow these
steps:

1. From the pop-up menu of the Application Configuration folder, click Add
Application Family to open the Add Application Family wizard.

2. Name the family ClaimAppFam390.

3. Click Finish . ClaimAppFam390 appears under the Application Configuration
folder.

4. From the pop-up menu of ClaimAppFam390, click Add Application to open
the Add Application wizard.

5. Name the application ClaimApp390.

6. Set the initial state of the application to stopped .

7. Click Next to turn to the Additional Executables page.

8. Click the Browse button to open the Executables to Include dialog.

9. Locate your Object Builder working directory.

10. From this directory, select:

v Claim.sql

v Claim390PO.bnd

11. Click the OK button.

12. Click Finish . ClaimApp390 appears under ClaimAppFam390.

Configure the Component with Both Applications
Configure Claim for AIX:

1. From the pop-up menu of ClaimAppAIX in the Application Configuration folder,
click Add Managed Object to open the Managed Object Configuration wizard.

2. Select ClaimFileMO ClaimMO. The rest of the fields should fill in with correct
defaults.

3. Click Next to turn to the Data Object Implementations page.

4. Add ClaimAIXDOImpl.

5. Click Next to turn to the Container page.

6. Select ContainerOfClaims.

7. Click Finish .

ClaimMO appears under the ClaimAppAIX application.

Configure Claim for OS/390:

1. From the pop-up menu of ClaimApp390 in the Application Configuration folder,
click Add Managed Object to open the Managed Object Configuration wizard.

2. Select ClaimFileMO ClaimMO. The rest of the fields should fill in with correct
defaults.

198 Application Development Tools Guide

3. Click Next to turn to the Data Object Implementations page.

4. Add Claim390DOImpl.

5. Click Next to turn to the Container page.

6. Select ContainerOfClaims.

7. Click Finish .

Generate the application installation information:

1. From the pop-up menu of the Application Configuration folder, click Generate .

The DDL that defines the applications for System Management is generated into
the Working\AIX\ClaimAppFamAIX and Working\390\ClaimAppFam390.

Summary
You have created a component for deployment on either AIX or OS/390, with
different versions of some component objects to take advantage of platform-specific
development options. You have defined separate build and packaging processes,
and have created two separate application packages targeted at two different
platforms, based on a single project model.

Chapter 7. Multi-Platform Development 199

200 Application Development Tools Guide

Chapter 8. Team Development

When you develop a standalone project, the entire application is contained in a
single project, and its development cycle, from definition through build to packaging,
is all handled through that single project. To develop this same application in a team
environment, you simply distribute the application’s components among a number of
interdependent projects. Each project can then be worked on by a separate
developer, with the code in the project built as required.

Typically, a team environment begins with a standalone project or Rose design, in
which the basic structure of the application is defined. Then the standalone project
is split out into multiple projects, that are accessed and edited through a change
control system, and kept up-to-date with regular automated builds.

If you are working in Rose, then your design can be split out by package, with each
package in Rose corresponding to a project in the team environment.

If you are starting with a standalone Object Builder project, then your design can be
split out by package (that is, conceptual groupings of related components) or by
layer (that is, different layers of component objects: business objects, data objects,
or persistent objects).

If you want to define a set of standard interfaces for which other projects can
provide implementations, you can do so by defining the standard interfaces as
simple business objects with minimal implementations, and inherit from them as if
they were abstract base classes.

Generally, a team environment consists of:

v A number of interdependent projects, which contain the component objects that
make up the application.

v An integration project, which defines the build configuration and application
packaging options for the application.

v A change control system, which holds all the projects, and controls access to
them.

v An automated build process, which extracts all projects, generates and builds the
code, on a daily or nightly basis.

v A project repository, which is the result of the automated build process, and that
can be used to resolve dependencies when a team members checks out and
updates a project.

“Projects and Models” on page 4
“Design Principles for Component Broker Applications” on page 3
“Change Control” on page 202
“Model Interchange with XML” on page 203

“Set up a Team Environment” on page 204
“Work in a Team Environment” on page 212
“Maintain a Team Environment ” on page 223

© Copyright IBM Corp. 1997, 1998 201

Change Control

When you set up a team environment, you will need to provide a change control
mechanism to ensure that your team members are always working with the latest
versions of their projects. Whatever change control mechanism you use, you need
to set a consistent unit of change control that can be used throughout your change
control system. The unit you choose will be checked out and locked while a team
member is working with it, and then checked back in and released when the team
member has finished working with it.

You can set up your change control system to manage information in any of the
following units. Whichever unit you choose should be used consistently throughout
your system.

v The model files for a project (the contents of a project’s \Model directory). This is
the recommended unit of change control.

The model files can simply be opened and worked with. If you are using external
files to provide method implementations, it may be easier to package the entire
\Model directory (for example, in a .zip file) and use that as the unit of change
control.

v The generated xml files for a project (the contents of a project’s \Export
directory).

You can generate XML files for the entire project, or for selected components or
component objects within the project. This allows you to store and exchange
information at a more granular level, but involves extra work because you must
import and export the XML files, rather than simply opening and saving the model
files.

v The generated source files for a project (the contents of a project’s \Working
directory).

This assumes that each team member is maintaining a single copy of their
project model. The generated code is stored for backup purposes only, and for
regular automated builds.

Once your change control system is in place, and your project information is stored
in it, you can use it to manage your team environment.

Typically, you should use a daily build process to extract all projects, build them,
and make the result available to team members. A team member who wants to
make a change to a project can then check out the project from the change control
system, and use the daily build structure to resolve the project’s dependencies.

“Chapter 8. Team Development” on page 201
“Projects and Models” on page 4
“Model Interchange with XML” on page 203

“Set up a Change Control Process” on page 209
“Import Changes to Methods” on page 272

202 Application Development Tools Guide

Model Interchange with XML

You can exchange model information between projects using an exported XML
format. This format should not be edited directly.

When you export XML, it is placed in the exporting project’s \Export directory.

You can export information at the project, folder, component, or object level. The
exported XML conforms to a DTD (document type definition) for Component Broker
models. Only XML that conforms to the DTD can be imported.

You can export XML for each level as follows:

Project
You can export the entire project model by selecting File - Export Model in Object
Builder. A set of XML files (udbo.xml, nidl.xml, dll.xml, appl.xml, cont.xml) that define
the project model are generated to the \Export directory.

Folder
You can export the contents of a particular folder by selecting Export from the
folder’s pop-up menu. The XML file representing the folder is generated to the
\Export directory.

You can generate XML for the following folders:

v User-Defined Business Objects folder (udbo.xml)

v User-Defined Data Objects folder (uddo.xml)

v DBA-Defined Schemas folder (udschema.xml)

v User-Defined PA Schemas folder (udpao.xml)

v Non-IDL Types folder (nidl.xml)

v Build Configuration folder (dll.xml)

v Application Configuration folder (appl.xml)

v Container Definition folder (cont.xml)

Component or Object
Select Export from the pop-up menu of a component elements, and then set what
to export in the Export wizard, as follows:

v User-Defined Business Objects folder, business object file:
Select the Export data objects option to export the entire component.
Deselect the Export data objects option to export the business object layer only
(business object interface and implementation, key and copy helper, managed
object).

v User-Defined Data Objects folder, data object file:
Select the Export persistent objects option to export both the data layer and
the persistent layer (data object interface and implementation, persistent object
and schema).
Deselect the Export persistent objects option to export the data object layer
only (data object interface and implementation).

v DBA-Defined Schemas folder, schema group:
Always exports the schema group, along with any schemas and associated
persistent objects.

The exported XML file has a name based on the name of the element you exported
from (the business object file name, data object file name, or schema group name).

Chapter 8. Team Development 203

“Chapter 8. Team Development” on page 201

“Export XML” on page 224
“Import XML” on page 225

Set up a Team Environment

To set up a team environment, you typically start by defining the structure of your
application (either in a Rose design, or in a single Object Builder project), then
divide the structure into working units (either by exporting from Rose, or by splitting
up the single Object Builder project). Once you have the directory structure that
holds your design defined, you can add an integration or build project. You can then
store the structure in a change control system, set up an automated build process,
and finally set up the individual development machines.

The tasks involved in setting up a team environment are as follows:

1. “Export a Rose Design to a Team Environment”

2. “Split up a Project for Team Development” on page 206

3. “Add an Integration Project to a Team Environment” on page 208

4. “Set up a Change Control Process” on page 209

5. “Set up an Automated Build Process” on page 210

6. “Set up a Team Development Environment” on page 211

“Chapter 8. Team Development” on page 201

“Work in a Team Environment” on page 212

Export a Rose Design to a Team Environment

When you export a Rose design to Object Builder, you can either export the entire
design to a single project, or export each top-level package or class as a separate
project.

If you export as separate projects, then your target projects should all be
subdirectories of the same root path, and the target project’s names should match
the names of the top-level packages in Rose.

You can export the entire Rose model, or selected top-level classes or packages in
the model.

To export the entire model, follow these steps:

1. Organize your design into packages that represent your desired project setup.

2. Select File - Export to Object Builder . The Rose Bridge wizard opens to the
Export from Rose 98 to Object Builder Page.

3. Add any necessary virtual symbols and associated actual path mappings to the
Virtual Path Mapping list box.

204 Application Development Tools Guide

4. Select the destination directory you want to store your projects in. The exported
projects will all be stored in subdirectories of this directory.

5. Select the Separate Project s radio button.

6. Select the Entire Model radio button.

7. Click Finish.
Your model is exported to projects in the specified directory. Your model is saved in
Rose as part of the export process.

To export selected top-level classes or packages in the model, follow these steps:

1. Organize your design into packages that represent your desired project setup.

2. Select File - Export to Object Builder . The Rose Bridge wizard opens to the
Export from Rose 98 to Object Builder Page.

3. Add any necessary virtual symbols and associated actual path mappings to the
Virtual Path Mapping listbox.

4. Select the destination directory you want to store your project in. The directory
becomes an Object Builder project directory.

5. Select the Separate Projects radio button.

6. Select the Selected Packages or Classes radio button.

7. Click Next to turn to the Export from Rose 98 to Object Builder, Selection Page.

8. Use standard selection techniques (Click , Shift-Click and Ctrl-Click) to select
the top-level packages and classes you want to export.

As items are selected in the tree view on the left, the tree view on the right
displays the component objects or elements which will be created for that item.
The export process creates component objects according to the properties in
the Class Specification notebook.

9. Click Finish.

Your model is exported to projects in the specified directory. Your model is
saved in Rose as part of the export process.

If you are using Rose 98 with a model which was created in Rose 4.0, any
Component Broker-specific properties you have customized (for example,
IDLSpecificationType) will be moved to the appropriate pages of the Rose 98
specification notebooks the first time the model is exported.

Once you have completed the export process, your design is applied to the \Model
subdirectory in each of the selected projects. The interchange file udbo.xml used in
the export process is stored in the \Import subdirectory in each of the selected
projects. The classes and relationships you defined in Rose have been mapped to
their Object Builder equivalents, and any component objects you specified have
been defined in skeleton form.

The export process maintains the following design elements:

v The classes in your design

v Class inheritance

v Class relationships

v Attributes

v Methods

The export process adds the following elements:

v File and module objects (the mapping of classes to files and modules depends
on the packaging structure used in Rose).

Chapter 8. Team Development 205

v Read and write methods, for each public attribute.

v Public attributes (get and set methods), to support aggregations of classes and
navigable associations among classes.

v Component Broker objects (business object implementation, data object
interface, copy helper, key), as specified during the import, in skeleton form.

When you export to separate projects, XML files are generated in the \Import
directory of each project. These files are then imported into Object Builder using the
equivalent of an obimport command with the -X option, which imports all the files at
once and generates the appropriate dependencies in the various projects.

For example:

obimport -X -d=Import e:\myRBprojects\projA e:\myRBprojects\projB
e:\myRBprojects\projC

This command looks in the Import subdirectory of each listed project directory, and
imports the cont.xml, udbo.xml, uddo.xml, udschema.xml, dll.xml, and appl.xml files
it finds there.

When you export from Rose, the export process generates a file named xmi.xml in
the target project\XMI subdirectory. This file allows the export process to track
changes to design elements, so that if you change the name of a method in Rose
and re-export, the change will be applied to the appropriate method in Object
Builder. It also keeps track of any elements that do not have equivalents in both
models, so that these elements are not simply lost in the bridging process.

“The Rose Bridge” on page 76
“Projects and Models” on page 4
“Chapter 8. Team Development” on page 201

“Set up a Team Environment” on page 204
“Export a Design from Rose” on page 89
Import a Rose Design into Object Builder
“Import XML” on page 225
“Work with an Exported Design” on page 91

Split up a Project for Team Development

You can split an existing project into a set of interdependent projects in a team
environment. You can choose to split along package lines and component layers:

v Packages
Your application design can be viewed in terms of categories or groupings of
related components, which serve to partition the logical model of your application.
In UML terms, these categories are packages. If you created your application
design in Rational Rose, you can export the design directly to a team
environment. The design will automatically be split into a number of different
projects, based on the top-level package structure in Rose.

If your team development roles align with divisions in the design, this is the main
strategy you will use.

v Component layers
Each component consists of a behavior layer (the business object), a data layer

206 Application Development Tools Guide

(the data object), and a persistence layer (the persistent object). You can split out
a component into its separate component objects, and maintain them in
separate, interdependent projects.

If your team development roles align with component layers (for example, an
object-oriented designer at one end versus a database administrator at the
other), this is the main strategy you will use.

You can mix strategies within a team environment. You will also want an additional,
separate project from which you can coordinate application-wide builds and
application packaging.

To divide an existing project into separate projects, follow these steps:

1. Open the existing project.

2. Export XML for individual components or component layers. Later you will group
the exported files into projects. You can select Export from the pop-up menus
of the various component files, and set what to export in the Export wizard, as
follows:

v User-Defined Business Objects folder, business object file:
Select the Export data objects option to export the entire component. You
can then group the exported components into packages.
Deselect the Export data objects option to export the business object layer
only (business object interface and implementation, key and copy helper,
managed object). You can then maintain the business object layer in one
project, and its associated layers in other projects.

v User-Defined Data Objects folder, data object file:
Select the Export persistent objects option to export both the data layer
and the persistent layer (data object interface and implementation, persistent
object and schema). You can then maintain these two layers in one project,
and the business object layer in a separate project.
Deselect the Export persistent objects option to export the data object layer
only (data object interface and implementation). You can then maintain all
three layers in separate projects, once you export the schema layer.

v DBA-Defined Schemas folder, schema group:
Always exports the schema group, along with any schemas and associated
persistent objects.

The exported XML file has a name based on the name of the element you
exported from (the business object file name, data object file name, or schema
group name). The exported files are in the \Export subdirectory of the project
directory.

3. Export XML for the Build Configuration and Application Configuration folders
(click Export from each folder’s pop-up menu). The resulting files (dll.xml,
appl.xml) are in the \Export subdirectory of the project directory.

4. Create a set of project directories that represent the groupings of component
objects you want, under a single parent directory.

For example, you could create the project directories e:\allprojects\policyBO,
e:\allprojects\carpolicyBO, e:\allprojects\allDOs, e:\allprojects\integration.

5. In each project directory, create a subdirectory (for example, \Import).

6. Place the component XML files for each grouping in the subdirectory of its
equivalent project.

You can place as many or as few XML files in each subdirectory as you want,
depending on the way you want to organize the project contents.

Chapter 8. Team Development 207

7. From the command line, run the obimport command to create a set of
interdependent project models based on the XML files in each project’s
subdirectory (for example \Import). For example:

obimport -X -d=Import e:\allprojects\policyBO e:\allprojects\carpolicyBO
e:\allprojects\allDOs e:\allprojects\integration

This example would create four projects, by importing the XML files found in the
\Import subdirectories of the listed directories.

8. Set up the environment variable OBMODELPATH to point to the parent directory
that contains your project directories. For example:
set OBMODELPATH=f:\allprojects;

Once you have split the project into a set of projects in a team environment, you
can continue with your team environment set up. You need to choose a change
control unit, and a system to store the units in. You need to set up the team
environment, and the development machines, to support either local dependency
resolution (with project dependencies extracted from the change control system) or
remote dependency resolution (with project dependencies resolved by a project
depository on a shared network drive). You need to set the makefile generation
preferences for each Object Builder installation to reflect a team environment.

“Chapter 8. Team Development” on page 201
“Projects and Models” on page 4
“Design Principles for Component Broker Applications” on page 3
“Model Interchange with XML” on page 203

“Export XML” on page 224
“Import XML” on page 225
“Add an Integration Project to a Team Environment”

Add an Integration Project to a Team Environment

If you created your team environment by splitting up an existing project, then your
integration project already exists, and simply contains the build and application
configuration information from the original project. However, if you created your
team environment by exporting a model from Rose, you will need to add a new
integration project, as described here.

The integration project will define the build configuration options and makefiles for
all the components defined in your projects. Typically, it will also contain the
application configuration information, when you reach the stage of packaging the
application. To add an integration project, follow these steps:

1. Create a new project. It should be part of the same directory structure as your
other projects (that is, they should all be under the same parent directory). In
the Open Projects wizard, Project Dependencies page, list all the projects in
your team environment as dependencies.

2. Once the new project is open, click File - Preferences to open the Preferences
notebook.

3. Click on the Tasks and Objects node in the Preferences tree view.

4. Under Makefile Generation , set the Team Environment option. This allows the
project’s build process to locate the generated code in the dependency projects’
\Working directories.

208 Application Development Tools Guide

In order to locate the other projects’ generated code, the integration project’s
makefiles will use absolute paths instead of relative ones. If your directory
structure changes, you will need to regenerate the makefiles.

5. Add client and server DLLs for all the components in your application. If a DLL
is already defined in one of the dependency projects, then you must use a
different name for the DLL configuration node in the integration project, but you
should use the same name for the built DLL file.

6. Add application families and applications, and configure the managed objects of
the various components in the other projects.

7. Save and close the project.

The project will be used as the starting point for any regular automated builds, and
for packaging the application.

“Chapter 8. Team Development” on page 201
“Projects and Models” on page 4

“Set up a Team Environment” on page 204
“Split up a Project for Team Development” on page 206
“Set up an Automated Build Process” on page 210

Set up a Change Control Process

Once you have created your team directory structure and skeleton projects (either
through export from Rose, or by splitting up an existing project), you can set up a
change control process, to ensure that only one person makes changes to a project
at a time.

Typically, you should use a daily build process to extract all projects, build them,
and make the result available to team members. A team member who wants to
make a change to a project can then check out the project from the change control
system, and use the daily build structure to resolve the project’s dependencies.

Setting up a change control process requires the following general steps:

1. Create the team directory structure (that is, a set of project directories that hold
the elements of your application). You can create the structure either by
exporting a design from Rose, or by taking a design in an existing Object
Builder project, and splitting it up into multiple projects.

2. Add an integration project to the team directory structure.

3. Select a unit to use for change control (for example, the contents of each
project’s \Model directory).

4. Check all projects into the change control system.

5. Set up a daily or nightly build process, that will extract all projects, generate
code for the entire application using the integration project, and build the
application DLLs. The resulting project repository (all projects, with their
generated and built code) needs to be available for team members to access
(for example, as a zip file in the change control system, or as a directory
structure on the LAN).

Chapter 8. Team Development 209

“Change Control” on page 202
“Chapter 8. Team Development” on page 201
“Projects and Models” on page 4

“Set up a Team Environment” on page 204

Set up an Automated Build Process

You can use an automated build process to create and update a project repository,
which can be used to resolve the dependencies of a project being edited.

The automated build process needs to do the following:

1. Extract all projects from the change control system.

2. Generate code for all projects, using obgen with the -linked option. For example:
obgen -pF:\allprojects\projectA -aAll -tNT -linked
obgen -pF:\allprojects\projectB -aAll -tNT -linked
obgen -pF:\allprojects\projectC -aAll -tNT -linked

The above commands generate the code for all objects (-aAll) in projectA,
projectB, and projectC (the equivalent of selecting Generate - All from the
pop-up menu of the User-Defined Business Objects folder in each project). The
code is generated for the platform Windows NT (-tNT), and placed in each
project’s \Working\NT directory.

3. Generate the makefiles for the application integration project. For example:

obgen -pF:\allprojects\Integration -aMake -linked -tNT

The above command generates the makefiles (-aMake) defined in the
Integration project. The -linked option generates the makefiles with absolute
paths to the code found in the other projects’ \Working\NT directories, rather
than generating makefiles that assume the generated code is in the current
project’s \Working\NT directory.

4. Build all the DLLs defined in the application integration project. For example:

nmake F:\allprojects\Integration\Working\NT\all.mak

The DLLs, .jar files, and any other targets defined in the makefiles are built in
the integration project’s \Working\NT directory.

5. Make the full extracted directory structure available, including the \Model
directories, and the \Working directories with the generated code and built DLLs.

For example, you could export F:\allprojects on the network, or zip the contents
of the directory and place the zip file in the change control system.

The following sample build script extracts the project model directories for four
projects, including an integration project, generates their code, generates the
makefiles, builds the code, and creates a zip file:
allprojectsbuild.bat
<Extract all projects from your change control system>
obgen -pF:\allprojects\projectA -aAll -tNT -linked
obgen -pF:\allprojects\projectB -aAll -tNT -linked
obgen -pF:\allprojects\projectC -aAll -tNT -linked
obgen -pF:\allprojects\Integration -aMake -linked -tNT
nmake F:\allprojects\Integration\Working\NT\prjall.mak
zip latest.zip F:\allprojects* -r
<publish latest.zip>

210 Application Development Tools Guide

“Chapter 8. Team Development” on page 201

“Run Object Builder in Batch Mode” on page 11
“Add an Integration Project to a Team Environment” on page 208
“Set up a Team Environment” on page 204

Set up a Team Development Environment

Once the projects in the team environment have been stored in a change control
system, and an automated build process has begun producing regularly updated
project repositories, you can set up the development machines to be part of the
team environment.

On each development machine, set up the team environment as follows:

1. Create a local directory that will hold the project repository created by the
nightly build (for example, f:\allprojects\). Each team member will be responsible
for updating their copy of the repository when required.

2. Create another local directory to hold any projects you check out from the
change control system for editing (for example, f:\currentprojects\).

3. Set up OBMODELPATH to include first the current projects directory, and then
the project repository directory.

For example:
set OBMODELPATH=f:\currentprojects;n:\allprojects;

The directories, and their subdirectories, will be searched for project
dependencies in the order they are listed. For example, if you check out three
interdependent projects into f:\currentprojects\, then the duplicates of those
projects in the f:\allprojects\ directory are ignored, because their dependencies
on each other are resolved before the f:\allprojects\ directory is searched. Any
additional dependencies, beyond just the three checked out projects, will be
resolved in the f:\allprojects\ directory.

On each development machine, set up Object Builder for a Team Environment :

1. Open Object Builder, with any project.

2. Click File - Preferences to open the Preferences notebook.

3. Click on the Tasks and Objects node in the tree view.

4. Under Makefile Generation , set the Team Environment option. This allows the
project’s build process to locate code and makefiles in other project \Working
directories, to resolve makefile dependencies correctly.

In order to locate code in other projects’ \Working directories, the generated
makefiles will use absolute paths instead of relative ones. If your directory
structure changes, you will need to regenerate the makefiles.

5. Save and close the project.

“Chapter 8. Team Development” on page 201
“Projects and Models” on page 4

Chapter 8. Team Development 211

“Set up a Team Environment” on page 204
“Work in a Team Environment”
“Maintain a Team Environment ” on page 223

Work in a Team Environment

The same rules that apply to developing an application within a single project apply
to developing an application across multiple projects. You must define parent
components before child components, and referenced interfaces before referencing
interfaces.

There are some considerations that are specific to development in a team
environment, including how you exchange information with a Rational Rose model,
and how you work with references across projects. They are described in the
following tasks:

1. “Import Projects from a Team Environment”

2. “Create a Project in a Team Environment” on page 215

3. “Edit a Project in a Team Environment” on page 216

4. “Delete a Project in a Team Environment” on page 217

5. “Build DLLs in a Team Environment” on page 217

6. “Package an Application in a Team Environment” on page 218

“Chapter 8. Team Development” on page 201

“Set up a Team Environment” on page 204
“Work in a Team Environment”

Import Projects from a Team Environment

You can import Object Builder projects into Rose. If the imported projects were
originally created by a Rose export, then the new Rose model created by the import
will mirror the information in the original, exported Rose model’s Logical View. If
your original model has additional information in other views, you can consolidate
the two models (the original exported one, and the newly imported one) using the
Rose 98 Visual Differencing tool.

If the projects were created only in Object Builder, or the original design is
unavailable, then the import process creates a new Rose design. When the import
is completed, each project maps to a package in Rose, and each business object
interface maps to a class in Rose. You can then work with the design in Rose, and
export the changes back to Object Builder.

To import a set of interdependent Object Builder projects (that is, projects in a team
environment) into Rose 98, follow these steps:

1. Select File - Import from Object Builder . The Rose Bridge wizard opens to the
Import from Object Builder to Rose 98 Page

2. Enter the name of the directory that contains the Object Builder projects you are
importing.

212 Application Development Tools Guide

3. Enter the name of the Rose model file you are importing to. If you know your
project will be imported into a category file (.cat) on Rose 98, then you need to
specify the virtual path mapping information by entering the symbol and actual
path data.

4. Select the Import from: Separate Project s option.

5. Click Finish .

The projects in the directory you selected are imported into the Rose model file you
specified.

The import process works as follows:

1. The import process calls the obexport command to generate an XML file for the
project (\Export\udbo.xml).

2. The import process checks to see if there is an \XMI\xmi.xml file in the project
directory. This file is created by the Rose Bridge to preserve any information
that would otherwise be lost during transfer between Rose and Object Builder.

3. The import process generates a Rose model file, based on the udbo.xml file
and the xmi.xml file.

4. The import process updates the xmi.xml file to contain any Object Builder
information that cannot be imported. For example, details of the implementation,
key, and copy helper for a component, that cannot be stored as elements in
Rose 98.

5. The import process loads the generated Rose model into Rose 98.

The import process maps Object Builder elements as follows:

v Business object files, modules, and interfaces that already have a mapping
(because they were created by export from Rose) maintain that mapping.

v New business object files, modules, and interfaces (added directly to Object
Builder, not by export from Rose) are mapped to packages, subpackages, and
classes.

v IDL constructs with file or module scope become classes in Rose

v Attributes of an interface become attributes of a class in Rose

v Methods of an interface become operations of a class in Rose

v Parent interfaces become class relations in Rose

v Object relationships that were created by export from Rose are imported as the
role of an association.

v Sequence attributes of the interface that were created by export from Rose are
imported as the role of an association.

The import process keeps the following elements in the xmi.xml file:

v Component objects other than the business object interface (business object
implementation, data object interface, copy helper, key)

v The method bodies

v Object relationships that were created directly in Object Builder (not by export
from Rose)

v IDL constructs with interface scope

The import process updates the following properties in the Rose specification
notebooks:

Chapter 8. Team Development 213

v Class Specification, IDL page, CreateImplementation
property is set if the business object interface has a business object
implementation

v Class Specification, IDL page, CreateKey
property is set if the business object interface has a key

v Class Specification, IDL page, CreateCopyHelper
property is set if the business object interface has a copy helper

v Class Specification, IDL page, IsQueryable
property is set if the business object interface has the option The interface is
queryable checked, in its properties notebook

v Attribute Specification, IDL page, length
property is set if the attribute is of type string, and has associated size
information.

v Attribute Specification, DDL page, IsIncludedInCopyHelper
property is set if the attribute is part of the component’s copy helper

v Attribute Specification, DDL page, PrimaryKey property is set if the attribute is
part of the component’s key.

v Association Specification, IDL A/B pages, MapAsObjectRelationship
property is set if an object relationship or sequence attribute in the business
object interface was created by exporting the role of an association from Rose

v Association Specification, IDL A/B pages, RelationshipImplementation
property is set if the object relationship has a selected implementation type in the
business object implementation

In order to track changes between Component Broker objects and Rose elements,
the import process uses the UUID of an element as an identifier. The UUID is
stored as the uuid property of IDL page in Rose for each package, class, attribute,
operation, and role of association.

You have now imported an Object Builder project into a Rose model. If the
imported project was created by export from Rose, and the original Rose model
contains information in other views besides the Logical view, then you should
consolidate the new model with the original model before doing any more design
work.

To merge the new model with the original model, follow these steps:

1. Click File-Save to save the new model.

2. Click Tools-Visual Differencing to start the merging process.

3. When the Give reference model dialog opens, specify the original .mdl file.

The Visual Differencing tool will load both models and generate a list of
differences

4. In the Visual Differencing interface, click on the + next to the Difference found
item to expand the tree one level.

5. Since no changes have been made to any information in the Use Case View,
merge the information from the original model into the new model:

a. Click Use Case View to select it

b. Click Merge in the Use Case View pop-up

c. Make sure the Replace with reference option is selected, and click
Merge .

6. Repeat the same procedure for all other views that contain differences, except
for the Logical view.

214 Application Development Tools Guide

7. In the Logical view, you do not need to merge the entire view, only selected
diagrams:

a. Click + next to the ’Logical View’ item to expand one level.

b. Click + for all Logical View subtree members until the entire subtree is
exposed.

c. In each place a blue + exists in the Logical View subtree (all diagrams in the
subtree):

1) Click the item to select it.

2) Click Merge in its pop-up menu.

3) Make sure the Replace with reference option is selected, and click
Merge .

You have now completed merging information from your original model into the
new model which contains the changes from Object Builder.

8. Click File-Save in the Visual Differencing tool and save the updated model to a
new file.

9. Click File-Exit to close the Visual Differencing tool.

10. Click File-Open in Rose 98 and open the updated .mdl file.

Your model now contains the entire updated design, and you can continue your
design work. When you are ready to switch back to Object Builder, you can export
the design back to Object Builder by selecting File - Export to Object Builder .

“Object Builder” on page 1
“Projects and Models” on page 4
“Rose” on page 74
“The Rose Bridge” on page 76
“Chapter 8. Team Development” on page 201

“Export a Design from Rose” on page 89
“Export a Rose Design to a Team Environment” on page 204

Create a Project in a Team Environment

To create a project in a team environment, follow these steps:

1. Create a project directory for the project, in your local project directory structure
(for example, f:\currentprojects\mynewproject).

2. Identify any existing interfaces that will be required by the new project’s
component (for example, parent interfaces, or interfaces that will be used as
attribute types or in method signatures).

3. List the projects that contain those interfaces as dependencies in the Open
Project wizard, Project Dependencies Page (for example, f:\allprojects\projectA,
f:\allprojects\projectB).

4. Open the project, and begin your work on the new application elements it will
contain. Add components in the same way you would in a standalone
environment (starting with the business object interface file, an imported DB or
PA schema, or data object interface file).

5. Save the project, and check it into your change control system.

Chapter 8. Team Development 215

6. Check out the integration project, and add any build configuration nodes that
apply (for example, client and server DLL configurations for any components
you added to the new project).

7. Save your changes to the integration project, and check it back into your
change control system.

8. Update the automated build process, to include code generation for the new
project.

“Chapter 8. Team Development” on page 201

“Work in a Team Environment” on page 212
“Edit a Project in a Team Environment”
“Set up a Change Control Process” on page 209
“Set up an Automated Build Process” on page 210

Edit a Project in a Team Environment

To edit a project in a team environment, follow these steps:

1. Ensure your local copy of the project repository (created by the automated build
process) is up-to-date.

2. Check out the project you want to edit from the change control system.

3. Open the project. Its dependencies on other projects should resolve using the
project repository (based on your OBMODELPATH settings).

4. Make any changes you want to the project. If your changes affect the way the
project relates to other projects (for example, you want to add a reference that
requires another project as a dependency, or you delete a reference that
justifies an existing dependency), you will need to close and open the project
again, to update the listed project dependencies (for example, add the
dependency first, then add the new reference; or delete the reference, then
remove the dependency).

5. Generate updated code for the project.

You can now build your code, using either a local definition of the DLLs you want to
build, or using the integration project’s DLL configurations.

Some of your changes may affect code in other projects. For example, if you
rename an interface, any methods, attributes, constructs, or relationships that
reference the interface have their type renamed automatically. If a referenced
interface is deleted, the reference type becomes invalidType. For example, if
Customer has an attribute custAgent of type Agent, and the Agent interface is
deleted, Customer now has an attribute custAgent of type invalidType. You can
locate all occurrences of invalidType within a project by running the model
consistency checker.

“Chapter 8. Team Development” on page 201

“Work in a Team Environment” on page 212
“Build DLLs in a Team Environment” on page 217
“Check a Model for Consistency” on page 412

216 Application Development Tools Guide

Delete a Project in a Team Environment

To delete a project in a team environment, follow these steps:

1. Delete the project from your change control system.

2. Update the automated build process, to remove any reference to the project.

3. Check out the integration project, and remove any build configuration nodes for
code in the project.

4. Check out any projects that have dependencies on the deleted project, and
remove their dependencies on the Open Project wizard’s Project Dependencies.

Any references within a project that depend on the deleted interface will be
automatically modified to point to type invalidType. The following properties will be
automatically modified:

v Attributes are modified when the interface whose type they are is deleted.

v Methods are modified when an interface used as their return type, or as a
parameter, is deleted.

v Object relationships are modified when the interface they refer to is deleted.

You can find invalidType references within a project by checking the project model’s
consistency.

“Chapter 8. Team Development” on page 201

“Work in a Team Environment” on page 212
“Check a Model for Consistency” on page 412

Build DLLs in a Team Environment

When your project is part of a team environment, typically the entire application will
share a single integration project, that defines the build configuration options for all
the components in the team environment, regardless of the project they are defined
in.

When have edited a project and want to rebuild the code that was affected by your
changes, you can use the integration project in the project repository to rebuild the
affected DLLs. This will only affect your local copies of the DLLs; once you check
an edited project back into your change control system, the DLLs will be rebuilt by
your automated build process, and the updates will be made available in the next
version of the project repository.

To build a DLL locally in a team environment, after you have made changes to a
checked out project, follow these steps:

1. Regenerate the makefiles in your integration project (in your local copy of the
project repository). This creates a version of the makefiles that correctly points
to the updated code in your local check-out directory.

2. Build the updated makefiles, using the integration project’s all.mak file.

If your project repository is editable, then you can regenerate the makefiles and
build the code from within Object Builder:

1. Open the integration project.

Chapter 8. Team Development 217

2. From the Build Configuration folder’s pop-up menu click Generate - All Targets

3. From the same pop-up menu click Build - Out-of-Date Targets - Default .

If your project repository is read-only, then you can regenerate the makefiles and
build the code from the command line. For example:

1. obgen -pF:\allprojects\Integration -aMake -linked -tNT

2. nmake F:\allprojects\Integration\Working\NT\all.mak

You can also create a build configuration definition within the checked out project,
without using the integration project. To do so, simply add client and server DLL
definitions in the usual manner. You can use the same DLL file names as those in
the integration project, but should define different DLL configuration node names.

“Chapter 8. Team Development” on page 201

“Work in a Team Environment” on page 212
“Package an Application in a Team Environment”
“Build DLLs - Overview” on page 363
“Run Object Builder in Batch Mode” on page 11
“Set up an Automated Build Process” on page 210
“Add an Integration Project to a Team Environment” on page 208

Package an Application in a Team Environment

You can use the integration project of your team environment to do your application
packaging. Add application families, applications, and managed object
configurations in the usual manner. Before you create the install image, you will
need to build the DLLs for the entire application, so that the built files in the
project’s \Working directories are up-to-date.

If you are packaging your application in a different project than your integration
project, you will still need to build from the integration project first, and then copy
the contents of the integration project’s \Working directory (including subdirectories)
to the application packaging project’s \Working directory.

You can then configure the application, and create the install image, in the same
way you would in a standalone project environment.

“Chapter 8. Team Development” on page 201

“Work in a Team Environment” on page 212
“Package an Application” on page 375

Team Development with Rose - Scenario

Objectives
To create an object relationship in Rose.
To export from Rose to multiple projects.
To import from multiple projects to Rose.

218 Application Development Tools Guide

Before You Begin
This scenario is a continuation of the scenario sequence:

1. “Export from Rose - Scenario” on page 95

2. “Import into Rose - Scenario” on page 98

You must complete the previous scenarios before attempting this one.

You need Rational Rose 98 installed and set up to work with Object Builder, as
described in the task “Set up Rose 98” on page 74.

You need Object Builder installed.

Description
In this exercise, you will extend the Rose model for Claim to include a second
component, Policy, which has a one-to-many relationship with Claim (each policy
can have multiple claims). You will then export the modified model to a new set of
interdependent project directories, modify the exported components in Object
Builder, and import the changes.

Note that when you are creating more complicated team environments (with
multiple projects, each containing multiple components), you will want to minimize
the number of cross-project dependencies. In Rose terms, you would group your
classes into packages, and minimize the cross-package relationships and
references.

For this exercise, you will complete the following tasks:

1. Add the Policy class to your Rose model.

2. Export the model to Object Builder projects.

3. Edit the Claim component.

4. Edit the Policy component.

5. Import the projects and apply the changes to your Rose model.

Add the Policy Class
Start Rose 98, and add the Policy class, with one attribute and a one-to-many
relationship with Claim.

Add the Policy class:

1. Start Rose 98.

2. Click File - Open and load the existing model for Claim (for example,
e:\scenarios\rosemodels\claim.mdl).

3. From the pop-up menu of the class diagram, click Class Wizard to open the
Class wizard.

4. Name the class Policy.

5. Click Next through the remaining wizard pages, then Finish .

A class named Policy is added to the Logical View folder.

Add the attribute policyNo:

1. From the pop-up menu of Policy, click New Attribute . A placeholder attribute is
added (named name, type of type, initial value of initval).

2. Type over each of the values for the new attribute, naming it policyNo, with type
Integer and initial value of 0.

Chapter 8. Team Development 219

3. Click elsewhere in the diagram to apply the changes.

Add a one-to-many relationship from Policy to Claim:

1. Click Tools - Create - Aggregate Association . Your mouse pointer changes to
an arrow.

2. Click and hold on Policy, and then drag to Claim, to draw the aggregation.
When you release the mouse button, an arrow is drawn from Policy to Claim.

3. Double-click on the arrow to open Aggregation Specification notebook.

4. Turn to the Role A Detail page, and set the cardinality to n.

5. Turn to the IDL A or B page. Review the values for the aggregation properties:

v MapAsObjectRelationship=True
The aggregation will map to an object relationship in Object Builder. If this
value were false, the aggregation would map to an attribute of type sequence
in Object Builder.

v RelationshipImplementation=Local Persistent Reference
The relationship will be implemented in the business object implementation
as a local persistent reference, rather than mapping to a database query.

6. Click OK to close the diagram and apply your changes.

You now have a class named Policy, with the attribute policyNo and a one-to-many
object relationship to Claim.

Export to Object Builder
You are ready to export the classes to Object Builder. A separate project will be
created for each class, and the project dependencies will be set accordingly.

To export to separate Object Builder projects, follow these steps:

1. Click Save As to save and rename your model (for example, as
e:\scenarios\rosemodels\ClaimPolicy.mdl).

2. Click File - Export to Object Builder . The Rose Bridge Export wizard appears.

3. Specify an output directory to hold the project directories for this design (for
example, e:\scenarios\roseteam\).

4. Set the Export as: Separate Projects option.

5. Accept the default for the other options.

If you had exported to separate projects before, you could set the Export
Selected Packages or Classes option to update only the projects that were
affected by your change. However, when you are exporting for the first time to
separate projects, you should export the entire model, to set up the project
directory structure and project dependencies.

6. Click Finish . Your existing Rose model is automatically saved as part of the
export process. A Claim project directory and a Policy project directory are
created beneath the output directory you specified (for example,
e:\scenarios\roseteam\claim\ and e:\scenarios\roseteam\policy\). The \Import
directory under each project directory, and the \XMI directory under the output
directory, contain the XML files used to transfer information from Rose to Object
Builder. As part of the XML import process, dependencies are set up between
the target projects, as necessary to resolve any references between the
classes.

You are ready to open the projects in Object Builder, review the results of the
export, and edit the components in Object Builder.

220 Application Development Tools Guide

Work with Claim
Work with the exported Claim component:

1. Start Object Builder.

2. In the Open Project wizard, specify the project directory created by the export
for Claim (for example, e:\scenarios\roseteam\claim\).

3. Click Next to turn to the Project Dependencies page. Note that there are no
dependencies listed. Claim does not have any references to Policy, so it does
not have a dependency on Policy’s model. However, because you are now
going to edit Claim and add a reference to Policy, you need to add Policy’s
project directory as a dependency.

4. Add Policy’s directory as a dependency (for example,
e:\scenarios\roseteam\policy\).

5. Click Finish . The project for Claim opens.

6. Expand the User-Defined Business Objects, and locate the Claim interface
(under the Claim file).

7. From the pop-up menu of the Claim interface, click Properties to open the
Business Object Interface wizard.

8. Click the title bar and turn to the Attributes page.

9. Add an attribute thePolicy of type Policy.

10. Click Finish .

Add the new attribute to Claim’s copy helper:

1. Locate the ClaimCopy copy helper, under the Claim interface.

2. From ClaimCopy’s pop-up menu, click Properties to open the Copy Helper
wizard.

3. Move the new attribute from the Business Object Attributes list to the Copy
Helper Attributes list.

4. Click Finish .

Save your changes and close Object Builder:

1. Click File - Save .

2. Click File - Exit .

You have made your changes to the project, saved them, and closed Object
Builder. You are ready to work with Policy’s project.

Work with Policy
Work with the exported Policy component, changing the implementation of its
relationship, and adding a key and copy helper:

Edit the relationship implementation:

1. Start Object Builder.

2. In the Open Project wizard, specify the project directory created by the export
for Policy (for example, e:\scenarios\roseteam\policy\).

3. Click Next to turn to the Project Dependencies page. Note the dependency on
Claim, which was set up by the export process to support Policy’s one-to-many
relationship to Claim.

4. Click Finish . The project for Policy opens.

5. Expand the User-Defined Business Objects, and locate the PolicyBO
implementation (under the Policy interface).

Chapter 8. Team Development 221

6. From the pop-up menu of PolicyBO, click Properties to open the Business
Object Implementation wizard.

7. Click the title bar and turn to the Object Relationships page.

8. Change the relationship implementation to Reference resolved by foreign
key .

9. Select Claim’s new attribute thePolicy as the foreign key attribute for the
relationship.

10. Type ClaimMOHome as the name of the home to query.

This name is based on the name of Claim’s managed object, and the home
instance it is configured with. Because you have not yet created or configured
Claim’s managed object, the home name here is just a logical guess, which
assumes you will accept the default name and home configuration options.

11. Click Finish .

You have created a foreign key pattern relationship between Policy and Claim. This
allows the relationship to be implemented at the database level, using foreign key
references, instead of at the business object level.

Add a key and copy helper:

1. From the pop-up menu of the Policy interface, click Add Key to open the Key
wizard.

2. Move the policyNo attribute to the Key Attributes list.

3. Click Finish .

4. From the pop-up menu of the Policy interface, click Add Copy Helper to open
the Copy Helper wizard.

5. Move the policyNo attribute to the Copy Helper Attributes list.

6. Click Finish .

You now have a key and copy helper for Policy. Save your changes and close
Object Builder:

1. Click File - Save .

2. Click File - Exit .

You have made your changes to the project, saved them, and closed Object
Builder. You are ready to import your changes from both projects into Rose, and
review their effect on your Rose model.

Import into Rose
To import your changes into Rose, follow these steps:

1. Start Rose 98.

2. Click File - Open and load your Rose model for Policy and Claim (for example,
e:\scenarios\rosemodels\ClaimPolicy.mdl). Your model opens, and the class
diagram for Policy and Claim appears.

3. Click File - Import from Object Builder . The Rose Bridge Import wizard opens.

4. In the Input Directory field, type the path of the parent directory for your Object
Builder projects, as defined during the export process (for example
e:\scenarios\roseteam\).

5. In the Output field, make sure the current Rose model is selected (for example
e:\scenarios\rosemodels\ClaimPolicy.mdl).

6. Set the Import from: Separate Projects option.

7. Click Finish .

222 Application Development Tools Guide

The Rose Bridge updates the udbo.xml file for each project, updates the xmi.xml
files with any project information it cannot preserve in the transfer, and then imports
all four files into Rose to update the selected model file.

Review the Changes
Your changes in the Object Builder projects are applied, and have had the following
effect:

v Claim has a new attribute thePolicy.

v Policy’s attribute policyNo now has the DDL property isPrimaryKey set to True
(reflecting your inclusion of the attribute in PolicyKey, in Object Builder).

v The aggregation association between Claim and Policy now has the IDL property
RelationshipImplementation set to Reference Resolved by Foreign Key (reflecting
your changes to the relationship implementation in PolicyBO, in Object Builder).

Summary
You have created a team environment with two interdependent project directories,
created a cross-project foreign key pattern relationship, and applied changes in the
team environment to your Rose model.

Maintain a Team Environment

After your team environment is defined (either through migration or evolution),
maintenance of the environment must provide for the relocation of projects, the
relocation of objects between projects, and the management of cross-project
dependencies.

The main strategies for managing multiple projects are:

v Make changes in logical units (move parent and child components together when
possible).

v Make changes in logical order (change parent components before child
components, change referenced components before referencing components).

v Edit project divisions by selectively exporting the project’s contents as XML files,
deleting the content from the project, then importing the XML files into another
project or projects.

v When you have two versions of a project, resolve the differences by exporting
and merging their XML with the Compare and Merge Tool for XML.

The specific tasks for maintaining a team environment are as follows:

1. “Import XML” on page 225

2. “Move a Project” on page 227

3. “Change Project Divisions” on page 227

4. “Compare Files with the Compare and Merge Tool for XML” on page 228

5. “Merge Files with the Compare and Merge Tool for XML” on page 229

6. “Manage Cross-Project Dependencies” on page 230

“Chapter 8. Team Development” on page 201

“Set up a Team Environment” on page 204
“Work in a Team Environment” on page 212

Chapter 8. Team Development 223

Export XML

You can export the data in a project’s model in XML format. You can export at
several different levels of granularity, either from within Object Builder, or from a
command line. Once you have exported, you can import the data into another
project’s model.

You can export information from Object Builder at the following levels:

v The entire project (click File - Export Model)

v The entire contents of a folder that contains user-defined objects (from the
pop-up menu of the folder)

v A branch of objects defined off a business object file, in the User-Defined
Business Objects folder, or just the business object.

v A branch of objects defined off a data object file, in the User-Defined Data
Objects folder, or just the data object.

v A schema and persistent object, in the DBA-Defined Schemas folder.

The exported XML file is placed in the project’s /Export directory, and named
according to the item selected. For example, if you exported the contents of the
User-Defined Business Objects folder, the exported file is udbo.xml. If you exported
a component with the business object file name ClaimFile, the exported file is
ClaimFile.xml.

Once you have exported the file, you can import it into another project. The file
conforms to a DTD (document type definition) for Object Builder models.

To export from the command line or batch interface, use the following command:
obexport -ProjectDirectory<project_directory> -D<export_directory>

If you do not specify an export directory, the \Export subdirectory of the project
directory is used.

For example, the command:
obexport -Pe:\myproject -De:\NewExport

generates the following files into e:\NewExport\ :

v udbo.xml (the contents of the User-Defined Business Objects folder)

v uddo.xml (the contents of the User-Defined Data Objects folder)

v nidl.xml (the contents of the Non-IDL Types folder)

v udschema.xml (the contents of the DBA-Defined Schemas folder)

v dll.xml (the contents of the Build Configuration folder)

v appl.xml (the contents of the Application Configuration folder)

v cont.xml (the contents of the Container Definition folder)

“Model Interchange with XML” on page 203

“Maintain a Team Environment ” on page 223
“Import XML” on page 225

224 Application Development Tools Guide

Import XML

You can import XML that has been exported from Object Builder. This allows you to
transfer information from one project model to another.

This task covers several ways of importing XML:

v From within Object Builder

v Importing two files with circular references

v Importing from the command line to a single project

v Importing to multiple projects with cross-dependencies

XML can be exported from any of the main folders in Object Builder’s Tasks and
Objects pane. When you import XML, be sure to import it into the same type of
folder it was exported from.

The exported XML conforms to a DTD (document type definition) for Component
Broker models. When you import an XML file, it is parsed and checked against the
DTD using TRLXML, an XML parser from IBM Tokyo Research Laboratory. Only
XML that conforms to the DTD can be imported.

If you are importing on top of existing objects (for example, ClaimDO currently
exists in Object Builder, and you import ClaimDO.xml), the import process will add
to the existing objects (for example, if the XML defines extra attributes, they will be
added to the objects), but will not subtract from them (for example, if the XML
defines fewer attributes than the object currently has, the object keeps the attributes
despite the import).

The current project must contain the information necessary to resolve any
references in the XML file, or the references will not be imported (the rest of the
XML will be).

For example:

v If you are importing XML that defines a child component, the child’s parent
component must already be defined in the current project.

v If you are importing XML that defines application configuration, the managed
objects configured with the application must already be defined in the current
project.

v If you are importing XML that defines a component Customer that references a
component Account, the referenced Account component must already be defined
in the current project.

Import in Object Builder
To import XML, follow these steps:

1. From a folder’s pop-up menu, click Import .The Import XML wizard opens to the
File Selection Page.

2. Specify the file you want to import. Unless you have moved it, it is in the /Export
subdirectory of the project you exported it from.

3. Click Finish .

The data in the XML file is loaded into the current project.

4. Select File - Save . The newly imported data is saved to the project’s model.

Chapter 8. Team Development 225

Import Files with Circular References
If you are importing several XML files that contain circular references to each other,
you can use the obimport command outside of Object Builder, with the -X option.

For example, to import Customer.xml and Agent.xml (one defines the Customer
component, which has a reference to Agent, and the other defines the Agent
component, which has a relationship to Customer), place the two XML files in your
current project’s \Import subdirectory, and then enter the following command:

obimport -X -d=Import e:\myproject

This will import all files in e:\myproject\Import into the project e:\myproject . The -X
option is generally used when you are importing into multiple projects, as described
later in this topic, but is appropriate for resolving circular references during import to
a standalone environment.

Importing from the Command Line to a Single Project
To import from the command line to a single project, use the following command:
obimport -P<project_dir> -d<import_dir> <xmfile1 xmfile2...xmlfilen|ALL>

The parameters are as follows:

v -P
The project directory you are importing into.

v -d
The directory that contains the XML files you are importing. Defaults to the
\Import subdirectory of the project directory you specified.

v ALL
You can list the XML files you want to import, or specify ALL to import all XML
files in the specified directory.

For example:
obimport -Pe:\myproject -de:\newimports ALL

Importing from the Command Line to Multiple Projects with
Cross-Dependencies
An alternative syntax for obimport supports import into multiple projects at the same
time. This is especially useful for projects that have cross-dependencies, where you
would normally have to import some sets of XML files multiple times.

Use the following command syntax to import into multiple projects:
obimport -X -d<import_subdirectory> [project1 project2 ... projectn]

For each project, the XML files in the import subdirectory are imported, and any
cross-project references will be resolved.

The parameters are as follows:

v -X
Specifies that you want to use the cross-project import syntax.

v -d
Optionally specifies the project subdirectory to search for XML files. By default,
the import looks in the \Export subdirectory of each listed project.

226 Application Development Tools Guide

v project
Anything else you specify will be interpreted as the path to a project. The XML
files in the \Export subdirectory (or the subdirectory you specified) of each listed
project will be imported into the project.

“Model Interchange with XML” on page 203

“Maintain a Team Environment ” on page 223
“Export XML” on page 224

Move a Project

To change the location of a project, follow these steps:

1. Move the project directory, and its subdirectories, to its new location.

2. Update the OBMODELPATH environment variable to point to the new directory,
so that any other projects that depend on the moved one will still be able to find
it.

To set the OBMODELPATH environment variable, use the following command:
set OBMODELPATH=[directory1;directory2;...directoryn]

For example:
set OBMODELPATH=f:\project1;g:\project2

“Chapter 8. Team Development” on page 201

“Maintain a Team Environment ” on page 223

Change Project Divisions

You can move information from one project to another by exporting the information
in XML format, and then importing it into the other project.

When possible, follow these guidelines for transferring information. Otherwise,
relationships or references may be automatically deleted during the transfer.

v Move information in logical units (move parent and child components together
when possible)

v Move information in logical order (move parent components before child
components, move referenced components before referencing components)

To transfer information from one project to another, follow these steps:

1. Select the element that you want to transfer.

You can transfer all the information in a project, all the information in a folder,
information defined off of a business object file in the User-Defined Business
Objects folder, or information defined off of a data object file in the User-Defined
Data Objects folder.

2. From the element’s pop-up menu, click Export .

An XML file corresponding to the element is exported into the project’s /Export
subdirectory.

Chapter 8. Team Development 227

3. Delete the element from the project.

4. Save and close the project.

5. Open the target project.

6. From the pop-up menu of the target folder, click Import XML .

7. Click Find and select the XML file you had exported.

8. Click Finish . The information is imported, and appears in the folder.

9. Save and close the project.

“Chapter 8. Team Development” on page 201

“Maintain a Team Environment ” on page 223
“Manage Cross-Project Dependencies” on page 230

The Compare and Merge Tool for XML

You can use the Compare and Merge Tool for XML to compare the XML files
generated from project models based on node identification, and then merge them.
You can decide which differences to include in the resultant, merged file.

You can use the tool in two specific scenarios: you can review changes that you
made to a file over a course of time, and you can merge the changes if you want
to, or you can use the tool to review and consolidate changes made to a single
XML file by different users, who essentially work on the project in a team
development environment.

Note: To eliminate any inconsistencies that might exist in the resulting model, you
can use another tool called the Model Consistency Checker.

“Chapter 8. Team Development” on page 201“Model Interchange with XML” on
page 203

“Compare Files with the Compare and Merge Tool for XML”
“Merge Files with the Compare and Merge Tool for XML” on page 229“Compare
Files with the Compare and Merge Tool for XML”“Merge Files with the Compare
and Merge Tool for XML” on page 229
“Maintain a Team Environment ” on page 223
“Import XML” on page 225
“Export XML” on page 224

Compare Files with the Compare and Merge Tool for XML

You can compare XML files at the element level (a level higher than the file level),
based on node identification. Follow these steps:

1. Launch the Compare and Merge Tool for XML: use the command xmldiff from
a command line.

2. Use the menu to import the files to be compared into the tool: from the File
Menu, choose Open. The Select Base XML File dialog box opens. Type the
name of the base (control) file against which to base your comparison. The tool
parses the file.

228 Application Development Tools Guide

3. The Select Modified XML File dialog box opens. Type the name of the modified
file that you want to compare with the base file. The tool parses the file, and
displays a preliminary, combined view of the two files in the Merged View pane.
Symbols and color highlight the differences between the two files.

The Compare and Merge Tool for XML
“Model Interchange with XML” on page 203
“Chapter 8. Team Development” on page 201

“Merge Files with the Compare and Merge Tool for XML”

Merge Files with the Compare and Merge Tool for XML

Once you have a display of the combined XML files in the Merged View pane, you
can walk through the changed nodes and decide whether the change should be
incorporated in the merged file from either the base file, or the phase file.
Every modified node in the tree has an associated pop-up menu, with choices that
enable you to implement the decision whether to incorporate properties from either
the base file, or the modified file.

The new nodes have the following pop-up menu choices:

v Do not use new : the new node is not incorporated in the merged file.

v Use new element : the merged file has the new node, and its children, if any, as
they are in the modified file.

The deleted nodes have the following pop-up menu choices:

v Do not delete : the merged file has the node as it exists in the base file.

v Delete from base file : the merged file does not have the node that was deleted
from the base file.

The changed nodes have the following pop-up menu choices:

v Use old, where conflict : the merged file has the nodes as they are in the base
file for the current node, and any of its unresolved children (those modified child
nodes for which you have not made a decision about incorporation in the merged
file yet).

v Use new, where conflict : the merged file has the nodes as they are in the
modified file for the current node, and any of its unresolved children.

These choices are also available from the Selected menu.
To merge the two XML files, follow these steps:

1. Select one of the highlighted nodes in the merged tree view.

2. Select Use modified file for node and unresolved children from the pop-up
menu of the node if you want to have the merged file incorporate the changes
that were made in the modified XML file. Select Use base file for node and
unresolved children from the pop-up menu of the node if you want to have the
merged file have the older version of the corresponding node.

3. Use Edit - Undo to undo all of your actions up to the last time you saved your
work.

The menu selection you make on a node is applied to the node, as well as to all its
unresolved child nodes.

Chapter 8. Team Development 229

For example, if you select a new node to be part of the merged file (Use modified
file for node and unresolved children), then all its children will also be in the
merged file; in addition, if this was the only node with a conflict under its parent,
then the parent would be marked as resolved (its red cross-bar will disappear).
Similarly, if you use the phase file as the source for change propagation for a
deleted node, the node and all its children will not be present in the merged file.
Whenever the changes of all the child nodes are resolved, the parent node and all
its child nodes will have a check mark in front of them.

Compare and Merge Tool for XML

“Compare Files with the Compare and Merge Tool for XML” on page 228

Manage Cross-Project Dependencies

Each project maintains its own list of dependencies. The list covers both the
dependencies it has on other projects (displayed in its Open Project wizard, Project
Dependencies Page), and the dependencies other projects have on it (displayed in
the Project Dependencies Page of other projects).

When you create a dependency from one project on another, the dependency is
added in the dependencies files for both projects.

When you open a project that has dependencies, the models of the projects
depended on are opened in read-only mode. The dependency files for the projects
are opened in read-write mode.

When you delete a dependency from a project, its listing is removed from the
dependencies files for both projects (the dependent project and the depending
project).

To avoid managing the dependency files when you move a project or change the
directory structure, use the OBMODELPATH environment variable to list the
directories of all projects in your application.

To set the OBMODELPATH environment variable, use the following command:
set OBMODELPATH=[directory1;directory2;...directoryn]

For example:
set OBMODELPATH=f:\project1;g:\project2

The directories you list, and their subdirectories, will be searched for project
dependencies whenever you open an Object Builder project.

Note : The more directories Object Builder searches, the longer it will take to open
projects. Try to achieve a compromise between completeness (searching all
appropriate project directories) and speed (avoid listing the root directory of every
drive).

If you are importing XML that contains cross-project references, you can use the
obimport command with the -X option to import the XML for all the affected projects
at once, while preserving the cross-project references.

230 Application Development Tools Guide

For example:

obimport -X -d=Import e:\myRBprojects\projA e:\myRBprojects\projB
e:\myRBprojects\projC

This command looks in the Import subdirectory of each listed project directory, and
imports the cont.xml, udbo.xml, uddo.xml, udschema.xml, dll.xml, and appl.xml files
it finds there.

“Chapter 8. Team Development” on page 201

“Maintain a Team Environment ” on page 223
“Import XML” on page 225
“Move a Project” on page 227

Chapter 8. Team Development 231

232 Application Development Tools Guide

Chapter 9. XML Wizards

When you create a complex XML document, one of the standard authoring
strategies is to look at an example document first, and then re-use its structure and
content, customizing only the parts that you need. In this way you start with a valid
structure that roughly meets your needs, and then extend or change it only as
necessary. This reduces the time you need to learn a DTD before working in it, and
makes it both quicker and easier to create valid, useful XML documents.

This process can be made even simpler and more repeatable by creating a wizard
as an interface to editing the example document. You can create an XML wizard, or
SmartGuide, using the SmartGuide Customizer for XML. The wizard or SmartGuide
allows you to selectively add and edit element types in the document.

Begin the process of creating an XML wizard by identifying or creating the sample
XML file. You can then open the file in the SmartGuide Customizer for XML, and
explicitly mark those sections you want to change or extend. When you are done,
you can generate an XML wizard script. When you run the script, the wizard
exposes the elements you chose to be editable, and applies your edits to create a
new document based on the original. The new document is extended only in the
ways you selected; the structure and context of the original file is preserved. All
your changes are applied through the wizard, without editing the source directly.

Once you have created the wizard, anyone can use it to create new documents
following the pattern you set, without having to understand the XML DTD at all, or
ever work in XML directly. You can also add help text and fly-over text to the wizard
to make it even easier to use.

“Model Interchange with XML” on page 203

“Create an XML Wizard”
“Export XML” on page 224
“Import XML” on page 225

Create an XML Wizard

You can use an XML wizard, or SmartGuide, to allow selective editing and
extension of an XML file through a wizard interface that provides constraints,
descriptions, fly-over help, and HTML help. The wizard script can include
customized default values, derivation relationships between values, and customized
lists of selectable values.

To create an XML wizard, you first need an example XML file, that you can use as
a template for the output the wizard will generate. Once you have the example XML
file, open it in the SmartGuide Customizer for XML, and begin working with its
elements.

To create an XML wizard, you can follow these steps:

1. “Start the SmartGuide Customizer for XML” on page 234

2. “Define XML Wizard Macros” on page 235

© Copyright IBM Corp. 1997, 1998 233

3. “Customize Value Lists in an XML Wizard” on page 237

4. “Derive Values in an XML Wizard” on page 237

5. “Propagate Values in an XML Wizard” on page 239

6. “Constrain Values in an XML Wizard” on page 240

7. “Define the Layout of an XML Wizard” on page 242

8. “Test an XML Wizard” on page 243

Once you have created the XML wizard, you can run it to produce new XML files
based on your original template.

You can work with existing XML wizards in the following ways:

v “Run an XML Wizard” on page 243

v “Edit an XML Wizard” on page 244

v “Distribute an XML Wizard” on page 245

“Chapter 9. XML Wizards” on page 233
“Model Interchange with XML” on page 203

“Export XML” on page 224

Start the SmartGuide Customizer for XML

You can use the SmartGuide Customizer for XML to build an XML wizard, or
SmartGuide, for creating XML documents.

Before you start the Customizer, you should have a sample of the XML document
type you want your XML wizard to create. You will use this sample as a template,
which the XML wizard’s output will be based on.

To start the Customizer, follow these steps:

1. Locate or create the sample XML file you want to start with. The sample file
must include its associated XML DTD, or point to a place where the DTD is
available.

2. Run the SmartGuide Customizer. From the command line, type the command:
xmlcustm

3. In the Customizer, click File - Open and select the example XML file.

The Customizer parses the XML document, and displays its content as a tree of
element nodes in the left-hand pane.

You are now ready to begin identifying the elements your XML wizard will work with.

“Chapter 9. XML Wizards” on page 233

“Create an XML Wizard” on page 233
“Define XML Wizard Macros” on page 235

234 Application Development Tools Guide

Define XML Wizard Macros

When you load an XML file in the SmartGuide Customizer, you see the structure of
the document displayed in a tree view in the left-hand pane of the tool. This
structure contains two types of node:

v Container element nodes
These are XML elements that organize sub-elements with content, or have
attributes with content, but do not have their own content aside from this.

v Element content or attribute nodes
These are either the content of an XML element, or the value of an element
attribute. They appear under a container element. Content nodes are labeled as
Text in the tree view. Content nodes only appear when there is actual content in
the sample XML file; if the element in the sample file has no content, then it does
not have a content node in the SmartGuide Customizer.

When you click on a container element, the right-hand pane enables settings for
you to define a wizard page for that element’s contents. By default, none of the
container elements have wizard pages associated with them.

You can also select whether the element structure is repeatable. If you check the
Repeatable option, then the user will be able to add multiple instances of the
selected element, using a tree view control on the wizard page. Each instance the
user adds will have the editable properties you set for the element’s content or
attributes.

When you click on an element’s content or attribute, the right-hand pane enables
settings for you to make the content or attribute a macro. When you set an
element’s content or attribute to be a macro, its value becomes part of the wizard’s
XML script.

Macros are also automatically defined when you create a derivation or propagation
relationship between elements.

To define an element’s content or attribute as a simple wizard macro (without
derivation or propagation), follow these steps:

1. In the left-hand pane, click on a content or attribute node. Its settings appear in
the right-hand pane.

2. From the Macro pulldown, select one of the following:

v None
All settings for the content or attribute are ignored, and the original value from
the source XML file is used instead.

v Hidden
The content or attribute value will not appear in the wizard interface, but will
be used internally by the wizard (for example, it might have a derived value).

v Editable
The content or attribute value appears in the wizard interface, and is editable
by the wizard user.

v Read-only
The content or attribute value appears in the wizard interface, but is not
editable by the wizard user.

3. Type a label for the content or attribute in the Label field. If you are creating an
Editable or Read-only macro, this label appears in the wizard interface as the
label for the associated value (for example, Name:).

Chapter 9. XML Wizards 235

4. Type a default value for the content or attribute in the Default field’s Value
section. If you do not change the default value, the value from the original
sample file is used.

If the definition for the element or attribute in the XML DTD prescribes a list of
valid values, then the Value section becomes a drop-down list which you can
select valid values from. If the macro type is Editable , then the wizard user will
be presented with this list as well. You can customize the terms used in the list
(but should not change the underlying values). Click Values to customize the
terms for the wizard user, as described in the customizing value lists task.

Even if the definition for the element or attribute allows any content type, you
can limit the user’s choices to a set of values that make sense for the wizard’s
intended use. If the macro type is Editable , the user will be presented with a
drop-down list that contains only the values you specify. You can create or
customize the value list the user sees by clicking Values , as described in the
customizing value lists task.

Ignore the prefix and suffix sections: they are for use when you derive or
propagate a value, as described in the derivation and propagation tasks.

If the macro type is Hidden or Read-only , then this value is always applied in
the wizard’s output.

If the macro type is Editable , then it appears in the wizard interface as a
default, and can by typed over by the wizard user.

5. If the macro type is Editable , select the constraint (if any) you want to apply to
the user’s input. You can select from the following values:

v NoSpace

v C++

v CORBA

v SQL

v LongFile

v File83

v File8

v Any

v Action

You can also define your own constraints, as described in the constraining
values task.

6. If the macro type is Editable , type a brief description of the element content or
attribute in the Fly-Over Help field. This description will appear when the wizard
user moves the mouse pointer over the field.

“Chapter 9. XML Wizards” on page 233

“Create an XML Wizard” on page 233
“Customize Value Lists in an XML Wizard” on page 237
“Derive Values in an XML Wizard” on page 237
“Propagate Values in an XML Wizard” on page 239
“Constrain Values in an XML Wizard” on page 240

236 Application Development Tools Guide

Customize Value Lists in an XML Wizard

When you define a macro of type Editable for an element content or attribute, the
wizard user will be able to enter a value for that content or attribute in the wizard.
You can limit the user’s choices to a set of values that make sense for the wizard’s
intended use. These values will be displayed in a drop-down list in the wizard
interface.

If an element content or attribute already has a set of acceptable values
enumerated in the DTD, the SmartGuide Customizer for XML displays them in a
drop-down list by default. You can customize the terms used in the list to make
them more descriptive for your wizard users, but should not change the underlying
values; otherwise the XML wizard will generate XML that is not valid.

To create or customize a value list, follow these steps:

1. In the SmartGuide Customizer tree view, click on the element’s content or
attribute whose value list you want to customize.

In the right-hand pane, the properties of the selected node appear. The Default
field’s Value section should be a drop-down list. If the section is an entry field
(no drop-down arrow), then the content or attribute does not have a list of
acceptable values in the XML DTD, and there is no value selection list to
customize.

2. Click the Values button. The Customize Value List dialog opens.

The existing value appears in the list as the default. Any additional valid values
defined in the DTD appear as well.

3. If the DTD defines a list of valid values, you can change the terms used in the
list, or remove terms from the list, but should not change the underlying values
or add new values that are not compliant with the DTD definition.

4. If the DTD does not define a list of valid values, you can change or add new
values, and customize the terminology, as required.

5. Select which term you want to be selected by default.

6. Click OK. The Value section of the Default field becomes a drop-down list, if it
wasn’t already.

When you create the XML wizard, the wizard user will be able to select a value for
this element content or attribute from the list you created. The user will see the
terms you specified, which will map to the underlying values according to the
mapping you created.

“Chapter 9. XML Wizards” on page 233

“Create an XML Wizard” on page 233
“Define XML Wizard Macros” on page 235
“Constrain Values in an XML Wizard” on page 240

Derive Values in an XML Wizard

When you create an XML wizard with the SmartGuide Customizer for XML, you can
derive the value for one element’s content or attribute from the value given for
another element’s content or attribute, rather than identifying the values separately.

Chapter 9. XML Wizards 237

For example, you could make the first value editable, and then the second, derived
value be a simple reflection of what the user enters for the first value, with the
addition of a prefix or suffix.

This task deals with creating a derivation relationship, starting with the derived
element value and specifying what its source should be. You can also work in the
other direction to create a propagation relationship, starting with an existing value
and propagating it to a number of deriving elements.

There are two ways you can create a derivation relationship:

v Using the implicit derivation rules in your XML sample document, based on the
comparison of content strings in the different elements.

v Making an explicit association, regardless of the content strings in the sample
document.

To create a derivation relationship based on the existing content of the sample
document, follow these steps:

1. Select the element content or attribute for which you want to specify a source.

2. In the Default field’s Value section, type the substring of its value that was
derived, in the original XML file.

For example, if you know that the attribute’s current value PersonBO is derived
from another attribute’s value Person, then decompose the value into Value of
Person and suffix of BO. You can then search to find all other attributes or
element content with the value Person, and select one of them as the source to
be derived from.

3. In the toolbar, click the Derive button. A Derive Value dialog appears, and
highlights the first node in the tree view that has the value you listed.

4. Click Find Next or Find Previous to navigate through all the nodes in the tree
that have the listed value, and are valid sources for a derivation relationship.

5. When you have found the node you want to derive from, click the Derive From
button.

The derivation relationship is created. The Derived value option is checked,
and the selected source node is marked as a macro. The Default field’s Value
section is greyed out, to prevent you from editing the derived value.

6. Mark the content or attribute as a macro (Hidden , Editable , or Read-only). The
relationship will be implemented in the XML wizard.

To create a derivation relationship regardless of existing content, follow these steps:

1. In the tree view, locate the element content or attribute that you want to specify
as derived.

2. From the pop-up menu of the node, click Derive Value From .

A Derivation Tree appears. You can select any node in the tree as the source to
derive from. You should ensure that the node you select to derive from has a
value associated with it, and that the value is of an appropriate type to act as
the source for the deriving value.

3. Select the node you want to derive from.

4. Click OK.

The derivation relationship is created. The Derived value option is checked,
and the selected source node is marked as a macro. The Default field’s Value
section is greyed out, to prevent you from editing the derived value.

5. Fill in any prefix or suffix that you want to apply to the derived value.

238 Application Development Tools Guide

6. Mark the content or attribute as a macro (Hidden , Editable , or Read-only). The
relationship will be implemented in the XML wizard.

“Chapter 9. XML Wizards” on page 233

“Create an XML Wizard” on page 233
“Define XML Wizard Macros” on page 235
“Propagate Values in an XML Wizard”

Propagate Values in an XML Wizard

When you create an XML wizard with the SmartGuide Customizer for XML, you can
derive the value for one element from the value given for another element, rather
than identifying the values separately. In other words, you can base the value for an
element content or attribute on the value given for another element’s content or
attribute within the same XML document. For example, you could make the first
value editable, and then the second, derived value be a simple reflection of what
the user enters for the first value, with the addition of a prefix or suffix.

This task deals with creating a propagation relationship, starting with the source
content or attribute value and specifying what other values are derived from it. You
can also work in the other direction to create a derivation relationship, starting with
derived values and specifying where the value should be derived from.

There are two ways you can create a propagation relationship:

v Using the implicit propagation rules in your XML sample document, based on the
comparison of content strings in the different elements.

v Making an explicit association, regardless of the content strings in the sample
document.

To create a propagation relationship based on the existing content of the sample
document, follow these steps:

1. Select the element content or attribute whose value you want to propagate.

2. In the toolbar, click the Propagate button. A Propagate Value dialog appears,
and highlights the first node in the tree view that has the selected value.

For example, if the current value is Person, then you can search through all
other nodes whose value includes that substring (PersonBO, PersonDOImpl,
iPersonPO, and so on).

3. Click Find Next or Find Previous to navigate through all the nodes in the tree
that have the listed value, and are valid targets for a propagation relationship.

4. When you have found a node you want to propagate to, click the Propagate To
button.

A propagation relationship is created. The selected target’s Derived value
option is checked, and the source node is marked as a macro. The selected
target’s Default field’s Value section is greyed out, to prevent you from editing
the derived value.

The Propagate Value dialog remains open, for you to select additional nodes to
propagate to.

5. When you have finished propagating values, click Cancel to close the dialog.

6. Edit each propagation target:

Chapter 9. XML Wizards 239

a. Fill in any prefix or suffix that you want to apply to the derived value.

b. Mark the target node as a macro (Hidden , Editable , or Read-only). The
relationship will be implemented in the XML wizard.

To create a propagation relationship regardless of existing content, follow these
steps:

1. In the tree view, locate the element content or attribute whose value you want to
propagate.

2. From the pop-up menu of the node, click Propagate Value To .

A Propagation Tree appears. You can select any nodes in the tree as targets to
propagate values to. You should ensure that the nodes you select to propagate
to have values associated with them, and that the values are of an appropriate
type to act as the target for your source value.

3. Select the nodes you want to propagate to.

4. Click OK.

The propagation relationships are created. The selected targets’ Derived value
options are checked, and the source node is marked as a macro. The selected
targets’ Default fields’ Value sections are greyed out, to prevent you from
editing the derived value.

5. Edit each propagation target:

a. Fill in any prefix or suffix that you want to apply to the derived value.

b. Mark the target node as a macro (Hidden , Editable , or Read-only). The
relationship will be implemented in the XML wizard.

“Chapter 9. XML Wizards” on page 233

“Create an XML Wizard” on page 233
“Define XML Wizard Macros” on page 235
“Derive Values in an XML Wizard” on page 237

Constrain Values in an XML Wizard

When you define an XML wizard macro as Editable in the SmartGuide Customizer
for XML, you can also select a constraint to apply to it. This will prevent the wizard
user from entering a value outside the selected constraint.

The following constraints are provided by default:

v NoSpace

v C++

v CORBA

v SQL

v LongFile

v File83

v File8

v Any

v Action

You can provide your own constraint by creating a Java class that implements the
Constraint interface, provided with the SmartGuide Customizer for XML. To apply

240 Application Development Tools Guide

the constraint, select the Actions option in the Constraints field, and then type
over the selection with the name of the class. When the XML wizard runs, it will
look for a Java class with that name, and call its test() function with the value the
user entered as a parameter.

“Chapter 9. XML Wizards” on page 233

“Create an XML Wizard” on page 233
“Define XML Wizard Macros” on page 235
“Customize Value Lists in an XML Wizard” on page 237

XML Wizard Constraints

When you create a wizard, or SmartGuide, with the SmartGuide Customizer for
XML, you set which elements will be editable in the wizard. These elements are
exposed in the wizard as fields, in which the wizard user can enter values.

When you set the element as editable, you can also set constraints that will be
applied to the field, to limit the user to certain value types or formats.

You can set one of the following constraints:

v NoSpace
No spaces are allowed in the value.

v C++
The value must be a valid C++ type.

v CORBA
The value must be a valid CORBA type.

v SQL
The value must be a valid SQL type.

v LongFile
The value must be a valid file name, for a system that supports long file names.

v File83
The value must be a valid file name, for systems that have a maximum file name
length of 8, with a maximum file extension length of 3.

v File8
The value must be a valid file name, for systems that have a maximum file name
length of 8, and the value must not include a file extension.

v Any
There are no constraints on the value the user enters.

v Action
Replace the selection with the name of a Java class that provides a constraint
you defined. The class must implement the Constraint interface, provided with
the SmartGuide Customizer for XML. When the XML wizard runs, it will look for a
Java class with that name, and call its test() function with the value the user
entered as a parameter.

“Chapter 9. XML Wizards” on page 233

“Create an XML Wizard” on page 233

Chapter 9. XML Wizards 241

“Define XML Wizard Macros” on page 235
“Constrain Values in an XML Wizard” on page 240

Define the Layout of an XML Wizard

The XML wizard you create, using the SmartGuide Customizer for XML, will walk
through all the macros you identify, displaying entry fields or drop-down lists for
macros that are Editable and displaying read-only text for macros that are
Read-only .

Macros are generally grouped by the element that contains them. For each element
that contains macros, you can select whether to start a new page for the contained
and any subsequent macros.

To define an XML wizard page, follow these steps:

1. In the SmartGuide Customizer tree view, click on the element you want to
define a page for.

2. In the properties pane, select whether the element is Repeatable .

If you make an element repeatable, then the wizard will display a tree view for
the element, to which the user can add instances of the element. Each element
instance will have its own set of values, as defined in the SmartGuide
Customizer. Values marked as Editable are editable by the user, on a
per-instance basis.

3. In the properties pane, click the Start new page option.

The values of the current element will now be on a new page. Values of
subsequent elements will also appear on the current page, until the next
element defined as the start of a page.

Generally, if you make an element Repeatable , it should have its own page. In
other words, it should have the Start new page option checked, and the next
element that contains Editable or Read-only macros should also have the Start
new page option checked.

4. Type a title for the new page in the Title field.

5. Type a description for the new page in the Description field. The description
appears directly below the title, and above any editing controls for the element
contents and attributes on the page.

6. Type a URL for an HTML file that provides help for the page in the Help URL
field. The URL can be absolute (for example,
http://mycompany.intranet/product/wizard1/NamePage.html) or relative to the
location of the wizard macro script (for example, help/NamePage.html). This
URL will be associated with the Help button on the wizard page, and the HTML
file will be loaded in the user’s default web browser when the user clicks Help .

Once you have defined the layout, you can view the results from within the
SmartGuide Customizer by testing the XML wizard.

“Chapter 9. XML Wizards” on page 233

“Create an XML Wizard” on page 233
“Define XML Wizard Macros” on page 235
“Test an XML Wizard” on page 243

242 Application Development Tools Guide

Test an XML Wizard

Once you have selected the elements you want represented in the XML wizard, and
customized the XML wizard’s layout, you can save the XML macro file for the
wizard, and test it through the SmartGuide Customizer’s interface.

To generate the XML wizard script, follow these steps:

1. Select File - Save .

2. Select a location in which to save the file.

3. Type the name of the file as name.xml.

4. Save the file.

Once you have generated the script, and before you use it to create new files, you
can test it from within the SmartGuide Customizer. To test the script, follow these
steps:

1. Select File - Test .

2. Run through the wizard pages, and review the result of your layout selections in
the SmartGuide Customizer.

3. Click Finish .

You are prompted for the location of the original XML file (on which the wizard is
based), and a path and file name for the resulting wizard-generated XML file.

4. Provide the names and click Finish , or click Cancel to return to the SmartGuide
Customizer without saving the results of your test.

You can also run the wizard script from the command line, by running the
SmartGuide Launcher for XML (type xmllaunch on the command line).

“Chapter 9. XML Wizards” on page 233

“Create an XML Wizard” on page 233
“Define XML Wizard Macros” on page 235
“Define the Layout of an XML Wizard” on page 242
“Run an XML Wizard”

Run an XML Wizard

Once you have created an XML wizard script in the SmartGuide Customizer for
XML, you can run the wizard using the SmartGuide Launcher for XML, and use the
wizard to create new XML documents.

In order to run an XML wizard, you need the following:

v The XML wizard script, generated by the SmartGuide Customizer for XML.

v Any help files for the wizard script, if they are linked using a relative path (rather
than, for example, an http address on your intranet).

v The original XML file on which the wizard script is based.

v The DTD for the original XML file, either contained in, or referenced by, the
original file. If the DTD is referenced using a relative path, the path is resolved
relative to the current directory (the directory from which the SmartGuide
Launcher tool is run).

Chapter 9. XML Wizards 243

v Any classes that provide customized input constraints.

v The SmartGuide Launcher tool, which runs the script.

To run an XML wizard, follow these steps:

1. On the command line, enter the following command:

xmllaunch

The SmartGuide Launcher wizard opens.

2. Type the name of the wizard script you want to run.

3. Click Finish .

The XML wizard opens.

4. In the XML wizard, follow the prompts to add elements and edit element values.
Fly-over help, and HTML help for each page, are available if they were defined
in the SmartGuide Customizer.

5. Click Finish .

You are prompted for the location of the original file on which the script is
based, and a location in which to save the new document generated by the
wizard.

6. Provide the location of the original source XML file.

7. Provide a name and path in which to save the new XML document, which is
based on that original.

8. Click Finish .

The XML file is created, with the name and path you specified.

“Chapter 9. XML Wizards” on page 233
“Model Interchange with XML” on page 203

“Import XML” on page 225
“Create an XML Wizard” on page 233
“Edit an XML Wizard”
“Distribute an XML Wizard” on page 245

Edit an XML Wizard

You can customize an XML wizard by loading its XML script file into the SmartGuide
Customizer for XML, selecting elements to expose in the wizard interface, setting
how they will be exposed, and then re-generating the XML wizard script.

To open an existing XML wizard script in the SmartGuide Customizer, follow these
steps:

1. Run the SmartGuide Customizer. From the command line, type the command:
xmlcust

2. Open the script file in the SmartGuide Customizer. Click File - Open and select
the file.

The SmartGuide Customizer recognizes the XML file as a script or macro file,
and displays it in terms of its original source document structure (rather than
interpreting the contents of the file literally), with the macros applied as a set of
modifications and selections.

244 Application Development Tools Guide

3. Edit the macros, and create new ones, in the same you would when creating a
new XML wizard.

4. Click File - Save to save the XML script with your changes applied.

“Chapter 9. XML Wizards” on page 233

“Create an XML Wizard” on page 233
“Run an XML Wizard” on page 243

Distribute an XML Wizard

Once you have created and tested the XML wizard, you can package it for use by
others.

Each package should include the following:

v The XML wizard script, generated by the SmartGuide Customizer for XML.

v Any help files for the wizard script, if you linked to the files using a relative path
(rather than, for example, an http address on your intranet).

v The original XML file on which the wizard script is based.

v The DTD for the original XML file, either contained in, or referenced by, the
original file. If the DTD is referenced using a relative path, the path is resolved
relative to the current directory (the directory from which the SmartGuide
Launcher tool is run).

v Any classes you defined to provide customized input constraints.

v The SmartGuide Launcher tool, which runs the script.

The relative paths from the wizard script’s location to the original XML file and its
DTD should be preserved in the package.

“Chapter 9. XML Wizards” on page 233

“Create an XML Wizard” on page 233
“Constrain Values in an XML Wizard” on page 240
“Test an XML Wizard” on page 243
“Run an XML Wizard” on page 243

Chapter 9. XML Wizards 245

246 Application Development Tools Guide

Chapter 10. Object Development Tasks

Work with Attributes

Component attributes are defined in the business object interface. You can also
define attributes for specific component objects (business object implementations,
data object interfaces, data object implementations).

The get and set methods for component attributes are defined in the business
object implementation and data object implementation. The mapping between
attributes and datastores is accomplished using special framework methods in the
data object and persistent objects.

The following tasks deal with attributes:

v “Add an Attribute”

v “Edit an Attribute” on page 248

v “Map Data Object Attributes to Persistent Object Attributes” on page 256

v “Delete an Attribute” on page 249

“Attributes” on page 26

“Work with Methods ” on page 267

Add an Attribute

You can explicitly define attributes in the business object interface, or in data object
interfaces that are not associated with a business object. You can also add
implementation-only attributes to a business object implementation or data object
implementation. Implementation-only attributes are not exposed in the component’s
managed object.

When you add objects from an interface, any elements necessary to support the
interface’s attributes are added automatically. When you add a business object
implementation and a data object interface in a single step, you do not need to
define the data object attributes separately: you can select the data object attributes
from a list of the existing business object attributes.

To define new attributes in an existing component, add them in the business object
interface, edit the key and copy helper if you want the attribute to be used in those
objects, and then edit the business object implementation to make it part of the data
object. The changes are applied automatically to the implementations.

To add an attribute to an existing interface, follow these steps:

1. From the interface’s pop-up menu, click Properties .

2. In the interface’s wizard, click the title bar and turn to the Attributes page.

3. From the pop-up menu of the Attributes folder on that page, click Add .

4. Define the attribute.

5. Click Refresh . The attribute is added to the Attributes folder.

6. Click Finish .

© Copyright IBM Corp. 1997, 1998 247

To make the new attribute part of an associated data object, follow these steps:

1. From the business object implementation’s pop-up menu, click Properties .

2. In the implementation’s wizard, click the title bar and turn to the Data Object
Interface page.

3. Move the attribute from the Business Object Attributes list to the State Data list.

4. Click Finish . The attribute is added to the data object, including its data object
implementation.

If appropriate, you can also edit the key and copy helper associated with the
interface, and add the new attribute to them.

“Attributes” on page 26

“Work with Attributes” on page 247
“Edit an Attribute”
“Edit a Business Object Interface” on page 290
“Edit a Data Object Interface” on page 309

Edit an Attribute

When you edit attributes in an existing component, you must edit them in the
business object interface. The change is automatically applied to the other objects
in the component.

You can also edit an attribute in a data object interface, if it is not yet connected to
a business object implementation.

To edit an attribute, follow these steps:

1. From the interface’s pop-up menu, click Properties .

2. In the interface’s wizard, click the title bar and turn to the Attributes page.

3. Select an existing attribute under the Attributes folder.

4. Edit the properties of the attribute.

5. Click Refresh . The changes are applied.

6. Click Finish .

The change is automatically applied to the equivalent attribute in any related key,
copy helper, implementation, or data objects.

“Attributes” on page 26

“Work with Attributes” on page 247
“Delete an Attribute” on page 249
“Edit a Business Object Interface” on page 290
“Edit a Data Object Interface” on page 309

248 Application Development Tools Guide

Delete an Attribute

When you delete attributes from a component, you must delete them in the
business object interface. References to the attribute in the rest of the component,
and in other components will be automatically removed.

You can also delete an attribute from a data object interface, if it is not yet
connected to a business object implementation.

To delete an attribute, follow these steps:

1. From the interface’s pop-up menu, click Properties .

2. In the interface’s wizard, click the title bar and turn to the Attributes page.

3. Select an existing attribute under the Attributes folder.

4. From the attribute’s pop-up menu, click Delete . The attribute is removed.

5. Click Finish .

“Attributes” on page 26

“Work with Attributes” on page 247
“Edit an Attribute” on page 248
“Edit a Business Object Interface” on page 290
“Edit a Data Object Interface” on page 309

Map a Data Object to a PA Persistent Object

Mapping a data object to a persistent object consists of mapping of attributes and
methods from one object to the other. Mapping of attributes and methods is
required to define the bonding between the objects. A data object attribute can be
mapped to one or more persistent object attributes and each special framework
method of the data object can be mapped to one or more persistent object
methods.

Restrictions:

v You cannot map multiple data object attributes to the same persistent object
attribute.

v When you map a data object to multiple persistent objects, you must map each
key attribute of the data object directly to each of the key attributes of the
different persistent objects.

These are the preliminary steps you must follow before you can map a data object
to a persistent object:

1. Create a PA schema and its associated PA persistent object by importing a PA
bean.

2. Add a customized PA persistent object to the PA schema if you do not want to
use the one Object Builder provides.

3. Add a data object implementation (The environment for the implementation
should be Procedural Adaptors .)

Note the following points:

Chapter 10. Object Development Tasks 249

v To map a data object to a persistent object, there must be an association
between the two objects, which you specify on the Associated Persistent Objects
Page of the Data Object Implementation wizard.

v As soon as you associate a persistent object with the data object, the Attributes
Mapping Page and the Methods Mapping Page are dynamically added to the
wizard.

To define the mapping between the attributes of the data object and the persistent
object, follow these steps:

1. If you are in the process of defining the data object implementation, proceed
with step 2. If you have already defined the data object implementation, from
the data object implementation’s pop-up menu, select Properties . The Data
Object Implementation wizard opens.

2. Turn to the Attributes Mapping Page. Here, you can map the data object
interface attributes to the attributes of the persistent object.

You can map a data object attribute to a persistent object attribute in one of the
following ways:

v Using the primitive pattern

v Using the exploded mapping pattern (for structures, which are complex attributes)

v Using a foreign key

v Using a mapping helper

To define the mapping between the methods of the data object and the persistent
object, follow these steps:

1. If you are in the process of defining the data object implementation, proceed
with step 2. If you have already defined the data object implementation, from
the data object implementation’s pop-up menu, select Properties . The Data
Object Implementation wizard opens.

2. Turn to the Methods Mapping Page. When you define the mapping between
methods, you define the processing order of the persistent object methods that
you associate with the data object’s special framework methods insert(),
update(), retrieve(), del(). These persistent object methods act directly on
elements of transaction logic in the legacy business applications.

3. The methods that you defined for the data object appear in the User-Defined
Methods folder. You can map each of them to a push-down method of the PA
persistent object.

“Data Object” on page 18
“Persistent Object” on page 19
“Special Framework Methods” on page 24
“User-Defined Methods” on page 23
“Push-Down Methods” on page 25

“Add a Data Object Implementation” on page 299
“Work with PA Schemas - Overview” on page 337
“Map Data Object Attributes to Persistent Object Attributes” on page 256
“Create a Relationship” on page 129
“Work with Methods ” on page 267
“Use Push-Down Methods with PA Persistent Objects” on page 274

250 Application Development Tools Guide

“DB2 Data Type Mappings” on page 110
“Oracle Data Type Mappings” on page 113

Map a Data Object to a DB Persistent Object

There are certain stages in development in which you can map a data object to a
persistent object:

v When you associate a persistent object in the model with the data object
implementation you are creating (meet-in-the-middle).
Note the following points:

– The persistent object has to use the same type of persistence as the data
object implementation.

– You can customize the mapping of both attributes and special framework
methods of the data object to relevant attributes and methods of the persistent
object. Object Builder does not do the default mapping.

v When you create a persistent object and schema from a data object
implementation (top-down).
Note: In this case you can customize only the mapping of the attributes of the
two objects. The default mapping of attributes is done for you.

v When you create a data object from a persistent object. (bottom-up)
Note: As in the meet-in-the-middle case, you can customize the mapping of both
attributes and special framework methods of the data object to relevant attributes
and methods of the persistent object. In the bottom-up case, however, Object
Builder does the default mappings for you.

Restrictions:

v Multiple data object attributes cannot be mapped to the same persistent object
attribute.

v When you map a data object to multiple persistent objects, you must map each
key attribute of the data object directly to each of the key attributes of the
different persistent objects.

Meet-in-the-middle
These are the preliminary steps you must follow before you can map a data object
to a DB persistent object, when you associate a persistent object in the model to
the data object implementation being created.

1. Create a schema by importing an SQL file.

2. Add a persistent object to the schema.

3. Add a data object implementation. The environment for the implementation must
be BOIM with any key , and the implementation must not be transient (select
any option except the Transient option from the“Form of Persistent Behavior
and Implementation” on page 32 section).

Note the following points:

v To map a data object to a persistent object, there must be an association
between the two objects, which you specify on the Associated Persistent Objects
Page of the Data Object Implementation wizard.

v As soon as you associate a persistent object with the data object, the Attributes
Mapping Page and the Methods Mapping Page are dynamically added to the
wizard.

Chapter 10. Object Development Tasks 251

To define the mapping between the attributes of the data object and the persistent
object, follow these steps:

1. If you are in the process of defining the data object implementation, proceed
with step 2. If you have already defined the data object implementation (you
want to map the persistent object to a data object that exists in the model, and
for which an implementation has been created), from the data object
implementation’s pop-up menu, select Properties . The Data Object
Implementation wizard opens.

2. Go to the Associated Persistent Objects Page. Select the persistent object that
you added to the schema that you just imported.

3. Go to the Attributes Mapping Page. Here, you can map the data object interface
attributes to the attributes of the persistent object.

You can map a data object attribute to a persistent object attribute in one of the
following ways:

v Using the primitive pattern

v Using the exploded mapping pattern (for structures, which are complex attributes)

v Using a foreign key

v Using a mapping helper

To define the mapping between the methods of the data object and the persistent
object, follow these steps:

1. If you are in the process of defining the data object implementation, proceed
with step 2. If you have already defined the data object implementation, from
the data object implementation’s pop-up menu, select Properties . The Data
Object Implementation wizard opens.

2. Turn to the Methods Mapping Page. When you define the mapping between
methods, you actually “Customize Referential Integrity” on page 108: you define
the processing order of the persistent object methods that you associate with
the data object’s special framework methods insert(), update(), retrieve(), del()
and setConnection(). These persistent object methods act directly on data in the
persistent store (tables in the database).

3. Click Finish .

Attention:
If a persistent object is not created from this implementation but was created from
another implementation and is used with this data object (you selected it on
the Associated Persistent Objects Page), you have to define the mapping between
the data object methods and the persistent object methods (on the Methods
Mapping Page) for the special framework methods in the Methods pane to have
implementations. The code for these methods gets modified according to the
changes you make on the Methods Mapping page. Similarly, any changes you
make to the mapping of attributes on the Attributes Mapping page, get recorded in
the code for the attributes’ get and set methods.

Top-down
These are the preliminary steps you must follow before you can map a data object
to a DB persistent object, when you are defining the persistent object and the
schema from the implementation.

1. Add a data object implementation to a data object interface.

2. Indicate that the environment for the implementation is BOIM with any key .

252 Application Development Tools Guide

To define the mapping between the attributes of the data object and the persistent
object, follow these steps:

1. Proceed to add the persistent object and schema from the implementation: from
the pop-up menu of the data object implementation, select the Add Persistent
Object and Schema option.

2. Turn to the Attributes Mapping Page of the Add Persistent Object and Schema
wizard.

3. Change the mapping of the attributes, if you want to. Object Builder provides a
default mapping between the attributes of the data object and those of the
persistent object.

4. Click Finish .

Note: While you are defining the mapping of attributes using the Attributes Mapping
Page, you can also change the defaults that Object Builder sets for both the
persistent object (names and types of persistent object attributes) and the schema
(column names and SQL types for the columns).

Bottom-up
Before you can map a data object to a persistent object in the bottom-up case, you
must follow these steps:

1. Create a schema by importing an SQL file.

2. Add a persistent object to the schema.

To define the mapping between the attributes of the data object and the persistent
object, follow these steps:

1. From the pop-up menu of the persistent object in the DBA-Defined Schemas
folder, select Add Data Object . The Add Data Object wizard opens to the
Names Page, where you can specify the names and the file names for the data
object interface and its implementation which you are adding.

2. Click Next . The Methods Page opens, and you can define methods specific to
the data object.

3. Click Finish .

The data object file, interface, and implementation are created in the User-Defined
Data Objects folder, and are associated with the persistent object. At this point the
default mapping exists between the data object and the persistent object. You can
customize the mapping. Follow these steps:

1. From the data object implementation’s pop-up menu, select Properties . The
Data Object Implementation wizard opens.

2. Go to the Attributes Mapping Page. Here, you can change the mapping between
the attributes of the data object interface and those of the persistent object. You
can use one of the three mapping patterns, and for each pattern, elect whether
to provide a mapping helper or not.

3. Click Next . The Methods Mapping Page opens, and you can override the
default mappings of the special framework methods to the methods of the
persistent object.

4. Click Finish .

Note:
At this point the data object is stand-alone (it is not associated with a business
object). To render the data object functional, you can associate it with an existing
business object: first delete the business object’s associated data object interface,

Chapter 10. Object Development Tasks 253

and then, from its pop-up menu, select Select Data Object Interface , and specify
the one that was created from the persistent object.

“Data Object” on page 18
“Persistent Object” on page 19
“Special Framework Methods” on page 24

“Add a Data Object Implementation” on page 299
“Create a DB Schema by Importing an SQL File” on page 321
“Work with Data Objects - Overview” on page 296
“Work with DB Persistent Objects” on page 313
“Map Data Object Attributes to Persistent Object Attributes” on page 256
“Create a Relationship” on page 129
“Customize Referential Integrity” on page 108
“Work with Methods ” on page 267
“Create a Child Component” on page 136

“DB2 Data Type Mappings” on page 110
“Oracle Data Type Mappings” on page 113

Map a Data Object to the Parent’s Persistent Object

If the data object implementation you are defining top-down inherits from another
(you select a parent implementation for the current one on the Implementation
Inheritance Page of the Data Object Implementation wizard), you can use one of
two patterns (the flattening pattern or the partitioning pattern), to map the data
object to a persistent object.

To map attributes of the data object to attributes of persistent objects that were
created from the parent implementation, you use the flattening pattern. Follow these
steps:

1. Turn to the Attributes Mapping Page.

2. Select an attribute from the Attributes folder.

3. From the pop-up menu of the attribute, select the pattern for the mapping, which
can be one of Primitive , Key Home , or Explode .

4. Click the list button of the Persistent Object Attribute field and select an
attribute that belongs to a persistent object that was created for the parent data
object implementation.

5. Click Finish.

Note the following points:

v From the Attributes folder, you can select attributes that are specific to the data
object implementation (those you define on the Attributes Page of this wizard), as
well as those defined for the business object and specified as data object
attributes (state data) on the Data Object Interface Page of the Business Object
Implementation wizard.

v The Persistent Object Attribute field lists not only the attributes of the parent
implementation’s persistent object, but also those of persistent objects belonging
to the current implementation.

v You cannot select a parent persistent object for the current implementation on the
Associated Persistent Objects Page. That page is used only for associating with

254 Application Development Tools Guide

the implementation persistent objects that are at the same level of hierarchy as
those that would be created directly from this implementation.

“Inheritance” on page 137
“Choosing an Inheritance Pattern for Persistence” on page 140
“Inheritance with a Single Datastore” on page 155
“Complex Attributes and Mapping Patterns” on page 263

“Map a Data Object to a DB Persistent Object” on page 251
Map a Data Object to a PA Persistent Object
“Map Data Object Attributes to Persistent Object Attributes” on page 256
“Inheritance with a Single Datastore - Scenario” on page 158

Map a Data Object to the Child’s Persistent Object

If the data object implementation you are defining top-down inherits from another
(you select a parent implementation for the current one on the Implementation
Inheritance Page of the Data Object Implementation wizard), you can use one of
two patterns (the flattening pattern or the partitioning pattern), to map the data
object to a persistent object.

When you use the partitioning pattern, you can use one of two sub-patterns to map
the data object’s attributes to its DB persistent object’s attributes, depending on the
type of inheritance between the current data object implementation and its parent:

v “Inheritance with Key Duplication” on page 147

v “Inheritance and Overriding in Helper Objects” on page 138

Inheritance with key duplication
When you use this pattern of mapping, you map attributes of the parent
implementation, and all attributes of the current implementation to attributes of the
persistent object that you are creating. Follow these steps:

1. From the pop-up menu of the data object implementation, select Add
Persistent Object and Schema.

2. The Add Persistent Object and Schema opens to the Names Page. Type the
identification for the schema and the persistent object you are defining, on this
page.

3. Click Next. The Attributes Mapping Page opens. Click the Vertical Partitioning
button. Object Builder maps only those inherited attributes of parent
implementation which are key attributes of its business object, as well as all
attributes of the current implementation, to attributes of the new persistent
object. That is, for each of the key attributes of the parent implementation, and
all attributes of the current implementation, it creates corresponding attributes in
the persistent object, and does the mapping.

4. Click Next. The Columns and Attributes Page opens. You can view the definition
of the persistent object attributes and the corresponding schema columns that
are created.

5. Click Next , and add any comments you want to, on the Comments Page. You
can type comments specific to the persistent object, the schema, and each of
the schema columns.

6. Click Finish.

Chapter 10. Object Development Tasks 255

Inheritance with overriding persistence
When you use this pattern of mapping, you map all attributes of the parent
implementation, both key attributes and non-key attributes, and all attributes of the
current implementation to attributes of the persistent object that you are creating.

Follow the same steps as for Inheritance with key duplication , but in step 3,
select the Horizontal Partitioning button instead of the Vertical Partitioning
button.
Object Builder maps all inherited attributes of parent implementation - those which
are key attributes of its business object as well as the non-key attributes, and all
attributes of the current implementation, to attributes of the new persistent object.
That is, for every one of the attributes that are inherited from the parent
implementation, and all attributes of the current implementation, it creates
corresponding attributes in the persistent object, and does the mapping.

Note: You can map a data object to persistent objects using these same patterns
even in the meet-in-the-middle case (on the Attributes Mapping Page of the Data
Object Implementation wizard), when you associate a data object implementation
with one or more persistent objects with matching persistence type that exist in the
model. However, you will have to do the entire mapping on your own.

“Data Object” on page 18
“Persistent Object” on page 19
“Schema” on page 20
“Inheritance” on page 137
“Choosing an Inheritance Pattern for Persistence” on page 140
“Inheritance and Overriding in Helper Objects” on page 138
“Inheritance with Key Duplication” on page 147
“Inheritance with Attributes Duplication” on page 141
“Complex Attributes and Mapping Patterns” on page 263

“Add a Persistent Object and Schema” on page 313
“Map a Data Object to a DB Persistent Object” on page 251
“Map Data Object Attributes to Persistent Object Attributes”
“Create a Child Component” on page 136
“Define a Child with Key Duplication” on page 149
“Inheritance with Key Duplication - Scenario” on page 151
“Define a Child with Attributes Duplication” on page 142
“Inheritance with Attributes Duplication - Scenario” on page 144

Map Data Object Attributes to Persistent Object Attributes

You can map attributes of the data object to those of the persistent object using any
one of the following methods:

v “Map Attributes Using the Default Mapping Pattern” on page 257

v “Map Attributes Using a Key” on page 258

v “Map Attributes Using a Mapping Helper” on page 260

The following tasks deal with mapping of complex attributes of the data object to
persistent object attributes:

v Map Complex Attributes Using the Primitive Pattern

256 Application Development Tools Guide

v “Map Complex Attributes Using the Explode Pattern” on page 265

Restrictions:

v You cannot map multiple data object attributes to the same persistent object
attribute.

v When you map a data object to multiple persistent objects, you must map each
key attribute of the data object directly to each of the key attributes of the
different persistent objects.

“Attributes” on page 26
“Data Object” on page 18
“Persistent Object” on page 19

“Work with Attributes” on page 247
“Work with Data Objects - Overview” on page 296
“Work with DB Persistent Objects” on page 313

Map Attributes Using the Default Mapping Pattern

When you map an attribute of the data object to an attribute of the persistent object
of corresponding type, you do not have to use a mapping helper to provide the
conversion, or use a key as an intermediate object to perform the mapping.

Note: Only attributes that use the default mapping between the data object and the
persistent object will be capable of participating in an object query.

To define a mapping using the default mapping pattern, follow these steps:

1. In the Tasks and Objects pane, select the data object implementation of the
object whose attributes you want to map to the attributes of a persistent object.

Note: The data object implementation can be selected from either the
User-Defined Business Objects folder or the User-Defined Data Objects folder.

2. From the implementation’s pop-up menu, select Properties . The Data Object
Implementation wizard opens to the Name and Platform Page. Click Next , or
click the arrow to the left of the page name, and select Attributes Mapping Page
from the list. The page opens.

Note: You can also define the mapping when you are defining the data object
implementation, if you have selected an associated persistent object to be used
with the data object on the Associated Persistent Objects Page, or when you
add a persistent object and schema from a data object implementation.

3. From the Attributes folder, select the data object attribute that you want to map.

4. From the pop-up menu of the attribute, select Primitive .

Note: When you click Finish , if there are any mappings whose types are not
suitable for the default mapping pattern, you will be notified.

“Data Object” on page 18
“Persistent Object” on page 19
“Mapping Helper” on page 105
Query Service (Advanced Programming Guide)

Chapter 10. Object Development Tasks 257

“Map a Data Object to a DB Persistent Object” on page 251
“Add a Data Object Implementation” on page 299
“Add a Persistent Object and Schema” on page 313

“DB2 Data Type Mappings” on page 110
“Oracle Data Type Mappings” on page 113

Map Attributes Using a Key

When there is a reference between two objects, you can use one or more foreign
keys to define the mapping between the data object and the persistent object by
mapping the key attributes to the persistent object attributes.

Restriction: An attribute that does not use the default mapping between the data
object and the persistent object will not be capable of participating in an object
query.

Note the following points:

v If the persistent object is created from the implementation itself, default attribute
mapping that is done by Object Builder will be using the Key Home pattern, but
you can override this by defining a Primitive mapping.

v You can map an attribute using both the key mapping, and the primitive mapping:
multiple mapping is supported.

To define the mapping, follow these steps:

1. In the Tasks and Objects pane, select the data object implementation of the
object which has a reference to another object (that is, at least one of the
attributes of the data object must have as its type an interface of another object,
and the other object must have at least one key defined).

Note: The data object implementation can be selected from either the
User-Defined Business Objects folder or the User-Defined Data Objects folder.

2. From the implementation’s pop-up menu, select Properties . The Data Object
Implementation wizard opens to the Name and Platform Page. Click Next , or
click the arrow to the left of the page name, and select Attributes Mapping Page
from the list. The page opens.

Note: You can also define the mapping when you are defining the data object
implementation, if you have selected an associated persistent object to be used
with the data object on the Associated Persistent Objects Page, or when you
add a persistent object and schema for the implementation, using the Add
Persistent Object and Schema wizard.

3. From the Attributes folder, select the data object attribute that you want to
map. From its pop-up menu, you have the following choices: Primitive (the
default mapping), Key Home , or Explode (if the data object attribute is a
complex attribute). The choices are not complementary: the mapping can be
done using more than one pattern.

4. Select the Key Home option. The first key defined for the referenced object is
taken as the default, and appears (with its attributes) in the folder, beneath the
data object attribute.

Restrictions:

258 Application Development Tools Guide

v When you create a DB persistent object and DB schema from this data
object implementation, it will not automatically create a foreign key in the DB
schema.

v When you map a data object attribute that is also specified as an attribute of
the key for the corresponding business object, to multiple persistent object
attributes using a mapping helper, all the persistent object attributes that are
mapped must be persistent object keys.

5. You can change the key you want to use to define the mapping: Select the key
in the Attributes folder. Click the list button of the Key field and select a key
from the list of keys defined for the object.

6. Type a name for the home, which is to contain the object that is referenced by
the data object in the Home to Query field.

7. Select a key attribute. (From its pop-up menu, only the Primitive mapping
pattern is available.) The Mapping Helper Class section appears. For each key
attribute, you can optionally specify a mapping helper class and its methods to
define the mapping to a persistent object attribute.

Note the following points:

v All key attributes have to be mapped, and only one mapping is permitted.

v Key attributes can be mapped using only the Primitive pattern: the Key Home
and Explode patterns are not supported.

If you want to provide a mapping helper, follow these steps:

a. Type the name of the mapping helper class in the Class Name field.

b. Type the name of the method that does the mapping from the key attribute
to the persistent object attribute in the Key to PO Method field.

c. Type the name of the method that does the mapping from the persistent
object attribute to the key attribute in the PO to Key Method field.

d. From the key attribute’s pop-up menu, select Add Mapping . The first of the
defined persistent object attributes is mapped to the selected key attribute.
You can change the persistent object attribute you want to use for the
mapping: Click the list button of the Persistent Object Attribute field and
select an attribute from the list of attributes defined for the persistent object.
The Type field shows the type of the selected attribute. For char and string
types, the Size field shows the size of the type.

Note: The mapping from a key attribute to a persistent object attribute is
one-to-one. If the persistent object is associated with a schema, and the schema
has at least one foreign key, the default one-to-one mapping between the key
attributes and the persistent object attributes is provided by Object Builder.

“Data Object” on page 18
“Persistent Object” on page 19
“Mapping Helper” on page 105
Query Service (Advanced Programming Guide)
Object Relationships (Programming Guide)
“Foreign Key Patterns” on page 132
“Home” on page 342

“Add a Data Object Implementation” on page 299
“Add a Persistent Object and Schema” on page 313
“Map a Data Object to a DB Persistent Object” on page 251

Chapter 10. Object Development Tasks 259

“Map Attributes Using a Mapping Helper”
“Work with Customized Homes - Overview” on page 342
“Define a Foreign Key Pattern” on page 133

Map Attributes Using a Mapping Helper

When you map an attribute of the data object to an attribute of the persistent object
of corresponding type, you do not have to use a mapping helper to provide the
conversion. When you map attributes of different types, a mapping helper is
required. The mapping helper is a class that contains mapping methods. Mapping
methods provide the conversion between the attribute types of the two objects. You
can either use the mapping helpers provided by Object Builder, or you can define
your own.

Restriction: An attribute that does not use the default mapping between the data
object and the persistent object will not be capable of participating in an object
query.

Note: Even if you map a single data object attribute to multiple persistent object
attributes of the same type, it is recommended that you use a mapping helper so
that any method that copies the persistent object attributes to the data object
attribute copies all mapped persistent object attributes; not just the last one that is
mapped.

Object Builder provides the default mapping helper (the class and its methods) in
the following cases:

v When a Stringified Object Reference (SOR) of the data object is mapped to a
persistent object attribute of type VARCHAR. To use this mapping helper, you
should have followed these steps:

1. Specified the type of one of the attributes to be a reference to an object on
the Attributes Page of the Business Object Interface wizard. For example, if
you wanted the selected object (say Claim) to reference the Policy object,
you should have selected the type of one of the attributes of the Claim object
to be of type Policy PolicyInterf, where PolicyInterf is the interface defined for
the business object named Policy.

2. Selected Stringified object reference as the handle for storing pointers on
the Behavior Page of the Data Object Implementation wizard.

3. Mapped the data object attribute that is of an object reference type to the
persistent object attribute of type VARCHAR on the Attributes Mapping Page of
the Data Object Implementation wizard.

v When a Stringified Object Reference (SOR) of the data object is mapped to a
persistent object of type char.

To use this mapping helper, you should have followed the same steps as in the
previous case, only replacing the persistent object attribute of type VARCHAR with
one of type char.

v When a data object attribute of type string is mapped to a persistent object
attribute of type VARCHAR (A data object attribute of type string is normally mapped
to a persistent object attribute of C++ string type. For example, a string of length
20 is mapped to char[21].) To use this mapping helper, you should have followed
these steps:

1. Specified one of the attributes of the business object to be of type string on
the Attributes Page of the Business Object Interface wizard.

260 Application Development Tools Guide

2. Changed the SQL type of the column name that corresponds to the business
object attribute of type string, to VARCHAR on the Name and Attributes Page of
the Add Persistent Object and Schema wizard.

3. Mapped the data object attribute that is of type string to the persistent object
attribute of type VARCHAR on the Attributes Mapping Page of the Data Object
Implementation wizard.

v When a data object attribute of type wstring is mapped to a persistent object
attribute of IDL type DB2VARGRAPHIC (persistent object SQL type VARCHAR).
390 When one of the constrain platforms is 390 (you select Platform -
Constrain - 390), wchar and wstring are not available for selection as an
attribute type for your object.

v When a data object attribute of type ByteString is mapped to a persistent object
attribute of type DB2VARCHAR (persistent object SQL type VARCHAR).

v When a data object attribute of type ByteString is mapped to a persistent object
attribute of type char[] (length greater than 0).

You can view the mapping helper information on the Attributes Mapping Page of the
Data Object Implementation wizard when you select the mapped data object
attribute in the folder. The .cpp file generated from the data object implementation
contains the mapping helper file (DB2MappingHelper.hpp) in its include section.

Restrictions:

v Object Builder does not provide the default mapping between complex data types
(any, Object, wchar and wstring and types defined as constructs, which include
typedefs, structures, and unions) and DB2 database types. You must provide
your own helper class for these mappings.

v You cannot use a mapping helper to map many data object attributes to either
one or many persistent object attributes; you can use one to map many data
object attributes to one persistent object attribute.

To map attributes using a mapping helper, follow these steps:

Notes:

v It is recommended that you follow steps 4 through 11 in the sequence laid out.

v If you want to provide your own mapping helper, follow steps 1 through 11.

v If you want to use the mapping helper provided by Object Builder, follow steps 4
through 7.

1. Create (outside Object Builder) a .hpp file, which contains the mapping helper
class.

When you define the mapping helper, follow these rules:

v Ensure that the .cpp and the .hpp files have the same name as the mapping
helper class name.

v Define both the mapping methods: from the persistent object to the data
object, and from the data object to the persistent object, in the mapping
helper class.

v Declare both mapping methods as public members of the class.

v Define both methods as inline methods to avoid linker errors.

v Define both methods as static methods.

v Define the return type of both methods as void.

v Pass the input arguments for both methods by const reference.

Chapter 10. Object Development Tasks 261

v For the persistent object to data object mapping method, use the following
signature:

inline static void PO_to_DO_ mapping_method_name(att1, att2, ...attn,
attribute_of_the_data_object)

where att1, att2,... attn are the persistent object attributes that are mapped
to the data object attribute, and require the mapping helper.

v For the data object to persistent object mapping method, use the following
signature:

inline static void DO_to_PO_
mapping_method_name(attribute_of_the_data_object, att1, att2,..., attn)

where att1, att2,... attn are the persistent object attributes that are mapped
to the data object attribute, and require the mapping helper.>

Note: The mapping helper file can be located in any directory that is in your
include search path.

2. In the Tasks and Objects pane, select the data object implementation of the
object whose attributes you want to map to the attributes of a persistent object.

Note: The data object implementation can be selected from either the
User-Defined Business Objects folder or the User-Defined Data Objects folder.

3. From the implementation’s pop-up menu, select Properties . The Data Object
Implementation wizard opens to the Name and Platform Page. Click Next , or
click the arrow to the left of the page name, and select Attributes Mapping
Page from the list. The page opens.
Note: You can also define the mapping when you are defining the data object
implementation, if you have selected an associated persistent object to be
used with the data object on the Associated Persistent Objects Page.

4. From the Attributes folder, select the data object attribute that you want to
map to the persistent object.

5. From the data object attribute’s pop-up menu, select Mapping .

6. Click the list button of the Persistent Object Attribute field, and select the
attribute of the persistent object that you want to map to this data object
attribute. The persistent object attribute is added to the tree beneath the data
object attribute.

Note: The order in which you map the different persistent object attributes to
the data object attribute must be the same as the order in which they are listed
in the mapping helper method signatures.

7. Select the data object attribute from the folder.

Note: If the mapped attributes meet the conditions for which Object Builder
provides the default mapping helper, the Map using helper class option is
automatically selected and the names of the mapping helper class and
methods are shown in their respective fields. It is recommended that you use
the default mapping helper provided. If you still want to provide your own
mapping helper, follow steps 9 through 11.

8. Specify the mapping pattern: select the Map using helper class option.

9. Type the name of the mapping helper class in the Class Name field.
Note: Object Builder assumes that the name you provide as the class name is
the same as the name of the .hpp file that you include in the file adornment’s
prolog. If the names are not the same, and you have all the mapping helper

262 Application Development Tools Guide

classes in a separate file, you must include this file in the prolog of the data
object implementation’s file adornment, and regenerate. Follow these steps:

a. Click on the prolog or epilog object in the File Adornments folder

b. Type the #include statement at the beginning of the .cpp file in the editor
pane

c. Regenerate the DOImpl_I.cpp file: From the data object implementation’s
pop-up menu, select Generate - Selected - .cpp , or Generate - All .

10. Type the name of the method that does the mapping from the attribute of the
data object to the attributes of the persistent object in the DO to PO Mapping
Method field.

11. Type the name of the method that does the mapping from the attributes of the
persistent object to the attributes of the data object in the PO to DO Mapping
Method field.

Note: Mapping helpers are also used when you map an attribute of the data object
to an attribute of the persistent object using a foreign key. If a key attribute and the
persistent object attribute being mapped are of different types, the mapping helper
includes the methods that map between the key and the persistent object.

“Data Object” on page 18
“Persistent Object” on page 19
“Mapping Helper” on page 105
Query Service (Advanced Programming Guide)

“Add a Data Object Implementation” on page 299
“Add a Persistent Object and Schema” on page 313
“Map a Data Object to a DB Persistent Object” on page 251
Map a Data Object to a PA Persistent Object

“DB2 Data Type Mappings” on page 110
“Oracle Data Type Mappings” on page 113

Complex Attributes and Mapping Patterns

An attribute that is made up of multiple entities is called a complex attribute. For
example, a structure.

Restrictions:

v This release of Object Builder supports only structures (data type struct) as
complex attributes.

v Nested structures are not supported. However, structures whose members are
themselves other structures are supported.

When you make a complex attribute persistent using a relational backend datastore,
you can use the following mapping patterns:

v Primitive

v Explode

Chapter 10. Object Development Tasks 263

Primitive: The structure is streamed out into a single column whose format is
known to the client programmer. That is, you create a single attribute in the
persistent object (and a corresponding column in the associated schema) to support
a complex data object attribute.

Explode: Each of the primitive members of the attribute is mapped to a different
column in the table. This is the same table the data object that contains
the attribute is mapped to. You must select the complex attribute members as
distinct items from which to create a persistent object and a schema.

The members of the complex attribute are exposed on the Attributes Mapping Page
of the Data Object Implementation wizard. You can associate a member of a
complex attribute with one or more persistent object attributes.

“Persistent Object” on page 19
“Schema” on page 20

“Work with DB Persistent Objects” on page 313
“Work with DB Schemas” on page 320
“Add a Data Object Implementation” on page 299
“Map a Data Object to a DB Persistent Object” on page 251
“Edit a DB Schema” on page 329
“Edit a Generated SQL File” on page 331

“DB2 Data Type Mappings” on page 110
“Oracle Data Type Mappings” on page 113

Map Complex Attributes Using the Primitive Pattern

Mapping of a complex attribute using the primitive pattern is similar to mapping an
ordinary attribute of the data object to one in the persistent object.

Note: This release supports only structures (type struct) as complex attributes.

Top-down

1. From the pop-up menu of the data object implementation in either the
User-Defined Business Objects or the User-Defined Data Objects folder, select
Add Persistent Object and Schema.

2. The Add Persistent Object and Schema wizard opens to the Names Page.
Name the persistent object and schema you are adding.

3. Click Next . The Attributes Mapping Page opens. By default, Object Builder
maps all complex data object attributes using the Explode mapping pattern.

4. Delete the default mapping. From the pop-up menu of Explode in the Attributes
folder, select Delete . The exploded form of the mapping is deleted.

5. The pop-up menu of the complex attribute has two options: Primitive and
Explode . Select Primitive . The complex attribute is mapped directly to the
persistent object attribute.

6. Click Finish . A message informs you that the mapping between the complex
attribute of the data object and the persistent object requires a mapping helper.

7. Click No to have the mapping exist in its primitive form, without the mapping
helper.

264 Application Development Tools Guide

When you examine the properties of the persistent object (Properties from the
pop-up menu of the persistent object), you will see that each of the complex
attributes of the data object for which you defined the Primitive mapping is mapped
to just one attribute of the persistent object, and therefore to the corresponding
column in the schema (the backend database table).

Meet-in-the-middle

1. From the pop-up menu of the data object implementation in either the
User-Defined Business Objects or the User-Defined Data Objects folder, select
Properties.

2. As long as the environment for the data object implementation is BOIM with
any key, you can associate persistent objects with the implementation. Click the
arrow to the left of the page name, and select Associated Persistent Objects
Page from the list. The page opens.

3. Add a persistent object instance, and click Next .

4. The Attributes Mapping Page opens. Object Builder does not provide the default
mappings. For each attribute in the Attributes folder, you can provide a mapping.
The simple attributes have only the Primitive mapping option available from
their pop-up menus; the complex attributes have both the Primitive as well as
the Explode mapping options.

5. For each of the complex attributes, select the Primitive mapping pattern. Each
complex attribute is mapped directly to the persistent object attribute.

6. Click Finish. A message informs you that the mapping between the complex
attribute of the data object and the persistent object requires a mapping helper.

7. Click No to have the mapping exist in its primitive form, without the mapping
helper.

Bottom-up
Complex types in database columns are not supported. So, there’s no mapping of
complex attributes in the bottom-up case.

“Persistent Object” on page 19
“Schema” on page 20

“Add a Data Object Implementation” on page 299
“Map a Data Object to a DB Persistent Object” on page 251
“Map Data Object Attributes to Persistent Object Attributes” on page 256

“DB2 Data Type Mappings” on page 110
“Oracle Data Type Mappings” on page 113

Map Complex Attributes Using the Explode Pattern

The Explode pattern is the default mapping pattern provided by Object Builder when
you map a complex attribute of a data object to an attribute of the persistent object.
The complex attribute is exploded into its primitive component data elements and
mapped across a set of columns in a table.

Note: This release supports only structures (type struct) as complex attributes.

Chapter 10. Object Development Tasks 265

To map attributes using the Explode pattern, follow these steps:

1. From the pop-up menu of the data object implementation in either the
User-Defined Business Objects or the User-Defined Data Objects folder, select
Add Persistent Object and Schema.

2. The Add Persistent Object and Schema wizard opens to the Names Page.
Name the persistent object and schema you are adding.

3. Click Next . The Attributes Mapping Page opens. By default, Object Builder
maps all complex data object attributes using the Explode mapping pattern. In
this pattern, each member of the complex attribute is mapped to a different
persistent object attribute that is associated with the same database table.
Note: If you are editing the properties of the data object implementation (that is,
you are redefining the mapping that is to be set up between the data object and
any persistent objects that are to be created later from this data object
implementation), from the pop-up menu of the complex attribute, select
Explode . Then, continue with step 4. In this case, however, those persistent
objects created before you edit the data object implementation retain their
original mapping pattern.

4. Accept the default mapping, and click Finish . You can, however, change the
attributes of the persistent object to which the members of the complex attribute
of the data object are mapped.

When you examine the properties of the persistent object (Properties from the
pop-up menu of the persistent object), you will see that instead of each of the
complex attributes of the data object being mapped to a persistent object attribute,
only the members of the complex attributes are mapped. So, each member of the
data object’s complex attributes has a counterpart in the corresponding database
table.

Note the following points:

v For the Explode mapping, it is not necessary to provide your own implementation
of the mapping helper: you can use the one provided by Object Builder.

v Mapping helpers known to Object Builder are selectable for reuse.

Meet-in-the-middle

1. From the pop-up menu of the data object implementation in either the
User-Defined Business Objects or the User-Defined Data Objects folder, select
Properties.

2. As long as the environment for the data object implementation is BOIM with any
key, you can associate persistent objects with the implementation. Click the
arrow to the left of the page name, and select Associated Persistent Objects
Page from the list.

3. Add a persistent object instance, and click Next .

4. The Attributes Mapping Page opens. Object Builder does not provide the default
mappings. For each attribute in the Attributes folder, you can provide a mapping.
The simple attributes have only the Primitive mapping option available from
their pop-up menus; the complex attributes have both the Primitive as well as
the Explode mapping options.

5. For each of the complex attributes, select the Explode mapping pattern. Each
of the component data elements of the complex attribute is mapped directly to a
different persistent object attribute in the associated schema (table in the
backend store: the database).

6. Click Finish.

266 Application Development Tools Guide

The resulting mapping is the same as in the top-down case.

Bottom-up
Complex types in database columns are not supported. So, there’s no mapping of
complex attributes in the bottom-up case.

“Persistent Object” on page 19
“Schema” on page 20

“Add a Data Object Implementation” on page 299
“Map a Data Object to a DB Persistent Object” on page 251

“DB2 Data Type Mappings” on page 110
“Oracle Data Type Mappings” on page 113

Work with Methods

There are several different kinds of methods in Component Broker: user-defined
methods (methods you define for a component or component object), the get and
set methods automatically generated for attributes you define, framework methods
automatically generated to support the server programming model, and special
framework methods that data objects use to handle persistent data.

For most cases, you only need to provide implementations for user-defined
methods. Default implementations are provided for other methods.

The following tasks deal with methods:

v “Add Code for User-Defined Methods”

v “Edit a User-Defined Method” on page 269

v “Edit Get and Set Methods” on page 270

v “Edit Framework Methods” on page 270

v “Edit Special Framework Methods” on page 271

v “Import Changes to Methods” on page 272

v “Delete a Method” on page 277

“User-Defined Methods” on page 23
“Get and Set Methods” on page 23
“Framework Methods” on page 24
“Special Framework Methods” on page 24
“External Files for Method Bodies” on page 273

“Work with Attributes” on page 247

Add Code for User-Defined Methods

To add code for a method you have defined, follow these steps:

Chapter 10. Object Development Tasks 267

1. In the User-Defined Business Objects folder, find the business object
implementation or data object implementation whose methods you want to
implement (for example, CarPolicyBO).

2. Click on the object. The following folders appear in the Methods List pane:

v User-Defined Methods

v User-Defined Attributes

v Framework Methods

v File Adornments

The User-Defined Methods folder is expanded by default, and under it appear
the methods you have defined for the business object.

3. Click a method.

The signature of the method appears in the editor pane. You can add an
implementation to the signature directly in the editor pane, or you can edit the
properties of the method and get its implementation from elsewhere.

4. From the method’s pop-up menu, click Properties . The Method Implementation
wizard opens to the Implementation Page.

5. Select whether to use the implementation defined in the editor pane, or get the
implementation code for the method from an external file.

If you select to get the information from an external file, you can specify it as a
template file, in which case you can use substitution macros, as defined on the
Template File Macros Page of the wizard.

6. Select whether to have a single implementation for all platforms, or use a
separate implementation for each platform.

If you select to have a different implementation for each platform, then the
implementation you provide in the Source pane will apply only to the current
platform selected in the Platform - View menu. You can switch the view to
provide implementations for each of the platforms you intend to deploy on.

7. Click Finish . The selected behavior will be used the next time code is
generated for the business object implementation.

“User-Defined Methods” on page 23
“Chapter 7. Multi-Platform Development” on page 187
“External Files for Method Bodies” on page 273

“Work with Methods ” on page 267
“Import Changes to Methods” on page 272

Add an Initializer Method

If there is code that you need called when a component is loaded (the equivalent of
a static initializer method in Java), you can put the code in a static method that gets
called by a static attribute. When the component is loaded, the attribute is
initialized, and calls the initializer method.

To add an initializer method, that will contain code to be executed on the loading of
the component, follow these steps:

1. Open the Business Object Implementation wizard (from the implementation’s
pop-up menu, click Properties).

2. Click the title bar and turn to the Methods page.

268 Application Development Tools Guide

3. Add a static method that returns type int.

4. Click the title bar and turn to the Attributes page.

5. Add a static attribute of type int. In the attribute’s initializer field, type a call to
the static method.

6. Click Finish . The wizard closes.

7. In the Tasks and Objects pane, make sure the business object implementation
is in focus.

8. In the Methods pane, expand the User-Defined Methods folder and select the
method you defined. Its skeleton implementation appears in the Source pane.

9. In the Source pane, add to the method body any code you want called during
initialization of the component. As the final step, return some int value to the
calling attribute, to complete the attribute’s initialization.

10. Click File - Save .

“User-Defined Methods” on page 23
“Attributes” on page 26

“Add an Attribute” on page 247
“Add Code for User-Defined Methods” on page 267

Edit a User-Defined Method

To edit the signature of a user-defined method, follow these steps:

1. From the pop-up menu of the business object interface or data object interface
where the method is defined, click Properties to open the Business Object
Interface wizard.

2. Click the title bar and turn to the Methods Page.

3. Select the method under the Methods folder.

4. Make your changes to the method.

5. Click Finish .

You can edit the implementation of a user-defined method directly in the editor
pane. If the editor pane is in read-only mode, then the implementation is being
provided from an external file, as set in the method’s wizard.

To access a method’s wizard, follow these steps:

1. Select the business object implementation or data object implementation that
implements the method.

2. In the Methods pane, select the user-defined method.

3. From the pop-up menu of the method, click Properties to open the Method
Implementation wizard.

4. Make your changes in the wizard and click Finish to apply them.

“User-Defined Methods” on page 23

“Add Code for User-Defined Methods” on page 267
“Import Changes to Methods” on page 272

Chapter 10. Object Development Tasks 269

Edit Get and Set Methods

Get and set methods provide access to attributes defined in a business object
interface or data object interface.

To edit the signature of a get or set method, you must edit the attribute it
represents, in the business object interface or data object interface.

By default, the get and set implementations are read-only. To edit the
implementation of a get or set method (not recommended), follow these steps:

1. Click on the business object implementation or data object implementation in
the Tasks and Objects pane.

2. In the Methods pane, locate the get or set method under the Attributes folder.

3. From the pop-up menu of the attribute, click Properties . The Method
Implementation wizard appears, open to the Implementation Page.

4. Select the check box Method body is the same for all platforms if you plan to
provide your own code for the method body, and you want it to be the same for
all platforms.

5. Click Use the implementation defined in the editor pane .

You could also click Use an external file , and select an external file that
contained the method implementation.

6. Click Finish .

At any time, you can reset the implementation by opening the Method
Implementation wizard and clicking Return to Default . If you want to return to using
only the default, click Use the implementation provided by Object Builder to put
the implementation back into read-only mode.

“Get and Set Methods” on page 23
“Attributes” on page 26

“Work with Methods ” on page 267
“Import Changes to Methods” on page 272
“Edit an Attribute” on page 248

Edit Framework Methods

Framework methods are added to an object by Object Builder. Generally, framework
methods are only called by other framework methods, or by Component Broker
services.

You cannot edit the signature of a framework method. Some methods are added or
deleted based on your selections in the component wizards.

By default, the implementations of framework methods are read-only. To edit the
implementation of a framework method (not recommended), follow these steps:

1. In the Tasks and Objects pane, click on the object whose framework methods
you want to edit.

2. In the Methods pane, locate the framework method under the Framework
Methods folder.

270 Application Development Tools Guide

3. From the pop-up menu of the attribute, click Properties . The Method
Implementation wizard appears, open to the Implementation Page.

4. Click Use the implementation defined in the editor pane .

You could also click Use an external file , and select an external file that
contained the method implementation.

As long as this option is selected, the method’s implementation will be
determined by what is provided in the Source pane. The implementation will not
be automatically updated in response to design changes. The implementation
must be updated by hand.

5. Click Finish .

At any time, you can reset the implementation by opening the Method
Implementation wizard and clicking Return to Default . If you want to return to using
only the default, click Use the implementation provided by Object Builder to put
the implementation back into read-only mode.

The framework methods create, retrieve, update, del, and setConnection are special
framework methods of the data object implementation and persistent object. Unless
you provide your own implementation, the special framework method
implementations are defined based on the mapping of the data object to the
persistent object.

“Framework Methods” on page 24
“Special Framework Methods” on page 24

“Work with Methods ” on page 267
“Import Changes to Methods” on page 272
“Edit Special Framework Methods”

Edit Special Framework Methods

Data objects and persistent objects that access a schema have the special
framework methods insert, update, retrieve, del, and setConnection. The
implementations for these methods are calculated based on the mapping between
the persistent object methods and the data object methods.

By default, the method implementations are read-only in the editor pane. To
override the calculated method implementations in the editor pane, follow these
steps:

1. Locate the method in the Methods pane.

2. From the method’s pop-up menu, click Properties .

3. In the Method Implementation wizard, select where you want to get the
implementation from: the tool-provided implementation, the editor pane, or an
external file.

4. If you select the editor pane as the source, the implementation becomes
editable in the editor pane, and whatever changes you make will be preserved.

Note: You can switch back to the calculated method body at any time, by
changing the setting in the wizard.

For most cases, the tool-provided method bodies should be sufficient. However, if a
persistent object represents a read-only view in the database, you will need to edit

Chapter 10. Object Development Tasks 271

the mappable framework method implementations. Most views are read-only but
some can be updated. The Embedded SQL preprocessor (idatapre) will fail on any
.sqx file generated from an embedded static persistent object, which you create for
a read-only view in the database.

If you detect that a view is read-only (at DLL build time), for each of the framework
methods insert(), update() and del() in the Methods List pane, follow these steps:

1. From the pop-up menu of the method, select Properties. The Method
Implementation wizard opens to the Implementation Page.

2. Select the option Use the implementation defined in the editor pane , and
make sure the method body is empty.

For example,
void insert()
{
}

To change the calculated method body for a special framework method, change the
mapping of persistent object method to data object method in the Data Object
Implementation wizard, Methods Mapping Page.

“Special Framework Methods” on page 24

“Work with Methods ” on page 267
“Import Changes to Methods”
“Customize Referential Integrity” on page 108

Import Changes to Methods

If you make changes to method implementations in the generated source code, you
need to import the changes back into Object Builder, or the changes will be
overwritten the next time you generate code.

When you import edited code, only changes to method implementations are
applied. The import process recognizes method implementations by the comment
block that delimits them:

// Insert method modifications here
...
// End method modifications here

This comment block is inserted by the code generation process. Any changes you
make outside of these generated comment blocks are ignored.

To import code you have edited, follow these steps:

1. From the pop-up menu of either the User-Defined Business Objects folder or
the User-Defined Data Objects folder, click Import - Changes to open the
Import Changes wizard.

2. From the Available files list, select those that contain changes to method
bodies that you want to import.

3. Click >> to move the files to the Files to be imported list.

4. Click Finish . The method body changes are applied.

272 Application Development Tools Guide

5. Make any other changes necessary (for example, if the interface of a method
has changed, you need to change its definition in the Business Object Interface
wizard).

You can also import changes in batch mode, as follows:

1. Close Object Builder (to allow the import process access to the project model).

2. From a command window, type

importimpl -p<project_dir_name> -f<sourcefile1 sourcefile2...>

where project_dir_name is the name of the project directory that contains your
model, and the file names that follow are the business object implementation
files that contain your changes. For example:

importimpl -pF:\MyProject -fClaimBO.cpp AgentBO.java

“Edit a Business Object Implementation” on page 290
“Generate Code” on page 363
“Add Code for User-Defined Methods” on page 267

External Files for Method Bodies

Most of the editing you do in Object Builder is of method bodies. You can either
create a method body in Object Builder using the Source pane editor, or define the
method body in an external file that will get pulled into the generated code for the
object.

You can select to use an external file for a particular method in its Method
Implementation wizard. From a method’s pop-up menu, click Properties to display
the wizard. By default, new external files will be placed in the current project’s
\Model directory. The advantage of using external files is that you can do more work
outside of Object Builder. You can edit the external files with your preferred editor,
and then use the obgen command (with the -change option), outside of Object
Builder, to generate the code for the relevant objects and pull together the code
from the external file.

An alternative to the use of external files is direct editing of method bodies in the
generated source files. While this removes the need to use obgen to pull in your
changes, you do need to remember to import the changes back into Object Builder
before you generate code again, or your changes will get over-written.

Template Files
Another advantage of external files is that you can use the same external file for
multiple methods, by putting macros in the file and identifying the file as a template.
Macros are identified within the file by the delimiter $.

For example, given the following template file:
GenericMethodBody.template
char* str = “This is a method of $classname$”;
cout << str << endl;
return ::CORBA::string_dup (str);

In a method’s wizard, for example the deny() method of a ClaimBO, specify the
external file GenericMethodBody.template, specify that it is a template file, and on
the next page, add a Template File Macro with the name classname and the
substitution value ClaimBO. When you generate the code for ClaimBO, it contains a
method body something like this:

Chapter 10. Object Development Tasks 273

::CORBA::Void ClaimBO_Impl::deny()
{
//Version identifier DCE:F3F30755-6F47-11d2-AF4E-000629B3CFEE:1
// Insert Method modifications here

char* str = “This is a method of ClaimBO”;
cout << str << endl;
return ::CORBA::string_dup (str);

// End Method modifications here
}

“User-Defined Methods” on page 23
“Get and Set Methods” on page 23
“Framework Methods” on page 24
“Special Framework Methods” on page 24
“Push-Down Methods” on page 25

“Import Changes to Methods” on page 272
“Run Object Builder in Batch Mode” on page 11
“Add Code for User-Defined Methods” on page 267

Use Push-Down Methods with PA Persistent Objects

When push-down methods are used to transmit transactional data of existing
applications, they have to be used with PA persistent objects. The method of using
them differs, depending on whether you are mapping a business object to a data
object, or whether you are mapping a data object to a persistent object.

Method 1 (Map a Business Object to a Data Object)

1. Import the PA bean. The PA schema is created in the User-Defined PA
Schemas folder along with the PA persistent object.

2. Add a data object to the persistent object.

3. On the Methods Page of the Add Data Object wizard, define the method debit
(of type long, with parameter amount that maps to the push-down method
associated with the PA persistent object, for example,
iBeCashAcctPAOPO.debit)
Note: The type of the data object method must be the same as the type of the
method defined in the PA bean.

4. Create a business object.

5. At the business object interface level, define method debit (return type void)
with a parameter amount (of type long).
Note: You must define the method signature to match the one you created for
your PA bean.

6. Add an implementation for the business object. Select the option Add or
select one later .

7. From the pop-up menu of the business object implementation, select Select a
Data Object Interface. On the Selection Page, ensure that you select the data
object interface, which was created when you added the data object from the
PA persistent object (BeCashAcctPAODO). The data object interface,
implementation, and the PA persistent object and PA schema are added to the
business object implementation in the User-Defined Business Objects folder.

8. Turn to the Methods Mapping Page. The Business Object Methods folder
shows the method (debit).

274 Application Development Tools Guide

9. Select the method, and from its pop-up menu, select Add. The Data Object
Method field appears.

10. Click the list button, and select the data object method (debit) to be mapped to
the business object method.

11. Click Finish.

Method 2 (Map a Data Object to a Persistent Object)

1. At the business object interface level, define method debit (return type void) with
a parameter amount (of type long)

2. Add an implementation for the business object.

3. On the Data Object Interface Page, specify the attributes of the business object
that are to be data object attributes.

4. Turn to the Data Object Methods Page, and select the methods of the business
object to be pushed down to the data object.

5. Add a data object implementation, selecting Procedural Adaptors for the
implementation.

6. Associate a PA persistent object with the implementation.

7. Turn to the Methods Mapping Page.

8. The method you defined for the data object (debit) appears in the User-Defined
Methods folder, and you can map it to the corresponding persistent object
push-down method.

“Enterprise Access Builder (EAB)” on page 116
“Push-Down Methods” on page 25
“Persistent Object” on page 19
“Data Object” on page 18
Application Adaptor (Programming Guide)

“Map a Business Object to a Data Object” on page 288
Map a Data Object to a PA Persistent Object

Customize Business Object OO-SQL Implementation Methods

If you define a relationship from one business object to another, and you choose to
implement the relationship using OO-SQL queries, which you indicate on the Object
Relationships Page of the Business Object Implementation wizard, you can provide
the OO-SQL code for the list() method of the business object implementation.
Object Builder will not validate the code you provide. Your code will overwrite the
default tool-generated code for this method.

Follow these steps to customize the implementation of the list method:

1. In the Tasks and Objects pane, select the business object implementation for
which you have defined the relationship whose implementation is to use
OO-SQL queries.

2. The User-Defined Relationships folder in the Methods pane shows the
relationship you have defined. Expand the relationship node to view the add, list
and remove methods for the relationship that are being implemented for the
business object implementation.

3. Select the list method.

Chapter 10. Object Development Tasks 275

4. From its pop-up menu, select Properties . The Method Implementation wizard
opens to the Implementation Page.

5. Accept the defaults and click Next to advance to the OO-SQL Customization
Page.

6. Select the Provide your own OO-SQL code check box.

7. The tool-generated code is cleared from the panel, and it becomes editable.
Type in your code for the method and click Finish.

You can view the code you provided in the editor pane, when you select the list
method in the Methods pane.

“Business Object” on page 17
“Relationship Methods” on page 25

“Add a Business Object Implementation and Data Object Interface” on page 284
“Create a Relationship” on page 129

Customize Persistent Object ESQL Framework Methods

You can use the ESQL Customization Page of the Method Implementation wizard to
provide your own embedded SQL code for the special framework methods of any
persistent object in the model that uses embedded SQL.

Note the following points:

v The persistent object’s special framework methods that you can customize are
the insert(), update(), retrieve(), and del() methods; not the setConnection()
method.

v Object Builder will not validate the code you provide. Your code will overwrite the
default tool-generated code for this method.

Follow these steps to customize the ESQL clauses for the special framework
methods of the persistent object:

1. Select the persistent object that uses embedded SQL in the Tasks and Objects
pane. (You can select it from any one of these folders: User-Defined Business
Objects folder, User-Defined Data Objects folder, DBA-Defined Schemas folder.)
You will see the persistent object’s methods in the Methods pane.

2. Select the persistent object’s special framework method that you want to
customize from the Framework Methods folder.

3. From its pop-up menu, select Properties . The Method Implementation wizard
opens to the Implementation Page.

4. Ensure that the Use the implementation provided by Object Builder option is
selected.

5. Click Next , or click the arrow to the left of the page name, and select ESQL
Customization Page from the list. The page opens.

6. Select the check box Provide your own ESQL code. This makes the panel
that shows the code for the method editable, and you can either edit the code
provided by Object Builder, or type in entirely different code for the method.
Object Builder will not validate the code you provide.

7. Click Finish .

276 Application Development Tools Guide

Note: You can overwrite the code you provide with Object Builder’s code for the
method by clearing the Provide your own ESQL code check box.

“Persistent Object” on page 19
“Special Framework Methods” on page 24

“Work with Methods ” on page 267

Delete a Method

To delete a user-defined method, follow these steps:

1. In the User-Defined Business Objects folder, locate the object (business object
interface, data object interface, business object implementation, or data object
implementation) that defines the method.

2. From the pop-up menu of the interface, click Properties to open the object’s
wizard.

3. Click the title bar and turn to the Methods Page.

4. Locate the method under the Methods folder.

5. From the pop-up menu of the method, click Delete .

6. Click Finish .

If the method was defined in an interface, then it is automatically from any
associated implementations.

Get and set methods are deleted automatically when the attribute they represent is
deleted.

“User-Defined Methods” on page 23

“Work with Methods ” on page 267

Work with Constructs

Constructs (constants, enumerations, exceptions, typedefs, structures, and unions)
can be defined at the file, module, or interface level of a business object interface
or data object interface, or at the file or module level of a composition.

You can define them directly in Object Builder, or define them in Rose and export
them to Object Builder.

The following tasks deal with constructs:

v “Define Constructs with File Scope” on page 278

v “Define Constructs with Module Scope” on page 279

v “Define Constructs With Interface Scope” on page 279

v “Edit a Construct” on page 280

v “Delete a Construct” on page 280

Chapter 10. Object Development Tasks 277

“Constructs” on page 26
“Constructs You Can Export from Rose” on page 79

“Work with Methods ” on page 267
“Work with Attributes” on page 247

Define Constructs with File Scope

You can define constructs with file scope using the Business Object File wizard,
Data Object File wizard, or Composition File - wizard. You can add the constructs
when you create a new file, or by modifying the properties of an existing file (from
the file’s pop-up menu, select Properties).

Warning: File scope constructs are not qualified. In C++ implementations, they
pollute the namespace and may conflict with other definitions. In Java
implementations they are placed in the “unnamed” package, and may produce
compilation errors (processing of classes in the unnamed package is
implementation dependent). It is recommended that all constructs be defined at
module or interface scope.

To define a construct, follow these steps:

1. In the wizard, click the title bar and turn to the Constructs Page.

2. From the Constructs pop-up menu, select the construct you want to add. You
can select from the following options:

v Constant

v Enumeration

v Exception

v Typedef

v Structure

v Union

If the construct is an enumeration, exception, structure, or union, you must
define at least one member for it. To define a member for a construct, follow
these steps:

a. Under the construct in the tree view, select the Members folder.

b. From the Members pop-up menu, click Add .

c. Type a name for the member and any other requested information. The
information is saved when you click another item, select another action, or
leave the page.

Note : To use the construct as a type within another construct, you must first
click Finish and then re-open the wizard before you can use the type. The
construct is not added to the current model until you click Finish .

3. Complete the rest of the pages, or click Finish .

“Create a Business Object File” on page 282
“Create a Data Object File” on page 303
“Create a Composition File” on page 349

278 Application Development Tools Guide

Define Constructs with Module Scope

You can define constructs with module scope using the Business Object Module
wizard, Data Object Module wizard, or Composition Module wizard. You can add
the constructs when you create a new module, or by modifying the properties of an
existing module (from the module’s pop-up menu, select Properties).

To define a construct, follow these steps:

1. In the wizard, click the title bar and turn to the Constructs Page.

2. From the Constructs pop-up menu, select the construct you want to add. You
can select from the following options:

v Constant

v Enumeration

v Exception

v Typedef

v Structure

v Union

If the construct is an enumeration, exception, structure, or union, you must
define at least one member for it. To define a member for a construct, follow
these steps:

a. Under the construct in the tree view, select the Members folder.

b. From the Members pop-up menu, select Add Member .

c. Type a name for the member and any other requested information. The
information is saved when you click another item, select another action, or
leave the page.

Note : To use the construct as a type within another construct, you must first
click Finish and then re-open the wizard before you can use the type. The
construct is not added to the current model until you click Finish .

3. Complete the rest of the pages, or click Finish .

“Add a Business Object Module” on page 282
“Add a Data Object Module” on page 304
“Add a Composition Module” on page 349

Define Constructs With Interface Scope

You can define constructs with interface scope using the Business Object Interface
wizard or Data Object Interface wizard. You can add the constructs when you
create a new interface, or by modifying the properties of an existing interface (from
the interface’s pop-up menu, select Properties).

To define a construct, follow these steps:

1. In the wizard, click the title bar and turn to the Constructs Page.

2. From the Constructs pop-up menu, select the construct you want to add. You
can select from the following options:

v Constant

v Enumeration

v Exception

Chapter 10. Object Development Tasks 279

v Typedef

v Structure

v Union

If the construct is an enumeration, exception, structure, or union, you must
define at least one member for it. To define a member for a construct, follow
these steps:

a. Under the construct in the tree view, select the Members folder.

b. From the Members pop-up menu, select Add Member .

c. Type a name for the member and any other requested information. The
information is saved when you click another item, select another action, or
leave the page.

3. Complete the rest of the pages, or click Finish .

Note : To use the construct as the type of an attribute, method return, method
exception, or construct member, you must first click Finish and then re-open the
wizard before you can use the type. The construct is not added to the current
model until you click Finish .

“Add a Business Object Interface” on page 283
“Create a Data Object Interface” on page 297

Edit a Construct

To edit a construct, follow these steps:

1. Locate the file, module, or interface that defines the construct in the
User-Defined Business Objects folder.

2. From the pop-up menu of the item, click Properties . The item’s wizard opens.

3. Click the title bar and turn to the Constructs Page.

4. Under the Constructs folder, locate the construct.

5. Click on the construct.

6. Edit the construct. If the construct has a members folder, you can add, delete,
or edit the members.

7. Click Finish .

The construct is changed. Any methods that used the construct as their method
return type or as a parameter, and any attributes that had the construct as their
type, are automatically updated.

“Constructs” on page 26

“Work with Constructs” on page 277

Delete a Construct

To delete a construct, follow these steps:

1. Locate the file, module, or interface that defines the construct in the
User-Defined Business Objects folder.

2. From the pop-up menu of the item, click Properties . The item’s wizard opens.

280 Application Development Tools Guide

3. Click the title bar and turn to the Constructs Page.

4. Under the Constructs folder, locate the construct.

5. From the pop-up menu of the construct, click Delete .

6. Click Finish .

The construct is deleted. Any methods that used the construct as their method
return type or as a parameter, and any attributes that had the construct as their
type, are automatically modified to refer to invalidType.

“Constructs” on page 26

“Work with Constructs” on page 277

Work with Business Objects

Business objects are defined in the User-Defined Business Objects folder, and are
presented in terms of four objects:

v The business object file (which contains one or more interfaces, optionally
organized into modules)

v The business object module, if any (which contains one or more interfaces)

v The business object interface (which has one or more implementations)

v The business object implementation (which has its own file, defined on the first
page of its wizard)

The four objects are created and edited separately, but collectively form a single
business object. Each business object (each set of business object file, module,
interface, and implementation) typically has its own data object.

The following tasks deal with business objects:

v “Create a Business Object File” on page 282

v “Add a Business Object Module” on page 282

v “Add a Business Object Interface” on page 283

v “Create a Business Object Interface by Importing an IDL File” on page 289

v “Add a Business Object Implementation and Data Object Interface” on page 284

v “Add a Business Object from a Data Object” on page 287

v “Map a Business Object to a Data Object” on page 288

v “Edit a Business Object Interface” on page 290

v “Edit a Business Object Implementation” on page 290

v “Delete a Business Object Interface” on page 291

v “Delete a Business Object Implementation” on page 291

“Business Object” on page 17
“Data Object” on page 18

Chapter 10. Object Development Tasks 281

Create a Business Object File

A business object file (IDL) is a container for your business object interfaces.
Although a file can hold multiple business object interfaces, which you may
organize into modules, you typically add one interface to each file.

To create a business object file, follow these steps:

1. From the Tasks and Objects pane, select the User-Defined Business Objects
folder.

2. From the folder’s pop-up menu, select Add file . The Business Object File
wizard opens to the Name Page.

3. Type a name for the file (for example, an insurance application might have a file
named Policy).

4. Click Next . The Constructs Page opens.

Use the Constructs pop-up menu to add constants, enumerations, exceptions,
structures, typedefs, and unions. Any constructs you add are scoped to every
interface in the file.

Note : To use the construct as a type within another construct, you must first
click Finish and then re-open the wizard before you can use the type. The
construct is not added to the current model until you click Finish .

5. Click Next . The Files to Include Page opens.

IManagedClient is included by default. This is the correct choice for a
component that represents a base class in your design. If your component had
a parent, you would specify the business object file of the parent component in
this field. For example, if the CarPolicy component inherits from the Policy
component, then you would specify the business object file for Policy on this
page. Also include the business object files for any referenced or related
components. For example, if CarPolicy has an attribute of type Claim, you
would need to include the business object file for Claim on this page.

6. Click Next . The Comments Page opens. Type any comments you want to
include as comment lines in your generated IDL code.

7. Click Finish . The wizard closes, and your file is added to the User-Defined
Business Objects folder. You can now add modules or interfaces to the file.

Once you have created the file, you can modify it by selecting Properties from its
pop-up menu. The Business Object File wizard opens again, with your selections
preserved.

“Business Object” on page 17

“Define Constructs with File Scope” on page 278
“Add a Business Object Module”
“Add a Business Object Interface” on page 283

Add a Business Object Module

If you plan to add multiple business object interfaces to a single file, you may want
to store the interfaces in separate modules. Any constructs you add to a module are
scoped only to the interfaces within that module. To add a module to a file, follow
these steps:

282 Application Development Tools Guide

1. From the User-Defined Business Objects folder, select your business object file.

2. From the file’s pop-up menu, select Add Module . The Business Object Module
wizard opens to the Name Page.

3. Type a name for the module.

4. Click Next . The Constructs Page opens.

Use the Constructs pop-up menu to add enumerations, exceptions, structures
and so on.

Note : To use the construct as a type within another construct, you must first
click Finish and then re-open the wizard before you can use the type. The
construct is not added to the current model until you click Finish .

5. Click Next . The Comments Page opens. Type any comments you want to
include as comment lines in your generated code.

6. Click Finish . The wizard closes, and your module is added to the User-Defined
Business Objects folder, underneath the file.

You can now add business object interfaces to the module.

“Define Constructs with Module Scope” on page 279
“Add a Business Object Interface”

Add a Business Object Interface

To add a business object interface to a file (or module), follow these steps:

1. From the User-Defined Business Objects folder, select the file or module that
will contain the interface.

2. From the pop-up menu for the file or module, select Add Interface . The
Business Object Interface wizard opens to the Name Page.

3. Type a name for the interface (for example, CarPolicy).

4. Select whether the interface will be queryable or not.

If you select this option, the generated code for the managed object contains
the dynamic dispatch method callMethodByName, which allows the Query
Service to call the methods of the managed object. You should also configure
the managed object with a queryable home.

5. Click Next . The Constructs Page opens.

Use the Constructs pop-up menu to add constants, enumerations, exceptions,
typedefs, structures, or unions. Any constructs you add are scoped to this
interface only.

Note : To use the construct as the type of an attribute, method return, method
exception, or construct member, you must first click Finish and then re-open
the wizard before you can use the type. The construct is not added to the
current model until you click Finish .

6. Click Next . The Interface Inheritance Page opens.

By default, the interface inherits from IManagedClient::IManageable. This is the
correct choice for a component that represents a base class in your design. If
your component had a parent, you would specify the business object interface
of the parent component on this page.

7. Click Next . The Attributes Page opens.

To specify attributes for your interface, select Add from the Attributes pop-up
menu (for example, the CarPolicy interface could have the attributes “make”
and “model”).

Chapter 10. Object Development Tasks 283

Note : For most attribute types, a default initializer value is provided. When
there is no suitable default (for example, an attribute whose type is an
enumeration), you should assign your own initializer value, if necessary.

If you specify an attribute as public, then it will be exposed in the interface’s
IDL file, and Object Builder will provide the appropriate get and set methods for
the attribute in the business object implementation.

If you specify an attribute as protected or private, then it will not be exposed in
the IDL file, but will be included in the business object implementation (as a
protected or private attribute) when you add the implementation to the
interface.

8. Click Next . The Methods Page opens.

To specify methods for your interface, select Add from the Methods pop-up
menu. For example, the CarPolicy interface could have the method
“riskQuotient”.

9. Click Next . The Object Relationships Page opens.

To specify any relationships that this class has to other classes, select Add
from the Objects pop-up menu. The relationships will be one-to-many, and will
be stored in the collection you select.

10. Click Next . The Comments Page opens. Type any comments you want to
include as comment lines in your generated code.

11. Click Finish . Your new interface is added to the User-Defined Business
Objects folder, with the attributes and methods you specified.

You should now see your interface in the Inheritance pane, and any methods you
defined for your interface should appear under the User-Defined Methods folder in
the Methods pane.

“Business Object” on page 17
Query Service (Advanced Programming Guide)

“Work with Business Objects” on page 281
“Define Constructs With Interface Scope” on page 279
“Add a Key” on page 292

Add a Business Object Implementation and Data Object Interface

Once you have created a business object interface, you can add one or more
implementations for that business object, and also create the data object interface
that provides your business object with access to data. You can accomplish both
tasks using the Business Object Implementation wizard. Ensure that you have
added a key and a copy helper to the business object interface before proceeding
with this task.

To create the business object implementation, and its associated data object
interface, follow these steps:

1. From the User-Defined Business Objects folder, select the business object
interface you want to implement.

2. Display the pop-up menu for the interface and select Add Implementation .
The Business Object Implementation wizard opens to the Name and Data
Access Pattern Page.

284 Application Development Tools Guide

3. Appropriate implementation names are filled in for you (the business object file
name and interface name plus BO: for example, CPFile::CarPolicy gets an
implementation named CPFileBO::CarPolicyBO). You can accept these
defaults or replace them with your own names.

4. Select the pattern you want to use for handling state data. The following
patterns are available:

v Delegating
The business object delegates every request for the essential state to the
data object interface.

v Caching
Both the business object and the data object have their own copies of the
essential state, which are synchronized. Lazy evaluation is the default
synchronization method, meaning that cached copies of the attributes are
synchronized at first use, rather than at instantiation.

v Same as parent’s
The business object inherits its pattern from a parent interface.

Note: This option is selected by default if the interface for this business
object inherits from another business object interface. However, you still
have to indicate the implementation parent on the Implementation
Inheritance page of this wizard.

There is also an option listed for None , which would generate a transient data
object. This option is not available in this release.

5. Select whether to create a new data object now, or add or select one later.

6. If the component uses Session Services, select whether to provide
end-of-session cleanup logic for the component.

When you check this option, the endResource method is added to the data
object, so you can add your own implementation for it. The data object’s
endResource method will be called at the end of a session, immediately before
the managed object’s endResource method.

7. Click Next . The Implementation Inheritance Page opens.

8. Make sure that IManagedClient::IManageable is listed as a parent under the
Parent Class folder.

You can also select any parent business object implementations you want to
inherit behavior from.

9. Click Next . The Implementation Language page opens. Select the language
you want the business object to be implemented in. You can select either Java
or C++.

The default for this page is set in the Preferences notebook, on the Tasks and
Objects page.

10. Click Next . The Attributes Page opens. Specify any attributes you want to add
to the business object implementation (in addition to the attributes you already
specified in the business object interface).

11. Click Next . The Methods Page opens. Specify any methods you want to add to
the business object implementation (in addition to the methods you already
specified in the business object interface).

12. Click Next . The Key and Copy Helper Page opens. Select a key and,
optionally, copy helper that you have created for this business object (for
example, CarPolicyKey and CarPolicyCopy).

13. Click Next . The Handle Selection Page opens.

Chapter 10. Object Development Tasks 285

You can select a handle for the business object implementation. If you select a
handle, then the framework method getHandleString is implemented, which
overrides the getHandleString method of IManagedClient::IManageable. The
method provides a way to encapsulate the business object implementation, by
returning a string that represents a reference to the business object. The
handle you select determines the pattern used to form the string (that is, to
turn the reference into a string, or to swizzle the pointer).

14. Click Next . If the business object implementation has parent classes with
overrideable attributes, then the Attributes to Override Page opens.

You can use this page to select which of the parent class’s attributes you want
to override.

15. Click Next . If the business object implementation has parent classes with
overrideable methods, then the Methods to Override Page opens.

You can use this page to select which of the parent class’s methods you want
to override.

16. Click Next . If the business object interface defines one-to-many relationships,
then the Object Relationships page opens.

You can use this page to set the way that the object relationship will be
implemented.

17. Click Next . The Data Object Interface Page opens. (Note: This page does not
open if, on the first page, you chose not to create a new data object.)

Appropriate data object names are filled in for you (the business object file
name and interface name plus DO: for example, CPFile::CarPolicy gets the
data object interface CPFileDO::CarPolicyDO). You can accept these defaults
or replace them with your own names.

18. Select which attributes you want preserved in the data object. These attributes
constitute the state data for the component.

If you implemented a one-to-many relationship as a Local persistent
reference , then an attribute representing it appears here, so you can select to
preserve it in the data object.

19. Click Next . The Data Object Methods Page opens. (Note: This page does not
open if, on the first page, you chose not to create a new data object.)

20. Select which business object methods you want to push down to the data
object (that is, call equivalent methods to be defined in the data object).

21. Click Next . The Summary of Framework Methods Page opens.

Based on your selections on the previous pages of the wizard, this page
displays the methods that your object implements. For example, if you selected
a caching pattern to handle the essential state of your business object (on the
first page), this list includes the synchToDataObject method required to keep
the two sets of attributes synchronized. No action is needed.

22. Click Finish . The business object implementation and data object interface
appear in the User-Defined Business Objects folder, under your business
object interface. The data object interface also appears in the User-Defined
Data Objects folder.

Now that the business object implementation is defined, you can enter the
implementation code for each user-defined method.

“Business Object” on page 17
“Data Object” on page 18
Session Service (Advanced Programming Guide)

286 Application Development Tools Guide

“Add Code for User-Defined Methods” on page 267
“Add endResource() to a Sessional Business Object” on page 117
“Add a Data Object Implementation” on page 299
“Define a One-to-Many Relationship” on page 131

Add a Business Object from a Data Object

Although you cannot add a business object directly to a data object, you can create
a business object separately, and then map it to the data object.

To create a business object and map it to an existing data object, follow these
steps:

1. Define the business object file, module (if any), and interface.

When you define the interface, make sure you define attributes that you can
map to the attributes of your data object.

2. From the pop-up menu of the business object interface, click Add
Implementation to open the Business Object Implementation wizard to the
Name and Data Access Pattern Page.

3. Under Data Object Interface , click Add or select one later .

4. Specify the rest of the properties of the business object implementation
normally.

5. Click Finish . The business object implementation is added to the User-Defined
Business Objects folder, under the business object interface.

6. From the pop-up menu of the business object implementation, click Select
Data Object Interface . The Data Object Interface Connection wizard appears,
open to the Selection page.

7. Type the name of the data object you want to map to, or select it from the
drop-down list.

8. Click Next to show the Attributes Mapping page.

9. For each attribute in the business object implementation, add a mapping to an
equivalent attribute in the data object interface. The mapping must be
one-to-one, and the types of the mapped attributes must be identical.

10. Click Finish . The business object and data object are now associated, and the
data object interface appears in the User-Defined Business Object’s folder,
underneath the business object implementation you mapped it to.

“Data Object” on page 18
“Business Object” on page 17

“Create a Business Object File” on page 282
“Add a Business Object Module” on page 282
“Add a Business Object Interface” on page 283
“Map a Business Object to a Data Object” on page 288

Chapter 10. Object Development Tasks 287

Map a Business Object to a Data Object

Once you have added a business object and its implementation, and have specified
that it uses the meet-in-the-middle approach, you can map it to an existing data
object. You can map both attributes and methods of one object to the other. To do
so, follow these steps:

1. From the business object implementation’s pop-up menu, click Select Data
Object Interface . The Data Object Interface Connection wizard opens to the
Selection Page.

2. In the Data Object Interface Name field, type the name of an existing data
object interface in the form data_object_name data_object_interface_name, or
select one of the interface names from the list.

Note: If you select a data object, which was created using the bottom-up
approach (that is, one created from a persistent object), it is recommended that
you initialize the attributes of the data object before you map the attributes of
the business object to those of the data object. (They are not initialized by
default.) So, follow these steps:

a. Click Finish. This adds the selected data object interface to the
User-Defined Business Objects folder, beneath the business object
implementation.

b. Initialize the attributes of the data object. Follow these steps:

1) Select the data object interface in the User-Defined Data Objects folder.

2) From the pop-up menu of the data object interface, select Properties .
The Data Object Interface wizard opens.

3) Click Next , or click the arrow to the left of the page name, and select
Attributes Page from the list. The page opens.

4) Select the data object attributes from the Attributes folder and type the
initial value for the attribute in the Initializer field.

c. Continue with the mapping: from the pop-up menu of the data object
interface (which was selected for the business object), select Properties .
The Data Object Interface Connection wizard opens.

d. Click Next , or click the arrow to the left of the page name, and select
Attributes Mapping Page from the list. The page opens.

e. Follow step 4.

3. Click Next. The Attributes Mapping Page opens.

4. On this page, you can map the business object attributes to the data object
attributes available from the business object interface. A business object
attribute can map to a single data object attribute of the same data type: the
mapping is one-to-one.

To map the business object attributes to the data object attributes, follow these
steps:

a. From the pop-up menu of the Business Object Attributes folder, select Add .

b. Type the name of an attribute of the data object interface you specified
earlier, or select one from the Data Object Attribute field’s list.

Click Next. The Methods Mapping Page opens.

5. On this page, you can map the business object methods to the data object
methods. You can only have a one-to-one mapping between any business
object methods and data object methods, and the signatures of the two
methods must be the same.

To map a business object method to data object method, follow these steps:

288 Application Development Tools Guide

a. From the pop-up menu of the Business Object Methods folder, select Add .

b. Select a method of the data object from the Data Object Methods field’s
list. This list contains only those methods of the data object that you defined
for its interface.

6. Click Next , and add any comments about the mapping on the Comments Page.

The current mapping takes effect when you proceed to map the next business
object attribute, or when you click Finish . The selected data object interface
appears in the User-Defined Business Objects folder, under the business object
implementation node.

Note: After you have mapped a business object to a data object, you can view and
edit the mapping of the attributes on the Attributes Mapping Page and the Methods
Mapping Page of the Business Object Implementation wizard. This wizard will no
longer have the Data Object Interface Page.

“Business Object” on page 17
“Data Object” on page 18

“Work with Business Objects” on page 281
“Work with Data Objects - Overview” on page 296

“DB2 Data Type Mappings” on page 110
“Oracle Data Type Mappings” on page 113

Create a Business Object Interface by Importing an IDL File

If you have code already in IDL files, you can parse the code into Object Builder,
and incorporate the classes, relationships, and code in the IDL files into your Object
Builder application.

Note : The IDL must be CORBA 2.0-compliant without IDL extensions. You can
make sure the IDL files you are importing are valid by compiling them first. Object
Builder will only import IDL files that are considered valid by the compiler.

To import an existing IDL file, follow these steps:

1. Under Tasks and Objects, select the User-Defined Business Objects folder.

2. From the folder’s pop-up menu, select Import IDL . The Import IDL wizard opens
to the File Selection Page.

3. Browse for and select the files you want to import. The files you select, and any
files they include, will be parsed and imported into Object Builder.

4. Click Next . The Search Paths for Nested Files Page opens.

5. From the Include directories pop-up menu, select Add . Browse for the
directories you want searched.

When you import a file that includes other files (that is, a file with nested files),
the import process will search for the other files in the directories you specify
here.

6. Click Finish . The selected files (and files they include) are parsed into Object
Builder, and the information in the IDL is added to the current project model as
business object files, business object modules, and business object interfaces.

Chapter 10. Object Development Tasks 289

Edit a Business Object Interface

Business object interfaces are defined in the User-Defined Business Objects folder,
where they are shown under the file (and module, if any) in which they are defined.
You can edit the file, module, and business object interface as separate objects,
following these steps:

1. From the pop-up menu of the file, module, or interface, click Properties to
display the appropriate wizard.

2. Click the title bar to select a page to turn to.

3. Change your selections as necessary.

4. Click Finish to apply your changes.

Note the following points:

v If you want to specify a parent for the interface after you have defined the
implementation for the business object, follow these steps:

1. Add the parent to the Parents folder on the Interface Inheritance page of the
Business Object Interface wizard

2. Open the Business Object Implementation wizard, and on the Name and
Data Access Pattern page specify the pattern for handling state data as
Same as parent’s .

3. Click Next.

4. Add the implementation parent on the Implementation Inheritance page.

v If you want to change the order of the business object file contents, follow these
steps:

1. Open the file’s wizard.

2. Click the title bar and turn to the Contents Ordering page.

3. Move elements into the new order.

4. Click Order by Dependency to validate the new order.

5. Click Finish .

“Business Object” on page 17
“Dependencies within an IDL File” on page 129

“Work with Business Objects” on page 281

Edit a Business Object Implementation

Business object implementations are defined in the User-Defined Business Objects
folder, where they are shown under the business object interface they were added
to. You can edit a business object implementation by following these steps:

1. From the pop-up menu of the business object implementation, click Properties .
The Business Object Implementation wizard opens to the Name and Data
Access Pattern Page.

2. Click the title bar to select another page to turn to.

3. Change your selections as necessary.

4. Click Finish to apply your changes.

290 Application Development Tools Guide

Note : The Same as parent’s option is selected by default if the interface for this
business object inherits from another business object interface. However, you still
have to indicate the implementation parent on the Implementation Inheritance page
of this wizard, after you delete the default parent for business object
implementations, which is IManagedClient IManagedClient::IManageable.

“Business Object” on page 17

“Work with Business Objects” on page 281

Delete a Business Object Interface

To delete a business object interface, follow these steps:

1. Locate the business object interface in the User-Defined Business Objects
folder.

2. Delete any managed objects defined off of the interface’s business object
implementation.

3. Delete or remove the data object interface defined off of the business object
implementation.

4. Delete the business object implementation.

5. Delete any keys and copy helpers defined off of the interface.

6. From the pop-up menu of the business object interface, click Delete .

When you delete a business object interface, any methods, attributes, constructs, or
one-to-many relationships that use it as a type have the type changed to
invalidType. For example, if you delete the interface of Agent, then an attribute
Agent custAgent becomes attribute invalidType custAgent. You can find all
occurences of invalidType by running the model consistency checker.

“Business Object” on page 17

“Work with Business Objects” on page 281
“Check a Model for Consistency” on page 412

Delete a Business Object Implementation

To delete a business object implementation, follow these steps:

1. Locate the business object implementation in the User-Defined Business
Objects folder.

2. Delete any managed objects defined off of the business object implementation.

3. Delete or remove the data object interface defined off of the business object
implementation.

4. From the pop-up menu of the business object implementation, click Delete .

“Business Object” on page 17

“Work with Business Objects” on page 281

Chapter 10. Object Development Tasks 291

“Delete a Managed Object” on page 341
“Delete a Data Object Interface” on page 312

Work with Keys

Keys are defined in the User-Defined Business Objects folder, where you can add
them from the pop-up menu of a business object interface.

The key provides a way for the client to locate a specific instance of a component
on the server.

You can add multiple keys to a business object interface, but each component you
configure can only have one key.

The following tasks deal with keys:

v “Add a Key”

v “Edit a Key” on page 293

v “Delete a Key” on page 293

“Key” on page 21

Add a Key

Each business object must have a primary key class that contains enough
information to uniquely identify the object. The key is used when new instances of
the object are created or when existing instances need to be found.

To add a key, follow these steps:

1. From the User-Defined Business Objects folder, select your business object
interface (for example, CarPolicy).

2. From the object’s pop-up menu, select Add Key . The Key wizard opens to the
Name and Key Attributes Page.

3. Appropriate key names are filled in for you (the business object file name and
interface name plus Key: for example, CPFile::CarPolicy gets a key named
CPFileKey::CarPolicyKey). You can accept these defaults or replace them with
your own names.

4. Select the business object attributes that make up the primary key. If the
business object has a parent interface, you can also select from the parent
interface’s attributes (you should not select attributes of the parent interface if
you are planning to inherit from the parent interface’s key).

5. Click Next . The Implementation Inheritance Page opens.

On this page, you can specify the type of key (primary or unique), and inherit
from the appropriate parent class (IPrimaryKey or IUniqueKey) .

If the key has a parent, you can specify it here.

Note : You should not inherit from a parent key if you also selected inherited
attributes on the previous page.

6. Click Next . The Summary of Framework Methods Page opens. This page
summarizes the framework methods this object implements. No action is
needed.

292 Application Development Tools Guide

7. Click Next . The Optional Framework Methods Page opens. Select any
additional framework methods you want to implement. Object Builder will add
signatures for the methods you select, but you must provide your own
implementation code. The methods you implement will override the equivalent
framework methods of the parent class.

Note : The editor pane will not allow you to edit these methods until you set
them as editable in the Method Implementation wizard. To set a method as
editable, follow these steps:

a. In the Methods pane, select the framework method.

b. From its pop-up menu, click Properties .

c. In the Method Implementation wizard, specify that you want to use the editor
pane.

8. Click Finish . The key appears in the User-Defined Business Objects folder,
under your business object interface.

In the Methods pane, you should see some items listed in the Framework Methods
folder. Default implementation code is provided for these methods, which you can
view in the edit pane by selecting a method. Normally, you will not want to edit this
code (except for the code for the optional framework methods, as noted above).
The code for framework methods is read-only by default.

“Key” on page 21

“Work with Keys” on page 292
“Add a Copy Helper” on page 294

Edit a Key

Keys are defined in the User-Defined Business Objects folder, where they are
shown under the business object interface they were added to. You can edit a key
by following these steps:

1. From the pop-up menu of the key, click Properties . The Key wizard opens to
the Name and Key Attributes Page.

2. Click the title bar to select a page to turn to.

3. Change your selections as necessary.

4. Click Finish to apply your changes.

“Key” on page 21

“Work with Keys” on page 292

Delete a Key

To delete a key, follow these steps:

1. Remove the key from any business object implementations that are configured
with it.

2. Remove the key from any data object implementations that are configured with
it.

Chapter 10. Object Development Tasks 293

3. Remove the key from any managed object configuration that uses it.

4. Locate the key in the User-Defined Business Objects folder.

5. From the key’s pop-up menu, click Delete .

“Key” on page 21

“Work with Keys” on page 292
“Edit a Business Object Implementation” on page 290
“Edit a Data Object Implementation” on page 310
“Edit a Managed Object Configuration” on page 379

Work with Copy Helpers

Copy helpers are defined in the User-Defined Business Objects folder, where they
are shown below the business object interface they were added to.

The copy helper is an optional object that provides a way to initialize multiple
attributes of a component instance with a single call to the server.

You can add multiple copy helpers to a business object interface, but each
component you configure can only have one copy helper.

The following tasks deal with copy helpers:

v “Add a Copy Helper”

v “Edit a Copy Helper” on page 295

v “Delete a Copy Helper” on page 295

“Copy Helper” on page 21

Add a Copy Helper

The copy helper is an optional component object that lets you initialize the attributes
of a new component on the server with a single call. It embodies the business
object attributes that you will want to initialize.

To add a copy helper, follow these steps:

1. From the User-Defined Business Objects folder, select your business object
interface (for example, CarPolicy).

2. From the object’s pop-up menu, select Add Copy Helper . The Copy Helper
wizard opens to the Name and Attributes Page.

3. Appropriate copy helper names are filled in for you (the business object file
name and interface name plus Copy: for example, CPFile::CarPolicy gets a
copy helper named CPFileCopy::CarPolicyCopy). You can accept these defaults
or replace them with your own names.

4. Select which business object attributes to externalize in the copy helper. If the
business object has a parent interface, you can also select from the parent
interface’s attributes (you should not select attributes of the parent interface if
you are planning to inherit from the parent interface’s copy helper).

294 Application Development Tools Guide

5. Click Next . The Implementation Inheritance Page appears.

By default, the copy helper inherits from IManagedLocal
IManagedLocal::INonManageable. This is the correct choice if the copy helper is
for a component without parents.

Note : You should not inherit from a parent copy helper if you also selected
inherited attributes on the previous page.

6. Click Next . The Summary of Framework Methods Page opens. This page
summarizes the framework methods this object implements. No action is
needed.

7. Click Finish . The key appears in the User-Defined Business Objects folder,
under your business object interface.

In the Methods pane, you should see some items listed in the Framework Methods
folder. Default implementation code is provided for these methods, which you can
view in the edit pane by selecting a method. By default, this code is read-only.

“Copy Helper” on page 21

“Work with Copy Helpers” on page 294
“Add a Business Object Implementation and Data Object Interface” on page 284

Edit a Copy Helper

Copy helpers are defined in the User-Defined Business Objects folder, where they
are shown under the business object interface they were added to. You can edit a
copy helper by following these steps:

1. From the pop-up menu of the copy helper, click Properties . The Copy Helper
wizard opens to the Name and Attributes.

2. Click the title bar to select a page to turn to.

3. Change your selections as necessary.

4. Click Finish to apply your changes.

“Copy Helper” on page 21

“Work with Copy Helpers” on page 294

Delete a Copy Helper

To delete a copy helper, follow these steps:

1. Remove the copy helper from any data object implementations that are
configured with it.

2. Remove the copy helper from any managed object configurations that use it.

3. From the pop-up menu of the copy helper, click Delete .

“Copy Helper” on page 21

Chapter 10. Object Development Tasks 295

“Work with Copy Helpers” on page 294
“Edit a Data Object Implementation” on page 310
“Edit a Managed Object Configuration” on page 379

Work with Data Objects - Overview

A data object manages the state of a business object. It encapsulates the object’s
persistent behavior, if there is any.

In the User-Defined Data Objects folder, a data object is fully presented in terms of
four objects:

v The data object file (which contains one or more interfaces, optionally organized
into modules)

v The data object module, if any (which contains one or more interfaces)

v The data object interface (which has one or more implementations)

v The data object implementation (which has its own file, defined on the first page
of its wizard)

You can create the four objects separately when you create a data object interface
that is not connected to a business object. Collectively, these four objects form a
single data object. Each data object (each set of data object file, module, interface,
and implementation) typically has its own persistent object.

The four objects are created automatically in the User-Defined Data Objects folder
when you perform one of the following actions:

v “Add a Data Object from a DB Persistent Object” on page 304

v “Add a Data Object from a PA Persistent Object” on page 305

v “Add a Data Object Implementation” on page 299

The following tasks deal with data objects:

v “Create a Data Object File” on page 303

v “Add a Data Object Module” on page 304

v “Create a Data Object Interface” on page 297

v “Add a Business Object Implementation and Data Object Interface” on page 284

v “Create a Data Object Interface by Importing an IDL File” on page 306

v “Add a Data Object Implementation” on page 299

v “Edit a Data Object Interface” on page 309

v “Edit a Data Object Implementation” on page 310

v “Delete a Data Object Interface” on page 312

v “Delete a Data Object Implementation” on page 313

v “Add a Data Object from a DB Persistent Object” on page 304

v “Add a Data Object from a PA Persistent Object” on page 305

v “Map a Data Object to a DB Persistent Object” on page 251

v Map a Data Object to a PA Persistent Object

296 Application Development Tools Guide

v “Map Data Object Attributes to Persistent Object Attributes” on page 256

v “Add a Business Object from a Data Object” on page 287

v “Map a Business Object to a Data Object” on page 288

Note: In the User-Defined Business Objects folder, the DBA-Defined Schemas
folder and the User-Defined PA Schemas folder, the data object is only presented in
terms of its interface and implementation.

“Data Object” on page 18
“Persistent Object” on page 19
“Business Object” on page 17

Create a Data Object Interface

You can add a data object interfaces in different situations, from the following
folders:

v User-Defined Business Objects folder

v User-Defined Data Objects folder

v DBA-Defined Schemas folder

From the User-Defined Business Objects folder

Once you have deleted a data object interface that was created along with a
business object implementation, you can create a new one to be associated with
the implementation. Follow these steps:

1. From the pop-up menu of the unassociated business object implementation in
the User-Defined Business Objects folder, select Add New Data Object
Interface . The Add New Data Object wizard opens to the Data Object Interface
Page.

2. Accept the default data object file name and interface name, or rename them,
and select those attributes of the business object to be used as state data in the
data object.

3. Click Next . The Data Object Methods Page opens.

4. Select the methods of the business object that are to be delegated to the data
object. The methods you select form part of the data object’s interface.

5. Click Next . The Constructs Page opens. Use the pop-up menu of the
Constructs folder to add constants, enumerations, exceptions, typedefs,
structures, or unions. Any constructs you add are scoped to this interface only.

Note : To use the construct as the type of an attribute, method return, or method
exception, you must first click Finish and then reopen the wizard and define the
attribute. The construct is not added to the current model until you click Finish .

6. The Interface Inheritance Page opens. Here you can specify one or more
classes from which the interface can inherit. Click the list button of the Parent
Interface and select a parent from the list of available classes, or type the
interface name using the following syntax: filename interface_name

7. When you have specified all the parents for this interface, click Next. The
Comments Page opens. Type any comments you want to include as comment
lines in your generated code.

8. Click Finish. The interface is added to the folder.

Chapter 10. Object Development Tasks 297

From the User-Defined Data Objects folder

In this folder, you can create a data object interface in the following ways:

v From a data object file

v From a data object module

v By importing an IDL file

From a data object file

1. Select the User-Defined Data Objects folder.

2. From its pop-up menu, select Add File . The Data Object File wizard opens to
the Name Page.

3. Specify a name for the data object file.

4. Click Finish . The data object file is added to the folder.

5. Select the file, and from its pop-up menu, select Add Interface . The Data
Object Interface wizard opens to the Name Page.

6. Specify a name for the interface.

7. Click Next if you want to define constructs at the interface level.

8. Go to the Interface Inheritance Page if you want this interface to inherit from
an existing one.

9. Go to the Attributes Page if you want to define attributes that are specific to
the data object interface.

10. Go to the Methods Page if you want to define methods for the interface.

11. Add any comments you want to, on the Comments Page.

12. Click Finish .

The data object interface is added to the folder, and appears as a node beneath the
file.

From a data object module
If you want the data object interface to be scoped within a module, follow this
method.

Follow steps 1 to 4 that are outlined in the previous method. Once the data object
file is created, follow these steps:

1. Select the file, and from its pop-up menu, select Add Data Object Module . The
Data Object Module wizard opens to the Name Page.

2. Type a name for the module.

3. Click Next if you want to add constructs at the module level.

4. Go to the Comments Page if you want to add comments about the module.

5. Click Finish . The data object module is created, and appears as a node
beneath the data object file.

6. Select the module in the folder, and from its pop-up menu, select Add
Interface . The Data Object Interface wizard opens to the Name Page.

Follow steps 6 to 12 as when you added the interface from the file. The data object
interface is added to the folder, and appears as a node beneath the module.

By importing an IDL file
This is actually a method of reusing an existing data object interface. You add it, or
create it within Object Builder by importing it. Follow these steps:

298 Application Development Tools Guide

1. Select the User-Defined Data Objects folder.

2. From its pop-up menu, select Import - IDL . The Import IDL wizard opens to the
IDL File Selection Page.

3. From the IDL Files folder’s pop-up menu, select Add . You can then specify the
IDL file to be imported in the File Name field. You can also use the Find button
to open the File to Import dialog box. Use it to view the contents of the different
drives and find the exact path for the IDL file to be imported.
Note : The IDL must be CORBA 2.0-compliant without IDL extensions. You can
make sure the IDL files you are importing are valid by compiling them first.
Object Builder will only import IDL files that are considered valid by the compiler.

4. Click Next . The Search Paths for Nested Files Page opens.
Include files (that is, those that are nested in another file), which are not already
in the model, have to be imported. Other include files, (for example,
IManagedClient), which exist in the model, do not have to be imported.

5. Indicate the directories that must be searched for the include files that are
specified in the IDL file to be imported: from the pop-up menu of the Directories
folder, select Add . Type the include directory in the Directory field.

6. Click Finish .

The data object interface appears in the folder beneath the file that contains it, or if
it is scoped within a module, beneath the module that contains it.

From the DBA-Defined Schemas folder
This method assumes you have imported an SQL file into Object Builder, and
added a persistent object from it. Follow these steps to add a data object interface
from the persistent object:

1. Select the persistent object that you added to the imported schema.

2. From its pop-up menu, select Add Data Object .

3. The Add Data Object wizard opens to the Names Page.

4. Specify the names for the data object interface and its file, and for the
associated data object implementation and its file.

5. Click Next to go to the Methods Page, if you want to add methods for the data
object.

6. Click Finish .

The data object interface appears beneath its file in the User-Defined Data Objects
folder, with the data object implementation beneath it, with the implementation
connected to the persistent object, which in turn is connected to the scehma.

“Data Object” on page 18
Query Service (Advanced Programming Guide)

“Work with Data Objects - Overview” on page 296
“Create a DB Schema by Importing an SQL File” on page 321
“Add a Persistent Object from a DB Schema” on page 316
“Create a Data Object Interface by Importing an IDL File” on page 306

Add a Data Object Implementation

Once you have either created or selected the data object interface for your
business object, you can create a data object implementation. The business object

Chapter 10. Object Development Tasks 299

is dependent on the data object interface, but not on its implementation. However,
for the business object to be of any use, the data object interface must be
implemented. The data object implementation can emulate the real application
environment, with either a local-only test environment or a full client-server setup.

To create a data object implementation, follow these steps:

1. From the Tasks and Objects pane, select the data object interface for which
you want to create an implementation (for example, CarPolicyDO).

2. From the pop-up menu of the interface, select Add Implementation . The Data
Object Implementation wizard opens to the Name and Platform Page.

3. Type the name of the implementation class and its file, or accept the default
names (for example CarPolicyDOImpl for the implementation name and
FileDOImpl for the file name). If the data object interface is contained in a
module, specify the module name in the Module Name field.

4. Click Next . The Behavior Page opens.

5. Select the environment for testing the object in the Environment (page 31)
section.

6. Select the form of persistent behavior and implementation from the Form of
Persistent Behavior and Implementation (page 32) section of the same page.
All options in this section are available for selection only if you have selected
BOIM with any key in step 5.
390 All Cache Service options are not available when the target platform is
OS/390.

7. Select the data access pattern to be used in the data object implementation
from the Data Access Pattern (page 34) section. This section is available for
selection only if you have selected BOIM with any key in step 5. The access
pattern can be either Delegating , which is the default option, or Local copy .

8. Select the handle for storing references from the Handle for Storing Pointers
(page 35) section.

9. Click Next . The Implementation Inheritance Page opens. Click the list button of
the Parent Class field and select a parent, or accept the default, which is
provided by Object Builder.

10. Click Next . The Attributes Page opens. You can use this page to add more
attributes for the data object. These attributes will be specific to this
implementation.

11. Click Next . The Methods Page opens. Here, you can add
implementation-specific methods for the data object. These methods can
access the implementation-specific attributes you added on the previous page.
These methods can also be called from within other methods that you define
for the data object interface.

12. Click Next . The Select Key and Copy Helper Page opens. Select the key and
the copy helper to use with this implementation.
Note: If you selected BOIM with any key in step 5, and there is at least one
persistent object in the model that has the same type of persistence as that for
the implementation, which you specify in step 6, the Associated Persistent
Objects Page is added to the wizard, and you can continue with step 13; if not,
continue with step 16.

13. Click Next. The Associated Persistent Objects Page opens. You can specify
existing persistent object instances that are to be associated with the data

300 Application Development Tools Guide

object. These instances are stored as protected members of the data object
implementation.

Note the following points:

v At this point, you can also finish the wizard and add a persistent object and
schema from the data object implementation. The persistent object you create is
automatically associated with the data object and appears in the Persistent
Object Instances folder on the Associated Persistent Objects Page.

v If you associated one or more existing persistent object instances with the data
object, the Attributes Mapping Page and the Methods Mapping Page are added
to the wizard. You can map the data object to the persistent object: continue with
step 14. If you did not associate any persistent object with the data object,
continue with step 16.

14. Click Next. The Attributes Mapping Page opens. You can specify the mapping
between the data object attributes and the persistent object attributes.

15. Click Next. The Methods Mapping Page opens. For each of the special
framework methods associated with the implementation, you can specify the
persistent object methods that it calls. The order of the methods in the tree
determines the order in which they are called.

Note: If you have associated any Procedural Adaptor (PA) persistent objects
with this implementation, this page has the User-Defined Methods folder as
well. This folder contains the methods you defined for the data object using the
Methods Page of the Data Object Interface wizard. You can map each of these
methods to the corresponding push-down method of the persistent object, if
you want these methods to be called immediately.

16. Click Next . The Summary of Framework Methods Page opens. On this page
you can review the framework methods that are implemented by Object Builder
for this class. These methods have to be implemented for the data object to
work properly in the server.

17. Click Finish . The data object implementation appears in the Tasks and Objects
pane, with the appropriate methods added in the Method List pane. You can
now add your own code to implement those methods. None of the framework
methods have implementations at this point. Object Builder provides the code
for these methods as soon as there is a persistent object associated with this
data object.

“Data Object” on page 18
“Persistent Object” on page 19
Object Relationships (Programming Guide)
Application Adaptor (Programming Guide)
Data Object Customization for Cardinality Relationships (Programming Guide)
“State Data” on page 18
Data Object Customization (Programming Guide)
“Container” on page 345
“Home” on page 342
Using Handles (Programming Guide)
Naming Service (Advanced Programming Guide)
Cache Service (Advanced Programming Guide)
“Special Framework Methods” on page 24
“Framework Methods” on page 24
Using Sets of Objects (Using Reference Collections) (Programming Guide)

“Work with Data Objects - Overview” on page 296

Chapter 10. Object Development Tasks 301

“Add a Persistent Object and Schema” on page 313
“Create a Component for New DB Data - Scenario” on page 102
“Customize Referential Integrity” on page 108
“Create a Container Instance” on page 346
“Configure a Managed Object” on page 377
“Work with Attributes” on page 247“Work with Methods ” on page 267
“Add Code for User-Defined Methods” on page 267
“Add endResource() to a Sessional Business Object” on page 117

“Data Object Implementation Inheritance” on page 36

Add a Data Object From a Business Object

A business object is normally created with its own data object. If however, you
delete the associated data object, or select the Add or select one option later
option when you add the business object implementation (in the “Data Object
Interface” on page 29 section on the Name and Data Access Pattern Page of the
Busisness Object Implementation wizard), you can either select a data object
interface that exists in the model, or define an entirely new one for the business
object.

To add a data object from a business object, follow these steps:

1. From the pop-up menu of the business object, select Add Data Object Interface.
The Add New Data Object wizard opens to the Data Object Interface Page.

Appropriate data object names are filled in for you (the business object file
name and interface name plus DO: for example, CarPolicy gets the data object
interface CarPolicyDO). You can accept these defaults or replace them with
your own names.

Select the business object attributes that you want preserved in the data object.
These attributes constitute the state data for the component.

2. Click Next to open the Constructs Page. Use the Constructs pop-up menu to
add constants, enumerations, exceptions, typedefs, structures, or unions. Any
constructs you add are scoped to this interface only.

Note : To use the construct as a type within another construct, you must first
click Finish and then re-open the wizard before you can use the type. The
construct is not added to the current model until you click Finish .

3. Click Next to open the Interface Inheritance Page.Here you can specify one or
more classes from which the interface can inherit. Click the list button of the
Parent Interface and select a parent from the list of available classes, or type
the interface name using the following syntaxes:
filename interface_name (if the interface is stand-alone)
filename module_name::interface_name (if the interface derives from a module)

4. When you have specified all the parents for this interface, click Next .

5. Type any comments you need to add, on the Comments Page.

6. Click Finish. The interface is added to the folder.

“Business Object” on page 17
“Data Object” on page 18

“Work with Data Objects - Overview” on page 296

302 Application Development Tools Guide

Create a Data Object File

A data object file (IDL) can hold multiple data object interfaces, which you may
organize into modules. However, you typically add one interface to each file.

To create a data object file, follow these steps:

1. From the Tasks and Objects pane, select the User-Defined Data Objects
folder.

2. From the folder’s pop-up menu, select Add File . The Data Object File wizard
opens to the Name Page.

3. Type a name for the file.

4. Click Next . The Constructs Page opens.

Use the Constructs pop-up menu to add constants, enumerations, exceptions,
typedefs, structures, or unions. Any constructs you add are scoped to this file
only.

Note : To use the construct as the type of an attribute, method return, method
exception, or as a type within another construct, you must first click Finish and
then reopen the wizard before you can use the type. The construct is not added
to the current model until you click Finish .

5. Click Next . The Files to Include Page opens.

If your component had a parent, you would specify the data object file of the
parent component in this field. For example, if the CarPolicy component inherits
from the Policy component, then you would specify the data object file for Policy
on this page. The data object files for any referenced or related components are
automatically added to the Include Files folder. For example, if the CarPolicy
interface has an attribute of type Claim, the data object file for Claim is
automatically included on this page as soon as the attribute is defined for the
interface.

6. Click Next .
Note: If the file has constructs or other interfaces defined in it, continue with
step 6; otherwise, continue with step 7.

7. The Contents Ordering Page opens. This page enables you to view the order of
elements within the IDL file. You can also change the order of these constructs
and interfaces within the file by using either the Move Up and Move Down
buttons, or the Order by Dependency button. When you are satisfied with the
order of elements, click Next.

8. The Comments Page opens. Type any comments you want to include as
comment lines in your generated IDL code.

9. Click Finish . The wizard closes, and your file is added to the User-Defined Data
Objects folder. You can now add modules or interfaces to the file.

Once you have created the file, you can modify it by selecting Properties from its
pop-up menu. The Data Object File wizard opens again, with your selections
preserved. You can change the name of the file and the construct names or their
types only if the file was not defined in another model. (If the file was defined in
another model, and you specify that model as a project dependency when you open
the current project, the project dependency model is read-only, and can be used for
inheritance purposes, and for reuse of interfaces, attribute types and constructs.)

“Data Object” on page 18

Chapter 10. Object Development Tasks 303

“Add a Business Object Module” on page 282
“Create a Data Object Interface” on page 297

Add a Data Object Module

If you plan to add multiple data object interfaces to a single file, you may want to
store the interfaces in separate modules. To add a module to a file, follow these
steps:

1. From the User-Defined Data Objects folder, select your data object file.

2. From the file’s pop-up menu, select Add Module . The Data Object Module
wizard opens to the Name Page.

3. Type a name for the module.

4. Click Next . The Constructs Page opens.

Use the Constructs pop-up menu to add constants, enumerations, exceptions,
typedefs, structures, or unions. Any constructs you add are scoped to this
module only.

Note : To use the construct as the type of an attribute, method return, method
exception, or as a type within another construct, you must first click Finish and
then reopen the wizard before you can use the type. The construct is not added
to the current model until you click Finish .

5. Click Next . The Comments Page opens. Type any comments you want to
include as comment lines in your generated code.

6. Click Finish . The wizard closes, and your module is added to the User-Defined
Data Objects folder, underneath the file.

You can now add data object interfaces to the module.

“Create a Component for New DB Data” on page 101
“Create a Data Object Interface” on page 297

Add a Data Object from a DB Persistent Object

To add a data object to a persistent object, follow these steps:

1. From the pop-up menu of the persistent object in the DBA-Defined Schemas
folder, select Add Data Object. The Add Data Object wizard opens to the
Names Page.

2. Type a name for the interface file in the Interface File Name field, or accept the
default.

3. Type a name for the data object interface in the Interface Name field, or accept
the default.

4. Type a filename for the data object implementation in the Implementation File
Name field, or accept the default.

5. Type a name for the data object implementation in the Implementation Name
field, or accept the default.

6. Click Finish .

The data object appears in the User-Defined Data Objects folder under the data
object filename you provided. The data object interface exists in the tree as a child
of the data object file, and the data object implementation exists as a child of the

304 Application Development Tools Guide

interface. The data object implementation has the persistent object as its child node
and the persistent object has the schema as its child node.

Note the following points:

v A default mapping is generated between the attributes of the data object and the
persistent object. If there are mappings generated that need a mapping helper,
Object Builder will inform you for which pairs of attributes it is required. You can
then follow these steps:

1. Select the data object implementation that was just created.

2. Select Properties from its pop-up menu. The Data Object Implementation
wizard opens.

3. Click Next , or click the arrow to the left of the page name, and select.
Attributes Mapping Page from the list. The page opens.

4. Select Map using a helper class and provide the mapping helper class and
method names for each pair of attributes.

v You can initialize the attributes of the data object interface that is created. (They
are not initialized by default.) Follow these steps:

1. Select the data object interface in the User-Defined Data Objects folder.

2. From the pop-up menu of the data object interface, select Properties . The
Data Object Interface wizard opens.

3. Click Next , or click the arrow to the left of the page name, and select
Attributes Page from the list. The page opens.

4. Select the data object attributes from the Attributes folder and type the initial
value for the attribute in the Initializer field.

“Data Object” on page 18
“Persistent Object” on page 19
“Schema” on page 20

“Work with DB Persistent Objects” on page 313
“Map Attributes Using a Mapping Helper” on page 260

“DB2 Data Type Mappings” on page 110
“Oracle Data Type Mappings” on page 113

Add a Data Object from a PA Persistent Object

To add a data object from a PA persistent object, follow these steps:

1. From the pop-up menu of the PA persistent object in the User-Defined PA
Schemas folder, select Add Data Object. The Add Data Object wizard opens to
the Names Page.

2. Type a name for the interface file in the Interface File Name field, or accept the
default.

3. Type a name for the data object interface in the Interface Name field, or accept
the default.

4. Type a filename for the data object implementation in the Implementation File
Name field, or accept the default.

5. Type a name for the data object implementation in the Implementation Name
field, or accept the default.

Chapter 10. Object Development Tasks 305

6. Click Next . The Methods Page opens. To specify methods for your interface,
select Add from the Methods folder’s pop-up menu.

The data object appears in the User-Defined Data Objects folder under the data
object filename you provided. The data object interface exists in the tree as a child
of the data object file, and the data object implementation exists as a child of the
interface. The data object implementation has the PA persistent object as its child
node and the persistent object has the PA schema object as its child node.

Note the following points:

v A default mapping is generated between the attributes of the data object and the
persistent object. If there are mappings generated that need a mapping helper,
Object Builder will inform you for which pairs of attributes it is required. You can
then follow these steps:

1. Select the data object implementation that is just created.

2. Select Properties from its pop-up menu. The Data Object Implementation
wizard opens.

3. Click the arrow to the left of the page name, and select Attributes Mapping
Page from the list.

4. Select Map using a helper class and provide the mapping helper class and
method names for each pair of attributes.

v You can initialize the attributes of the data object interface that is created. (They
are not initialized by default.) Follow these steps:

1. Select the data object interface in the User-Defined Data Objects folder.

2. From the pop-up menu of the data object interface, select Properties . The
Data Object Interface wizard opens.

3. Click Next , or click the arrow to the left of the page name, and select
Attributes Page from the list. The page opens.

4. Select the data object attributes from the Attributes folder and type the initial
value for the attribute in the Initializer field.

“Data Object” on page 18
“Persistent Object” on page 19
“Schema” on page 20

“Create a Component for PA Data” on page 115
“Work with PA Persistent Objects - Overview” on page 333
“Map Attributes Using a Mapping Helper” on page 260

Create a Data Object Interface by Importing an IDL File

If you have code already in IDL files, you can parse the code into Object Builder,
and incorporate the classes, relationships, and code in the IDL files into your Object
Builder application.

Note : The IDL must be CORBA 2.0-compliant without IDL extensions. You can
make sure the IDL files you are importing are valid by compiling them first. Object
Builder will only import IDL files that are considered valid by the compiler.

To import an existing data object interface IDL file, follow these steps:

1. Under Tasks and Objects, select the User-Defined Data Objects folder.

306 Application Development Tools Guide

2. From the folder’s pop-up menu, select Import IDL . The Import IDL wizard opens
to the IDL File Selection Page.

3. Browse for, and select the files you want to import. The files you select, and any
files they include, will be parsed and imported into Object Builder.
Note: The files will be imported under the User-Defined Business Objects folder.
You will have to delete the data object interface files from the business object
interface.

4. Click Next . The Search Paths for Nested Files Page opens.

5. From the Directories pop-up menu, select Add . Browse for the directories you
want searched.

When you import a file that includes other files (that is, a file with nested files),
the import process will search for the other files in the directories you specify
here.

6. Click Finish . The selected files (and files they include) are parsed into Object
Builder, and the information in the IDL is added to the current project model as
data object files, data object modules, and data object interfaces.

Consequences of importing an interface that has dependencies on other
interfaces
If the data object interface that you import inherits from another object - either a
business object or another data object, the interfaces of those objects are imported
into the model as well, and appear under the User-Defined Business Objects folder.

Follow these steps to complete the import process:

1. Specify the directory the parent interfaces are in, on the Include Files Page of
this wizard.

2. Delete the extraneous data object interfaces from the User-Defined Business
Objects folder (from the pop-up menu of the interface, select Delete)

3. Import the same data object interfaces again into the User-Defined Data Objects
folder.

Note: Even after you import the data object interfaces, inheritance will no longer
work because the definition of the interface changes as soon as the objects are
deleted from the User-Defined Business Objects folder. The IDL file you
generate from this interface will not contain the include statements. So, follow
step 4.

4. Open the Data Object Interface wizard and add the parent interfaces on the
Interface Inheritance Page.

Example

1. You have the following IDL files:

Chapter 10. Object Development Tasks 307

1. FileDO.idl has an interface that inherits from the test interface of the IDL file
FileDO1.idl , and another one that has an attribute of a type defined in an
interface of the file File.idl .

2. You try to import FileDO.idl (Select Import IDL from the pop-up menu of the
User-Defined Data Objects folder and specify FileDO.idl as the file to be
imported.)

3. The business object IDL file File is imported into the User-Defined Business
Objects folder, along with its three interfaces. The data object IDL file FileDO is
also imported into the User-Defined Business Objects folder, along with its
interface.

4. You must delete the FileDO1 from the User-Defined Business Objects folder.

5. Select Import IDL from the pop-up menu of the User-Defined Data Objects
folder and this time, specify FileDO1.idl as the file to be imported.

6. Open FileDO’s Data Object Interface wizard. Turn to the Interface Inheritance
Page and select interface2 and test as the parent interfaces.

7. Click Finish.

Work-around
If you have an IDL file you want imported, you know the interfaces it depends on
(the other data object interfaces it inherits from), and the other .idl files from which it
wants to use information (for example, you want to use the exceptions defined in
some business object interface IDL file), you can import the data object IDL
file without the business object interface and other supporting data object interfaces
being imported into the User-Defined Business Objects folder, if you follow these
steps:

1. Import the data object interfaces from which this interface is to inherit, before
importing the interface itself (on the IDL File Selection Page).

2. Include the business object interface IDL files which have the information
required for the interface, on the Include Files Page of the same wizard.

Note: If a data object has an interface and you create a new interface for it, when
you generate code for the data object (file level), the interface you just created will
appear last in the code. If you want the old interface to inherit from the new one,
and you specify this on the Interface Inheritance Page of the Data Object Interface
wizard, and then generate code from the data object file, Object Builder places the
definition of the new interface in the beginning, before the definition of the interfaces
that inherit from it.

308 Application Development Tools Guide

“Create a Business Object Interface by Importing an IDL File” on page 289

Edit a Data Object Interface

You can edit a data object interface, whether it was created with a business object
or created by itself.

To edit a data object interface that was created with a business object, follow these
steps:

1. From the pop-up menu of the data object interface in the User-Defined
Business Objects folder, select Properties . The Data Object Interface wizard
opens to the Name Page. You cannot change the name of the data object file,
or module. You can rename the data object interface: specify a new name in the
Name field.
Restriction: You cannot change the name of the interface if it inherits from
another.

2. Click Next . The Interface Inheritance Page opens. You can add new parents for
the interface, delete the ones specified earlier, or rename them.

3. Click Next . The Methods Page opens. Make changes as required.

4. Click Next . The Comments Page opens. Type any remarks, if required.

5. Click Finish . The changes you made to the interface are saved and can be
viewed later by examining the same wizard using the same option from the data
object interface’s pop-up menu.

Note the following points:

v To ensure that valid code is generated after a rename, use Generate - All
instead of Generate - Selected from the pop-up menu of the object.

v If the data object has dependent objects such as a business object, key, or copy
helper, and you change an attribute of the data object, you must make the
change in the dependent objects as well. For each of the objects, follow these
steps:

v

–

1. Open the object’s wizard.

2. Click Finish .

To edit a stand-alone data object interface, follow these steps:

1. From the pop-up menu of the data object interface in the User-Defined Data
Objects folder, select Properties . The Data Object Interface wizard opens to
the Name Page. You can rename the data object interface if it does not inherit
from another.

2. Click Next . The Interface Inheritance Page opens. You can add new parents for
the interface, delete the ones specified earlier, or rename them.

3. Click Next . The Attributes Page opens. You can add new attributes for the
interface, or delete or rename the ones specified earlier.

Note the following points:

v You can only access the Attributes Page when you are viewing the properties
of the data object interface from the User-Defined Data Objects folder.

Chapter 10. Object Development Tasks 309

v If there is a data object implementation created from this data object interface
follow these steps to refresh the model after you modify the interface in any
way:

a. From the pop-up menu of the data object implementation, select
Properties. The Data Object Implementation wizard opens to the Name
and Platform Page.

b. Click Finish, or turn to any other page of the wizard and clickFinish.

4.

v If there is a persistent object associated with the data object that has a
mapping defined between the attributes of these objects, and you change any
of the data object’s attributes, these attributes lose the defined mapping. You
will either have to remap the attributes of the data object to those of the
persistent object (on the Attributes Mapping Page of the Data Object
Implementation wizard), or you can delete the persistent object and schema,
and create a new one, which will automatically use the changed attributes.

5. Click Next . The Methods Page opens. Add new methods or make changes as
required.

6. Click Next . The Comments Page opens. Type any remarks, if required.

7. Click Finish . The changes you made to the interface are saved and can be
viewed later by opening the same wizard using the same option from the data
object interface’s pop-up menu.

Whichever data object interface you are editing, if you want to change the order of
the file’s contents (modules, interfaces and constructs within the file), follow these
steps:

1. Open the data object file’s wizard.

2. Click the arrow to the left of the page name, and select Contents Ordering Page
from the list.

3. Move elements into the new order.

4. Click Order by Dependency to validate the new order.

5. Click Finish .

“Data Object” on page 18
“Dependencies within an IDL File” on page 129

“Work with Data Objects - Overview” on page 296

Edit a Data Object Implementation

To edit a data object implementation, follow these steps:

1. Select the data object implementation in either the User-Defined Business
Objects folder or the User-Defined Data Objects folder. From its pop-up menu,
select Properties. The Data Object Implementation wizard opens to the Name
and Platform Page. Change the names of the data object implementation’s file,
interface, or module, if you want to. You can also specify a different
combination of deployment platforms.
Restriction: You cannot change the names of the objects if the
implementation inherits from another.
Note: To ensure that valid code is generated after a rename, use Generate -
All instead of Generate - Selected from the pop-up menu of the object.

310 Application Development Tools Guide

2. Click Next to turn to the Behavior Page.

3. You can modify the type of implementation. You can select to test your
business object either in a distributed environment, or as a stand-alone. Select
one of the different options in the Environment (page 31) section.

4. You can change the data object behavior and its implementation in the Form of
Persistent Behavior and Implementation (page 32) section of the same page.
All options in this section are available for selection only if you have selected
BOIM with any key in step 3.
390 All Cache Service options are not available when the target platform is
OS/390.

5. The choices available in the next section, Data Access Pattern (page 34)
section are determined by your selection of the form of persistent behavior and
implementation in step 4. The access pattern is either Delegating or Local
copy .

6. Select the handle for storing references to objects in the Handle for Storing
Pointers (page 35) section.

7. Click Next . The Implementation Inheritance Page opens. You can specify new
parent classes for the implementation to inherit from, or delete existing ones.

8. Click Next . The Attributes Page opens. You can use this page to add more
attributes for the data object. These attributes will be specific to this
implementation.

9. Click Next . The Methods Page opens. Here, you can add
implementation-specific methods for the data object.

10. Click Next . The Select Key and Copy Helper Page opens. Select a different
key and copy helper, if necessary.

Note: If you selected BOIM with any key in step 3, and there is at least one
persistent object in the model that has the same type of persistence as that for
the implementation, which you specify in step 4, the Associated Persistent
Objects Page is added to the wizard, and you can follow steps 11 through 15;
if not, continue with step 14.

11. Click Next. The Associated Persistent Objects Page opens. You can specify
new persistent object instances that are to be stored as protected members of
the data object implementation, and edit or delete existing ones.

12. Click Next. The Attributes Mapping Page opens. You can specify or change
the mapping between the data object attributes and the persistent object
attributes.

13. Click Next. The Methods Mapping Page opens. For each of the special
framework methods associated with the implementation, you can specify the
persistent object methods that it calls. You can change the mappings by
adding new persistent object methods, deleting existing ones or changing the
order of the methods in the tree. Their order determines the order in which
they are called.

Note: If you have associated any PA persistent objects with this
implementation, this page has the User-Defined Methods folder as well. This
folder contains methods you defined at the data object interface level. If you
want to call your own methods at the end of a Procedural Adaptor session for
some clean-up work, you can map each of these methods to the
corresponding push-down method of the persistent object.

14. Click Next. The Summary of Framework Methods Page opens. This page
shows you the framework methods that Object Builder implements for this data
object implementation. You cannot edit this page.

Chapter 10. Object Development Tasks 311

15. Click Finish . The data object implementation appears in the Tasks and Objects
pane, with the changes to its properties.

Note: If there is no persistent object associated with the data object, none of the
special framework methods will have implementations. You can add code for
methods you want to implement, or for those for which you do not want to use the
implementation provided by Object Builder.

“Data Object” on page 18
“Persistent Object” on page 19
Application Adaptor (Programming Guide)
Data Object Customization for Cardinality Relationships (Programming Guide)
Object Relationships (Programming Guide)
Data Object Customization (Storage Options) (Programming Guide)
“Container” on page 345
“Home” on page 342
“State Data” on page 18
Using Handles (Programming Guide)
Naming Service (Advanced Programming Guide)
Cache Service (Advanced Programming Guide)
“Special Framework Methods” on page 24
“Framework Methods” on page 24
Using Sets of Objects (Using Reference Collections) (Programming Guide)

“Work with Data Objects - Overview” on page 296
“Add a Persistent Object and Schema” on page 313
“Customize Referential Integrity” on page 108
“Create a Container Instance” on page 346
“Configure a Managed Object” on page 377
“Work with Methods ” on page 267
“Add Code for User-Defined Methods” on page 267
“Add endResource() to a Sessional Business Object” on page 117

“Data Object Implementation Inheritance” on page 36

Delete a Data Object Interface

To delete a data object interface, follow these steps:

1. If there is a data object implementation created for the data object, you must
first delete the implementation before you can delete the data object interface.

2. Select the data object interface in either the User-Defined Business Objects
folder or the User-Defined Data Objects folder.

3. From the pop-up menu of the data object interface, select Delete . The interface
is deleted from both folders.

“Data Object” on page 18

“Work with Data Objects - Overview” on page 296

312 Application Development Tools Guide

Delete a Data Object Implementation

To delete a data object implementation, follow these steps:

1. Select the data object implementation in either the User-Defined Business
Objects folder or the User-Defined Data Objects folder.

2. From the pop-up menu of the data object implementation, select Delete .

Note : If the data object implementation has a persistent object and schema
associated with it, these objects are deleted as well from these folders. However,
the persistent object and schema still exist in the DBA-Defined Schemas folder.

“Data Object” on page 18

“Work with Data Objects - Overview” on page 296

Work with DB Persistent Objects

DB persistent objects are defined in the DBA-Defined Schemas folder. A DB
schema is created when you import an SQL DDL file into Object Builder. You can
create multiple DB persistent objects for every DB schema. You can also create
multiple data objects from the DB persistent object. Further, you can also associate
a DB persistent object with a data object implementation, or create a DB persistent
object and its associated schema from the implementation.

The following tasks deal with DB persistent objects:

v “Add a Persistent Object and Schema”

v “Add a Persistent Object from a DB Schema” on page 316

v “Edit a DB Persistent Object” on page 317

v “Add a Data Object from a DB Persistent Object” on page 304

v “Map a Data Object to a DB Persistent Object” on page 251

v “Delete a DB Persistent Object” on page 317

“Persistent Object” on page 19
“Schema” on page 20
“DDL” on page 114

Add a Persistent Object and Schema

Once you have added a data object implementation to the data object interface, you
can either create schemas and persistent objects for the implementation, or map
existing persistent objects and schemas to the implementation.

To create a schema and a persistent object, follow these steps:

1. From the User-Defined Data Objects folder, select the data object
implementation for which you want to create the persistent object.

Chapter 10. Object Development Tasks 313

2. From the data object implementation’s pop-up menu, select Add Persistent
Object and Schema . The Add Persistent Object and Schema wizard opens to
the Names Page.

a. Type a name for the group.

Note: Group names can contain only alphanumeric characters, the blank
space, and the underscore, and they are case sensitive.

b. Type a name for the database file.

Note the following points about database names:

v They must not exceed 8 characters.

v They can contain any of the following characters: the letters a-z and A-Z,
0-9, #, @, $.

v The first character of the name must be an alphabetic character, or one of
#, @, or $. They must not contain must not contain
characters from European or Asian character sets (for example, umlauts
are not allowed).

v They are not case sensitive.

c. Type the table name, or accept the default.

d. Type the user name.

e. Type a name for the schema file, or accept the default.

Follow these rules when you name a DB schema:

v The name must not exceed 18 characters for DB2; 30 characters for
Oracle.

v All alphanumeric characters from your database character set and the
characters _, $, #, @ are allowed. Characters include those from DBCS
or European sets (including umlauts).

v There’s no case sensitivity for names containing these characters, unless
they are surrounded by double quotation marks.

v Non-alphanumeric names must be enclosed in double-quotes, and their
case is maintained internally.

f. If you had selected Embedded SQL as the type of persistence, you must
type a name in the Package File field, or accept the default.

Note: The name of the package file must not exceed 8 characters. It must
be unique for each of the persistent objects that you create, if they are to
operate under the same server at run time.

You can either type the names for the persistent object class and instance,
or accept the default names. The persistent object class name must not
exceed 8 characters.

390 If OS/390 is one of the deployment platforms for the data object
implementation, the persistent object class name must not exceed 8
characters. Object Builder validates the length of the persistent object class
when you create a persistent object from a data object implementation, but if
you change the deployment platform after you have created the persistent
object, be sure that you follow the rule. If not, Object Builder will truncate the
name to the 8.3 format. This may result in two persistent object file names
becoming identical after truncation, since Object Builder assumes the
object’s file name to be the same as the persistent object class name.

Note: A schema must have a database key specified.

3. Click Next . The Attributes Mapping Page opens. Here, you can map attributes
of the data object to those of the persistent object. You can also change the
names of the attributes of the persistent object and the corresponding columns

314 Application Development Tools Guide

of the schema, and their data types, and specify the persistent object keys if
necessary, and the database keys for the table.
Note: The persistent object attribute name must not exceed 26 characters in
length.

4. Click Next . The Columns and Attributes Page opens. Use this page to view the
mapping between the schema and the persistent object.

5. Click Next . The Comments Page opens. Use it to save any comments about
the schema, any of the schema columns, or the persistent object.

The persistent object is automatically associated with the data object
implementation: the persistent object instance is added to the folder on the
Associated Persistent Objects Page. Object Builder provides the default mapping of
both attributes and methods of the data object to the persistent object. You can
change the default mappings.

The persistent object appears as a child of the data object implementation, and the
schema appears as a child of the persistent object in both the User-Defined
Business Objects folder and the User-Defined Data Objects folder. In the
DBA-Defined Schemas folder, the schema exists (with its persistent object child)
outside in the schema group you named.

Restriction: Even if there is a key defined for a business object and it is
designated as a foreign key, when you create a persistent object and schema for a
business object referenced by the other object, it will not automatically create a
foreign key in the schema.

Note: In some RDBMS configurations, the .sql files that Object Builder generates
from the schemas must be processed by a database administrator using a design
tool such as Logic Works’ ERWin version 3.5 or 3.0, before they can be used to
create tables in the database catalog. In others, you may be able to bypass the
design tool, and instead use command line or other procedures to populate the
database catalog.

Example:

v In the DB2 NT 5.0 single-user environment, you can use the following sequence
of commands from the DB2 command window:
db2 connect to “name of working database”
db2 -t -f “SQL filename with the path”

v In Oracle 8.0.4.0 script center, you can import the .sql files.

ERWin 3.0 does not support the following database systems that ERWin 3.5
supports:

v DB2 / 390 5

v DB2 / CS 2

v DB2 / UDB 5

v Oracle 8.x

If you are using ERWin 3.0 or 3.5 to generate SQL files to be imported into Object
Builder, you cannot use the default options provided by ERWin for the Oracle
DBMS. In ERWin, when you select Tasks - Forward Engineer/Schema
Generation , you must change the Referential Integrity Options for the Primary Key
and Foreign Key to use the CREATE statements instead of the ALTER statements.

Chapter 10. Object Development Tasks 315

“Persistent Object” on page 19
“Schema” on page 20

“Work with DB Persistent Objects” on page 313
“Work with DB Schemas” on page 320
“Add a Data Object Implementation” on page 299
“Map a Data Object to a DB Persistent Object” on page 251
“Edit a DB Schema” on page 329
“Edit a Generated SQL File” on page 331
“Create a Component for New DB Data - Scenario” on page 102

“DB2 Data Type Mappings” on page 110
“Oracle Data Type Mappings” on page 113

Add a Persistent Object from a DB Schema

To add a persistent object to an existing schema, follow these steps:

1. From the DBA-Defined Schemas folder, select the schema to which you want
to add a persistent object.

2. From the schema’s pop-up menu, select Add Persistent Object . The Add
Persistent Object wizard opens.

3. Type a name for the persistent object in the Name field.

4. Change the setting of the Table is updatable check box, if you want. Your
selection determines if the schema is read-only or if it can be updated. For
schemas, this check box is selected by default; for views, it is not selected.

5. Select DB2 Cache Service or Embedded SQL to specify the type of
persistence for the object.

6. If you select Embedded SQL , you must type a name for the package file, or
accept the default.

7. Indicate whether a particular schema column is to be mapped to the
corresponding persistent object attribute: click the Mapped field and select the
check box for the column.

Restriction: You must map all schema columns to their corresponding
persistent object attributes; otherwise you may get exceptions thrown at run
time if you use the Query Service.

8. Modify the name of the persistent object attribute, if required.

9. Specify whether a schema column’s corresponding persistent object attribute is
to be the key for the persistent object by selecting the PO Key check box for
the column.

10. Click Next . The Comments Page opens. Use it to add any comments about
the persistent object.

Restrictions:

v If your schema uses Oracle Cache service, you can create a persistent object
from it only if the schema columns are of the NUMBER or VARCHAR2 data types, or
any of the IBM DB2 data types.

316 Application Development Tools Guide

v Even if there is a key defined for a business object and it is designated as a
foreign key, when you create a persistent object and schema for a business
object referenced by the other object, it will not automatically create a foreign key
in the schema.

“Persistent Object” on page 19
“Schema” on page 20
Cache Service (Advanced Programming Guide)
Query Service (Advanced Programming Guide)

“Create a Component for Existing DB Data” on page 104
“Create a DB Schema by Importing an SQL File” on page 321
“Add a Persistent Object and Schema” on page 313
“Work with DB Persistent Objects” on page 313
“Add a Data Object from a DB Persistent Object” on page 304

“DB2 Data Type Mappings” on page 110
“Oracle Data Type Mappings” on page 113

Edit a DB Persistent Object

To modify a persistent object, follow these steps:

1. Select the persistent object in the Tasks and Objects pane.

2. From its pop-up menu, select Properties .

3. The Persistent Object wizard opens to the Persistent Object Page. You can
rename the persistent object and provide a new name for the package file. In
the panel, you can rename the persistent object attribute: double-click in the
field, and type in the new name. You can also specify different persistent object
attributes as the keys for the object. Click in the PO Key field, and select or
clear the check box.

Restriction: A persistent object attribute name cannot exceed 26 characters in
length.

4. Click Next if you want to change any comments about the persistent object.

Note: To ensure that valid code is generated after a rename, use Generate - All
instead of Generate - Selected from the pop-up menu of the object.

“Persistent Object” on page 19
“Schema” on page 20

“Work with DB Persistent Objects” on page 313
“Edit a DB Schema” on page 329

Delete a DB Persistent Object

To delete a DB persistent object, follow these steps:

1. Select the persistent object from either the User-Defined Business Objects
folder, the User-Defined Data Objects folder, or the DBA-Defined Schemas
folder.

Chapter 10. Object Development Tasks 317

2. From the pop-up menu of the persistent object, select Delete .

If the persistent object is not connected to a data object implementation, it is
deleted from the DBA-Defined Schemas folder.

If the persistent object is associated with a data object implementation, the following
deletions take place:

v the persistent object and its underlying schema are deleted from the
User-Defined Business Objects folder and the User-Defined Data Objects folder.

v the persistent object is deleted from the DBA-Defined Schemas folder

“Persistent Object” on page 19

“Work with DB Persistent Objects” on page 313

Work with DB Schema Groups

All DB schemas in Object Builder exist in schema groups for organizational
purposes.

The following tasks deal with schema groups:

v “Create a DB Schema Group”

v “Edit a DB Schema Group” on page 319

v “Re-import an SQL File” on page 330

v “Delete a DB Schema Group” on page 320

“DDL” on page 114
“Schema” on page 20
“Schema Group” on page 20

Create a DB Schema Group

You can create a schema group in Object Builder in the following ways:

v by specifying the name of the schema group when you add a persistent object
and schema (page 313) for a data object implementation

v by specifying the name of the schema group when you create schemas by
importing an SQL file (page 321) into Object Builder

v by selecting Add Schema Group from the pop-up menu of the DBA-Defined
Schemas folder

To create an empty schema group, follow these steps:

1. From the pop-up menu of the DBA-Defined Schemas folder, select Add
Schema Group . The Schema Group wizard appears open to the Schema
Group Name Page.

2. Type a name for the schema group in the Schema Group Name field.

3. Type a name of the database to be associated with this schema group in the
Database Name field.

318 Application Development Tools Guide

4. Select the type of the relational database backend for which you are creating
the schema group. You can select either DB2 or Oracle .

Keep the following points in mind:

v Whenever you create a schema group in Object Builder, along with the schema
group name, you must specify the name of the database to be associated with
the schema group.

v You can import SQL files into any of the existing schema groups.

“DDL” on page 114
“Schema” on page 20
“Schema Group” on page 20

“Work with DB Schema Groups” on page 318

Edit a DB Schema Group

You can edit a schema group by editing either the properties of the group or its
contents.

To edit the properties of a schema group, follow these steps:

1. From the pop-up menu of the schema group, select Properties .

2. The Schema Group wizard opens to the Schema Group Page.

3. You can rename the group and the database to be associated with the group.
The name of the group must be unique.

4. In the File to Open in Editor section, indicate the file you want to view when
you use the Open in Editor option from the pop-up menu of either the schema
group, or any schema within the group. You can change it from the source file
(the original SQL DDL file that was imported), which is the default, to the
generated file, which is the SQL file that Object Builder generates (when you
select Generate from the pop-up menu of the schema group).
Note the following points:

v Generated is the only option available for schema groups that are created
top-down.

v For a schema group, using Generate - Selected is the only way to emit a
.sql file for the group.

v The generated file exists in the working directory and has the same name as
the name of the schema group. If you want to preserve these generated files,
you must rename the existing generated file before you select the Generate
option from the schema group’s pop-up menu. This is particularly important if
you want to re-import the SQL source file and this file exists in the working
directory, and has the same name as the group. You can re-import an SQL
file using the Statements to Import Page of the Import SQL DDL File wizard.

New and existing schemas within the group will be associated with the new
database name.

The following tasks deal with editing the contents of a schema group:

v “Create a DB Schema by Importing an SQL File” on page 321

v “Re-import an SQL File” on page 330

Chapter 10. Object Development Tasks 319

v “Create a View with the SQL View Editor” on page 324

v “Edit a View with the SQL View Editor” on page 325

“DDL” on page 114
“Schema” on page 20
“Schema Group” on page 20

“Create a Component for Existing DB Data” on page 104
“Work with DB Schema Groups” on page 318
“Work with DB Schemas”

Delete a DB Schema Group

To delete a schema group, follow these steps:

1. Delete any schemas belonging to another group that reference schemas within
this group.

2. From the DBA-Defined Schemas folder, select the schema group.

3. From the pop-up menu of the schema group, select Delete . You get a warning
message informing you that if you delete the group, any associated persistent
objects that are contained within that group will be deleted as well.

4. To continue with the deletion process, click Yes. The entire schema group is
removed from the DBA-Defined Schemas folder, and any schemas and their
persistent objects that were members of the group are deleted from the
User-Defined Business Objects folder and the User-Defined Data Objects folder
as well.

“Schema” on page 20
“Schema Group” on page 20“Persistent Object” on page 19

“Work with DB Schema Groups” on page 318
“Work with DB Schemas”

Work with DB Schemas

A schema is a structural and behavioral composition that defines data storage and
data access mechanisms within the database. A schema is always related to
storage. A persistent object is usually associated with the schema, and provides
persistence of the data beyond the execution time of the application that
instantiated the object.

A schema can be created based on a data object, or it can be created from the
database definitions stored in a DDL file.

The following tasks deal with DB schemas:

v “Add a Persistent Object and Schema” on page 313

v “Create a DB Schema by Importing an SQL File” on page 321

v “Create a View with the SQL View Editor” on page 324

320 Application Development Tools Guide

v “Use Complex Relationships in SQL Clauses” on page 326

v “Edit a View with the SQL View Editor” on page 325

v “Edit a View” on page 328

v “Edit a DB Schema” on page 329

v “Edit a Generated SQL File” on page 331

v “Delete a DB Schema” on page 333

“Schema” on page 20
“Persistent Object” on page 19

a
“Add a Persistent Object and Schema” on page 313
“Add a Persistent Object from a DB Schema” on page 316“Edit a DB Schema
Group” on page 319
“Edit a DB Schema” on page 329

Create a DB Schema by Importing an SQL File

When you import an SQL DDL file, you import the description of the database
schema as it is defined in a relational database. Schemas imported from an SQL
file exist in Object Builder within a schema group.

The DDL file is an ASCII file containing SQL statements that describe the schema.
A schema can have tables. Each row must be uniquely identifiable: each table must
have a unique primary key. A row of a table (or of a view) is represented as a single
persistent object instance. All rows in the table can be represented by a single
persistent object class but each row is a separate instance of that class.

Restrictions:

v This release supports SQL DDL files for Oracle 8.0.4.0 and DB2 MVS 4.1
databases, and tolerates UDB V5 syntax. This means that you may not be able
to import 5.0 DDL, but if you have a DDL file containing 4.1 DDL with a few
5.0-specific lines, you will be able to import the 4.1 DDL lines from that file.

v SQL files larger than 2M are not recommended.

To import an existing DDL file, follow these steps:

1. From the pop-up menu of DBA-Defined Schemas folder or the schema group,
select Import SQL . The Import SQL DDL File wizard opens to the SQL File
Selection Page.

2. Type the name of the DDL file (.sql file) or click Find to specify the path and
select from a list of files.
Note: It is recommended that the SQL source file be placed in a directory other
than the Working directory. This is to avoid having the file overwritten when you
select either Generate - Selected or Generate - All from the schema group’s
pop-up menu.

3. Type a name for the database to be associated with the schema being imported
or accept the default in the Database Name field.

4. Type a name for the group to contain the schemas being imported or accept the
default in the Group Name field. The schemas appear in the DBA-Defined
Schemas folder beneath the the group.

Chapter 10. Object Development Tasks 321

5. Click Next . The Statements to Import Page opens with all the SQL statements
in the imported file selected for parsing. To deselect all the statements, click
Deselect All . You can select the specific ones you want parsed. Multiple
selections are possible. To select all the statements, click Select All .

Note: At least one CREATE TABLE statement must be selected for the import
process to succeed.

Restriction: Currently, the only SQL statements supported are DROP, CREATE
TABLE, CREATE VIEW, ALTER TABLE, and COMMENT ON. None of these
statements must contain expressions or column functions. The CREATE VIEW
statement must contain only a simple query (SELECT statement). Currently there
is no support for unnamed columns, expressions, functions, or sub-selects in
CREATE VIEW.

6. Click Finish. Schemas thus imported into Object Builder, appear in the
DBA-Defined Schemas folder, within a group that gets its name from the .sql
file.

Note: You can re-import a schema group to include different tables, or to modify or
delete existing tables. To do so, follow these steps:

1. Select the schema group in the DBA-Defined Schemas folder. From the pop-up
menu of the schema group, select Import SQL. The Import SQL DDL File wizard
opens to the Statements to Import Page.

2. All the SQL statements in the imported file are selected for parsing. To deselect
all the statements, click Deselect All . You can select the specific ones you want
parsed. Multiple selections are possible. To select all the statements, click
Select All . The schema group is overwritten.

Importing an SQL file is the first step in the bottom-up scenario, when you can
reuse existing data. The scenario continues with the following steps:

1. Using the schema information, create a persistent object.

2. Create a data object that corresponds to the persistent object.

3. Create a business object and select the data object (created in step 2) to be
used by the business object. The data object uses the mapping information you
provide when you select it, to manage the business object’s persistent state.

Restrictions:

v Double-Byte Character Set (DBCS) is not supported for the English version of
Component Broker.

v A table that is associated with a schema of one schema group cannot reference
a foreign key defined in a table within another schema group.

v Most views are read-only but some can be updated. The Embedded SQL
preprocessor (idatapre) will fail on any .sqx file generated from an embedded
static persistent object, which you create for a read-only view in the database.

If you detect that a view is read-only (at DLL build time), for each of the special
framework methods insert(), update() and del() in the Methods pane, follow these
steps:

1. From the pop-up menu of the method, select Properties . The Method
Implementation wizard opens to the Implementation Page.

2. Select the option Use the implementation defined in the editor pane , and
make sure the method body is empty.

For example,

322 Application Development Tools Guide

void insert()
{
}

v Object Builder lets you import schemas for which no primary keys have been
defined. However, these schemas can result in exceptions thrown at run time if
you use Query Services. To avoid this happening, you can follow any one of
these steps:

1. After you import the SQL file, select Properties from the pop-up menu of the
schema, and select any of the schema columns as the database key. (Select
the DB Key check box.)

2. Before you import the SQL file, edit the source file and add a PRIMARY KEY
constraint for at least one of the tables.

3. Edit the primaryKey entry in the table MappedType.tablename_Table, in the
System Management Data Definition Language (SM DDL) file generated from
the Application Family. This file’s primary name will have the term Specific
before the family name you specified and its extension will be .ddl. For tables
that do not have at least one primary key defined, the primaryKey entry will
be void (“”). Edit it to include the names of all the table columns that
comprise the primary key you want to define. For example, if you want to
indicate that the columns COMP, PLAT, SEQ and ATTEMPT comprise the primary
key, this would be the entry: primaryKey =
“\”COMP\“,\”PLAT\“,\”SEQ\“,\”ATTEMPT\“”;

“DDL” on page 114
“Schema” on page 20
“Persistent Object” on page 19
“Special Framework Methods” on page 24

“Create a Component for Existing DB Data” on page 104
“Work with DB Schemas” on page 320
“Work with DB Persistent Objects” on page 313
“Edit a DB Schema Group” on page 319
“Edit Special Framework Methods” on page 271
“Generate Code” on page 363

SQL View Editor

The SQL View Editor is a tool that enables you to create and modify views from
within Object Builder. You can invoke it from the pop-up menu of a schema group in
the DBA-Defined Schemas folder when you want to create a view, or from the
pop-up menu of a view when you want to edit the view.

The View Editor has the following notebook pages:

v View Properties

v View Work Area

v View Summary

View Properties
This page enables you to provide identification for the view you are adding. You can
review details about the view, and edit any comments you added when you created
the view, when you use the Editor to edit a view.
View Work Area

Chapter 10. Object Development Tasks 323

This page is where most of your interaction with the View Editor takes place. This
area is further subdivided into the following panes:

v Schemas : This pane lists the schemas that belong to the schema group. In the
Graphic view, it also shows foreign key relationships among the schemas.

v Columns : This pane lists the columns of the schema that you select in the
Schemas pane. You can select columns these columns for inclusion in SQL
clauses.

v Clauses : This pane enables you to construct or modify clauses to define the
view, with the columns you select. It is further divided into the following panes for
defining the clauses:

– Selected Columns

– Where

– Group By

– Having

View Summary
Use this section to view the SQL code for the different clauses you defined using
the Clauses pane in the View Work Area . You can view the code either as a single
SQL statement, or clause by clause.

“Schema” on page 20
“Schema Group” on page 20

“Create a View with the SQL View Editor”
“Edit a View with the SQL View Editor” on page 325
“Use Complex Relationships in SQL Clauses” on page 326

Query Service

Create a View with the SQL View Editor

To create an SQL view in Object Builder, follow these steps:

1. Select the schema group from which you want to create the view, in the
DBA-Defined Schemas folder.
Note: The schema group must contain the schemas from which you want to
create the view.

2. From its pop-up menu, select Add SQL View . The SQL View Editor opens.

3. Click the View Properties tab of the editor. On the View Properties Page, type
a name for the view, and optionally specify a userid and add any comments.

4. Click the Selected Columns tab of the Clauses pane.

5. Select a schema to be used for the view in the Schemas pane. The schema
columns and their details appear in the Columns pane.

6. Select the columns you require for the view from the Columns pane. As you
select each column, the column name and the table it belongs to appear in the
Selected Columns Page.

7. Repeat steps 4, 5 and 6 for each of the schemas whose columns you want to
include in the view.

324 Application Development Tools Guide

8. Click the Where tab of the Clauses pane. On the Where Page, you can
specify conditions that have to be met by the various schema columns, for
inclusion in the view.

9. Click the Group By tab of the Clauses pane. On the Group By Page, you can
specify the columns, based on whose values the order of occurrence of the
view’s rows is determined: Click the Select All button. All columns that you
specified as selected columns on the Selected Columns Page are set as the
grouping columns. The first grouping column determines the initial grouping.
Subsequent grouping columns are used to resolve the order of the rows when
there is a tie within a group of rows formed by its predecessor.

Note: You cannot select a subset of the selected columns to group the view
by. You have to use the Select All button.

10. Click the Having tab of the Clauses pane. On the Having Page, you can apply
a qualifying condition to the groups created with the GROUP BY clause. Only
those groups that meet the HAVING condition are included in the view.
Note: From the Where Page and the Having Page, you can bring up the
Organize Logical Combination dialog box, where you can manually arrange the
predicates to be combined for the view.

11. Click the View Summary tab to open the View Summary Page of the Clauses
pane. Use this page to view the SQL clauses you defined for the view.

12. When you have finished reviewing your definition, click Finish .

The view appears in the schema group in the DBA-Defined Schemas folder.

“Schema” on page 20
“Schema Group” on page 20

“Create a DB Schema Group” on page 318
“Edit a View with the SQL View Editor”

Edit a View with the SQL View Editor

To edit an SQL view in Object Builder, follow these steps:

1. Select the view in the DBA-Defined Schemas folder.

2. From its pop-up menu, select SQL View Editor . The SQL View Editor opens.

3. Click the View Properties tab. You cannot change the name and userid of
the view. However, you can modify the comments on the View Properties
Page.

4. Click Next , or click the View Work Area tab. Columns of the view appear in the
Selected Columns page of the Clauses pane. As you select the different
schemas in the Schemas pane, their schema columns and corresponding
details appear in the Columns pane. To add a new column to the view, click on
it in the Columns pane. To remove a column from the view, right-click on any
field in column’s row in the Clauses pane, and select Remove from the pop-up
menu. To rename a view column, right-click on the name in the View Column of
the Selected Columns page, and select Change Value from the pop-up menu.
The Change Column Name dialog box appears, and you can type a new name
in the field.
Note: On all the other pages of this pane, you can view the previous settings
and make changes if you want. To remove an entry in a field on either the
Where Page or the Having Page, right click in the field and select Remove . To

Chapter 10. Object Development Tasks 325

specify a new entry for the Table/Column field in the predicate section, select
the column from the Columns pane; to specify a new entry in the search
conditions’ Table/Column section, first click in the field, and then, select a
column from the Columns pane.

5. Click the Where tab of the Clauses pane. On the Where Page, you can view
the conditions that were previously set for the various schema columns, for
inclusion in the view.

6. Click the Group By tab of the Clauses pane. On the Group By Page, if no
GROUP BY clause had been specified for the view, you can specify the columns,
based on whose values the order of occurrence of the view’s rows is
determined: Click the Select All button. All columns that you specified as
selected columns on the Selected Columns Page are set as the grouping
columns. If the view’s previous definition included a GROUP BY clause, the only
modification you can make on this page is to deselect all grouping columns:
click on Clear All . The view will not have an orderly grouping for its rows.

7. Click the Having tab of the Clauses pane. On the Having Page, you can apply
a qualifying condition to the groups created with the GROUP BY clause. Only
those groups that meet the HAVING condition are included in the view.

Note: From the Where Page and the Having Page, you can bring up the
Organize Logical Combination dialog box, where you can manually arrange the
predicates to be combined for the view.

8. Click the View Summary tab to open the View Summary Page of the Clauses
pane. Use this page to view the SQL clauses you redefined for the view.

9. When you have finished reviewing your definition, click Finish.

The view will be redefined according to your modifications.

“Schema” on page 20
“Schema Group” on page 20

“Create a DB Schema Group” on page 318
“Create a View with the SQL View Editor” on page 324

Use Complex Relationships in SQL Clauses

In the SQL View Editor, you can specify conditions or relationships that must exist
among rows of the various schemas, for them to be included in the view. You can
do this on the Where Page and the Having Page of the Clauses pane. These
conditions are also called predicates, and they can be combined in the following
ways:

v All predicates must be satisfied (“AND”)

v At least one predicate must be satisfied (“OR”)

v A more complex arrangement of “AND”, “OR” and “NOT” conditions must be
satisfied

Each of these conditions can be expressed by selecting the corresponding button
(And , Or, or Use Complex Relationships) at the bottom of the page. Whichever
condition you specify, you can see a graphical representation of the logic behind the
condition by clicking the Edit Conditional Relationships button.

326 Application Development Tools Guide

To add a complex condition to the SQL clause when creating or editing a view,
follow these steps:

1. Click the Edit Conditional Relationships button.
The Organize Logical Combination dialog opens. Each predicate is represented
by either an entry in the list box on the left, or by a rectangle in the graph on
the right. Predicates in the list box do not belong to any logical combination;
those in the graph do.

2. You can manually change the logical combination of the predicates in the graph
view by doing one of the following tasks:

v Adding a predicate to the graph

v Removing a predicate from the graph

v Negating a predicate

v Negating a combination of predicates

To add a predicate to the graph, follow these steps:

1. Select the predicate from the list in the left-hand frame. The statement of the
predicate appears below the list box.
Note: If there are any other elements in the graph, you must select at least one
with which the new predicate will be combined. For example, if you choose
predicate ’A’ from the list, and then choose predicate ’B’ from the graph, you are
then allowed to combine ’A’ with ’B’, with either an “AND” condition or an “OR”
condition. You may choose as many predicates from the graph as you wish, and
the editor will add the new predicate according to the combination you
requested.

2. Once you have selected the predicates, you can select one of two buttons
below the list box: Add as And>> and Add as Or>> . Your selection determines
how the new predicate will be combined with the selected ones.

To remove a predicate from the graph, follow these steps:

1. Select the predicate with the mouse.
Note: As you move the mouse over a predicate in the graph, the text of the
predicate appears.

2. Click the <<Remove button.

Notice the following indications on the graph:

v To the left of each predicate is a white NOT indicator. You can use it to negate a
condition. As you move the mouse over this symbol, a red outline appears
around the predicate. This implies that the NOT operator is associated with that
predicate. Click the NOT operator to negate the predicate indicated by the
rectangle. Once a predicate is negated, its associated NOT operator appears
red.

v To the left of each combination of predicates, there is also a yellow tilde. When
you move the mouse over this tilde, a red outline appears around the entire
logical combination.

To negate a predicate (specify “NOT” conditions), follow these steps:

1. Move your mouse over the predicate and click the NOT operator closest to it.
The yellow tilde turns red, indicating that the predicate is negated.

To negate a logical combination, follow these steps:

1. Move your mouse over the combination of predicates and click the outermost
NOT operator. The yellow tilde turns red, indicating that the combination as a

Chapter 10. Object Development Tasks 327

whole is negated. For example, if the combination shows ’A’ AND ’B’, then by
selecting the tilde for this combination, it becomes NOT (’A’ AND ’B’).

Note: When you close the dialog, one of the radio buttons: And , Or, or Use
Complex Relationships will be selected according to the state of the arrangement.
If Use Complex Relationships is selected, it implies that one of the following
conditions exists in the arrangement:

v There are predicates left in the list box that are not yet placed in combination

v The picture in the graph is a combination of AND, OR and NOT conditions, and
cannot be reflected using either a simple AND or a simple OR combination.

“Create a View with the SQL View Editor” on page 324
“Edit a View with the SQL View Editor” on page 325

Edit a View

You can modify a view that exists in Object Builder using the Schema Page of the
Schema wizard the same way you modify a schema in Object Builder.

To change the identification for a view, follow these steps:

1. In the DBA-Defined Schemas folder, select the view. From the pop-up menu of
the view, select Properties . The Schema Page opens.

2. You can modify the user ID, table name and schema filename.

3. Click Finish .
A new, stand-alone view is created only when the old view is referenced under
another view. If the view is not under another view, it is renamed. So, even a
view that has associated persistent objects will be renamed, not copied. A copy
of the view, with the new name and properties is created only for views that are
under other views.

Note: To ensure that valid code is generated after a rename, use Generate - All
instead of Generate - Selected from the pop-up menu of the object.

You can modify the structure of a view by editing the Schema Page, and the Clause
Summary Page.

To change the structure of a view using the Schema Page, follow these steps:

1. From the pop-up menu of the view object, select Properties . The Schema Page
opens.

2. You can edit the ForBitData , DB Key and Not Null fields. The existing view is
overwritten with the changes.

To change the structure of a view using the Clause Summary Page, follow these
steps:

1. From the pop-up menu of the view object, select Properties . The Schema
wizard opens to the Schema Page. You can edit the ForBitData ,DB Key and
Not Null fields.

2. Click the arrow to the left of the page name, and select Clause Summary Page
from the list. By default, the text panel on this page is read-only, and you can
select the radio buttons associated with the different SQL clauses to see their
definition.
Attention: It is not recommended that you edit the Object Builder-generated

328 Application Development Tools Guide

SQL clauses for the view definition. The changes you make affect the DDL that
Object Builder generates and you can access the original code only by
redefining the view, or importing once again into Object Builder the SQL file that
contains the definition of the view. However, if you must edit some of the
view’s definition clauses, follow step 3; otherwise proceed with step 4.

3. Select the Provide your own SQL for the clause check box. Once you select
this box, the text panel containing the clauses becomes editable, and you can
overwrite the definition provided by Object Builder. You can overwrite one clause
at a time.

4. Turn to the Comments Page. Here, you can type comments for the view, as well
as for the schema columns that are used in the definition of the view.

5. Click Finish.

The existing view is overwritten with the changes.

Note: To delete a view that has an associated persistent object, you must first
delete the persistent object. To delete a view that is used to create other views, you
must first delete the view that is created from it.

“Schema” on page 20
“Persistent Object” on page 19

“Add a Persistent Object and Schema” on page 313
“Add a Persistent Object from a DB Schema” on page 316
“Work with DB Schemas” on page 320
“Edit a DB Schema Group” on page 319

Edit a DB Schema

You can modify any DB schema that exists in Object Builder, whether it was created
from a data object or imported from an SQL DDL file.

To change the identification for a schema, follow these steps:

1. From the pop-up menu of the schema object, select Properties . The Schema
Page opens.

2. You can modify the user ID, table name and schema filename.

3. Click Next , and modify the comments about the schema (Comments Page), if
you choose to.
Note: In the case of a view, besides all the above modifications, you can also
modify the clauses that define the view (Clause Summary Page).
A new, stand-alone schema is created only when the old schema is referenced
under another view. If the schema is not under another view, it is renamed. So,
even a schema that has foreign key relationships or associated persistent
objects will be renamed, not copied. A copy of the schema, with a new name
and new properties is created only for schemas that are under other views.

Note: To ensure that valid code is generated after a rename, use Generate - All
instead of Generate - Selected from the pop-up menu of the object.

You can modify the structure of a schema by either editing the Schema Page or by
re-importing the SQL file.

Chapter 10. Object Development Tasks 329

To change the structure of a schema using the Schema Page, follow these steps:

1. From the pop-up menu of the schema object, select Properties . The Schema
Page opens.

2. You can edit the Schema Column , ForBitData , DB Key and Not Null fields.
The existing schema is overwritten with the changes. To rename a schema
column, double-click in the field, and type in the new name. You can also
allocate different columns as DB keys, and change the Not Null specification for
the different columns as well, and modify the ForBitData for those schema
columns for which this information can be specified. Click in the field, and select
or clear the check box.

Note: All columns that you indicate as DB keys have to be not null. This
specification cannot be changed.

To change the structure of a schema by re-importing the SQL file, follow these
steps:

1. From the pop-up menu of the schema group, select Import SQL . The
Statements to Import Page opens.

2. Select those ALTER TABLE statements that refer to the schema that you want to
modify in this group.

“Schema” on page 20
“Persistent Object” on page 19

“Add a Persistent Object and Schema” on page 313
“Add a Persistent Object from a DB Schema” on page 316“Work with DB Schemas”
on page 320
“Edit a DB Schema Group” on page 319

Re-import an SQL File

To re-import an SQL file, follow these steps:

1. From the pop-up menu of DBA-Defined Schemas folder or the schema group,
select Import SQL . The Import SQL DDL File wizard opens to the SQL File
Selection Page.

2. The name of the DDL file (.sql file) previously imported appears in the Last File
Name Imported field.

Note: It is recommended that the SQL source file be placed in a directory other
than the subdirectories of the Working directory, which are named according to
the platform for which you are generating code. This is to avoid having the file
overwritten when you select either Generate - Selected or Generate - All from
the schema group’s pop-up menu.

3. The name of the database previously associated with the schema being
imported is shown in the Database Name field. This entry cannot be changed.

4. The name of the group shown in the Group Name field too cannot be
changed. The schemas appear in the DBA-Defined Schemas folder beneath
the group.

5. Click Next . The Statements to Import Page opens with all the SQL statements
in the imported file selected for parsing. To deselect all the statements, click
Deselect All . You can select the specific ones you want parsed. Multiple
selections are possible. To select all the statements, click Select All .

330 Application Development Tools Guide

Restriction: Currently, the only SQL statements supported are DROP, CREATE
TABLE, CREATE VIEW, ALTER TABLE, and COMMENT ON. None of these
statements must contain expressions or column functions. The CREATE VIEW
statement must contain only a simple query (SELECT statement). Currently there
is no support for unnamed columns, expressions, functions, or sub-selects in
CREATE VIEW.

6. Click Finish.

If you use Import SQL from the folder, the schemas imported into Object Builder
appear in the DBA-Defined Schemas folder, within a group whose default name is
the name of the .sql file. You can change the name of the group and the default
name of the database as well. If you use Import SQL from a schema group, you
can neither change the name of the group nor that of the database.

If you select statements that act on existing tables, Object Builder warns you that
the tables will be overwritten.

“DDL” on page 114
“Schema” on page 20
“Schema Group” on page 20
SQL View Editor

“Create a DB Schema by Importing an SQL File” on page 321
“Work with DB Schemas” on page 320
“Add a Persistent Object from a DB Schema” on page 316
“Edit a DB Schema” on page 329
“Edit a Generated SQL File”

Edit a Generated SQL File

When you generate a schema that is created from a data object, using either
Generate - Selected or Generate - All from the pop-up menu of the schema, or
Generate - All from the pop-up menu of its containing schema group, the resulting
.sql file cannot be used as such by DB2 to create tables.

Note the following points:

v In some RDBMS configurations, the .sql files that Object Builder generates from
the schemas must be processed by a database administrator using a design tool
such as Logic Works’ ERWin version 3.5 or 3.0, before they can be used to
create tables in the database catalog. In others, you may be able to bypass the
design tool, and instead use command line or other procedures to populate the
database catalog.

Example:

In the DB2 NT 5.0 single-user environment, you can use the following sequence
of commands from the DB2 command window:

db2 connect to “name of working database”
db2 -t -f “SQL filename with the path”

In Oracle 8.0.4.0 script center, you can import the .sql files.

v ERWin 3.0 does not support the following database systems that ERWin 3.5
supports:

– DB2 / 390 5

Chapter 10. Object Development Tasks 331

– DB2 / CS 2

– DB2 / UDB 5

– Oracle 8.x

If you are using ERWin 3.0 or 3.5 to generate SQL files to be imported into
Object Builder, you cannot use the default options provided by ERWin for the
Oracle DBMS. In ERWin, when you select Tasks - Forward Engineer/Schema
Generation, you must change the Referential Integrity Options for the Primary
Key and Foreign Key to use the CREATE statements instead of the ALTER
statements.

v If the design tool you use includes a startup command that takes a DDL file as
an argument, you can place that command in the file named sqlparse.cmd (on
NT) and sqlparse.sh (on AIX). The Open in Editor option from the pop-up menu
of the schema, would then launch the tool.

v The SQL DDL files that you create using a database design tool can be imported
into Object Builder.

To launch ERWin from Object Builder, follow these steps:

1. Open the file sqledit.bat (which is located in the bin subdirectory of Component
Broker ToolKit’s installation directory, which is usually \CBroker\bin in your
current drive).

2. Comment out (add rem before) the command that launches the LPEX editor (
@start evfxlxpm %sqleditargs%).

3. Delete rem, which is at the beginning of the command that launches ERWin (
@start mmopn32 %sqleditargs%).

The sqledit.bat file should have the following entries:
rem @start evfxlxpm %sqleditargs%
@start mmopn32 %sqleditargs%

4. From the DBA-Defined Schemas folder or the User-Defined Data Objects folder,
select the schema.

5. From the pop-up menu of the schema, select Open in Editor . This launches
ERWin .

ERWin does not run on AIX, but if you still want to use it as the design tool,
follow these steps:

1. Transfer the generated .sql file from AIX to NT.

2. Process the .sql file using ERWin against an NT DB2 client installation, which
is backed by an AIX DB2 server.

With AIX, too you can specify the editor of your choice. This is done in the file
sqledit.sh.

1. Comment out (add # before) the command line that launches the vi editor (
dtterm -e vi $* &)

2. Include the editor of your choice instead of vi (for example, LPEX: lpex $* &)

ERWin runs only on Windows NT.

Note: LPEX is available only if SDE/6000 is installed.

The sqledit.sh file should have the following entries:

dtterm -e vi $* &

332 Application Development Tools Guide

lpex $* &

Hint: When you use ERWin to create table columns that will hold object
references, you can specify the VARCHAR FOR BIT DATA type.

“Schema” on page 20
Object Relationships

“Create a Component for Existing DB Data” on page 104
“Edit a DB Schema Group” on page 319
“Store an Object Reference” on page 135

Delete a DB Schema

To delete a DB schema, follow these steps:

1. Delete any persistent objects that are associated with this DB schema.

Note: If you delete the persistent objects from the the User-Defined Data
Objects folder, or the User-Defined Business Objects folder, the schemas are
automatically deleted from these folders. You still have to delete it from the
DBA-Defined Schemas folder. (Follow step 4.)

2. Delete any views that use this schema.

3. Delete any other schemas that reference this schema.

4. From the pop-up menu of the schema in the DBA-Defined Schemas folder,
select Delete .

“Schema” on page 20
“Persistent Object” on page 19

“Work with DB Schemas” on page 320
“Delete a DB Persistent Object” on page 317
Delete Component Objects

Work with PA Persistent Objects - Overview

PA persistent objects are defined in the User-Defined PA Schemas folder. A PA
persistent object is created along with every PA schema that is created in Object
Builder, as a result of importing a PA bean.

You can create additional PA persistent objects for every PA schema. You can also
create multiple data objects from the PA persistent object. Further, you can also
associate a PA persistent object with a data object implementation.

The following tasks deal with PA persistent objects:

v “Add a Persistent Object from a PA Schema” on page 334

v “Edit a PA Persistent Object” on page 336

v “Add a Data Object from a PA Persistent Object” on page 305

Chapter 10. Object Development Tasks 333

v Map a Data Object to a PA Persistent Object

v “Delete a PA Persistent Object” on page 336

“Persistent Object” on page 19
“Schema” on page 20“Procedural Adaptor Bean (PA Bean)” on page 117

Work with Components

Add a Persistent Object from a PA Schema

To add a persistent object to an existing PA schema, follow these steps:

1. From the User-Defined PA Schemas folder, select the schema to which you
want to add a persistent object.

2. From the schema’s pop-up menu, select Add Persistent Object . The Add
Procedural Adaptor Persistent Object wizard opens to the Attributes Mapping
Page.

3. Type a name for the persistent object in the Name field.

4. Indicate which of the attributes are to be keys for the persistent object.

5. Modify the names of the persistent object attributes, if required.

“Persistent Object” on page 19
“Schema” on page 20

“Create a Component for PA Data” on page 115
“Work with PA Persistent Objects - Overview” on page 333
“Add a Data Object from a PA Persistent Object” on page 305

Map a Data Object to a PA Persistent Object

Mapping a data object to a persistent object consists of mapping of attributes and
methods from one object to the other. Mapping of attributes and methods is
required to define the bonding between the objects. A data object attribute can be
mapped to one or more persistent object attributes and each special framework
method of the data object can be mapped to one or more persistent object
methods.

Restrictions:

v You cannot map multiple data object attributes to the same persistent object
attribute.

v When you map a data object to multiple persistent objects, you must map each
key attribute of the data object directly to each of the key attributes of the
different persistent objects.

These are the preliminary steps you must follow before you can map a data object
to a persistent object:

1. Create a PA schema and its associated PA persistent object by importing a PA
bean.

2. Add a customized PA persistent object to the PA schema if you do not want to
use the one Object Builder provides.

334 Application Development Tools Guide

3. Add a data object implementation (The environment for the implementation
should be Procedural Adaptors .)

Note the following points:

v To map a data object to a persistent object, there must be an association
between the two objects, which you specify on the Associated Persistent Objects
Page of the Data Object Implementation wizard.

v As soon as you associate a persistent object with the data object, the Attributes
Mapping Page and the Methods Mapping Page are dynamically added to the
wizard.

To define the mapping between the attributes of the data object and the persistent
object, follow these steps:

1. If you are in the process of defining the data object implementation, proceed
with step 2. If you have already defined the data object implementation, from
the data object implementation’s pop-up menu, select Properties . The Data
Object Implementation wizard opens.

2. Turn to the Attributes Mapping Page. Here, you can map the data object
interface attributes to the attributes of the persistent object.

You can map a data object attribute to a persistent object attribute in one of the
following ways:

v Using the primitive pattern

v Using the exploded mapping pattern (for structures, which are complex attributes)

v Using a foreign key

v Using a mapping helper

To define the mapping between the methods of the data object and the persistent
object, follow these steps:

1. If you are in the process of defining the data object implementation, proceed
with step 2. If you have already defined the data object implementation, from
the data object implementation’s pop-up menu, select Properties . The Data
Object Implementation wizard opens.

2. Turn to the Methods Mapping Page. When you define the mapping between
methods, you define the processing order of the persistent object methods that
you associate with the data object’s special framework methods insert(),
update(), retrieve(), del(). These persistent object methods act directly on
elements of transaction logic in the legacy business applications.

3. The methods that you defined for the data object appear in the User-Defined
Methods folder. You can map each of them to a push-down method of the PA
persistent object.

“Data Object” on page 18
“Persistent Object” on page 19
“Special Framework Methods” on page 24
“User-Defined Methods” on page 23
“Push-Down Methods” on page 25

“Add a Data Object Implementation” on page 299
“Work with PA Schemas - Overview” on page 337
“Map Data Object Attributes to Persistent Object Attributes” on page 256

Chapter 10. Object Development Tasks 335

“Create a Relationship” on page 129
“Work with Methods ” on page 267
“Use Push-Down Methods with PA Persistent Objects” on page 274

“DB2 Data Type Mappings” on page 110
“Oracle Data Type Mappings” on page 113

Edit a PA Persistent Object

In this release of Object Builder, you cannot edit a PA persistent object that was
created for you along with the PA bean that you imported into Object Builder.

However, you can add another persistent object to the schema (from the pop-up
menu of the PA schema, select Add Persistent Object), and you can change the
names of the attributes, if you want to. Once the persistent object is created, it is
not editable.

“Persistent Object” on page 19

“Work with PA Persistent Objects - Overview” on page 333
Edit Component Objects

Delete a PA Persistent Object

To delete a PA persistent object, follow these steps:

1. Select the persistent object from either the User-Defined Business Objects
folder, the User-Defined Data Objects folder, or the User-Defined PA Schemas
folder.

2. From the pop-up menu of the persistent object, select Delete .

If the persistent object is not connected to a data object implementation, the
following deletions take place:

v the persistent object and its underlying schema are deleted from the
User-Defined Data Objects folder.

v the persistent object is deleted from the User-Defined PA Schemas folder (the
schema is not removed from this folder)

If the persistent object is associated with a data object implementation, the following
deletions take place:

v the persistent object and its underlying schema are deleted from the
User-Defined Business Objects folder and the User-Defined Data Objects folder.

v the persistent object is deleted from the User-Defined PA Schemas folder (the
schema is not removed from this folder)

“Persistent Object” on page 19

“Work with DB Persistent Objects” on page 313
Delete Component Objects

336 Application Development Tools Guide

Work with PA Schemas - Overview

You can create a component for existing transactional information by importing the
PA bean into Object Builder, and deriving a component from it.

The following tasks deal with PA schemas:

v “Create a PA Schema by Importing a PA Bean”

v “Add a Persistent Object from a PA Schema” on page 334

v “Edit a PA Schema” on page 339

v “Delete a PA Schema” on page 339

“Persistent Object” on page 19
“Schema” on page 20“Procedural Adaptor Bean (PA Bean)” on page 117

Work with Components

Create a PA Schema by Importing a PA Bean

To import a procedural adaptor schema (PA schema), follow these steps:

1. In the Tasks and Objects pane, select the User-Defined PA Schemas folder.

2. From its pop-up menu, select Import - Bean . The Import Procedural Adaptor
Bean wizard opens to the Bean Selection Page.

3. You can import the bean using one of the following methods:

a. Specify the name of a Component Broker Procedural Adaptor bean class.
Follow these steps:

1) Select the Enter bean name radio button, and type the name of the
class in the field. For example, to import the BeCashAcct bean, type
paa.samples.cics.eci.acct.BeCashAcctPAO.

b. Specify a JAR file. Follow these steps:

1) Select the Select a bean from an existing JAR file radio button. The
Find JAR file button becomes active, and you can use it to locate the
file.
Restriction: Only beans created using VisualAge for Java Release 2.0
are compatible with this release (2.0) of Component Broker.

2) Once you have selected the JAR file (for example BeCashAcct.jar), the
panel lists the classes contained in the file and you can select the one
you want imported. The field just below the Enter bean name button
shows the name of the selected object class.

Note: Typically, the following types of classes are referenced in the bean:

1) The PAA run-time file sompart.zip, and the ivjeab.jar file.

2) User-defined classes (any JAR files corresponding to the PA beans you
created using Enterprise Access Builder (EAB), and any other classes
you defined that are used by the PA bean)

If you get a message about files not being in the class path, follow these
steps:

Chapter 10. Object Development Tasks 337

1) Ensure that the IBM Component Broker CICS and IMS Application
Adaptor component is installed.

2) Ensure that all the user classes that are referenced in the bean are
included in your system environment variable CLASSPATH. The class
path must either contain the JAR file (if you archived the classes into a
JAR file), or the directory under which the class files exist (if you did not
create a JAR file). CLASSPATH must also include the path for the PA
bean class.

4. Click Next . The Names and Connectors Page opens. Here, you can name the
module and the persistent object to be associated with the PA schema. You can
also select the connector type to be used to access objects. The connector type
must match the one you used when you created the procedural adaptor bean.
390 When you choose OS/390 as the development (target) platform (Platform -
Constrain), only the EXCI, OTMA, and Generic connector types are available
for selection.

When you select either NT and 390, or AIX and 390 as the development
platforms, all the connector types (LU 6.2, HOD and ECI, besides the types
available for OS/390) are available for selection.

5. Click Next . The Key Selection Page opens with the properties of the PA schema
listed in the Properties box.

6. Select any of the properties you want as the key for the object from Properties
box, and move them to the Key Attributes box.

7. Click Next . The Attribute Type Specification Page opens, and you can specify
whether the attributes of the PA bean that are of character or string type are
either single-byte, or multi-byte.

8. Click Next . The Method and Parameter Type Specification Page opens, and you
can specify whether the return type of the methods defined on the PA bean that
are of character or string type are either single-byte, or multi-byte. You can also
specify the same for the character and string types of these method’s
parameters.

9. Click Finish . The bean will be imported into Object Builder. The PA schema (for
example, BeCashAcctPAO) and its associated persistent object
(BeCashAcctPAOPO) will now appear in the Tasks and Objects pane under the
User-Defined PA Schemas folder.

Note: When you select the PA persistent object in the Tasks and Objects pane, the
Methods pane shows you the the attributes and methods defined on the PA
schema, based on those that you had defined on the PA bean that you imported.
The names of method parameters may not appear as you specified them in the VA
Java IDE. However, this is only superficial, and it does not affect the behavior when
the method is called on the bean.

“Persistent Object” on page 19
“Schema” on page 20

“Create a Component for PA Data” on page 115
“Work with PA Schemas - Overview” on page 337
“Add a Persistent Object from a PA Schema” on page 334
“Add a Data Object Implementation” on page 299

338 Application Development Tools Guide

Edit a PA Schema

Note: You cannot rename the PA schema.

To edit a PA schema, follow these steps:

1. Select the PA persistent object in the User-Defined PA Schemas folder.

2. From its pop-up menu, select Properties . The PA Schema wizard opens to the
Attributes Page. You can change the connector type information for the schema.
You can select from HOD, ECI, LU 6.2, Generic, EXCI, or OTMA.

390 If the deployment platform is OS/390, you can only select from among
EXCI, OTMA, and Generic.

Note: If you had associated the PA persistent object that is connected with this PA
schema, with a data object implementation, you must first disassociate this PA
persistent object from the data object implementation (delete the persistent object
from the Persistent Object Instances folder on the Associated Persistent Objects
Page of the Data Object Implementation wizard) before you can change the
connector type.

“Schema” on page 20

“Work with PA Schemas - Overview” on page 337
Edit Component Objects

Delete a PA Schema

To delete a PA schema, follow these steps:

1. Delete any persistent objects that are associated with this PA schema.
Note: If you delete the persistent objects from the the User-Defined Data
Objects folder, or the User-Defined Business Objects folder, the schemas are
automatically deleted from these folders. You still have to delete it from the
User-Defined PA Schemas folder. (Follow step 2.)

2. From the pop-up menu of the schema in the User-Defined PA Schemas folder,
select Delete .

“Schema” on page 20
“Persistent Object” on page 19

“Work with PA Schemas - Overview” on page 337
“Delete a PA Persistent Object” on page 336
Delete Component Objects

Work with Managed Objects - Overview

Managed objects are defined in the User-Defined Business Objects folder, where
they are shown under the business object implementation they were added to.

Chapter 10. Object Development Tasks 339

Once you configure a managed object with an application, an object representing
that configuration appears in the Application Configuration folder, where it is shown
under the application it was added to.

You can add multiple managed objects to each business object implementation, but
each component you configure will have only one managed object. In fact, the
component is defined by the configuration of the managed object.

The following tasks deal with managed objects:

v “Add a Managed Object”

v “Configure a Managed Object” on page 377

v “Edit a Managed Object” on page 341

v “Edit a Managed Object Configuration” on page 379

v “Delete a Managed Object” on page 341

v “Delete a Managed Object Configuration” on page 379

“Managed Object” on page 22

Work with Components - Overview

Add a Managed Object

For a component to be installed on the server, it must have a managed object.
End-user applications primarily interact with the managed object, which inherits the
interface of the business object. The managed object controls the key and the copy
helper, the relationship between the business object and its data object, and so on.
You must create a new managed object for each of your business object
implementations.

To add a managed object, follow these steps:

1. From the User-Defined Business Objects folder, select your business object
implementation (for example, CarPolicyBO).

2. From the object’s pop-up menu, select Add Managed Object . The Managed
Object wizard opens to the Name and Services Page.

Appropriate names are filled in for you (the business object file name and
interface name plus MO: for example, CPFile::CarPolicy gets a managed object
CPFileMO::CarPolicyMO). You can accept these defaults or replace them with
your own names.

3. Set the deployment platforms (the platforms on which this managed object will
be deployed). This determines the development options that are selectable (you
can only select options that are available on all selected platforms). By default,
the managed object is deployable to the set of platforms defined in the
Platforms - Constrain menu. You cannot select platforms that are not already
selected in the Platforms - Constrain menu.

4. Make sure the correct service is selected. The services should be appropriate
for the form of persistence provided by the component’s data object
implementations.

Note : Transactional Services is the appropriate choice for every form of
persistence except Procedural Adaptors (which can use either service).

340 Application Development Tools Guide

390: If one of your deployment platforms is OS/390, you can only select
Transactional Services.

5. Click Next . The Implementation Inheritance Page opens.

By default, no inheritance is selected. If, however, the managed object is for a
component that already has an inheritance tree (for example, this is the
managed object for the interface CarPolicy, which inherits from Policy), then the
managed object should follow the same inheritance pattern (CarPolicyMO
should inherit from PolicyMO).

Note: The options available in the Parent class drop-down list are for defining
a container or home (specialized forms of managed objects). There are
separate instructions for these tasks. Do not use the list’s options when creating
a simple managed object.

6. Click Finish . The managed object appears in the User-Defined Business
Objects folder, under your business object implementation.

“Managed Object” on page 22
An Overview of Application Adaptors (Programming Guide)

“Work with Managed Objects - Overview” on page 339
“Set Platform Constraints” on page 189
“Build DLLs - Overview” on page 363
“Configure a Managed Object” on page 377

Edit a Managed Object

Managed objects are defined in the User-Defined Business Objects folder, where
they are shown under the business object implementation they were added to. The
configuration of a managed object with an application is represented by a separate
object, in the Application Configuration folder, where it is shown under the
application it was configured with.

You can change the services used by the managed object by following these steps:

1. From the pop-up menu of the managed object, click Properties . The Managed
Object wizard opens to the Name and Services Page.

2. Change your selections as necessary.

3. Click Finish to apply your changes.

“Managed Object” on page 22

“Work with Managed Objects - Overview” on page 339

Delete a Managed Object

To delete a managed object, follow these steps:

1. Delete its configuration, if any, in the Application Configuration folder.

If the managed object is a customized home, then you must also remove it from
any configurations of other managed objects that use it.

2. From the pop-up menu of the managed object, click Delete .

Chapter 10. Object Development Tasks 341

“Managed Object” on page 22
“Home”

“Work with Managed Objects - Overview” on page 339
“Delete a Managed Object Configuration” on page 379
“Edit a Managed Object Configuration” on page 379

Work with Customized Homes - Overview

Customized homes, also known as specialized homes, are shown in the
User-Defined Business Objects folder, and are presented in terms of five objects:

v The business object file (which contains one or more interfaces, optionally
organized into modules), customized to be the file for a home.

v The business object module, if any (which contains one or more interfaces).

v The business object interface (which has one or more implementations),
customized to be the interface for a home.

v The business object implementation (which has its own file, defined on the first
page of its wizard), customized to be the implementation for a home.

v The managed object (which acts as an access point for the business object),
customized to serve as a home.

The following tasks deal with customized homes:

v “Create a Customized Home” on page 343

v “Edit a Customized Home” on page 344

v “Delete a Customized Home” on page 345

“Home”

Work with Components - Overview

Home

A home is the birthplace of managed objects. It serves as both a factory and a
collection for managed objects. It is like a factory designed to manufacture only
objects of a specific type.

Component Broker provides some default instances of homes, and most managed
objects will use home instances based on these default ones. However, you can
create a customized home (also known as a specialized home) in Object Builder if
your managed objects require home instances with additional or specific behaviors.

When you add a managed object to an application, you select the type of home that
will be used to create it on the Add Managed Object wizard, Home Page. When you
generate the install image for the application, the generated DDL defines the home
instance that will be responsible for finding and creating instances of the managed
object.

342 Application Development Tools Guide

“Managed Object” on page 22
“DDL” on page 114
Creating Specialized Homes (Programming Guide)

“Create a Customized Home”
“Configure a Managed Object” on page 377

Create a Customized Home

When you configure a managed object with an application, you define a home
instance that will be used to create and find instances of the managed object.
Component Broker provides default home instances for you to base home instances
on, which should be sufficient for most managed objects. However, you may want to
create a home instance based on a customized home class for the needs of a
particular Application Adaptor type, for example, by adding customized create and
find methods.

To create a customized home class, follow these steps:

1. From the pop-up menu of the User-Defined Business Objects folder, click Add
File to open the Business Object File wizard.

2. Click the title bar and turn to the Files to Include Page.

3. Under the Include Files folder, click the existing file to display its information.

4. Change the default include file:

v If you want a queryable home, select IManagedAdvancedClient from the list.

v If you don’t need a queryable home, click the Component Broker
Customized Home button to include the appropriate file.

5. Complete the remaining wizard pages and click Finish .

6. From the pop-up menu of the file you just added, click Add Interface to open
the Business Object Interface wizard.

7. Click the title bar and turn to the Interface Inheritance Page.

8. Under the Parents folder, click the existing parent to display its information.

9. Change the default parent interface:

v If you want a queryable home, select
IManagedAdvancedClient::IQueryableIterableHome from the list.

v If you don’t need a queryable home, click the Component Broker
Customized Home button to include the appropriate file.

10. Complete the remaining wizard pages and click Finish .

11. From the pop-up menu of the interface you just added, click Add
Implementation to open the Business Object Implementation wizard.

On the first page, the data access and data object options are absent because
this is a customized home. The data object interface pages of the wizard are
also absent.

12. Click the title bar and turn to the Implementation Inheritance Page.

If you want a queryable home, change the default parent implementation to
IManagedAdvancedServer::ISpecializedQueryableIterableHome

13. Complete the remaining wizard pages and click Finish .

14. From the pop-up menu of the implementation you just added, click Add
Managed Object to open the Managed Object wizard.

Chapter 10. Object Development Tasks 343

15. Click the title bar and turn to the Implementation Inheritance Page.

16. From the Parents pop-up menu, click Add .

17. Select the appropriate Component Broker home class from the Parent class
drop-down list.

18. Complete the remaining wizard pages and click Finish .

19. Configure the customized home, as a managed object, with your application.

Note: Make sure that the customized home and its associated managed
objects are configured with different containers. If a managed object and its
home are configured with the same container, the server will not activate.

You now have a customized home class.

Customized homes do not require data object interfaces, data object
implementations, copy helpers, or key classes. When you configure managed
objects for an application, you can associate them with your customized home (on
the Managed Object Configuration wizard, Home Page). An instance of the
customized home class will be defined in the generated DDL for the managed
object, and used on the server to create and find instances of the managed object.

You must package the customized home class in the same application as the
managed objects that use it.

“Home” on page 342
“DDL” on page 114

“Configure a Managed Object” on page 377
“Package an Application” on page 375

Edit a Customized Home

Customized homes are defined in the User-Defined Business Objects folder, where
they are shown as a tree of business object file, module (if any), business object
interface, business object implementation, and managed object. You can edit these
objects by following these steps:

1. From the pop-up menu of the object, click Properties to display the appropriate
wizard.

2. Click the title bar to select a page to turn to.

3. Change your selections as necessary.

4. Click Finish to apply your changes.

Note : When you click Finish , the framework methods for the business object
implementation are recalculated. If you made any changes to the framework
method implementations (not recommended), those changes are lost.

“Home” on page 342

“Work with Customized Homes - Overview” on page 342

344 Application Development Tools Guide

Delete a Customized Home

To delete a customized home, follow these steps:

1. Remove the customized home from any managed object configurations that use
it.

2. Delete the managed object configuration for the customized home’s managed
object.

3. Delete the customized home’s managed object.

4. Delete its business object implementation.

5. Delete its business object interface.

6. If it is the only interface defined in the file, delete the business object file.

“Home” on page 342

“Work with Customized Homes - Overview” on page 342

Work with Container Instances - Overview

Containers provide object services for components. Default containers are provided
for objects with transient data. If you have objects with persistent data, or want to
customize the types of service that are provided by a container, you need to define
your own container instance.

The following tasks deal with containers:

v “Create a Container Instance” on page 346

v “Edit a Container Instance” on page 348

v “Delete a Container Instance” on page 348

“Container”

Work with Components - Overview
“Configure a Managed Object” on page 377

Container

A container is a configured version of a particular application adaptor that
represents a physical boundary around objects. It can be thought of as where the
objects exist. A container can provide some level of isolation between it and other
containers. A container can also provide some isolation among objects within the
container.

When you add a managed object to an application, you configure it with a container
that will be responsible for handling object services for the managed object.

“Managed Object” on page 22

Chapter 10. Object Development Tasks 345

“Configure a Managed Object” on page 377
“Create a Container Instance”

Create a Container Instance

The Component Broker frameworks provide a number of default containers, which
are appropriate for components with transient data (that is, without persistent
objects). If your component has data that you want to be persistent, you must
define a container for the particular needs of the component. You can define new
containers in the Container Definition folder.

To add a container instance, follow these steps:

1. Under Tasks and Objects, select the Container Definition folder.

2. From the folder’s pop-up menu, click Add Container Instance . The Container
wizard opens to the Name Page.

3. Type a name and description for the container.

390: If you are developing an application intended for deployment on OS/390
(the Platform - Constrain - 390 menu choice is checked), then you are now
done. The rest of the container definition is handled through the System
Management user interface.

4. In the Number of Components field, type an estimate for the number of
managed objects this container will hold. This sets a lower limit on the size of
the container’s hash table; additional space will be allocated when it is needed.

5. Click Next . The Workload Management page opens.

6. Specify whether the container is workload managing. If you check this option,
you must also specify the policy group it will be configured with. For new policy
groups, accept the default <New> entry.

7. Click Next . The Service Page opens.

8. Select the policies and services the container will provide for its components.
You can select from the following:

v Use no Object Services
The container will provide no object services. Select this option if the
container will contain components with transient data only, or if data
persistence is provided without object services.

v Use Home Services
The container will use Home Services. Select this option if the container will
contain customized homes.

v Use RDB Transaction Services
The container will use Transaction Services. Select this option if the
container will contain components with database persistence, or if you want
to provide transaction support for components with transient data.

v Use PAA Transaction Services
The container will use PAA Services. Select this option if the container will
contain components with persistence provided by a procedural adaptor, for
which you want to provide transaction services.

v Use PAA Session Services
The container will use PAA Services. Select this option if the container will
contain components with persistence provided by a procedural adaptor, or if
you want to provide transaction support for components with transient data.

9. If you select not to provide Transaction Services, select how the container
should handle object data when the server stops running.

346 Application Development Tools Guide

10. Select whether the container should passivate objects not in use, or keep
objects in memory at all times.

11. If you select not to provide any object services (Use no Object Services),
select whether to enable persistent references.

The Enable persistent references option is only available if you select Use
no Object Services . By default, object references are not made persistent
when there are no object services enabled (the data is assumed to be
transient), and instances held by the container are dropped when the server
stops. Check this option if your components have persistent data, that you are
accessing without the Object Services.
If you check this option, then an attempt to find a component in the container
will first try looking in current memory, and if that fails, then try calling the
retrieve method of the component’s data object implementation. If the retrieve
method does not throw an exception, the retrieve is assumed to be successful,
and the container returns an object reference.
To force the retrieve method to fail for a particular data object (when, for
example, there is no datastore to access), you can modify the code of the
retrieve method to return exception IBOIMException::IDataKeyNotFound.
If you do not check this option, then an attempt to find a component in the
container will succeed only if the component is currently in memory. The
component will be in memory if it has been created and added to the container
since the server was last started. Check this option if your components have
only transient data.

12. Click Next .

13. If you selected RDB Transaction Services , PAA Transaction Services , or
PAA Session Services , then the Services Details Page now opens. Specify
the behavior you want for methods called outside the scope of a transaction or
session, and for sessions specify the type of session. For PAA Session
Services, specify the name of the connection.

14. Click Next when you are done.

15. The Data Access Patterns Page opens. Select the options on this page
according to the options set for the objects the container will hold.

16. Under Business Object , click Delegating or Caching according to the option
selected for the business object implementation’s Pattern for Handling State
Data (Business Object Implementation wizard, Name and Data Access Pattern
Page).

17. Under Data Object , click Delegating or Local copy according to the option
selected for the data object implementation’s Data Access Pattern (Data
Object Implementation wizard, Behavior Page).

18. If you select Delegating , then you need to indicate whether or not the data
object uses the Cache Service. Select the Cache Service check box if the
data objects have their Form of Persistent Behavior and Implementation
set to either DB2 Cache Service or Oracle Cache Service (Data Object
Implementation wizard, Behavior Page). Otherwise, click No.

19. Click Finish . The new container is added to the Container Definition folder.

“Container” on page 345
Workload Management
Transaction Service
Session Service
Cache Service

Chapter 10. Object Development Tasks 347

“Configure a Managed Object” on page 377
“Work with Container Instances - Overview” on page 345

Edit a Container Instance

To edit a container instance you have defined, follow these steps:

1. From the pop-up menu of your container, click Properties . The Container
Definition wizard opens to the Name of Container and Number of Components
Page.

2. Click the title bar to select another page to turn to.

3. Change your selections as necessary.

4. Click Finish to apply your changes.

“Container” on page 345

“Work with Container Instances - Overview” on page 345

Delete a Container Instance

You cannot delete the default container instances. To delete a container instance
that you have defined, follow these steps:

1. Remove the container from any managed object configurations that use it.

2. Locate the container in the Container Definition folder.

3. From the pop-up menu of the container, click Delete .

“Container” on page 345

“Work with Container Instances - Overview” on page 345
“Package an Application” on page 375
“Edit a Managed Object Configuration” on page 379

Work with Compositions - Overview

A composition defines a combined interface for a group of components. In addition,
it describes the implementation of the attributes and methods in the combined
interface, which delegate to attributes and methods of the components in the group.
Once you have combined the components into a composition, you can create
composite components that are based on the composition.

The following tasks deal with compositions:

v “Create a Composition File” on page 349

v “Add a Composition Module” on page 349

v “Add a Composition” on page 350

v “Edit a Composition” on page 352

348 Application Development Tools Guide

“Composition” on page 174

“Create a Composite Component - Overview” on page 172
“Work with Composite Business Objects - Overview” on page 353
“Work with Composite Keys - Overview” on page 360

Create a Composition File

A composition file (IDL) is a container for your compositions. Although a file can
hold multiple compositions, which you may organize into modules, you typically add
one composition to each file.

To create a composition file, follow these steps:

1. From the Tasks and Objects pane, select the User-Defined Compositions
folder.

2. From the folder’s pop-up menu, select Add File . The Composition File wizard
opens to the Name Page.

3. Type a name for the file (for example, CGFile).

4. Click Next . The Constructs Page opens.

Use the Constructs pop-up menu to add enumerations, exceptions, structures
and so on. Any constructs you add are scoped to every interface in the file.

5. Click Next . The Files to Include Page opens.

IManagedClient is included by default. Do not change this.

6. Click Next . The Comments Page opens. Type any comments you want to
include as comment lines in your generated IDL code.

7. Click Finish . The wizard closes, and your file is added to the User-Defined
Compositions folder. You can now add modules or interfaces to the file.

Once you have created the file, you can modify it by selecting Properties from its
pop-up menu. The Composition File wizard opens again, with your selections
preserved.

“Composition” on page 174

“Create a Composite Component - Overview” on page 172
“Work with Compositions - Overview” on page 348
“Add a Composition Module”
“Add a Composition” on page 350

Add a Composition Module

If you plan to add multiple compositions to a single file, you may want to store the
compositions in separate modules. Any constructs you add to a module are scoped
only to the compositions within that module. To add a module to a file, follow these
steps:

1. From the User-Defined Compositions folder, select your composition file.

2. From the file’s pop-up menu, select Add Module . The Composition Module
wizard opens to the Name Page.

Chapter 10. Object Development Tasks 349

3. Type a name for the module.

4. Click Next . The Constructs Page opens.

Use the Constructs pop-up menu to add enumerations, exceptions, structures
and so on.

5. Click Next . The Comments Page opens. Type any comments you want to
include as comment lines in your generated code.

6. Click Finish . The wizard closes, and your module is added to the User-Defined
Compositions folder, underneath the file.

You can now add compositions to the module.

“Composition” on page 174

“Create a Composite Component - Overview” on page 172
“Work with Compositions - Overview” on page 348
“Add a Composition”

Add a Composition

The composition is a server-side implementation object that provides a composite
business object with access to its member components’ methods and data. It can
also define its own methods and attributes for use by the composite business
object.

To add a composition to a file (or module), follow these steps:

1. From the User-Defined Compositions folder, select the file or module that will
contain the interface.

2. From the pop-up menu for the file or module, click Add Composition . The
Composition Editor opens.

3. Click Add to open the Composition Palette.

4. Select the components you want to add to the composition.

5. Click Add , then Close . The components are added to the composition in the
form of managed object instances, with default names based on the original
component interface (for example, SavingsAccount component becomes
SavingsAccount1).

6. Review the list of objects to composite in the Objects to Composite list.

7. You can rename a managed object instance by clicking on its name and then
clicking Rename or by double-clicking on its name.

8. Select a composition style to apply to the objects. The result is applied to the
list of composited attributes and methods in the Results pane. For conjunction
composites you should choose the variant (that is, with or without name
matching) that produces a result that is closest to what you want.

If you choose the Conjunction with name matching style, but would still like
certain attributes or methods to remain separate, you can selectively reverse
the name-matching and split the combined attribute or method into its separate
elements. To split a combined attribute or method, select Split from the pop-up
menu of the attribute or method.

If you choose the Conjunction without name matching style, but would still like
certain attributes or methods to be combined (as if you had chosen the

350 Application Development Tools Guide

Conjunction with name matching style), you can selectively match and
combine attributes or methods. To combine multiple attributes or methods,
select them by holding down the Ctrl key and clicking the left mouse button,
then click on the last one with the Ctrl key plus right mouse button to display
its pop-up menu, and select Equate .

You can use the Equate command to join attributes or methods with the same
type. They do not need to have the same names.

9. Click on an attribute or method to view its republishing (delegating) behavior, in
the Current Republish Value pane.

10. Click on the Properties tab to display the properties of the currently selected
attribute and method. Double-clicking on an attribute or method will also
display its properties.

11. Only the name of the attribute or method is editable, because their definitions
are based on their equivalents in the combined components.

12. Add any new attributes or methods you want to be part of the composition,
that may or may not be based on combined components. You can add new
attributes or methods from the pop-up menus of the folders in the Results
pane. These new methods could, for example, provide extra processing of the
information being combined (beyond simple delegation).

For example, a composition AllAccounts, which combines the components
CheckingAccount and SavingsAccount, could have a private helper method
addFloats, which can take the two original balances
(CheckingAccount1.balance and SavingsAccount1.balance) as arguments, and
return their sum. You can then map AllAccounts.balance to the helper method.

When you add a new method, you can supply its implementation (for example,
return arg1+arg2) in Object Builder’s Source pane (after you complete the
composition, click on it in the Tasks and Objects pane; then select the method
in the Methods pane, and complete its implementation in the Source pane).

13. Edit republishings using the pop-up menu of the current value in the pane. You
can also change a republish value by simply double-clicking on it, and then
selecting a new value from the drop-down list that appears.

For conjunction composites, you can map attributes and methods either to
attributes and methods of the combined components, or to a sequence of
attributes and methods (in which all listed attributes or methods are called in
sequence, and the result of the last one is returned). The delegating attribute
or method must have a type or return type that matches the result of the last
call in the sequence.

Disjunction attributes and methods usually map to a select of attribute and
methods (that is, a list of mutually exclusive attributes and methods, only one
of which will exist at run time and be called).

You can map to attributes or methods of the combined components, or to other
attributes and methods that are unique to the composition.

For example, if the composition AllAccounts combines CheckingAccount and
SavingsAccount with the Conjunction with name matching style, then by
default AllAccounts.balance returns a sequence of CheckingAccount1.balance
and SavingsAccount1.balance (which simply returns the second value in the
sequence). You can replace this default mapping with a more useful one that
returns their sum, by adding a private helper method addFloats (as described
in the previous step), and changing the mapping to call the helper method,
with the two original balance attributes as arguments.

14. Click on the parent folder (representing the composition as a whole) in the
Results pane. By default, its name is Untitled .

Chapter 10. Object Development Tasks 351

15. Click on the Properties tab.

16. Type a name for the composition. The name is reflected in the Results pane.

17. Set the implementation language (C++ or Java).

18. Click OK.

“Composition” on page 174

“Create a Composite Component - Overview” on page 172
“Work with Compositions - Overview” on page 348
“Add a Composite Business Object Interface” on page 354

Edit a Composition

Compositions are defined in the User-Defined Compositions folder, where they are
shown under the file (and module, if any) in which they are defined. You can edit
the file and module as separate objects, following these steps:

1. From the pop-up menu of the file or module, click Properties to display the
appropriate wizard.

2. Click the title bar to select a page to turn to.

3. Change your selections as necessary.

4. Click Finish to apply your changes.

To edit the attributes or methods of the composition, follow these steps:

1. From the pop-up menu of the composition group, click Properties to open the
Composition Editor.

You can edit the delegating behavior of the methods or attributes currently in the
composition, add new methods or attributes that are unique to the composition,
or change what components are combined in the composition.

2. When you are done editing, click OK.

From within the editor, you can turn to the Compositions page to change which
components make up the composition:

To delete a component from the composition, follow these steps:

1. Select its managed object instance in the Objects to Composite list.

2. Click Delete .

To add a component to the composition, follow these steps:

1. Click Add to open the Composition Palette.

2. Select a managed object.

3. Click Add , then Close .

To rename a component in the composition, follow these steps:

1. Select its managed object instance in the Objects to Composite list.

2. Click Rename .

3. Type over the old name.

4. Click elsewhere in the list to apply the new name.

Once you are done editing, click OK to apply your changes.

352 Application Development Tools Guide

If your changes are limited to renaming or deleting elements, then your changes will
automatically be reflected in the other composite component objects that are based
on the composition (for example, the business object and key). If, however, you
added new components to the composition, you need to provide these objects with
the information necessary to locate or create instances of the new component.

When you have added new components to a composition, follow these steps for
each composite component based on the composition:

1. From the pop-up menu of the composite component’s key, click Properties to
open the Key wizard.

2. Add any new key attributes that may be required and provide the composite key
to component key mappings if possible.

3. Click Finish .

4. From the pop-up menu of the composite component’s business object
implementation, click Properties to open the Business Object Implementation
wizard.

5. Click the title bar and turn to the Location page.

6. Review and update the location information for any new or edited components
of the composition.

7. Click the title bar and turn to the Data Object Interface page.

8. Add any new key attributes to the data object interface.

9. Click Finish .

“Composition” on page 174

“Work with Compositions - Overview” on page 348

Work with Composite Business Objects - Overview

Composite business objects are defined in the User-Defined Business Objects
folder, and are presented in terms of four objects:

v The business object file (which contains one or more interfaces, optionally
organized into modules)

v The business object module, if any (which contains one or more interfaces)

v The business object interface (which has one or more implementations)

v The business object implementation (which has its own file, defined on the first
page of its wizard)

The four objects are created and edited separately, but collectively form a single
business object. Each business object (each set of business object file, module,
interface, and implementation) typically has its own data object.

A business object is composite when it is based on a composition, as set by the
business object interface. A composite business object has attributes and methods
based on those in the composition, which are in turn based on the composited
components that make up the composition.

The following tasks deal with composite business objects:

v “Add a Composite Business Object Interface” on page 354

Chapter 10. Object Development Tasks 353

v “Add a Composite Business Object Implementation and Data Object Interface” on
page 355

v “Edit a Composite Business Object Interface” on page 359

v “Edit a Composite Business Object Implementation” on page 360

“Composite Business Object” on page 175

“Create a Composite Component - Overview” on page 172
“Work with Composite Keys - Overview” on page 360

Add a Composite Business Object Interface

Once you have defined a composition, you can create composite components that
are based on the composition, starting with the business object.

First, add a business object file (and optionally module) to the User-Defined
Business Objects folder.

To add a composite business object interface to a file (or module), follow these
steps:

1. From the User-Defined Business Objects folder, select the file or module that
will contain the interface.

2. From the pop-up menu for the file or module, select Add Interface . The
Business Object Interface wizard opens to the Name Page.

3. Type a name for the interface (for example, CompositeCustomer). Do not use
the same name as the composition unless one or both are nested in modules.

4. Select the Composite check box.

5. From the Composition to Use list, select the composition you want to base
the interface on.

6. Click Next . The Constructs Page opens.

7. Use the Constructs pop-up menu to add enumerations, exceptions, structures
and so on. Any constructs you add are scoped to this interface only.

Note : To use the construct as the type of an attribute, method return, or
method exception, you must first click Finish and then re-open the wizard and
define the attribute. The construct is not added to the current model until you
click Finish .

8. Click Next . The Interface Inheritance Page opens.

By default, the interface inherits from IManagedClient::IManageable. This is the
correct choice for a component that represents a base class in your design. If
your component had a parent, you would specify the business object interface
of the parent component on this page.

9. Click Next . The Attributes Page opens.

The public attributes (except for the attributes that represent references to
instances of the combined components) of the composition you selected
appear here, but are not editable. You can edit them (for example, change
their names or delegating behavior) in the composition where they are defined.
Changes to the composition are applied to the composite business object
automatically.

354 Application Development Tools Guide

When you add the composite business object implementation, the get and set
methods for these attributes will be implemented, and delegate to the
composition helper object.

To specify additional attributes for your interface, select Add from the Attributes
pop-up menu. When you add the business object implementation, these
attributes will receive default implementations in the usual manner.

10. Click Next . The Methods Page opens.

The public methods of the composition you selected appear here, but are not
editable. You can edit them in the composition where they are defined.
Changes to the composition are applied to the composite business object
automatically.

When you add the composite business object implementation, the
implementations for these methods will be implemented, and delegate to the
composition helper object.

To specify additional methods for your interface, select Add from the Methods
pop-up menu. When you add the business object implementation, you can
provide your own implementations for the methods in the usual manner.

11. Click Next . The Object Relationships Page opens.

To specify any relationships that this class has to other classes, select Add
from the Objects pop-up menu. You can specify how the relationship will be
implemented when you add the business object implementation.

12. Click Next . The Comments Page opens. Type any comments you want to
include as comment lines in your generated code.

13. Click Finish . Your new interface is added to the User-Defined Business
Objects folder, with the attributes and methods of the composition you
selected, as well as any additional attributes and methods you specified.

You should now see your interface in the Tasks and Objects pane. Any methods
defined for your interface should appear under the User-Defined Methods folder in
the Methods pane, and any attributes defined for your interface should appear
under the User-Defined Attributes folder in the Methods pane.

“Composite Business Object” on page 175
“Business Object” on page 17

“Create a Composite Component - Overview” on page 172
“Work with Composite Business Objects - Overview” on page 353
“Add a Composite Key” on page 360

Add a Composite Business Object Implementation and Data Object
Interface

Once you have created a composite business object interface, you must add one or
more implementations for that composite business object, and also create its data
object interface. You can accomplish both tasks using the Business Object
Implementation wizard. Ensure that you have added a key to the composite
business object interface before proceeding with this task.

To create the composite business object implementation, and its associated data
object interface, follow these steps:

Chapter 10. Object Development Tasks 355

1. From the User-Defined Business Objects folder, select the composite business
object interface you want to implement.

2. Display the pop-up menu for the interface and select Add Implementation .
The Business Object Implementation wizard opens to the Name and Data
Access Pattern Page.

Appropriate implementation names are filled in for you (the business object file
name and interface name plus BO: for example, AAFile::AllAccounts gets an
implementation named AAFileBO::AllAccountsBO).You can accept these
defaults or replace them with your own names.

3. Select the pattern you want to use for handling the component’s state data
(that is, any attributes of the component that are not derived from the
composition it is based on). The following patterns are available:

v Delegating
The business object delegates every request for the essential state to the
data object interface.

v Caching
Both the business object and the data object have their own copies of the
essential state, which are synchronized. Lazy evaluation is the default
synchronization method, meaning that cached copies of the attributes are
synchronized at first use, rather than at instantiation.

v Same as parent’s
The business object inherits its pattern from a parent interface.
Note: This option is selected by default if the interface for this business
object inherits from another business object interface. However, you still
have to indicate the implementation parent on the Implementation
Inheritance page of this wizard.

There is also an option listed for None , which would generate a transient data
object. This option is not available in this release.

The pattern you select will apply for any attributes you created that are unique
to the composite component. It does not apply to any attributes derived from
the component’s composition. Attributes derived from the composition are
always implemented as delegation calls to their equivalents in the composition
helper object, regardless of the pattern selected here.

4. Select whether to create a new data object now, or add or select one later.

5. Click Next . The Implementation Inheritance Page opens.

6. Make sure that IManagedClient::IManageable is listed as a parent under the
Parent Class folder.

7. You can also select any parent business object implementations you want to
inherit behavior from.

8. Click Next . The Implementation Language page opens. Select the language
you want the business object to be implemented in. You can select either Java
or C++.

9. The default for this page is set in the Preferences notebook, on the Tasks and
Objects page.

10. Click Next . The Attributes Page opens.

A private attribute with the same name as the composition being used is
automatically included. This attribute is used to access the composition helper

356 Application Development Tools Guide

object in the delegating implementations of composite attributes and methods
(for example, the composite component method. debit calls the composition’s
method iCompositeAccount.debit).

You can also specify any attributes you want to add to the business object
implementation (in addition to the attributes you already specified in the
business object interface).

11. Click Next . The Methods Page opens.

12. Several private methods related to composition are automatically included:

v A method of the form loc_<instance name> is included for each component
instance of the composition being used (e.g. loc_SavingsAccount1 and
loc_CheckingAccount1). These methods are called during activation to
locate or create the managed objects that are used to initialize the
composition helper object when it is created. The implementation of these
methods is automatically generated by ObjectBuilder using the information
provided on the Location Page (see below).

v A method of the form get_<instance name>_<key attribute name> is
included for every key attribute of each component instance of the
composition being used (for example,. get_SavingsAccount1_accountNo
and get_CheckingAccount1_accountNo). These methods are called by the
loc_ methods to get the values used to initialize the primary key attributes of
the component instances. These methods will be automatically generated by
ObjectBuilder if simple key attribute mappings were supplied for the
composite key.

You can also specify any methods you want to add to the business object
implementation (in addition to the methods you already specified in the
business object interface).

13. Click Next . The Key and Copy Helper Page opens. Select a key and,
optionally, copy helper that you have created for this business object (for
example, AllAccountsKey and AllAccountsCopy).

14. Click Next . The Handle Selection Page opens.

You can select a handle for the business object implementation. If you select a
handle, then the framework method getHandleString is implemented, which
overrides the getHandleString method of IManagedClient::IManageable. The
method provides a way to encapsulate the business object implementation, by
returning a string that represents a reference to the business object. The
handle you select determines the pattern used to form the string (that is, to
turn the reference into a string, or to swizzle the pointer).

15. Click Next . The Location Page opens.

On this page, you set the composite business object’s relationship to the
managed objects being combined in the composition.

16. For each managed object in the composition, provide the following information:

a. Indicate whether it should be destroyed when the composition is destroyed,
or have its destruction managed independently.

b. Indicate the expected state of the managed object:

v Click Find or create if the managed object might or might not already
exist.

v Click Find if the managed object must already exist (and should not be
created if it doesn’t).

v Click Create if the managed object must not already exist (and should
not be returned if it does).

Chapter 10. Object Development Tasks 357

c. Indicate whether the managed object should be created using a copy
helper instead of its primary key. When creating a component using a copy
helper, the attributes that are also key attributes will be initialized as usual
(by calling get_ methods). The other attributes on the copy helper will be
set to the initial values specified in the “Interface wizard” of the component
being created.

Note : Components using PAA Services (i.e. CICS components) can only
be created using a copy helper.

d. Select the way the managed object should be located.

e. Provide the information necessary to implemented the selected location
pattern.

17. Click Next . If the business object implementation has parent classes with
overrideable attributes, then the Attributes to Override Page opens.

You can use this page to select which of the parent class’s attributes you want
to override.

18. Click Next . If the business object implementation has parent classes with
overrideable methods, then the Methods to Override Page opens.

You can use this page to select which of the parent class’s methods you want
to override.

19. Click Next . If the business object interface defines one-to-many relationships,
then the Object Relationships page opens.

You can use this page to set the way that the object relationship will be
implemented.

20. Click Next . The Data Object Interface Page opens. (Note: This page does not
open if, on the first page, you chose not to create a new data object.)

Appropriate data object names are filled in for you (the business object file
name and interface name plus DO: for example, AAFile::AllAccounts gets the
data object interface AAFileDO::AllAccountsDO). You can accept these defaults
or replace them with your own names.

If you implemented a one-to-many relationship as a Local persistent
reference , then an attribute representing it appears here, so you can select to
preserve it in the data object.

21. Select the attributes you want preserved in the data object. Because this
component is a composite one, state for all of the composite attributes is
already preserved in the referenced components. In other words, composite
attributes are already preserved in the data objects of their originating
components. You only need to select the key attributes here, and any
non-composite (not derived from the composition) attributes you defined for the
business object.

22. Click Next . The Data Object Methods Page opens. (This page does not open
if, on the first page, you chose not to create a new data object.)

23. Select which business object methods you want to push down to the data
object (that is, call equivalent methods to be defined in the data object).

24. Click Next . The Summary of Framework Methods Page opens.

Based on your selections on the previous pages of the wizard, this page
displays the methods that your object implements. For example, if you selected
a caching pattern to handle the essential state of your business object (on the
first page), this list includes the synchToDataObject method required to keep
the two sets of attributes synchronized.

358 Application Development Tools Guide

Because this business object is a composite, this list also includes two
composition methods, initializeComposition and uninitComposition. These two
methods are also automatically generated by Object Builder.

You can review the framework methods before closing the wizard.

25. Click Finish . The business object implementation and data object interface
appear in the User-Defined Business Objects folder, under your business
object interface. The data object interface also appears in the User-Defined
Data Objects folder.

Now that the business object implementation is defined, you can enter the
implementation code for any new methods you defined.

“Composite Business Object” on page 175
“Business Object” on page 17
“Data Object” on page 18

“Create a Composite Component - Overview” on page 172
“Work with Composite Business Objects - Overview” on page 353
“Add Code for User-Defined Methods” on page 267
“Add a Data Object Implementation” on page 299
“Define a One-to-Many Relationship” on page 131

Edit a Composite Business Object Interface

Composite business object interfaces are defined in the User-Defined Business
Objects folder, where they are shown under the file (and module, if any) in which
they are defined.

Composite business objects are based on compositions, from which they derive
attributes and methods. These derived methods are not editable in the business
object interface. You can edit them (for example, change their names or delegating
behavior) in the composition where they are defined. Changes to the composition
are applied to the composite business object automatically.

You can edit the file, module, and the non-composite attributes and methods of the
business object interface as follows:

1. From the pop-up menu of the file, module, or interface, click Properties to
display the appropriate wizard.

2. Click the the title bar to select a page to turn to.

3. Change your selections as necessary.

If you want to specify a parent for the interface after you have defined the
implementation for the business object, follow these steps:

a. Add the parent to the Parents folder on the Interface Inheritance page of
the Business Object Interface wizard

b. Open the Business Object Implementation wizard, and on the Name and
Data Access Pattern page specify the pattern for handling state data as
Same as parent’s .

c. Click Next.

d. Add the implementation parent on the Implementation Inheritance page.

4. Click Finish to apply your changes.

Chapter 10. Object Development Tasks 359

“Composite Business Object” on page 175

Edit a Composite Business Object Implementation

Composite business object implementations are defined in the User-Defined
Business Objects folder, where they are shown under the composite business
object interface they were added to. You can edit a composite business object
implementation by following these steps:

1. From the pop-up menu of the business object implementation, click Properties .
The Business Object Implementation wizard opens to the Name and Data
Access Pattern Page.

2. Click the title bar to select another page to turn to.

3. Change your selections as necessary.

4. Click Finish to apply your changes.

Note : The Same as parent’s option is selected by default if the interface for this
business object inherits from another business object interface. However, you still
have to indicate the implementation parent on the Implementation Inheritance page
of this wizard.

“Composite Business Object” on page 175

Work with Composite Keys - Overview

A composite key object defines which attributes are to be used to find a particular
instance of the composite component on the server. The key consists of one or
more of the business object attributes, which must contain enough information to
uniquely identify an instance.

The following tasks deal with composite keys:

v “Add a Composite Key”

v “Edit a Composite Key” on page 362

“Composite Key” on page 176
“Composite Component” on page 173

“Create a Composite Component - Overview” on page 172
“Work with Composite Business Objects - Overview” on page 353

Add a Composite Key

Each composite component must have a primary key class that contains enough
information to uniquely identify the component. The key is used when new
instances of the component are created or when existing instances need to be
found.

Once you have created a composite business object interface, you can define its
composite key.

360 Application Development Tools Guide

To add a composite key, follow these steps:

1. From the User-Defined Business Objects folder, select your composite
business object interface.

2. From the object’s pop-up menu, select Add Key . The Key wizard opens to the
Name and Key Attributes Page.

3. Appropriate key names are filled in for you (the business object file name and
interface name plus Key: for example, AAFile::AllAccounts gets a key named
AAFileKey::AllAccountsKey). You can accept these defaults or replace them
with your own names.

4. Select the composite business object attributes that make up the primary key.

If possible, you will want to select attributes that were part of the keys for the
original combined components.

For example, given the following situation:

v A composite component AllAccounts is based on a composition of two other
components, SavingsAccount and CheckingAccount.

v The primary keys of both SavingsAccount and CheckingAccount contain a
single attribute accountNo (the account number).

v The two account numbers are exposed in the composite business object as
attributes savingsAccountNo and checkingAccountNo.

If you select the attributes savingsAccountNo and checkingAccountNo for the
primary key of AllAccounts, the composite key then includes all the information
needed not only to uniquely identify the AllAccounts component, but to identify
the SavingsAccount and CheckingAccount components as well. This eliminates
the need to maintain persistent references from the composite component to
the original combined components.

If the composite business object has a parent business object (specified on the
Interface Inheritance page of its wizard), you can also select from the parent
interface’s attributes (you should not select attributes of the parent interface if
you are planning to inherit from the parent interface’s key).

5. Click Next . The Composite Key Page opens. Here you are given the
opportunity to provide mappings between the composite key attributes and the
attributes of keys for the grouped components.

6. For each key attribute you selected that corresponds directly to an attribute of
a component key, describe the mapping:

a. Select an attribute in the Composite Key list (for example,
checkingAccountNo).

b. Select an attribute of a key in the Composite Key Elements list (for
example, the accountNo attribute of CheckingAccountKey).

c. Click Add .

7. Click Next . The Implementation Inheritance Page opens.

On this page, you can specify the type of key (primary or unique), and inherit
from the appropriate parent class (IPrimaryKey or IUniqueKey).

8. Verify that the primary key type is selected.

If the key has a parent, you can specify it here.

Note : You should not inherit from a parent key if you also selected inherited
attributes on the previous page.

9. Click Next . The Summary of Framework Methods Page opens. This page
summarizes the framework methods this object implements. No action is
needed.

Chapter 10. Object Development Tasks 361

10. Click Next . The Optional Framework Methods Page opens. Select any
additional framework methods you want to implement. Object Builder will add
signatures for the methods you select, but you must provide your own
implementation code. The methods you implement will override the equivalent
framework methods of the parent class.

Note : The editor pane will not allow you to edit these methods until you set
them as editable in the Method Implementation wizard. To set a method as
editable, follow these steps:

a. In the Methods pane, select the framework method.

b. From its pop-up menu, click Properties .

c. In the Method Implementation wizard, specify that you want to use the
implementation defined in the editor pane. This lets you use the Source
pane editor to edit the method implementation.

11. Click Finish . The key appears in the User-Defined Business Objects folder,
under your composite business object interface.

In the Methods pane, you should see some items listed in the Framework Methods
folder. Default implementation code is provided for these methods, which you can
view in the edit pane by selecting a method. Normally, you will not want to edit this
code (except for the code for the optional framework methods, as noted above).
The code for framework methods is read-only by default.

“Composite Key” on page 176
“Key” on page 21

“Create a Composite Component - Overview” on page 172
“Work with Composite Keys - Overview” on page 360
“Add a Composite Business Object Implementation and Data Object Interface” on
page 355

Edit a Composite Key

Composite keys are defined in the User-Defined Business Objects folder, where
they are shown under the composite business object interface they were added to.
You can edit a key by following these steps:

1. From the pop-up menu of the key, click Properties . The Key wizard opens to
the Name and Key Attributes Page.

2. Click the title bar to select a page to turn to.

3. Change your selections as necessary.

4. Click Finish to apply your changes.

“Composite Key” on page 176

362 Application Development Tools Guide

Chapter 11. Configuration Tasks

Build DLLs - Overview

Once you have defined your components in Object Builder, you are ready to build
the components into client and server dynamic link libraries (DLLs, also known as
shared library files). The client DLLs contain the component interfaces, and helper
classes, which allow your client applications to locate and use the components on
the server. The server DLLs contain the implementations and data objects for the
component.

To build your DLLs, complete the following steps:

1. “Generate Code”

2. “Define a Client DLL” on page 364

3. “Define a Server DLL” on page 366

4. “Generate a Makefile” on page 367

5. “Build the DLLs” on page 368

Once you have built the DLLs, you can debug them, or package them as part of an
application.

Develop Applications in Object Builder - Overview
“Build DLLs in a Team Environment” on page 217
“Package an Application” on page 375

Generate Code

Before building an application, you must generate source code for the objects you
have created. By selecting Generate - Selected or Generate - All from an object’s
pop-up menu, you can generate code for that object only, or for that object and all
objects below it in the tree. You can also generate code for a project from a
command line, using the obgen command.

Until you generate code, all information for your objects is maintained in an Object
Builder model (for example, MyProject/Model/*.uni). When you generate, the
resulting files are placed in the /Working/platform subdirectory of the project
directory you specified, ready to be compiled (for example,
MyProject\Working\NT*.idl, *.cpp, *.java). Java versions of the key and copy helper,
for use by Java client applications, are generated into subdirectories with names
based on the module names of the key or copy helper (for example,
MyProject\Working\NT\ClaimModuleCopy\ClaimCopyHelper.java).

You can select which platforms you generate code for using the Platforms -
Generate menu on the Object Builder main menu bar. You can also select which
platform to view information for, and constrain your development options to a
particular set of platforms. You can only view one platform at a time, but you can
generate code for multiple platforms at a time.

© Copyright IBM Corp. 1997, 1998 363

You can generate source code for any object in the User-Defined Business
Objects folder, User-Defined Data Objects folder, DBA-Defined Schemas folder,
and User-Defined Compositions folder. To generate code for an object, follow
these steps:

1. Select an object.

2. From the object’s pop-up menu, click Generate - Selected - All . The
appropriate code for the object is generated into the working directory. You can
also select to generate only a particular type of code, from the Selected
choices. These choices display the list of file types that can be generated for
the selected object (for example, .ih, .cpp, .java)

Note : Because a business object interface is physically contained in a business
object file, you generate the code for the interface by generating the code for the
file (from the business object file’s pop-up menu, click Generate - Selected). The
same applies to data object interfaces in the User-Defined Data Objects folder.

You can generate the code for all the objects in a folder by selecting Generate - All
from the folder’s pop-up menu.

The generation process is tracked by a progress indicator, and may take some
time. The more platforms you are generating code for, the longer the generation
process will take.

To view the source code for any of the objects you defined, select View Source
from the object’s pop-up menu. The .idl, .ih, and .cpp or .java files for the object are
loaded in the editor pane. Click the drop-down arrow on the right end of the editor
pane’s title bar to access a list of currently loaded files and switch between them.
You cannot edit the source code directly: if you want to change the source code, do
so by changing the selections in the wizards, or editing the code associated with
your methods in the Methods pane. The next time you generate the source code,
your changes are applied.

Note: Outside of Object Builder, you can edit the source code with the editor of
your choice. Changes to method bodies should be imported back into Object
Builder, or your changes will be over-written the next time code is generated.

You can now generate the makefiles that will set your build options and define your
target DLLs.

“Chapter 7. Multi-Platform Development” on page 187

“Import Changes to Methods” on page 272
“Generate a Makefile” on page 367
“Build the DLLs” on page 368
“Run Object Builder in Batch Mode” on page 11

Objects to Source Files Mapping

Define a Client DLL

Your application will typically consist of both client and server shared libraries, or
dynamic link libraries (DLLs). To define a client DLL, follow these steps:

364 Application Development Tools Guide

1. Under Tasks and Objects, select the Build Configuration folder.

2. From the pop-up menu of the folder, select Add Client DLL . The Client DLL
wizard opens to the Name and Options Page.

3. Type a name for the configuration. This is a unique identifier for the build
configuration that creates the DLL. If you want, you can also type a description
of the configuration.

4. Set the platforms for which you want to build DLLs (Applicable Platforms).

5. Set the options for each platform:

a. Select a platform from the Platforms list. All the options you enter below
will apply to the DLL built for this platform.

b. Type a name for the library (DLL), without the file extension.

Note the following points:

v You cannot have spaces in the DLL file name. When you click Finish to
close the wizard, the program strips out any spaces. It also removes the
file extension, if you happened to include it.

v If you do not specify a file name, the name of the configuration will be
used (with a .dll extension).

v 390: The file name cannot exceed 8 characters.

c. In the Make Options field, type any options you want to call the DLL’s
makefile with. The options are added to the all.mak file that calls the DLL
makefiles.

There are several options specific to Component Broker that you can enter
in this field:

v DEBUG=1 (page 370)

v IVB_TRACE_DEBUG=1 (page 370) (not appropriate for a client DLL)

v IVB_UNOPTIMIZE=1 (page 370)

v IVB_DYNAMIC_LINK=1 (page 371)

v IVB_BUILD_VERBOSE=1 (page 371)

v all (page 371)

v java (page 371)

v jcb (page 371)

v cpp (page 371)

d. In the IDL Compile Options , IOM Java Compile Options , JCB Java
Compile Options , and CPP Compile Options fields, specify any options
you want passed to the IDL, Java, and C++ compilers by the makefile.

e. In the Link Options field, specify any linker options you want to build the
DLL with.

f. Also enter any non-Object Builder user-defined libraries for any DLLs that
are referenced by this DLL.

6. Click Next . The Client Source Files Page opens.

7. Select the files you want to use as source for the DLL. Only files that are
candidates for a client DLL (for example, key and copy interfaces) are available
for selection.

If you are building a composition or a composite component, you need to
include the client interface files of the member components in the composition
(business object file, key file, and copy helper file).

8. Click Next . The Libraries to Link With Page opens.

Chapter 11. Configuration Tasks 365

9. Select the names of the import libraries for any other DLLs you have defined in
Object Builder that are referenced by this DLL.

For example, if this DLL contains a child interface whose parent is defined in
another DLL, you need to select the import library for the parent’s DLL here.

10. Click Finish . The client DLL object appears in the Build Configuration folder
and you are ready to generate the makefile that will build it.

“Define a Server DLL”
“Generate a Makefile” on page 367

Define a Server DLL

Your application will typically consist of both client and server shared libraries, or
dynamic link libraries (DLLs). To define a server DLL, follow these steps:

1. Under Tasks and Objects, select the Build Configuration folder.

2. From the pop-up menu of the folder, select Add Server DLL . The Server DLL
wizard opens to the Name and Options Page.

3. Type a name for the configuration. This is a unique identifier for the build
configuration that creates the DLL. If you want, you can also type a description
of the configuration.

4. Set the platforms for which you want to build DLLs (Applicable Platforms).

5. Set the options for each platform:

a. Select a platform from the Platforms list. All the options you enter below
will apply to the DLL built for this platform.

b. Type a name for the library (DLL), without the file extension.

Notes:

v You cannot have spaces in the DLL file name. When you click Finish to
close the wizard, the program strips out any spaces. It also removes the
file extension, if you happened to include it.

v If you do not specify a file name, the name of the configuration will be
used (with a .dll extension).

v 390: The file name cannot exceed 8 characters.

c. In the Make Options field, type any options you want to call the DLL’s
makefile with. The options are added to the all.mak file that calls the DLL
makefiles.

There are several options specific to Component Broker that you can enter
in this field:

v DEBUG=1 (page 370)

v IVB_TRACE_DEBUG=1 (page 370)

v IVB_UNOPTIMIZE=1 (page 370)

v IVB_DYNAMIC_LINK=1 (page 371)

v IVB_BUILD_VERBOSE=1 (page 371)

v all (page 371)

v java (page 371)

v cpp (page 371)

366 Application Development Tools Guide

d. In the IDL Compile Options , IOM Java Compile Options , JCB Java
Compile Options , and CPP Compile Options fields, specify any options
you want passed to the IDL, Java, and C++ compilers by the makefile.

e. In the Link Options field, specify any linker options you want to build the
DLL with.

f. Also enter any non-Object Builder user-defined libraries for any DLLs that
are referenced by this DLL.

6. Click Next . The Server Source Files Page opens.

7. Select the IDL files you want to use as source for the DLL. Only files that are
candidates for a server DLL (for example, business object implementations and
managed objects) are available for selection.

When you select the source file for a data object implementation, the source
files for its associated persistent objects are automatically included.

8. Click Next . The Libraries to Link With Page opens.

9. Select the name of the import library (.lib file) for the corresponding client DLL.
Also select the names of the import libraries for any other DLLs you have
defined in Object Builder that are referenced by this DLL.

For example, if this DLL contains a child interface whose parent is defined in
another DLL, you need to select the import library for the parent’s DLL here.

10. Click Finish . The server DLL object appears in the Build Configuration folder.
You are now ready to generate the makefile that will build it.

“Define a Client DLL” on page 364
“Generate a Makefile”

Generate a Makefile

To generate the makefiles that will build the shared libraries or dynamic link libraries
(DLLs) in the Build Configuration folder, follow these steps:

1. Select the Build Configuration folder.

2. From the folder’s pop-up menu, select one of the options under Generate - All
(as described below). The makefiles (all.mak, and the makefiles for the DLLs in
the folder) are generated into your working directory.

Once the makefiles have been generated, you can view them by clicking View
Source from the folder’s pop-up menu.

When you generate from the folder’s pop-up menu, the option you select under
Generate - All determines what is included in the makefiles. You can select from
the following:

v C++ Default Targets
The makefile will build all C++ DLLs.

v Java Default Targets
The makefile will build all Java JAR files.

Not available on AIX.

v Java Client Bindings Default Targets
The makefile will build all Java client bindings

Not available on AIX.

v All Targets
The makefile will build all DLLs and associated objects defined in the folder.

Chapter 11. Configuration Tasks 367

The menu item you select determines what the Build - Default Targets action will
build. The makefile you generate can still be used to build other targets, through the
folder pop-up menu’s Build actions.

The makefile for each DLL includes any IDL compile, Java compile, CPP compile,
and link options you specified for the DLL. Do not use these files directly. Use the
all.mak file, which calls the makefiles for each DLL, and includes any make options
you specified for each DLL. Using the all.mak file ensures that the DLLs are built in
the correct order.

Notes:

v If an interface defined using an Object Builder wizard or imported from an .idl file
“includes” other interfaces, the “included” interface or header files does not
appear in the makefile as dependencies of the “including” interface.

Prior to re-building the generated source, you should either manually edit the
makefile to add the missing dependencies, or clean and rebuild all targets.

v You should build the DLLs on a server development machine (typically, the one
on which you are using Object Builder). If you move the makefiles to another
machine without the server SDK installed, the DLLs may not compile.

“Define a Client DLL” on page 364
“Define a Server DLL” on page 366

Build the DLLs

Before packaging an application, you must build your client and server DLLs (that
is, compile and link the generated code). You can do this by running the all.mak file
you generated. Do not run the makefiles for the individual DLLs directly. Using
all.mak ensures that the DLLs are built in the correct order.

You should build the DLLs on a server development machine (typically, the one on
which you are using Object Builder). If you move the makefiles to another machine
without the server SDK installed, the DLLs may not compile.

If you are building for OS/390, you can use the OS/390 remote build process to
build on a specified remote host.

To run all.mak, follow these steps:

1. Under Tasks and Objects, select the Build Configuration folder.

2. From the folder’s pop-up menu, select Build and then one of the following
sub-options:

v Out-of-Date Targets
You can select the type of out-of-date targets to build:

– C++
Builds C++ client and server DLLs.

– Java
Builds Java JAR files for Java business objects and for components with
PA-based persistence.

– Java Client Bindings
Builds Java client bindings that allow a Java client application to access
the equivalent components in the server application.

368 Application Development Tools Guide

– Default
Builds whatever was selected when the makefile was generated (for
example, if Generate - All - C++ Default Targets was used to generate
the makefiles, then selecting Build - Out-of-Date Targets - Default will
build the C++ targets).

v All Targets
All targets are built.

v Rebuild All Targets
A build clean is performed, followed by a build all targets.

v Clean
Performs a build clean, but does not perform a build.

3. When the build has finished, you can review the record of the build in the
command window.

You can also make all.mak from a command line, with the following flags:

v all (page 371)

v java (page 371)

v cpp (page 371)

v jcb (page 371)

Once you have built all applicable targets, your DLLs and .jar files exist on your
hard drive, in the project working directory defined in Object Builder, and you can
package them into an application.

For C++ components, the DLLs (MyClientDLL.dll and MyServerDLL.dll) are built
with the file name you specify and placed in the project working directory. If you
have Java components in the same application, then you will need a .jar file for
each C++ component that provides Java components on the server with access to
the C++ components: MyClientDLL.jar.

If you are supporting a Java client application, then Java client bindings also need
to be built: JCBMyClientDLL.jar, in the working\platform\JCB\ directory.

For Java components, three .jar files are created:

v MyClientDLL.jar
Supports access to the component by other components on the server.

– Source: \Working\platform\

– Compiled classes: \Working\platform\JAVACLS\MyClientDLL\

– JAR file location: \Working\platform\

v MyServerDLL.jar
Supports and implements the Java business object on the server.

– Source: \Working\platform\

– Compiled classes: \Working\platform\JAVACLS\MyServerDLL\

– JAR file location: \Working\platform\

v JCB\JCBMyClientDLL.jar
Java client bindings that support access to the component by the client
application.

– Source: \Working\platform\JCB\

– Compiled classes: \Working\platform\JCBCLS\MyClientDLL\

– JAR file location: \Working\platform\JCB\

Chapter 11. Configuration Tasks 369

The DLLs and JAR files are automatically pulled into an application when you
configure the managed object with the application.

“Chapter 13. Troubleshooting” on page 411

“Launch a Remote OS/390 Build” on page 373
“Generate a Makefile” on page 367
“Package an Application” on page 375

Build Configuration Options

When you configure the build process for your application, you can specify options
for the way your DLLs are compiled and linked in the Client DLL wizard and Server
DLL wizard, on the Name and Options Page.

You can either set options directly (using their command-line syntax, in the Compile
Options and Link Options fields), or set them through the make command (by
specifying macros in the Options for Make field). If you intend to use the same
Object Builder model on both Windows NT and AIX, we recommend using the
macros. The macros will set the appropriate compile and link options for the
specified build type, regardless of the current platform.

The predefined macros provided by Object Builder function as follows:

DEBUG=1
The DLLs are compiled without optimization, and enabled for source-level
debugging. Options set:

Windows NT
CPP Compile:

v /O-

v /Ti+

v /Tm+

IVB_TRACE_DEBUG=1
Same as DEBUG=1, but also defines the CBS_TRACE_DEBUG preprocessor
macro, which then includes code that allows the DLL to send trace data to the
Object Level Trace tool for remote debugging. Options set:

Windows NT
CPP Compile:

v /O-

v /Ti+

v /Tm+

v /DCBS_TRACE_DEBUG

IVB_UNOPTIMIZE=1
The DLLs are compiled without optimization. Option set:

Windows NT
CPP Compile:

370 Application Development Tools Guide

v /O-

IVB_DYNAMIC_LINK=1
The DLLs are linked dynamically with the VisualAge for C++ runtime DLLs. This
reduces the size of your DLLs, but makes them dependent on the presence of the
VisualAge for C++ DLLs. You must then package the runtime DLLs with your
application, as follows (procedure applies to Windows NT):

1. Use the DLLRNAME utility to rename the VisualAge for C++ DLLs and update
the references to them in your executables. See Packaging the VisualAge for
C++ Runtime DLLs in the VisualAge for C++ for Windows User’s Guide.

2. When you define the application, include the renamed DLLs on the Additional
Executables Page of the Add Application wizard.

For AIX, consult the C Set++ documentation for information on packaging
shared libraries.

The default is to link to the runtime DLLs statically, which means any necessary
code is built directly into your DLLs and there are no special packaging concerns. In
most cases, the default (static linkage) is preferable.

Option set:

Windows NT
CPP Compile:

v /Gd+

IVB_BUILD_VERBOSE=1
The DLLs are compiled and linked with the maximum amount of feedback
generated. Options set:

Windows NT
CPP Compile:

v /Q- (actually the Q+ option is just removed)

Link:

v /VERBOSE

all
Builds IDL, C++, and Java

On AIX, Builds IDL and C++ only.

java
Builds IDL and Java.

Not available on AIX.

jcb
Builds Java client bindings.

Not available on AIX.

cpp
Builds IDL and C++. This is the default behavior (when make is run without flags, or
run directly from Object Builder).

Chapter 11. Configuration Tasks 371

“Define a Client DLL” on page 364
“Define a Server DLL” on page 366
“Generate a Makefile” on page 367
“Build the DLLs” on page 368

Remote Build Configuration (OS/390) Remote Build

Remote Build

A build that is activated on another computer that is distant from a central site,
usually over a network connection. The remote computer may be stationary and
non-portable, or it may be portable.

“Profile”“Pass Ticket”

“Launch a Remote OS/390 Build” on page 373
Launch a Remote OS/390 Build - Scenario

Pass Ticket

In Resource Access Control Facility (RACF) secured sign-on, and for the OS/390
secure server, a pass ticket is a dynamically generated, random, one-time-use,
password substitute that a workstation or other client can use to sign on to the host
rather than sending a RACF password across the network.

This pass ticket is composed of 8 characters, which can be any of the letters A to Z,
and the digits 0 to 9.

A pass ticket can be used only once in the ten-minute period from its generation. It
acts as a secure bridge from legacy applications to the modern world, though it is
not as secure as digital certificates.

“Remote Build”
“Profile”

“Launch a Remote OS/390 Build” on page 373
Launch a Remote OS/390 Build - Scenario

Profile

In Object Builder, when you are specifying the options for a remote OS/390 build,
you can optionally specify the name of a profile file. This is a shell file that contains
initializations of the OS/390 environment variables.

“Remote Build”
“Pass Ticket”

372 Application Development Tools Guide

“Launch a Remote OS/390 Build”
Launch a Remote OS/390 Build - Scenario

Launch a Remote OS/390 Build

Preliminary steps:

v Ensure that the rexec daemon is running on the OS/390 host machine.

v Have Object Builder for Windows NT up and running.

v Change the platform view to OS/390. Select Platform - View - 390 from Object
Builder’s main menu.

To launch a remote build, follow these steps:

1. Select the Build Configuration folder in the Tasks and Objects pane.

2. From its pop-up menu, select Remote OS/390 Options . The Remote Build
wizard opens to the OS/390 Options Page.

3. Specify the name of the OS/390 machine on which you want to run the remote
build in theHost Name field.

4. Type the user ID and password by which you will access the host machine.

5. Type the full directory path on the OS/390 host machine, which is to contain the
files generated by Object Builder in the Host Directory field. This is the directory
that will contain the files and directories that are normally contained in Object
Builder’s Working\390 directory after file generation.

6. You can optionally specify the name of a shell profile file, to be used to initialize
environment variables.

7. Indicate the format in which data is to be returned by the host. You can choose
between the American Standard Code for Information Interchange (ASCII) and
the Extended Binary Coded Decimal Interchange Code (EBCDIC). Your
selection determines the data translations, if any, that are required.

8. Click Finish .
Your user ID and password are stored in memory, but the host name, host
directory, and profile name (if you provide it) are saved.

9. Select the Build Configuration folder again, and from its pop-up menu,
selectBuild .
The remote build will be activated if the host name, user ID, password, and host
directory are properly set.
Note: As long you use the same Object Builder session, you do not have to
retype your user ID and password each time you want to do a remote build; you
can just execute step 9. You will have to follow the preliminary steps, and steps
1 to 4, 6, 8 and 9, if you close Object Builder, and restart it.

“Remote Build” on page 372

Launch a Remote OS/390 Build - Scenario

Launch a Remote OS/390 Build - Scenario

Preliminary steps:

v You must ensure that the rexec daemon is running on the OS/390 host machine.

Chapter 11. Configuration Tasks 373

v Optionally, create an NFS read/write mount of your OS/390 host directory. You
can then generate code directly into the NFS mounted directory. Instead, you can
generate the files onto your local file system, and then use the File Transfer
Protocol (FTP) to transfer them over to an Open Edition for OS/390 system.

v Set up Object Builder for Windows NT.

v Once it is running, change the platform view to OS/390. Select Platform - View -
390 from Object Builder’s main menu.

To launch a remote build, follow these steps:

1. Select the Build Configuration folder in the Tasks and Objects pane.

2. From its pop-up menu, select Remote OS/390 Options . The Remote Build
wizard opens to the OS/390 Options Page.

3. Specify machine.host.com as the name of the OS/390 machine on which you
want to run the remote build in the Host Name field.

4. Type the user ID and password by which you will access the host machine.

5. Type .../Working/390 as the full directory path on the OS/390 host machine,
which is to contain the files generated by Object Builder in the Host Directory
field. This is the directory that will contain the files and directories that are
normally contained in Object Builder’s Working\390 directory after file
generation.

6. If you maintain the settings of the Component Broker Toolkit environment
variables such as CLASSPATH, PATH, and so on in a shell profile file similar to
.profile in AIX, specify its name.

7. Accept the default (ASCII - the American Standard Characters for Information
Interchange) format in which data is to be returned by the host. The other
choice is the Extended Binary Character Digital Interchange Code (EBCDIC).
Your selection determines the data translations, if any, that are required.

8. Click Finish .
Your user ID and password are stored in memory, but the host name, host
directory, and profile name are saved.

9. Select the Build Configuration folder again, and from its pop-up menu,
selectBuild .
The remote build will be activated if the host name, user ID, password, and host
directory are properly set.
Note: As long you use the same Object Builder session, you do not have to
retype your user ID and password each time you want to do a remote build; you
can just execute step 9. You will have to follow the preliminary steps, and steps
1 to 4, 6, 8 and 9, if you close Object Builder, and restart it.

You can now make incremental changes to your files, and you will not have to use
the File Transfer Protocol.

“Remote Build” on page 372

“Launch a Remote OS/390 Build” on page 373

374 Application Development Tools Guide

Package an Application

When your application is ready to ship, you can package it for easy installation at a
customer site. Typically you will create an application family for your server
applications, and a separate application family to hold your client applications.
Server applications consist of managed object configurations, which define the
component objects and DLLs you want installed on the server. Client applications
consist of the client DLLs for your components, plus the client EXEs (built outside of
Object Builder) that will access the components.

To package an application, follow these steps:

1. “Create an Application Family”

2. “Add a Client Application” on page 376

3. “Add a Server Application” on page 377

4. “Create a Container Instance” on page 346

5. “Configure a Managed Object” on page 377

6. “Generate the Install Image” on page 379

“DDL” on page 114

Develop Applications in Object Builder - Overview

Create an Application Family

An application family consists of one or more applications that are packaged
together on a CD and need to run at the same code level. There is a single
installation process for each application family you define. You can group
applications in a family to ensure version compatibility. The installation checks each
application’s version, and at the end of the installation ensures that all applications
in the family are at the same version.

When you install an application family, you cannot select which applications you
want to install. You must install all or none of the applications in the family.

Application families consist of either client applications (which include an EXE file
and one or more DLLs used to access the server applications), or server
applications (which include DLLs, defined in Object Builder, that contain the
components accessed by the client application).

To create an application family, follow these steps:

1. Under Tasks and Objects, select the Application Configuration folder.

2. From the folder’s pop-up menu, select Add Application Family . The Add
Application Family wizard opens to the Name Page.

3. Enter a name, description, and version number for the application family.

4. Click Next . The Installation Information Page appears.

5. Specify if any additional disk space is required by the application family. By
default, the InstallShield program calculates the disk space needed to install
your applications based on the size of the disk image. If your applications

Chapter 11. Configuration Tasks 375

require additional disk space (for example, to store temporary files your
application generates when it runs), type the additional amount here.

6. Find the Readme file, if you have one. The Readme file could document any
hardware and software prerequisites for the application, and troubleshooting and
recovery information for the installation.

7. Click Finish . The application family is added to the Application Configuration
folder.

You can now add applications to the application family.

“Add a Server Application” on page 377
“Add a Client Application”

Add a Client Application

An application is a complete, self-contained program that performs a specific
function for a user. In Object Builder terms, a client application consists of an EXE
file, and one or more client DLLs defined in Object Builder that define the
component interfaces the client application can access. The client application then
works with the server applications (which provide DLLs that contain the components
the client uses). For Java applications, .jar files serve the same function as DLLs.

Do not add client and server applications to the same application family. Because
you cannot selectively install within an application family, grouping the two together
would mean you could not perform a client-only installation.

To add an application to your application family, follow these steps:

1. From the Application Configuration folder, select your application family.

2. From the family’s pop-up menu, select Add Application . The Add Application
wizard opens to the Name and Environment Page.

3. Enter a name, description, and version number for the application.

You can also specify a Java virtual machine name.

4. Click Next . The Additional Executables Page opens.

5. Browse for and select the following files:

v For Java client applications, the Java .jar files that contain your client
application, and any additional .jar files your application requires.

v For C++ applications, the client EXE file (which you created outside of Object
Builder) or Java files, and any supporting DLLs it requires.

v Any client DLL or .jar files (defined in Object Builder) that contain the
definitions of components your client application uses.

6. Click Finish . The application appears under your application family in the
Application Configuration folder.

Note: Do not configure any managed objects with a client application, or it will be
installed incorrectly. Managed objects can only be configured with server
applications, and accessed from client applications through the client DLLs that
define the component’s client interfaces.

“Add a Server Application” on page 377
“Define a Client DLL” on page 364

376 Application Development Tools Guide

Add a Server Application

A server application consists of components, which encapsulate distributed data
and resources for the use of a client application.

Do not add client and server applications to the same application family. Because
you cannot selectively install within an application family, grouping the two together
would mean you could not perform a client-only installation.

To add a server application to your application family, follow these steps:

1. From the Application Configuration folder, select your application family.

2. From the family’s pop-up menu, select Add Application . The Add Application
wizard opens to the Name and Environment Page.

3. Enter a name, description, and version number for the application.

You can also specify a Java virtual machine name.

4. Click Next . The Additional Executables Page opens.

5. Browse for and select the following files:

v Any client DLL or .jar files (defined in Object Builder) for components in other
application families that are referenced by your application.

DLLs and .jar files for components in this application are automatically
included when you configure the component managed objects with the
application.

v Any additional DLLs or .jar files (not defined in Object Builder) that contain
code required by your application.

v Any bind files for components that use embedded SQL (that is, the
component’s data object implementation has the Embedded SQL option set
on the Behavior Page of its wizard).

Bind files are the compiled form of a persistent object .sqx file (for example,
ClaimPO.sqx becomes ClaimPO.bnd).

v Any SQL files for components that connect to new (as opposed to
pre-existing) database tables.

When the server application is installed, the SQL files can be used to
configure the database for use by the application’s components.

6. Click Finish . The application appears under your application family in the
Application Configuration folder.

You can now configure managed objects with your application and, if you want,
create a container that handles object services for the managed objects.

“Add a Client Application” on page 376
“Create a Container Instance” on page 346
“Configure a Managed Object”

Configure a Managed Object

Once you have defined a server application, you can add and configure the
managed objects you want your application to consist of.

To add a managed object to an application, follow these steps:

1. From the Application Configuration folder, select your application.

Chapter 11. Configuration Tasks 377

2. From the application’s pop-up menu, select Add Managed Object . The
Configure Managed Object wizard opens to the Selection Page.

3. Select the managed object from the drop-down list.

If the managed object has been added to a DLL, and is associated with a key
and a copy helper, then the primary key, copy helper, and DLL fields are filled
in for you. You can type over these automatic selections, or make alternative
selections from the drop-down lists.

4. Click Next . The Data Object Implementations Page opens.

5. From the Implementations pop-up menu, select Add .

6. Select the data object implementations that will be available to the application,
and associated DLLs. Note that this is a packaging statement, and not a
configuration statement.

You can only select data object implementations whose type of persistence
matches the service provided by the managed object (transactional services
for DB persistence, session services for PA persistence).

7. Click Next . The Container Page opens.

8. Specify whether you want to use a workload managing container. If you check
this option, then only workload managing containers are available in the
Container list.

9. Select the container to use with this managed object. The container
determines the quality of service (that is, how objects are instantiated,
terminated, and so on). If you select a workload managing container, then the
component will be workload managed.

The only containers listed are those that are appropriate for the current
managed object and selected data object implementations.

390: If you are developing an application intended for deployment on OS/390
(the Platform - Constrain - 390 menu choice is checked), then all containers
are listed, and you need to make an appropriate choice based on the kind of
managed object you are configuring, and the services it requires. The rest of
the container definition is handled through the System Management user
interface.

Note: Make sure that the managed object is configured with a different
container than that used by its home. If necessary, create a separate container
instance for the managed object. If a managed object and its home are
configured with the same container, the server will not activate.

10. Click Next . The Home Page page appears.

11. Define the home to use with this managed object. You can define a home
instance of a default home provided with Component Broker, or define a home
instance of a customized home you created. If you specify a customized home,
you must also specify which DLL contains it.

12. Select any other configuration options for the home

13. Click Finish . You have configured the managed object by choosing a copy
helper and a key for it to work with, data object implementations for it to use, a
container, a home, and the DLLs that contain it and the other objects. The
managed object now appears in the Application Configuration folder,
underneath the application you configured it for.

Once you have finished adding managed objects to your server applications, and
have completed the configuration of the applications in your application family, you
can generate the installation image for your application family.

378 Application Development Tools Guide

“Home” on page 342
“Container” on page 345
“Data Object” on page 18
Naming Service
Life Cycle Service
Workload Management

“Create a Container Instance” on page 346
“Create a Customized Home” on page 343
“Add a Server Application” on page 377
“Generate the Install Image”
“Work with Managed Objects - Overview” on page 339

Edit a Managed Object Configuration

To edit a managed object configuration, follow these steps:

1. Locate the managed object configuration in the Application Configuration folder.

2. From the pop-up menu of the configuration, click Properties to open the
Managed Object Configuration wizard.

3. Click the title bar to display the contents of the guide, and turn to a particular
page.

4. Make your changes.

5. Click Finish .

“Managed Object” on page 22

“Work with Managed Objects - Overview” on page 339

Delete a Managed Object Configuration

To delete a managed object configuration, click Delete from its pop-up menu.

Note : If the managed object configuration is part of a customized home, then you
must first remove it from any other managed object configurations that use it as
their home.

“Managed Object” on page 22

“Work with Managed Objects - Overview” on page 339
“Work with Customized Homes - Overview” on page 342

Generate the Install Image

Once you have created an application family, added applications to the family and
configured your managed objects, you can generate an install image to burn onto a
CD-ROM. The install image includes the DDL file that defines your data object to
the server, and an InstallShield setup file that starts the install from the CD-ROM.

Chapter 11. Configuration Tasks 379

Before you can generate the install image you must have installed the following
products:

v Component Broker base services

v InstallShield

To generate the install image, follow these steps:

1. From the Application Configuration folder, select your application family.

2. From the family’s pop-up menu, select Generate .

If you have multiple application families, you can generate the installation scripts
for all of them at once. Select Generate - All from the pop-up menu of the
Application Configuration folder to generate images for all the families in the
folder. You will still need to build the image for each application family
individually.

The following files are generated and placed in your working directory, under a
subdirectory that has the same name as the application family (for example,
myProject\Working\MyApplicationFamily\):

v <AppFamilyName>.ddl
The DDL script that provides information about your application family to
System Manager. Editable with the DDL Editor tool.

v <AppFamilyName>.auto.ddl
A backup version of the generated DDL.

v setup.rul, setupmsg.h, setup.lst
InstallShield scripts used by build.bat.

Not generated for AIX.

v build.bat
Builds the install image.

Not generated for AIX.

v build.sh
Builds the install image, on AIX.

3. Again select your application family.

4. From the family’s pop-up menu, select Build . This runs the build, and generates
an install image in the following format:

Windows NT
An install image is created as the contents of a directory called Disk1 , located
in a subdirectory below the build file (for example,
myProject\Working\MyApplicationFamily\Disk1\).

You can test the install image by changing to the image directory and typing
setup .

AIX
An install image is created in the AIX backup file format, with the name of the
application family and the extension .bff (for example,
myProject\Working\MyApplicationFamily\myApplicationFamily.bff).

Use the smit utility on AIX to install the image on a server.

390
If you have developed your code for OS/390 (as specified in the Platform
menu), the generated DDL for the application family includes the statement:
targetplatform=“390”

This statement prevents the application family from being accidentally installed
on an incompatible System Management platform.

5. Burn the contents of the directory onto a CD-ROM.

380 Application Development Tools Guide

The CD-ROM contains everything necessary to install the product. Once the
application is installed, you can configure it with system management, and run it to
make the components available to client applications.

Note : Before you run a Java client application, you need to add the following JAR
files to the beginning of your classpath:

v somojor.zip
Contains classes to support the client-side Java ORB. If this is not at the
beginning of the classpath, the wrong classes will be found, and your application
will not run.

v The JAR files that contain your Java client bindings (located in the JCB
subdirectory, with the naming convention JCBMyObjectC.jar). These contain
classes to support a client application accessing the equivalent Java component
on the server.

“DDL” on page 114

“Create an Application Family” on page 375
“Add a Server Application” on page 377
“Configure a Managed Object” on page 377
Edit an Application DDL File
Install and Configure a New Application

Application DDL Files

The installation package for an application family contains a DDL file that describes
the contents of the application family. It describes the applications in the family and
the objects, attributes, and relationships that make up each application. For
example, the DDL file for an application family defines the following:

v The applications to run on servers and their relationships to objects that they
provide

v The applications to run on clients and their relationships to objects that they
provide

v The classes, DLLs, homes, containers, and other objects provided by the
applications, and appropriate relationships between such objects

v Appropriate attributes of the applications and other objects in the application
family

The application family installation program uses the information in the DDL file to
create Install objects that the System Manager can use to define and configure the
applications.

When you use Object Builder to create an application family, it generates a DDL file
for the application family. Before you generate the install image for an application
family package, you can add other objects to the DDL file.

You do not normally change DDL files after the application family has been installed
into Component Broker. When you load an application family into Component
Broker, each application in the DDL file is represented as an available application
through the System Manager user interface. If you need to customize the

Chapter 11. Configuration Tasks 381

application within Component Broker, you normally do so by changing model
objects for the application through the System Manager user interface.

“The DDL Editor”
The files and process used by the DDL Editor (page 383)

Edit a DDL File

The DDL Editor

The DDL Editor can be used to display and edit the objects, object attributes and
relationships in a DDL file. The DDL Editor is used after a DDL file has been
created by the CBToolkit Object Builder to complete the DDL file before adding it to
an application installation package.

Editing DDL files is not usually of interest for system administration. Configuration
tasks are normally performed on model objects within Configurations of your
application Management Zones.

The DDL Editor uses a version of the standard System Manager user interface to
display the objects defined in the DDL file, as shown below. Through the DDL Editor
you can add new objects to your application family in the DDL file, edit the objects
in your application family, create relationships between the objects, and change
existing relationships.

The DDL Editor window

382 Application Development Tools Guide

An overview of the files and process used by the DDL Editor
For an application ddl file called filename.ddl, the Object Builder creates the
following ddl files, used as input to the DDL Editor (as shown in Files used by the
DDL Editor):

filename.auto.ddl
This is used as a reference so that the DDL Editor can tell what objects and
relationships have been generated automatically.

filename.ddl
This is the ddl file that is to be used for an application, and which you want
to edit. Initially this file is identical to the filename.auto.ddl file, but the DDL
Editor overwites the filename.ddl file when you choose to save the changes
that you have made. The filename.ddl output by the DDL Editor includes all
the changes made to objects, attributes, and relationships by editing the
input filename.ddl.

If you save any changes that you have made to the ddl file, This creates the
following files for an edited ddl file:

filename.additions.ddl
This contains the extra objects and relationships that you added to the
edited ddl file called filename.ddl

filename.ddl
This contains the complete new ddl file, including the objects and
relationships from the edited ddl file and the extra objects and relationships

Chapter 11. Configuration Tasks 383

also stored in the filename.ddl.additions file. This file overwrites the original
version specified on the command used to start the DDL Editor.

If you edit the filename.ddl again, the filename.additions.ddl file is used to reapply
the changes that you have made using the DDL Editor on previous occasions. Each
time you use the DDL Editor to edit the same original ddl file, the
filename.additions.ddl and filename.ddl files are overwritten, but the original
filename.auto.ddl file is not affected.

The filename.additions.ddl file forms a cumulative log of additions that you have
made to the original ddl file. Therefore, keep that file until you have completed
editing the original ddl file (until you no longer need to edit the original ddl file again
with the changes that you have made previously).

If the Object Builder outputs the original filename.ddl filename again, you should
edit that file again and regenerate it to ensure that the changes are included from
the filename.auto.ddl. Do this even if you do not want to change the ddl file
immediately. You should also check the application families displayed by the DDL
Editor, to see if the changes made by the Object Builder have any side effects on
the changes that you had made to the ddl file.

The files and process used by the DDL Editor

Tips
When a DDL file filename.ddl is first edited, the filename.auto.ddl file is identical. If
you do not have a filename.auto.ddl file, you can copy and rename the DDL file to
be edited. If you later need to recreate the original DDL file to be edited, without
regenerating it from Object Builder, you can copy and rename the filename.auto.ddl
file. (Normally, you would use Object Builder to regenerate the DDL file to be
edited.)

“Application DDL Files” on page 381

Edit a DDL File

Creating and Editing DDL Files

When you use Object Builder to create an application family it generates a DDL file
for the application family. This generated DDL file is found in your working directory,

384 Application Development Tools Guide

under a subdirectory that has the same name as the application family. The DDL
file also has the same name as the application family.

When you use Object Builder to add objects to the application family package, it
adds entries for those objects into the DDL file with appropriate attributes and
relationships.

Before you generate the install image for an application family package, you can
add other objects to the DDL file. Such objects are sometimes needed to configure
special application functions; for example, when packaging an application family for
a controlled server group, you can add policy groups, bind policies and their
associated C++ classes. After you have completed your Object Builder output, if
you need to add more to the DDL file you should use the DDL Editor .

The DDL Editor provides the same interface to the objects in the DDL file as the
System Manager user interface provides to equivalent system management objects
installed on your hosts. For each class of object in the DDL file, the DDL Editor
presents you with only valid actions, attributes, and relationships. Therefore, you
can only create valid types of objects, edit appropriate attributes, and create
appropriate relationships between objects. Further, the DDL Editor provides normal
graphical user interface actions for you to act on the DDL file, so preventing syntax
errors and other problems associated with editing a DDL file directly.

The structure of a DDL file, as presented by the DDL Editor is shown in the
following figure:

Chapter 11. Configuration Tasks 385

Objects in a DDL file
The main folder in a DDL file, Application Family Installs , contains the object for
your application family and one or more other application families that are provided
by Component Broker. You should only change the contents and attributes of your
application family. Do not change other application families provided by Component
Broker.

Within your application family object there is a range of folders for all the objects
within that family. All these folders are at the same level within the application family
object, and are displayed in alphabetical order. To find an object, expand the folder
for your application family, then expand the folder for the object class.

Server applications are defined in the Application Installs folder. Each application
contains relationships with the objects that it provides. Through the DDL Editor,
these relationships are grouped into folders; for example, Provided Managed
Object Classes , as shown in the above figure.

Any client applications are defined in the Client Application Installs folder. Each
client application contains relationships with the objects that it provides.

386 Application Development Tools Guide

Other objects in the application family are defined in the folder for the object class.
For example, to see containers provided by an application, expand the Provided
Managed Object Classes relationship folder or the Managed Object Class
Installs folder (as shown above). You can edit the same objects from either folder.

If the folder for an object class is not visible, it is most likely empty. You can use the
View menu bar option to change the filter to show empty folders. Also check that
the user-level is set to Expert .

Each object contains appropriate relationships with other objects.

For more information about editing DDL files, see the task description in the topic
Edit a DDL File.

“The DDL Editor” on page 382
The files and process used by the DDL Editor (page 383)

Edit a DDL File

Edit an Application DDL File

Using the DDL Editor , you can add new objects to a DDL file, edit the objects in
the file, create new relationships between the objects, and change existing
relationships.

This topic gives a task overview of how to edit a DDL file. Specific instructions
required by other tasks are given in related task topics and in information provided
by applications.

The DDL Editor uses a version of the standard System Manager user interface, so
to edit DDL files you act on objects and their relationships in the same way as you
would using the System Manager user interface, as described in the related topics.

Prerequisites
You must have the files defaultApplications.ddl , somdb2im.ddl , and
ddleditor.dict in the Component Broker data subdirectory; for example; on
Windows NT, e:\cbroker\data. These files are normally stored there automatically
when Component Broker is installed.

To edit a DDL file, complete the following steps:

1. Display the DDL Editor:

a. Open a command line window

b. On the command line, type the following command

somsmddle ddl_filename

where, ddl_filename is the name of the ddl file to be edited. If the file is not
in the current directory, type the full pathname of the ddl file. If the
pathname name includes directory names with blank spaces, enclose the
pathname within quotes. For example, to edit the file c:\Program
Files\Component Broker\Data\Myapplication.ddl , you could type the
following command:

somsmddle “c:\Program Files\Component
Broker\Data\Myapplication.ddl”

Chapter 11. Configuration Tasks 387

2. Change the objects and relationships for your application family in the DDL file.
You cannot delete any objects or relationships input from the Object Builder.

3. To save any changes that you have made to the DDL file, on the pop-up menu
for the Application Family Install click on Generate source . This saves any
changes that you have made to the filename.additions.ddl file and recreates the
filename.ddl with the input objects and relationships combined with the changes
you have made.

4. To exit the DDL Editor, click the X icon in the top right corner of the window or
Press Alt+F4.

Note: You cannot delete objects or relationships generated by the Object Builder
(the objects provided in the filename.ddl input to the DDL Editor).

You can edit a DDL file in the following ways:

To display objects and folders and move around the object tree view displayed
by the DDL Editor, you use the same tools and actions as for the standard SM user
interface. For example, the following are some of the methods that you can use to
display and act on objects:

v To expand the tree structure, click on the + symbol next to a folder or object

v To display objects from the session history or your hotlist, click the history or
hotlist icons on the Tool bar and select an entry from the window displayed

v To change objects through relationships, click on the pop-up menu of the
relationship shortcut icons

Objects within the application family are grouped into object class folders, displayed
in alphabetical order. To find an object, expand the folder for your application family,
then expand the folder for the object class.

If the folder for an object class is not visible, it is most likely empty. You can use the
View menu bar option to change the filter to show empty folders. Also check that
the user-level is set to Expert .

When you have displayed the required object, you can act on it using its pop-up
menu or select it to use the menu bar choices or Tool bar.

To create a new object , you insert the object into the folder for the object class,
using either of the following methods:

v On the pop-up menu of the application family, click New, then select the class of
object to be created. For example, click New - Application Install , to create a
new Application Install object.

v Insert the new object directly into its folder, by completing the following steps:

1. Display the object class folder

2. On the folder’s pop-up menu, click Insert

3. Type an appropriate name for the new object

4. To create the object, click the OK button

Both methods display a dialog box for you to identify the new object. If you type a
valid name, the new object is created in the folder. To display the object, and
perhaps act on it, expand the folder.

388 Application Development Tools Guide

To display and edit object attributes , on an object’s pop-up menu click Edit . This
displays the Object Editor window, which you can use to change the attributes of
objects.

To delete an object that you have added to the DDL file, click Delete on the pop-up
menu of the object.

To create new relationships , drag one object and drop it onto either another
object or a relationship folder.

Drag and drop tasks involve two actions; clicking Drag for the object to be dragged,
and clicking an appropriate context-sensitive action for the target object or
relationship. The Drag action causes context-sensitive actions to be added to the
pop-up menus of the target objects and relationships.

To change relationships , you can use either of the following procedures:

v Drag and drop a new object onto the relationship folder. This either creates a
new relationship or replaces the existing relationship with the new dragged object
or new target object.

v Delete the shortcut icon in a relationship folder. This deletes the relationship, but
does not delete the object.

“Application DDL Files” on page 381
“The DDL Editor” on page 382
Features of the User Interface
User-Level Settings and Object-Level Filters

Display Objects
Create Objects
Select and Deselect Objects
Act on Objects
Drag and Drop Objects
Edit Objects

The Structure of a DDL file

This topic describes the general internal structure of an application DDL file. It is
intended as a review aid in case you need to look within a DDL file after it has been
generated by Object Builder. Usually, if you need to look at objects in a DDL file,
you should use the DDL Editor . If you need to edit a DDL file after it has been
generated by Object Builder, you should also use the DDL Editor.

The structure of a DDL file, as presented by the DDL Editor, is shown and
described in the topic Objects in a DDL file.

The DDL Editor provides the same interface to the objects in the DDL file as the
System Manager user interface provides to equivalent system management objects
installed on your hosts. For each class of object in the DDL file, the DDL Editor
presents you with only valid actions, attributes, and relationships. Therefore, you
can only create valid types of objects, edit appropriate attributes, and create
appropriate relationships between objects. Further, the DDL Editor provides normal
graphical user interface actions for you to act on the DDL file, so preventing syntax
errors and other problems associated with editing a DDL file directly.

Chapter 11. Configuration Tasks 389

The following description of the DDL file structure is based on an extract of the
Insurance.ddl file provided with Component Broker. The application family defined
within the DDL file is referred to as “your application family”. Other application
families provided by Component Broker are referred to by name. Some lines have
been missed out, and replaced with ellipsis (...), where they do not add any
significant value to the description.

Declaration of objects supplied by Component Broker that are used by your
application family
At the top of the DDL file is a set of lines that declare the objects supplied by
Component Broker that are used by your application family. Most, if not all, of these
objects are defined in the iDefaultApplications application family provided by
Component Broker. The DDL Editor displays these objects within the
iDefaultApplications Application Family object. You should not change the
definitions for these objects.
//**
// Top of DDL file
//**
//Pre-Declare objects used by the Application which are Supplied by CB
//**
ApplicationFamily.iDefaultApplications;
ApplicationFamily.iDefaultApplications/Dll.somibl1i; ...
ApplicationFamily.iDefaultApplications/
ManagedObjectClass.IBOIMManagedObject_IViewCollectionImpl;

DDL Editor representation of application families provided by Component
Broker

Declaring objects
Objects within a DDL file are identified by their class and object name, in the
following format:
object_class.object name;

If an object exists in a different DDL file, the name is prefixed with the DDL file
name; for example, ApplicationFamily.iDefaultApplications/Dll.somibl1i. Note that the
DDL file name is joined to the object name by a forward slash character (/) and
each declaration line ends in a semi-colon (;). Several declarations, separated by
commas, can be grouped on the same line.

Object names
If the name of an object is to contain embedded blanks or any of the following
characters, the name must be enclosed in double quotes:

{ } , ; . /

(Open brace, close brace, comma, semi-colon, period, and forward
slash.).Otherwise, the use of double quotes is optional.

390 Application Development Tools Guide

The System Manager expands the name of a DLL object into a fully-qualified path
name when it creates the corresponding DLL Image. The DLL object name is
prefixed with the install path for the application family, and has the file type (.dll or
.a) appended. For example, for the DLL object myappinit and its application family
installed in c:\Cbroker\appfamily\ on Windows NT, the name of the DLL Image
becomes c:\Cbroker\appfamily\myappinit.dll .

Definition of your application family
A DDL file defines one application family only. Everything about that application
family if contained within the definition of that application family, which is delimited
by the ApplicationFamily.family_name statement and its opening and closing
braces { ... } . When you use Object Builder to create an application family, it
creates this definition. The DDL Editor displays your application family as the
family_name Application Family object. You can use the DDL Editor to change the
attributes of your application family. Normally, your application family and all its
objects have the same value for the version attribute.
// Describe the application family named “Insurance”.
ApplicationFamily.“Insurance”
{ // Set the attributes of the application family.
description = “”; version = “1.0.0”; ... }
//**
// Bottom of DDL file
//**

Object attributes
All object attribute statements have the general form attribute_name = value;

Text string values must be enclosed in doubles quotes. If an attribute has several
values (at the same time), the sequence of values is enclosed within braces and
each value separated by commas; for example, {value1,value2,value3}

When needed, attribute statements are created automatically by Object Builder.
Other attributes do not need to be defined in a DDL file, and are left to assume their
default values. Using the DDL Editor, you can display and change attribute values
by selecting the Edit action from the object’s pop-up menu. (This invokes the
Object Editor, as used by the System Manager user interface.) Note that using the
DDL Editor, only appropriate attributes for an object can be changed and the syntax
for names and values are validated.

Forward declaration of objects that are needed later
At the top of your application family definition is a set of entries that declare the
objects that are defined later within your application family. For each entry, the
object class and name must match its later definition.
Foward declarations of objects which will be needed later.
Xarm.“LifeIns”; MappedType.BCPBO_csClaimBOBO_DO; ...
Container.InsuranceContainer;

Definition of objects within your application family
Within your application family definition there are separate definitions for all the
objects of the family, as declared at the top of your application family definition.

All these object definitions are at the same level within your application family
definition, and have the same general format, as shown below:
// Define the Xarm image

for “LifeIns”. Xarm.“LifeIns” { openString = “LifeIns”;
switchLoadFile = “db2slf”; }

Chapter 11. Configuration Tasks 391

An object definition is delimited by its class_name.object_name statement and its
opening and closing braces { ... } .

Definition of applications within your application family
An application within an application family is defined like any other object. A server
application is delimited by its Application.application_name statement and its
opening and closing braces { ... } . A client application is delimited in the same way
by its ClientApplication.application_name statement and braces.

Within the braces are statements that define appropriate attributes of the application
and the “provides” relationships to objects that the application provides.
// Define applications.
Application.“LifeInsObjects”
{ // Set the attributes of the application.
description = “”; version = “1.0.0”; runControl = stop;
requiredJavaVMName = “”; ProvidesXarm -> { Xarm.“LifeIns” };
ProvidesManagedObjectClass -> { ManagedObjectClass.“BCPMO_csClaimMO”,
ManagedObjectClass.“BCPMO_csPayoutFractionMO”, ...
ManagedObjectClass.“A_C_ModuleMO_csAgentMO” }; ... }
// End definition of application LifeInsObjects.

Application “provides” relationships
For each non-application object within your application family there should be a
“provides” relationship with at least one application. (An object can have “provides”
relationships with more than one application.) These relationships are created
automatically by Object Builder or using the DDL Editor by dragging an object and
using the Configure object_class action from the application’s pop-up menu. The
DDL Editor displays the relationships in “provides” folders within the application
object.

The “provides” relationships have the same form:
relationship_name -> {

object_class.object_name };

The “arrow” (->) indicates a forward relationship to the object that the application
provides. If an application provides several objects of the same class, the sequence
of object identifiers is enclosed within braces and each identifier separated by a
comma.

DDL Editor representation of application “provides” relationships

Other relationships between objects
Some objects need to contain relationships with other objects. A relationship should
exist in only one of the two related objects. (If an object in your application family
needs a relationship to an object in the default application family, it must be defined
in the object in your DDL file.) These relationships are created automatically by

392 Application Development Tools Guide

Object Builder or using the DDL Editor by dragging an object and using the
Configure object_class action from another object’s pop-up menu. The DDL Editor
displays the relationships in folders within the object. Note that using the DDL
Editor, you do not need to be concerned about the relationship name and direction,
nor by which relationships are valid for an object.

The relationships of an object are normally listed after the objects attributes; for
example:
// Define the MO class 'BCPMO_csClaimMO'.
ManagedObjectClass.“BCPMO_csClaimMO”
{ // Define the attributes. description =
“Description of the class named csClaim.”; ... interfaceName =
“BCP::csClaim”;
// Define the relationships. This defines the DLLs containing
//this class's information. ContainsManagedObjectImplementation
<- dll.b_s; containsmanagedobjectkeyimplementation
<- dll.b_c; containsmanagedobjectcopyhelperimplementation
<- dll.b_c; }

The direction of the relationship, defined by the arrow (<- or ->), must be
appropriate for the object that the relationship is defined in. You can get a clue
about the correct direction from the relationship name: relationship names starting
“Uses” or “Provides” are forward relationships (->); relationship names starting
“Contains” or “Collects” are backward relationships (<-).

For example, the relationships for a home define the managed object class, data
object class, and container used by the home (as forward relationships). It also
defines the home provided by Component Broker that “collects” this home (as a
backward relationship) and the home of view objects provided by Component
Broker that this home uses (as forward relationships).
// Define a home for the “LifeInsObjects_BCPMO
csClaimMO_BCPDOImpl_csClaimDOImpl” class. Home.“LifeInsObjects_BCPMO
csClaimMO_BCPDOImpl_csClaimDOImpl”
{ // Define the attributes. ...
// Define therelationships.
UsesManagedObjectClass -> ManagedObjectClass.BCPMO_csClaimMO;
UsesDataObjectClass -> DataObjectClass.“LifeInsObjects_BCPDOImpl_csClaimDOImpl”;
UsesContainer -> Container.InsuranceContainer; CollectsHome
<- applicationfamily.idefaultapplications/home.iboimhomeofregqihomes; homeofviews ->
ApplicationFamily.iDefaultApplications/Home.iBOIMViewCollection; }

“Application DDL Files” on page 381
Creating and Editing DDL Files
“The DDL Editor” on page 382
The files and process used by the DDL Editor (page 383)

Edit Application DDL Files

Chapter 11. Configuration Tasks 393

394 Application Development Tools Guide

Chapter 12. Access a Component through FlowMark

FlowMark

IBM FlowMark has a workflow manager that enables you to automate your business
processes. The workflow manager usually runs as a distributed application on local
area networks that consist of several workstations, but you can also have the
FlowMark clients and servers on a single, stand-alone workstation.

You can maintain as many FlowMark databases as you need. The workflow
manager lets you access them either one at a time, or simultaneously. Data in each
database must be replicated in other databases to ensure that the information
required to execute a process is available on each server. The Import and Export
utilities help in data replication.

The workflow manager maintains FlowMark Definition Language (FDL) files, which
are ASCII text files that store definitions that are contained in FlowMark databases
in an external format called FlowMark Definition Language. FDL files are created
when you export data from FlowMark, and you can import them into FlowMark as
well.

Activity

FDL

FlowMark Definition Language (FDL) is an external format for defining programs,
data structures, and workflow models in a flat, ASCII text file. Definitions in an FDL
file can be imported into a FlowMark database.

The FDL file name usually has the .fdl extension. The name can have a maximum
of 8 alphanumeric characters (0-9 and A-Z).

The name of the FDL file is used by Object Builder as the default file for the Import
FDL and Export FDL actions: when you select Import FDL from the pop-up menu
of the bag’s folder, you import from a file with this name. Similarly, when you select
the Export FDL action from the bag, definitions of the bag are stored in a file with
the same name

“Bag”

“Work with Bags - Overview” on page 406

Bag

A FlowMark bag is a container for data structures and programs. The data
structures contain the same data as IBM FlowMark data structures. Programs
contain data from the FlowMark program registrations as well as data required to
enable FlowMark to invoke a method of a CBConnector managed business object.

© Copyright IBM Corp. 1997, 1998 395

Data Structure
Program

“Work with Bags - Overview” on page 406
“Work with Data Structures - Overview” on page 408
“Work with Programs - Overview” on page 409

Add a Bag

A bag contains FlowMark programs and data structures. Associated with every bag
is a FlowMark Definition Language (FDL) file. This file is created along with the bag.

You can create a bag that holds data structures and programs, directly from the
FlowMark folder. Once a bag is created, you can import a FlowMark Definition
Language (FDL) file, which has the definitions of the data and programs stored in a
flat text format. If the FDL file that you import has the same name as that
associated with the bag, it overwrites the definitions within the bag. If the two FDL
files have different names, new data structures and programs are created within the
bag.

To add a bag, follow these steps:

1. Select the FlowMark folder in the Tasks and Objects pane.

2. From its pop-up menu, select Add Bag . The FlowMark Bag wizard opens to the
Name Page, where you can specify the name of the bag to hold your programs
and data structures.

The bag is created as a folder within the FlowMark folder, and it contains a folder
each for the data structures and the programs.

“Bag” on page 395
Data Structure
Program

“Work with Bags - Overview” on page 406

Data Structure

A FlowMark data structure is the description of any data that is used as either input
or output, or that is referenced in either exit or transition conditions.

A data structure is an ordered list of variables (called members), each of which has
a name and a data type. The members of a data structure can be one-dimensional
arrays of the following data types:

v long

v floating point

v string

v a defined data structure (the data structure is nested)

For example, a data structure to define an address can have members of the string
data type for the name of the street and the city.

396 Application Development Tools Guide

An array can have a maximum of 512 elements. Each element of an array counts
as a member item. In the case of nested data structures, each of the member items
of the nested data structure count as one member item of the containing data
structure. The maximum number of members a data structure can have is 512,
assuming none of them are arrays, but the maximum number of member items a
data structure can contain is also limited to 512. So, if a data structure has a
member, which is an array of 512 elements, the data structure is limited to just that
one member.

Follow these rules when you name a data structure:

v The name must not exceed 32 characters in length.

v You can include blanks except for leading blanks, trailing blanks, and consecutive
blanks.

v You can use any character above ASCII character 31 in the name except for the
following characters: * ? “ . : ;

Your description for a data structure (optional) can be free-form, with a maximum
length of 1024 characters.

“FlowMark” on page 395

“Work with Data Structures - Overview” on page 408

Add a Data Structure

To add a data structure to a bag, follow these steps:

1. Select the Data Structures folder within the bag.

2. From its pop-up menu, select Add Data Structure . The Data Structure wizard
opens to the Names Page, where you can specify a name for the data
structure, and provide a description of it, if you want to.

3. Click Next , or use the page list arrow to the left of the page name to go to the
Members Page. Here, you must define at least one member for the data
structure.

The data structure is added as an object within the Data Structures folder.

Data Structure

“Work with Data Structures - Overview” on page 408

Program

In FlowMark, a program is a computer-based application program that supports the
work to be done in an activity. Program activities reference executable programs
using the logical names associated with the programs in the FlowMark program
registrations.

A program registration is the identification of a program to a FlowMark database so
that it can be assigned to a program activity in a workflow model. Program
registrations can contain run-time parameters for executable programs.

Chapter 12. Access a Component through FlowMark 397

A FlowMark program corresponds to method invocation. FlowMark creates the flow
of action: it drives the order in which methods are called. FlowMark acts as the sole
client program.

Activity

“Work with Programs - Overview” on page 409

Activity

An activity is a step within a process. In FlowMark, a process is a sequence of
activities that must be completed to accomplish a task. The process is invoked
when the activity is started. It represents a piece of work that an assigned person
can complete by starting a program or another process.

A FlowMark workflow model has the following types of activities:

Program Activity: has a program assigned to perform it. The program is invoked
when the activity is started. Output from the program can be used in the exit
condition for the program activity and for the transition conditions to other activities.

Process Activity: has a process assigned to perform it. A process is a sequence of
activities that must be completed to accomplish a task. The process is invoked
when the activity is started. A process activity represents a way to reuse a set of
activities that are common to different processes. Output from the process can be
used in the exit condition for the process activity and for the transition conditions to
other activities.

“FlowMark” on page 395Program

“Work with Programs - Overview” on page 409

Add a Program

A FlowMark program is contained within a FlowMark bag, along with data
structures. Once you create a bag in Object Builder, it contains the Data Structures
folder and the Programs folder. Before you add a program, you must have at least
one data structure defined.

To add a program, follow these steps:

1. From the pop-up menu of the Programs folder, select Add Program . The
FlowMark Program wizard opens to the Names Page.

2. Specify the name of the program registration, the input and output data
structures to be used by the program. You can also specify whether the same
data structures that you indicated as input and output data structures are to be
used for program activity.

3. Click Next to turn to the Business Object Page. Click the list button, and select
the name of the business object to be associated with the program in the
Business Object field. This field lists all configured managed objects currently
in the model.

398 Application Development Tools Guide

4. Select the Create , Execute Method , or Delete radio button, to indicate the
action to be taken on the business object. This selection determines the set of
methods that can be called on the business object, and consequently the
remaining pages available in the wizard. You can also name the file that is to
be created on program generation, and indicate whether to propagate the input
data structure to the output data structure.
Note the following points:

v The availability of the Find Parameters Page, the Input Parameters Page,
and the Output Parameters Page depend on your selection in step 4. If you
select Create in step 4, continue with steps 8, 9, and then, 12. If you select
Execute Method in step 4, follow all the remaining steps. If you select
Delete in step 4, continue with steps 5 through 7, and then, 12.

v Object Builder Release 2.0 does not support invocation of attributes (get
and set methods) on the configured business object instance; it only
supports method calls.

5. Click Next . The Find Parameters Page opens. The Find Parameters folder
contains all attributes of the business object that are key attributes.

6. Select a find parameter from the folder.

7. Click the list button, and select one of the members of the input data structure
from the Member Name field. The selected find parameter is mapped to the
member you choose.

8. Click Next . The Input Parameters Page opens. If the action that you selected
for the business object on the Business Object Page is Create , the Input
Parameters folder contains all attributes of the business object that are key
attributes. If the action that you selected for the business object is Execute
Method , this folder contains all input parameters that are defined for the
business object’s methods. They include all those parameters that are
designated as either In or In/Out on the Methods Page of the Business Object
Interface wizard.

9. You can view the default mapping of the parameters to the data structure
members by selecting each of the parameters in this folder. To change an
input parameter map, select it and make the change in the Member Name
field.

10. Click Next . The Output Parameters Page opens. The Output Parameters folder
contains all output parameters that are defined for the business object’s
methods. They include all those parameters that are designated as either Out
or In/Out on the Methods Page of the Business Object Interface wizard. The
return type of the method (if other than void) is shown too.

11. You can view the default mapping of the parameters to the data structure
members by selecting each of the parameters in this folder. To change an
output parameter mapping, select it and make the change in the Member
Name field.

12. Click Finish.

Note the following points when you do the mapping:

v Find parameters of the types wchar and void cannot be mapped to data structure
members of the following data types:

– long

– float

– string

v Find parameters of the types wstring and Object cannot be mapped to data
structure members of the following data types:

Chapter 12. Access a Component through FlowMark 399

– long

– float

v If the input data structure member you select for the mapping is an array, you
must specify in the Array Entry field a value greater than 1 and less than or
equal to the array size.

Data Structure
Program

“Work with Data Structures - Overview” on page 408
“Work with Programs - Overview” on page 409
Work with FlowMark Business Objects

Map a Component to a Data Structure

To associate a FlowMark program with an instance of a component in Object
Builder, you have to map the input, the output, and the find parameters, or a
combination of them to the members of the input or output data structures.

The following tasks deal with mapping of the business object to either input or
output data structures:

v Map Input Parameters to the Input Data Structure

v Map Output Parameters to the Output Data Structure

v Map Find Parameters to the Input Data Structure

“Business Object” on page 17
Data Structure
“Bag” on page 395

Work with FlowMark Business Objects

Map Input Parameters to the Input Data Structure

When you add a program to your model, you must associate an instance of a
configured business object with it, and map the parameters of the business object’s
method to either input or output data structures, or both, depending on the action to
be taken on the business object.

You can do the mapping either when you are adding a new program or when you
are editing the program. You must define at least one data structure.

To map the input parameters of the business object instance to the input data
structure, follow these steps:

1. If you are adding a new program, from the pop-up menu of the Programs folder,
select Add Program . If you are editing a program, from the pop-up menu of the
program in the Programs folder, select Properties. The FlowMark Program
wizard opens to the Names Page.

400 Application Development Tools Guide

2. From the Input Data Structure field, select the data structure to be used by the
program as the input data structure.

3. Click Next to go to the Business Object Page.

4. Select the Execute Method radio button to indicate that you want a method
defined on the business object to be executed.

5. Click Next . The Input Parameters Page opens. The Input Parameters folder
contains all input parameters that are defined for the business object’s methods.
They include all those parameters that are designated as either In or In/Out on
the Methods Page of the Business Object Interface wizard.

6. Select an input parameter from the folder.

7. Click the list button, and select one of the members of the input data structure
from the Member Name field. The selected input parameter is mapped to the
member you select.

Note the following points when you do the mapping:

v Input parameters of the types wchar and void cannot be mapped to data
structure members of the following data types:

– long

– float

– string

v Input parameters of the types wstring and Object cannot be mapped to data
structure members of the following data types:

– long

– float

v If the input data structure member you select for the mapping is an array, you
must specify in the Array Entry field a value greater than 1 and less than or
equal to the array size.

Data Structure
Program

“Configure a Managed Object” on page 377
“Work with Data Structures - Overview” on page 408
“Work with Programs - Overview” on page 409
Work with FlowMark Business Objects
Call a Component Method from FlowMark

Map Output Parameters to the Output Data Structure

When you add a program to your model, you must associate an instance of a
configured business object with it, and map the parameters of the business object’s
method to either input or output data structures, or both, depending on the action to
be taken on the business object.

You can do the mapping either when you are adding a new program or when you
are editing the program. You must define at least one data structure.

To map the output parameters of the business object instance to the output data
structure, follow these steps:

Chapter 12. Access a Component through FlowMark 401

1. If you are adding a new program, from the pop-up menu of the Programs folder,
select Add Program . If you are editing a program, from the pop-up menu of the
program in the Programs folder, select Properties. The FlowMark Program
wizard opens to the Names Page.

2. From the Output Data Structure field, select the data structure to be used by
the program as the output data structure.

3. Click Next to go to the Business Object Page.

4. Select the Execute Method radio button, to indicate that you want a method
defined on the business object to be executed.

5. Go to the Output Parameters Page. The Output Parameters folder contains all
output parameters that are defined for the business object’s methods. They
include all those parameters that are designated as either Out or In/Out on the
Methods Page of the Business Object Interface wizard.

6. Select an output parameter from the folder.

7. Click the list button, and select one of the members of the output data structure
from the Member Name field. The selected output parameter is mapped to the
member you select.

Note the following points when you do the mapping:

v Output parameters of the types wchar and void cannot be mapped to data
structure members of the following data types:

– long

– float

– string

v Output parameters of the types wstring and Object cannot be mapped to data
structure members of the following data types:

– long

– float

v If the output data structure member you select for the mapping is an array, you
must specify in the Array Entry field a value greater than 1 and less than or
equal to the array size.

Data Structure
Program

“Configure a Managed Object” on page 377
“Work with Data Structures - Overview” on page 408
“Work with Programs - Overview” on page 409
Work with FlowMark Business Objects
Call a Component Method from FlowMark

Map Find Parameters to the Input Data Structure

When you add a program to your model, you have to associate an instance of a
configured business object with it, and map the parameters of the business object’s
method to either input or output data structures, or both, depending on the action to
be taken on the business object.

You can do the mapping either when you are adding a new program, or when you
are editing the program. At least one data structure must be defined.

402 Application Development Tools Guide

To map the output parameters of the business object instance to the input data
structure, follow these steps:

1. If you are adding a new program, from the pop-up menu of the Programs folder,
select Add Program . If you are editing a program, from the pop-up menu of the
program in the Programs folder, select Properties. The FlowMark Program
wizard opens to the Names Page.

2. From the Input Data Structure field, select the data structure to be used by the
program as the input data structure.

3. Click Next to go to the Business Object Page.

4. You can select either the Execute Method radio button to indicate that you
want a method defined on the business object to be executed, or the Delete
radio button to indicate that you want to delete the business object.

5. Click Next . The Find Parameters Page opens. The Find Parameters folder
contains all attributes of the business object that are key attributes.

6. Select a find parameter from the folder.

7. Click the list button, and select one of the members of the input data structure
from the Member Name field. The selected find parameter is mapped to the
member you select.

Note the following points when you do the mapping:

v Find parameters of the types wchar and void cannot be mapped to data structure
members of the following data types:

– long

– float

– string

v Find parameters of the types wstring and Object cannot be mapped to data
structure members of the following data types:

– long

– float

v If the input data structure member you select for the mapping is an array, you
must specify in the Array Entry field a value greater than 1 and less than or
equal to the array size.

Data Structure
Program

“Configure a Managed Object” on page 377
“Work with Data Structures - Overview” on page 408
“Work with Programs - Overview” on page 409
Work with FlowMark Business Objects

Work with FlowMark Business Objects - Overview

To associate a FlowMark program with a business object in Object Builder, you
must map the input parameters, the output parameters, and the find parameters, or
a combination of these, to the members of the input or output data structures in
FlowMark.

The following tasks deal with FlowMark business objects:

Chapter 12. Access a Component through FlowMark 403

v Create a Component Instance through FlowMark

v Call a Component Method from FlowMark

v Delete a Component Instance through FlowMark

“Business Object” on page 17
Data Structure
“Bag” on page 395

“Map a Component to a Data Structure” on page 400

Create a Component Instance through FlowMark

You can create an instance of a configured business object when you add or edit a
FlowMark program.

Follow these steps:

1. If you are adding a new program, from the pop-up menu of the Programs folder,
select Add Program . If you are editing a program, from the pop-up menu of the
program in the Programs folder, select Properties. The FlowMark Program
wizard opens to the Names Page.

2. Specify the name of the program registration, and the input and output data
structures to be used by the program. You can also specify whether the same
data structures that you indicated as input and output data structures are to be
used for a program activity.

3. Click Next to go to the Business Object Page. Click the list button of the
Business Object field, and select the name of the business object to be
associated with the program. This field lists all configured business objects
currently in the model.

4. Select Create to indicate that you want to create a business object. You can
either create a business object from a copy helper or from the primary key. You
can also name the file that is to be created on program generation, and indicate
whether you want the generated program to propagate the input data structure
to the output data structure.

5. Click Next. The Input Parameters Page opens, and you can use it to
map the input parameters of the business object’s methods to the input data
structure.

“Business Object” on page 17
“Bag” on page 395

“Work with Programs - Overview” on page 409
Access a Component through FlowMark

Call a Component Method from FlowMark

Restriction: Object Builder, Release 2.0 does not support invocation of attributes
(get and set methods) on the configured business object instance; it only supports
method calls.

404 Application Development Tools Guide

You can indicate that a method is to be executed on an instance of a component in
Object Builder when you add or edit a FlowMark program.

Follow these steps:

1. If you are adding a new program, from the pop-up menu of the Programs
folder, select Add Program . If you are editing a program, from the pop-up
menu of the program in the Programs folder, select Properties. The FlowMark
Program wizard opens to the Names Page.

2. Specify the name of the program registration, and the input and output data
structures to be used by the program. You can also specify whether the same
data structures that you indicated as input and output data structures are to be
used for program activity.

3. Click Next to go to the Business Object Page. Click the list button of the
Business Object field and select the name of the business object to be
associated with the program. This field lists all configured business objects
currently in the model.
Note: If you are using a program that was created by importing an FDL file,
you must explicitly follow step 3, though a business object appears to be
associated with the program, when you examine the properties of the program
using the Business Object Page. If you do not, the .cpp and .mak files will not
be created when you generate the program in step 9.

4. Select the Execute Method radio button. This enables you to call methods
that are defined on the business object, on the Component Broker server
business object. Once you select this option, you can also name the file that is
to be created on program generation, and indicate whether to propagate the
input data structure to the output data structure.

5. Click Next . The Find Parameters Page opens, and you can use it to map the
find parameters of the business object to the input data structure.

6. Click Next. The Input Parameters Page opens, and you can use it to map the
input parameters of the business object’s methods to the input data structure.

7. Click Next. The Output Parameters Page opens, and you can use it to map
the output parameters of the business object’s methods to the output data
structure.

8. Click Finish . If you are defining a new program, it is added to the Programs
folder. If you are changing the definition of an existing program, the new
definitions take effect.

9. Generate the program. The corresponding .cpp and .mak files are created.

10. Compile the generated file. This results in an executable file.

11. Launch the executable (.exe) file from within IBM FlowMark. The methods will
be executed on the business object in the Component Broker server.

“Business Object” on page 17
“Bag” on page 395

“Work with Programs - Overview” on page 409
Access a Component through FlowMark

Delete a Component Instance through FlowMark

You can delete an instance of a component that you created through FlowMark
when you add or edit a program.

Chapter 12. Access a Component through FlowMark 405

Follow these steps:

1. If you are adding a new program, from the pop-up menu of the Programs folder
select Add Program . If you are editing a program, from the pop-up menu of the
program in the Programs folder, select Properties. The FlowMark Program
wizard opens to the Names Page.

2. Specify the name of the program registration, and the input and output data
structures to be used by the program. You can also specify whether the same
data structures that you indicated as input and output data structures are to be
used for program activity.

3. Click Next to turn to the Business Object Page. Click the list button of the
Business Object field, and select the name of the business object to be
associated with the program. This field lists all configured business objects
currently in the model.

4. Select Delete to indicate that you want to delete a business object. The remove
method acts on the object. You can also name the file that is to be created on
program generation, and indicate whether you want the generated program to
propagate the input data structure to the output data structure.

5. Click Next . The Find Parameters Page opens, and you can use it to
map the find parameters of the business object to the input data structure.

“Business Object” on page 17
“Bag” on page 395

“Work with Programs - Overview” on page 409
Access a Component through FlowMark

Work with Bags - Overview

A bag contains FlowMark programs and data structures. Associated with every bag
is a FlowMark Definition Language (FDL) file. This file is created when you add a
bag.

You can also create a new bag by creating new data structures and programs
within an existing bag when you import an FDL file.

The following tasks deal with FlowMark bags:

v “Add a Bag” on page 396

v “Edit a Bag”

v “Delete a Bag” on page 407

“Bag” on page 395
Data Structure
“Bag” on page 395

Edit a Bag

A bag contains FlowMark programs and data structures. Associated with every bag
is a FlowMark Definition Language (FDL) file. This file is created along with the bag.

406 Application Development Tools Guide

You cannot rename the bag, but you can specify a different FDL file to be
associated with the bag. When you select Import FDL from the pop-up menu of the
bag’s folder, you import from a file with this name. Similarly, when you select the
Export FDL menu item from the pop-up menu of the bag, definitions of the bag are
stored in a file with the same name. You must specify a different FDL file to be
associated with the bag if you do not want to overwrite the FDL file that is to be
imported, when you select the Export FDL action from the bag.

To edit a bag, follow these steps:

1. Select the bag from the FlowMark folder in the Tasks and Objects pane.

2. From its pop-up menu, select Properties . The FlowMark Bag wizard opens to
the Name Page, where you can specify a different FDL file in the FDL File
Name field. Type a description, or modify the existing description if you want to.

3. Click Finish .

Note the following points:

v The name of the FDL file can contain only alphanumeric characters, and
cannot exceed eight characters in length. The description must not exceed
1024 characters.

v Object Builder uses the FDL file you specify as the default for both the
Import FDL and Export FDL actions from the bag.

Your specifications overwrite the existing bag definitions in Object Builder.

You can also edit a bag by importing an FDL file with the same name as the one
associated with the bag, but which has been modified. You can also import a new
FDL file into Object Builder (Import FDL from the pop-up menu of the bag in the
FlowMark folder): the current bag shows additional programs and data structures,
as defined in the imported FDL file.

“Bag” on page 395

“Work with Bags - Overview” on page 406

Delete a Bag

To delete a bag from the FlowMark folder, follow these steps:

1. Select the bag in the FlowMark folder.

2. From its pop-up menu, select Delete .

You are asked to confirm that you want to delete the bag, and if you select Yes, the
bag and its associated data structures and programs are deleted from the folder.

“Bag” on page 395

“Work with Bags - Overview” on page 406

Chapter 12. Access a Component through FlowMark 407

Work with Data Structures - Overview

Restriction: Flowmark does not support renaming of objects. That is, if you map
any object’s attributes, methods, or parameters to a FlowMark program, and later
change their names in the User-Defined Business Objects folder, the new names
are not automatically propagated to the objects within the Flowmark folder. It is
recommended that you finish your work with components you want to associate
with FlowMark, and then create the FlowMark objects within Object Builder.

A FlowMark data structure is the description of any data that is used as either input
or output, or that is referenced in either exit or transition conditions.

A data structure is an ordered list of variables (called members), each of which has
a name and a data type.

The following tasks deal with data structures:

v “Add a Data Structure” on page 397

v “Edit a Data Structure”

v “Map a Component to a Data Structure” on page 400

v “Delete a Data Structure”

Data Structure
“Components” on page 15

Edit a Data Structure

To edit a data structure, follow these steps:

1. Select the data structure from its folder within the FlowMark folder in the Tasks
and Objects pane.

2. From its pop-up menu, select Properties . The Data Structure wizard opens to
the Name Page, where you can change the description of the data structure.
You cannot rename the data structure.

3. Click Next. The Members Page opens. You can rename the members, change
their type, and type a new description for each one.

4. Click Finish.

The new definitions take effect.

Data Structure

“Work with Data Structures - Overview”

Delete a Data Structure

To delete a data structure from a bag, follow these steps:

1. Select the data structure from the Data Structures folder within the FlowMark
folder in the Tasks and Objects pane.

2. From its pop-up menu, select Delete .

408 Application Development Tools Guide

You are asked to confirm that you want to delete the data structure. If you
selectYes the data structure, and its members are deleted from the folder.

Data Structure

“Work with Data Structures - Overview” on page 408

Work with Programs - Overview

A FlowMark program consists of all the information necessary to generate an
executable application program in order to allow FlowMark to invoke a
CBConnector business object’s method.

The following tasks deal with programs:

v “Add a Program” on page 398

v “Edit a Program”

v Delete a Program

“Bag” on page 395

Edit a Program

To edit a program, follow these steps:

1. Select the program from its folder within the FlowMark folder in the Tasks and
Objects pane.

2. From its pop-up menu, select Properties . The FlowMark Program wizard opens
to the Name Page. You cannot rename the program, but you can select different
data structures for input and output, indicate whether they are to be used for
program activity, and change the description.

3. Click Next to go to the Business Object Page. You can select a different
business object to be associated with the program from the Business Object
field. This field lists all configured business objects currently in the model.

4. You can change the action to be taken on the business object: select from
Create , Execute Method , or Delete . Your selection determines the set of
methods that can be called on the business object; the FlowMark Program
wizard adjusts according to your selection. You can also rename the file that is
to be created on program generation, and change your decision on whether you
want the generated program to propagate the input data structure to the output
data structure.

5. Use the Next button to advance to the remaining pages of the wizard.

6. On the Find Parameters Page, the Input Parameters Page, and the Output
Parameters Page, you cannot change the data type of the parameters listed in
the folder, but you can map them to different data structure members.

7. Click Finish.

Your new definitions take effect.

Program

Chapter 12. Access a Component through FlowMark 409

“Work with Programs - Overview” on page 409

Delete a Program

To delete a program from a bag, follow these steps:

1. Select the program from the Programs folder within the FlowMark folder in the
Tasks and Objects pane.

2. From its pop-up menu, select Delete .

You are asked to confirm that you want to delete the program. If you select Yes, the
program is deleted from the folder.

Program

“Work with Programs - Overview” on page 409

410 Application Development Tools Guide

Chapter 13. Troubleshooting

If you encounter problems when you build your code into DLLs, the following tips
may help you. This section covers the following problems:

v Memory Problems

v Generally Odd Behavior

v Cannot Start Object Builder on AIX

Memory Problems
If you are working with a large project (more than thirty components), you may need
to increase the maximum heap size of the Java virtual machine. You can do so by
editing the ob.bat file:

1. Make sure Object Builder is closed.

2. Edit \Cbroker\bin\ob.bat

3. Change the parameter -mx255m, increasing the number by five for each
additional component in your project (this number is approximate, and assumes
components of average complexity).

For example, if your project contains one hundred components then change the
parameter to -mx605m (seventy additional components multiplied by 5m each,
plus the original 255m).

4. Start Object Builder. The new parameter is used, and the maximum size of the
Java virtual machine is increased.

Generally Odd Behavior
Not all exceptions are displayed in the user interface. After major actions such as
saving a project, check Object Builder’s command window for any exceptions. The
command window is the window from which you started Object Builder, or the
window that appeared in the background if you started Object Builder from the Start
menu.

Cannot Start Object Builder on AIX
If you receive the operating system message “Killed” when you try to start Object
Builder, you need to increase the amount of paging space on your machine. Object
Builder requires a minimum of 200MB of paging space in order to run on AIX.

BAD_OPERATION Exception with Composite Components
If the client program receives a BAD_OPERATION exception while using a
composite component, the most probable cause is inaccurate location information in
the business object implementation’s properties. Look in the activity log of the
server to determine the cause of the exception. If the problem is a failure to locate
one of the member components in the composition, check the Location page of the
composite component’s Business Object Implementation wizard.

Java Server Fails to Run with Composite Components
If the Java client and Java server are installed on the same machine, make sure
the CLASSPATH has the files ibmcbjs.zip and somshor.zip listed before somojor.zip.
Otherwise the Java business object will attempt to use the ORB interfaces in
somojor.zip, instead of the server-side ORB interfaces it requires in ibmcbjs.zip and
somshor.zip.

Error on Running Object Builder: “The input line is too long”
If the classpath environment variable is too long (approximately 1700 characters or
more), then Object Builder cannot be run. You will need to shorten the classpath, by

© Copyright IBM Corp. 1997, 1998 411

removing directories and .jar or .zip files (besides those added by the Component
Broker install, and besides any PA beans and their dependencies being used in
your projects), before running Object Builder.

Check a Model for Consistency

While Object Builder does perform regular consistency checks on your model, there
are circumstances in which the model can become internally inconsistent. If you are
experiencing consistency problems with your generated code (for example, type
mismatches between an attribute and its referenced interface), run the consistency
checker to diagnose the problem, and generate a report on the state of your model.

To check a model for consistency, follow these steps:

1. Open the project whose model you want to check (select File - Open New
Project). The project opens, and the project model is loaded into Object Builder.

2. From Object Builder’s menu bar, click File - Check Model .

The consistency checker dialog opens.

3. Select the types of consistency problem you want to check for.

4. Click Run . The consistency check runs, and its output is displayed in a report
window.

5. Review the report.

You can save the report for later review by clicking Save.

Each error, warning, or information message includes the file, module, object
type, and object name to which the message applies.

6. Click OK to close the report window and return to Object Builder.

“Projects and Models” on page 4
“Chapter 13. Troubleshooting” on page 411

“Consistency Checker Errors”

Consistency Checker Errors

No. Message Text Description

1 Unexpected interface type: %1. Internal error

2 Exception %1 caught while processing. Internal error

3 A configured managed object does not
have a mapped application managed
object.

A managed object configuration in the
Application Configuration folder exists,
but the original managed object in the
User-Defined Business Objects folder
does not exist. Re-create the managed
object in the User-Defined Business
Objects folder, and then edit the
managed object configuration and
reselect the managed object.

412 Application Development Tools Guide

No. Message Text Description

4 A configured managed object does not
have a mapped data object.

A managed object configuration in the
Application Configuration folder exists,
but does not have an associated data
object. Delete the managed object
configuration, and then re-create it with a
mapping to the data object.

5 A configured managed object has more
than one mapped data object. Only the
first one will be used.

A managed object configuration in the
Application Configuration folder exists,
but has more than one data object
associated with it. Only a single data
object can be associated with any
instance of a managed object, and the
first data object listed will be used.

6 The data access pattern in the container
does not match that in the contained
business object.

The data access pattern (Caching or
Delegating) in the business object must
match the selected data access pattern
for the associated container. Select a
different container, edit the container, or
edit the business object.

7 The data access pattern in the container
does not match that in the contained
data object.

The data access pattern (Local Copy or
Delegating) in the data object must
match the selected data access pattern
for the associated container. Select a
different container, edit the container, or
edit the data object.

8 The selected keys do not match in the
business object and managed object.

The key selected in the business object
implementation must match the key
selected in the configured managed
object. Edit the implementation or the
managed object configuration and make
sure they both refer to the same key.

9 The selected copy helpers do not match
in the business object and managed
object.

The copy helper selected in the business
object implementation must match the
copy helper selected in the configured
managed object. Edit the implementation
or the managed object configuration and
make sure they both refer to the same
copy helper.

10 A key must be specified for a data object
that uses either the ’BOIM with any key’
or ’unit test’ environment.

A key must be defined, and selected in
the data object implementation, for this
type of data object. Define and select a
key, or edit the environment of the data
object.

11 No key must be specified for a data
object that uses the ’BOIM with UUID
key’ environment.

A ’BOIM with UUID key’ data object
cannot have a user-defined key. Either
clear the key selection for the data object
or change the environment of the data
object to ’BOIM with Any Key’.

12 Queryable interfaces must use a home
such as the system-provided
’BOIMHomeOfRegQIHomes’.

13 Non-queryable interfaces must use a
home such as the system-provided
’BOIMHomeOfRegHomes’.

Chapter 13. Troubleshooting 413

No. Message Text Description

14 The selected keys do not match in the
business object and data object.

The component must use the same key
consistently in all its objects. If a key is
associated with the business object then
the same key must be associated with
the data object implementation. Edit the
business object or data object and make
sure they both refer to the same key.

15 The selected copy helpers do not match
in the business object and data object.

The component requires at most a single
copy helper definition. If a copy helper is
associated with the business object then
the same copy helper must be
associated with the data object
implementation. Edit the business object
or data object and make sure they both
refer to the same copy helper.

16 Non-queryable interfaces must use a
home derived from ’IHome’.

IHome is the base interface for all
homes. Non-queryable interfaces cannot
use homes that derive from
IQueryableIterableHome.

17 Queryable interfaces should use a home
derived from ’IQueryableIterableHome’.

Queries are supported only against
homes the derive from
IQueryableIterableHome. Queryable
interfaces can be placed in a home that
derives from just IHome, however,
queries against the home for the
interface will not be permitted.

18 When a business object interface inherits
from ’IManagedClient IManageable’, the
business object implementation must
also inherit from ’IManagedClient
IManageable’.

This is a basic requirement of the
programming model for all components
that inherit directly from the programming
framework (that is, are base classes in
your design), rather than inheriting from
other components.

19 When a business object implementation
inherits from ’ManagedClient
IManageable’, the data access pattern
must be either Caching or Delegating.

A business object implementation that
inherits directly from the programming
model framework must use the Caching
or Delegating data access pattern. A
business object implementation that
inherits from a another business object
implementation must use the Same as
Parent’s access pattern.

20 When a business object interface inherits
from another interface, the business
object implementation should also inherit
from the other implementation.

21 When a business object implementation
inherits from another implementation, the
data access pattern must be ’Same As
Parent’s’.

A business object implementation that
inherits directly from the programming
model framework must use the Caching
or Delegating data access pattern. A
business object implementation that
inherits from a another business object
implementation must use the Same as
Parent’s access pattern. This helps to
avoid mixing access patterns within the
hierarchy of business object
implementations.

414 Application Development Tools Guide

No. Message Text Description

22 When a business object implementation
inherits from more than one
implementation, all the parent’s data
access patterns must be the same.

Access patterns cannot be mixed within
the hierarchy of business object
implementations that define a business
object.

23 When a data object implementation
inherits from ’%1’, the environment must
be ’%2’, and the persistent behavior
must be ’%3’.

The programming model interfaces from
which a data object implementation may
derive are tightly coupled to the choice of
environment and form of persistent
behaviour. Consult the Component
Broker Toolkit online documentation for
details.

24 When a data object implementation
inherits from another implementation, the
environment must be ’Same as parent’s’.

A data object implementation that inherits
from another data object implementation
must use the Same as Parent’s
environment. This helps to avoid mixing
environments within the hierarchy of data
object implementations.

25 When a business object implementation
inherits from another business object
implementation, the managed object
should inherit in the same way.

The business object implementation
inheritance and associated managed
object inheritance hierarchies should be
parallel, otherwise there may unexpected
results at runtime.

26 When a home inherits from
’IManagedClient IHome’, then the home
implementation should inherit from
’IManagedAdvancedServer
ISpecializedHome’.

27 When a home inherits from
’IManagedClient IHome’, then the home
managed object should inherit from
’IManagedAdvancedServer
ISpecializedHomeManagedObject’.

28 When a home inherits from
’IManagedAdvancedClient
IQueryableIterableHome’, then the home
implementation should inherit from
’IManagedAdvancedServer
ISpecializedQueryableIterableHome’.

29 When a home inherits from
’IManagedAdvancedClient
IQueryableIterableHome’, then the home
managed object should inherit from
’IManagedAdvancedServer
ISpecializedQueryableIterableHomeManagedObject’.

30 In the relationship described below, the
type ’%1’ cannot be resolved.

Ensure the type of the relationship object
is correctly defined.

31 In a ’one to many’ relationship that is
resolved by a foreign key, the business
objects that are on the ’many’ side of the
relationship must be queryable.

The ’list’ method of a foreign key
relationship on the referencing object is
satisfied by running a query against the
foreign key attributes of the referenced
object. This query will not be possible if
the referenced object is not queryable.

Chapter 13. Troubleshooting 415

No. Message Text Description

32 An invalid type, caused by the deletion of
the original type definition, is in use.

Change the type of the identified element
to one that is currently available, or
remove the element.

33 The listed types must be the same. Two related elements (such as an
attribute in an interface and in the
implementation) must have the same
type, but do not. Either change the type
in the interface (the change will
propagate to the implementation), or
delete and re-create the implementation.

34 An unresolved (forward declared) type is
in use.

This is typically caused by an incorrect
type selection (such as a mistake in the
type field when creating an attribute or
method). Ensure that the type is
specified correctly, in the format “file
module::interface”

35 The attribute shown is defined in an
implementation, but there is no
corresponding definition in the interface.

Internal model error. While you can add
implementation-only attributes, this
attribute was derived from its associated
interface, but no longer exists there.
Define the attribute as specified on the
interface object. Alternatively, delete and
re-create the object implementation.

36 The method shown is defined in an
implementation, but there is no
corresponding definition in the interface.

Internal model error. While you can add
implementation-only methods, this
method was derived from its associated
interface, but no longer exists there.
Define the method as specified on the
interface object. Alternatively, delete and
re-create the object implementation.

37 The parameters for the listed methods do
not match.

38 The attribute shown identifies the
incorrect interface as containing the
original definition.

39 The identifier syntax shown is illegal. Internal model error. This can occur if
incorrect type specifications are use for
attribute or methods, or by importing
incorrect XML. Export the model to XML
files, remove the offending definition, and
create a new instance of the model by
importing the XML again.

40

41 The file shown is not included in any
DLL.

The file must be included in a DLL before
it can be built, configured into an
application and deployed. Under the
Build Configuration folder, add the file to
either an existing DLL or a new DLL.

42 Constructs defined at file scope are not
qualified, and may produce compilation
errors for Java business objects.

It is recomended that all constructs
(typedefs, structs, etc) be defined at
module or interface scope.

416 Application Development Tools Guide

No. Message Text Description

43 The method shown has a non-void return
type, but an empty method body.

A method with a non-void return type and
an empty method body will fail to compile
in C++ and Java. Provide an
implementation that returns a value of
the correct return type or throws an
exception.

44 The model contains internal
inconsistencies. Use the ’-i -f’ options to
fix the damaged parts.

A correctable model error has been
detected. Use the “fix model” option to fix
the damaged parts. No data will be lost
as a result of this operation.

45 The model contained internal
inconsistencies. The damaged parts of
the model were corrected.

46 The model contains links to other models
that are from the previous release.

It takes longer to open a project if it has
dependencies on other projects that have
not yet been migrated. You can decrease
the time it takes to open this project by
opening the projects it depends on and
saving them in the newest format.

47 The ’home to query’ in a relationship
resolved by foreign key cannot be found.

48 The interface identified as the ’home to
query’ in a relationship resolved by
foreign key is not a home.

49 String attributes used in keys should
either strip or pad trailing spaces.

Strings that do not strip or pad are
subject to subtle transformations by the
backing store. For example, DB2 will pad
strings mapped to CHAR(n) column
types. Such transformations may inhibit
the proper functioning of Queries and
findByPrimaryKeyString operations.

50 The identifier listed ends with a restricted
suffix (%1).

Using a restricted suffix will generally
result in a compilation error. Change the
suffix.

51 The first identifier listed ends with a
restricted suffix (%1), and will conflict
with the second identifier listed.

The suffix listed is reseved by CORBA.
The two identifiers listed will conflict with
each other, due to the use of the
restricted suffix by the first identifier.
Change the suffix.

52 The method ’%1’ should be overridden
with caution; See the programming
reference for details.

53 The data object implementation listed
has no inheritance defined.

This can occur when you deploy an
object on multiple platforms. For
example, if the 390 platform is selected
as a deployment platform for the data
object, then a parent that is appropraite
for the 390 platform must be selected on
the implementation inheritance page. You
must change your view to 390 (select
View - 390) before the appropriate
parents appear on the page, and can be
selected.

Chapter 13. Troubleshooting 417

No. Message Text Description

54 The data object implementation and the
associated container are configured
incompatibly; See the programming
reference for details.

55 All persistent objects configured against
a common container must share a
common database name.

A Component Broker container cannot
manage connections to more than one
database in the current release. Insure
that all the schemas under all the data
objects configured into the container are
associated to the same database.

56 An attribute used in the selected key has
not been mapped to the DO.

The key attributes of a business object
are part of the essential state of the
object and must be persisted in the data
object. To correct the problem, add the
missing key attributes to the data object.

57 An attribute used in the selected copy
helper has not been mapped to the DO.

The copy helper attributes of a business
object are part of the essential state of
the object and must be persisted in the
data object. To correct the problem, add
the missing key attributes to the data
object.

58 When a business object interface inherits
from ’IManagedClient IManageable’, it
should not also inherit from any other
interfaces.

A business object interface must inherit
directly from either the framework or
another business object, but not both.

59 In a ’one to many’ relationship that is
resolved by a foreign key, the business
objects that are on the ’many’ side of the
relationship must include a back
referencing attribute that is read/write.

The back-referencing attribute represents
the set of foreign key attributes of the
referenced object at the ’many’ side of
the ’one to many’ relationship. A foreign
key relationship is not possible without
the back reference. To correct the
problem, add a read/write attribute of the
type of the referencing object to the
referenced object

60 Persistent object attribute names should
not be longer than 26 characters, as
some embedded SQL preprocessors
cannot tolerate longer lengths.

To correct this problem, open the
Persistent Object properties wizard and
rename the attributes.

61 A managed object must not inherit from
’IManagedClient IManageable’.

62 A makefile is targetted for a platform that
is not selected by a contained interface.

This can occur if a makefile is targetted
for more platforms than is really required.
Ensure that the makefile is targetted
correctly, and contains only those files
that are applicable to the target
platforms.

63 The container behavior for methods
called outside a session called ’Ignore
condition and complete the call’ is not
supported in this release.

64 The container behavior for methods
called outside a transaction called ’Ignore
the condition and complete the call’ is
not supported in this release.

418 Application Development Tools Guide

No. Message Text Description

65 The container memory management
policy called ’Passivate a component at
the end of a transaction’ must be
selected whenever ’Cache Service’ is
selected for your data object. Failure to
do so will cause severe memory leaks.

66 The container memory management
policy called ’Passivate a component at
the end of a session’ must be selected
whenever ’use PAA Session Service’ is
selected. Failure to do so will cause
severe memory leaks.

67 The container memory management
policy called ’Passivate a component at
the end of a transaction’ must be
selected whenever ’use PAA Transaction
Service’ is selected. Failure to do so will
cause severe memory leaks.

“Components” on page 15
“Component Assembly” on page 16

“Check a Model for Consistency” on page 412

Restrictions for R2.0

The following restrictions apply to Object Builder in R2.0:

CLASSPATH Restriction
Assuming that you installed Component Broker in a directory such as x:\Cbroker,
you cannot have your CLASSPATH variable contents longer than 1780 characters.
If the installation directory path is longer, you must have a correspondingly shorter
CLASSPATH value. You get a run-time error if you exceed this limit. This is
because commands (such as ob.bat), which invoke the Object Builder functions
prepend the OB jar files to the class path, and then invoke the java code to run
Object Builder.

Rose Design Restriction
You should not restructure your design after exporting. If you restructure your
design (for example, move a class from one package to another), the export
process will treat the change as a combination add and delete, rather than a move.
This would result in two definitions of the class in Object Builder (a new class
definition for its new position, and the old class definition for its old position), which
is not valid.

Opening a Project with Disconnected Network Drives
If you open a project in Object Builder while there are disconnected network drives
on your system, when you click Browse the network drives will be accessed and
reconnected. This may take some time.

Chapter 13. Troubleshooting 419

Heap Size for Java Virtual Machine
If your project has thirty components or more, you may need to manually edit the
ob.bat file to increase the maximum heap size for the Java Virtual Machine used by
Object Builder. The default heap size is 255m (-mx255m): increase the heap size
by 5m for each component beyond thirty.

Opening in Editor Puts Model in Use
If you open a schema or schema group in an editor (the Open in Editor pop-up
menu choice), the model will be locked by the editor. When you close the editor, the
model remains locked until you do one of the following:

v Log off of Windows NT and log back on again.

v Use the Windows NT Task Manager to terminate the processes EVFXLXPM.EXE
and IWFWTV35.EXE

Silent Exceptions
Not all exceptions are displayed in the user interface. After major actions such as
saving a project, check Object Builder’s command window for any exceptions. The
command window is the window from which you started Object Builder, or the
window that appeared in the background if you started Object Builder from the Start
menu.

Restrictions when Adding Comments
When you add comments for the different objects in Object Builder (for example, a
business object module), the comments are generated within language comment
delimiters. You cannot use these delimiters: /* and */ within your comments.

Naming Restrictions for Interfaces, Modules, Constructs, Attributes, Methods,
and Relationships
The name must include only alphanumeric characters (letters and numbers), and
must start with a letter: for example, a1bc23 is acceptable; a#bc23 and 1abc23 are
not acceptable.

You cannot use the following keywords to name the interface:

v Java keywords

v IDL keywords

None of the following names can be used as interface names:

v any method name in Java.lang.Object. These include names such as clone,
finalize, hashCode, notifyAll, wait, equals, getClass, notify, and toString

v any name that is suffixed with Package, Holder, Helper, Ref, _var, or _ptr.

v goto

Note: For attributes, the following additional restriction applies:
If you use OO-SQL keywords like KEY, REF, TYPE and WORK as attribute names,
Object Builder generates objects that cannot be used with the Query Service, and
you will not be able to perform OO-SQL queries. See OO-SQL Keywords for a
complete list.

Restrictions for Attributes and Methods at the Interface Level
You cannot select a non-IDL type class that you have imported into Object Builder
as the type of an attribute, or a method return type if you are defining attributes and
methods for an object’s interface; you can use the non-IDL type class only if you
are defining the attributes or methods for the object’s implementation.
An attribute that you define for an object’s interface can only have a public

420 Application Development Tools Guide

implementation. If you want to define attributes that are either private or protected,
you must define them at the object’s implementation level.

Type of Attributes Available for Use in Keys and Copy Helpers
Business object attributes of the following data types are available for use in the
copy helper:

v All the CORBA standard data types

v All business object interfaces defined in the model (You can define a business
object interface and use it as a key attribute’s data type for another business
object.)

Business object attributes of complex data types are excluded from use as copy
helper attributes. These include the following types:

v any and wstring

v Typedefs, structures, and unions, which are defined as constructs.

Requirement for Copy Helper Attributes
Any attributes you include in the copy helper must also be included in the data
object.

Business Object Interface Inheritance Restriction
Abstract base classes are not supported by either the Interface Definition Language
Compiler (IDLC) or Object Builder. So, any business object interface that you
specify as a parent for another business object interface must have an
implementation, even if every method in that implementation only throws a
NO_IMPLEMENT exception.

Key and Copy Helper Inheritance Restriction
If the interface has one or more parents, the parent interface attributes are also
available for selection. If the key or copy helper will inherit from the parent’s key or
copy helper, you should not select any of the parent interface attributes.

Restrictions when Mapping Data Object Attributes to Persistent Object
Attributes
Multiple data object attributes cannot be mapped to the same persistent object
attribute.

You cannot map multiple data object attributes to the same persistent object
attribute.

When you map a data object to multiple persistent objects, you must map each key
attribute of the data object directly to each of the key attributes of the different
persistent objects.

Mapping Pattern Restrictions

Primitive Mapping Pattern

v An attribute that does not use the primitive mapping between the data object and
the persistent object will not be capable of participating in an object query.

Map as a Key

v When you map attributes using a foreign key and create a persistent object and
schema from the data object implementation, it will not automatically create a
foreign key in the schema.

Chapter 13. Troubleshooting 421

v If you are mapping attributes using a key, you must select only those attributes of
the persistent object that are defined as PO keys, to map to the key attribute. To
check which attributes are PO keys, select the persistent object in either the
User-Defined Data Objects folder or the DBA-Defined Schemas folder and use
Properties from its pop-up menu to view the Persistent Object Page.

Map using helper class

v Object Builder does not provide the default mapping between complex data types
(any, wchar and wstring and types defined as constructs, which include typedefs,
structures, and unions) and DB2 database types. You must provide your own
helper class for these mappings. No other kind of mapping is permitted. Note
however, that you can map the members of structures that are of an object
interface type using the Key Home mapping, but you must map the structure
itself using a mapping helper.

v When you map a data object attribute that is also specified as an attribute of the
key for the corresponding business object, to multiple persistent object attributes
using a mapping helper, all the persistent object attributes that are mapped must
be persistent object keys.

Complex Attributes and Mapping Patterns

v This release of Object Builder supports only structures (structs) as complex
attributes.

v Nested structs are not supported. However, structs whose members are other
structs are supported.

Restrictions when Adding a Persistent Object and a Schema

Foreign Key Not Propagated down to the Schema
Even if there is a key defined for another business object and it is designated as a
foreign key, when you create a persistent object and schema for a business object
referenced by the other object , it will not automatically create a foreign key in the
schema.

Restrictions when Adding a Persistent Object from a Schema
You must map all schema columns to their corresponding persistent object
attributes; otherwise you may get exceptions thrown at runtime if you use the Query
Service.

If your schema uses the Oracle Cache Service, you can create a persistent object
from it only if the schema columns are of the VARCHAR2 or NUMBER data types,
or any of the IBM DB2 data types.

Restrictions when Naming a Persistent Object Attribute
A persistent object attribute name must not exceed 26 characters in length.

Restriction when Mapping a Persistent Object to a Schema
You must map all schema columns to their corresponding persistent object
attributes; otherwise, you may get exceptions at runtime, if you use the query
service.

SQL Files Supported for Import

v This release supports SQL DDL files for DB2 MVS 4.1 databases. If an SQL DDL
file contains a mix of supported and unsupported statements, the supported
statements will be imported.

422 Application Development Tools Guide

v This release supports SQL DDL files only from the following DBMSs:

– DB2 MVS 4.1, DB2 V5 (UDB).

– Oracle 8.0.4.0

Oracle SQL files can be imported, but language elements that have no analog
in DB2 will not be parsed correctly except for columns of the NUMBER or
VARCHAR2 data type. Object Builder does not support any non-ANSI syntax
construction such as Oracle comments (/*...*/), SQL commands.

v SQL files larger than 2 MB are not recommended.

Restrictions when Importing Oracle SQL Files

v Only Oracle 8.0.4.0 databases are supported.

v Support for Oracle backend databases is limited to data objects that use the
Oracle Cache Service only. That is, data objects that use embedded SQL, or any
other form of persistent behavior and implementation will not be able to access
data stored in Oracle databases.

v Reference collections are not supported in conjunction with Oracle backends for
Component Broker Release 2.0.

v For Oracle, only optimistic caching is supported.

v In the current release of Component Broker, only the Oracle VARCHAR2 and
NUMBER data types are supported, along with those Oracle data types that have
an equivalent type in DB2. That is, Object Builder accepts all SQL/DS and DB2
types and the Oracle NUMBER, NUMBER(p), NUMBER(p,s) and VARCHAR2
types. It will not accept any other Oracle types such as RAW(n), LONG RAW,
NCHAR(n), NVARCHAR2, and ROWID. See “Oracle Data Type Mappings” on
page 113 for a complete list.

v Object Builder will not accept the Oracle data type NUMBER with a negative
scale.

SQL Statements Supported for Import
Currently, the only SQL statements supported are the following:

v CREATE TABLE

v ALTER TABLE

v DROP

v CREATE VIEW

v COMMENT ON

None of these statements must contain expressions or column functions. The
CREATE VIEW statement must contain only a simple query (SELECT statement).
Currently there is no support for unnamed columns, expressions, functions, or
sub-selects in CREATE VIEW.

Most views are read-only but some can be updated. The Embedded SQL
preprocessor (idatapre) will fail on any .sqx file generated from an embedded static
persistent object, which you create for a read-only view in the database.

If you detect that a view is read-only (at DLL build time), you must ensure that
every one of the framework methods insert(), update() and del() for the persistent
object has an empty method body.

Double-Byte Character Set (DBCS) is not supported for the English version of
Component Broker.

Chapter 13. Troubleshooting 423

Importing Schemas with no Primary Keys
Object Builder lets you import schemas for which no primary keys have been
defined. However, these schemas can result in query exceptions at runtime.

To avoid this happening, you can either select Properties from the pop-up menu of
the schema, and select any of the schema columns as the database key (Select the
DB Key check box.), or before you import the SQL file, edit the source file and add
a PRIMARY KEY constraint for at least one of the tables.

Schema Group Restrictions
A table associated with a schema of one schema group cannot reference a foreign
key defined in a table within another schema group.

Procedural Adaptor (PA) Bean Restrictions

Importing Beans
Only beans created using VisualAge for Java Release 2.0 are compatible with this
release (2.0) of Component Broker.

Attributes and Push-Down Method Parameter Types of the PA Bean
Only the Java types int, float, double, boolean, char, short and java.lang.String are
supported as attribute types, and push-down method parameter types for the PA
bean.

Linking to Non-IDL Types on AIX
When you define a shared library (client or server DLL) on AIX that contains
references to a non-IDL type, the shared library statically links the code for the
non-IDL type. For example, if some of your code uses the IString class, then the
shared library that contains your code links statically to the library file that contains
the IString object code.

Static linkage can multiply the size of your shared library file by a factor of 20 or
more. The advantage of static linkage is that you do not need to ship the shared
library file that defines the non-IDL type.

To link dynamically, and reduce the size of your shared library file, edit the makefile
for your shared library file (DLL) and change the referenced file libibmcl.a to
libibmcls.a . You must then ship libibmcls.a with your shared library (include it on
the Additional Executables page of the DLL wizard) in accordance with the Licensed
Program Specifications for C Set++ for AIX.

FlowMark Restrictions
Object Builder Release 2.0 does not support invocation of attributes (get and set
methods) on the configured business object instance; it only supports method calls.

Mappings in the FlowMark folder are not automatically updated when a mapping
element is renamed. That is, if you map any object’s attributes, methods, or
parameters to a flowmark program, and later change their names in the
User-Defined Business Objects folder, the new names are not automatically
propagated to the objects within the Flowmark folder. It is recommended that you
finish your work with components you want to associate with FlowMark, and then
create the FlowMark objects within Object Builder.

424 Application Development Tools Guide

Before generating a program that was created by importing an FDL file, you must
explicitly associate a business object with the program. (Use the Business Object
Page of the FlowMark Program wizard.) If you do not, the .cpp and .mak files will
not be created on generation.

OS/390 Platform Restrictions
When one of the constraint platforms is 390 (you select Platform - Constrain -
390), wchar and wstring are not available for selection as either attribute types,
method return types, or method parameter types for your objects.

When you define a data object implementation, all Cache Service options are not
available when the target platform is OS/390.

If OS/390 is one of the deployment platforms for the data object implementation, the
persistent object class name must not exceed 8 characters. Object Builder validates
the length of the persistent object class when you create a persistent object from a
data object implementation, but if you change the deployment platform after you
have created the persistent object, be sure that you follow the rule. If not, Object
Builder will truncate the name to the 8.3 format. This may result in two persistent
object file names becoming identical after truncation, since Object Builder assumes
the object’s file name to be the same as the persistent object class name.

When you import a procedural adaptor bean, and have OS/390 as the deployment
(target) platform (Platform - Constrain - 390), only the EXCI, OTMA, and Generic
connector types are available for selection (LU 6.2, HOD, and ECI are not
available).

When you use Procedural Adaptors, you cannot call endResource() on the business
object when the target platform is OS/390.

“Chapter 13. Troubleshooting” on page 411

Composition Restrictions

One-to-Many Relationships
The one-to-many relationships of components you add to a composition will not be
available in the composition, or in the interface of any composite components based
on the composition. One-to-many relationships, and the methods that support them
(for example, addRel, removeRel, listRel), will not be included or republished in the
composites you create.

Composition Include Files
The include files for composited components are included automatically. You do not
need to add them to the Composition File wizard, Include Files page.

The Composition File wizard, Include Files page shows IManagedClient as an
include file, even though compositions inherit from IManagedLocal. This include file
is required for code generation, and should not be deleted.

DB2 Column Name Limitations
DB2 limits column names to 18 characters. Because of the mapping of attribute
names as they are added to a composite, the attribute names may be longer than

Chapter 13. Troubleshooting 425

18 characters. The attribute names may have to be edited in the Add Persistent
Object and Schema wizard to shorten them to less than 18 characters.

Republishing Methods
Attributes in the composition should not delegate to methods that throw User
Exceptions. The code generated will not compile. CORBA attributes do not support
exceptions.

Attributes in a composition should not delegate to methods that have “out” or “inout”
parameters. It is not possible to republish “out” or “inout” parameters on attributes.

Adding or Renaming a Managed Object After a Composite Is Built
When you add or rename a composited component in the Composition Editor,
Composition page (Objects to Composite list), you must do the following:

1. Open any business object interfaces that are based on the group, and select
Refresh from Composition .

2. Update the key, if necessary.

426 Application Development Tools Guide

Chapter 14. Debug Local Applications

Write Programs for Debugging

You can make your programs easier to debug by following these simple guidelines:

v Where possible, do not put multiple statements on a single line, because some
debugger features operate on a line basis. For example, you cannot step over or
set line breakpoints on more than one statement on the same line.

v Assign intermediate expression values to temporary variables to make it easier to
verify intermediate results. For example, you will not be able to display the
substrings of IString objects in the first C++ code fragment below, but you will in
the second:

// Can't see the substrings in this one
if (StrA.subString(x,y)==StrB.subString(m,n)) dups++;
// Can see the substrings here
IString SubA=StrA.subString(x,y);
IString SubB=StrB.subString(m,n)
if (SubA==SubB) dups++;

To be able to debug your programs at the level of source code statements, you
must specify C++ compiler options that generate debug information, and in some
cases you must specify options that enable the debugger to work properly with your
code.

IBM VisualAge for C++ Compiler Options

Compile a Program for Debugging

Note: This section does not apply to programs that you plan to debug with Object
Level Trace. To compile Component Broker applications for distributed tracing and
debugging, see “Compile Application Code with OLT Flags” on page 486

In order to be able to debug your program at the source code level, you need to
compile your program with certain compiler options that instruct the compiler to
generate symbolic information in the object file. The Related Topics section below
points to information on how to compile your program for a specific environment.

“IBM VisualAge C++ Compiler Options”

“Debug Optimized Code” on page 467
Write Programs for Debugging
“Compile Application Code with OLT Flags” on page 486

IBM VisualAge C++ Compiler Options

Compile your C++ programs with the IBM VisualAge C++ /Ti+ option (to generate
debugging information) if you want to be able to debug your program at the source
code statement level. You should also consider using the following options:

Option
Purpose

© Copyright IBM Corp. 1997, 1998 427

/Tm+ Enable debug memory management support. Use this option if you want to
do heap debugging (using the Storage monitor and Check heap when
stopping).

/O- Compiles your program with optimization off. This is the default. (Some
optimizations reorder the execution sequence of your program, while others
may eliminate expressions whose result is never used. You may find it
confusing to debug a program compiled with optimization, because
statements may execute in a nonsequential fashion or not at all.)

/Oi- Compiles your program with inlining off. This is the default.

/DEbug
Use this option with the ilink command when linking objects that were
compiled with debug information but are being separately linked. When you
specify the /Ti+ option for a source file, the compiler passes the /DE linker
option to the linker automatically.

“Invoke the Debugger” on page 433
“Debug Heap Use” on page 465

Interpreted Java Compiler Options

If you use the javac compiler to compile your code for debugging, you can set
breakpoints and step through your source code without using any compiler options.
Use the -g option if you want to examine local, class instance and static variables
while debugging.

Here is a partial list of compiler options to consider when compiling your classes:

Option
Purpose

-g Compiles your code with debug information. Use this option if you want to
examine the contents of local variables when debugging your classes. You
can still set breakpoints and step through your code if you do not compile
your classes with this option.

-O Compiles and optimizes your code. Do not use this option if you want to
debug your classes. If you compile your code with this option all debugging
information is removed from the class during optimization.

-classpath <path>
Overrides the CLASSPATH environment variable with the path specified by
<path- . Use this option when you want to try compiling something without
modifying the CLASSPATH environment variable

-d <dir>
Determines the root directory where compiled classes are stored. This is
useful since classes are often organized in a hierarchical directory structure.
With this option, the directories are created below the directory specified by
<dir- .

For a complete list of compiler options, refer to documentation provided with the
JDK.

428 Application Development Tools Guide

Environment Variables

The debugger uses the following environment variables. If you want to place
multiple entries in any of the variables that contain path names, separate the entries
with a semicolon.

v “IVB_DBG_CASESENSITIVE Environment Variable” on page 430

v “IVB_DBG_LANG Environment Variable” on page 430

v “IVB_DBG_LOCAL_PATH Environment Variable” on page 430

v “IVB_DBG_NUMBEROFELEMENTS Environment Variable” on page 431

v “IVB_DBG_OVERRIDE Environment Variable” on page 431

v “IVB_DBG_PATH Environment Variable” on page 431

v “IVB_DBG_REMOTE_SEARCH_PATH Environment Variable” on page 431

v “IVB_DBG_TAB Environment Variable” on page 431

v “IVB_DBG_TABGRID Environment Variable” on page 432

v “Other Environment Variables” on page 432

v “INCLUDE Environment Variable” on page 432

v “Other Environment Variables” on page 432

v “CLASSPATH Environment Variable (Java Only)” on page 432

“Set Environment Variables for the Debugger”

Set Environment Variables for the Debugger

The debugger user interface running on the workstation uses certain environment
variables to determine the dominant language, the location of online help files, and
so on. See the Related Topics below for help on the environment variables
themselves.

To set an environment variable for a given session of the debugger, do the following
on your workstation:

1. Open a command shell window.

2. Use the SET command to set each environment variable to the required value:
SET VARNAME=VAL1;VAL2;VAL3

where VARNAME is the name of the environment variable, and VAL1, VAL2,
and VAL3 are values assigned to it (normally multiple values for a variable are
separated by semicolons).

If you want to add more values to an existing variable, use the following syntax:
SET VARNAME=%VARNAME%;VAL4;VAL5

This adds both the existing contents of VARNAME and the new values to the
variable.

3. Invoke the debugger user interface from that command shell.

Chapter 14. Debug Local Applications 429

“Environment Variables” on page 429

IVB_DBG_CASESENSITIVE Environment Variable

The IVB_DBG_CASESENSITIVE environment variable, if set to a non-null value
(for example, “yes”, 1, “true”, etc.) tells the debugger to compare part names and
module names on a case sensitive basis. By default the debugger converts all
names to uppercase for comparison purposes. Note that this does not affect
filesystem accesses which are opererating system dependent and not affected by
IVB_DBG_CASESENSITIVE.

“Environment Variables” on page 429

IVB_DBG_LANG Environment Variable

The IVB_DBG_LANG environment variable sets the dominant language for a
debugging session. The setting of IVB_DBG_LANG determines the display style for
windows, dialogs, and menus throughout the debugging session, regardless of what
language the program your are debugging was written in. If IVB_DBG_LANG is not
set, the default language is C++. Available choices are:

CPP The dominant language is C++.

JAVA The dominant language is Java.

The following aspects of debugger behavior are affected by the setting of
IVB_DBG_LANG:

Value of IVB_DBG_LANG CPP JAVA

Term used in dialogs and
windows to indicate a C++
function or a Java method

The term “function” is used The term
“method” is
used

Heap checking You can perform heap
checks using Run - Check
heap when stopping

Heap checking
is not
available.

Startup Startup runs to the first
statement in main after
program initialization, unless
you chose to debug program
initialization.

Startup
runs until the
first
debuggable
statement in
the application.

“Environment Variables” on page 429

IVB_DBG_LOCAL_PATH Environment Variable

The IVB_DBG_LOCAL_PATH environment variable is used to locate executables
and DLLs on the debuggee machine.

“Environment Variables” on page 429
“Search Order” on page 439

430 Application Development Tools Guide

IVB_DBG_NUMBEROFELEMENTS Environment Variable

The IVB_DBG_NUMBEROFELEMENTS environment variable can be set to an
integer value to tell the debugger the maximum number of elements to display for
an array, structure, or object in a Program, Private, Local Variables, or Popup
monitor.

“Environment Variables” on page 429

IVB_DBG_OVERRIDE Environment Variable

The IVB_DBG_OVERRIDE environment variable takes precedence over
IVB_DBG_PATH. If you set your IVB_DBG_PATH variable in your system settings,
but you want to temporarily add another path that takes precedence over
IVB_DBG_PATH, set IVB_DBG_OVERRIDE. To restore IVB_DBG_PATH as the
path used to locate executables and DLLs, clear IVB_DBG_OVERRIDE, for
example by using:
set IVB_DBG_OVERRIDE=

“IVB_DBG_PATH Environment Variable”
“Search Order” on page 439
“Environment Variables” on page 429

IVB_DBG_PATH Environment Variable

The IVB_DBG_PATH environment variable is used to locate debug source files on
your workstation that are not stored in the same location as the executable being
debugged. For example, if your debug executable is stored in
F:\BUILDS\SANDDUNE\TEST but your source code is stored in F:\SOURCE and
F:\SOURCE\INCLUDE, you should set your IVB_DBG_PATH variable as follows:
set IVB_DBG_PATH=F:\SOURCE;F:\SOURCE\INCLUDE

You can set the IVB_DBG_PATH environment variable on both client and server
systems.

The search order used to search for source files depends on the settings of other
environment variables as well.

IVB_DBG_REMOTE_SEARCH_PATH Environment Variable

The IVB_DBG_REMOTE_SEARCH_PATH environment variable is used to search
specified paths on the remote host for a requested source file.

“Environment Variables” on page 429
“Search Order” on page 439

IVB_DBG_TAB Environment Variable

The IVB_DBG_TAB environment variable affects how the debugger expands tab
characters in a source or mixed view within a Source window, when
IVB_DBG_TABGRID is set to 0 (or is not set). The value for this variable is an
integer, indicating the number of spaces to convert a tab character into. Unlike
IVB_DBG_TABGRID, IVB_DBG_TAB does not cause the debugger to place tabbed

Chapter 14. Debug Local Applications 431

information in specific columns; it simply results in each tab in the displayed files
being converted to the indicated number of spaces.

“IVB_DBG_TABGRID Environment Variable”

IVB_DBG_TABGRID Environment Variable

The IVB_DBG_TABGRID environment variable affects how the debugger uses tab
characters to align tabs to columns in a source or mixed view within a Source
window. The value of this variable is an integer indicating the starting position and
frequency of the tab. For example, if you set IVB_DBG_TABGRID=6, the debugger
sets tab stops at 6, 12, 18, 24, and so on. If IVB_DBG_TABGRID is set to a
nonzero value, the setting of IVB_DBG_TAB has no effect.

“Environment Variables” on page 429
“IVB_DBG_TAB Environment Variable” on page 431

INCLUDE Environment Variable

The INCLUDE environment variable is used by both the compiler and the debugger.
It specifies the path the compiler and debugger use to locate C++ include files (files
included in your source code with the #include directive.)

“Environment Variables” on page 429

CLASSPATH Environment Variable (Java Only)

The CLASSPATH environment variable tells the debugger, as well as the Java
Virtual Machine and other Java applications, where to find your class libraries.

This variable must be set correctly for any of your Java applications to work.

“Search Order” on page 439

Other Environment Variables

The debugger also uses the following standard environment variables on the
Windows or OS/2 workstation. These variables all contain one or more directory
names separated by semicolons:

PATH
The PATH environment variable is used to locate the debugger executable and the
executable programs to be debugged, as well as any other executables being run
on the workstation. On Windows platforms the PATH environment variable is also
used to locate DLLs.

DPATH
The DPATH environment variable is used to locate message files, which the
debugger needs to display messages and the text of menus and dialogs.

“Environment Variables” on page 429

432 Application Development Tools Guide

Start or Stop Debugging a Program

To start or stop debugging a program, you will need to know how to perform some
of the following subtasks:

v Attach to a Process

v Start debugging a DLL

v Set breakpoints in your program

v Step through, run, or halt a program

“Invoke the Debugger”
“Attach to a Process” on page 435
“Debug a DLL” on page 451
“Set Breakpoints” on page 446
“Run, Step Through, or Stop a Program” on page 453
“Terminate a Debug Session” on page 456

Invoke the Debugger

You can invoke the debugger remotely (where the program being debugged, and
the debugger user interface, are on different machines or operating systems), or
locally.

“Remote Debugging” on page 442

“Start the Debugger”
“Debug a Distributed Application” on page 494

Start the Debugger

Note : This information does not apply to starting the debugger in conjunction with
Object Level Trace. To debug with OLT (and to debug AIX clients), see “Debug a
Distributed Application” on page 494.

You can start a local debug session on Windows NT from the command shell using
the following syntax:

bdbug [debugger-options] [program-name[program-parameters]]

where:

debugger-options
includes zero or more valid options supported by the debugger.

program-name
is the name of an executable file, with a valid path (or no path, if the
executable is locatable through the PATH environment variable), and the
extension .EXE (optional)

program-parameters
includes zero or more parameters your program expects; for C++ programs,
these parameters are usually accessed by your program through the argc
and argv arguments to the main function.

Chapter 14. Debug Local Applications 433

If you do not specify a program name, the debugger opens a Startup dialog in
which you can choose what you want to debug.

“Debugger Options”

“Attach to a Process” on page 435
“Debug a DLL” on page 451

Debugger Options

The debugger supports the following options. These options should be specified
after the bdbug command, but before the name of the program you want to debug.
For example, to debug the program myprog.exe using the /p- option, use the
following command line:
bdbug /p- myprog.exe

Option
Purpose

/a process_id
Attach to the already running process process_id. Note that you cannot
attach to an already running process on OS/2.

/c child_process_id
Start debugging the specified child process of the program being debugged.
This option only applies to debuggee programs running on OS/2, and is
ignored on other platforms.

/h or /?
Display help for the bdbug command.

/i Start the debugger in the system initialization code that precedes the call to
the main entry point for the program. (C++ only): This can be useful if you
need to debug the constructors for static class objects.

/p+ Use program profile information (this is the default). If the debugger has
saved a profile containing information on window, breakpoint, and monitor
settings from a previous debug session for this program, the profile is used
to restore those settings.

/p- Do not use program profile information. The debugger ignores any program
profile information, and opens the debugger in a default appearance with no
breakpoints set and only the Session Control window and one Source
window.

The bdbugd command on the workstation starts the remote debug daemon and
supports the following options:

-v Display connection information. The default is not to display this information.

-qdebugger= <debugger name>
The debugger that the daemon will invoke. The default is the name of the
daemon without the last letter. For example, if the daemon name is bdbugd,
the default debugger is bdbug.

-qservice= <service name>
The service name that is used by the daemon to get the port number. The
default is the name of the daemon without the last letter.

434 Application Development Tools Guide

-qport= <port number>
The port number on which the daemon listens for incoming requests. If you
do not specify a port, the daemon looks up the port number for the
specified service from the system services file on the workstation (for
example the file \etc\services).

“Attach to a Process”

Debug a Microsoft Visual C++ Program

Note: This section applies only to programs being debugged on Windows NT.

You can use the debugger to debug programs compiled by the Microsoft Visual C++
Compiler Version 5.0, provided the debug information is imbedded in the
executable. Both C and C++ programs are supported. To debug such a program
follow these steps:

1. Use the Visual C++ compiler to compile the program with the /Z7 option, to
produce Microsoft C 7.0 debug information.

2. Link the .obj files with the /DEBUG and /PDB:NONE linker options to generate
the necessary debug information and imbed it in the executable.

3. Start debugging the program.

For example, to compile, link, and debug the program hello.c, use the following
commands:
cl /Z7 /c hello.c
link /DEBUG /PDB:NONE hello.obj /OUT:hello.exe
bdbug hello.exe

If you do not compile and link with these options, debug information, if generated, is
stored in a separate .PDB file which the debugger cannot read. In this case the
debugger treats the executable as if it had no debug information, and only
disassembly views of the code are available.

“Start the Debugger” on page 433

“Limitations when Debugging Visual C++ Programs” on page 476

Attach to a Process

You can attach to an already running process from the Startup dialog, or from the
Process list item on the File menu of the Source or Session Control windows.
When you are debugging a Component Broker method, the Startup dialog and
Process list items are disabled.

The Startup dialog appears when you start the debugger and do not specify a
program to debug. You can also get to this dialog by choosing File - Startup from
the Source or Session Control windows. Choose Process list from the Startup
dialog, and select a process to debug.

Select a process from the process list. See under “Related Topics” for guidance on
when to attach to a process, and for more details on using the Process List dialog.

Chapter 14. Debug Local Applications 435

When you attach to a process, the Run - Restart menu item is disabled.

“Invoke the Debugger” on page 433

“When to Use the Process List Dialog”

When to Use the Process List Dialog

Note: The Process List dialog, menu choice, and pushbutton are not available
when you are debugging Component Broker programs.

If you close the debugger after attaching to a process on Windows NT, the process
terminates.

You can use the Process List dialog to attach the debugger to an already running
program where an error or failure has occurred. There are two main reasons for
attaching the debugger to an already running process:

v You anticipate a problem at a particular point in your program, and you do not
want to step through the program or set breakpoints. In this situation, you can
run your program, and at a program pause shortly before the anticipated failure
(for example, while the program is waiting for keyboard input), you attach to the
process. You can then provide the input, and debug from that point on.

v You are developing or maintaining a program that hangs sporadically, and you
want to find out why it is hanging. In this situation, you can attach the debugger
to the hung process, and look for infinite loops or other problems that might be
causing your program to hang.

You can also use the Debug on Demand feature to invoke the debugger when an
application running on your system throws an exception that is not handled.

“Debug on Demand” on page 438

Specify Command-Line Parameters for Your Program

You can specify command-line parameters for your program either from the
command shell where you invoke the debugger, or in the Startup dialog of the
debugger.

Specify Parameters from a Command Shell
To pass arguments to your program from a command shell, make sure that they
appear after the name of the program on the command line:
bdbug [debugger-options] [program-name [program-parameters]]

where debugger-options are any options supplied to the debugger itself,
program-name is the name of the executable you want to debug, and
program-parameters are the arguments or parameters you want to pass to your
program.

Specify Parameters from the Startup Dialog
To pass arguments to your program from a startup dialog, do the following:

436 Application Development Tools Guide

1. Open the startup dialog, either by invoking the debugger without a program
name, or by choosing File - Startup from the Session Control window or a
Source window.

2. Enter the name of the program you want to debug in the Program entry field, or
select a file from the pulldown list.

3. Enter the program parameters in the Parameters field.

4. Click on OK to start debugging the program with the supplied command-line
parameters.

“Invoke the Debugger” on page 433
“Start or Stop Debugging a Program” on page 433

“Debugger Options” on page 434

Attach to a Running Java Virtual Machine

You can attach to an already running Java Virtual Machine (JVM) if you start your
Java application with the java -debug command.

When you start your application with the java -debug command, an agent password
is printed. Take note of this password because it will be needed to attach to the
running JVM.

Once your application is running and you have the agent password:

1. Start the debugger for the host JVM. The command is:
jdbug -qhost=<port> -host=<hostname> -password=<password>

2. Start the debugger interface in attach mode. The command is:
jdebug -qhost=<hostname> -qport=<port> /a0

“Invoke the Debugger” on page 433
“Start the Debugger and the Remote Java Program” on page 444

“When to Use the Process List Dialog” on page 436

Start Debugging a Java Applet

When debugging an applet, you must begin by debugging the
sun.applet.AppletViewer class. After you have begun debugging this class, you
can open the source for any class which is part of your applet and set breakpoints.

You can start to debug an applet by following these steps:

1. On the machine where the applet to be debugged exists, issue the bjdbug
-qport=<port> command.

2. On the machine where the debugger will run, issue the bdbug -qhost=<host>
-qport=<port> command.

3. In the Program field of the Startup Information dialog box, enter
“sun.applet.AppletViewer”

Chapter 14. Debug Local Applications 437

4. In the Parameters field of the Startup Information dialog box, enter the name of
the HTML file where the applet is embedded. The file name must be entered as
one of the following:

v a URL. The URL must begin with http:// or file:/ (only one slash for
URLs beginning with file.)

v a file name only. The file must exist in the directory where you issued the
bjdbug command.

5. Click OK.

6. In the Source or Session Control window, select Open New Source from the
File menu.

7. Enter the name of your applet class you are debugging.

8. Click OK.

9. Set your breakpoint and run.

We recommend that you set a breakpoint on the init{} or start{}methods since
these are the first methods that are called by the applet viewer.

Once you have set this breakpoint you can debug your applet as you would debug
a Java application.

“When You Start Debugging” on page 439

“Set Breakpoints” on page 446
“Start the Debugger and the Remote Java Program” on page 444

Debug on Demand

Note: Debug on Demand is available only on Windows NT, and only for local
debugging.

Debug on Demand enables you to open a debugging session whenever an
unhandled exception or other unrecoverable error occurs in your application. The
debugger starts and attaches to your application at the point of fault. This can save
you time for two reasons: you do not have to recreate errors, and your application
can run at full speed without interference from the debugger until the exception is
encountered.

Debug on demand can be started for any application that fails while it is running,
even if the application does not contain debug information. With debug on demand,
you can even find and fix a problem in your application and let the application
continue running.

To enable this feature, type the following at a command shell:

bdod path_name

where path_name is the path where the debugger is installed, for example
e:\ibmcppw\bin.

To disable Debug on demand, type the following at a command shell:

bdod /u

438 Application Development Tools Guide

When You Start Debugging

The first time you debug a program, the debugger opens the following windows:

v A Source window. This window contains the source code (or disassembly code, if
the program was compiled without debug information) for the main function or
method of your program.

v The Session Control window. Use this window to access other windows, to
control the debugging of threads and functions or methods, and to perform
various debugger commands.

v When the program being debugged (the “debuggee”) is running locally, the
debugger also raises a text-mode window known as the Debug Application
window. This window is used for any console input and output your program may
require. This window is only available when debugging C++ programs. For
programs using a graphical user interface (such as the User Interface classes of
IBM OpenClass), the Debug Application window usually stays blank throughout
the debugging session.

The debugger behavior at startup depends upon the dominant language, as
specified by the IVB_DBG_LANG environment variable.

IVB_DBG_LANG=CPP
The debugger runs up to the start of main. If you checked the Debug
program initialization check box on the Startup dialog, the debugger starts
at the first line of disassembly code in your program. Use this check box
when you want to debug initialization code such as the constructors for
class objects declared at global scope.

IVJ_DBG_LANG=JAVA
The debugger runs up to the method with a public static void
main(String[]) signature in the selected class.

As you step through or run your program, the debugger may raise additional Source
windows for other object files or class files that are executed. If you exit the
debugger, then debug the same program later, these other windows appear on
reload.

When you start debugging a program for the first time, no breakpoints are set and
no variables or expressions are being monitored. During the debug session, you
may set breakpoints, or add variables or expressions to a monitor. When you exit
the debugger, these breakpoints,variables and expressions are saved in the
program profile, and the monitors will be activated the next time you debug this
program.

Search Order

The debugger uses a different search order for finding source files, depending on
whether you are debugging locally or remotely. It searches through each location in
the lists below until it finds a file that matches the requested name.

Local debugging : The debugger searches for source files in:

1. The executable directory

2. The current directory

3. Paths in the IVB_DBG_PATH environment variable

Chapter 14. Debug Local Applications 439

Remote debugging : The debugger searches for source files in the above
directories on the debuggee machine, then in:

1. The current directory of the debugger machine

2. The record of directories on the debugger machine

3. Paths in the IVB_DBG_PATH environment variable on the debugger machine

If the source file cannot be located in any of the above directories, a dialog box
opens requesting the path name for the source file. The path name you enter is
searched for, first on the debuggee machine, then on the debugger machine.

“Record of Directories”

“IVB_DBG_PATH Environment Variable” on page 431

Record of Directories

The record of directories is a cumulative list of all directories you have entered in
source path dialog boxes that opened when the debugger could not locate a source
file. This list is only cumulative for the duration of the debugger session; when you
exit the debugger, the list is not saved.

The debugger assumes that any directory in the record of directories may be on
either the debugger machine or the debuggee machine.

Debugger Windows

Source Window
The Source window displays the source code for the program you are debugging.

When debugging C++ and your program was compiled with debugging information,
you have three choices as to how to view it: by its source code, its disassembled
machine code, or a combination of the two.

When debugging interpreted Java, the Source window will display an error message
if the source code can not be found. A dissassemble machine code view and
combination view are not available.

Call Stack Window
The Call Stack window displays information about active functions for a single
thread. The thread number is indicated in the window title.

Breakpoints List Window
Use the Breakpoints List window to view breakpoints set in your program, change
their characteristics, delete them, or add new ones.

Session Control Window
The Session Control window is the control window of the debugger, and is
displayed during the entire debugging session. It contains a status line that
indicates what the debugger is doing (for example, Ready).

When you are debugging a Component Broker application, the title for the Session
Control window consists of the client host id, process id, and thread id of the
remote object being debugged.

440 Application Development Tools Guide

“Debugger Monitors” on page 457
“Source Window Views”

Source Window Views

If your program was compiled with debugging information, you have three choices
as to how to view it in the Source window:

Source View
For C++, Source views are only available for components that were compiled with
debug information. For any file that can be viewed with a source view, all views
(source, disassembly, and mixed) are available.

In a C++ Source view, the Source window displays the source code for an object
file within your program. If the object file was made from several source files, and
Options - Window settings - Notebook is checked, the source view is displayed
in notebook format, with a tab for each source file that is included in the object file.

For interpreted Java, Source views are only available for classes that are in paths
listed in the CLASSPATH environment variable. Both the source and class file must
be accessible through the CLASSPATH environment variable. For example, for a
class file a.b.c.d, the debugger will look for the source as a/b/c/d.java under
each entry in the CLASSPATH environment variable.

In an interpreted Java Source view, the Source window displays the source code for
an class file within your program.

Disassembly View
For objects that were not compiled with debug information, Disassembly view is the
only view available.

In a Disassembly view, the object code for an object used by your program is
disassembled into assembly language. For objects that were compiled with debug
information, you can switch between disassembly view and the other views (source
and mixed).

Mixed View
Mixed views are available only for objects that were compiled with debug
information.

A Mixed view is a combination of a source view and a disassembly view. In this
view, the Source window displays each line of source code followed by the
resulting assembly language instructions. If the object file was made from several
source files, and Options - Window settings - Notebook is checked, the mixed
view is displayed in notebook format, with a tab for each source file that is included
in the object file.

“Debugger Windows” on page 440

Problems Getting a Source or Mixed View

If you are in the disassembly view of a section of code, you may find that you
cannot obtain a source or mixed view of your code (either through the View menu

Chapter 14. Debug Local Applications 441

or when you click on the Source View icon). There are several likely reasons for
such problems. Click on links in the list below for proposed solutions:

v The code you are debugging was not compiled with debug information, because
the debugger is finding a different version of the executable than the one you
compiled with debug information.

v The code you are debugging was not compiled with debug information, because
it is not code you wrote, but code in a DLL or other object that your program
uses.

v The code you are debugging was compiled with debug information, but the
debugger cannot locate the source code. If you try to switch to a source or mixed
view in this situation, a dialog opens so that you can enter the path of the source
file. If you select Cancel, the view remains a disassembly view.

“Debugger Is Using a Different Executable Version” on page 478
“Debugger Cannot Find Source Code” on page 478
“Environment Variables” on page 429
“Source Views for Code You Did Not Write”

Source Views for Code You Did Not Write

In the Source window, you may not be able to obtain a source view of an object if
the current code being executed is not part of your program. (For example, you
may have halted execution while in a DLL that does not contain debug information.)
Check the object name that appears at the top of the Source window. If you do not
recognize this name as an object of your own executable, you are probably
debugging system code used by, but not compiled with, your program. If you have
access to the source code for this object, you could recompile it with debug
information so that you can obtain a source view of it.

How Step Commands Work in Different Views

In the Source window, the current view of your program affects how step
commands work. In a source view, they operate on the basis of lines of source
code (typically, one step per line of source code that contains executable code). In
a mixed view, the debugger treats source code lines as comments; in both Mixed
and Disassembly views, step commands operate on disassembly instructions
(typically, one step per line of disassembled code).

When you step from a function displayed in source view into a call to a function that
was compiled without debug information, the Source window for the called function
appears in disassembly view, and therefore step commands in that window will
operate on a disassembly-instruction basis.

“Stepping and Functions” on page 454

Remote Debugging

Remote debugging lets you debug programs that are running on one system,
using a VisualAge debugger running on another system.

Why Use Remote Debugging
You might want to use remote debugging for the following reasons:

442 Application Development Tools Guide

v The program you are debugging is running on another user’s system, and is
behaving differently on that system than on your own. You can use the remote
debug feature to debug this program on the other system, from your system. The
user on the system running that program interacts with the program as usual
(except where breakpoints or step commands introduce delays). You interact with
the debugger, but not with the I/O of the program being debugged.

v It is easier to debug an application that uses graphics or has a GUI when you
keep the debugger user interface separate from the application’s GUI. Your
interaction (or another user’s interaction) with the application occurs on the
remote system, while your interaction with the debugger occurs on the local
system.

v The program you are debugging was compiled for a platform that the debugger
user interface does not run on. You can use the remote debug feature to take
advantage of the debugger user interface while debugging the remote application

Supported Communications Protocols and Platforms
The debugger supports the TCP/IP protocol to establish the communications link
between the debugger and a debuggee program running on different systems.

Limitations of Remote Debugging
Remote debugging imposes the following limitations:

v Halt is not supported when remote debugging.

v Browse is not available when prompted for a source file path.

“Start the Debugger and the Remote Program”
“Debug a Distributed Application” on page 494

Start the Debugger and the Remote Program

Note : This section describes how to debug a program running on one workstation
from a debugger user interface on another workstation. To do remote, distributed
debugging with Object Level Trace, see “Debug a Distributed Application” on
page 494

To remotely debug a program, follow these steps:

1. On the machine where the program to be debugged will run, issue the brmtdbg
command.

2. On the machine where the debugger will run, issue the bdbug command and
provide the remote host name. Either specify the program you want to debug as
the last argument of the command, or enter the program name in the Startup
dialog that appears.

The brmtdbg command has the following syntax:

brmtdbg [-qprotocol=tcpip] [-qport=port] [-qsession=single|multi]

where:

-qprotocol=tcpip
Specifies the communications protocol to use. Only the TCP/IP
communications protocol is supported. This is the default protocol.

-qport=port
Specifies the TCP/IP port used for the connection. If you specify

Chapter 14. Debug Local Applications 443

-qprotocol=tcpip but you do not specify a port, or if you do not specify a
protocol (so that TCP/IP becomes the default protocol), the default port is
8000.

-qsession=single|multi
Specifies whether to support single session debugging or multiple session
debugging. The default is single session.

The command for invoking the debugger has the following syntax when
used for remote debugging:

bdbug [-qprotocol=tcpip] [-qport=port] -qhost=remotehost
remote-program [program-parameters]

where:

-qhost=remotehost
Specifies the TCP/IP name or address of the host to connect to.
This argument is required.

remote-program
Is the name of the executable program on the remote machine
(including an optional path)

program-parameters
are any parameters you want to pass to the executable program

The communications options for the bdbug command are the same (and
have the same defaults) as those for the brmtdbg command. Note that you
do not specify a host name on the brmtdbg command because the remote
machine initiates the connection.

Start the Debugger and the Remote Java Program

Note : This section describes how to debug a Java program running on one
workstation from a debugger user interface on another workstation. To do remote,
distributed debugging with Object Level Trace, see “Debug a Distributed
Application” on page 494

To remotely debug an interpreted Java program, follow these steps:

1. On the machine where the program to be debugged will run, issue a bjdbug
-qport=<service port> command. If you do not use the -qport option, the
debugger will attempt to run on the local machine.

2. On the machine where the debugger will run, issue the bdbug
-qhost=<remotehost> -port=<port> command. Either specify the program you
want to debug as the last argument of the command, or enter the program
name in the Startup dialog that appears.

The bjdbug command has the following syntax:

bjdbug [-help] [-multi] [-host=<hostname>] [-password=<password>]
[-qport=<service port>] [-qhost=<uidhost>] [-quidport=<uidport>]
[-quiport=<uidport>][-qtitle=<uidtitle>]
[-jvmargs=<args>][classname][parameters]

where:

444 Application Development Tools Guide

-help Gives a list of options for the command

-multi Allows multiple debuggers to connect to the program being debugged.

-host=<hostname>
Sets the name of the host machine on which the Java interpreter session to
attach to is running.

-password=<password>
Sets the password used to log in to the active Java interpreter session on
the host machine. This is the password printed by the Java interpreter when
it is invoked with the -debug option.

-qport=<service port>
Sets the port on the local machine where the debugger should

-qhost=<uidhost>
Sets the host name where the debugger will run. This will be a different
host from that in the -host option when debugging

-quiport=<uidport>
Sets the port on the host set by the -qhost option for communication
between the program being debugged and the debugger. The default is
8001.

-qtitle=<uidtitle>
Sets the title to appear on the debugger.

-jvmargs=<args>
Overrides environment variable settings inherited from the command line
session where you issued the bjdbug command. This is useful if you would
like the debugger to use a different CLASSPATH than the one existing in your
command line session.

classname
The fully qualify class name of the the class on the local machine. This
class must be in a path listed in the CLASSPATH environment variable on
the local machine.

parameters
Any parameters you want to pass the class.

The command for invoking the debugger has the following syntax when used for
remote debugging:

bdbug -qhost=<remotehost> [-qport=<port>][remote-program]
[program-parameters]

where:

-qhost=<remotehost>
Specifies the TCP/IP name or address of the host to connect to. This
argument is required.

-qport=<port>
Specifies the TCP/IP port on the host to connect to. The default is 8001.
This should be the same as that set with the -qport option of the bjdbug
command.

Chapter 14. Debug Local Applications 445

remote-program
The fully qualify class name of the the class on the remote machine. This
class must be in a path listed in the CLASSPATH environment variable on
the remote machine.

program-parameters
Any parameters you want to pass to the executable program.

Breakpoints

Breakpoints are markers you place in your program to tell the debugger to stop
whenever execution reaches that point. For example, if a particular statement in
your program is causing problems, you could set a breakpoint on the line containing
the statement, then run your program. Execution stops at the breakpoint, before the
statement is executed, and you can check the contents of variables, registers,
storage, and the stack, then either step over (execute) the statement to see how
the problem arises, or jump over (not execute) the statement to temporarily
circumvent the problem.

For C++, the debugger supports the following types of breakpoints:

v Line breakpoints are triggered before the code at a particular line in a source
file is executed.

v Function breakpoints are triggered when the function they apply to is reached.

v Address breakpoints are triggered before the disassembly instruction at a
particular address is executed.

v Storage change breakpoints are triggered when the storage within a particular
address range is changed. The range is typically a small power of 2 (for
example, 4 bytes).

v Load occurrence breakpoints are triggered when a DLL is loaded into an
application. This happens the first time a reference is made to a function within
the DLL.

For interpreted Java, the debugger supports the following types of breakpoints:

v Line breakpoints are triggered before the code at a particular line in a source
file is executed.

v Method breakpoints are triggered when the method they apply to is reached.

“Set a Deferred Breakpoint” on page 449
“Set Multiple Breakpoints” on page 449
“Delete Breakpoints” on page 450
“Delete All Breakpoints” on page 450
“Modify Breakpoint Characteristics” on page 450
“Enable and Disable Breakpoints” on page 450
“Set and Delete Breakpoints from a Source Window” on page 447

Set Breakpoints

You can set breakpoints from the following windows:

v Breakpoints List window

v Source window

v Session Control window

446 Application Development Tools Guide

“Breakpoints” on page 446

“Set Multiple Breakpoints” on page 449
“Set Breakpoints in the Breakpoints List Window”
“Set and Delete Breakpoints from a Source Window”
“Set Function or Method Breakpoints from the Session Control Window” on
page 448

Set Breakpoints in the Breakpoints List Window

To set breakpoints in the Breakpoints List window, open the window (if it is not
already open), using one of the following methods:

v Type Ctrl+X from any main debugger window or monitor

v Select List from the Breakpoints menu of the Source window

v Click on the button in the Source window

v Position the cursor in the prefix area, click the right mouse button, and select
List from the popup menu.

Then do the following:

1. From the Breakpoints List window, select the type of breakpoint you want to set
from the Set menu.

2. Enter the information for the breakpoint in the dialog, and click on OK or press
the Enter key.

You can set breakpoints from the Source window and the Session Control window
as well. Unless you want to set multiple breakpoints with the same nonstandard
optional parameters, you may find it easier to use the Source window for setting
line breakpoints and address breakpoints, and the Session Control window for
setting function or method breakpoints. Storage change breakpoints and load
occurrence breakpoints can be set from any of the three windows.

“Breakpoints” on page 446

“Set Multiple Breakpoints” on page 449
“Set and Delete Breakpoints from a Source Window”
“Set Function or Method Breakpoints from the Session Control Window” on
page 448

Set and Delete Breakpoints from a Source Window

You can set and delete breakpoints from a Source window in the following ways:

v Toggle a breakpoint on or off for a line. There are three ways to do this:

– Double-click on the prefix area for that line.

– Highlight the line using either the up and down cursor keys or the mouse,
then press the space bar.

– Highlight the line, then select Breakpoints - Toggle at current line .

v From the prefix area, or while the pointer is over a function name, click the right
mouse button and select a breakpoint option from the pop-up menu.

Chapter 14. Debug Local Applications 447

v Open a Breakpoints List window, and set or delete the breakpoint from there.

v Select a type of breakpoint from the Breakpoints menu, and enter the
appropriate information.

Note: If you delete a breakpoint, you must recreate it if you want to use it again. If
you plan to use a breakpoint again later, it is better to disable the breakpoint
instead.

“Open Other Debugger Windows from a Source Window” on page 459
“Enable and Disable Breakpoints” on page 450

Set Function or Method Breakpoints from the Session Control Window

You can set function breakpoints or method breakpoints in the Session Control
window by either of the following methods:

v Go to the Breakpoints menu and choose Set function breakpoint or Set
method breakpoint

v Select a function in the Components pane, click the right mouse button to bring
up a popup menu, and choose Set function breakpoint or Set method
breakpoint .

“Set Breakpoints” on page 446

Set a Line Breakpoint

You can set a line breakpoint from a Source window, or from the Breakpoints List
window.

There are three ways to set a line breakpoint from the Source window:

1. Make sure the appropriate line is visible in the window (use the scroll bar or
cursor keys to locate it), then double-click on the line number in the prefix area
of the line.

2. Type the line number in the source window. A Scroll to Line Number dialog
opens up. The line number you entered is placed in the dialog entry field. Click
on the Breakpoint button.

3. Select Breakpoints - Set line from the menu bar, and fill in appropriate fields in
the resulting Line breakpoint dialog box as described below for the Breakpoints
List window.

To set a line breakpoint in a Breakpoints List window, do the following:

1. Select Set - Line from the menu bar.

2. From the Executable pulldown list in the Line breakpoint dialog, choose the
DLL you want to debug.

3. From the Source pulldown list choose, the source file containing the code you
want to debug.

4. In the Line entry field, enter the line number within the source file you want to
place a breakpoint in.

5. Click on the Defer breakpoint check box.

6. Click OK to set the breakpoint and dismiss the Line breakpoint dialog.

7. Issue the Run command by pressing Ctrl+R.

448 Application Development Tools Guide

“Breakpoints” on page 446

“Set Breakpoints” on page 446
“Set Breakpoints in the Breakpoints List Window” on page 447
“Set and Delete Breakpoints from a Source Window” on page 447

Set a Deferred Breakpoint

A deferred breakpoint is a breakpoint set in a DLL that is not currently loaded.

To set a deferred line breakpoint, do the following:

1. Check the Defer breakpoint check box.

2. Open a Line breakpoint dialog in one of the following ways:

v From a Source window or the Session Control window, select Breakpoints -
Set line

v From a Breakpoints List window, select Set - Set line .

3. Choose the DLL from the Executable pull-down field.

4. Choose the source file from the Include File pull-down field.

5. Enter the line number where you want the breakpoint set.

6. Specify any additional information you wish in the Optional Parameters group
box.

7. Click on OK or press Enter .

“Debug a DLL” on page 451
“Start Debugging a DLL from a Load Occurrence Breakpoint Dialog” on page 451
“Start Debugging a DLL from a Source Window” on page 452
“Start Debugging a DLL from the Session Control Window” on page 452

Set Multiple Breakpoints

You can set several breakpoints with the same optional parameters from a Type
Breakpoint dialog, where Type corresponds to the type of breakpoint (Line,
Function, Address, Storage change, Load occurrence). To do this, follow these
steps:

1. From the breakpoint dialog, enter the information for the first breakpoint.
Change any fields in the Optional Parameters section of the window, as
desired.

2. Click on Set. The settings are saved for the current breakpoint.

3. For each additional breakpoint, enter only the changed information (for example,
the new line number, new function name, new address), and again click on Set.

4. After you have set the last breakpoint, click on Cancel to dismiss the dialog.

“Set Breakpoints” on page 446

Chapter 14. Debug Local Applications 449

Delete Breakpoints

To delete all breakpoints at once, select Edit - Delete all from the Breakpoints List
window, or Breakpoints - Delete all from the Session Control or Source window.
To delete individual breakpoints, position the pointer over the desired breakpoint,
click the right mouse button, and select Delete .

When you delete a breakpoint, all information about it is lost. If you want to
temporarily deactivate a breakpoint and activate it later, you should disable the
breakpoint instead.

“Enable and Disable Breakpoints”

Delete All Breakpoints

You can delete all breakpoints for your program from the Breakpoints List window in
three ways:

v Click on the toolbar button

v Select Delete all from the Edit menu

v Position the pointer on a breakpoint in the list, click the right mouse button, and
select Delete all from the popup menu.

Once you have deleted breakpoints, all information on them is lost. If you want to
temporarily prevent breakpoints from stopping execution, but you may want to
activate them later, disable them instead, by selecting Edit - Disable all .

“Enable and Disable Breakpoints”

Enable and Disable Breakpoints

You can disable a breakpoint so that it does not stop execution, and then later
enable it again. The advantage of disabling a breakpoint instead of deleting it is that
it is easier to enable a breakpoint than to recreate it. The debugger lets you:

v Enable breakpoints one at a time

v Disable breakpoints one at a time

v Enable all breakpoints at once

v Disable all breakpoints at once.

“Delete Breakpoints”
“Modify Breakpoint Characteristics”
“Set Breakpoints” on page 446

Modify Breakpoint Characteristics

You can change the following characteristics of a breakpoint:

v Which threads the breakpoint applies to

v How often the debugger should skip the breakpoint (the frequency)

v Whether to stop on the breakpoint only when a given expression is true

450 Application Development Tools Guide

v Whether to defer the breakpoint (for use with DLLs)

You can also change the Required parameters fields for a breakpoint, which
amounts to deleting the existing breakpoint and setting a new one.

To change a breakpoint’s characteristics, select the breakpoint in the Breakpoints
List window and choose Edit - Modify , or place your pointer over the breakpoint,
click the right mouse button, and select Modify .

A Type Breakpoint window opens, where Type corresponds to the type of
breakpoint (Line, Function, Address, Storage change, Load occurrence), with the
current settings for the breakpoint already placed in the window’s fields. For
information on individual fields within each window, see that window’s help.

“Breakpoints” on page 446

“Set a Deferred Breakpoint” on page 449

Debug a DLL

To debug functions within a DLL, you first need to do the following:

1. Compile the DLL source files with symbolic information, if you have access to
them and you want to be able to debug DLL functions at the source code level.

2. If you do not already have an executable program that calls the DLL functions
you want to debug, write such a program and link it to the DLL. See your
compiler documentation for information on how to do this.

“Set a Deferred Breakpoint” on page 449
“Start Debugging a DLL from a Load Occurrence Breakpoint Dialog”
“Start Debugging a DLL from a Source Window” on page 452
“Start Debugging a DLL from the Breakpoints List Window” on page 452
“Start Debugging a DLL from the Session Control Window” on page 452

Start Debugging a DLL from a Load Occurrence Breakpoint Dialog

You can set a breakpoint in a DLL that causes execution to stop when the DLL is
first loaded by your application. The DLL is generally loaded by your application the
first time a function contained within the DLL is called by another function within
your application. This type of breakpoint is called a load occurrence breakpoint .

To set a load occurrence breakpoint, do the following:

1. From the Breakpoints menu of the Session Control or Source windows, or
from the Set menu of the Breakpoints List window, choose Set load
occurrence breakpoint .

2. In the Load Occurrence Breakpoint dialog, enter the name of the DLL you
want to set the breakpoint in.

3. Click on OK to set the breakpoint and close the Load Occurrence Breakpoint
dialog, or click on Set if you want to set more load occurrence breakpoints.

When you run your application, execution will stop when the DLL is first loaded.

Chapter 14. Debug Local Applications 451

“Debug a DLL” on page 451

Start Debugging a DLL from a Source Window

You can start debugging a DLL used by your application from the Source window
containing the current execution point, provided you can use step commands to
reach a statement that calls a function within your DLL.

1. In the Source window, use a combination of breakpoints and Run , Step
Debug , and Jump to Location commands to execute or skip over portions of
your code, up to the call to the DLL function you want to debug.

2. Issue a Step Into or Step Debug command to enter the DLL function.

A Source window showing the DLL function is raised, and the current line is the first
line within the function.

“Debug a DLL” on page 451
“Set Breakpoints” on page 446
“Run, Step Through, or Stop a Program” on page 453

Start Debugging a DLL from the Breakpoints List Window

You can start debugging a DLL from the Breakpoints List window by setting a line
breakpoint in that DLL, then issuing the Run command. You can only do this if the
compile unit you want to place the breakpoint in was compiled with debug
information. To set a line breakpoint in a DLL and then start debugging the DLL, do
the following:

1. Open a Breakpoints List window.

2. From the Set menu, choose Set line.

3. From the Executable pulldown list in the Line breakpoint dialog, choose the
DLL you want to debug.

4. From the Source pulldown list choose, the source file containing the code you
want to debug.

5. In the Line entry field, enter the line number within the source file you want to
place a breakpoint in.

6. Click on the Defer breakpoint check box.

7. Click OK to set the breakpoint and dismiss the Line breakpoint dialog.

8. Issue the Run command by pressing Ctrl+R.

“Debug a DLL” on page 451
“Set a Deferred Breakpoint” on page 449
“Set a Line Breakpoint” on page 448

Start Debugging a DLL from the Session Control Window

You can use the Session Control window to access a Source window containing
the source for a DLL you want to debug.

1. In the Session Control window, expand the Components Pane entry for the
DLL you want to debug.

452 Application Development Tools Guide

2. Continue expanding appropriate items in the list until you find the source file or
function you want to debug. If the source file or function is not listed, you may
not have compiled the function with debug information.

3. Double-click on the source file or function to raise a Source window for it.

4. Set a line, function, or other breakpoint at an appropriate point in that Source
window.

5. Run your program.

“Debug a DLL” on page 451
“Run a Program”
“Set Breakpoints” on page 446

Run, Step Through, or Stop a Program

You can use debugger toolbar buttons, accelerator keys, and menu commands to
accomplish the following subtasks:

v Run your program

v Step through your program

v Halt execution of your program

v Restart your program

v Terminate a debug session

“Run a Program”
“Step Commands”
“Halt Execution of a Debuggee Program” on page 455
“Restart Your Program” on page 455
“Terminate a Debug Session” on page 456

Run a Program

After you have set appropriate breakpoints in your program, you are ready to issue
the Run command. The debugger runs the program from the current execution
point to the first enabled breakpoint it encounters. A Source window indicates the
line where execution of the program stopped. You can then examine the contents of
storage, variables, the call stack, or processor registers; step through your program;
or issue the Run command again to run to the next enabled breakpoint.

“Set Breakpoints” on page 446
“View Variables, Memory, Registers, and the Stack” on page 460

“Step Commands”

Step Commands

You can use step commands to step through your program a single line or
disassembly instruction at a time. You can issue step commands from the Source
window that contains the current execution point.

Chapter 14. Debug Local Applications 453

The following types of step commands are available:

v Step Over - executes the current line, without stopping in any functions called
within the line

v Step Into - executes the current line. If the current line contains a call to a
function, execution stops in the first source line or disassembly instruction of the
called function. If the called function was not compiled with debug information,
the function is shown in a disassembly view.

v Step Debug - executes the current line. Execution stops at the next line
encountered for which debug information is available. This could be in the current
function, in the called function, or in a function called within the called function.

v Step Return - executes from the current execution point up to the line
immediately following the line that called this function. If you issue a Step Return
command from the main function, the program runs to completion.

Note that execution may stop earlier than indicated above, if the debugger
encounters a breakpoint or an exception.

If the step command involves any calls to Object Request Broker methods on a
server, a new set of debugger windows for the server code opens (or an existing
set of debugger windows has its focus raised) and execution stops at the first
statement in the method invoked on the server.

You can use combinations of step commands to step through multiple calls on a
single line.

“Stepping and Functions”

Stepping and Functions

Note: This section does not apply to statements containing method calls to remote
Object Request Broker methods. Any step command that involves a call to an
Object Request Broker method for which debugging is requested by the Object
Level Trace, causes a different debugger user interface to start up (or be raised if it
was started on a previous such call), and execution stops, in that debugger user
interface, at the first source statement of the called method.

In a source code line that contains multiple calls, you can choose to step over all
the calls, or step through the calls individually. Given a complex C++ call such as
func1(func2(), func3());, you can do the following:

v Step over the entire line with a single Step Over command.

v Step through each called function with a series of Step Into commands. You can
then step through the function, or, to return to the original statement so that you
can step into the next function, issue a Step Return command.

v Step into each called function for which debug information is available, with a
series of Step Debug commands. Each time you use Step Debug to step into
such a function, you can then step through the function, or issue a Step Return
command to return to the original statement.

You can also use a combination of step commands and function or method
breakpoints to more finely control which functions called from a given line are
stepped into and which are stepped over.

454 Application Development Tools Guide

“Set and Delete Breakpoints from a Source Window” on page 447

Skip over Sections of Code

You can change the current execution point in a debugging session to another
location in the current Source window, so that certain lines are executed again, or
are skipped over when they otherwise would not be. From within the Source
window containing the current execution point, do the following:

1. Scroll to the line number you want to jump to, if it is not already visible.

2. Issue the Jump to location command by doing one of the following:

v Click on the prefix area for the line, click, and select Jump to location from
the popup menu

v Select the line, then select Run - Jump to location from the menu bar

v Select the line, then press the N key, which is the accelerator for the Jump to
location command.

Note that using Jump to location can cause unpredictable results if you jump
outside the current function, jump over code that has side-effects (for example, calls
to functions whose results are assigned to variables, or functions that change the
contents of variables passed by reference), or jump into the middle of a block such
as a for loop.

Halt Execution of a Debuggee Program

To halt execution of a debuggee program that is currently running, do one of the
following:

v From a Source window or the Session Control window, select Run - Halt

v From any window that has toolbar buttons displayed, click on the button

You may find that execution halts in a function other than the one you are
debugging (for example, a system library function). To run to the end of that
function and stop in your own code, do one of the following:

v Issue the Step return command from the Source window execution stopped in

v If the previous technique results in the debugger displaying the message “Cannot
determine return address”, issue the Step debug command until execution
returns to your code

v If you know what line in your program will be the next to execute after the current
function returns, go to the source window containing that line, set a breakpoint on
it, and issue the Run command.

“Set a Line Breakpoint” on page 448
“Terminate a Debug Session” on page 456

Restart Your Program

Note: You cannot restart a program that uses Component Broker objects. You
cannot restart a program that you attached to with the debugger.

You can start debugging your program again from the beginning (the start of the
main function) by doing the following:

Chapter 14. Debug Local Applications 455

1. If the program is currently executing within the debugger, issue a Halt command
by selecting Run - Halt from a Source window or the Session Control window,
or pressing the button.

2. Set a breakpoint at the location you want to run to, if it is not the start of the
main function and you have not already set a breakpoint there.

3. If the previous run of your program performed file output and the program logic
will be changed by the existence of such files from a previous debug session,
you may want to erase these files before restarting.

4. Select Run - Restart from a Source window or the Session Control window.

5. If you want to run up to a breakpoint, issue the Run command by pressing
Ctrl+R from any window (or R from a Source window) or pressing the

button.

“Halt Execution of a Debuggee Program” on page 455
“Set Breakpoints” on page 446

Terminate a Debug Session

To terminate a debug session and exit the debugger, do one of the following:

v Select File - Close debugger from any debugger window that has a File menu.

v Press F3 from any debugger window that is not a dialog

v Switch to the Session Control window and double-click on the upper left corner of
the window or press Alt+F4 .

To terminate a debug session and start another one (local debugging only) do one
of the following:

v If you want to start the same program executing again, select Run - Restart from
a Source window or the Session Control window.

v Run the current program to completion, if this is feasible. A message window with
the text “Program has run to completion” appears. Click on OK. A Startup dialog
then appears.

v Select File - Startup from a Source window or the Session Control window.

Note: You cannot use Run - Restart or Startup when running a program that uses
Object Request Broker objects.

The debugger locks the load modules for your program from write updates by the
compiler until execution completes. If you want to recompile your program and
debug it again, you should run the program to completion, exit the debugger, or
switch to debugging a different program before recompiling.

“Halt Execution of a Debuggee Program” on page 455

456 Application Development Tools Guide

Debugger Monitors

Local Variables Monitor
The Local Variables monitor helps you monitor all variables within the current scope
of a Source window. This monitor is associated with a particular thread, and closes
automatically when that thread terminates. It is updated, after each Step or Run
command, to show what variables are currently in scope and the contents of those
variables.

Popup Monitor
A Popup monitor displays a variable or expression you select for monitoring. This
monitor is associated with a specific Source window and closes when the
associated window closes. Each time you add a variable or expression to a Popup
monitor, a new Popup monitor opens. The contents of each Popup monitor are
updated after each Step or Run command (except for disabled variables or
expressions within such windows).

Private Monitor
A Private monitor lets you monitor variables and expressions that you select from a
specific Source window. Private monitors help you keep track of local variables and
expressions in programs with multiple compilation units. They are particularly useful
in cases where the number of variables or expressions is large, or where variables
with the same name appear in different compilation units.

Program Monitor
The Program Monitor shows variables and expressions that you select from Source
windows. This monitor is not associated with any particular Source window, and
remains open until you close it directly or exit the debugger. Use it to monitor global
variables or variables you want to see at all times during your debugging session.

Registers Monitor
The Registers monitor shows the contents of processor registers for a particular
thread in your program. If you are debugging multiple threads, you can display a
separate Registers monitor for each thread. Although all threads share the same set
of registers, the operating system saves the register contents of each thread as the
thread is suspended, and restores that thread’s processor contents when the thread
resumes.

Storage Monitor
The Storage monitor lets you view and update the contents of storage areas used
by your program. You can specify a variable, array, class object (C++ only),
expression, or storage address to view. You can also change the address range to
view, modify the contents of storage, and change the representation the debugger
uses to display storage, for example, from hexadecimal to floating-point.

“Add Expressions and Variables to a Monitor” on page 458
“Change the Contents of Storage, Variables, and Registers” on page 463
“Debug Heap Use” on page 465
“Edit Variable Contents” on page 461
“Open a New Storage Monitor” on page 458
“View a Location in Storage” on page 461
“View Variable Contents” on page 460
“View Variables, Memory, Registers, and the Stack” on page 460

Chapter 14. Debug Local Applications 457

“Differences between Program and Private Monitors”
“Debugger Windows” on page 440

Differences between Program and Private Monitors

The Program and Private monitors are very similar, but have the following
differences:

v The Program monitor can be used to monitor all variables, while a Private
monitor is associated with a single Source window.

v The Program monitor remains open at all times unless you close it or exit the
debugger. A Private monitor closes whenever the Source window it is associated
with closes, and is hidden whenever its Source window becomes inactive (for
example, when a statement in that Source window returns control to code in
another Source window).

v Because a Private monitor is associated with a specific Source window, whose
focus is raised whenever you select the monitor, it does not have a Windows
menu.

“Add Expressions and Variables to a Monitor”
“Change the Contents of Storage, Variables, and Registers” on page 463
“View a Location in Storage” on page 461
“Open a New Storage Monitor”
“View Variables, Memory, Registers, and the Stack” on page 460
“Debug Heap Use” on page 465
“View Variable Contents” on page 460

Add Expressions and Variables to a Monitor

From the Source window, you can add a variable or expression to a monitor, so
that you can keep track of how the variable’s contents or the expression’s value
changes during program execution. You can use any of the following methods:

v Position the pointer over the variable, click the right mouse button, and select the
monitor you want from the popup menu.

v Highlight the variable or expression, then select Monitors - Monitor expression .
A dialog opens containing the variable or expression; select a monitor from there.

v Select Monitors - Monitor expression . In the dialog, enter the variable or
expression and choose a monitor.

v Double-click on a variable to add it to the Program monitor.

“C++ Expressions Supported” on page 474
Right Mouse Button Behavior

Open a New Storage Monitor

You can bring up a new Storage monitor in a number of ways:

v Click on the toolbar button from a Source window or the Session Control

window.

v Select Monitors - Storage from a Source window or the Session Control
window.

458 Application Development Tools Guide

v Highlight an expression in a Source window, click the right mouse button, and
select Add to storage monitor from the popup menu.

v Select Monitors - Monitor expression from a Source window or the Session
Control window, enter the expression you want to monitor, and select the
Storage monitor radio button.

A new storage monitor opens each time you do one of the above, even if you
already opened another storage monitor for the same Source window, variable or
expression.

“Open Other Debugger Windows from a Source Window”
“Change the Storage Monitor Address Range”

Change the Storage Monitor Address Range

You can change the address range you want displayed in a Storage monitor to a
specified address. Double-click on an entry in one of the address columns (for
example, the “Flat” column), or move the cursor to that entry and press Enter; then
enter a new address. You can also scroll through the range using the cursor keys
(including Page Up and Page Down), or using the scrollbar.

If the debugger cannot determine the contents of storage at a particular location, it
displays the contents as a series of question marks (?). This can occur when you
display storage that your program does not own or when the address range does
not point to a valid storage area.

If you want to view the storage associated with a different variable, adding that
variable to a new Storage monitor is easier because the debugger determines the
variable’s address in storage for you. You may want to close the old Storage
monitor first if its contents are no longer needed.

“Add Expressions and Variables to a Monitor” on page 458
“Change the Contents of Storage, Variables, and Registers” on page 463
“Change the Representation of Storage” on page 462
“Open a New Storage Monitor” on page 458
“View a Location in Storage” on page 461

“Debugger Monitors” on page 457

Open Other Debugger Windows from a Source Window

You can open other Source windows from a Source window or from the Session
Control window.

To open a monitor window from a Source window, click on a monitor toolbar
button or select the desired monitor from the Monitors menu. You can also open a
monitor window by adding a variable to that monitor, in one of the following ways:

v Click the right mouse button on the variable in the Source window, then select
the appropriate monitor from the popup menu.

v Double-click the left mouse button on the variable to add the variable to the
Program monitor.

Chapter 14. Debug Local Applications 459

v Click the left mouse button on the variable, press Ctrl+M, and select the desired
monitor from the Monitor Expression dialog.

To open the Breakpoints list window, select Breakpoints - List from the menu
bar, or press Ctrl+X.

To change the focus from a Source window to another window that is already
opened (or minimized), select that window from the Windows menu.

View Different Source Files
“Add Expressions and Variables to a Monitor” on page 458

View Variables, Memory, Registers, and the Stack

Follow one or more of the tasks below:

v Add a variable or expression to a monitor so you can view or change its contents

v View variable contents

v View storage contents

v View the contents of registers

v View the contents of the call stack

View Variable Contents

To view the contents of a variable you have already added to a monitor, do the
following:

1. Select a window that contains a Windows menu (for example, a Source window
or the Session Control window).

2. Select the monitor containing the variable from that Windows menu.

3. If necessary, use the scroll bars or PageUp and PageDown keys to scroll the
monitor until the variable is visible.

4. If necessary, change the representation of the variable: click on the variable with
the right mouse button and select Next representation from the popup menu.

To view the contents of a variable you have not yet added to a monitor, do one of
the following:

v Add the variable to a monitor (see under Procedures below).

v If the variable is in scope in the current Source window, select Monitors - Local
variables from the menu bar of the Source window to open a Local variables
monitor. This monitor should contain all local variables that are currently in
scope.

“Add Expressions and Variables to a Monitor” on page 458
“Change the Contents of Storage, Variables, and Registers” on page 463
“View a Location in Storage” on page 461
“Open a New Storage Monitor” on page 458
“View Variables, Memory, Registers, and the Stack”
“Debug Heap Use” on page 465

460 Application Development Tools Guide

Edit Variable Contents

To edit the contents of a variable in a monitor, do one of the following:

v Select the line containing the variable, click the right mouse button, and select
Edit from the popup menu

v Double-click on the content of the variable

v Use the cursor keys or the mouse to highlight the line containing the variable and
press Enter.

Then enter a new value and press Enter. This value must be valid for the type of
variable.

Change the Contents of Storage, Variables, and Registers

View a Location in Storage

To view a particular location in storage (for example, the storage used by a
variable), either select Options - Monitor expression from the Storage monitor, or
open a new Storage monitor from a Source window or the Session Control window,
and specify an expression to monitor. See the Reference section below for
information on what types of expressions the debugger supports.

C or C++: To view the storage for a class object or a variable, specify the address
of the object or variable name by preceding the name with an ampersand (&).

“C++ Expressions Supported” on page 474

“Change the Contents of Storage, Variables, and Registers” on page 463
“Add Expressions and Variables to a Monitor” on page 458
“Change the Representation of Storage” on page 462

View the Contents of Registers

You may want to view the contents of a single register, or of many registers at
once.

View Contents of a Single Register
If you only want to view the contents of a small number of registers, enter the
names of those registers as expressions in a Monitor Expression dialog and select
what monitor you want them to appear in. For example, if you want to monitor the
EAX register on an Intel machine, do the following:

1. From a Source window, select Monitors - Monitor expression from the menu
bar, or press the Ctrl+M accelerator key, to open a Monitor expression dialog.

2. Enter the register name as the expression (EAX)

3. Choose what monitor you want the expression to appear in. Do not choose the
storage monitor.

4. Click on the OK button or press Enter.

Chapter 14. Debug Local Applications 461

The register is displayed in the monitor you selected. Note that if the name of the
register corresponds to the name of a variable in your program, the variable may be
displayed instead of the register depending on the monitor you choose, the current
scope, and the scope of the variable.

View Contents of Many Registers at Once
If you want to open a monitor showing the contents of all or most processor
registers of the stopped thread, do the following:

1. Raise a Source window or the Session Control window.

2. Select Monitors - Registers or click on the pushbutton.

3. A Registers Monitor displays the contents of processor registers for the current
thread.

“Add Expressions and Variables to a Monitor” on page 458
“Change the Contents of Registers” on page 463
“Change Which Registers Are Displayed” on page 464
“Change the Layout of the Registers Monitor” on page 464

“Debugger Monitors” on page 457

View the Contents of the Call Stack

You can view information for the active functions on a thread’s stack. A function is
on the stack from the time it is called until after it returns.

To view stack information for functions, open or raise a Call Stack window in one of
the following ways:

v If a Call Stack window is already open, access it from the Windows menu of any
debugger window that contains this menu.

v Select Monitors - Call stack from a Source or Session Control window, or press
Ctrl+K , or click on the toolbar button.

“Debugger Windows” on page 440

Change the Representation of Storage

To change the representation of storage in the Storage monitor, do one of the
following:

v Select a representation from Options - Display style

v Click on the appropriate display style toolbar button: .

The change in representation does not affect any other open storage monitors, only
the one in which you make the change.

“Change the Contents of Storage, Variables, and Registers” on page 463
“Change the Storage Monitor Address Range” on page 459

462 Application Development Tools Guide

Change the Contents of Storage, Variables, and Registers

To change the contents of storage in a Storage monitor, do the following:

1. Raise or open a Storage monitor (select Storage monitor from the Monitors
menu of the Source or Session Control windows, or press Ctrl+G, or click on
the button).

2. If the address whose contents you want to change is not shown, use the
PageUp and PageDown keys to scroll to that address, or click on an entry in
the address column and enter a new address.

3. Double-click on an entry in a data column in the monitor (or click on the entry
and press Enter).

4. Type a value that is valid for the shown representation .

5. Press Enter.

To change the contents of a variable in a Local Variables, Program, Private, or
Popup monitor, or a register in the Registers monitor, do the following:

1. Raise or open the appropriate monitor (from the Monitors menu of a Source
window or the Session Control window, or using the appropriate accelerator key
or toolbar button).

2. Double-click on the entry field that shows the contents of the variable or register
you want to change.

3. Type a value that is valid for the current representation of that variable or
register.

4. Press Enter.

“Values that Are Valid for the Current Representation” on page 479

Change the Contents of Registers

Caution: Changing the contents of registers that affect program flow (for example,
registers used to manipulate the stack) can destabilize the program you are
debugging and may cause it to terminate abnormally.

You can change the contents of most registers in the Registers monitor as follows:

1. Either double-click on the current value of the register or move the cursor to that
register and press Enter.

2. Type in a new value and press Enter.

If updating of the register is allowed and your entry can be evaluated to a value the
register supports, the register is updated.

Note: On Intel platforms, you cannot change the contents of the CS (code
segment) register, and you cannot enter values into floating-point registers when
they display “Not used” instead of a value.

For flags, you can only enter values within the range supported by the flag, or
expressions that evaluate within such a range. Flags usually only have two valid
values: 0 and 1.

Chapter 14. Debug Local Applications 463

Valid Entries for Registers
“C++ Expressions Supported” on page 474

Change Which Registers Are Displayed

You can choose what groups of registers are displayed in the Registers monitor by
selecting Options - Display style . In the dialog that appears, select what items you
want to display.

“Debugger Monitors” on page 457

“Change the Contents of Registers” on page 463
“Change the Layout of the Registers Monitor”
“Display Floating-Point Register Contents”
“View the Contents of Registers” on page 461

“Registers Monitor Split Bars” on page 465

Display Floating-Point Register Contents

If you are debugging an Intel-based application and you step over a source line
containing floating-point arithmetic, you may find that the values of floating-point
registers in the Registers monitor are not displayed. Instead, “Not used” appears
beside each register. In fact, one or more of these registers is being used during
execution of the source line, but once you have stepped over the source line, the
register’s contents have been written to a variable and the register is no longer in
use. If you want to step over a floating-point statement and see a floating-point
register’s value before it is written to the variable, do the following:

1. Change from source view to mixed view (select View - Mixed).

2. Locate the source line containing the floating-point instructions. Look for a
disassembly instruction between this source line and the next that contains a
floating-point store instruction (for example FSTP), and place a breakpoint on
that line.

3. Change back to source view.

4. Now when you step over the source line containing the floating-point arithmetic,
you must issue two Step Over commands for the line instead of one (because
the first Step Over command stops at the breakpoint you set in the mixed view).
After the second Step Over command, you should see the value of the floating
point register as it was before it was stored.

“Change the Contents of Registers” on page 463
“Change the Layout of the Registers Monitor”
“Change Which Registers Are Displayed”

Change the Layout of the Registers Monitor

The layout of the Registers monitor can be changed in a number of ways. You can:

v Change the amount of space given to each group of registers using the
Registers monitor split bars

464 Application Development Tools Guide

v Change the following settings from the Options - Display style menu choice:

– Which groups of registers are displayed

– Whether register groups are displayed in columns or rows

– Whether group titles are displayed

– Whether split bar positions between groups are saved

“Change the Contents of Registers” on page 463
“Change Which Registers Are Displayed” on page 464

“Registers Monitor Split Bars”

Registers Monitor Split Bars

You can change the amount of space given to each group of registers in the
Registers monitor, as follows:

1. Place the pointer on the split bar (a division between two panes of the window).
The pointer’s shape changes to an icon with two arrows.

2. Click and hold.

3. Drag the mouse up or down (for register groups displayed in rows) or left or
right (for register groups displayed in columns) until you reach the desired size
for the pane.

4. Release the mouse button.

To save the position of the split bars, select Options - Display style and click on
the Save Split Bar Positions check box.

Debug Heap Use

If you suspect problems with heap use in your program, you can pinpoint likely
causes of heap errors by following these steps:

1. Compile your program with the /Tm option so that the debug versions of
memory management functions are used.

2. Run your program. Any errors detected by the debug memory management
programs are written to standard error, with the source file and line number
where the error was detected, and the source file and line number where the
heap was last known to be uncorrupted. (You can also run your program within
the debugger; in this case, the errors are shown in a popup window instead of
on standard error.)

3. To further isolate a heap corruption error, debug the program, set a breakpoint
at the source file and line number where the heap was last known to be
uncorrupted, and run the program.

4. When execution stops at the breakpoint, enable the debugger’s own heap
checking functions by enabling Run - Check heap when stopping from a
Source window or the Session Control window.

5. Step through your code, or set frequent breakpoints and run it. Each time the
debugger stops, it causes your application to call the heap checking functions.
When heap corruption is detected, an error message displays in a popup menu.

6. Each time you see a heap error message and are unable to pinpoint the exact
location of the error, note the two line numbers provided, restart the program,

Chapter 14. Debug Local Applications 465

set a breakpoint at the line where the heap was last found to be uncorrupted,
and use step commands or breakpoints and the Run command to further
narrow down the location of the error.

“Heap Errors”

Heap Errors

Heap errors can occur when your code inadvertently overwrites control information
that the memory management functions use to control heap usage. Each block of
allocated storage within a heap consists of a data area, which starts at the address
returned by the allocating function, as well as a control area adjacent to the data
area, which is needed by the memory management functions to free the storage
properly when you deallocate the storage. If you overwrite a control structure in the
heap (for example, by writing to elements outside the allocated bounds of an array,
or by copying a string into too small a block of allocated storage), the control
information is corrupted and may cause incorrect program behavior even if the data
areas of other allocated blocks are not overwritten.

You should consider the following points when you are trying to locate heap errors:

Finding heap errors outside the debugger
To detect heap errors, you can compile your program to use the heap-checking
versions of memory management functions (use the /Tm option). When you run a
program compiled with this option, each call to a memory management function
causes a heap check to be performed on the default heap. This heap check
involves checking the control structures for each allocated block of storage within
the heap, and ensuring that none were overwritten. If an error is encountered, the
program terminates and information is written to standard error including the
address where heap corruption occurred, the source file and line number at which a
valid heap state was last detected, and the source file and line number at which the
memory error was detected.

Heap checking for default and other heaps
Heap checking is only enabled for the default heap used by each executable. If the
debug versions of the memory management functions do not report heap corruption
and you still suspect a problem, you may be using additional heaps and corrupting
them. You can debug usage of nondefault heaps by adding calls to the _uheapchk
C Library function to your source code. See your compiler documentation for more
information.

Pinpointing heap errors within the debugger
You can pinpoint the cause of a heap error from within the debugger, provided the
heap causing the error is known to be the default heap, by continually narrowing
down the gap between the last line at which the heap was valid, and the first line at
which corruption occurred. From within the Source window, use a combination of
run commands, step commands, line and function breakpoints, and the Check
heap when stopping setting on the Run menu, to narrow the scope of your
search.

Check heap when stopping may expose other coding errors
For semantically incorrect programs, Check heap when stopping is intrusive in
that it may cause different results where a program is incorrectly accessing data on
the stack. This is because Check heap when stopping causes the process and

466 Application Development Tools Guide

thread being debugged to call a heap check function each time execution stops,
and this heap check function affects the safe area of the stack by overwriting part of
that area with its stack frame. For example, if a called function returns the address
of a local variable, that local variable’s contents will be accessible from the calling
function, and will not change, as long as the stack frame used by the called function
is not overwritten by a subsequent call. However, if you issue a Step return
command from the called function while Check heap when stopping is enabled,
the heap checking function is called immediately on return from the called function,
and the storage pointed to by the returned pointer may overwritten by the stack
frame of the heap checking function.

Check heap when stopping affects performance
Heap checking within the debugger has a high overhead cost for step commands,
because the heap is checked after each step. If you are stepping through large
sections of code, or frequently stopping at breakpoints, and you find debug
performance too slow, try turning on Check heap when stopping only in those
areas you suspect are causing heap errors.

Notes on Check Heap when Stopping

v For the Check heap when stopping choice to work, you have to compile your
application using the VisualAge C++ /Tm+compiler option.

v If you enable the Check heap when stopping choice and run your application to
termination, and the application contains a heap error, the heap check is not
made. To check the heap just before termination, set a breakpoint on the last line
of your application.

“Debug Heap Use” on page 465

Debug Optimized Code

Problems that only surface during optimization are often an indication of logic errors
that are exposed by optimization, for example using a variable that has not been
initialized. If you encounter an error in your program that only occurs in the
optimized version, you can usually find the cause of the error using a binary search
technique to find the failing module:

1. Begin by optimizing half the modules and see if the error persists.

2. After each change in the number of optimized modules, if the error persists,
optimize fewer modules; if the error goes away, optimize more modules.
Eventually you will have narrowed the error down to a single module or a small
number of modules.

3. Debug the failing module. If possible, turn off the instruction scheduling
optimizations for that module. Look for problems such as reading from a
variable before it has been written to, and pointers or array indices exceeding
the bounds of storage allocated for the pointer or array.

“Notes on Debugging Optimized Code” on page 468

Chapter 14. Debug Local Applications 467

Notes on Debugging Optimized Code

When you debug optimized code, information in debugger panes may lead you to
suspect logic problems that do not actually exist. You should bear in mind the points
below.

Values in some monitors may not be current
Do not rely on monitors such as the Local Variables or Popup monitors to show the
current values of variables. Numeric and char values may be kept in processor
registers, as may pointers to other types of variables such as strings and class
objects. In the optimized program, these values and pointers are not always written
out to memory; in some cases, they may be discarded because they are not
needed.

Static and external variables are not always current
Static or external variables can be monitored at function entry and exit points.
Within an optimized function, their values may be optimized out of existence.

Register and Storage monitors are always current
The register and storage monitors are correct. Unlike monitors that show actual
variables, such as the Local Variables or Popup monitors, the Register and Storage
Monitors are always up-to-date as of the last time execution stopped.

Source statements may be optimized away
Use the disassembly view of your program to see whether source statements
whose result you were relying on have been optimized away (via dead code
elimination, where code that performs no useful work is removed). You may find, for
example, that an assignment to a variable in your source code does not result in
any disassembly code being produced; this may indicate that the variable’s value is
never used after the assignment.

“Debug Optimized Code” on page 467

Debugging Threads

Note: The sections on debugging threads are intended primarily for users with
limited knowledge of developing multithreaded programs, in particular, those whose
programming experience is mainly with single-threaded environments such as
Windows 3.1.

Multithreaded programs may behave differently in the debugger than they do when
run normally. Because debugger features such as single-stepping and certain kinds
of breakpoints involve processing overhead, running a multithreaded program within
the debugger may affect the timing of thread switches.If you are experiencing
problems, you can use the Threads pane of the Session Control window to enable
or disable threads so that you can debug problems related to thread timing.

The main problems you are likely to encounter in debugging multithreaded
programs are timing and deadlock problems. You should not assume that a timing
or deadlock problem that seems only to occur when your program is running within
the debugger will never occur outside of the debugger. It is far more likely that the
processing overhead of the debugger is merely increasing the frequency with which
coding problems lead to deadlocks or thread timing errors.

468 Application Development Tools Guide

“Critical Sections”
“Deadlocks and Timing Problems” on page 470
“Must Complete Sections” on page 471
“Race Conditions” on page 471
“Threads and C++ Class Members” on page 472
“Threads and Load Occurrence Breakpoints” on page 472
“Threads and Source Language Statements” on page 473
“Windowing System Lockups” on page 473

Critical Sections

Windows supports the use of critical sections to mark particular sections of code
that should never be timesliced out within a multithreaded application. The purpose
of these critical sections is to prevent problems such as loss of data integrity (where
two threads are simultaneously reading and then writing to the same variable or
file). You should avoid using critical sections except under very limited
circumstances. Critical sections can cause deadlocks and major timing problems,
because:

v They block every thread within your application, other than the thread containing
the critical section, from doing anything. This prevents an efficient distribution of
system resources to all threads.

v If you call a function within a critical section (explicitly through a call, or implicitly
by using the C++ new , delete , or user-defined operators for a variable of class
type, such as an IString object) the called function may request a semaphore that
is already locked. This thread then locks, but because it is declared as a critical
section, the thread that owns the semaphore can never be timesliced back in to
release the semaphore. For example:
Thread 1 Thread 2

| +_______|
new-+ | start critical section

| | |
request sem A | new-+

| | |
+_________+ request sem A
| |

release sem A release sem A
| |

____+ +-+
end critical section

In this example, Thread 1 calls the new operator, which requests semaphore A.
The operating system timeslices it out while it owns semaphore A. Thread 2 gets
timesliced in, declares a critical section, and calls new , which requests the same
semaphore A (this semaphore is an operating system semaphore used to prevent
two threads from simultaneously allocating storage). Because semaphore A is
already owned by thread 1, thread 2 waits for the semaphore indefinitely. Thread
1 can never be timesliced back in to release semaphore A, because thread 2 is
in a critical section; and thread 2 can never exit its critical section, because it is
frozen waiting for semaphore A.

Semaphores and critical sections provide some of the same functionality, but using
only semaphores is a better programming practice and leads to more threadsafe
programs. Avoid the use of critical sections in your programs wherever possible.

“Debugging Threads” on page 468

Chapter 14. Debug Local Applications 469

Deadlocks and Timing Problems

Thread deadlocks can occur in a multithreaded program running inside the
debugger, even though they never seem to occur when the program runs outside
the debugger. Consider a program with two threads running, in which the threads
both request two mutex semaphores but in different orders:
THREAD 1 THREAD 2
Lots of code A bit of code, then request semaphore Y
Request semaphore X Request semaphore X
Lots of Code Release semaphores Y and X
Requests semaphore Y
Some code
Release sempahores X and Y

These two threads may deadlock. However, because the operating system may
timeslice your program and the threads within it in an unpredictable fashion, such
deadlocks may not become obvious until you try to debug the program. In the
example, you may find that when run outside the debugger, Thread 2 can request
and release both semaphores before Thread 1 has even finished its large initial
code section; both semaphores may already be released by Thread 2 by the time
they are requested by Thread 1. However, within the debugger, if you are setting
breakpoints, stepping through code, or otherwise slowing down one thread
compared to another, you may wind up finding the requests for the semaphores
clashing and thereby blocking each other. For example, if you step through Thread
2, its short initial code section may take longer to execute than the long initial code
section of Thread 1:
Thread 1: Lots of code

Thread 2: A bit of code
.

.
.

.
Thread 1: Lots of code completes

Thread 2: A bit of code completes
Thread 1: Request semaphore X (okay)

Thread 2: Request semaphore Y (okay)
Thread 1: Lots of code, then request semaphore Y (waits)

Thread 2: Request semaphore X (deadlock)

Because each thread is requesting a semaphore owned by the other thread, the
two threads lock up.

To avoid this kind of lockup, always request a group of semaphores in the same
order from every thread that uses them. It is also a good idea to release them in
the reverse order from the request order. For example:
THREAD 1 THREAD 2
Lots of code A bit of code
Request semaphore X Request semaphore X (waits)
Lots of code (still waiting)
Request semaphore Y (still waiting)
Release semaphore Y (still waiting)
Release semaphore X (obtains semaphore X)

Request semaphore Y (okay)
... ...

Regardless of which thread completes first, there is no deadlock because whichever
thread requests X last will be forced to wait until X is freed, and X will not be freed
until the other thread no longer requires either semaphore.

470 Application Development Tools Guide

The debugger may expose semaphore-related deadlocks that do not normally
occur, because of the following factors:

v When you step through a thread or run to a breakpoint within that thread, you
affect the point at which thread swapping occurs

v The debugger needs to be informed of thread starting and stopping, exceptions,
module loads, and so on, and its mere presence affects the dynamics of the
operating system.

“Debugging Threads” on page 468

Must Complete Sections

When a program calls exit() , all threads in that program are normally terminated at
their current execution point. If a thread holds a mutex semaphore, that semaphore
changes state to “Owner died”. Any code that subseqently tries to request that
semaphore will fail.

“Debugging Threads” on page 468

Race Conditions

Note: The examples below assume the program in question was written in C++.

A race condition can occur in a multithreaded program when you do not use
semaphores. A race condition is a situation where two threads are “racing” towards
use of the same variable or some other data structure. For example, suppose
Thread 1 contains the statement i=foo(i); and Thread 2 contains the statement
a=b=i;. If you do not use a semaphore to block one thread, timeslicing could, in
theory, result in either of the following sequences of events, among others:
Sequence 1:
Thread 2: Load value of i into register
Thread 1: Load value of i into register
Thread 2: Store value of i in register to b
Thread 1: Call foo(i) using value of i in register
Thread 2: Store value of i in register to a
Thread 1: Store result of foo(i) to i
Sequence 2:
Thread 1: Load value of i into register
Thread 1: Call foo(i) using value of i in register
Thread 1: Store result of foo(i) to i
Thread 2: Load value of i into register
Thread 2: Store value of i in register to b
Thread 2: Store value of i in register to a

If i is an integer with a value of 3 before the sequences begin, and foo(x) is an
integer function that returns 3*x+1, the variables at the end of sequence 1 will be:
a=1, b=1, i=10; the variables at the end of sequence 2 will be: a=10, b=10, i=10.

A race condition can occur even when you do use semaphores. In such a case, it
may be an indication of incorrect program logic. Suppose, for example, that two
threads both assign a value to a variable, and that a third thread reads the value of
that variable:
Thread 1: Thread 2: Thread 3:
i=3; i=4; j=i;

Chapter 14. Debug Local Applications 471

Even if you request a semaphore before each assignment to i in threads 1 and 2,
and release the semaphore after the assignment, there is no way of predicting
whether j will be assigned the value 3 or 4 (or even the value of i before Threads 1
and 2 assigned to it). In this example, the race condition is simply poor
programming logic.

You may want to use a race condition to determine which of two or more threads
completed a given task first. For example, if the statement in Thread 3 was:
if (i==3) cout << “Thread 1 completed first” << endl;
else cout << “Thread 2 completed first” << endl;

and you had protected each assignment to i with a semaphore, the statement in
Thread 3 would be reliable.

Remember to use semaphores not only on pointers to objects, but on the objects
themselves. If two pointers point to the same object and you only use semaphores
to lock the pointers, two different threads using different pointers can access the
same object simultaneously.

You can use a Storage change breakpoint to find race conditions such as those
shown above. By placing a Storage change breakpoint on the address of a variable,
you can find all statements that change the variable and make note of the order in
which different threads change it.

Race conditions are another example of a timing problem that may only occur when
you are debugging your program, because the debugger may affect the order in
which threads are accessing shared data.

“Breakpoints” on page 446
“Debugging Threads” on page 468

Threads and C++ Class Members

If you use the same C++ class in two different threads, you may have thread
problems such as the following:

v If the class contains static variables, you may have re-entrancy problems.

v If you are using the same instance from two separate threads, the instance may
be accessed by both threads at once, resulting in a loss of data integrity.

In both cases you need re-entrancy protection. For example, use a semaphore
whenever you access the static variables or the common class instance.

“Debugging Threads” on page 468

Threads and Load Occurrence Breakpoints

If you set a load occurrence breakpoint for a DLL that has not been loaded, you
may find that, in a multithreaded program, the DLL never triggers the breakpoint,
even though it must have been loaded by a call to a function within it. The usual
cause of a load occurrence breakpoint not triggering is that you associated the
breakpoint with a particular thread.

472 Application Development Tools Guide

To avoid this problem, choose “every” in the Optional Parameters group box in the
Load Occurrence Breakpoint window, to have the load occurrence breakpoint trigger
regardless of which thread first calls a function within it. The debugger tells you
which thread triggered the load.

For all breakpoint types, you can specify a breakpoint at the same location but with
different conditions for different threads. For example, you can set a breakpoint that
is triggered in thread 1 when the variable a has the value 3, and a breakpoint at the
same location triggered in thread 2 when the variable a has the value 4. Conditions
on thread-specific breakpoints can be useful for determining whether you have
thread data integrity problems.

“Debugging Threads” on page 468

Threads and Source Language Statements

It is possible for a single source-language statement to be interrupted in
mid-statement by another thread. The statement: i++; might involve three machine
language instructions: loading a variable from storage into a register (if it is not
already in a register); incrementing the register contents; and storing the result back
to memory. If i is a double , or a pointer to struct , for example, the increment itself
may be broken up into several machine language instructions. The thread may be
interrupted at any instruction’s completion point by another thread that also uses or
changes the same variable, if you have not used a semaphore to lock during the
increment.

Even if the machine code for a simple statement is a single instruction, you should
avoid relying on this fact to provide data integrity. An increment of an integer
variable requires a load, increment, and store; the load may have occurred on an
earlier use of the variable within the same thread, and the store may occur some
time later after another use of the variable. Thus the increment statement may only
have a single instruction associated with it in the assembly listing, but another
thread’s modifying that variable between the load and increment, or the increment
and store, affects the data integrity of the variable.

“Debugging Threads” on page 468

Windowing System Lockups

Multithreaded programs have a greater tendency than single-thread programs to
cause your windowing system to lock up, because of such problems as semaphore
deadlocks and live threads waiting for results from threads that have inadvertently
died. When the debugging of a multithreaded program hangs your windowing
system, you have no way of continuing to debug the faulty program, because the
debugger uses the windowing system as well.

To solve such problems, you can use the debugger’s remote debug feature. Install
the debugger on both machines, start a remote debug server session on the
machine you want to run the program on, and run the debugger from the other
machine. If your program hangs the windowing system on its own machine (the
remote machine), you can still step through it because the windowing system on
your local machine is still operational.

Chapter 14. Debug Local Applications 473

“Debugging Threads” on page 468
“Remote Debugging” on page 442

Troubleshooting and Limitations

C++ Expressions Supported

The expression language that is supported by the debugger for C++ programs is a
subset of the C/C++ language. You can only monitor expressions with:

v A “C++ Supported Expression Operands”

v A “C++ Supported Expression Operators” on page 475

v A “C++ Supported Data Types” on page 476

C++ Supported Expression Operands

You can monitor an expression that uses the following types of operands only:

Operand
Definition

Variable
A variable used in your program.

Constant
The constant can be one of the following types:

v Fixed or floating-point constant within the ranges supported by the
system the debuggee is running on.

v A string constant, enclosed in double quotation marks (for example,
“mystring”)

v A character constant, enclosed in single quote marks (for example, ’x’)

Register
Any of the processor registers that can be displayed in the Registers
Monitor. In the case of conflicting names, program variable names take
precedence over register names. For conversions that are done
automatically when the registers display in mixed-mode expressions,
general-purpose registers are treated as unsigned arithmetic items with a
length appropriate to the register. For example, on Intel platforms EAX is
32-bits, AX is 16-bits, and AL is 8-bits.

If you monitor an enumerated variable, a comment appears to the right of the value.
If the value of the variable matches one of the enumerated types, the comment
contains the name of the first enumerated type that matches the value of the
variable. If the length of the enumerated name does not fit in the monitor, the
contents appear as an empty entry field.

The comment (empty or not) lets you distinguish between a valid enumerated value
and an invalid value. An invalid value does not have a comment to its right.

You cannot update an enumerated variable by entering an enumerated type. You
must enter a value or expression. If the value is a valid enumerated value, the
comment to the right of it is updated.

474 Application Development Tools Guide

Bit fields are supported for C/C++ compiled code only. You can display and update
bit fields, but you cannot use them in expressions. You cannot look at variables that
have been defined using the #define preprocessor directive.

C++ Supported Expression Operators

You can monitor an expression that uses the following operators only:

Operator
Coded as

Global scope resolution
::a

Class or namespace scope resolution
a::b

Subscripting
a[b]

Member selection
a.b or a - b

Size sizeof a or sizeof (type)

Logical not
!a

Ones complement
xa

Unary minus
-a

Unary plus
+a

Dereference
*a

Type cast
(type) a

Multiply
a * b

Divide a / b

Modulo
a % b

Add a + b

Subtract
a - b

Left shift
a << b

Right shift
a >> b

Less than
a < b

Greater than
a > b

Chapter 14. Debug Local Applications 475

Less than or equal to
a <= b

Greater than or equal to
a > = b

Equal a == b

Not equal
a != b

Bitwise AND
a & b

Bitwise OR
a | b

Bitwise exclusive OR
a | b

Logical AND
a && b

Logical OR
a || b

C++ Supported Data Types

You can monitor an expression that includes a cast to any of the following types:

v 8-bit signed byte

v 8-bit unsigned byte

v 16-bit signed integer

v 16-bit unsigned integer

v 32-bit signed integer

v 32-bit unsigned integer

v 64-bit signed integer

v 64-bit unsigned integer

v Single-precision floating-point floating-point

v Double-precision floating-point floating-point

v Pointers

v User-defined types

These data types include int , short , char and so on.

Limitations when Debugging Visual C++ Programs

Note: This section applies only to programs being debugged on Windows NT.

You can debug C and C++ programs compiled with the Microsoft Visual C++
compiler, provided you have compiled and linked your program with the appropriate
options. The following limitations apply when debugging such programs:

Enumerated types : Enumeration member name information for enumerated types
in C programs compiled with Visual C++ is not shown in monitors that display
variable contents, such as the Local Variables monitor. This information is available
for C++ programs, however. The following shows a code fragment with enumerated
types, and the values displayed in the Local Variables monitor of the debugger:

476 Application Development Tools Guide

typedef enum { One=1, Two, Three} TypeX;
TypeX a=One;
TypeX b=Two;
TypeX c=Three;

If the program is compiled a s a C program with Visual C++:
a: 1
b: 2
c: 3

If the program is compiled a s a C or C++ program with VisualAge C++, or a
C++ program with Visual C++
a: 1 /* One */
b: 2 /* Two */
c: 3 /* Three */

Constants : A statement such as const int i = 42; in a Visual C++ program does
not generate any debug information for the variable i. Therefore the debugger does
not display any value for it. The IBM VisualAge C++ compiler does generate
information for this symbol.

Namespaces : You cannot debug Visual C++ namespaces because the Visual C++
compiler does not generate the necessary debug information for namespaces in the
executable.

“Debug a Microsoft Visual C++ Program” on page 435

Interpreted Java Expressions Supported

Only expressions using the dot (.) operator are supported. The dot operator is used
to access instance and static variables within objects and classes.

Limitations When Debugging Interpreted Java

Limitations exist in the JDK that may cause problems when debugging your
interpreted Java classes. Be aware of the following limitations and problems when
debugging:

v The Java debugger does not accept input from stdin. You may want to replace
use of stdin with a dialog box.

v System.out may not print Chinese, Korean, or Japanese characters correctly
when run under debugger control.

v Stepping behavior may be erratic when stepping into constructors, or when
stepping into or over SystemLoad library functions.

v You can not suspend, start, or stop threads.

v The debugger cannot halt an applet or application that has all of its thread
blocked.

v You can not modify the contents of monitored variables.

v Breakpoints set on static initializers or static blocks will be ignored.

v Breakpoints set on try statements are ignored.

v Execution will not stop inside catch blocks for thrown errors.

v The debugger will not notify the user when classes extending from
java.lang.Error are thrown. The debugger will notify the user when classes
extending from java.lang.Exception are thrown.

Chapter 14. Debug Local Applications 477

v When debugging JAR files, the source code for classes contained in a JAR file
must available outside of the JAR file.

v After exiting a program block, variables now out of scope may still be shown in a
monitor.

v Debug-agent error messages may appear intermittently while debugging your
classes.

v If you step into a class that has not been registered with the debugger, you may
receive a “Cannot find source for null” message. If this happens, issue a step
return command to continue debugging. To avoid this problem, register the
appropriate class source file or package containing the class source with the
debugger before you start debugging.

v When debugging remotely, communication between the debugger and the
program being debugged may be terminated prematurely by the JVM.

Debugger Is Using a Different Executable Version

In the Source window, you may not be able to obtain a source view of an object if
the debugger is finding a different version of the executable than the one you
created with debug information. Set the Show module path check box in the
Options - Window Settings - Display Style dialog of the Session Control window,
so that full pathnames are displayed in the components pane of the Session Control
window. Check that the modules listed are in the correct location. If they are not,
you can exit the debugger, remove or rename the executable or DLL in the incorrect
path so that the one in the correct path is accessed, and start debugging again.
(For example, if there is an obsolete version of your executable in one directory,
and an updated version in another, and the obsolete directory’s entry in PATH
precedes that of the updated directory, remove the executable from the obsolete
directory.)

You can also specify an absolute path to the version you know was compiled with
debug information, when you invoke the debugger or in the Startup dialog. To bring
up the Startup dialog, choose File - Startup from within the Source or Session
Control window, or start the debugger with no parameters.

Debugger Cannot Find Source Code

The debugger searches the workstation for source files using a search path based
on environment variables, which you can set before starting your debug session. If
you anticipate frequently having your source files on the workstation, you should set
these environment variables.

In the Source window, you may not be able to obtain a source view of an object,
even though the code was compiled with debug information, if the debugger cannot
find the source files for it. When you start debugging such a program, or when
execution lands in a part of the program that was compiled with debug information
but the debugger cannot find the source code for it, the debugger normally opens a
Source Filename dialog in which you can enter the location and name of the
source file. If you choose Cancel when this dialog appears, the debugger displays
a disassembly view of the code, because it has no source code to display. If the
source file has been moved or renamed, select View - Change text file , and enter
the correct path and name in the Change text file dialog. (The debugger searches
the workstation for source files using a search path based on environment
variables, which you can set before starting your debug session. If you anticipate

478 Application Development Tools Guide

frequently having your source files in a different directory from your executables,
you should set these environment variables.)

If you are debugging remotely, the debugger searches for the files in the path you
specify, first on the workstation where the program being debugged is running, then
on the workstation where the debugger user interface is running.

“Environment Variables” on page 429

Values that Are Valid for the Current Representation

When you are entering a value in an entry field such as a register in the Registers
monitor, a column of storage in the Storage monitor, or the contents of a variable in
another monitor, the debugger checks that the value you enter is valid for the
current representation of that column or entry field.

A value is valid for the current representation if it contains only the characters used
for that representation, and does not exceed the length of the variable or register
involved. For example, if you want to change the contents of storage, and the
Content style setting for a particular Storage monitor is 32-bit integer, the value you
enter must be a valid 32-bit integer, not a floating-point value or other value. Or, if
you want to change the contents of a character string and the current
representation is a text string, you must enter a new string in double quotes, and
the length of the string must not exceed the declared array size.

“C++ Expressions Supported” on page 474

“Change the Contents of Storage, Variables, and Registers” on page 463

Valid Addresses and Expressions

Here are some examples of addresses or expressions you can enter in the
Addresses or expression s field of the Set Storage Change dialog:

MyVariable (C++)
The address pointed to by MyVariable, if such a variable exists in your
program, and if its value is a valid storage address (for example, if the
variable is a pointer to another variable or to an offset within an array).

&MyVariable (C++)
The storage of the variable MyVariable.

A1FCC
The hex address A1FCC, unless you have a variable declared as A1FCC,
in which case it is treated the same as MyVariable above.

0xA1FCC
The hex address A1FCC.

RegisterName
The name of a processor register on the system the debuggee is running
on. If the expression evaluates to a processor register, that register’s
contents are used in place of the register name.

Chapter 14. Debug Local Applications 479

“C++ Expressions Supported” on page 474

Right Mouse Button Behavior

The behavior of the right mouse button depends on the Mouse button 2 behavior
group box in the Debugger properties dialog group box.

One of three possible events occur when clicking the right mouse button:

1. Display a popup menu, where one is available; otherwise do nothing.

2. Perform a step over command.

3. Display a popup menu, when the pointer is over certain text (for example, a
variable or a line number in the prefix area), and perform a step over command
when the pointer is over white space or over text for which no popup menu is
available.

C++ example: If Popup menus and step in white space is checked, and you
click the right mouse button on the C++ source line int myVar=18;, a popup menu
appears if the pointer is over int, myVar, or 18, and a step command is performed if
the pointer is on white space or the = or ; symbols.

“Change Right Mouse Button Behavior”

Change Right Mouse Button Behavior

To change the behavior of the right mouse button, select Options - Debugger
settings - Debugger properties from the Source or Session Control window
menus.

Then, select one of the following check boxes to determine how the right mouse
button will behave in the Source window.

Popup menus
Displays a popup menu, where one is available; otherwise does nothing.

Step always
Performs a step over command.

Popup menus and step in white space
Displays a popup menu, when the pointer is over certain text (for example,
a variable or a line number in the prefix area), and performs a step over
command when the pointer is over white space or over text for which no
popup menu is available.

Right Mouse Button Behavior

480 Application Development Tools Guide

Chapter 15. Trace and Debug Distributed Applications

Object Level Trace

Object Level Trace (OLT) enables you to trace and debug multilingual, distributed
applications from a single workstation. OLT works in conjunction with enhanced
versions of the VisualAge for C++ and VisualAge for Java debuggers, and with a
remote Debugger Daemon, to enable you to debug server and client code
seamlessly from a single workstation.

Tracing Client-Server Communication
The trace facility consists of three components:

v The OLT Server records method calls from the client to distributed objects
residing on Component Broker (CB) application servers.

v The OLT Viewer receives method call information from the OLT Server, and
displays it in a graphical form (see the example below).

v The OLT Client Controller runs on the same workstation as the client
application. It enables the setting of parameters that allow the OLT Server and
Viewer to communicate with each other, and with the appropriate debugger.

The Trace
Each trace line displayed in the OLT Viewer represents either a CB server object, or
the client application that initiated a method call to an object. Object method calls
are shown as circles. If the method call is debuggable, the circle is filled-in. Start
and exit events are shown as squares. An arrow connects paired events, with the
arrowhead representing the direction of data flow.

Because distributed applications are often multi-threaded, it can be difficult to
determine the relationship between threads and events. The trace uses
“partial-order” representation to provide you with a clearer picture of this

© Copyright IBM Corp. 1997, 1998 481

relationship. Partial order concentrates on the causal relationships between events,
rather than their chronological order. In some cases, however, you may prefer a
“real-time” display. The OLT Viewer enables you to switch between partial-order and
real-time display (File - Preferences - OLT - Display).

You can use the trace to analyze performance, isolate communication errors, and
set debugger breakpoints.

Debugging Distributed Applications
A typical CB application is composed of three parts:

v Application code residing on a client

v Business objects residing on an application server

v Data objects that implement access to back-end data stores

Traditionally, this kind of distributed application was difficult to debug for two
reasons:

1. You had to run a local debugger on both the client and the server. This often
meant interacting with two or more machines in different locations.

2. If multiple clients were interacting with the server, it was difficult to know which
client was calling the server.

OLT solves the first problem by enabling you to debug both client and server code
seamlessly from one workstation, as if both client and server code resided on a
single machine. Secondly, the trace provides you with a clear picture of the
communication between client and server. Each debuggable event on the trace has
a pop-up menu from which you can set a debugger breakpoint.

(Note that OLT currently allows you to trace and debug client applications and
business objects, but not data access code.)

You can debug your application from the client machine, the server, your
development workstation, or any other machine on which the CBToolkit, or the
client-server software development kit (SDK) is installed. Before running your
application, start the OLT Debugger Daemon on the machine where you want to
debug. Tell the OLT Client Controller where the Debugger Daemon is located, then
rerun your client application. When it reaches the first breakpoint, OLT automatically
launches the appropriate Java or C++ debugger on the designated workstation.

A Typical OLT Configuration
In the development stage, you typically run the OLT components and the debugger
from your client machine. If necessary, however, you can deploy these tools across
multiple hosts. This is especially useful when your application fails on a particular
machine. Using OLT, you can run the application on the problem machine while
tracing and debugging from your development workstation, as shown in the
following diagram:

482 Application Development Tools Guide

“Supported Platforms and Languages” on page 484
“Partial-order Display” on page 502
“Real-time Display” on page 503

“Trace a Distributed Application” on page 489

What’s New

The following changes have taken place in Object Level Trace since Release 1.3:

Performance Analysis
A new performance analysis feature has been added to the OLT Viewer. When
performance analysis is enabled (from File - Preferences - OLT Display), calls that
take more than 9 seconds are highlighted on the trace. This enables you to analyze
the performance of your application and isolate bottlenecks.

Default Monitoring Mode is “Trace Only”
Previously, the default mode for running OLT was “Trace and debug with prompt”. In
that mode, the debugger attached immediately to your running process, and OLT
opened a debugger window when it encountered the first debuggable event.
Because the debugger uses extra system resources, your results will be more
efficient if you produce a trace first, set breakpoints on the trace, then run the
application a second time in “Trace and debug with prompt” mode. For this reason,
the default monitoring mode in the Client Controller has been changed to “Trace
Only”.

Distributed Debugging
The CB Toolkit includes enhanced versions of the VisualAge for C++ and VisualAge
for Java debuggers. You can use these debuggers in the traditional way, to test
local applications, or you can run them in conjunction with OLT, to debug distributed
applications. The Component Broker debugger includes the following
enhancements:

v Remote debugging

v Local source capability (source code can reside on the debugger back-end or
front-end workstation)

v Support for Java business objects

v Unhandled exceptions support

v AIX support

Chapter 15. Trace and Debug Distributed Applications 483

v Deep-step debugging

v Codeview 5 support

v Debug -on-demand capability

Usability Improvements in the OLT Viewer
The following improvements have been made to the “look and feel” of the OLT
Viewer:

v Toolbar buttons have been added to provide easy access to common functions.

v A pop-up menu is now available from the selected event. From the pop-up menu,
you can tag the selected event, or add it to the breakpoint list.

v The horizontal scrolling mechanism has been replaced by a slide bar that
enables you to move quickly to any event on a particular trace, and toolbar
buttons have been added for bi-directional “far scrolling”.

v The “Home” and “End” keys now take you to the first or last event on a trace.

Supported Platforms and Languages

The following matrix shows the client-server configurations currently supported by
Object Level Trace. Several scenarios are included to guide you through using OLT
with the most common configurations:

Server (Business Objects):

NT NT AIX AIX OS/390 OS/390

VisualAge
for C++

BO

Java BO VisualAge
for C++

BO

Java BO VisualAge
for C++

BO

Java BO

NT Client:

ActiveX T TD X X X X

VisualAge
for C++

TD
(Scenario

1)

TD TD TD TD TD

Java TD
(Scenarios

2 & 3)

TD TD TD TD TD

AIX Client:

VisualAge
for C++

TD TD
TD

TD TD TD

Java TD TD TD TD TD TD

OS/390 Client:

VisualAge
for C++

TD TD TD
(Scenario

4)

TD TD TD

TD: Full tracing and debugging support
T: Trace only support
X: No support

Scenarios:

1. See “Debug a C++ Client and C++ BO in Step by Step Mode - Scenario” on
page 518

2. See “Trace and Debug a Java Client and C++ BO - Scenario” on page 512

484 Application Development Tools Guide

3. See “Debug a Java Client from Startup - Scenario” on page 515

4. See “Trace and Debug a C++ Client and C++ BO on AIX - Scenario” on
page 522

Debugger Limitations:

1. The debugger interface runs only on Windows NT. You can debug AIX or
OS/390 applications by running the OLT Debugger Daemon on a Windows NT
machine, and indicating the location of that machine in the OLT Client
Controller. See the topic “Debug Business Objects” on page 495 for more
information.

2. You cannot trace or debug Java applets. You must first port your applet into a
Java application.

“Monitoring Modes”

“Prepare for Distributed Tracing and Debugging” on page 486

Monitoring Modes

Object Level Trace (OLT) combines a graphical tracing tool with a distributed
debugger. You can run the trace facility and the debugger separately or together;
you can choose from five monitoring modes in the OLT Client Controller:

No trace and debug
Use this mode when you do not want to trace or debug your application.

Trace only (default)
As your application runs, the OLT Server monitors events and sends corresponding
information to the Viewer. The Viewer creates a trace. Trace only mode has a
lesser impact on memory and performance than any of the debugging modes. Once
you have a trace to analyze, you can set breakpoints on selected events, then
change to a debugging mode before rerunning your application.

Debug only
This mode enables you to debug your application without producing a trace. In this
mode, the debugger steps into every debuggable business object method without
first prompting you.

Trace and debug with prompt
This mode provides access to both the trace facility and the distributed debugger. It
also gives you the greatest control over the debugging process. If Options - Step
by step debug mode is selected in the OLT Viewer (it is selected by default), OLT
stops your application at each debuggable method. At that point, you can choose to
step into or over the debuggable code. If you turn off Options - Step by step
debug mode , you can set your own breakpoints on the trace, by clicking on a
server event, and selecting Add to breakpoint list from its pop-up menu.When you
run your application again, the debugger opens on every occurrence of the server
event you selected.

Trace and debug without prompt
In this mode (unlike trace and debug with prompt), the debugger steps into every
debuggable business object method without first prompting you.

Chapter 15. Trace and Debug Distributed Applications 485

“Supported Platforms and Languages” on page 484

“Prepare for Distributed Tracing and Debugging”
“Debug a Distributed Application” on page 494

Prepare for Distributed Tracing and Debugging

Object Level Trace (OLT) enables you to monitor the flow of a distributed
application, and to seamlessly debug client and server code from a single
workstation. You must have the client Software Development Kit (SDK) installed on
the machine where you plan to trace or debug the client application.

In a typical OLT session, you first create a graphical trace of your application, then
set breakpoints and rerun your application in conjunction with the debugger.

To start an OLT session, follow these steps:

1. On your development workstation, “Compile Application Code with OLT Flags”.

2. Using System Manager, install your application (System Administration Guide).

3. Using System Manager, “Enable Remote Tracing and Debugging” on page 488.

4. Using OLT, “Trace a Distributed Application” on page 489.

“Supported Platforms and Languages” on page 484

“Debug a Distributed Application” on page 494
“OLT Scenarios” on page 509

Compile Application Code with OLT Flags

In order to trace or debug with OLT, you must compile your code using the
IVB_TRACE_DEBUG option. This option sets flags in the makefile, which adds
tracing and debugging statements to your server DLL. The flags are not set by
default because these statements significantly increase the size of your DLLs. Code
compiled with OLT flags will continue to run normally outside of OLT.

(For OS/390 applications, refer to the topic “Use OLT with OS/390” on page 492.)

Compile Server Code on Windows NT:
To recompile from a command line, complete the following steps:

1. Enter set IVB_TRACE_DEBUG=1

2. Enter nmake -f yourfile.mak clean

3. Enter nmake -f yourfile.mak all

To recompile your code in Object Builder, complete the following steps:

1. From the tree view, select the Build Configuration folder with the right mouse
button.

2. From the pop-up menu, select Add Server DLL . The Server DLL wizard opens.

486 Application Development Tools Guide

3. On the Name and Options page , in the MAKE Options field, type
IVB_TRACE_DEBUG=1.

4. Click Finish .

5. Click the Build Configuration folder with the right mouse button.

6. From the pop-up menu, select Generate - All - All Targets (or specify C++ or
Java targets).

Compile Server Code on AIX:
To recompile from a command line, complete the following steps

1. For tracing, edit the obadll.mk file to remove the comment marks from the
following lines:

CONST_CC_FLAGS_TRACE = -DCBS_TRACE_DEBUG
CONST_LD_FLAGS_TRACE = -livbtr10

Add comment marks to the following lines:

CONST_CC_FLAGS_TRACE =
CONST_LD_FLAGS_TRACE =

2. For debugging, remove the comment marks from the following lines:

#CONST_CC_FLAGS_DEBUG = -g
#CONST_LD_FLAGS_DEBUG =
#CONST_JAVAC_FLAGS_DEBUG = -g

Add comment marks to the following lines:
CONST_CC_FLAGS_DEBUG =
CONST_LD_FLAGS_DEBUG =
CONST_JAVAC_FLAGS_DEBUG =

Remove the comment marks from the following lines:

CONST_CC_FLAGS_OPTIMIZE = -qnooptimize
CONST_JAVAC_FLAGS_OPTIMIZE =

Add comment marks to the following lines:

CONST_CC_FLAGS_OPTIMIZE = -O -Q
CONST_JAVAC_FLAGS_OPTIMIZE = -O

3. Clean-up any previous make by deleting any *.o, *.so, and *.a files.

4. Enter make yourfile.mak

To recompile your code within Object Builder, complete the following steps:

1. From the tree view, select the Build Configuration folder with the right mouse
button.

2. From the pop-up menu, select Add Server DLL . The Server DLL wizard opens.

3. On the Name and Options page , type the following options:

v CPP Compiler Options : -DCBS_TRACE_DEBUG -g

v Link Options: -livbtr10

4. Click Finish .

5. Click the Build Configuration folder with the right mouse button.

6. From the pop-up menu, select Generate - All - All Targets (or specify C++ or
Java targets)

Compiling a Single Business Object
If you want to debug only one business object, you can save time by recompiling
only that object’s makefile. Before doing so, delete the DLL and OBJ files
associated with your object (for example, yourobjectS.dll, yourobjectMO_.obj, and

Chapter 15. Trace and Debug Distributed Applications 487

yourobjectBO_I.obj on Windows NT, or the equivalent *.o, *.so, and *.a files on AIX
), then recompile the object’s make file (yourobjectS.mak).

In Object Builder, select your business object file, and from its pop-up menu, select
Generate - All .

Compile Client Applications for Debugging
OLT enables you to debug server and client code seamlessly. If you intend to
debug a C++ client application, you must set IVB_TRACE_DEBUG=1 and
recompile with the debug option: -d. Make sure that Optimization is not enabled
(remove -O).

For Java applications, compile with the javac -g option.

Next, use System Manager to install your application.

Install an Application (System Administration Guide)
“Enable Remote Tracing and Debugging”

Enable Remote Tracing and Debugging

Before running Object Level Trace, use System Manager to enable remote tracing
and debugging, and change the request timeout value on both your server and
client images.

To enable remote tracing and debugging, follow these steps:

1. In System Manager, select View - User Level - Expert .

2. Open the Host Images folder and expand the host image that corresponds to
the name of your server.

3. Expand Server Images and select the server image where your application
resides. If the application server is already running, select Stop from the
server image’s pop-up menu before proceeding to the next step.

4. From the pop-up menu, select Edit . A notebook opens.

5. Select the Main tab.

6. Change the debug enabled attribute to yes .

7. For AIX servers only, change the Health monitor polling interval value
to 0.

8. Select the ORB tab.

9. Change the request timeout value to 0 (or a value that cannot be easily
reached when using the debugger, such as 1800 seconds).

10. Click OK to close the server image notebook.

11. If your client application resides on the same host as the server, or on a
different host with no System Manager installed, follow these steps:

a. Expand Client Style Images and select the host name that corresponds to
the machine where your client application resides.

b. From the client style image’s pop-up menu, select Edit . A notebook opens.

c. On the Main tab, change the debug enabled attribute to yes .

d. Select the ORB tab.

e. Change the request timeout value to 0 (or a value that cannot be easily
reached when using the debugger, such as 1800 seconds).

488 Application Development Tools Guide

f. Click OK to close the client image notebook.

If your client application resides on a different host and you have System
Manager installed on that host, complete steps a-f on the client machine.

You are now ready to start the Component Broker name and application servers. To
do so, follow these steps:

1. From the Host Images folder, select the host image that corresponds to the
name of your server machine.

2. From the host image’s pop-up menu, select Activate . This starts the
communication daemon and the name server. Monitor the Action Console
window for completion status.

3. When activation is complete, select your application server .

4. From the application server’s pop-up menu, select Run Immediate . Monitor the
Action Console window for completion status.

Note:
If your client-side code includes transaction timeout values, you must set these
values to 0 and recompile before continuing.

You are now ready to trace your application using OLT.

“Trace a Distributed Application”

Trace a Distributed Application

Before you trace or debug an application using OLT, you must first complete these
steps:

1. “Compile Application Code with OLT Flags” on page 486

2. Use System Manager to install your application (System Administration Guide).

3. Use System Manager to “Enable Remote Tracing and Debugging” on page 488.

To start an OLT session, and create a trace, follow these steps:

1. From the Windows NT or the AIX machine where you want to view the trace,
select Start - Programs - IBM Component Broker - Object Level Trace (OLT)
(or enter ivbtrsrv on a command line). The OLT Server process starts and the
Viewer opens.

Note: You may see a large number of messages in the OLT Server window. As
long as the OLT Server is running, you can ignore these messages, but do not
close the window until you have finished using OLT.

2. In the OLT Viewer, select Options - Online mode . An information message

appears showing the host name and TCP/IP port number where the OLT Server
is listening for events. If you plan to run your client application on a different
machine, you should make note of this information so that you can enter it in
the OLT Client Controller (next step). Click OK on the message dialog box.

3. On the machine where you intend to run the client application (that is, where the
ClientC.dll or ClientC.so is installed), select Start - Programs - IBM
Component Broker - OLT Client Controller (or enter ivbtrc on a command
line). A settings window opens.

Chapter 15. Trace and Debug Distributed Applications 489

If OLT is running on the same machine as your client application, you can
accept the default settings; if OLT is running on a different machine, you need to
tell the Client Controller where the OLT Server is running:

a. Select the OLT Server page.

b. Enter the host name where you started the OLT Server (this information was
provided to you when you selected Options - Online mode). In the event of
a port conflict, you would also change the port number.

4. Click Apply , then minimize the Client Controller window.

5. Start your client application.

C++ Client Application:

Start your C++ application from a command prompt.

Alternatively, if the OLT Viewer is running on your client machine, you can
start the application from the Viewer by selecting File - Start process . The

Start Process dialog box maintains a list of previously-run applications, making it
easier to run your application a second time.

Java Client Application:

At a command prompt, enter this command:

java
-Dcom.ibm.CORBA.BootstrapHost=labadie01.torolab.ibm.com
-Dcom.ibm.CORBA.EnableApplicationOLT=true
-Dcom.ibm.CORBA.ApplicationOLTHome=c:\winnt\profiles\labadie01
PolicyApp

where:
labadie01.torolab.ibm.com = your server application host name
c:\winnt\profiles\labadie01 = %userprofile% directory on Windows NT; $HOME
directory on AIX

As your client calls objects on the CB application server, or servers, trace lines and
event symbols should appear in the OLT Viewer. Once the application has finished
running, you can use the trace to set breakpoints on any debuggable server events
(debuggable events are represented by filled circles).

“Reading the Trace” on page 499

“Debug a Distributed Application” on page 494
“Navigate the Trace” on page 504
“OLT Scenarios” on page 509

“OLT Troubleshooting” on page 527

Start the OLT Server and Viewer on Separate Machines

When you start Object Level Trace (OLT) from the Windows NT Start menu, the
Server and Viewer are automatically started together. You would typically run these
components on the same machine, together with the debugger. The OLT Server,
however, requires a significant amount of memory. When tracing and debugging a
large application, you may want to run the Server apart from the Viewer, on a more
powerful machine.

490 Application Development Tools Guide

Before you can trace or debug an application using OLT, you must first complete
these steps:

1. “Compile Application Code with OLT Flags” on page 486.

2. Use System Manager to install your application (System Administration Guide).

3. Use System Manager to “Enable Remote Tracing and Debugging” on page 488.

To create a trace, with the OLT Server and Viewer running on separate machines,
follow these steps:

1. From the Windows NT or the AIX workstation where you want to view the
trace, select Start - Programs - IBM Component Broker - Object Level
Trace (OLT) (or type ivbtrsrv on a command line). The Server process starts
and the Viewer window opens.

2. In the OLT Viewer, select File - Preferences . A settings window opens.

3. Select OLT. In the OLT Server host name field, type the host name of the
machine on which you plan to start the OLT Server. Click OK.

4. In the OLT Viewer, select File - Exit . By closing the window, you save the OLT
Server location to an environment file (ivbtrenv.dat).

5. On the machine where you want to start the OLT Server, enter ivbtrsrv
-standalone. The OLT Server process starts in a shell window (or kornshell on
AIX).

6. On the machine where you want the OLT Viewer, enter ivbtrvwt. A Viewer
window opens.

7. In the OLT Viewer, select Options - Online mode . When an information

message appears, ensure that the host name provided is the host name of the
machine on which the OLT Server is running. Click OK.

8. On the machine where your client application is installed, select Start -
Programs - IBM Component Broker - OLT Client Controller (or type ivbtrc
on a command line). A settings window opens.

9. On the OLT Server page, type the host name of the machine on which you
started the OLT Server.

10. Click Apply , then minimize the Client Controller window.

11. Start your client application.

C++ Client Application:

Start your C++ application from a command prompt.

Alternatively, if the OLT Viewer is running on your client machine, you can
start the application from the Viewer by selecting File - Start process .

The Start Process dialog box maintains a list of previously-run applications,
making it easier to run your application a second time.

Java Client Application:

At a command prompt, enter this command:

java
-Dcom.ibm.CORBA.BootstrapHost=labadie01.torolab.ibm.com
-Dcom.ibm.CORBA.EnableApplicationOLT=true
-Dcom.ibm.CORBA.ApplicationOLTHome=c:\winnt\profiles\labadie01
PolicyApp

where:
labadie01.torolab.ibm.com = your server application host name
c:\winnt\profiles\labadie01 = %userprofile% directory on Windows NT; $HOME
directory on AIX

Chapter 15. Trace and Debug Distributed Applications 491

Note:
In step 3, you entered a remote location for the OLT Server. This information was
saved, in step 4, to your OLT environment file (ivbtrenv.dat). In future, the OLT
application looks for the OLT Server in the location you specified. If you decide to
run the OLT Server and Viewer together again on this machine (or to run the OLT
Server in a location other than the one specified above), you must edit the
ivbtrenv.dat file to point to the correct OLT Server location. The ivbtrenv.dat file is
located in your %userprofile% directory on Windows NT, and the $HOME directory
on AIX.

“Reading the Trace” on page 499

“Debug a Distributed Application” on page 494
“Navigate the Trace” on page 504
“OLT Scenarios” on page 509

“OLT Environment File” on page 525
“OLT Troubleshooting” on page 527

Use OLT with OS/390

To use Object Level Trace with an OS/390 server, follow these following steps:

1. Compile server application code (page 492) with OLT flags enabled

2. Using System Manager, install your application (System Administration Guide)

3. Prepare your 390 server environment for OLT (page 492)

4. Prepare your 390 or Windows NT client environment for OLT (page 492)

5. Trace your application (page 493)

Compile 390 code with OLT flags
To compile your server code for OLT, complete the following steps:

1. Set the OLT compile option:

export IVB_TRACE_DEBUG=1

2. Compile your business object with the compiler debugging option:

make -f yourfile.mak yourfilebo_I.o debug=1 COMPILEOPS=NOCSE

3. Compile all other files:

make -f yourfile.mak

Copy your source files to the x:\CBroker\bin directory on the Windows NT
workstation where you plan to debug.

Prepare the OS/390 Server Environment for OLT
Add the following environment variable to the server JCL:

IVB_DEBUG_ENABLED=1

Prepare a OS/390 Client Environment for OLT
Add the following environment variables to the client JCL (ensure that your
environment file contains “end of string characters” at the end of each line):

492 Application Development Tools Guide

v IVB_HOME=/.
(this can be any existing, writable directory)

v IVB_DEBUG_ENABLED=1

v data.ctrlport=5000

v data.ctrlhost=9.21.39.181
(replace 9.21.39.181 with the actual IP address of the workstation where you
plan to run the client controller)

Ensure that the OLT DLLs are accessible from your OS/390 server and client. That
is, ivbtr10i.dll and ivbtrmsg.dll must be authorized.

Prepare a Windows NT Client Environment for OLT
Use System Manager to enable remote tracing and debugging and change the
request timeout values on your client image. You must have completed a
Component Broker client installation on this workstation.

To enable remote tracing and debugging on the client image, follow these steps:

1. In System Manager, select View - User Level - Expert .

2. Open the Host Images folder, then expand the host image that corresponds to
your machine name.

3. Expand Client Style Images and select the host name that corresponds to the
machine where your client application resides.

4. From the client style image’s pop-up menu, select Edit . A notebook opens.

5. On the Main tab, change the debug enabled attribute to yes .

6. Select the ORB tab.

7. Change the request timeout value to 0 (or a value that cannot be easily
reached when using the debugger, such as 1800 seconds).

8. Click OK to close the client image notebook.

Note:
If your client-side code includes transaction timeout values, you must set these
values to 0 (or a value that cannot be easily reached when using the debugger) and
recompile before continuing.

You should now start your Component Broker name and application servers.

Trace a Distributed OS/390 Application
To start an OLT session, and create a trace, follow these steps:

1. From the Windows NT machine where you want to view the trace, select Start -
Programs - IBM Component Broker - Object Level Trace (OLT). The OLT
Server process starts and the Viewer opens.

2. In the OLT Viewer, select Options - Online mode . An information message
appears showing the host name and TCP/IP port number where the OLT Server
is listening for events. Click OK on the message dialog box.

3. If your client application is installed on OS/390 machine, start the OLT Client
Controller on the Windows NT workstation that you previously set as your
data.ctrlhost . If your client application is installed on Windows NT, start the
Client Controller on the client workstation:

a. Select Start - Programs - IBM Component Broker - OLT Client
Controller . A settings window opens.

Chapter 15. Trace and Debug Distributed Applications 493

b. If this is the same machine on which you started the OLT Server, accept the
default settings. If the OLT Server is running on a different machine, enter
the host name of that machine on the OLT Server page.

c. Click Apply , then minimize the Client Controller.

If your OS/390 client environment is properly configured for OLT, the file
ivbtr11j.properties is created in the directory defined by the IVB_HOME
variable, and is updated each time you make a change in the Client Controller.

4. Start your client application.

As your client calls objects on the CB application server, or servers, trace lines and
event symbols should appear in the OLT Viewer.

“Supported Platforms and Languages” on page 484

“OLT Scenarios” on page 509
“Set Breakpoints on the Trace”

Debug a Distributed Application

Object Level Trace (OLT) works in conjunction with an enhanced VisualAge
debugger. This debugger is capable of stepping seamlessly from server code to
client code, as if the server and client were a single application. Furthermore, the
debugger steps over any non-debuggable “glue” code found in CB server objects.

To debug using OLT, complete the following steps:

1. “Compile Application Code with OLT Flags” on page 486

2. Using System Manager, install your application (System Administration Guide).

3. Using System Manager, “Enable Remote Tracing and Debugging” on page 488.

4. Using OLT, “Trace a Distributed Application” on page 489.

5. Using the trace, “Set Breakpoints on the Trace”.

6. “Debug Business Objects” on page 495

Note:
When debugging Java classes, make sure that the source files for your classes are
accessible from the CLASSPATH environment variable. That is, if the source for
my.package.MyClass resides in x:\source\my\package\MyClass.java, you must add
x:\source to the CLASSPATH. Otherwise, the debugger cannot find the source and
you will have to enter the location manually.

“OLT Scenarios” on page 509
“Debug Client Applications from Startup” on page 497

Set Breakpoints on the Trace

Before setting breakpoints, ensure that Options - Step by step debug mode is
deselected. You can set a breakpoint on any debuggable server event. Debuggable

494 Application Development Tools Guide

events are represented on the trace by filled circles. You cannot set a breakpoint on
a “crash” event (represented by an unfilled circled with an X through it).

To set a breakpoint, follow these steps:

1. Select the filled circle that represents the method you want to debug.

2. From the circle’s pop-up menu, select Add to breakpoint list .

3. To view a list of your breakpoints, select Breakpoints - Create breakpoints .

Alternatively, you can manually enter breakpoint information using the Create
Breakpoints dialog box:

1. Select Breakpoints - Create breakpoints .

2. Enter the names of the object and method being called, and the host name of
the application server on which the object resides. To obtain this information,
move the mouse pointer over the event you want to debug. That event’s host,
object, and method names are shown on the second status line (the “current
event”) at the bottom of the OLT Viewer window.

When you have finished adding breakpoints, follow the steps to “Debug Business
Objects”.

“Disable or Re-enable Breakpoints” on page 499
“Debug in Step by Step Mode” on page 498

Debug Business Objects

Before debugging your application, complete the following steps to create a trace
and set breakpoints:

1. “Compile Application Code with OLT Flags” on page 486.

2. Using System Manager, install your application (System Administration Guide).

3. Using System Manager, “Enable Remote Tracing and Debugging” on page 488.

4. Using OLT, “Trace a Distributed Application” on page 489.

5. Using the trace, “Set Breakpoints on the Trace” on page 494.

The source code you intend to debug must be accessible from the CB application
server, or from the client machine (see the topic “Search Order” for more
information).

To debug C++ or Java business objects, complete the following steps:

1. On the Windows NT workstation where you want the debugger interface to
open, select Start - Programs - IBM Component Broker - OLT Debugger
Daemon . The daemon starts in a shell window. Minimize this window.

2. OLT should already be running (see step 4, above). Deselect Options - Step
by step debug mode .

3. The OLT Client Controller should already be open on the client machine (see
step 4, above). On the Monitoring Mode page, click Trace and debug with
prompt , then click Apply .

4. If you started the Debugger Daemon on a different machine, you need to tell the
Client Controller where the Debugger Daemon is running:

a. Select the Remote Debugger page.

Chapter 15. Trace and Debug Distributed Applications 495

b. Enter the host name where you started the Debugger Daemon

c. Click Apply .

5. Start your client application:

C++ Client Application:

Start your C++ application from a command prompt.

Alternatively, if the OLT Viewer is running on your client machine, you can
start the application from the Viewer by selecting File - Start process . The

Start Process dialog box maintains a list of previously-run applications, making it
easier to run your application a second time.

Java Client Application:

At a command prompt, enter this command:

java_g -debug
-Dcom.ibm.CORBA.BootstrapHost=labadie01.torolab.ibm.com
-Dcom.ibm.CORBA.EnableApplicationOLT=true
-Dcom.ibm.CORBA.ApplicationOLTHome=c:\winnt\profiles\labadie01
PolicyApp

where:
labadie01.torolab.ibm.com = your server application host name
c:\winnt\profiles\labadie01 = %userprofile% directory on Windows NT; $HOME
directory on AIX

On AIX, replace java_g with java

As your application runs, trace lines and symbols are added to the OLT Viewer.
When OLT encounters a breakpoint, the debugger automatically attaches to the
process and finds the server event on which you set the breakpoint. At the same
time, the debugger interface opens wherever you started the debugger deamon.

Once you have stepped through the object method call on the server, the
application runs until the next breakpoint, or the end of the program, is reached.

Alternatively, you can step the debugger out of the server function and into your
client code. This opens a second debugger window, and places you in the client
code, immediately after the server call. Thus, you are able to debug both server
and client seamlessly, as if they were one application.

While debugging a C++ business object, do not close the debugger window. Doing
so shuts down the application server (this is a Windows NT limitation only). When
you finish debugging, stop your application server using System Manager, then
close the OLT and debugger windows.

Note:
When debugging Java classes, make sure that the source files for your classes are
accessible from the CLASSPATH environment variable. That is, if the source for
my.package.MyClass resides in x:\source\my\package\MyClass.java, you must add
x:\source to the CLASSPATH. Otherwise, the debugger cannot find the source and
you will have to enter the location manually.

“Reading the Trace” on page 499

“Debug Client Applications from Startup” on page 497

496 Application Development Tools Guide

“Search Order” on page 439
“OLT Troubleshooting” on page 527

Debug Client Applications from Startup

By issuing a slightly different command when you start your client application, you
can have the debugger attach to the client process from startup. This is useful if
your application fails before reaching the server.

To debug the client from startup, complete the steps under the topic “Debug
Business Objects” on page 495, but substitute one of the following commands to
start your client application:

C++ Application:
To debug a client running on Windows NT, where the client application and

debugger are to run on the same workstation, enter:

bdbug yourapp.exe

If you want the debugger to open on a different workstation, follow these steps:

1. On the workstation where you want the debugger interface to open, select Start
- Programs - IBM Component Broker - OLT Debugger Daemon . The daemon
starts in a shell window. Minimize this window.

2. On the client machine, enter:

brmtdbg -qhost=NThostname yourapp

To debug a client running on AIX, follow these steps:

1. On your AIX workstation, enter:

irmtdbg -qsession=multi -qport=8001

2. On the Windows NT workstation where you plan to use the debugger, enter:

bdbug -qhost=dadttp2 -qport=8001 -options program args

You can repeatedly connect using the bdbug command. When you are finished
debugging, stop the brmtdbg process on AIX.

Java Application:
At a command prompt, enter this command:

java com.ibm.debug.engine.Jde -qhost=labadie01 -jvmargs=“-
Dcom.ibm.CORBA.BootstrapHost=labadie01.torolab.ibm.com
-Dcom.ibm.CORBA.EnableApplicationOLT=true
-Dcom.ibm.CORBA.ApplicationOLTHome=c:\winnt\profiles\labadie01”
yourapp

where:
labadie01 = host name of the machine where the Debugger Daemon is running
labadie01.torolab.ibm.com = your server application host name
c:\winnt\profiles\labadie01 = %userprofile% directory on Windows NT; $HOME
directory on AIX

Alternatively, if your application server and client are installed on the same machine,
you can enter a simpler command which executes a batch file that starts your
debugger and application:

Chapter 15. Trace and Debug Distributed Applications 497

bjdbug PolicyApp

To use the bjdbug batch command on AIX, you must set the IVB_DBG_HOST
and IVB_DBG_PORT variables to point to an OLT Debugger Daemon host and
port. The script returns an error message if either of these environment variables
have not been set.

Stepping from Client to Server:
In order to step from the client application into the business object, you should set
your client breakpoints in the server stub, as shown below. For a C++ client, you
would set the breakpoint at line 251. For Java, set the breakpoint at line 255 (in the
invoke statement):

“Start the Debugger and the Remote Program” on page 443
“Start the Debugger and the Remote Java Program” on page 444

“Search Order” on page 439
“OLT Troubleshooting” on page 527

Debug in Step by Step Mode

Step by step debugging is the alternative to setting your own breakpoints. In this
mode, OLT halts your application at the entry to every debuggable server event. A
Breakpoints dialog box opens and prompts you to step into the debuggable code.
If you select the breakpoint, and click OK, a debugger window opens and displays
the first executable line in the business object method. (The debugger steps over
any non-debuggable “glue” code.) You cannot go back and bring up the debugger
on a previous call. To do this, you must rerun the application, or clear Options -
Step by step debug mode . While the debugger is open, it is in complete control of
the CB application server.

Note: When your application is calling objects on multiple servers, the dialog box
may list multiple breakpoints. Select all those that you want to step into, then click
OK.

Step by step debug mode is selected by default. To set your own breakpoints, you
must first deselect Options - Step by step debug mode , or clear this option in the
Breakpoints dialog box.

498 Application Development Tools Guide

“Set Breakpoints on the Trace” on page 494
“Disable or Re-enable Breakpoints”

Disable or Re-enable Breakpoints

To disable breakpoints previously set, follow these steps:

1. Select Breakpoints - Create breakpoints . A dialog box opens.

2. From the Available breakpoints list, select all the breakpoints that you want to
disable.

3. Click Disable .

The Set Debugger Breakpoints dialog box maintains a history of all the breakpoints
you previously set, including those you have disabled. It maintains this list even
after you shut down and restart OLT. To re-enable a previously disabled breakpoint,
select it from the list and click Enable . To delete a breakpoint, select it from the list
and click Delete .

Hint:
If Breakpoints - Create breakpoints is unavailable, make sure that you have

deselected Options - Step by step mode , make sure that you have selected
Options - Online mode .

“Debug in Step by Step Mode” on page 498

Reading the Trace

The trace consists of trace lines and event symbols. The colors referred to below
are the OLT Viewer’s default colors. You can change these by selecting File -
Preferences - OLT - Display - Colors .

Trace Lines
A trace is a horizontal line connecting a sequence of events (object method calls)
that run under a single thread of execution. Each trace line represents either a
Component Broker object residing on the application server, or the client application
that initiated a method call to an object. The name of each trace is shown to the left
of the line:

Each trace line name consists of four parts, representing the following information:

1 host name
2 process ID
3 on a client trace: thread ID

on an object trace: object ID

Chapter 15. Trace and Debug Distributed Applications 499

4 on a client trace: CBClient
on an object trace: object name

To help you navigate on the trace, every fourth line is colored blue.

Events
An “event” is a call to a business object method, a return from a method call, or the
start or end of a process. Object method calls are shown on the trace as circles.
Start and exit events are shown as squares. An arrow connects paired events, with
the arrowhead representing the direction of data flow.

Identifying Predecessor and Successor Events
Predecessor and successor events are those events that follow or precede a
particular event in its own thread, and related events in other threads. To identify all
predecessors and successors to a particular event, position the mouse pointer over
an event and hold down Ctrl , while right-clicking on the event. All predecessor
events are colored red, and all successor events are colored green.

Status Lines
The status lines at the bottom of the window identify the location of a “selected”
event and a “current” event. The selected event (highlighted green by default) is the
last event you clicked with the left mouse button. The current event is the event that
your mouse pointer is currently positioned over. As you move your pointer, the
current event changes.

This textual representation of each event consists of seven parts, representing the
following information:

1 event type
2 method name
3 host name
4 process ID
5 on a client trace: thread ID

on an object trace: object ID
6 on a client trace: CBClient

on an object trace: object name
7 position on the trace

“Trace Symbols”
“Selected Event” on page 501
“Partial-order Display” on page 502
“Real-time Display” on page 503
“Performance Analysis” on page 504

Trace Symbols

The table below explains what the trace symbol and their corresponding status line
text represent.

500 Application Development Tools Guide

Symbol Status Line Text Type of Event

start object created or retrieved

call method call from client

receive call entry point to debuggable method of an object

reply method call completed from an object

receive reply method call completed from client

receive call call from an object to itself (nested)

reply call from an object to itself (nested)

one-way call method call from client, no reply expected

receive one-way call entry point to an object method

untraceable call call from client, recipient is untraceable

exit stop, or object destroyed or released

receive call application exception

call or reply event waiting for partner to arrive

You also have the option of adding “decorations” to the trace (File - Preferences -
OLT - Display). This option adds an outline to all events that complete a call, as
well as exit events, as shown below:

“Selected Event”
“Partial-order Display” on page 502
“Real-time Display” on page 503

“Prepare for Distributed Tracing and Debugging” on page 486
“Navigate the Trace” on page 504

Selected Event

The trace always highlights one event. This is the “selected” event (green is the
default highlighting color).

Information about the selected event is shown on the first status line:

Chapter 15. Trace and Debug Distributed Applications 501

This textual representation of each event consists of seven parts, representing the
following information:

1 event type
2 method name
3 host name
4 process ID
5 on a client trace: thread ID

on an object trace: object ID
6 on a client trace: CBClient

on an object trace: object name
7 position on the trace

You can change which event is selected by clicking another event with the left
mouse button.

Most OLT actions apply to the selected event. In that sense, the selected event acts
as a kind of cursor on the trace. For example, pressing the arrow keys on your
keyboard moves the selected status to the next event in the direction of the arrow.
To access the pop-up menu for a selected event, click the right mouse button. From
the pop-up menu, you can tag the selected event, or add it to the breakpoint list.

A selected event is always visible. If you scroll a selected event past the edge of
the trace, that event loses its selected status and the OLT Viewer automatically
selects another event to take its place.

“Navigate the Trace” on page 504
“Scroll the Trace” on page 505

Partial-order Display

Partial order is the default display mode. In this mode, the OLT Viewer attempts to
represent as many events as possible on screen, while at the same time respecting
causal relationships among events.

In partial-order mode, as opposed to real-time mode, events are not always drawn
in the sequence in which they occurred. Partial order recognizes that just because
an event occurred first does not mean that it had to occur first.

In the following graphic, the highlighted event D actually occurred 6 seconds after
event A, but because A and its successors have no precedence relationship to D,
partial ordering allows them to be drawn on the same vertical. In real-time mode,
you would have to scroll many screens to the right in order to see event D.

502 Application Development Tools Guide

By default, “time” advances horizontally from left to right (though you can change to
a vertical orientation under File - Preferences - OLT - Display). If event C causally
precedes event B, then C is always placed to the left of B, never to the right and
never on the same vertical. Every time you scroll the trace, the Viewer redraws
events according to this partial-ordering principle. For that reason, scrolling can
often appear uneven because the Viewer does whatever reordering is necessary to
keep as many events as possible on screen.

All Component Broker communication is synchronous. The OLT Viewer aligns
communication pairs vertically and connects them with an arrow, indicating the
direction of data flow. While waiting for a partner event to arrive, the event that
initiated the call is drawn on the trace with an “x” through it, to indicate that its
position in the partial order is still uncertain.

“Real-time Display”
“Performance Analysis” on page 504
“Reading the Trace” on page 499

Real-time Display

You can change the OLT Viewer mode to real-time display by selecting File -
Preferences - OLT - Display - Display real time . This display shows events as
they actually occurred in real time (as opposed to partial ordering, which respects
causal relationships but does not necessarily show events in chronological order):

The default time scale (measured in microseconds) is designed to fit a reasonable
number of events on a single screen. The jagged lines between events represent
lapses in time, during which the call might be stepping through non-debuggable
code or be caught in network traffic.

When viewing events in real time, be aware of the following issues:

Overlapping events
In real time, events can occur almost simultaneously. This means that event
symbols and connection arrows frequently overlap. You can adjust the time scale on
the trace by selecting Options - Change scale , but even when you set the scale to
its smallest interval (1 tic of the clock, or microsecond, per pixel), events can still
overlap.

Cumulative time
The clock starts at 0 when you first run your client application. If you run the
application again, the clock continues from the time reached on the first run, rather
than restarting at 0.

Chapter 15. Trace and Debug Distributed Applications 503

Synchronization
OLT performs clock synchronization between machines in order to avoid anomalies
(for example, a received call being drawn before a call). Thus, times shown on the
real-time scale may not match system clocks exactly. Also, if some events on the
trace have been collected with real-time information, and some have not, OLT will
“fake” the time for those that do not have real-time information.

“Partial-order Display” on page 502
“Performance Analysis”

Performance Analysis

When performance analysis is enabled (under File - Preferences - OLT -
Display), the trace line between any calls that take more than 9 seconds is turned
to red (this color can be changed). This includes, calls made within the client, within
the server or client-to-server calls.

You can change the time interval size under Performance Analysis settings (File -
Preferences - OLT - Display).

This highlighting enables you to analyze the performance of your application, isolate
bottlenecks, and determine which functions are slower than others.

If you encounter performance problems, you may want to switch to a real-time
display, by selecting File - Preferences - OLT - Display . Under Display Style, click
Real time .

“Real-time Display” on page 503
“Partial-order Display” on page 502

Navigate the Trace

When working with a trace, think of the selected event (highlighted green by
default) as your cursor. Most of your actions depend on the position of this event.
The selected event is the event that you last clicked with the left mouse button
(unless scrolling has moved that event off the trace, in which case the program
selects another event).

The following keys can help you navigate the trace:

504 Application Development Tools Guide

v P moves the selected status along the communication arrow to the partner event.
If the selected event has no partner (as with a start or an exit call), “P” has no
effect. This key is particularly useful when working in real-time display, where
partner events are not vertically aligned.

v Arrow Keys move selected status to the closest event in the direction of the
arrow.

v Page Up moves the selected event to the far right of the screen

v Page Down moves the selected event to the far left of the screen.

v Home takes you to the first event of the line on which the selected event is
currently positioned.

v End takes you to the last event of the line on which the selected event is
currently positioned. This is helpful if you want to verify that all your threads
completed successfully.

You can locate specific events in one of two ways:

Scrolling
Scrolling horizontally across the trace is much more complex than simply moving
the cursor along the trace lines. There are three mechanisms for scrolling: slide bar,
trace line arrows, and scroll buttons. As you scroll, the trace is continually refreshed
to reflect precedence relationships to the selected event. This is done so that as
many events as possible can be shown on the screen at any one time.

Tagging
Tagging adds a bookmark-type identifier to an event so that you can return directly
to it at any time.

“Reading the Trace” on page 499
“Selected Event” on page 501
“Real-time Display” on page 503

“Scroll the Trace”
“Tag an Event” on page 507

Scroll the Trace

In most cases, the OLT Viewer cannot display all events simultaneously. OLT
provides three scrolling mechanisms for navigating along the trace:

v slide bar

v trace line arrows

v scroll buttons

Slide Bar

The slide bar moves the selected event along its trace line. The total number of
events on the trace is shown on the slide ruler. To bring a particular event into view,

Chapter 15. Trace and Debug Distributed Applications 505

slide the pointer along the ruler. The numbers to the left of the ruler (3/4 in the
example above) show the number of the selected event, over the total number of
events on the line.

Trace line arrows

The trace lines themselves have horizontal scroll arrows on each end. Click on
these arrows to move to the right or left along a single line. As you go, the trace is
refreshed according to the partial-order display principle.

Scroll buttons

The scroll buttons move screen-by-screen through the trace. Clicking on a scroll
button places the selected event on the right or left edge of the trace, and refreshes
the other events according to partial order.

Undo Scrolling
To undo the most recent scroll operation, select Edit - Undo scrolling . This returns
you to the previously selected event, but may not produce exactly the same trace
that existed before scrolling.

“Selected Event” on page 501
“Partial-order Display” on page 502

Reorder Trace Lines

By selecting Edit - Reorder traces by... , you can reorder trace lines in the following
ways:

Precedence
This option reorders trace lines according to precedence relationships with the
selected event (which is highlighted green by default). Traces containing events with
a precedence relationship are moved nearer to the selected event, while those with
no relationship are pushed farther away. Only events currently visible are
considered.

(You can also show precedence relationships by pressing Ctrl , while clicking an
event with the right mouse button).

Local Optimization
This option reorders traces to minimize the length of the arrows that connect binary
event pairs (such as between a call and a received call.) Local optimization is
useful when the trace appears cluttered with arrows. This option only considers
currently visible events. If you frequently scroll to other parts of the trace, you
should instead reorder by global optimization, which considers all event
connections.

506 Application Development Tools Guide

Global Optimization
This option reorders every trace line to minimize the length of arrows connecting
binary event pairs (such as between a call and a received call). Global optimization
is useful if the trace appears cluttered with arrows and you find yourself frequently
scrolling to different sections of the trace.

Original Order
This option returns traces to their original order (the order that was in place before
you selected an Edit - Reorder traces by... option).

Move Trace
You can also reorder trace lines by moving an individual line to any point in the
trace. For example, you may want to position a pair of client and object traces side
by side. To move a trace, follow these steps:

1. Select Edit - Move trace .

2. Click anywhere on the trace line you want to move. The line is highlighted
green.

3. Drag and drop the line to its new position. The relative positions of all other
lines are unaffected.

“Reading the Trace” on page 499
“Selected Event” on page 501

“Navigate the Trace” on page 504

Tag an Event

In a large trace, you can attach a descriptive, bookmark-type tag to any event that
you may want to find again quickly (for example, an event immediately preceding a
crash event).

To tag an event, follow these steps:

1. Select the event by with the left mouse button. The event is highlighted green
(by default).

2. Click the right mouse button. From the pop-up menu, select Tag event . A

dialog box opens.

3. Enter a descriptive name to identify the event, then click OK. A circle (red, by
default) is added to the tagged event.

To find a tagged event, follow these steps:

1. Select Edit - Locate event tag . A dialog box opens and lists all tagged

events.

2. Select the tag name of the event you want to find, then click OK. The Viewer
scrolls to the tagged event.

To delete a tag, follow these steps:

1. Select Edit - Delete event tag . A dialog box opens and lists all tagged

events.

2. Select the tag name, or names, that you want to delete, then click OK.

Chapter 15. Trace and Debug Distributed Applications 507

Save the Current Trace to a File

You may want to save your trace to a file in order to analyze it at a later date, or on
another machine (with the same operating system). The Save As action does not
simply take a snapshot of the current screen. All events recorded in the current
session (both before and after the Save As action) are saved to the file you specify.
Once you specify a filename, you cannot change that name until the next session.
Similarly, once you have completed the original save, as described above, there is
no need to save again.

To save the current trace to a file, follow these steps:

1. Ensure that online mode is selected (Options - Online mode).

2. Select File - Save OLT File as . A dialog box opens.

3. Type a name for the new file, then click OK. The file is saved when you close
OLT.

By default, event trace files are saved to the directory defined by
IVB_DRIVER_PATH%\temp (for example, x:\CBroker\temp) on NT, or /tmp on AIX.
To change the directory to which files are saved, follow these steps:

1. Select File - Preferences . A settings window opens.

2. From the tree view, select OLT.

3. Enter a new path in the OLT Read/Save file path field.

4. Click OK. This change takes effect the next time you open the OLT Server.

Note: The file is saved to the machine where the OLT Server is running.

“Open an Existing Trace File”

Open an Existing Trace File

To open a previously saved trace file, start OLT and follow these steps:

1. Select File - Open OLT File . A dialog box opens.

2. Select an event file name from the list, then click OK. The selected OLT file
opens in the Viewer.

OLT files can only be saved to, and opened from, one specific directory on your
workstation. The default directory for storing trace files is the directory defined by
the %IVB_DRIVER_PATH%\temp environment variable (for example,
x:\CBroker\temp) on Windows NT, or /tmp on AIX. To change this directory, follow
these steps:

1. Select File - Preferences . A settings window opens.

2. From the tree view, select OLT.

3. Enter a new path in the OLT Read/Save file path field.

4. Click OK. This change takes effect the next time you start OLT.

Note:
Once you have opened a trace file in the OLT Viewer, you cannot toggle back to
online mode in order to trace a running application. You must first close the OLT
Viewer (and Server) and restart.

508 Application Development Tools Guide

“Save the Current Trace to a File” on page 508

OLT Scenarios

The following scenarios use the Policy sample to illustrate some common OLT
tasks:

v Windows NT Client

– “Trace and Debug a Java Client and C++ BO - Scenario” on page 512

– “Debug a Java Client from Startup - Scenario” on page 515

– “Debug a C++ Client and C++ BO in Step by Step Mode - Scenario” on
page 518

v AIX Client

– “Trace and Debug a C++ Client and C++ BO on AIX - Scenario” on page 522

To use these scenarios, ensure that you have the Component Broker run time, C++
client SDK, Server SDK, CB Toolkit, and tookit samples installed on your system,
then complete the following steps:

1. Set OLT compile options (explained below).

2. Compile the Policy application according to the instructions in the sample
documentation
(x:\CBroker\samples\InstallVerification\ProgrammingModel\Docs\Policy.html).

3. Install the Policy application using System Manager (explained below).

Set OLT Compile Options
Enable the trace and debug flags before compiling:

This procedure for Windows NT assumes that Component Broker is installed at
x:\CBroker.

1. From a command prompt, change to your working directory:

x:\CBroker\samples\InstallVerification\ProgrammingModel\
BusinessObjects\Policy\Working\NT

2. Enter:

set IVB_TRACE_DEBUG=1

To compile the sample on AIX, follow these steps:

1. Edit the obdll.mk file as follows:

Remove the comment marks from the following lines:

CONST_CC_FLAGS_TRACE = -DCBS_TRACE_DEBUG
CONST_LD_FLAGS_TRACE = -livbtr10

Add comment marks to the following lines:

CONST_CC_FLAGS_TRACE =
CONST_LD_FLAGS_TRACE =

Remove the comment marks from the following lines:

#CONST_CC_FLAGS_DEBUG = -g
#CONST_LD_FLAGS_DEBUG =
#CONST_JAVAC_FLAGS_DEBUG = -g

Chapter 15. Trace and Debug Distributed Applications 509

Add comment marks to the following lines:
CONST_CC_FLAGS_DEBUG =
CONST_LD_FLAGS_DEBUG =
CONST_JAVAC_FLAGS_DEBUG =

Remove the comment marks from the following lines:

CONST_CC_FLAGS_OPTIMIZE = -qnooptimize
CONST_JAVAC_FLAGS_OPTIMIZE =

Add comment marks to the following lines:

CONST_CC_FLAGS_OPTIMIZE = -O -Q
CONST_JAVAC_FLAGS_OPTIMIZE = -O

Compile the Sample Application
Follow the instructions in this file:
(x:\CBroker\samples\InstallVerification\ProgrammingModel\Docs\Policy.html)

Install the Sample Application
After successfully compiling the Policy sample, install the application by following
these steps:

1. Define the sample application to System Management.

2. Configure an application server.

3. Load the sample application on a server.

Define the Sample Application to System Management
Load the application definition on your Host Image as follows:

1. In System Manager, select View - User Level - Expert .

2. Expand Host Images .

3. Select a host image. There is a default image that corresponds to the name of
the system on which the Server with System Manager configuration was
installed.

4. Open the pop-up menu, and select Load Application .

5. Browse and select PolicyFamily.ddl .

6. Click OK. The Action Console window indicates when the application has been
successfully loaded.

7. Close the Action Console window.

Configure an Application Server
Create a Server Group and Server in the Sample Configuration, then load the
Policy application onto the server.

On Windows NT, you can configure the application server using System
Management wizards:

1. Select Wizards - Create Servers .

2. Click Next to accept the defaults on the first two pages.

3. On the Server Group page, type a server group name. For this exercise, use
myservergroup.

4. Click Next .

5. On the Server page, type a server name. For this exercise, use myserver.

6. Click Finish .

7. Select Wizards - Configure Server .

510 Application Development Tools Guide

8. On the Select Applications to Configure page, select PolicyApp , then click
Add .

9. Click Next to accept the defaults on the next two pages.

10. On the Select Server to Configure Applications On page, select
myservergroup , then click Add.

11. Click Finish .

On AIX, follow these steps to configure the application server:

1. In System Manager, expand Management Zones - Sample Cell and Work
Group Zone - Configurations .

2. Select Sample Configuration . From its pop-up menu, select New - Server
Group . A dialog box is displayed.

3. Type a server group name. For this exercise, use myservergroup.

4. Click OK.

5. Select myservergroup . From its pop-up menu, select New - Server (member
of group) .

6. Type a server name. For this exercise, use myserver.

7. Click OK.

8. Select myserver . From its pop-up menu, select Drag .

9. Collapse Management Zones.

10. Expand Hosts .

11. Select yourhost. From its pop-up menu, select Configure Server (member of
group) .

12. Expand Available Applications .

13. Select Policy . From its pop-up menu, select Drag .

14. Expand Management Zones - Sample Cell and Work Group Zone -
Configurations .

15. Select Sample Configuration . From its pop-up menu, select Add
Application . This places the application in the configuration.

16. Select Policy . From its pop-up menu, select Drag .

17. Expand Management Zones - Sample Cell and Work Group Zone -
Configurations - Sample Configuration - Server Groups .

18. Select myservergroup . From its pop-up menu, select Configure Application .

Enable Remote Tracing and Debugging
Enable remote tracing and debugging on both your client and server images, follow
these steps:

1. Expand Management Zones - Sample Cell and Workgroup Zone -
Configuration - Sample Configuration - Server Groups folder and expand
the host image that corresponds to the name of your server.

2. Expand Groups and select myservergroup. From its pop-up menu, select
Edit . A notebook opens.

3. Select the Main tab.

4. Change the debug enabled attribute to yes .

5. For AIX servers only, change the Health monitor polling interval value
to 0.

6. Select the ORB tab.

7. Change the request timeout value to 0.

Chapter 15. Trace and Debug Distributed Applications 511

8. Click OK to close the server image notebook.

9. Expand Client Style and select the host name that corresponds to the
machine where your client application resides.

10. From the client image’s pop-up menu, select Edit . A notebook opens.

11. On the Main tab, change the debug enabled attribute to yes .

12. Select the ORB tab.

13. Change the request timeout value to 0.

14. Click OK to close the client image notebook.

Activate Your Configuration
To activate your configuration:

1. Expand Management Zones - Sample Cell and Workgroup Zone -
Configuration , and select Sample Configuration .

2. Click Sample Configuration with the right mouse button, and select Activate
from the pop-up menu.

3. Monitor the Action Console window for a completion status.

You are now ready to trace and debug the Policy sample using one of the OLT
scenarios.

Trace and Debug a Java Client and C++ BO - Scenario

Objective
To trace and debug a distributed application in which the client code is written in
Java and the business object is written in C++. Both are installed on Windows NT.

Before You Begin
You must complete the steps to compile and install the Policy sample for Windows
NT, including the Java client application (as explained in the “OLT Scenarios” on
page 509).

For this exercise, you should run OLT and the distributed debugger on the same
Windows NT machine as your client application. The CB application server can
either reside on this same machine, or on a remote host.

Description
In this exercise, you will complete these steps:

1. Start Object Level Trace

2. Start the OLT Client Controller

3. Run your application to produce a trace

4. Set a breakpoint on the business object

5. Start the OLT Debugger Daemon

6. Rerun your application

7. Debug the server method

8. Step from server to client code

Start Object Level Trace:

1. From the Windows NT Start menu, select Programs - IBM Component Broker
- Object Level Trace (OLT) . The OLT Server process starts and the Viewer
window opens.

512 Application Development Tools Guide

2. In the OLT Viewer, select Options - Online mode . An information message

is displayed.

3. Click OK.

Start the OLT Client Controller:

1. From the Windows NT Start menu, select Programs -IBM Component Broker
- OLT Client Controller . A settings window opens:

2. Minimize OLT Client Controller window.

Run your application:

1. From a command prompt, change to the directory where you compiled the Java
client version of the Policy sample

2. Enter the following command:

java
-Dcom.ibm.CORBA.BootstrapHost=labadie01.torolab.ibm.com
-Dcom.ibm.CORBA.EnableApplicationOLT=true
-Dcom.ibm.CORBA.ApplicationOLTHome=c:\winnt\profiles\labadie01
PolicyApp

where:
labadie01.torolab.ibm.com = your server application host name
c:\winnt\profiles\labadie01 = %userprofile% directory

A trace is created, showing the calls from your client to the Policy and
PolicyHome objects on the server.

Set a breakpoint on the trace:

1. Select the event that represents the “setpremium” method (the fourth event on
the Policy trace).

2. From this event’s pop-up menu, select Add to breakpoint list .

Change to a debugging mode:

1. In the OLT Client Controller, select Monitoring Mode .

2. Click Trace and debug with prompt , then click Apply .

3. From the Windows NT Start menu, select Programs - IBM Component Broker
- OLT Debugger Daemon . The daemon starts in a shell window. Minimize this
window.

4. In the OLT Viewer, deselect Options - Step by step debug mode .

Rerun your application:

1. From a command prompt, change to the directory where you compiled the Java
client version of the Policy sample. Ensure that somojor.zip the first file in your
classpath.

2. Enter the following command:

Chapter 15. Trace and Debug Distributed Applications 513

java_g -debug
-Dcom.ibm.CORBA.BootstrapHost=labadie01.torolab.ibm.com
-Dcom.ibm.CORBA.EnableApplicationOLT=true
-Dcom.ibm.CORBA.ApplicationOLTHome=c:\winnt\profiles\labadie01
PolicyApp

where:
labadie01.torolab.ibm.com = your server application host name
c:\winnt\profiles\labadie01 = %userprofile% directory on Windows NT

The program halts at your breakpoint. The debugger opens and steps into the
“setpremium” method on the server:

3. Click Step over twice. This opens a second debugger window for the client,

and places you in the client code, immediately past the call to the “setpremium”
method:

4. On the client debugger toolbar, click Run .

5. When you see the following dialog box, click OK:

Your trace should now be complete.

Important Note:
While running your application, do not close the debugger window you are using to
debug server code. Doing so shuts down the application server (this is a Windows
NT limitation). When you finish debugging, stop your application server using
System Manager, then close the OLT and debugger windows.

514 Application Development Tools Guide

Debug a Java Client from Startup - Scenario

Objective
To debug Java client code from startup, then step into the C++ server code.

Before You Begin
You must complete the steps to compile and install the Policy sample for Windows
NT, including the Java client application (as explained in the “OLT Scenarios” on
page 509).

For this exercise, you should run OLT and the distributed debugger on the same
Windows NT machine as your client application. The CB application server can
either reside on this same machine, or on a remote host.

Description
In this exercise, you will complete these steps:

1. Start the OLT Debugger Daemon.

2. Start Object Level Trace in “trace and debug with prompt” mode.

3. Start the Java client debugger and client application.

4. Step through a client call to the server.

5. Debug the server method.

Start the OLT Debugger Daemon:

1. From the Windows NT Start menu, select Programs - IBM Component Broker
- OLT Debugger Daemon . The daemon starts in a shell window. Minimize this
window.

Start Object Level Trace:

1. From the Windows NT Start menu, select Programs - IBM Component Broker
- Object Level Trace (OLT) . The OLT Server process starts and the Viewer
window opens.

2. In the OLT Viewer, select Options - Online mode . An information message

is displayed. Click OK.

3. Deselect Options - Step by step debug mode .

4. From the Windows NT Start menu, select Programs - IBM Component Broker
- OLT Client Controller . A settings window opens.

5. From the tree view, select Monitoring Mode .

6. Select Trace and debug with prompt , then click Apply :

7. Minimize the Client Controller window.

Chapter 15. Trace and Debug Distributed Applications 515

Start the Java client debugger and client application:

1. From a command prompt, change to the directory where you compiled the Java
version of the Policy sample. Ensure the somojor.zip is the first file in your
classpath.

2. Enter the following command, which starts both the policy application and the
Java debugger:

java com.ibm.debug.engine.Jde -qhost=labadie01 -jvmargs=“-
Dcom.ibm.CORBA.BootstrapHost=labadie01.torolab.ibm.com
-Dcom.ibm.CORBA.EnableApplicationOLT=true
-Dcom.ibm.CORBA.ApplicationOLTHome=c:\winnt\profiles\labadie01”
PolicyApp

where:
labadie01 = host name of the machine where the OLT Debugger Daemon is
running
labadie01.torolab.ibm.com = your server application host name
c:\winnt\profiles\labadie01 = %userprofile% directory

Alternatively, if the application server and client are installed on the same
machine, you can enter a simpler command which executes a batch file that
starts your debugger and application:

bjdbug PolicyApp

The Java debugger opens to the first executable line in the Policy client application.

Set a breakpoint on the client:

1. Scroll to line 451, and set a breakpoint by double-clicking on that line:

2. On the debugger toolbar, click Run . The OLT Viewer should begin creating

a trace:

The application stops at the breakpoint you set in your client code.

3. On the debugger toolbar, click Step into . This places you in the “amount”

method on the client:

516 Application Development Tools Guide

4. Set a breakpoint at line 289, then click Run .

5. On the debugger toolbar, click Step debug . The debugger follows the client

request to the server. A new debugger window opens and places you in the
server code, at the “amount” method of the selected object:

6. On the debugger toolbar, click Step over to step over line 35. Click Step

over a second time to go back to the next executable line on the client:

At this point, the OLT trace looks like this:

7. On the client debugger toolbar, click Run . When you see the following dialog
box, click OK:

Chapter 15. Trace and Debug Distributed Applications 517

The trace should now be complete.

Important Note:
While running your application, do not close the debugger window that you are
using to debug server code. Doing so shuts down your application server. When
you finish debugging, stop your application server using System Manager, then
close the OLT and debugger windows.

Debug a C++ Client and C++ BO in Step by Step Mode - Scenario

Objective
To trace and debug a distributed application in which both server and client code
are written in C++ and installed on Windows NT.

Before You Begin
You must complete the steps to compile and install the C++ Policy Sample for
Windows NT (as explained in the “OLT Scenarios” on page 509).

For this exercise, you should run OLT and the distributed debugger on the same
Windows NT machine as your client application. The CB application server can
reside either on this same machine, or on a remote host.

Description
In this exercise, you will complete these steps:

1. Start the OLT Debugger Daemon.

2. Start Object Level Trace.

3. Change the monitoring mode to “Trace and debug with prompt”.

4. Debug a method on the server.

5. Step from the server method into your client code.

Start the OLT Debugger Daemon:

1. From the Windows NT Start menu, select Programs - IBM Component Broker
- OLT Debugger Daemon . The daemon starts in a shell window.

2. Minimize the window.

Start Object Level Trace:

1. From the Windows NT Start menu, select Programs - IBM Component Broker
- Object Level Trace (OLT) . The OLT Server process starts and the Viewer
window opens.

2. In the OLT Viewer, select Options - Online mode . An information message

is displayed:

518 Application Development Tools Guide

3. Click OK.

4. Ensure that Options - Step by step debug mode is selected:

In Step by step debug mode , OLT stops each time a debuggable method is
encountered on the CB application server. OLT then asks whether you want to
step into, or over, your server code.

5. From the Windows NT Start menu, select Programs - IBM Component Broker
- OLT Client Controller . A settings window opens:

6. Select Monitoring Mode from the tree view:

7. Select Trace and debug with prompt :

Run your client application:

1. In the OLT Viewer, select File - Start process and browse for

PolicyApp.exe.

The complete path is:
x:\CBroker\samples\InstallVerification\ProgrammingModel\
BusinessObjects\Policy\Working\NT\PolicyApp.exe

2. Click OK. The client application starts in a command shell. The OLT Viewer
should soon display trace lines and event symbols:

Chapter 15. Trace and Debug Distributed Applications 519

Debug the “getpolicyNo” method:

1. The first debuggable event that OLT encounters is a call to the “getpolicyNo”
method. At this point, the application halts and a dialog box opens:

2. Click OK. The debugger opens on the server code and steps into “getpolicyNo”.

Step into the client code:

1. On the debugger toolbar, click Step Over . This starts a second instance of

the debugger and places you in the client application source code:

2. On the debugger toolbar, click Run . The application runs until it encounters

the next debuggable server event (“setamount”).

520 Application Development Tools Guide

3. In the Debugger Breakpoints dialog box, clear the Step by step debug mode
checkbox:

4. Click OK. The application runs through to completion, without stopping at
debuggable events.

5. When you see the following dialog box, click OK:

The OLT Viewer should now contain a complete trace:

At this point, you can set breakpoints on any of the debuggable server events
(shown as filled circles on the Policy trace). If you rerun PolicyApp.exe, the
debugger opens only on your breakpoints.

Important Note:
While running your application, do not close the debugger window you are using to
debug server code. Doing so shuts down the application server (this is a Windows
NT limitation). When you finish debugging, stop your application server using
System Manager, then close the OLT and debugger windows.

Chapter 15. Trace and Debug Distributed Applications 521

Trace and Debug a C++ Client and C++ BO on AIX - Scenario

Objective
To trace and debug a distributed application in which both server and client code
are written in C++ and installed on AIX.

Before You Begin
You must complete the steps to compile and install the C++ Policy Sample for AIX
(as explained in the OLT Scenarios overview).

For this exercise, you should run Object Level Trace on the same AIX machine as
your client application. The CB application server can reside either on this same
machine, or on a remote host. You also need a Windows NT workstation on which
to interact with the debugger. This workstation must have the CB Toolkit installed,
and have access to the source code.

Description
In this exercise, you will complete these steps:

1. Reset usage limits on your AIX machine.

2. Start Object Level Trace.

3. Run the client application and create a trace.

4. Set a breakpoint on the trace.

5. Start the OLT Debugger Daemon.

6. Rerun the application.

7. Debug the server method.

8. Step from server to client code.

Reset Usage Limits on the AIX machine:

1. To avoid memory errors when debugging, add the following lines in the login
script file (.profile):

ulimit -d unlimited # to reset limits on data size
ulimit -m unlimited # to reset limits on physical memory
ulimit -s unlimited # to reset limits on stack size

In addition, you should keep your virtual memory paging space as large as
possible. To check current paging space, enter lsps -a on a command line,
and increase if possible.

Start Object Level Trace:

1. From a kornshell on your AIX client, enter ivbtrsrv. The Server process starts
and the Viewer window opens.

2. In the Viewer window, select Options - Online mode .

3. From a kornshell, enter ivbtrc. The OLT Client Controller opens.

4. Click Apply , then minimize the Client Controller window.

5. From a kornshell, type PolicyApp.

Once PolicyApp has run to completion, the OLT Viewer should contain a trace,
similar to the following:

522 Application Development Tools Guide

Create a breakpoint:

1. On the trace, select the server event that represents the “setpremium” method
(the fourth event on the Policy trace).

2. From the event’s pop-up menu, select Add to breakpoint list .

Prepare for debugging:

1. In the OLT Viewer, deselect Options - Step by step debug mode .

2. On a Windows NT workstation, start the OLT Debugger Daemon (Programs -
IBM Component Broker - OLT Debugger Daemon). The daemon starts in a
shell window. Minimize this window.

3. In the Client Controller on your AIX workstation, select Remote Debugger .

4. Type the host name of the Windows NT machine on which you started the
Debugger Daemon.

5. Select Monitoring mode . On the Monitoring Mode page, select Trace and
debug with prompt :

6. Click Apply , then minimize the Client Controller.

Run your application:

1. From a kornshell, enter PolicyApp to rerun the application.

The program halts at your specified breakpoint, and the debugger prompts you
to step into the “setpremium” method:

2. Select setpremium , then click OK. The debugger opens on the “setpremium”
method:

Chapter 15. Trace and Debug Distributed Applications 523

Step from server to client code:

1. Click Step return . A new debugger is opened for the client. Notice that you

stop immediately after the _req.invoke() call that invokes the method on the
server:

2. Click Step return .again to return immediately past the setpremium method

called by the client:

After two step-returns, the debugger is now in the client application. The client
application calls the getter method for the premium attribute on the Policy object
(line 292).

3. To step back into the Policy object, click Step into at line 292 three times.

When you step intopolicyPtr->premium(), the debugger stops at the server
stub:

524 Application Development Tools Guide

4. Step over to line 233.

5. Step-debug at line 233. This places you in the premium getter method of

the Policy Business Object:

6. Click Run . When the client application completes, you should see the

following dialog box:

7. Click OK. The debugger process for the client application ends. The debugger
for the Policy business object stays active until you stop the application server
using System Manager.

Important Note:
While running your application, do not close the debugger window that you are
using to debug server code. Doing so shuts down your application server (this is a
Windows NT limitation). When you finish debugging, stop your application server
using System Manager, then close the OLT and debugger windows.

OLT Reference

OLT Environment File

The OLT environment file (ivbtrenv.dat) is stored on the machine where the OLT
Server is running. On Windows NT, the file can be found in your %userprofile%
directory. On AIX, the file is in your $HOME directory.

Chapter 15. Trace and Debug Distributed Applications 525

The ivbtrenv.dat file contains the following variables, which are explained below:
IVB_TRC_SRV_HOST=
IVB_TRC_SRVAPP_PORT=2102
IVB_TRC_SRVCLT_PORT=2202
IVB_TRC_EV_DIR=%IVB_DRIVER_PATH%/temp
IVB_TRC_OLT_VER=OLT20
IVB_TRC_SRV_UID1=6666
IVB_TRC_SRV_UID2=9999
IVB_TRC_SRV_TGTDIR=%IVB_DRIVER_PATH%\\bin;

IVB_TRC_SRV_HOST=
IVB_TRC_SRV_HOST=$HOSTNAME

When you select Options - Online mode in the OLT Viewer, an information
message will display the host name of the OLT Server. You must ensure that this
host name matches the host name entered on the OLT Server page in the OLT
Client Controller .

If you run the OLT Server separately from the OLT Viewer, the IVB_TRACE_HOST
value in the ivbtrenv.dat file on the Viewer machine must point to the location of the
OLT Server.

IVB_TRC_SRVAPP_PORT=2102
IVB_TRC_SRVCLT_PORT=2202
The OLT Server attempts to listen for events on TCP/IP port 2102. If it cannot
connect to both this port and to port 2202, the OLT Server will not come up. If you
change these numbers (for example, if the ports are busy and you cannot start the
OLT Server), you must edit the the ivbtrenv.dat file on any other machine that is
running an OLT component. This does not apply if you are running the debugger,
Server, and Viewer on the same machine.

IVB_TRC_EV_DIR=%IVB_DRIVER_PATH%/temp
IVB_TRC_EV_DIR=/TMP

This value determines which directory the trace files are stored to and retrieved
from. By default, event trace files are stored in the directory defined by
%IVB_DRIVER_PATH%/temp (or /tmp on AIX). If you are unsure about the
directory, enter set IVB_DRIVER_PATH on a command line (echo $IVB_DRIVER_PATH
on AIX). To save and retrieve event trace files from a different directory, enter a new
path in the Viewer, from File - Preferences - OLT . To open any previously-saved
files, you must first move them to your new default directory.

IVB_TRC_OLT_VER=OLT20
This value represents the OLT version number (for example, Release 2.0).

IVB_TRC_SRV_UID1=6666
IVB_TRC_SRV_UID2=9999
These values are PIN numbers that validate the OLT Viewer and Server pair.

IVB_TRC_SRV_TGTDIR=%IVB_DRIVER_PATH%\\bin
IVB_TRC_SRV_TGTDIR=$IVB_DRIVER_PATH/bin

This value specifies the location of the file ivbtrdsc. This file tells the OLT Viewer
how to display events.. By default, this location is the bin directory, under your
Component Broker installation.

Note:
If you change a value in the ivbtrenv.dat file, it does not take effect until you restart
the OLT Server and Viewer.

526 Application Development Tools Guide

OLT Command-line Arguments

Object Level Trace supports the following command-line arguments (arguments can
be combined):

Start the OLT Server and Viewer ivbtrsrv
Start the OLT Server without the Viewer ivbtrsrv -standalone
Start the OLT Server with a specific
configuration file

ivbtrsrv -dat path_and_filename

Start the OLT Server and Viewer, and
open a saved trace file

ivbtrsrv filename

Start the OLT Viewer ivbtrvwt
Start the OLT Client Controller ivbtrc

OLT Troubleshooting

Troubleshooting information is included for the following OLT problems.

v OLT Startup

– OLT Server or Viewer fails to start (page 528)

– OLT Server abends (page 528)

– OLT Client Controller fails to start (page 528)

– Client application fails to run (page 528)

– Client application runs, but OLT appears to stop the application server (page
528)

– Events do not appear in the Viewer (page 528)

– Unusual program behavior (page 529)

v Java Clients

– Out-of-memory errors when starting a Java client application (page 529)

– Visual Age for Java clients cannot be traced with OLT (page 529)

v Distributed Debugging

– Debugger Daemon fails to start (page 530)

– Debugger interface fails to open (page 530)

– Debugger ignores second application

– Cannot set breakpoints in the OLT Viewer (page 530)

– Debugger fails when debugging AIX client (page 531)

– Debugger is extremely slow when using Loopback Adaptor (page 531)

v Real-time Display

– Real-time information is not collected (page 531)

v OS/390

– Confirm that your OS/390 client is properly connected to the Client Controller
(page 531)

“Limitations when Debugging Visual C++ Programs” on page 476
“Limitations When Debugging Interpreted Java” on page 477
“Limitations When Debugging Interpreted Java” on page 477

Chapter 15. Trace and Debug Distributed Applications 527

OLT Troubleshooting - Startup

OLT Server or Viewer fails to start
If OLT appears to start, then closes prematurely, try starting OLT from the command
line by typing ivbtrsrv. This should provide you with an error message. Ensure
that the directory defined by the %IVB_DRIVER_PATH%\temp exists, and that you
have “write” permission for this directory. If the problem persists, enter the following
command to pipe your error message to a file, then send this file to your IBM
representative:

ivbtrsrv >olt_err.log 2>&1

OLT Server abends
The OLT Server can handle a maximum of 300 processes. If you reach this limit,
and continue running the application (for example, if you are running a continuous
loop), the OLT Server aborts. If this happens, close and reopen the OLT Viewer. Do
not forget to select Options - Online mode before rerunning your application.

Before closing the Viewer, you can save your previous trace to a file (File - Save
OLT file as).

OLT Client Controller fails to start
In the directory defined by %userprofile% on Windows NT, or $HOME on AIX,
delete the ivbtr11j.properties file, then try starting the OLT Client Controller again. If
the problem persists, use the following command to start the Client Controller from
a command line and pipe any startup errors to a file. Send this file to your IBM
representative:

ivbtrc >olt_err1.log 2>&1

Client application fails to run
Try running the application from a command shell. If the application fails to start, a
detailed error message should appear. For help interpreting the message, see the
Problem Determination Guide.

Client application runs, but OLT appears to stop the application server
Check the transaction timeout values in your application code. These values must
be set to zero, or a value not easily reached while using the debugger, such as
1800 seconds.

Events do not appear in the Viewer
If your application runs cleanly, but events do not appear in the OLT Viewer, ensure
that you have completed the necessary startup steps:

1. Using the set IVB_TRACE_DEBUG=1 option, compile your code to include OLT
flags.

2. Using System Manager:

a. Install your application.

b. On your server and client-style images, enable remote tracing and
debugging and set request timeout values to zero (or a value not easily
reached while using the debugger, such as 1800 seconds).

c. Activate the server host image.

d. Start the application server.

3. On your client machine:

528 Application Development Tools Guide

a. Start Object Level Trace, then put the Viewer in online mode by selecting
Options - Online mode (do not close the OLT Server window).

b. Start the OLT Client Controller (click Apply , then minimize the window but
do not close it).

c. Run the client application.

Remember to start the OLT Client Controller on every client that is running an
application.

Also, you should verify that the Server settings in the Client Controller (hostname
and port number) match those displayed when you selected Options - Online
mode in the OLT Viewer.

Unusual program behavior
Check your temporary directory (as set by the %IVB_DRIVER_PATH%/TEMP
environment variable on Windows NT, or the /tmp directory on AIX). If you have a
.chk file in your temporary directory, delete it and try running your application again.
During normal operation, Object Level Trace creates files in the temporary directory
and, if the program terminates unexpectedly, some of these files may not be
properly deleted.

OLT Troubleshooting - Java Clients

Out-of-memory errors when starting a Java client application
If you encounter memory errors when starting a Java client application, modify the
start command to include the following string before the application name: -mx255m
-ms30m -oss75m. For example:

java com.ibm.debug.engine.Jde -qhost=labadie01 -jvmargs=“-
Dcom.ibm.CORBA.BootstrapHost=labadie01.torolab.ibm.com
-Dcom.ibm.CORBA.EnableApplicationOLT=true
-Dcom.ibm.CORBA.ApplicationOLTHome=c:\winnt\profiles\labadie01”
-mx255m -ms30m -oss75m myapp

Visual Age for Java clients cannot be traced with OLT
On your Visual Age for Java client code, set the OLT properties inside the code:

java.util.Properties props = new java.util.Properties();
props.put(“com.ibm.CORBA.EnableApplicationOLT”,“true”);
props.put(“com.ibm.CORBA.ApplicationOLTHome”,“c:/winnt/profiles/labadie”);
props.put(“com.ibm.CORBA.BootstrapHost”,“labadie.torolab.ibm.com”);
// If we got the host and port from some other source besides the command
line
// arguments passed by the PolicyApp invocation, we could set the values
using
// properties like this below and then use the CBSeriesGlobal.Initialize
// method that takes as parms, host and port.
// props.put(“com.ibm.CORBA.BootstrapHost”, host);
// props.put(“com.ibm.CORBA.BootstrapPort”, port);

System.out.println(“1) About to call ORB.init passing Bootstrap information
passed in on command line”);
orb = ORB.init (args, props);

You must now use use the VA Java debugger on your client. Debugging your
business object brings up the Component Broker debugger. You should not step

Chapter 15. Trace and Debug Distributed Applications 529

from the BO back to the client using Step over or Step debug because the VA Java
debugger is already attached to your client.

OLT Troubleshooting - Distributed Debugging

Debugger Daemon fails to start
When you installed CBConnector, port 8001 was designated for the remote
debugger. If you change this port, you must change the IVB_DBG_PORT
environment variable, and the bdbug entry in the services file on all clients and
servers affected by the change, and on those machines running the application you
want to debug. Any change you make to the debugger port number must also be
reflected on the Remote Debugger page in the OLT Client Controller .

On Windows NT, the services file is found in Winnt\system32\drivers\etc\.
On AIX, the services file is located in /etc/.

If you do not have a port conflict and the Debugger Daemon still fails to start, check
the services file and ensure that bdbug 8001/tcp is on a separate line.

Debugger interface fails to open
Check your Windows NT Task Manager for the OLT Debugger Daemon
(bdbugd.exe). If the daemon is not running, follow these steps:

1. Close the OLT Server, Viewer, and Client Controller windows.

2. Select Start - Programs - IBM Component Broker - OLT Debugger Daemon.
A blank command shell window opens. Minimize this window, but do not close
it.

3. Start Object Level Trace and put the Viewer in online mode (select Options -
Online mode).

4. Open the OLT Client Controller window and select Monitoring mode from the
tree view.

5. On the Monitoring mode page, ensure that one of the debug modes is
selected.

6. Click Apply . Minimize the Client Controller window, but do not close it.

7. Run your client application.

If the debugger still does not appear, you might have a port conflict. The following
three values must match:

v TCP/IP port entry on the Remote Debugger page in the OLT Client Controller.

v bdbug entry in the Winnt\system32\drivers\etc\services file on Windows NT, or
the /etc/services file on AIX.

v IVB_DBG_PORT environment variable.

If you have multiple clients interacting with the same server, you must start the OLT
Client Controller on each client, and specify the same host name on the Remote
Debugger page (this should be the host name of the machine on which you started
the OLT Debugger Daemon).

Debugger ignores second application
When you have a multi-user host talking to a single Component Broker application
server, the first client application to gain control of the debugger retains control
throughout its run. The debugger ignores the other application. To debug object
method calls from the second client, you must bring down the application server
and start the second application on its own.

530 Application Development Tools Guide

Cannot set breakpoints in the OLT Viewer
“Step by step” debug mode is enabled by default in the OLT Viewer. In this mode,
OLT stops at every instance of debuggable server code. You cannot set your own
breakpoints until you deselect Options - Step by step debug mode .

Once step by step mode is turned off, you can right-click a debuggable event
(represented by a filled circle), and select Add to breakpoint list from the pop-up
menu. If you click a non-debuggable event, this option is disabled.

Debugger fails when debugging AIX client
When debugging an AIX client directly, memory limitations may cause the debugger
to fail. You can avoid this problem by adding the following lines in the login script
file (.profile):

ulimit -d unlimited # to reset limits on data size
ulimit -m unlimited # to reset limits on physical memory
ulimit -s unlimited # to reset limits on stack size

this ensures that usage limits are cleared in each window you open. In addition, you
should keep your virtual memory paging space as large as possible. To check
current paging space, enter lsps -a on a command line.

Debugger is extremely slow when using Loopback Adaptor
If you are using the Microsoft Loopback Adaptor on a laptop, and the debugger
takes 10 minutes or more to open on every request, remove any DNS entries from
your TCP/IP settings.

OLT Troubleshooting - Real-time Display

Real-time information not collected
If you are running multiple clients, and you select collect real time information for
one client but not another, OLT obeys whichever client was first to send a request
to the OLT Server. In other words, if the first client to send a request did not have
collect real time information selected, real-time information is not collected for
any of the clients.

Therefore, when running multiple client applications, set the same real-time option
(in the OLT Client Controller) for every client.

OLT Troubleshooting - OS/390

Confirm that your OS/390 client is connected to the Client Controller
If your OS/390 client environment is properly configured for OLT, the
fileivbtr11j.properties is created in the directory defined by the IVB_HOME
variable, and is updated each time you make a change in the OLT Client Controller.

Chapter 15. Trace and Debug Distributed Applications 531

532 Application Development Tools Guide

Chapter 16. IR Browser

Start the IR Browser

The interface repository (IR) browser is part of the CBToolkit development
environment. The IR browser enables you to examine and modify the contents of
the Component Broker interface repository. Use the IR Browser to:

v Navigate through the various repository views.

v Locate type definitions.

v Understand calling relationships among interfaces and operations.

v Delete objects.

To start the IR Browser:

v at the command prompt, enter irbrowser, or

v on a Windows NT desktop, select Start - Programs - IBM Component Broker -
Interface (IR) Repository Browser.

To exit the IR Browser, select Repository - Quit from the Repository menu or
double-click the IR Browser icon in the title bar.

Interface Repository (Advanced Programming Guide)

Configure Online Help

If the online help does not appear when you select Help - Topics , complete the
following configuration steps in the IR Browser:

1. Select Options - Help Setup

2. Enter the path to your web browser executable (for example,
x:\netscape\netscape.exe)

3. Enter the path to the documentation:

http://localhost:49213/cgi-
bin/cbwebx.exe/en_US/cbdoc/Extract/0/irb/hgirb.htm

Try invoking the online help by selecting Help - Topics .

View Objects in the Repository

View the Definition of an Object

To view the definition (contents) of an object, double-click on the object in the
Containment view. A textual representation (such as the IDL definition or IR dump
output) appears in the IDL view.

View Relationships Between Objects

To view the ancestors or children of an interface, double-click the object in the
Containment or Inheritance view. A graphical representation appears in the
Inheritance view, showing the following relationships to the highlighted object:

© Copyright IBM Corp. 1997, 1998 533

v direct base (parent) interfaces

v direct derived (child) interfaces

The flow of the Inheritance view is from left to right, that is, the base or parent
interfaces are to the left and the derived or child interfaces are to the right of the
selected interface.

To view the siblings of an interface, double-click the direct base interface in the
Containment view. The tree expands to show a hierarchical representation. A
container such as a module can be expanded to show sibling interfaces for the
interface.

“Find An Object”

View the Operations of an Interface

To view the operations of an interface, double-click the object in the Containment
or Inheritance view. The hierarchical representation for the object (showing the
container relationships) appears in the left pane of the window.

Search the Repository

Find An Object

To find an object in the interface repository, follow these steps:

1. Select Search - Find . The Find window opens.

The Search By: drop-down menu allows you to search for an object by name,
or by its unique repository ID. Both methods accept wildcard characters as
input.

2. Specify your Search Criteria.

534 Application Development Tools Guide

3. Press the Find button. All objects that match the search criteria are listed in the
Result scrollbox.

4. Double-click on an object to have it become the focus for the Containment ,
IDL, and Inheritance views.

5. Close the Find window.

Note: Due to the size and complexity of the interface repository, some searches
might take several minutes. You can click the Cancel button to stop the search and
narrow your search criteria.

“Find an Interface’s Referencing Operations”
“Search Using Wildcards”
“Search by Object Type”

Search Using Wildcards

The Find window uses a string-matching facility to find object types within the
selected containment, or entire repository.

v Use an asterisk (*) to match any number of characters.

v Use a question mark (?) to match one character.

“Find An Object” on page 534

Find an Interface’s Referencing Operations

To find the operations that reference a particular interface, follow these steps:

1. In the IR Browser, choose Search - Find .

2. Enter the name of the interface.

3. Under Object Types , select interface .

4. Under Used By , select the listed operations you are interested in.

5. Press the Find button.

“Search Using Wildcards”
“Search by Object Type”

Search by Object Type

To find an attribute, constant, exception, interface, module, operation or type:

1. Select Search - Find

2. In the Object Name field, enter the name of the attribute, constant, exception,
interface, module, operation or type.

3. Narrow the scope of the search by the selecting the appropriate Object Type .
Note: Use the Used By buttons to restrict the search to a list of objects that
reference the input objects.

4. Press the Find button.

Chapter 16. IR Browser 535

All objects that match the search criteria are listed in the Result scrollbox. When
you select an item from the list, that object is highlighted in the Containment view,
and displayed in the IDL and Inheritance views.

“Find an Interface’s Referencing Operations” on page 535
“Search Using Wildcards” on page 535

Modify the Repository

Delete Objects from the Repository

Be aware that objects deleted from the interface repository cannot be restored. To
permanently delete an object, follow these steps:

1. Allow updating of the interface repository by selecting Options - Allow
Updating Interface Repository .

2. In either the Containment or Inheritance view, select the object you want to
delete.

3. Select Edit - Delete . The IR Browser returns a dialog box listing any objects
that will also be deleted as a result of your action.

4. Verify that you want to delete all of these objects by pressing the Delete button.
Otherwise, press the Cancel button.

536 Application Development Tools Guide

Index

A
activity

in FlowMark
defined 398

addresses valid 479
application DDL files

defined 381
editing 387

application family
creating 375

applications
packaging 375
packaging in team environment 218

attributes 26
adding 247
deleting 249
editing 248

B
bag

adding 396
deleting 407
editing 406
working with 406

breakpoints 499
deferred, setting 449
deleting 450
disabling 450
enabling 450, 499
line breakpoint, setting 448
modifying characteristics 450
setting from the source window 447
setting in breakpoints list window 447
setting multiple 449
supported in interpreted Java 446
types of

load occurrence 472
build configuration options 370
build process

automated
setting up 210

building DLLs 363
scenario 368

business object
adding from a data object 287
behavior 27
defined 17
interface 17
OO-SQL implementation methods

customizing 275
relationship 17
setting implementation language 17
working with 281

business object file
creating 282

business object implementation
adding, with data object interface 284
composite

adding, with data object interface 355
editing 360

deleting 291
editing 290

business object interface
adding 283
composite

adding 354
editing 359

creating
by importing an IDL file 289

deleting 291
editing 290

business object module
adding 282

C
C++

debugging, supported data types 476
debugging, supported expression operands 474
debugging, supported expression operators 475
debugging of 435
debugging of class members 472
limitations when debugging 476
VisualAge C++ compiler options for debugging 427

call stack, view 462
change control

defined 202
managing a team environment 202
managing information 202
process

setting up 209
system 202

child component
with attributes duplication

defining 142
with key duplication

defining 149
with single datastore

defining 156
with views

defining 164
classes

C++, Java
importing 13

client application
adding 376

client DLL
defining 364

code
generating 363

Compare and Merge Tool for XML 228
comparing files with 228
merging files with 229

© Copyright IBM Corp. 1997, 1998 537

compiling
programs for debugging 427
programs for OLT 486

complex attributes
associating with persistent objects 263
defined 263
mapping patterns

Explode 263
Primitive 263

component
assembly 16
creating

for existing DB data 104
for new DB data 101
for PA data 115
for transient data 101

execution 16
Component Broker

applications 3
architectural layers 3
design principles for 3
frameworks

importing 86
component instance

creating
through FlowMark 404

deleting
through FlowMark 405

component method
calling from FlowMark 404

components
calling methods on 15
defined 15
objects 15

composite business objects
attributes 175
defined 175
helper objects 175
key 175
methods 175
working with 353

composite component
Conjunction 173
creating 173

overview 172
defined 173
Disjunction 173
objects, composed of 173

composite keys
adding 360
defined 176
editing 362
using for location of composition components 176
working with 360

composition
adding 350
class source files 174
creating composite business objects from 174
defined 174
editing 352
helper objects 174

composition (continued)
modules

adding 349
objects, composed of 174
restrictions 425
working with 348

composition file
creating 349

constructs
constant 26
defined 26
deleting 280
editing 280
enumeration 26
exception 26
structure 26
typedef 26
union 26
with file scope

defining 278
with interface scope

defining 279
with module scope

defining 279
working with 277

container 345
container instances

creating 346
deleting 348
editing 348
working with 345

copy helpers
adding 294
attributes 21
defined 21
deleting 295
editing 295
implementations 21
instances 21

critical sections 469
customized homes

creating 343
deleting 345
editing 344
working with 342

D
data access pattern 34
data encoding schemes 109

binary 5
double byte character set 5

data object
adding

from a DB persistent object 304
from a PA persistent object 305

adding from a business object 302
behavior 30
defined 18
implementation 18
interface 18

538 Application Development Tools Guide

data object (continued)
using 18

data object file
creating 303

data object implementation
adding 299
deleting 313
editing 310

data object interface 29
creating 297

by importing an IDL file 306
deleting 312
editing 309

data object module
adding 304

data objects
working with 296

data structures
adding

input 397
deleting 408
editing 408
FlowMark 396
input 396
member 396
output 396
working with 408

data type mappings
DB2 110
Oracle 113

DB (database) persistent objects
deleting 317

DB (database) schemas
deleting 333

DB persistent objects
editing 317

DB schema group
deleting 320
editing 319

DB schemas
creating

by importing an SQL file 321
editing 329

DDL
file

structure 389
files

objects 389
SQL 114

DDL (Data Definition Language)
system management 114

DDL Editor
defined 382
file 382
process 382
using 382

DDL files 384
applications 381
creating, editing 384

deadlocks 470
debug on demand 438

debugger monitors explained 457
debugger windows explained 440
debugging

attaching to a running process 435
behaviour of the debugger at startup 439
client applications from startup 497
command-line parameters 436
compiling programs 427
halting execution 455
invoking the debugger 433
monitoring expressions and variables 458
of distributed applications 495
options 434
race conditions 471
remote 442
remote, starting program 443
restarting a program 455
running a program 453
search order 439
skipping sections of code 455
source window views, explained 441
starting the debugger 433
step commands 442, 453
stepping and functions 454
terminating a debug session 456
troubleshooting

code you did not write 442
debugger cannot find source code 478
debugger is using different executable version

478
problems getting a source or mixed view 441

view a location in storage 461
window system lockups 473
writing programs 427

defined 395
dependencies

cross-project
managing 230

design patterns
defined 107
iterators 107

designing in Rose 73
Development

Java
requirements for 8

Multi-platform
code generation 187
constraints 187
method implementation 187
views 187

DLLs
debugging 451

from the breakpoints list 452
from the load occurrence dialog 451
from the session control window 452
from the source window 452

E
Enterprise Access Builder (EAB)

defined 116

Index 539

Enterprise Access Builder (EAB) (continued)
system

managing a team environment 116
managing information 116

environment 31
environment variables

debugger 432
CLASSPATH 432
INCLUDE 432
IVB_DBG_CASESENSITIVE 430
IVB_DBG_LANG 430
IVB_DBG_LOCAL_PATH 430
IVB_DBG_NUMBEROFELEMENTS 431
IVB_DBG_OVERRIDE 431
IVB_DBG_PATH 431
IVB_DBG_REMOTE_SEARCH_PATH 431
IVB_DBG_TAB 431
IVB_DBG_TABGRID 432

setting for the debugger 429
exported design

working with 91

F
filters

available 9
creating

for viewing objects pane 10
creating new 9

FlowMark 395
databases 395
Definition Language 395
workflow manager 395

FlowMark Bag
bag

defined 395
programs 395

FlowMark business objects
working with 403

foreign key
patterns 132
relationships 132

foreign key pattern
defining 133

form of persistent behavior, implementation 32
framework methods

calling 24
defined 24
editing 270
special 24

G
get and set methods

defined 23
editing 270

H
handles

for storing pointers 35

heap use
debugging of 465, 466

home
defined 342
instance 342
specialized (customized) 342

I
IDL (Interface Definition Language) files

dependencies within 129
inheritance

abstract base class 140
data object implementation 36
defined 137
recommended, for component objects 137
with attributes duplication 141
with key duplication 147
with single datastore 155
with views 162

inheritance and overriding
in business objects 138
in data objects 139

inheritance pattern
for persistence 140

initializer method
adding 268

input parameters
mapping to input data structure 400

install image
generating 379

integration project
adding to team environment 208

Interface Repository Browser 533

J
Java

applets, debugging 437
attaching debugger to a running JVM 437
breakpoints supported 446
compiler options for debugging 428
expressions supported when debugging 477
limitations when debugging interpreted 477

K
key

adding 292
defined 21
deleting 293
editing 293
implementations 21
using 21

key and copy helper
inheritance 138

overriding 138
key assistant

defined 22
interface 22

540 Application Development Tools Guide

L
load occurrence breakpoints 472

M
makefiles

generating 367
managed object

adding 22, 340
configuring 22, 377
defined 22
deleting 341
editing 341
using 22
working with 339

managed object configuration
deleting 379
editing 379

mapping
attributes

using a key 258
using a mapping helper 260
using the default mapping pattern 257

business object
to data object 288

complex attributes
using the Explode pattern 265

component
to data structure 400

data object
to child’s persistent object 255
to DB persistent object 251
to parent’s persistent object 254

mapping helper
class 105
file

default 105
methods 105
providing your own 105
using 105

mapping rules
Object Builder to Rose 87

method body
external files for 273

methods
deleting 277
for public attributes 23
get 23
importing changes 272
push-down

in Enterprise Access Builder 25
in Object Builder 25
using 25
using ECI 25
using HOD 25

relationship
using 25

set 23
User-Defined

defining 23
providing method bodies 23

model
checking for consistency 412

O
Object Builder

components 1
defined 1
getting started with 39
panes 1
preferences

setting 7
running in batch mode 11
starting 1

Object Level Trace
command-line parameters 527
environment file 525
languages and platforms supported 484
monitoring modes 485
opening a trace file 508
overview 481
reorder trace lines 506
saving the display 508
scenarios 509

C++ client and BO on AIX 522
debug Java client from startup 515
Java client and C++ BO 512
step by step debug mode 518

Start the components on separate machines 490
trace display symbols, explained 500
troubleshooting

distributed debugging 530
java clients 529
OS/390 531
real time display 531
startup 528

object reference 29
storing 135

optimized code
debugging of 467, 468

OS/390
tracing applications with OLT 492

output parameters
mapping to input data structure 402
mapping to output data structure 401

P
PA (Procedural Adaptor) persistent objects

deleting 336
PA persistent objects

editing 336
using push-down methods with 274
working with 333

PA schema
creating

by importing a PA bean 337
PA schemas

deleting 339
editing 339
working with 337

Index 541

partial order display 502
pass ticket

composition 372
for OS/390 372
in RACF 372
using 372

performance analysis 504
persistent object

adding from DB schema 316
adding from PA schema 334
database (DB) 19
ESQL framework methods

customizing 276
implementation

database caching 19
database embedded SQL 19

procedural adaptor (PA) 19
persistent object and schema, adding 313
platform constraints

setting 189
platform differences 188
procedural adaptor (PA)

bean
importing 117

persistent object 117
schema 117

process activity 398
process list dialog 436
profile

file 372
for remote OS/390 build 372

program
activity 397
adding 398
deleting 410
editing 409
in FlowMark 397
registration 397
working with 409

program activity 398
project

creating
in a team environment 215

editing
in a team environment 216

importing into Rose 92
moving 227
splitting

for team development 206
starting 6

project divisions
changing 227

projects
directories 4
files 4
migrating, old 7
model name

using 4
organization 4
subdirectories 4

R
Rational Rose

class properties
exporting 81

class relationships
associations and aggregations 84
exporting 84
inheritance 84

classes
mapping to Object Builder classes 81

Component Broker Frameworks in 89
constructs 79

exporting 79
defined 74
exporting from Rose 89
IDL name scoping in 77
setting up 74
using 74

Rational Rose design
exporting to team environment 204

real time display 503
record of directories 440
referential integrity

customizing 108
registers

changing the contents of 463
changing which are displayed 464
floating-point 464
viewing the contents of 461

registers monitor 464
relationship

circular
defining 132

one-to-many
defining 131

one-to-one
defining 130

remote build 372
launching 373

remote debugging 488
restrictions

Object Builder 419
Rose Bridge

exporting design to Object Builder project 76
Rose Bridge, the

importing design into Rose 76
loading Component Broker frameworks 76
re-exporting design 76

S
scenarios

building DLLs or shared library files 47
creating component 39

for new DB data 102
for PA data 118

creating composite component 177
develop multi-platform applications 190
exporting from Rose 95
importing attribute changes into Rose 98

542 Application Development Tools Guide

scenarios (continued)
inheriting with attributes duplication 144
inheriting with key duplication 151
inheriting with single datastore 158
inheriting with views 165
installing and running applications 61
installing and running applications with InstallShield

57
launching remote OS/390 build 373
packaging an application 50
team development with Rose 218
tracing and debugging applications 65
uninstalling an application 71
uninstalling an application using InstallShield 70
unit testing for procedural adaptors 126

schema
DB

creating 20
naming 20

group
naming 20

PA 20
schema groups

creating 318
selected event 501
server application

adding 377
server DLL

defining 366
Session service 30
sessional business object

adding endResource() to 117
SmartGuide Customizer for XML

starting 234
SmartGuides

constraining values in 240
constraints 241
creating 233
deriving values in 237
distributing 245
editing 244
in SmartGuide Customizer for XML

using 233
layout

defining 242
macros

defining 235
propagating values in 239
running 243
testing 243
value lists

customizing 237
source language statements, debugging of 473
special framework methods

del() 24
editing 271
insert() 24
retrieve() 24
setConnection() 24
update() 24

SQL clauses
using complex relatonships in 326

SQL file
generated

editing 331
re-importing 330

SQL View Editor 323
state data 18

pattern for handling 27
step by step debugging 498
storage monitor, change address displayed 459
storage monitor, opening 458

T
tagging events 507
Tasks and Objects pane

filtering 9
searching 10

team development
defined 201
environment

working with a Rose package 201
working with an Object Builder project 201

setting up 211
team environment

building DLLs in 217
deleting projects in 217
importing projects from 212
maintaining 223
setting up 204
working in 212

threads, debugging of 468, 473
tracing

distributed applications 489
Transaction Object 116
Transaction Record 116
troubleshooting

inability to start Object Builder on AIX 411
memory problems 411
odd behavior 411

U
user-defined methods

adding code for 267
editing 269

V
variable contents, viewing 460
view

creating
with SQL View Editor 324

editing 328
with SQL View Editor 325

W
What’s New

Compare and Merge Tool for XML 2

Index 543

What’s New (continued)
filtering 2
FlowMark support 2
miscellaneous product changes 2
Model Consistency Checker 2
OS/390 support, extended 2
SmartGuide Customizer for XML 2
Tasks and Objects pane, finding objects in 2
team development, easier use of 2
wizards 2

X
XML

exporting 224
importing 225
model interchange with 203

XML wizards
constraining values in 240
constraints 241
creating 233
deriving values in 237
distributing 245
editing 244
in SmartGuide Customizer for XML

using 233
layout

defining 242
macros

defining 235
propagating values in 239
running 243
testing 243
value lists

customizing 237

544 Application Development Tools Guide

IBM

Printed in the United States of America

SC09-2705-03

