

Component Broker for Windows NT and AIX
CICS and IMS Application Adaptor Quick Beginnings

Release 2.0

Document Number GC09-2703-03

March 10, 1999

Owners:
IBM Corporation, http://www.ibm.com

Component Broker Home Page, http://www.software.ibm.com/ad/cb/

IB
M

Component Broker for Windows NT and AIX

CICS and IMS Application Adaptor Quick Beginnings

Release 2.0

GC09-2703-03

IBM Component Broker for Windows NT and AIX

CICS and IMS Application Adaptor Quick Beginnings

Release 2.0

GC09-2703-03

 Note

Before using this information and the product it supports, read the general information under Appendix G, “Notices” on
page 253.

Third Edition (December 1998)

This edition applies to Release 2.0 of Component Broker and to all subsequent releases and modifications until otherwise indicated
in new editions.

 Copyright International Business Machines Corporation 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

About This Book . xi
Who Should Read This Book . xi
How This Book is Organized . xi
Documentation Conventions . xii
The Component Broker Documentation . xiii

Chapter 1. Introduction . 1
The Procedural Application Adaptor . 1
What the PAA Does . 1
How Customers Use the PAA . 2
Elements of the PAA . 2
How the Parts of PAA Work Together with Component Broker . 3

Host On-Demand . 3
External Call Interface . 5
Advanced Program to Program Communication . 7

Component Broker Flows for a Pessimistic APPC Connection . 9
Component Broker Flows for an Optimistic APPC Connection . 10

Chapter 2. Developing a PAA Application . 13
Analyzing the Existing CICS/IMS Transactions . 14
Designing the Objects . 15
Creating the PAO . 15
Parsing the Definitions . 16
Creating a Mapper . 17
Creating the Commands and Navigators . 18
Modifying the PAO CRUD Methods to Call Commands and Navigators 20
Enabling Debugging . 21
Unit Testing in the VisualAge for Java Environment . 21
Problem Determination . 22
Importing Into Object Builder . 24
Push Down Methods . 25
CICS and IMS Overview . 25
Definitions . 27

Chapter 3. Planning the Install . 29
Packaging . 29
System Requirements . 29
Prerequisites . 29
Communicating with CICS via APPC . 31
The Component Broker Package . 32
Installation Considerations . 32
Differences Between VisualAge for Java for Component Broker 1.3 and 2.0 33

General Differences . 33
PAO Beans . 33
Key (Applies to all scenarios) . 34
Records and Record Mappers (new for 2.0) . 34
Logon Class . 34
Transaction Objects versus Commands and Navigators in Host On Demand 34
Transaction Objects vs Commands and Navigators in ECI and APPC 35
Communication Spec replaced by Connection Spec . 35

 Copyright IBM Corp. 1998 iii

Additional Information . 35

Chapter 4. Installing the CICS and IMS Application Adaptor on Windows NT 37
Installing the CICS Transaction Gateway . 38
Configuring the CICS Universal Client Within the Transaction Gateway 39
Starting the Transaction Gateway . 41
Installing the Communications Server . 41
Configuring the Communications Server . 43

Setting Up the Remote Node . 43
Gathering Your Local Node Configuration Information . 43

Adjacent node . 44
Hardware Addresses . 44
Adjacent Nodes . 44

Configuring the Local Node . 45
Verifying the Installation of the Component Broker Run Time . 47
Installing the CICS and IMS Application Adaptor . 47

Pre-Installation . 47
Installation . 48

Configuring the CICS and IMS Application Adaptor . 48
Uninstalling the CICS and IMS Application Adaptor . 49

Chapter 5. Installing the CICS and IMS Application Adaptor on AIX 51
Installing the CICS Transaction Gateway . 52
Configuring the CICS Universal Client Within the Transaction Gateway 53
Starting the Transaction Gateway . 54
Installing the Communications Server . 54

Installing the Software Bundle Definitions . 55
Installing the Software . 55
Installing the Communications Adaptor Support . 55

Configuring the Communications Server . 56
Configuring the Node Parameters . 56
Defining a Connection . 56
Defining the Partner LU . 57

Verifying the Installation of the Component Broker Run Time . 58
Installing the CICS and IMS Application Adaptor . 58
Configuring the CICS and IMS Application Adaptor . 59
Uninstalling the CICS and IMS Application Adaptor . 59
Environment Setup . 60

Chapter 6. Developing an IMS-HOD Application . 61
The IMS Sample Application . 61

Interacting with the IMS IVP . 62
PhoneBookEntry Object Model . 63

Enterprise Access Builder Procedures . 64
Importing Pre-requisite Features into the Workspace . 64
Creating a Project/Package under VisualAge for Java . 65
Creating the Procedural Adaptor Object and Key . 65

PhoneBookPAOKey . 67
PhoneBookPAO . 67

Importing the tele.mfs File . 67
Creating the Record Mapper . 68
Creating the SingleLineRecord Type and Record Bean . 69
Creating the Command Beans . 73

Creating the CmdBaseToMenu Command . 74

iv CICS and IMS Application Adaptor

Command Bean Summary . 74
Creating the CmdMenuToClear Command . 76
Creating the CmdClearToBase Command . 76
Creating the CmdFirstToSecondSignon Command . 77
Creating the CmdSecondSignonToBase Command . 78
Creating the CmdMenuToMenuDisplay Command . 79
Creating the CmdMenuToMenuAddUpdt Command . 80
Creating the CmdMenuToMenuDel Command . 82

Creating Logoff/Logon/Class . 83
Creating Navigator Beans . 83

 Creating the NavigatorRetrieve Navigator . 83
Creating the NavigatorAddUpdate Navigator . 86
Creating the NavigatorDel Navigator . 87
Creating the NavigatorSignon Navigator . 89

Using the Navigators . 90
Creating and Editing the PBELogonLogoff Method . 90
Editing the PhoneBookPAO::retrieve method . 91
Editing the PhoneBookPAO::del method . 91
Editing the PhoneBookPAO::insert method . 92
Editing the PhoneBookPAO::update method . 92

Creating an Executable Class . 93
Run the Unit Test Main Method . 96
Exporting the PBE Package . 96

Developing an IMS-HOD Business Object . 97
Importing the Bean . 97
Defining the PhoneBookEntry Component . 98

Creating the Business Object File . 98
Defining the Business Object . 98
Connecting the Data Object Implementation to the Persistent Object 101
Defining the Managed Object . 102
Generating the Code . 102

Creating Client and Server DLL Files . 102
Defining the Client DLL File . 102
Defining the Server DLL File . 103
Building the DLL Files . 103

Packaging the Application . 103
Creating the Application Family . 103
Defining the Application . 104
Creating the Container Instance . 104
Configuring the Managed Object . 104
Generating the Applications . 105

Building the Application - Client and Server . 105
Installing the Application . 106

Loading the Application onto System Management . 106
Configuring the Application with System Management . 106

Running the Sample Application . 108

Chapter 7. Developing a CICS-HOD Application . 111
The CICS Sample Application . 111

Interacting with the CICS IVP . 112
Enterprise Access Builder Procedures . 113

Creating a Project and Package for the Samples . 113
Creating the Procedural Adapter Object and Key . 114

Creating the MenuCustomer Class . 114

 Contents v

Adding Properties to the MenuCustomer Class . 115
Creating the MenuCustomerKey Class . 116
Adding Properties to the MenuCustomerKey Class . 116
Linking the PAO and its Key Class . 116

Creating Record Beans and a Record Mapper . 117
Creating the DFHDGA Record Type and Record Bean . 117
Creating the DFHDGB Record Type and Record Bean . 119
Creating the Record Mapper . 119
Creating the SingleLine Record Type and Record Bean . 120

Verifying the Project Contents . 121
Creating Command Beans . 121

Creating the CmdBaseToMenu Command . 122
Command Bean Summary . 122
Creating the CmdMenuToBase Command . 124
Creating the CmdMenuToListing Command . 124
Adding Features to the CmdMenuToListing Command . 125
Creating the CmdListingToMenu Command . 126
Creating the CmdMenuToListingAddUpdt Command . 127
Adding Features to the CmdMenuToListingAddUpdt Command 127
Creating the CmdListingToMenuAddUpdt Command . 128
Creating the CmdMenuToMenuDelDebit Command . 128
Adding Features to the CmdMenuToMenuDelDebit Command 129

Creating Navigator Beans . 130
Creating the NavigatorRetrieve Navigator . 130
Creating the NavigatorAddUpdate Navigator . 132
Creating the NavigatorDelDebit Navigator . 134

Using the Navigators . 135
Editing the MenuCustomer::debit method . 135
Editing the MenuCustomer::del method . 135
Editing the MenuCustomer::insert method . 136
Editing the MenuCustomer::retrieve method . 136
Editing the MenuCustomer::update method . 137

Unit Testing the EAB Object . 137
Run the Unit Test Main Method . 140

Exporting the MenuCustomer Package . 141
Developing a CICS-HOD Business Object . 142

Importing the Bean . 142
Defining the Acct Component . 143

Creating the Business Object File . 143
Creating the Business Object . 143
Connecting the Data Object Implementation to the Persistent Object 146
Defining the Managed Object . 147
Generating the Code . 147

Creating Client and Server DLL Files . 147
Defining the Client DLL File . 147
Defining the Server DLL File . 148
Generating the Makefiles . 148

Packaging the Application . 148
Creating the Application Family . 149
Defining the Application . 149
Creating the Container Instance . 149
Configuring the Managed Object . 150
Generating the Application . 150

Building the Application - Client and Server . 150

vi CICS and IMS Application Adaptor

Installing the Application . 151
Loading the Application onto System Management . 151
Configuring the Application with System Management . 151

Running the Sample Application . 152

Chapter 8. Developing a CICS-ECI Application . 155
The CICS-ECI Sample Application . 155
Preparing the CICS System to Accept ECI Requests . 156
Enterprise Access Builder Procedures . 156

Importing Prerequisite Features into the Workspace . 156
Creating a Project and Package Under VisualAge for Java . 157
Creating the Procedural Adaptor Object and Key . 157

Modifying the BeCashAcctPAOKey . 159
Modifying the BeCashAcctPAO . 159

Importing the Customer COBOL File . 159
Creating the Record Mapper . 160
Creating the BeCashAcctCommand Class . 161
Modifying the Procedural Adaptor Object to Call the Commands . 163
Modifying the Procedural Adapter Object to Connect to the CICS Server 164
Creating an Executable Class . 165
Running the Customer Command Application . 167
Exporting the BeCashAcct Package . 167

Developing a CICS-ECI Business Object . 168
Importing the Bean . 169
Defining the CashAcct Component . 169

Creating the Business Object File . 169
Defining the Business Object . 170
Connecting the Data Object Implementation to the Persistent Object 172
Defining the Managed Object . 173
Generating the Code . 173

Creating Client and Server DLL Files . 173
Defining the Client DLL File . 173
Defining the Server DLL File . 174
Generating the Makefiles . 174

Packaging the Application . 174
Creating the Application Family . 174
Defining the Application . 175
Creating the Container Instance . 175
Configuring the Managed Object . 175
Generating the Applications . 176

Building the Application - Client and Server . 176
Installing the Application . 176

Loading the Application onto System Management . 177
Configuring the Application with System Management . 177

Running the Sample Application . 179

Chapter 9. Developing an IMS-APPC Application . 181
The IMS Sample Application . 181
Enterprise Access Builder Procedures . 182

Importing Prerequisite Features into the Workspace . 182
Creating a Project/Package under VisualAge for Java . 183
Creating the Procedural Adaptor Object and Key . 183
APhoneBookPAOKey . 184
APhoneBookPAO . 185

 Contents vii

Importing the PhoneBook COBOL File . 185
Creating the Input Information Class . 185
Creating the Output Information Class . 186

Creating the Record Mapper . 187
Creating the Command Classes . 189

Input Command . 189
Output Command . 190

Modifying the Procedural Adapter Object to call the Commands . 192
Exporting the pbe Package . 193

Developing an IMS-APPC Business Object . 194
Importing the Bean . 195
Defining the PhoneBookRec Component . 195

Creating the Business Object File . 195
Defining the Business Object . 196
Connecting the Data Object Implementation to the Persistent Object 198
Defining the Managed Object . 199
Generating the Code . 199

Creating Client and Server DLL Files . 199
Defining the Client DLL File . 199
Defining the Server DLL File . 200
Building the DLL Files . 200

Packaging the Application . 200
Creating the Application Family . 200
Defining the Application . 201
Creating the Container Instance . 201
Configuring the Managed Object . 201
Generating the Applications . 202

Building the Application - Client and Server . 202
Installing the Application . 203

Loading the Application onto System Management . 203
Configuring the Application with System Management . 203

Running the Sample Application . 205

Chapter 10. Developing a CICS-APPC Application . 207
The CICS-APPC Sample Application . 207
Preparing the CICS System to Accept APPC Requests . 208
Enterprise Access Builder Procedures . 208

Importing Pre-requisite Features into the Workspace . 208
Creating a Project/Package under VisualAge for Java . 209
Creating the Procedural Adaptor Object and Key . 209

ABeCashAcctPAOKey . 211
ABeCashAcctPAO . 211

Importing the Customer COBOL File . 211
Creating the Record Mapper . 212
Creating the ABeCashAcctCommand Class . 213

Inbound Side of Command . 215
Outbound Side of Command . 216

Modifying the Procedural Adaptor Object to call the Commands . 216
Exporting the ABeCashAcct Package . 217

Developing a CICS-APPC Business Object . 218
Importing the Bean . 218
Defining the ACashAcct Component . 219

Creating the Business Object File . 219
Defining the Business Object . 219

viii CICS and IMS Application Adaptor

Connecting the Data Object Implementation to the Persistent Object 221
Defining the Managed Object . 222
Generating the Code . 222

Creating Client and Server DLL Files . 223
Defining the Client DLL File . 223
Defining the Server DLL File . 223
Generating the Makefiles . 224

Packaging the Application . 224
Creating the Application Family . 224
Defining the Application . 224
Creating the Container Instance . 224
Configuring the Managed Object . 225
Generating the Applications . 225

Building the Application - Client and Server . 226
Installing the Application . 226

Loading the Application onto System Management . 226
Configuring the Application with System Management . 227

Running the Sample Application . 229

Appendix A. Installing the IVPs and CICS HOD Sample Programs 231
IVP Install Instructions . 231
Files for CICS HOD Sample Programs . 231
Installing on a CICS Transaction Server (NT or AIX) . 232

Appendix B. Installing the CICS-ECI Sample . 233
CICS-ECI Sample Install Instructions . 233
Content of the t3-trans Directory . 234

Appendix C. Installing the CICS DTP Sample Programs . 237
Installing on CICS/ESA . 237
Installing on a CICS Transaction Server (NT or AIX) . 237

Appendix D. Help with Using VisualAge for Java . 239
Required Reading in VisualAge for Java . 239
Interpreting the output from the JavaRASService trace facility. 239

Trace from the command . 240
Trace from the navigation . 243

Setting Breakpoints in the VCE generated code . 245
Breakpoints in commands . 245
Breakpoints in Navigators . 247

Interpreting the call stack output . 247

Appendix E. Interchange Files within VisualAge for Java . 249

Appendix F. IMS Configuration . 251

Appendix G. Notices . 253
Trademarks . 254

 Contents ix

x CICS and IMS Application Adaptor

About This Book

The Component Broker for Windows NT and AIX CICS and IMS Application Adaptor Quick Beginnings
provides a brief technical overview of the CICS and IMS application adaptor and provides information on
how to:

� Install and configure the CICS and IMS application adaptor portion of Component Broker with its
prerequisite software.

� Write your first CICS and IMS applications using application development tools provided on the
CBToolkit compact disc.

Do not use the either the Component Broker for Windows NT and AIX CICS and IMS Application Adaptor
Quick Beginnings or the Component Broker for Windows NT and AIX Quick Beginnings as a substitute for
the Component Broker library. The library provides detailed information beyond the concepts introduced in
this book. Before installing Component Broker, read the README file, located in the CBConnector
compact disc root directory, for last minute product information. After completing the tasks and exercises
in this book, review the rest of the product library.

Who Should Read This Book

The Component Broker for Windows NT and AIX CICS and IMS Application Adaptor Quick Beginnings is
intended for application programmers who want to:

� Understand the basics of the CICS and IMS application adaptor run-time.

� Plan an initial installation of the CICS and IMS run-time on top of an existing Component Broker
install.

� Install the CICS and IMS application adaptor portion of Component Broker.

� Develop basic applications for IMS and CICS backend systems.

How This Book is Organized

Chapter 1, “Introduction” on page 1 provides a introduction to the functions and features of the
Component Broker CICS and IMS application adaptor as they apply to this document.

Chapter 3, “Planning the Install” on page 29 describes the required system environment and software
prerequisites for installing the CICS and IMS application adaptor run-time environment. This chapter
describes which installable units are part of this package.

Chapter 4, “Installing the CICS and IMS Application Adaptor on Windows NT” on page 37 provides the
procedures for installing, configuring, and uninstalling the CICS and IMS application adaptor portion of
Component Broker and its prerequisite software on Windows NT.

Chapter 5, “Installing the CICS and IMS Application Adaptor on AIX” on page 51 provides the procedures
for installing, configuring, and uninstalling the CICS and IMS application adaptor portion of Component
Broker and its prerequisite software on AIX.

Chapter 6, “Developing an IMS-HOD Application” on page 61 provides an end-to-end sample application
using the principles of IMS and Host On-Demand (HOD).

 Copyright IBM Corp. 1998 xi

Chapter 7, “Developing a CICS-HOD Application” on page 111 provides an end-to-end sample application
using the principles of CICS and Host On-Demand (HOD).

Chapter 8, “Developing a CICS-ECI Application” on page 155 provides an end-to-end sample application
using the principles of CICS and its external call interface (ECI).

Chapter 9, “Developing an IMS-APPC Application” on page 181 provides an end-to-end sample
application using the principles of IMS and Advanced Program-to-Program Communication (APPC).

Chapter 10, “Developing a CICS-APPC Application” on page 207 provides an end-to-end sample
application using the principles of CICS and Advanced Program-to-Program Communication (APPC).

Appendix B, “Installing the CICS-ECI Sample” on page 233 provides an instruction for installing the CICS
ECI and HOD Transaction Server and the Encina shared file system (SFS) required to run the CICS-ECI
sample.

Appendix C, “Installing the CICS DTP Sample Programs” on page 237 provides procedures to install, set
up, and configure the two CICS DTP sample programs on a CICS region.

Appendix E, “Interchange Files within VisualAge for Java” on page 249 provides details on exporting the
.class and .java files from one version of VisualAge for Java to another version.

 Documentation Conventions

The following conventions distinguish different text elements.

plain Window titles, folder names, icon names, and method names.

monospace Programming examples, user input at the command line prompt or into an entry field, directory
paths, and user output.

bold Menu choices and menu names, labels for push buttons, check boxes, radio buttons,
group-box controls, drop-down list boxes, combo-boxes, notebook tabs, and entry fields.

italics Programming keywords and variables, titles of documents, and initial use of terms that are in
the glossary.

The following short cut conventions are used to abbreviate menu selections and object expansions within
tree views of the System Manager User Interface and Object Builder.

→ The right arrow when used within a menu shows a series of menu selections. For example, “File →
New” is translated to mean: “On the File menu, click New”.

The right arrow when used within a tree view shows a series of folder (or object) expansions. For
example, “Expand Management Zones → Sample Cell and Work Group Zone → Configuration” is
translated to mean:

1. Expand Management Zones.
2. Expand Sample Cell and Work Group Zone.

 3. Expand Configuration.

Note: An object in a view can be expanded when there is a plus sign (+) beside that object. After
an object is expanded, the plus sign is replaced by a minus (-) sign.

+ Expands a tree structure to show more objects. To expand, click the plus sign (+) beside any object.
If you double-click the object, a new tree structure is displayed with that object as the root of the
tree.

xii CICS and IMS Application Adaptor

- Collapses a tree structure to review from view its containing objects. To collapse, click the minus
sign (-) beside any object.

left mouse button
Used for all actions in the application except for opening the pop-up menu of an object. For example,
if you click with the left mouse button on an object, it is selected. Click with the left mouse button on
a menu option to perform that action.

right mouse button
Opens the pop-up menu of an object that contains a list of actions that can be performed on that
object. The list varies depending on the type of object.

WIN

Denotes a section that applies only to the Windows 95 or Windows NT platform. Do not interpret this
symbol to denote that an equivalent AIX section exists.

Note: The Windows 95 platform only supports the Component Broker Java client.

AIX

Denotes a section that applies only to the AIX platform. Do not interpret this symbol to denote that
an equivalent Windows section exists.

The Component Broker Documentation

The following information is part of Component Broker:

� Help information is available from Component Broker product panels.

� The Component Broker online library can be viewed using a frames-compatible Web browser:

 http://localhost:49213/cgi-bin/cbwebx.exe/en_US/cbdoc/Extract/ð/index.htm

� Component Broker for Windows NT and AIX Quick Beginnings, G04L-2375 explains how to easily
create and verify a starter Component Broker environment. These instructions walk the user through a
typical server and client installation. Users can extend this configuration using the information in the
Component Broker for Windows NT and AIX Planning, Performance, and Installation Guide.

� Component Broker for Windows NT and AIX Planning, Performance, and Installation Guide,
SC09-2798 provides a comprehensive overview of the Component Broker environment, then guides
the user through planning considerations including capacity planning, performance tuning,
prerequisites, and migration. It also leads the user through installation options for all Component
Broker environments.

� Component Broker for Windows NT and AIX Oracle Application Adaptor Quick Beginnings,
GC09-2733 provides a brief technical overview of the Oracle application adaptor and guides the user
through its installation and configuration. Step-by-step instructions guide the user through creating an
initial Oracle application using application development tools included in the CBToolkit package.

� Component Broker for Windows NT and AIX MQ Series Application Adaptor Quick Beginnings,
SC09-2869 provides a brief technical overview of the MQ Series application adaptor and guides the
user through its installation and configuration. Step-by-step instructions guide the user through creating
an initial MQ Series application using application development tools included in the CBToolkit
package.

� Component Broker for Windows NT and AIX System Administration Guide, SC09-2704 provides
information about configuring and operating one or more hosts managed by Component Broker. It also
provides general information about using the System Manager User Interface.

 About This Book xiii

� Component Broker for Windows NT and AIX Application Development Tools, SC09-2705 explains how
to create and test Component Broker applications using the tools provided in the CBToolkit with a
focus on common development scenarios such as inheritance and team development.

� Component Broker Programming Guide, G04L-2376 describes the programming model including
business objects, data objects, and information about MOFW, IDL, and C++ CORBA programming.

� Component Broker Advanced Programming Guide, SC09-2708 describes the Component Broker
implementation for the CORBA Object Services and the Component Broker Object Request Broker
(including remote method invocation and the Dynamic Invocation Interface (DII) procedures), Session
Service, Cache Service, Notification Service, Interlanguage Object Model (IOM), and work-load
management (WLM).

� Component Broker Programming Reference, SC09-2810 contains information about the APIs available
to Component Broker application developers.

� Component Broker for Windows NT and AIX Problem Determination Guide, SC09-2799 explains how
to identify and resolve problems within a Component Broker environment using the tools provided with
Component Broker. The book includes information on installation problems, run time errors, debugging
of applications, and analysis of log messages.

� Component Broker Glossary, SC09-2710 contains terms and definitions relating to Component Broker.

� OS/390 Component Broker Introduction, GA22-7324 describes the concepts and facilities of
Component Broker and the value it has on the OS/390 platform. The audience is a knowledgeable
decision maker or a system programmer.

� OS/390 Component Broker Planning and Installation, GA22-7331 describes the planning and
installation considerations for Component Broker on OS/390.

� OS/390 Component Broker System Administration, GA22-7328 describes system administration tasks
and operations tasks, as provided in the system administration user interface for OS/390.

� OS/390 Component Broker Programming: Assembling Applications, GA22-7326 provides information
for assembling applications using Component Broker on OS/390.

� OS/390 Component Broker Operations: Messages and Diagnosis, GA22-7329 provides diagnosis
information and describes the messages associated with Component Broker on OS/390.

xiv CICS and IMS Application Adaptor

 Chapter 1. Introduction

This chapter introduces the Procedural Application Adaptor within Component Broker. PAA support on
Component Broker enables application developers to access and extend access to existing procedural
resource managers, such as CICS and IMS. Once created, these objects can be called by Component
Broker Business Objects to access and manipulate resources on these third tier systems. This book
assumes that one is familiar with Component Broker.

The Procedural Application Adaptor

The Procedural Application Adaptor (PAA) of Component Broker enables Component Broker applications
to access procedural resources, such as CICS or IMS. Component Broker ships the CICS/IMS Application
Adapter that is based on its Procedural Application Adapter infrastructure. It consists of both a
development environment within Component Broker, as well as a run time environment. The run time
environment integrates the Component Broker services like Security, RAS, and Transaction capability with
the various technologies to communicate with these procedural systems like Communications Server,
CICS Universal Client, and Host On-Demand. The development environment involves using portions of
VisualAge for Java, with its Enterprise Access Beans support and generating beans that can be
understood by Object Builder.

What the PAA Does

The majority of customer data today exists in legacy data stores that have been around for years. To
leverage this data, customers access and manipulate the data through existing transaction programs. This
allows customers to extend and to add business value to their existing set of transactions using
Component Broker without disrupting their existing work flow. In respect to the reuse of existing
transactions, there are many reasons why this is more important than accessing the data directly.

� The existing applications implement business functions and rules. For example, even a simple debit
transaction may write trace records, fulfill regulatory reporting requirements, and ensure that daily and
weekly withdrawal limits are not exceeded.

� The transactions maintain data integrity between the existing databases, most of which are
non-relational and cannot rely on RDB integrity functions.

� The database record formats are complex and evolve over time. Due to the time evolved nature of the
record format, the application's implementation may be the only record of what the database schema
actually is. For example, for CICS File Control, the file record is often a variant record that is mapped
to a canonical form by the CICS transactions.

� The existing applications are carefully crafted to support efficient resource usage and integrity, and
cannot, or should not coexist with more complex Object Oriented (OO) applications that directly
access the databases.

All of the functions of the TP programs could be re-implemented in Component Broker business objects,
but this is not practical. Moreover, the existing applications are needed to support non-reengineered
business processes and for other application models like mission critical, extremely high volume OLTP, for
which distributed objects are not yet suitable.

 Copyright IBM Corp. 1998 1

How Customers Use the PAA

Customers, in using the Procedural Application Adaptor, create objects that wrap their legacy data. Access
to the legacy data is obtained by invoking existing transactions to retrieve the information. The objects
contain attributes that map to the bits of underlying data. Since the object represents the state of the
object in the legacy data store, its lifecycle is controlled by the standard data access operations create,
retrieve, update and delete (CRUD). Component Broker, and its Application Adaptor framework, drive
these object instances and call the CRUD methods at the appropriates times. For example, if a client
application is attempting to find an object that is not currently instanced in this server, it will create a new
object of the appropriate type and issue the retrieve method on it to retrieve all the state attributes that are
required. The tools that are provided in Component Broker for PAA support aid in mapping these object's
attributes to fields on a request to the underlying procedural system (as fields in a remote procedural call
(RPC) style request or fields on a screen). These requests flow through some form of client
communication mechanism to the third tier server and are executed with the appropriate data being
returned (if any). The figure below represents the target usage scenario for Component Broker.

Client
Application

Component Broker Server

EAB
Runtime

•
•
•

Comm Server
HOD
CICS JAVA
Gateway

CICS

IMS

Existing
Applications

BO DO PAO

Elements of the PAA
Client Application

The client application simply provides the presentation layer for the application. It calls
Component Broker Business objects to obtain and manipulate data. It may be a Java, C++, or
Active-X client.

Component Broker Server
The Component Broker server manages Component Broker Applications by instancing the
customer's objects as well as providing the necessary services to manage the accessing of the
data and its underlying resources.

Component Broker Application
Customer specified implementation of Business Objects and its underlying business logic.

Procedural Adaptor Object
Procedural Adaptor Object (PAO) is the cache element that contains the state of an object that
is backed by the Procedural Application Adaptor. PAOs inherit the four data access methods
(create, retrieve, update, and delete). Customers will use the VisualAge for Java tools
(specifically, the Enterprise Access Builder (EAB) support) to build Commands and Navigations
that will interact with the legacy system.

2 CICS and IMS Application Adaptor

PAA run time Library
Integrates the PAA support into Component Broker. It also provides the necessary mapping
and usage of underlying technologies that communicate with the tie-r3 server, such as
Communication Server, Host On-Demand (HOD), or the Transaction Gateway.

Host On-Demand
A member of the eNetwork software family that is a Java-based solution that incorporates
industry-standard Telnet 3270 (TN3270) protocols. Component Broker ships with a subset of
Host On-Demand. This subset provides a Java-based TN3270 client.

Transaction Gateway/CICS Client
Java/C++ client for a CICS server. It uses two proprietary protocols, ECI and EPI, to issue
transactions in CICS. ECI is an RPC-like interface into CICS. EPI is a screen interface into
CICS. The CICS Client and Transaction Gateway are requisites for Component Broker, and are
shipped with Component Broker.

Communications Server
Communications Server provides the LU 6.2 connection between Component Broker and the
CICS/IMS server. Communications Server is a prerequisite for Component Broker.

How the Parts of PAA Work Together with Component Broker

As PAA helps customers access legacy resources, there are three main technologies used within
Component Broker to access the underlying resources.

� Host On-Demand (HOD)
� External Call Interface (ECI)
� Advanced Program to Program Communication (APPC)

The following sections explain how Component Broker uses these technologies.

 Host On-Demand

The first technology is IBM's Host On-Demand (HOD). HOD gives Component Broker the ability to
simulate a user sitting in front of a TN3270 terminal. The simulated user will access the necessary screens
to manipulate the data in the tier-3 system. In looking at a PAA backed application that uses HOD (from a
client perspective), it looks like any other Component Broker-based client application. There is one small
difference. PAA client applications will register with Session Services to begin a session to start
manipulating data.

 Chapter 1. Introduction 3

Client

Client Application

Session ServicesSession Services Tier 3
Communications

PAO + TOs

Data Object

Business
Object (+ MO)

HOD

TCP/IP

CB Server

TN3270

Once registered with session services, context flows from the client to the server to inform any objects on
the Component Broker server that the client is participating within a session. For managed objects that are
configured in a sessional container, when initially activated in the server, they will register themselves as a
resource with session services. This resource that is registered will get called back when the client
terminates the session. If the client terminates the session requesting a checkpoint, an update is driven on
the managed objects to drive whatever updates are needed to the tier-3 system.

As managed objects are activated within the system, a retrieve is driven on the objects to retrieve their
state from the underlying tier-3 system. To retrieve the state, a customer generated navigation is called to
traverse the necessary screens to retrieve the state. A request by the Navigation requires a HOD
connection to the tier-3 system. Upon request for a connection to the tier-3 system, if one is not available,
one will be created and associated with a session. A resource will be registered with session services to
terminate the connection when the session has ended. All further requests for a connection during this
session will reuse this connection. As the navigation is executed by the PAA run time, screens are
constructed, passed to the tier-3 communications code, that will pass them to HOD. HOD, using it's
TN3270 based Java client code, executes the screens on the TN3270 daemon to which it is attached.
This TN3270 daemon may be a TCP/IP TN3270 daemon started by MVS, a CICS telnet daemon started
on a CICS server, or a CICS telnet daemon sitting in front of the CICS Universal Client.

4 CICS and IMS Application Adaptor

Client

BO BO BO

Prog2 Prog3Prog1

CB Server

Tier 3 Servers

As requests are made on the Component Broker objects and the framework drives the CRUD methods,
these individual CRUD requests complete. Once executed, there is no way to roll back what has occurred.
This can be viewed as a sync-level 0 transaction. In the figure above, as each Business Object is created,
it required a retrieve on each of the tier-3 programs. When the client ends the session with a checkpoint,
the framework drives updates to the underlying data store. The framework continues to drive updates to all
the resources even if one of the resources should fail.

External Call Interface

The second technology is the Transaction Gateway and the CICS Universal Client and usage of an
External Call Interface (ECI) request. This technology gives Component Broker the ability to issue
RPC-like requests to a CICS server to execute existing CICS transactions that manipulate the data in the
tier-3 system. In looking at a PAA-backed application that uses ECI, it looks like any other Component
Broker-based client application (like the HOD technology). PAA applications will register with Session
Services to begin a session to start manipulating data.

 Chapter 1. Introduction 5

Client

Client Application

Session ServicesSession Services

CICS Transaction
Gateway

PAO + TOs

Data Object

Business
Object (+ MO)

TCP/IP

CB Server

Tier 3
Communications

CICS Universal
Client

SNA

Like HOD, once registered with session services, context will flow from the client to the server to inform
any objects on the Component Broker server that the client is participating within a session. For managed
objects that are configured in a sessional container, when initially activated in the server, they will register
themselves as a resource with session services. This resource that is registered will get called back when
the client terminates the session. If the client terminates the session requesting a checkpoint, an update is
driven on the managed object to drive whatever updates are needed to the tier-3 system.

As managed objects are activated within the system, a retrieve is driven on the objects to retrieve their
state from the underlying tier-3 system. To retrieve the state, an EAB Command or Navigation is called to
build up and issue the necessary RPC-like request(s) to the tier-3 system. A request by the command or
navigation will require an ECI connection to the tier-3 system. Upon request for a connection to the tier-3
system, if one is not available, one will be created and associated with a session. A resource will be
registered with session services to terminate the connection when the session has ended. All further
requests for a connection during this session will reuse this connection. As the command or navigation is
run, buffers of data are constructed representing the ECI request and wrapped in a Java ECI call to the
Transaction Gateway. These Java ECI requests are then converted to ECI requests and passed to the
CICS Universal Client. The CICS Universal client will then issue the ECI request to its configured CICS
server.

6 CICS and IMS Application Adaptor

Client

BO BO BO

Prog2 Prog3Prog1

CB Server

Tier 3 Servers

As requests are made on the Component Broker objects and the framework drives the CRUD methods,
these individual CRUD requests complete. With ECI, each connection to a tier-3 system is associated with
a logical unit of work within the session. This can be viewed as a sync-level 1 transaction. If two objects
are configured in the same container to the same CICS region, they will use the same connection within
the session. As the framework drives updates, the updates are executed. If one of the updates within the
session fails, Component Broker has the ability to roll back that logical unit of work in the session. In the
example above, two of the business objects are configured in the same container. You will see that the
requests to run the Prog2 and Prog3 transactions will execute under a single logical unit of work, that can
be rolled back. If all objects participating in the session are configured in the same container on the same
server, this would exhibit transactional characteristics of atomicity.

Advanced Program to Program Communication

The third technology is Advanced Program to Program Communication (APPC). This technology gives
Component Broker the ability to issue RPC-like requests to a CICS/IMS server to execute existing
CICS/IMS transactions that manipulate the data in the tier-3 system in a transactional fashion. In looking
at a PAA backed application that uses APPC, it looks like any other Component Broker-based client
application that uses Component Broker transaction services. PAA APPC-based applications will register
with Transaction Services to begin a transaction before Component Broker objects in a transactional
container are manipulated.

 Chapter 1. Introduction 7

Terminal
Managed

File Access
Functions

Application
Functions

DTP
IMS
TM

Message
Processing

Region
Queues

Program Link

3270 Screens

Distributed
Program
Link (ECI)

APPC

3270 Screens

CICS IMS

OTMA

Once registered with transaction services, context will flow from the client to the server to inform any
objects on the Component Broker server that the client is participating within a transaction. For managed
objects that are configured in a transactional container, when initially activated in the server, they will
register themselves as a resource with transaction services. This resource that is registered will get called
back when the client commits/rollbacks the transaction. If the client commits the transaction, an update
driven on the managed object to drive whatever updates are needed to the tier-3 system.

As managed objects are activated within the system, a retrieve is driven on the objects to retrieve their
state from the underlying tier-3 system. To retrieve the state, an EAB Command or Navigation is called to
build up and issue the necessary RPC-like request(s) to the tier-3 system. A request by the command or
navigation will require an APPC connection to the tier-3 system. Upon request for a connection to the
tier-3 system, if one is not available, one will be created and associated with a transaction. A resource will
be registered with transaction services to terminate the connection when the transaction has ended. All
further requests for a connection during this transaction will reuse this connection. As the command or
navigation is run, buffers of data are constructed representing the APPC request and wrapped in an LU
6.2 request to the Communication Server. These LU6.2 requests are then sent to the partner LU 6.2
system (CICS/IMS) to be executed on the tier-3 side. Output from the request comes back as an LU 6.2
response from the tier-3 side.

8 CICS and IMS Application Adaptor

Client

BO BO BO

Prog2 Prog3Prog1

Tier 3 Servers

CB Server

As requests are made on the Component Broker objects and the framework drives the CRUD methods,
the individual requests complete. With APPC, each connection to a tier-3 system is associated with the
same logical unit of work within the transaction. If three objects are configured in transactional containers,
they will all have connections that are tied into the same logical unit of work. As the framework drives
updates, the updates are executed. If one of the updates within the transaction fails, Component Broker
can roll back the entire distributed transaction (due to the ability to do two-phase commit processing
across all of the participating tier-3 resources). This is because APPC has a sync-level 2 capability to act
not only as a communication mechanism, but also as a transactional resource manager.

The APPC support that we have added has two varieties: optimistic and pessimistic. The pessimistic
variety creates a sync-level 2 connection with its tier-3 partner from the beginning. This sync-level 2
connection usually requires the tier-3 system to register resources with a sync. point manager and hold
them for the duration of the transaction. The optimistic variety is targeted to hold resources for a shorter
period of time as it will create a sync-level 0 connection to the tier-3 system initially. When the updates
need to be driven to the tier-3 system, a sync-level 2 connection will be established, initial states retrieved
and compared (to ensure changes haven't taken place), and the updates will be driven under the
sync-level l 2 connection. As you can see, this has the added overhead of some extra flows to retrieve the
data another time.

Component Broker Flows for a Pessimistic APPC Connection

The following steps represent the typical flows for a pessimistic APPC connection throughout Component
Broker for a simple retrieve, modify, and update scenario.

1. The client will drive a findByPrimaryKey to the Component Broker server to find an given object by its
associated key.

2. The Component Broker server will look to see if the object already exists on the server under a given
transaction. If not, it attempts to instantiate the object and invoke internalizeByPrimaryKey on the DO
(that will set its state on the object's PAO).

3. The PAA framework drives retrieve on the DO delegating down to the PAO for it to gather its state
from the tier-3 system.

 Chapter 1. Introduction 9

4. The PAO drives a retrieve command (constructed using the EAB tools) to drive an RPC-like request
via an APPC connection to the backend system.

5. The tier-3 communications code checks to see if a connection exists to the tier-3 system associated
with the current transactional context. If so, it will reuse the connection.

6. If not, it will create a sync-level 2 APPC connection to the partner LU 6.2 system and register itself as
a resource with transaction services to be notified during commit/rollback processing.

7. Once connected, the EAB run time library issues a send of the data on that connection, and waits for
the results to be received back from the tier-3 system.

8. The state has now been retrieved, the object fully instantiated, has its reference returned back to the
client for manipulation.

9. The client manipulates the object (modifying a few of its non-key attributes).

10. The client then issues commit on its transaction.

11. The commit flows to transaction services to its associated coordinator to drive commit processing.

12. The managed object was registered with transaction services as a synchronization object to be called
prior to commit processing. The before_completion method is called on the MO to drive any updates
on the managed object to its underlying datastore.

13. Updates are driven on the data object (and delegated to its corresponding PAO object).

14. The PAO drives an update command (constructed using the EAB tools) to drive another RPC-like
request via the existing APPC connection to the back end system. This results in another set of
send/receive flows across the connection.

15. After the updates have been driven to the underlying datastore, a prepare is now called on all
resource objects that are registered with transaction services.

16. The OTS/APPC code starts a prepare on all of the currently allocated APPC conversations involved
with this transaction. If the updates and the prepare were successful, it would vote to commit the
changes to the underlying datastore.

17. If all of the resources vote commit, commit processing is invoked on all the transactional resource
objects.

18. OTS/APPC drives commit on the conversation. After the conversation is committed, it is deallocated.

19. All registered synchronization objects have after_completion called on them for cleanup processing.

20. Transaction services performs its necessary cleanup (as the transaction completed successfully).

21. Control is returned to the client to continue.

Component Broker Flows for an Optimistic APPC Connection

The following steps represent the typical flows for an optimistic APPC connection throughout Component
Broker for a simple retrieve, modify, and update scenario. The changes for optimistic versus pessimistic
have an asterisk (*) next to them to distinguish that different processing is happening.

1. The client drives a findByPrimaryKey to the Component Broker server to find a given object by its
associated key.

2. The Component Broker server looks to see if the object already exists on the server under a given
transaction. If not, it will attempt to instantiate the object and invoke internalizeByPrimaryKey on the
DO (that will set its state on the object's PAO).

3. The PAA framework drives retrieve on the DO delegating down to the PAO for it to gather its state
from the tier-3 system.

10 CICS and IMS Application Adaptor

4. The PAO drives a retrieve command (constructed using the EAB tools) to drive an RPC-like request
via an APPC connection to the back end system.

5. The tier-3 communications code checks to see if a connection exists to the tier-3 system associated
with the current transactional context. If so, it will reuse the connection.

6. * If not, it will create a sync-level 0 APPC connection to the partner LU 6.2 system and register itself
as a resource with transaction services to be notified during commit/rollback processing.

7. Once connected, the EAB run time library issues a send of the data on that connection, and waits for
the results to be received back from the tier-3 system.

8. * A copy of the received state is saved from the retrieve and associated with the PAO.

9. The state has now been retrieved, the object fully instantiated, has its reference returned back to the
client for manipulation.

10. The client manipulates the object (modifying a few of its non-key attributes).

11. The client then issues commit on its transaction.

12. The commit flows to transaction services to its associated coordinator to drive commit processing.

13. The managed object was registered with transaction services as a synchronization object to be called
prior to commit processing. The before_completion method is called on the MO to drive any updates
on the managed object to its underlying datastore.

14. Updates are driven on the data object (and delegated to its corresponding PAO object).

15. * As update is issued to the PAO, it will recognize that it is configured for optimistic support. Therefore,
another retrieve is issued on the PAO to gather its state again from the underlying datastore.

16. * This second retrieve will deallocate the sync-level 0 conversation and allocate a sync-level 2
conversation. It will then flow a second retrieve to the backend system.

17. * The results from this retrieve are compared with the original results (under the sync-level 0
operation). If different, a rollback is thrown back to transaction services. Otherwise...

18. The PAO will drive an update command (constructed using the EAB tools) to drive another RPC-like
request via the existing APPC connection to the backend system. This results in another set of
send/receive flows across the connection.

19. After the updates have been driven to the underlying datastore, a prepare is now called on all
resource objects that are registered with transaction services.

20. The OTS/APPC code starts a prepare on all of the currently allocated APPC conversations involved
with this transaction. If the updates and the prepare were successful, it would vote to commit the
changes to the underlying datastore.

21. If all of the resources vote commit, commit processing would be invoked on all the transactional
resource objects.

22. OTS/APPC would drive commit on the conversation. After the conversation is committed, it is
deallocated.

23. All registered synchronization objects would have after_completion called on them for cleanup
processing.

24. Transaction services performs its necessary cleanup (as the transaction completed successfully).

25. Control is returned to the client to continue.

 Chapter 1. Introduction 11

12 CICS and IMS Application Adaptor

Chapter 2. Developing a PAA Application

PAA Applications are developed within both the VisualAge for Java and Object Builder environments.
Essentially, the VisualAge for Java tools are used to develop the requests to the tier-3 system. Once the
requests are created, the artifacts created are imported into Object Builder and connected with the rest of
the Component Broker environment. The skill required to use the VisualAge for Java tool to develop the
components of the PAA application is comparable to that required for enterprise certification of VAJ.

• Composition Editor
• Entreprise Access Builder
• PAO translator
• class editor

C++/Java code,
IDL, makefiles

Java code

• Create C++ MOs, DOs,
POs, PAOs

Object Builder

Persistent
Object

Developing a PAA application consists of the following tasks:

� Analyzing the existing CICS/IMS transactions

� Designing the objects that are created in object space and how the attributes on the objects relate to
the fields on a screen/buffer passed to/from the CICS/IMS system

� Use the Application Development tools within VisualAge for Java to:

– Create your PAO
– Parse the COBOL definitions or BMS/MFS screen mappings
– Create a mapper to map from the PAO object to the EAB buffer or vice versa
– Develop commands and navigators to create, retrieve, update, and delete the information
– Modify the PAO CRUD methods to call the associated commands/navigators

 – Enable debugging
– Unit test navigations/commands to ensure they access the data correctly

� Use Object Builder to connect with Component Broker Business objects

� Deploy as any other Component Broker-based application

 Copyright IBM Corp. 1998 13

Analyzing the Existing CICS/IMS Transactions

Accessing existing transactions on these tier-3 systems requires some sort of client technology (client to
the tier-3 server). That technology may be screen based (using screen scraping techniques) or RPC
based (using programmatic client access technology) like APPC or ECI in order to access the legacy
transactions. With either mechanism, the semantics of the transaction must be fully understood to
successfully wrap these transactions within Component Broker. Understanding the transactions may
involve using them to discover the various ways they can be navigated and how they react to various
inputs. It may also involve looking at the underlying source code to fully understand what the transaction is
doing. The more that you understand about the existing transactions, the easier it will be to develop the
wrappers to map them to objects within Component Broker.

It is assumed that the tier-3 applications are stable, produce repeatable behavior, and are reliable to
connect to. Working with an untested tier-3 application adds unnecessary complexity to the development
of a PAA application, since logic errors may be hidden or misrepresented in the mapping into objects.

If the existing transactions were screen based, part of the analysis phase would be to understand what
navigations through what set of screens retrieved the information that you needed to understand. For
example, if you were attempting to get all of the information about a person through an existing CICS
screen based application, you would have to perhaps issue the initial menu transaction, enter some
information in a menu (such as the person's name), and be presented with a screen with the details about
that person. Once finished, you may have to clear the screen to get back to the original state to prepare to
enter another transaction.

If the existing transactions were RPC based, part of the analysis phase would be to understand what the
data areas look like that must be created in order to issue the transaction. For example, if you were
attempting to issue an ECI or APPC request to CICS, that data area layout could be defined in a COBOL
source file. You would have to get the source file to understand what the fields are that must be filled out
when the transaction is issued as well as what fields get filled in on the return from the transaction. In the

14 CICS and IMS Application Adaptor

following COBOL source file, the WS-COMMAREA-BUFFER identifies the format of the data that is
required by the CICS COBOL transaction as it is called via ECI or APPC from another application.

 \

 IDENTIFICATION DIVISION.

 PROGRAM-ID. BECASHAC.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 \

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 ð1 WS-COMMAREA-BUFFER.

ð3 COMM-REQUEST-TYPE PIC 9(2).

ð3 COMM-RETURN-VALUE-1 PIC X(8).

ð3 COMM-RETURN-VALUE-2 PIC X(8).

ð3 COMM-TRACE PIC X.

ð3 COMM-TOTAL-RECORDS PIC X(4).

ð3 COMM-RES-TYPE PIC X(2).

ð3 COMM-ACCOUNTID PIC X(8).

ð3 COMM-BALANCE PIC 9(8).

ð3 COMM-TYPE PIC X.

ð3 COMM-UTILITIES PIC X(12ðð).

 LINKAGE SECTION.

ð1 DFHCOMMAREA PIC X(1242).

 PROCEDURE DIVISION.

Designing the Objects

Once the existing transactions are analyzed, objects must be created within Component Broker that hold
the state from the transactions that are executed on the tier-3 system. The PAO will have a set of key
attributes that reflect its identity in the tier-3 system. It also has a set of other non-key attributes
corresponding to the state of the object. For example, in looking at the COMMAREA defined in the
preceding COBOL program, the fields COMM-ACCOUNTID and COMM RES-TYPE are the two fields that
represent the key to identify an account in a CICS server. The fields COMM-BALANCE, COMM-TYPE,
and COMM-UTILITIES represent three other fields that are non-key but information nonetheless about the
account.

How to deal with the exceptions that may show up in the objects used to communicate to CICS and IMS
is covered in the VisualAge for Java on-line help. See Appendix D, “Help with Using VisualAge for Java”
on page 239 for a reference to this design information.

Creating the PAO

Using VisualAge for Java, a new class must be created that inherits from EntityProceduralAdapterObject.
This class introduces four abstract methods that need implementations filled in. The methods (insert,
retrieve, update, and delete) correspond to the four data access mechanisms that are driven by the
Component Broker framework when activating or passivating objects in the Component Broker server. As
attributes (or properties) are defined for a class within VisualAge for Java, getter and setter methods are
created for the attributes. For example, in the PAO shown in the following figure, you can see what
methods will eventually exist. Note that there are two methods missing (the setter methods for the key
attributes). These methods were removed since they will be obtained via another object that will be tied
tightly with this PAO (the PAOKey object).

 Chapter 2. Developing a PAA Application 15

The PAOKey object inherits from BusinessObjectKey. A key is used to locate its target object, an
EntityProceduralAdapterObject, in the current object space. The name of the key class created must be
the name of the target PAO with a “Key” appended at the end. In the case above, it will look like the
description shown in the following figure.

Parsing the Definitions

A Record, in VisualAge for Java, is a logical collection of application data elements. These data elements
are related by application level semantics that is stored and retrieved as a unit. For example, data
elements in the ECI case would correspond to fields in a COMMAREA. All of the fields, such as the
COMMAREA, are retrieved as a unit. After you retrieve a record, you can then access the individual data
elements directly. In the ECI example above, you can access the individual fields. These records will
define the structure of what the input or output to a Command is within Enterprise Access Builder. To
create a Record Type that is based on the structure defined by a COBOL program, the Create COBOL
Record Type tool is used to parse the .ccp file and generate a record type. Within this tool, a user
specifies the name and location of the .ccp file and the data area/COMMAREA desired within the .ccp file,
and the tool generates a dynamic record type bean describing the layout of the data area. This record
type can be edited to manipulate the fields if desired. When finished, another tool is run to generate
Record Beans that are used by the Commands that interface with the CICS/IMS system.

If the definitions that defined the input and output fields to the commands were BMS or MFS maps, then a
different set of tools are used to create the record types. The tools are called Create BMS Record Type
and Create MFS Record Type , respectively. The record types generated would contain information that
would describe the layout of the input/output screens.

16 CICS and IMS Application Adaptor

Creating a Mapper

Once you have a PAO that requires data from a record bean (or vice versa), a mapping is needed to
permit the exchange of data between the record data contained in a command and a PAO (or set of
PAOs). The Mapper Editor is used to generate a mapper object to do this mapping for you. In the mapper
editor, you specify two entities; a record bean to map to/from, and a PAO to map to/from. Once both have
been specified, you can visually connect the properties in the record bean to properties in the PAO (and
which way the data should flow between the two). In the following example, the appropriate fields in the
PAO have been mapped to the corresponding fields in the record bean.

In the case of a mapping between a record bean defining a screen layout, the mapper can be configured
to present the screen layout that is defined by the record beans. The following example demonstrates
such a configuration.

 Chapter 2. Developing a PAA Application 17

Creating the Commands and Navigators

An Enterprise Access Builder Command wraps a single interaction with a host system. Upon execution, an
EAB Command takes its input data and sends the data via a connector to a host system. It then returns,
as its output, the data returned by the host system. There are two ways to construct a command: Visual
Composition Editor or the Command Editor.

When constructing a command, the input data, output data, and connection information must be defined to
the command. Using the Command Editor, each piece of the command can be accessed in a task
approach (see the following figure).

Using the Visual Composition Editor, each part needed for the Command can be placed in the workspace
(see the following figure).

18 CICS and IMS Application Adaptor

If multiple interactions with the backend system are necessary, such as a set of screens needing to be
traversed or multiple RPC requests to a backend system, a Navigator can be built up to script the
interactions with the backend system. From the outside, a Navigator looks like a command. It consists of
commands and other navigators strung together to form a more complex interaction with a host system.
When you execute a Navigator, it takes input and provides it to the commands and navigators that it is
composed of. Each command in the Navigator is executed in the order specified. After the final
interaction, the output of the individual commands and navigators can be made available as output of the
navigator. For example, for a set of screen interactions, the following sample would represent a Navigator.

 Chapter 2. Developing a PAA Application 19

Modifying the PAO CRUD Methods to Call Commands and Navigators

Now that Commands or Navigators have been created to interact with the backend system, they should be
tied together with the CRUD methods that the Component Broker Application Adaptor framework will call.
Therefore, each method should be modified to call the appropriate command while passing the appropriate
information to interact with the backend system. In the following example, a command is created, the key
information set on it, and the execute command is called to execute the interaction with the backend CICS
system. Afterwards, output information is queried to determine whether or not the command had executed
properly.

public void insert() throws com.ibm.ipaa.IDataKeyAlreadyExistsException {

BeCashAcctInCommand bec = new BeCashAcctInCommand();

 bec.setCeInputWS__REQUEST__TYPE(new Java.lang.String('ð1'));

 bec.setCeInputWS__ACCOUNTID(this.getAccount_ID());

 bec.setCeInputWS__RES__TYPE(this.getRes_type());

 bec.execute();

 if (bec.getCeOutput1WS__RETURN__VALUE__1().equals('ðððððð14'))

throw new com.ibm.ipaa.IDataKeyAlreadyExistsException();

20 CICS and IMS Application Adaptor

 Enabling Debugging

To ensure that exceptions flow correctly, in the handleException(Throwable) method in each of the
command beans (but not the BeanInfo beans), add the following statement as outlined in the VisualAge
for Java help section, "Implementing the handleException Method for an Enterprise Access Builder
Command": this.internalExceptionHandler(exception);

To get maximum diagnostic information, enable the RAS tracing facility described in the VisualAge for
Java help section, "Class com.ibm.connector.infrastructure.java.JavaRASService". By placing the following
statement in a strategic location of your main() method during unit test, you enable diagnostic information
at trace level 3:((JavaRASService)runtimeContext.getRASService()).setTraceLevel(3);

If you do not want all the trace data, adjust the level from 1 to 3. Refer to the VisualAge for Java for more
information.

Unit Testing in the VisualAge for Java Environment

Once the object is developed, it should be tested in the VisualAge for Java stand alone testing
environment. Enough testing should be done in this environment to ensure that the PAO and beans can
communicate successfully with the third tier. Insufficient testing of objects before they are imported into the
Component Broker environment will result in a more difficult debug job of these objects.

Once the object is developed, VisualAge for Java provides a stand alone testing environment in order to
validate that the commands and objects that were created all work properly. Essentially, to test, another
class with a main() function must be created that will drive the new commands and navigations. A sample
of such a test is shown below. In the test, a PAO object is created and the method retrieve is called to
retrieve the PAOs information from the underlying CICS data store.

BeCashAcctPAOKey key = new BeCashAcctPAOKey();

 key.setAccount_ID('87654321');

 key.setRes_type('ð1');

BeCashAcctPAO bec = (BeCashAcctPAO) key.getTarget(true);

// Retrieve Cash Account information

 try

 {

 ((BeCashAcctPAO)key.getTarget(true)).retrieve();

 }

catch (Exception e)

 {

System.out.println('Exception from Retrieve ' + e.toString());

 }

System.out.println('\n\n' + bec.toString());

Problem determination in the VisualAge for Java unit test environment can be aided with a knowledge of
the debugger and the tracing capability. See Appendix D, “Help with Using VisualAge for Java” on
page 239 for the references in the on-line help of VisualAge for Java that cover these topics.

Help in interpreting the trace results in the unit test environment is in Appendix D, “Help with Using
VisualAge for Java” on page 239 in the section titled “Interpreting the output from the JavaRASService
trace facility.” on page 239.

Help in determining where to set break points and what the structures should look like when they are
passed to the framework is provided in Appendix D, “Help with Using VisualAge for Java” on page 239 in
the section titled “Setting Breakpoints in the VCE generated code” on page 245.

 Chapter 2. Developing a PAA Application 21

Help in understanding the call stack output when an error is encountered is in Appendix D, “Help with
Using VisualAge for Java” on page 239.

 Problem Determination

When an object fails in Component Broker, it is always useful to use the stand-alone testing environment
of VisualAge for Java to verify that the connections to the third tier are functional. Because the debug
environment for the VisualAge for Java generated beans is easier in this environment, sometimes
additional test cases may prove useful in isolating the problem.

There is a bug in VisualAge for Java with the Visual Composition Editor that may result in a stack dump
very similar to the following:

22 CICS and IMS Application Adaptor

java.lang.InternalError: (Exð2) An error has occurred.

 java.lang.Throwable(java.lang.String)

 java.lang.Error(java.lang.String)

 java.lang.VirtualMachineError(java.lang.String)

 java.lang.InternalError(java.lang.String)

 void com.ibm.ivj.eab.command.gencommand.SmartComposerUpdateOperation.addBean

(java.lang.Object, java.lang.String, java.lang.String)

 void com.ibm.ivj.eab.command.gencommand.SmartComposerUpdateOperation.addBean

 (java.lang.String, java.lang.String)

 void com.ibm.ivj.eab.command.gencommand.gui.SmartCommunicationCommandComposer

 .addIByteBufferInput(java.awt.event.ActionEvent)

 void com.ibm.ivj.eab.command.gencommand.gui.SmartCommunicationCommandComposer

 .connEtoC2(java.awt.event.ActionEvent)

 void com.ibm.ivj.eab.command.gencommand.gui.SmartCommunicationCommandComposer

 .actionPerformed(java.awt.event.ActionEvent)

 void com.sun.java.swing.AbstractButton.fireActionPerformed

 (java.awt.event.ActionEvent)

 void com.sun.java.swing.AbstractButton$ForwardActionEvents.actionPerformed

 java.awt.event.ActionEvent)

 void com.sun.java.swing.DefaultButtonModel.fireActionPerformed

 (java.awt.event.ActionEvent)

 void com.sun.java.swing.DefaultButtonModel.setPressed(boolean)

 void com.sun.java.swing.AbstractButton.doClick(int)

 void com.sun.java.swing.plaf.basic.BasicMenuItemUI.processMouseEvent

 (com.sun.java.swing.JMenuItem, java.awt.event.MouseEvent,

com.sun.java.swing.MenuElement [], com.sun.java.swing.MenuSelectionManager)

 void com.sun.java.swing.JMenuItem.processMouseEvent

(java.awt.event.MouseEvent, com.sun.java.swing.MenuElement [],

 com.sun.java.swing.MenuSelectionManager)

 void com.sun.java.swing.MenuSelectionManager.processMouseEvent

 (java.awt.event.MouseEvent)

 void com.sun.java.swing.plaf.basic.BasicMenuMouseListener.mouseReleased

 (java.awt.event.MouseEvent)

 void java.awt.Component.processMouseEvent(java.awt.event.MouseEvent)

 void java.awt.Component.processEvent(java.awt.AWTEvent)

 void java.awt.Container.processEvent(java.awt.AWTEvent)

 void java.awt.Component.dispatchEventImpl(java.awt.AWTEvent)

 void java.awt.Container.dispatchEventImpl(java.awt.AWTEvent)

 void java.awt.Component.dispatchEvent(java.awt.AWTEvent)

 void java.awt.LightweightDispatcher.retargetMouseEvent

 (int, java.awt.event.MouseEvent)

 boolean java.awt.LightweightDispatcher.processMouseEvent

 (java.awt.event.MouseEvent)

 boolean java.awt.LightweightDispatcher.dispatchEvent

 (java.awt.AWTEvent)

 void java.awt.Container.dispatchEventImpl(java.awt.AWTEvent)

 void java.awt.Window.dispatchEventImpl(java.awt.AWTEvent)

 void java.awt.Component.dispatchEvent(java.awt.AWTEvent)

 void java.awt.EventDispatchThread.run()

To recover from this, you need to:

� Uninstall and re-install VisualAge for Java
� Uninstall and re-install the Component Broker Toolkit

This problem can be avoided in the future by completing the following steps before opening the Command
Editor on a new command class, as described in each of the samples:

 Chapter 2. Developing a PAA Application 23

From the pop-up menu for the command class, select Open To → BeanInfo

1. In the Dialog:

a. Select Features → Generate BeanInfo class. This will generate a new BeanInfo class for your
command class.

b. Select Features → Add Available Features.

c. In the Add Available Features dialog, select the following features that may appear:

 � class
 � communication
 � connectionSpec
 � disconnectCommunication
 � expectedTriggerClass
 � input
 � interactionSpec
 � mappedObjects
 � mappingHelper
 � output

 d. Click OK.

2. Close the Command Class.

Importing Into Object Builder

Once the PAO object has been created, you are now ready to import this into Object Builder to connect
with the rest of your Component Broker objects. Object Builder allows the user to import a Procedural
Adaptor Object (PAO). A PA schema is created when a PAO bean is imported from VisualAge for Java.
This schema has an associated persistent reference at the time of its creation. The PAO importer will
introspect on the PAO bean for the methods and attributes that it supports. The attributes will be exposed
as getters/setters, the framework methods exposed, and any other methods exposed as pushdown
methods. After the PAO has been imported, the user would then use Object Builder to connect attributes,
framework methods, and pushdown methods on a DO Implementation to the PO. After the PAO has been
connected, the structure may look like the following figure.

24 CICS and IMS Application Adaptor

Push Down Methods

As mentioned before, customers have a large investment in existing applications on a tier-3 system. These
applications probably have business logic already defined in the application, due to the fact that the
underlying datastore may not support data integrity constructs that relational systems may have.
Replicating the business logic may not be practical in Component Broker due to time and budget
constraints as well as the duplication of integrity checking. Therefore, Component Broker allows these
methods to be “pushed-down” from the Business Object into the PAO. The PAO can then delegate to the
associated CICS/IMS transaction to execute the business logic on the tier-3 system. Note that these
pushdown methods may make use of attributes that have already been modified on their PAO. Therefore,
the Component Broker framework ensures that those updates get driven to the datastore prior to invoking
any pushdown methods. Similarly, the framework also ensure that those attributes get refreshed from the
underlying datastore, since the pushdown method queues may alter the values in the underlying datastore.

Note: There is further documentation on how to develop a push-down method. For the latest information
on this process, contact your IBM representative.

CICS and IMS Overview

The figure that follows presents a simple overview of CICS and IMS. In most cases, users access CICS
and IMS applications using 3270 terminal screens. The format of these screens is defined to CICS using
Basic Mapping Services (BMS) and to IMS using Message Formatting Services (MFS). BMS and MFS are
high level 3270 screen definition languages. MFS and BMS services provide interfaces that enable CICS
and IMS applications to read, set, and update fields in the 3270 data streams.

 Chapter 2. Developing a PAA Application 25

Terminal
Managed

File Access
Functions

Application
Functions

DTP
IMS
TM

Message
Processing

Region
Queues

Program Link

3270 Screens

Distributed
Program
Link (ECI)

APPC

3270 Screens

CICS IMS

OTMA

CICS and IMS applications are logically composed of the following parts:

� Terminal management and screen services manage the connection state with the 3270 terminals, and
convert between the BMS and MFS data and the input/output buffers expected by the application logic
(in IMS, IMS Transaction Manager (IMS TM) implements these functions; in CICS, these functions are
performed by a Terminal Owning Region (TOR)).

� Application logic implements the COBOL, C, and other business functions implemented by the
application programmer.

In IMS, Message Processing Regions (MPRs) contain the implementation of the end-user applications.
IMS-TM and MPRs communicate through shared messages with the following high level flows:

1. IMS TM receives an incoming 3270 screen.

2. IMS TM uses MFS to extract the relevant fields from the 3270 data stream, formats a message and
places the message on a queue.

3. An MPR removes the message, passes the data business functions, and accesses and updates DL/1
or DB2 data.

4. A response message is placed on an outbound queue, and the transaction commits. The write to the
queue is part of the transaction commit scope.

5. IMS TM reads the response message, updates or formats a new 3270 data stream using MFS, and
sends the stream to the terminal.

The CICS processing is similar. The incoming 3270 data stream maps to a first transaction program based
on the transaction ID. This program uses BMS to map and extract the fields from the data stream, and
formats a COMMAREA. The first program performs a (Distributed) Program Link (DPL) to pass the

26 CICS and IMS Application Adaptor

COMMAREA to the end-users business functions that run as a transactional subroutine. The transaction
logic executes, the databases are read and updated, and the DPL returns to the first transaction program
(TP). This program maps the COMMAREA back into a 3270 data stream using BMS, performs a Commit
that includes the DPL updates in the commit scope, and sends the stream to the terminal. A CICS region
that contains application logic is called an Application Owning Region (AOR). A CICS region may be both
a Terminal Owning Region and an AOR.

 Definitions

Component Broker, a middleware product, integrates a number of diverse products under one umbrella to
present a consistent interface to it. As such, there is an explosion of the number of terms, concepts, and
acronyms that you should be familiar with. Following are brief descriptions of some of the terms:

CICS CICS (Customer Information Control System) is IBM's general-purpose online transaction
processing (OLTP) software. It is a powerful application server that runs on a range of
operating systems. CICS seamlessly integrates all the basic software services required by
OLTP applications. Typical OLTP applications include: retail distributed systems, finance, order
entry and processing, payroll, ATM, and airline reservation systems.

IMS IMS (Information Management System) consists of two pieces: IMS Database Manager (IMS
DB) and IMS Transaction Manager (IMS TM) that run under the MVS operating system. IMS
DB is a database system. IMS TM is a data communication mechanism. It provides
high-volume, high-performance, high-capacity, low-cost transaction processing from both IMS
DB and DB2 databases. IMS TM uses input and output message queues. It schedules
messages by associating programs with the transactions that they are to process.

COMMAREA
A COMMAREA (communications area) is a CICS area that is used by CICS applications to
pass data between tasks that communicate with a given terminal. The area can also be used
by CICS applications to pass data between programs in a task.

MFS maps
Message Format Service (MFS) maps are a high-level 3270 screen definition language. MFS
maps are used by the MFS service within IMS to provide interfaces that enable IMS
applications to set, read, and update fields in a 3270 data stream. The language allows
application programs to deal with simple logical messages instead of device-dependent data,
thus simplifying the application development process.

BMS maps
Basic Mapping Support (BMS) maps are a high-level 3270 screen definition language. BMS
services provide interfaces for CICS application programs that enable CICS applications to set,
read, and update fields in a 3270 data stream. BMS maps tell BMS how to format field data for
display.

HOD Host On-Demand. A member of the eNetwork software family that is a Java-based solution that
incorporates industry-standard Telnet 3270 (TN3270) protocols.

ECI External Call Interface. A facility that allows a non-CICS program to run a CICS program. Data
is exchanged in a COMMAREA as for normal CICS interprogram communication.

APPC and LU 6.2
APPC (Advanced program-to-program communication) is an implementation of the SNA LU 6.2
protocol that allows interconnected systems to communicate and share the processing of
programs. The part of an application that initiates or responds to APPC communications is a
transaction program (TP). It is part of a program that handles transactions (or exchanges of
data) with another program. The communication between two transaction programs is called a
conversation.

 Chapter 2. Developing a PAA Application 27

Transaction
Transactions have a variety of meanings. In the context of IMS or CICS, a transaction is a set
of input data that triggers the execution of a specific process or job. In the context of
Component Broker, a transaction is an atomic unit of work: either all the actions in a
transaction are committed, or none at all. Within Component Broker, a transaction is
coordinated by Object Transaction Services (OTS). In the context of APPC, a transaction is an
exchange of data between two transaction programs.

Session Used within Component Broker to manage resources within the context of a unit-of-activity
scope. It is similar to the notion of transactions but allows the scope to be aligned with an
application rather than individual transactions.

Pushdown Method
A method whose business logic is in the 'procedural' call on the underlying legacy application.

Enterprise Access Builder
Enterprise Access Builder (EAB) is part of the VisualAge for Java Enterprise Toolkit that
enables development of Java code that is targeted to access legacy systems.

28 CICS and IMS Application Adaptor

Chapter 3. Planning the Install

This chapter provides information you may find useful in planning your CICS and IMS application adaptor
install. This chapter contains the following information:

 � “Packaging”
 � “System Requirements”
 � “Prerequisites”
� “Communicating with CICS via APPC” on page 31
� “The Component Broker Package” on page 32
� “Installation Considerations” on page 32
� “Differences Between VisualAge for Java for Component Broker 1.3 and 2.0” on page 33

 Packaging

The CICS and IMS Application Adaptor is packaged as follows:

� CICS and IMS Application Adaptor compact disc
� Component Broker for Windows NT and AIX CICS and IMS Application Adaptor Quick Beginnings

 System Requirements

The system requirements for installing Component Broker CICS and IMS application adaptor support is
the same as for installing the base Component Broker packages. For additional details, see the
Component Broker for Windows NT and AIX Quick Beginnings.

 Prerequisites

WIN The following products are prerequisites for the Component Broker CICS and IMS application
adaptor for Windows NT:

� IBM Component Broker Connector for Windows NT, Version 2.0 and all associated prerequisites.

Note: As a minimum, the Component Broker server must be installed.

� JavaSoft Java Development Kit (JDK) 1.1.6 or above.

The following table identifies a number of prerequisite products depending on whether the target system is
IMS or CICS, the type of transport technology required (HOD, ECI, or APPC), and the environment
(runtime or development).

 Copyright IBM Corp. 1998 29

CICS IMS

Development Runtime Development Runtime

HOD IBM VisualAge for
Java Enterprise
Edition for Windows,
Version 2.0

No prerequisites IBM VisualAge for
Java Enterprise
Edition for Windows,
Version 2.0

No prerequisites

ECI IBM VisualAge for
Java Enterprise
Edition for Windows,
Version 2.0 (1) (2)

IBM CICS Transaction
Gateway for Windows
NT, Version 3.0 or later
(1)

Not supported Not supported

APPC � IBM VisualAge for
Java Enterprise
Edition for
Windows, Version
2.0

 � IBM eNetwork
Communications
Server, Version
5.0 for Windows
NT

IBM eNetwork
Communications Server,
Version 5.0 for Windows
NT

 � IBM VisualAge
for Java
Enterprise
Edition for
Windows,
Version 2.0

 � IBM eNetwork
Communications
Server, Version
5.0 for Windows
NT

IBM eNetwork
Communications
Server, Version 5.0
for Windows NT

Notes:

1. The CICS Transaction Gateway supports a number of transports including APPC. If APPC is used as a
transport, a suitable SNA product must be installed on the same machine as the CICS Transaction Gateway.
Refer to the CICS Universal Client Administration guide for details.

2. IBM VisualAge for Java automatically installs the IBM CICS Transaction Gateway, so there is no need to
install the Transaction Gateway separately.

AIX The following products are prerequisites for the Component Broker CICS and IMS application
adaptor for AIX:

� IBM Component Broker Connector for AIX, Version 2.0 and all associated prerequisites.

Note: As a minimum, the Component Broker server must be installed.

� JavaSoft Java Development Kit (JDK) 1.1.6 or above.

The following table identifies a number of prerequisite products depending on whether the target system is
IMS or CICS, the type of transport technology required (HOD, ECI or APPC), and the environment
(runtime or development).

30 CICS and IMS Application Adaptor

CICS IMS

Development Runtime Development Runtime

HOD Not supported Not supported Not supported Not supported

ECI IBM VisualAge for
Java Enterprise
Edition for AIX,
Version 2.0 (A) (B)

IBM CICS Transaction
Gateway for AIX,
Version 3.0 or later
(A)

Not supported Not supported

APPC � IBM VisualAge for
Java Enterprise
Edition for AIX,
Version 2.0

 � IBM eNetwork
Communications
Server, Version
5.0 for AIX

IBM eNetwork
Communications
Server, Version 5.0
for AIX

 � IBM VisualAge
for Java
Enterprise Edition
for AIX, Version
2.0

 � IBM eNetwork
Communications
Server, Version
5.0 for AIX

IBM eNetwork
Communications
Server, Version 5.0
for AIX

A. The CICS Transaction Gateway supports a number of transports including APPC. If APPC is used as a
transport, a suitable SNA product must be installed on the same machine as the CICS Transaction Gateway.
Refer to the CICS Universal Client Administration guide for details.

B. IBM VisualAge for Java automatically installs the IBM CICS Transaction Gateway, so there is no need to install
the Transaction Gateway separately.

Notes:

1. The CICS and IMS application adaptor requires a special version of IBM Host On-Demand. This
version is installed during the CICS and IMS application adaptor install and is called somhod20.jar. If
Host On-Demand was previously installed, ensure that the JAR file associated with the version
shipped as part of Component Broker is in the CLASSPATH before any earlier versions. The earlier
version is the hacl20.jar file.

2. The CICS and IMS application adaptor capabilities of Object Builder require that the Component
Broker CICS and IMS application adaptor be installed in the same directory as the Component Broker
run time and Object Builder (that is, in x:\CBroker, where x: is the drive on which you install the
product).

3. If you are using CICS on a computer running Windows NT, you must use Transaction Server for
Windows NT 4.0.1 or later.

4. If you are using CICS on a computer running AIX, you must use Transaction Server for AIX 4.0.1 or
later.

5. If you are using CICS on a mainframe computer, you must use CICS/ESA 3.2.1 or later.

6. If you are using IMS on a mainframe computer, you must use IMS 6.1 or later.

Communicating with CICS via APPC

When using APPC communications between Component Broker and a CICS system, there are a number
of additional factors relating to the CICS configuration which must be considered. CICS on the mainframe
requires Virtual Telecommunications Access Method (VTAM), an IBM product that runs on a mainframe
and controls access to systems such as CICS for MVS/ESA, CICS/ESA, CICS/MVS, and CICS/VSE.
VTAM uses the services of the Network Control Program (NCP) product to connect the mainframe to the
network.

 Chapter 3. Planning the Install 31

Transaction Server for AIX and Windows NT requires the services of the Encina Peer-to-Peer
Communications (PPC) Gateway Server, which is available as part of the Transaction Server product. To
enable the Encina PPC Gateway Server to access the SNA network, a suitable SNA product such as
Communications Server must be installed and configured on the machine running the PPC Gateway
server. The level of Communications Server supported by the PPC Gateway server is not necessarily the
same as the level supported by Component Broker.

The PPC Gateway server may be running on the same machine as the CICS system or it may be on a
remote machine. If the PPC Gateway server is local, CICS will access it directly; if remote, CICS
communicates with the server using TCP/IP. The PPC Gateway server acts as a bridge, mapping SNA
requests to and from the CICS region to the SNA network.

The following table lists the levels of the PPC Gateway server and Communications Server required by
different versions of CICS for SNA communications:

CICS PPC Gateway Server and Communications Server
Levels

CICS/ESA 3.2.1 or later Not required since CICS/ESA uses VTAM

Transaction Server 4.0.1 for Windows NT and AIX (1)
(2)

� PPC Gateway server on AIX as supplied with
Transaction Server

� IBM Communications Server 4.2 for AIX

Transactions Series 4.2.0.1 for Windows NT and AIX
(2)

� PPC Gateway Server on AIX or Windows NT as
supplied with Transaction Series

� IBM eNetwork Communications Server 5.0 for
Windows NT or IBM Communications Server 4.2
for AIX

� Transaction Server 4.0.1 for Windows NT does not support a PPC Gateway server on Windows NT.

� To check the version of CICS on Windows NT, use cicscheckup -A. To check the version of CICS on AIX, use
lslpp -l "cics.*"

The Component Broker Package

The CICS and IMS application adaptor run time is on the CICS and IMS Application Adaptor compact
disc. Install this software on your system if you want to access a CICS or IMS server.

 Installation Considerations

The following restrictions apply to the Component Broker CICS and IMS application adaptor.

� The CICS and IMS application adaptor does not support the Component Broker cache service.
However, caching is supported by EAB, but non-caching is not supported. Also, the following cache
restrictions apply:

– The Component Broker for Windows NT and AIX does not support the caching of data in the
managed object or business object.

� The CICS and IMS application adaptor does not support the query service. Also, the following query
restrictions apply:

– Iteration is not supported; therefore, iterable home is not available.
– The base home is the only home supported.

32 CICS and IMS Application Adaptor

� The CICS and IMS application adaptor does not support secondary or mutable keys. Also, the
following key restrictions apply:

– Changes made to a backend datastore may not be propagated to an underlying session.
– A key component, a part of an object reference, must contain only the primary key attribute.

� If the CICS and IMS application adaptor is to access tier-3 systems that require a user ID and
password, the Component Broker server must be a secure server.

� To develop Procedural Adaptor Object beans in VisualAge for Java, you must have first installed the
Component Broker server. The CB installation adds features to your /ide/features directory which
you import into your workspace as directed in the sample applications.

Differences Between VisualAge for Java for Component Broker 1.3 and
2.0

For Release 2.0 of Component Broker, you are required to use IBM Visual Age for Java Release 2.0 to
develop your Procedural Adapter Object beans. From R1.3 to 2.0, there were significant changes in the
CICS and IMS support in Visual Age for Java. This section provides an overview of those differences.

 General Differences
� The process of importing PAO beans into Object Builder has not changed significantly. However, you

must specify which kind of connection the bean uses.

� The PAO bean builder has been renamed from CICON (CICS and IMS Connection) to EAB
(Enterprise Access Builder).

� Transaction Objects are analogous to Navigators.

� In R1.3, TransRecords contained record information internally as methods. In 2.0, record information
is externalized as beans, which can be accessed by other beans such as the mapper bean.

� In R1.3, the TransRecord in Transaction Objects was represented by nodes, and interactions with the
backend system were represented by arrows. In R2.0, the interactions with the backend system are
called Commands, and are represented by the nodes in the Navigator. Arrows indicate the order of
execution of Commands. Mapping is done to and from the input and output Records of the Commands
and the PAO.

� In R1.3, Transaction Objects were used for signing on to a system. In R2.0, Navigators perform this
task.

� Transition parameters are now represented by Records. Previously, you could define constants using
the Transitions tab. Now you define constants by modifying the properties of a bean (usually a
Record).

� Most of the information specified in the Advanced tab of the properties sheet can now be specified in
the Record Editor. For example, combining, splitting, adding or removing of fields, specifying new
lengths, and specifying constant values can be done in the Record Editor.

� Where you previously generated a TOM method, you can now invoke the execute Command.

 PAO Beans

The SuperClass CBProceduralAdapterObject has been replaced with EntityProceduralAdapterObject. This
class is defined in a similar manner (attributes properties and method properties for pushdowns) and still
has insert, delete, update, and retrieve methods. The defining of the key has changed (see below).

 Chapter 3. Planning the Install 33

Key (Applies to all scenarios)

Previously, you defined a key by adding the term "#key# " in the short description of the PAO's attribute
properties. Now you define a Key class (which is itself a bean) that derives from BusinessObjectKey. The
Key class must be named <PAO class name> Key.

Records and Record Mappers (new for 2.0)

In R2.0, Records contain the information about the fields in the HOD screen, or in the COBOL
COMMAREAs. Record Mappers map these fields to the properties of the PAO. Record Mappers replace
the use of Edit Connection Screen that was previously accessed under the Connections tab. Any
mappings you did for R1.3 must be remapped using the Record Mapper tool, which stores the mapping
information in classes.

In R1.3, Host On Demand mapping information was captured in the form of classes. When defining the
Transaction Object (TO), transaction records contained information about the fields, and how to map them
to the PAO (do not confuse the 1.3 transaction records, which were not classes themselves, with what are
called Records in R2.0). This information was duplicated if similar transaction records were required in
several TOs.

In R1.3, ECI and APPC beans were used to capture information about the fields in the COMMAREA, but
the transaction records in the TO contained the information on how these mapped to the PAO.

In R1.3, there was no conversion available between the type of the field in the BMS/MFS/CCP and the
type of the PAO property; you needed to use the Conversion Manager for the appropriate TO. In R2.0, if
an appropriate conversion is not available, you need to modify the method that maps from the
BMS/MFS/CCP Record to the PAO bean in the Record Mapper, and provide your own conversion. You
also need to modify the method that maps in the reverse direction (from the PAO bean to the
BMS/MFS/CCP Record).

 Logon Class

The logon class is not required. You can go directly to the RuntimeContext and set the userid and
password on the LogonInfo returned by JavaRuntimeContext.getLogonInfo().

Transaction Objects versus Commands and Navigators in Host On Demand

In general, the transaction objects have been replaced with Commands and Navigators. To implement a
PAO::CRUD in R1.3, you defined a TO. The TO defined the screen flow for the HOD session. In the TO,
you defined the inputs and outputs and stages using transrecords, and the sequence in which these
stages would be visited. For example, you might have defined a TO for insert; the insert TO would have
transaction records defining all possible screens that a user could encounter expect as a Record was
inserted in the CICS/IMS backend. You connected the Records according to how the screens flowed, and
defined at each transaction record what input was expected to the screen, and what output was retrieved
from the screen. You defined a method on the TO (for example, createCustomer, updateCustomer), which
would handle errors. The PAO::CRUD instantiated the TO, then called this method.

To implement PAO::CRUD in R2.0, you define a Command or Navigator. A Navigator contains one or
more Commands and is itself a Command (which can become part of yet another Navigator). The
Navigator defines the transitional flow between Commands. For each Command there are inputs and
outputs which are usually defined as Records (single line entry for one Command, Menu/DFHDGA for
another, and so on). Each Navigator represents a specific flow, for example insert or remove. Each
Command contains information such as the input and outputs of the screen that they came from, or are

34 CICS and IMS Application Adaptor

going to, as well as an interaction spec which can contain the function key, as well as how to map the
fields on the screen with the properties of the PAO.

Navigators, which are full fledged beans, string these Commands into a sequence that CRUD the objects
in the backend. The PAO::CRUD methods directly call the execute() method on the Command or
Navigators. The interaction spec of the Commands defines the function key to press in order to navigate
to the next screen (in R1.3, this was defined in the Transitions Tab of the transaction record). Where TOs
had nodes, which represented screens in R1.3, and arrows, which represented interactions with the
backend, Navigators have nodes which represent interactions with the backend, and arrows represent the
order in which these interactions typically occur.

Transaction Objects vs Commands and Navigators in ECI and APPC

In R1.3, at least one TO was required for each PAO::CRUD method, and these TOs could have one or
more transaction record. The TOs were similar, differing in the transaction record (the request type could
be different, as could whether or not they collect data from, or emit data to, the business object). Also, the
error checking differed between CRUD methods.

In R2.0, a minimum of one Command/Navigator is required for each of the PAO::CRUD methods. The
Command has the COMMAREA Record as input and output and uses the Mapper Class to map the fields
to the PAO properties.

Communication Spec replaced by Connection Spec

In the R1.3 unit test environment, the communication spec was initialized in the PAO constructor. In R2.0,
the connection spec is externalized as a feature of the Commands and Navigators that are called from the
CRUD methods.

 Additional Information

This overview of the differences between Releases 1.3 and 2.0, is a summary for the purposes of planning
your migration. Complete information can be found in the VisualAge for Java 2.0 Enterprise
documentation, as well as the Component Broker Application Development Tools Guide.

 Chapter 3. Planning the Install 35

36 CICS and IMS Application Adaptor

Chapter 4. Installing the CICS and IMS Application Adaptor
on Windows NT

This chapter contains the following procedures for installing the CICS and IMS application adaptor for
Component Broker.

� “Installing the CICS Transaction Gateway” on page 38
� “Configuring the CICS Universal Client Within the Transaction Gateway” on page 39
� “Starting the Transaction Gateway” on page 41
� “Installing the Communications Server” on page 41
� “Configuring the Communications Server” on page 43
� “Verifying the Installation of the Component Broker Run Time” on page 47
� “Installing the CICS and IMS Application Adaptor” on page 47
� “Configuring the CICS and IMS Application Adaptor” on page 48
� “Uninstalling the CICS and IMS Application Adaptor” on page 49

See the “Installation and Configuration” section of the Late Breaking News provided with Component
Broker for important setup information.

After installing the run time and development portions for the CICS and IMS application adaptor, you can
begin developing your own CICS and IMS application adaptor applications. The following chapters contain
samples which you can walk-through to learn about developing applications that access CICS and IMS
backend systems.

� Chapter 6, “Developing an IMS-HOD Application” on page 61 contains a sample of an IMS-HOD
application

� Chapter 7, “Developing a CICS-HOD Application” on page 111 contains a sample of a CICS-HOD
application

� Chapter 8, “Developing a CICS-ECI Application” on page 155 contains a sample of a CICS-ECI
application

� Chapter 9, “Developing an IMS-APPC Application” on page 181 contains a sample of an IMS-APPC
application

� Chapter 10, “Developing a CICS-APPC Application” on page 207 contains a sample of a CICS-APPC
application

 Copyright IBM Corp. 1998 37

If you want to... Follow these steps...

Use HOD to communicate with a tier3 system. Install VisualAge for Java Enterprise Edition for
Windows NT 2.0, but only if you intend to do any CICS
and IMS application development.

Use ECI to communicate with a tier3 system. � If you intend to do any CICS and IMS application
development, install VisualAge for Java Enterprise
Edition for Windows NT 2.0

� If you do not intend to do any CICS and IMS
application development, refer to “Installing the
CICS Transaction Gateway” on page 38.

� Refer to “Configuring the CICS Universal Client
Within the Transaction Gateway” on page 39.

� Refer to “Starting the Transaction Gateway” on
page 41.

Use APPC to communicate with a tier3 system. � Install VisualAge for Java Enterprise Edition for
Windows NT 2.0, but only if you intend to do any
CICS and IMS application development.

� Refer to “Installing the Communications Server” on
page 41.

� Refer to “Configuring the Communications Server”
on page 43.

Install the CICS and IMS application adaptor runtime. � Refer to “Verifying the Installation of the
Component Broker Run Time” on page 47.

� Refer to “Installing the CICS and IMS Application
Adaptor” on page 47.

� Refer to “Configuring the CICS and IMS
Application Adaptor” on page 48.

Uninstall the CICS and IMS application adaptor
runtime.

Refer to “Uninstalling the CICS and IMS Application
Adaptor” on page 49.

Installing the CICS Transaction Gateway

Notes:

1. If Visual Age for Java 2.0 has already been installed, or will be installed on this machine, skip this
section and proceed to the “Configuring the CICS Universal Client Within the Transaction Gateway”
section. Visual Age for Java installs the Transaction Gateway by default. Installing the CICS
Transaction Gateway in combination with Visual Age for Java may result in two copies of the Gateway
being installed with unfavorable results.

2. If CICS Client 2.x is already installed, uninstall it before installing the CICS Transaction Gateway.

3. If you have a previous version of the CICS Transaction Gateway on your system, uninstall it and
remove \java\JGate\classes from your CLASSPATH user environment variable, and remove
\java\JGate\bin\nt from your PATH user environment variable.

The CICS and IMS application adaptor uses the CICS Universal Client as supplied with the CICS
Transaction Gateway for its External Call Interface (ECI) support. Should that support be required, the
CICS Transaction Gateway can be installed as follows:

� On the computer used for the Component Broker server. In this case, the CICS and IMS application
adaptor access the CICS Transaction Gateway directly.

38 CICS and IMS Application Adaptor

� On a different computer. In this case, the Transaction Gateway, when started on the remote computer,
must listen at a specific port number. See “Starting the Transaction Gateway” on page 41 for
information about starting the gateway. To acces the remote Transaction Gateway, Component Broker
must know the URL and port number on the remote machine.

Perform the following procedure to install the CICS Transaction Gateway.

1. Insert the CICS and IMS Application Adaptor compact disc into the CD-ROM drive.

2. Display the contents of the compact disc.

3. Double-click the CICSCLI folder to display its contents.

4. Double-click the WinNT folder to display its contents.

5. Double-click on ctgnt.exe to start the install procedure. This package contains an executable version of
the Install program for the CICS Transaction Gateway Version 3.0.

6. At the next window, you are asked if you want to unpack the contents. Click Finish to continue the
installation and the installShield is displayed.

7. In this window, click Next to install the CICS Transaction Gateway on your system.

8. Click Yes to accept the terms of the license agreement and to continue.

9. A destination location will be selected. You can change the location and then click Next to continue.
Select Yes if you want the selected client to be created.

10. Accept the typical install and then click Next to continue.

11. Accept the default program folder and then click Next to continue.

12. Accept the options to update the path and install the client as a Windows NT server. Click Next to
continue and the code will be installed.

13. A window is displayed asking if TCP62 is desired. Either click Next to continue, or check the Yes box,
and then click Next to continue.

14. Click Finish .

Configuring the CICS Universal Client Within the Transaction Gateway

Ensure that your PATH includes cics_install_directory\BIN. For example, if you installed the CICS
Transaction Gateway with the VisualAge for Java installation on the C: drive, you would want:
C:\IBM\Connectors\CICS\BIN in your PATH.

Ensure that the jar files ctgclient.jar and ctgserver.jar are in your classpath. For example, if you installed
the CICS Transaction Gateway with the VisualAge for Java installation on the C: drive, you would want:

C:\IBM\Connectors\CICS\classes\ctgclient.jar;

C:\IBM\Connectors\CICS\classes\ctgserver.jar

in your CLASSPATH.

The CICS Universal Client uses a client configuration file called CICSCLI.INI in the
cics_install_directory\BIN directory to determine which CICS servers the client can connect to and the
transport protocol it will use. You must modify this configuration file before starting the CICS Universal
Client for the first time. If you create a copy of the configuration file and modify it, you must set the
CICSCLI environment variable to point to the new file.

The client configuration file specifies the following:

� The name of your CICS server

 Chapter 4. Installing the CICS and IMS Application Adaptor on Windows NT 39

� The type of communication protocol to use

� Other parameters relating to the communication between the CICS Universal Client and the CICS
server

The configuration file is split into the following sections:

� A single section defining the local client

� Multiple sections for each CICS server defined

� Multiple sections for each protocol driver defined

The client section starts with the keyword Client = * and is followed by a series of variable-value pairs that
specify the client configuration. Add the following line under the Client= stanza in the CICSCLI.INI file:

DceCellDirectory = N; Do not check for DCE on the system

A server section starts with the keyword Server=xyz, where xyz is one of the following:

CICSTCP For TCP/IP communication

CICSNETB For NetBIOS communication

CICSSSNA For SNA communication

CICST62 For TCP62 communication (TCP/IP communications with a SNA Network)

Each server section documents the specific information that is required for each protocol. All the lines in
the server section of the configuration file, except the ones relating to the Server = CICSTCP stanza, are
commented out. TCP/IP is the default communication protocol. If more than one server section is defined,
increase the value of MaxServers in the Client = * stanza appropriately.

The driver section defines the communications driver used by each protocol to communicate with a CICS
server. All the lines in the driver section of the configuration file, except the ones relating to the Driver =
TCPIP stanza, are commented out. TCP/IP is the default protocol. For each Driver = xyz entry, the xyz
must match a Protocol = value in the server stanza.

You need to modify the server section of the configuration file. Drivers in the driver section must be
uncommented if drivers other than TCP/IP are required. For information on how to change the client
configuration file, review the comments within the configuration file, or see the CICS Universal Client for
Windows or AIX Administration Guide.

For example, if you are using a CICS server with a TCP/IP listening port configured, modify the Server =
CICSTCP server entry as follows:

1. Change the CICSTCP to a suitable name which is representative of the CICS server.

2. Change the Netname = parameter to be the hostname or IP address of the CICS server.

3. Change the Port = parameter to match the listening port on the CICS server. A value of 0 causes the
Universal Client to look in the services file for an entry with a service of CICS and a protocol of TCP. If
no entry can be located in the services file, the default of 1435 is assumed.

Changes to the CICSCLI.INI file take effect only when the CICS Universal Client is started. If the client is
currently running, stop and restart it to pick up the new initialisation file. To start the Universal client, type
cicscli /s at the command prompt. To stop the client, type cicscli /x at the command prompt.

To test the configuration file, type cicsterm /s at the command prompt. This will start a CICS terminal
connected to the appropriate CICS server. To close the terminal, run the CICS transaction EXIT.

40 CICS and IMS Application Adaptor

An alternative to using the commands at the command prompt is to use the Start Client, Stop Client, and
CICS Terminal shortcuts on the start menu.

Starting the Transaction Gateway
Note: The Transaction Gateway only needs to be started if it is installed on a remote machine. There is

no need to start it if it is installed on the same machine as the Component Broker server. See
“Installing the CICS Transaction Gateway” on page 38 for installation details.

To use the networked Transaction Gateway from a Component Broker server, the Transaction Gateway
daemon must be started. Use the following instructions to start the Transaction Gateway:

1. Change your directory as follows:

 cics_install_directory\BIN

2. Start the gateway. Enter:

 JGATE -port=nnnn

Where nnnn represents the port number on which you decide to listen, and is the port number
required by the remote Component Broker system.

The Transaction Gateway is now ready to be used.

Installing the Communications Server

To install the Communications Server, you must have a Windows NT administrator user ID with local
authority.

Before installing the Communications Server:

� Close other application programs that you are running.

� If you have any version of Communications Server for Windows NT already running, stop it before
starting to install.

� Communications Server should be installed prior to installing any version of the Personal
Communications product (including the entry-level emulation program shipped with Communications
Server). If Personal Communications is already installed on your server, remove it prior to installing
Communications Server.

� Your machine must be running in VGA mode to install Adobe Acrobat. If you are running in another
mode, change to VGA mode before starting the installation.

Perform the following steps to install Communications Server for Windows NT:

1. Insert the Communications Server for Windows NT CD-ROM into the CD-ROM drive and follow the
steps in the interface provided.

Note: Use any editor to read the README.TXT file for the latest product notes. Online help is
available throughout the installation procedure by clicking the Help button.

2. Click the Setup icon to begin the installation. When the Welcome to IBM Communications Server
window displays, click the Next button to continue.

3. In the Choose Destination Directory window:

a. The default installation directory is C:\IBMCS. To change the drive or directory, click the Browse
button to open the Choose Directory window in which you can specify a different location.

 Chapter 4. Installing the CICS and IMS Application Adaptor on Windows NT 41

b. In the Choose Directory window:

1) Type a directory name with eight or fewer characters.

2) Click OK to continue.

3) If the specified directory does not exist, Setup displays a window asking if you want the
directory to be created. Click Yes.

c. The Choose Destination Location window is displayed again and lists the directory you specified.
Click Next to continue to the Select Program Folder window

4. In the Select Program Folder window:

a. Accept the default folder or specify a different folder in which to install the Communications Server
icons.

b. Click Next to continue.

5. In this window:

a. Type at least one existing user ID to be added initially to the group. This establishes the
IBMCSADMIN group, which allows authorized users to remotely configure and administer
Communications Server.

b. Click Next to continue.

Note: You can add additional user IDs later using the Windows NT User Manager.

6. In the Number of Concurrent Licenses window:

a. Type the number of concurrent user licenses that you have purchased.
b. Click Next to continue.

7. In the Start Copying Files window, verify that all information is correct.

� Click Back to review or change any information you previously entered.
� Click Next to begin copying the Communications Server files onto your system.

8. A horizontal Progress Bar displays indicating the progress of the file transfer. Once the Progress Bar
appears, do not stop the installation procedure. After all the product files have been copied, the
Installing NT Services window appears.

Note: During the copying procedure, there are vertical progress bars to the left of the window that
further enable you to watch the installation progress. The progress bar on the far left monitors
how much data remains in each file as it is being transferred; the progress bar in the middle
shows the percentage of the installation files that have been copied; the progress bar on the
right shows how much disk space remains for you to use during the installation process.

9. At the end of the installation, a dialog box asks if you would like to install the IEEE 802.2 interface for
the Local Area Network (LAN) using the IBM LLC2 protocol interface.

� If you plan to use Communications Server over a LAN or if you are not sure, click Yes. The install
program launches a network control window with instructions for configuring IBM LLC2 to operate
over your LAN adapters.

� If you do not plan to use Communications Server over a LAN, click No.

10. Restart your computer.

Note: If you want to install the online documentation on an additional machine, such as a publications
server, you can install it later by performing a drag-and-drop (using Windows Explorer) of the
documentation files to the desired path. Once you have created icons in the appropriate folder, you
will need to associate these files with the Adobe Acrobat reader. See the README.TXT file for
more information.

42 CICS and IMS Application Adaptor

Configuring the Communications Server

Before you can start configuring your node to run Component Broker, you need to perform the following
steps:

1. Have the remote node set up to run the backend CICS/IMS application with LU 6.2.
2. Gather all the information for your local node configuration.

For additional information about configuring the Communications Server, see the “Configure
Communications Server” section of the Component Broker for Windows NT and AIX System
Administration Guide.

Throughout this document, the SNA node where the Communications Server is to be configured to run
Component Broker PAA/LU 6.2 will be referred to as the CB node or local node , whereas the node
where the CICS/IMS backend application is run will be called backend node or remote node . The remote
node may be a host machine located thousands of miles away, or a workstation sitting in the next office.

These steps are discussed in the sections following.

Setting Up the Remote Node

If the backend application resides on a host machine, you need to request that the host admin set up the
application and VTAM for LU 6.2.

If the backend node is a workstation for CICS applications, the node must have access to both IBM
Communications Server and Encina PPC Gateway and be configured to front the CICS system. As part of
the Communications Server configuration for that node, the node must be designated as a network node.

In both cases, you should obtain the following pieces of information from the backend node admin:

� The TP names for the transaction programs that you intend to run on the backend node. Your
mainframe counterpart may call these “tran codes.”

� The fully-qualified LU name to which the above TP names are associated. Note that this is a specific
LU name, not the Control Point (CP) name for the remote node. Some may refer to this as the “APPL
name” or “APPLID.”

� The mode names required by the remote transaction programs.

As an example, for the IMS Phone Book IVP set up at a Santa Teresa Lab host, the following information
is obtained:

� The TP name is IVTNO
� The fully-qualified LU name is USIBMSTY.STY7IM16
� The mode name is L62MDE01

Gathering Your Local Node Configuration Information

In this step, you need to gather information about the local node and its adjacent node.

The local node needs a unique CP name to identify itself to the network, and Communications Server
uses the CP name for the node ID. Because of potential conflicts, you should not make up and implement
a CP name yourself, so you would normally request it from a coordinator who has a more global view of
the network. This coordinator could be the administrator of your gateway host, another administrator, or
you could use a system utility.

 Chapter 4. Installing the CICS and IMS Application Adaptor on Windows NT 43

If you are assigned an XID, you can use it (see “Configuring the Local Node” on page 45); otherwise do
not request one. An XID consists of a 3-digit block number (for an NT node, this number is always 05D)
followed by a 5-digit PU number. With this format, you can easily identify your XID, if one has been
assigned to you.

 Adjacent node

Node B becomes node A's adjacent node if node A can specify a direct link to node B. A specifies a
direct link to B by using B's “hardware address” as the destination address in its own configuration. A
direct link, as the name suggests, requires no apparent routing or name resolution and is the easiest kind
of connection to set up and test.

 Hardware Addresses

For workstations, the hardware address is indeed a hardware address, being a unique number burned into
the token-ring card on the workstation. To find this number on an NT workstation, for example, on the
Start menu, click Programs → Administrative Tools → Windows NT Diagnostics . On the dialog select
the Network page, then click the Transports button to display the number.

For mainframe machines, any hardware addresses you obtain can, for convenience, be considered to be
hardware addresses, although in reality there are often underlying mappings involved. Since a host may
have several token-ring controllers attached, it is not uncommon for a single host to have multiple
hardware addresses. For example, systems running VTAM normally use 12-digit numbers starting with
“4000” as addresses. You can obtain host addresses from the responsible host administrator.

 Adjacent Nodes

Every node in a network must have at least one adjacent node. If the adjacent node is the targeted
backend node, then all is well. However, if the adjacent node is not the final destination, then it must be a
gateway of some sort that can locate the final destination for the local node.

A node can be your adjacent node if you are able to use its hardware address in your connection
specification. This is true in the following circumstances:

1. The node is a workstation running Communications Server and it is on the same LAN as your local
node. One criterion for determining if the nodes are on the same LAN is whether the nodes in
question can reach one another using NetBIOS. Another is whether they are physically attached to the
same token-ring network.

2. The node is a host running VTAM and it belongs to the same net ID as your node.

The first circumstance is a possibility if one of the following is true:

� Your backend CICS applications reside on a workstation on your LAN that runs Communications
Server and PPC Gateway.

� You do not have an existing gateway available to you and are setting up an APPN network node to
serve as your gateway. This is a very unlikely scenario and its coverage is beyond the scope of this
document.

The second circumstance is a possibility if one of the following is true:

� Your backend CICS/IMS applications reside on a host having the same net ID as yours.
� You are using a host gateway to reach the backend node.

44 CICS and IMS Application Adaptor

The last two scenarios involving host VTAMs are the most common situation. Your VTAM administrator
should be able to provide you with the network addresses for the relevant VTAM. It is quite possible that
the same administrator is also responsible for allocating the CP name for your local node.

Configuring the Local Node

To configure IBM Communications Server on the local node, you complete the steps in this section and
verify these steps by starting the node operations.

You can have several different configurations for the local node, each recorded in an .acg file. This way
you can experiment with several sets of different parameters if you so desire.

To start the configuration program, on the Start menu, click Programs → IBM Communications Server →
SNA Node Configuration. This opens a new window. As you move the cursor across the menu bar items
(for example, File , Scenarios , and so on), the corresponding menu automatically pops up. Click File →
New. This automatically opens the Scenarios menu.

Select CPI-C, APPC or 525ð Emulation. This scenario includes about ten groups of parameters to configure,
and some groups are optional. All these groups are listed in the list window in the upper-left corner,
starting with Configure Node . You need to configure only the following groups:

 � Node
 � Devices
 � Connections

To configure your local node, perform the following steps:

1. Select the Configure Node line in the list window, then click New. The Define the Node dialog opens.

a. On the Basic page:

1) In the fields under Fully qualified CP name , enter the net ID and CP name for your local
node.

2) In the field under CP alias enter any name you like. This alias will be displayed prominently
when you start the node operations. If you are experimenting with several configurations, it is
a good idea to select a name that is indicative of this specific configuration, for example, trial1.

3) If you have been given an XID, enter it under Local Node ID , otherwise leave the field at
default. Notice that the XID you are given has two sections, of which the block ID should be
05D, a designation for all NT machines. If this is not so, the validity of the XID is questionable.

4) Under Node Type , select End Node.

5) Click the Advanced tab

b. On the Advanced page:

1) Verify that the two option boxes under Registration of LU resources and the one under
Discovery Support are checked.

 2) Click OK.

2. Highlight the Configure Devices line in the list window and click New. The Define a LAN Device
dialog opens.

a. On the Basic page, you should be able to see LANð_ð4 for Port name , a number corresponding to
your network adapter, such as ð (representing IBM Shared RAM Token-Ring Adapter Driver), for
Adapter number , and ð4 for Local SAP . Do not change any fields.

 Chapter 4. Installing the CICS and IMS Application Adaptor on Windows NT 45

Note: If any fields on this page are blank, Communications Server was probably not installed
correctly. You must exit configuration and reinstall Communications Server.

 b. Click OK.

3. Highlight the Configure Connections line in the list window, then click the New button. The Define a
LAN Connection dialog opens.

a. On the Basic page:

1) Type a name in the Link station name field or accept the default. This name represents the
connection you are currently defining.

2) Verify that the Device name field contains the LANð_ð4 port name.

3) Type the hardware address for the adjacent node that you obtained earlier into the
Destination address field.

4) Click the Advanced tab.

b. On the Advanced page:

1) Verify that APPN support is checked. You should also check Activate link at start , because
otherwise you will have to activate the connection manually after starting the node operations.

2) If you intend to define multiple VTAM connections and have received different XIDs for those
connections, enter the one for the connection being defined into the fields under Local Node
ID, otherwise accept the defaults.

3) Click the Security tab.

c. On the Security page:

1) Optional: If you know the CP name for the adjacent node, enter the information into the fields
under Adjacent CP name .

2) For Adjacent CP type, Verify that APPN Node is displayed in the Adjacent CP type field.

Note: This configuration assumes that the adjacent node is either an APPN network node or
a VTAM node that supports APPN.

 3) Click OK.

4. From the menu bar, click File → Save As . In the dialog that opens, specify the name of a file in which
to save the configuration. You should use the node alias as the file base name (that is, the file
extension should be .acg). For example, you could specify a file name like trial1.

5. From the menu bar, click File → Exit to exit the SNA Node Configuration application.

6. From the Start menu, click Programs → IBM Communications Server → SNA Node Operations .
The Communications Server Node Operations window opens. Identify the tool bar buttons by moving
the cursor slowly across the buttons to see the hover annotation for each button. Locate the Start ,
Stop , Node , and Connections buttons.

In the Communications Server Node Operations window:

a. Click Start . A file dialog opens. Enter the name of the file in which you previously saved your
configuration, for example, trial1.acg.

b. The client area of the window initially displays the node data. Click Connections to display the
connections data.

If both the State and Sub-state columns show Active, your configuration is working. If you see
Pending in these columns, click Node , then Connections again. You can also right-click the link
name LINKðððð and select Start .

46 CICS and IMS Application Adaptor

If the columns still display Pending, but the adjacent node is up and running, there could be a
problem with your configuration that must be corrected before continuing.

c. The Destination Address column displays the hardware address you entered earlier. The
information displayed in the Adjacent CP Name column is important and should be recorded for
later reference.

d. Scroll the client area horizontally. The Adjacent CP Type displays LEN/EN, where the LEN stands
for “low-entry networking node,” the lowest form of all nodes. This label is APPN's designation of a
host node running VTAM, even if the VTAM version supports APPN, and does not present a
problem.

e. Click Stop and close the window to complete the configuration.

Note: You should consider backing up your configuration files periodically in case a problem occurs with
your configuration. By default, your configuration files (.acg files) are located in the \private
subdirectory of your Communications Server installation directory.

Verifying the Installation of the Component Broker Run Time

A prerequisite for the CICS and IMS application adaptor is the Component Broker Connector for Windows
NT, version 2.0 and all associated prerequisites.

Note: As a minimum, the Component Broker Server must be installed.

If the server is not installed, the CICS and IMS application adaptor cannot be installed. For details on
installing the Component Broker run time, see the Chapter on Installing IBM Component Broker for
Windows NT in the Component Broker for Windows NT and AIX Planning, Performance, and Installation
Guide.

 Important

Before using the CICS and IMS application adaptor:

� Ensure that CLASSPATH contains: jdk1.1.6\lib\classes.zip
� Ensure that INCLUDE contains: jdk1.1.6\include
� Ensure that LIB contains: jdk1.1.6\lib

If you update the CLASSPATH system variable, restart your system.

Installing the CICS and IMS Application Adaptor

This section discusses the installation of the CICS and IMS application adaptor run time.

 Pre-Installation

Before installing the CICS and IMS application adaptor, disable any antiviral programs, unless you are
using IBM AntiVirus 3.0. Failure to do so could result in an incomplete installation. After completing the
CICS and IMS application adaptor installation, you can reactivate your antiviral programs.

Note: If you are going to do any CICs and IMS development, make sure that IBM VisualAge Java
Enterprise Edition is installed before you install the CICS and IMS application adaptor run time.

 Chapter 4. Installing the CICS and IMS Application Adaptor on Windows NT 47

 Installation

Perform the following steps to install the CICS and IMS application adapter option:

1. Insert the CICS and IMS Application Adaptor compact disc into your CD-ROM drive. If your system
autoloads the compact disc, you can skip to step 4 on page 48.

2. Display the contents of the compact disc. Change the directory to winNT.

3. Start the installation by clicking the Setup icon. Three Setup icons are displayed in the contents list. To
install the CICS and IMS application adapter, you must click the Setup icon that looks like a computer.
The Welcome window is displayed.

4. On the Welcome window, click the Next button. A message is displayed indicating that Setup is
searching for Component Broker packages on your system. An informational message states that
Component Broker packages were found and lists the directory in which they were found.

5. In the Verify Configuration Setting window, verify that the items to be installed are correct.

� Click Back to review or change any information you previously entered.
� Click Next to start the installation.

6. On completion of the installation, a window displays stating that the installation has completed. When
you exit this window, your computer automatically restarts. Optionally, in this window you can select
check boxes to:

� Automatically launch the configuration tool when the computer restarts.
� Automatically display the readme file when the computer restarts

Click Finish to close the installation program and to restart your computer.

Configuring the CICS and IMS Application Adaptor

Perform the following steps to configure your CICS and IMS Application Adaptor installation:

1. If your computer starts the configuration tool automatically when you restart your computer after
performing the installation, skip to the next step. Otherwise, start the configuration tool from the
Windows NT Start menu and select Programs → IBM Component Broker → Component Broker
Configuration tool . The Configure New Install window opens.

2. In the Configure New Install window:

a. Select the Yes radio button to configure your additional Component Broker installation.
b. Click Next to continue.

3. In the Verify Configuration Setting window, verify that the items to be installed are correct.

� Click Back to review or change any information you previously entered.
� Click Next to start the configuration.

4. The Configuration Status window displays information about the items being configured.

5. An informational window is displayed stating when the configuration is completed. Click OK to close
the window.

6. Exit the Component Broker Configuration tool from the Configuration Status window by clicking either
Close or Cancel .

Note: If the CICS and IMS application adaptor is to access tier-3 systems that require a user ID and
password, the Component Broker server must be a secure server.

48 CICS and IMS Application Adaptor

 Important

Follow the instructions in the Chapter on “Installing the Development Environment” in the Component
Broker for Windows NT and AIX Component Broker for Windows NT and AIX Planning, Performance,
and Installation Guide for details on installing the required development software for the CICS and IMS
application adaptor.

For CICS and IMS development, you must install the CICS and IMS Application Adaptor SDK and in
addition to the other development software required by your configuration (determined through the
planning of your Component Broker network).

To work with the CICS and IMS samples detailed in this book, you must install the Samples. The CICS
and IMS Application Adaptor compact disc contains only the run-time environment. All Component
Broker development software is contained on the CBToolkit compact disc.

Uninstalling the CICS and IMS Application Adaptor

There are two ways to uninstall CICS and IMS application adaptor.

� From the Windows NT Start menu, select IBM Component Broker CICS and IMS Application
Adaptor for Windows NT → Uninstall .

� From the Control Panel, select Add/Remove Programs → IBM Component Broker CICS and IMS
Application Adaptor for Windows NT.

The uninstall program confirms your intentions before the uninstall. When the uninstall completes, restart
your system.

 Chapter 4. Installing the CICS and IMS Application Adaptor on Windows NT 49

50 CICS and IMS Application Adaptor

Chapter 5. Installing the CICS and IMS Application Adaptor
on AIX

This chapter contains the following procedures for installing the CICS and IMS application adaptor for
Component Broker.

� “Installing the CICS Transaction Gateway” on page 52
� “Configuring the CICS Universal Client Within the Transaction Gateway” on page 53
� “Starting the Transaction Gateway” on page 54
� “Installing the Communications Server” on page 54
� “Configuring the Communications Server” on page 56
� “Verifying the Installation of the Component Broker Run Time” on page 58
� “Installing the CICS and IMS Application Adaptor” on page 58
� “Configuring the CICS and IMS Application Adaptor” on page 59
� “Uninstalling the CICS and IMS Application Adaptor” on page 59

See the Installation and Configuration section of the Late Breaking News provided with Component Broker
for important setup information.

If you want to... Follow these steps...

Use HOD to communicate with a tier3 system. Install VisualAge for Java Enterprise Edition for AIX,
version 2.0, but only if you intend to do any CICS and
IMS application development.

Use ECI to communicate with a tier3 system. � Install VisualAge for Java Enterprise Edition for
AIX, version 2.0, but only if you intend to do any
CICS and IMS application development.

� If you do not intend to do any CICS and IMS
application development, refer to “Installing the
CICS Transaction Gateway” on page 38.

� Refer to “Configuring the CICS Universal Client
Within the Transaction Gateway” on page 39.

� Refer to “Starting the Transaction Gateway” on
page 41.

Use APPC to communicate with a tier3 system. � Install VisualAge for Java Enterprise Edition for
AIX, version 2.0, but only if you intend to do any
CICS and IMS application development.

� Refer to “Installing the Communications Server” on
page 41.

� Refer to “Configuring the Communications Server”
on page 43.

Install the CICS and IMS application adaptor runtime. � Refer to “Verifying the Installation of the
Component Broker Run Time” on page 47.

� Refer to “Installing the CICS and IMS Application
Adaptor” on page 47.

� Refer to “Configuring the CICS and IMS
Application Adaptor” on page 48.

Uninstall the CICS and IMS application adaptor
runtime.

Refer to “Uninstalling the CICS and IMS Application
Adaptor” on page 49.

 Copyright IBM Corp. 1998 51

Installing the CICS Transaction Gateway

Notes:

1. If CICS Client 2.x is already installed, uninstall it before installing the CICS Transaction Gateway.

2. If you have a previous version of the CICS Transaction Gateway on your system, uninstall it and
remove /java/JGate/classes from your CLASSPATH user environment variable, and remove
/java/JGate/bin/nt from your PATH user environment variable.

This software comes in the form of a compressed archive file. Locate the file ctg301a.tar.Z in the
/CICSCLI/AIX directory on the CICS and IMS Application Adaptor compact disc. Follow these steps to
install and configure the software:

1. Login to the target machine as root.

2. Create a temporary directory as working space. There should be at least 25MB free space. Copy
ctg301a.tar.Z from the CDROM to the working directory, naming it ctg301a.tar.Z

3. Uncompress the file ctg301a.tar.Z and extract the archived files to the /usr/lpp/ctg directory by
typing the following two commands in an aixterm window:

uncompress ctg3ð1a.tar.Z

tar -xvf ctg3ð1a.tar

4. Set up all the necessary links by changing to the directory /usr/lpp/ctg and issue the following
command:

mkcicscli

5. Set the default language by issuing the following command in the /usr/lpp/ctg directory:

mkclimsgs xx

where xx is the appropriate language code.

6. Change the permissions for the CICSCLI.INI file by typing chmod 777 CICSCLI.INI

Notes:

1. Before running any CB samples that rely on the CICS Transaction Gateway, ensure that the client
daemon, cclclnt, is running. If cclclnt is already started, it will be an entry in the list of running
processes.

If it is not started, issue the following command:

cicscli /s

and then issue the ps -ef command to verify that cclclnt is started.

2. Ensure that the path /usr/lpp/ctg/bin is included in both environment variables LD_LIBRARY_PATH
and LIBPATH after this package and the Component Broker are both installed. If not, append it to
these variables as appropriate (for example, through definitions in your .profile or .kshrc file).

3. Ensure that the CLASSPATH includes the CICS Transaction Gateway classes. Add the following to
the .profile of the Component Broker userid:

#Update classpath for CICS ECI

export CLASSPATH=/usr/lpp/ctg/classes/ctgclient.jar:$CLASSPATH

export CLASSPATH=/usr/lpp/ctg/classes/ctgserver.jar:$CLASSPATH

52 CICS and IMS Application Adaptor

Configuring the CICS Universal Client Within the Transaction Gateway

The CICS Universal Client uses a client configuration file called CICSCLI.INI in the
cics_install_directory\BIN directory to determine which CICS servers the client can connect to and the
transport protocol it will use. You must modify this configuration file before starting the CICS Universal
Client for the first time. If you create a copy of the configuration file and modify it, you must set the
CICSCLI environment variable to point to the new file

The client configuration file specifies the following:

� The name of your CICS server

� The type of communication protocol to use

� Other parameters relating to the communication between the CICS Universal Client and the CICS
server

The configuration file is split into the following sections:

� A single section defining the local client
� Multiple sections for each CICS server defined
� Multiple sections for each protocol driver defined

The client section starts with the keyword Client = * and is followed by a series of variable-value pairs that
specify the client configuration. Add the following line under the Client= stanza in the CICSCLI.INI file:

DceCellDirectory = N; Do not check for DCE on the system

A server section starts with the keyword Server=xyz, where xyz is one of the following:

CICSTCP For TCP/IP communication

CICSNETB For NetBIOS communication

CICSSSNA For SNA communication

CICST62 For TCP62 communication (TCP/IP communications with a SNA Network)

Each server section documents the specific information that is required for each protocol. All the lines in
the server section of the configuration file, except the ones relating to the Server = CICSTCP stanza, are
commented out. TCP/IP is the default communication protocol. If more than one server section is defined,
increase the value of MaxServers in the Client = * stanza appropriately.

The driver section defines the communications driver used by each protocol to communicate with a CICS
server. All the lines in the driver section of the configuration file, except the ones relating to the Driver =
TCPIP stanza, are commented out. TCP/IP is the default protocol. For each Driver = xyz entry, the xyz
must match a Protocol = value in the server stanza.

You will need to modify the server section of the configuration file. Drivers in the driver section must be
uncommented if drivers other than TCP/IP are required. For information on how to change the client
configuration file. review the comments within the configuration file, or see the CICS Universal Client for
Windows or AIX Administration Guide.

For example, if you are using a CICS server with a TCP/IP listening port configured, modify the Server =
CICSTCP server entry as follows:

1. Change the CICSTCP to a suitable name which is representative of the CICS server.

2. Change the Netname = parameter to be the hostname or IP address of the CICS server.

 Chapter 5. Installing the CICS and IMS Application Adaptor on AIX 53

3. Change the Port = parameter to match the listening port on the CICS server. A value of 0 causes the
Universal Client to look in the services file for an entry with a service of CICS and a protocol of TCP. If
no entry can be located in the services file, the default of 1435 is assumed.

Changes to the CICSCLI.INI file only take effect when the Universal Client is started. If the client is
currently running, stop and restart it to pick up the new initialisation file. To start the Universal client, type
cicscli /s at the command prompt. To stop the client, type cicscli /x at the command prompt.

To test the configuration file, type cicsterm /s at the command prompt. This will start a CICS terminal
connected to the appropriate CICS server. To close the terminal, run the CICS transaction EXIT.

An alternative to using the commands at the command prompt is to use the Start Client, Stop Client, and
CICS Terminal shortcuts on the start menu.

Note: The first time an UNSECURE CB server on AIX tries to initiate a connection to a CICS region, a
userid/password is required by default to make the connection. Therefore, on the AIX machine
where the CICS universal client is installed, run the following command:

/usr/lpp/ctg/bin/cicscli /C=server /U=userid /P=password

 where server = name of the CICS server as defined in the CICSCLI.INI file, and userid and
password are the userid/password combination that will be used in accessing the CICS server.

Starting the Transaction Gateway
Note: The Transaction Gateway only needs to be started if it is installed on a remote machine. There is

no need to start it if it is installed on the same machine as the Component Broker server. See
“Installing the CICS Transaction Gateway” on page 38 for installation details.

To use the networked Transaction Gateway from a Component Broker server, the Transaction Gateway
daemon must be started. Use the following instructions to start the Transaction Gateway:

1. Change your directory as follows:

 cics_install_directory\BIN

2. Start the gateway. Type:

 JGATE -port=nnnn

Where nnnn represents the port number on which you decide to listen, and is the port number
required by the remote Component Broker system.

The Transaction Gateway is now ready to be used.

Installing the Communications Server

This section describes the steps necessary to install Communications Manager. The three main steps in
the process are as follows:

1. Installing the software bundle definitions
2. Installing the software
3. Installing the support for your communications adaptor

54 CICS and IMS Application Adaptor

Installing the Software Bundle Definitions
1. If you are not logged in, log in as root.

2. Insert the Communications Server compact disc into your CD-ROM drive.

3. From the shell prompt, type: smitty easy_install_bundle. The Install Software Bundle (Easy Install)
window is displayed.

4. In this window:

a. Press F4 to receive a prompt for the input device.

b. Select the CD-ROM drive containing the Communications Server compact disc and press Enter .
The Select Fileset Bundle window is displayed.

c. Select Media-Defined and press Enter to continue.

d. Press Enter again to display the ARE YOU SURE? window.

e. Press Enter to begin the install.

f. When the installation is complete, press F10 to exit SMIT and return to the shell prompt.

Installing the Software
1. If you are not logged in, log in as root.

2. Insert the Communications Server compact disc into your CD-ROM drive.

3. From the shell prompt, type: smitty easy_install_bundle. The Install Software Bundle (Easy Install)
window is displayed.

4. In this window:

a. Press F4 to receive a prompt for the input device.

b. Select the CD-ROM drive containing the Communications Server compact disc and press Enter .
The Select Fileset Bundle window is displayed.

c. Select Communications and press Enter to continue.

d. Press Enter again to display the ARE YOU SURE? window.

e. Press Enter to begin the install.

f. When the installation is complete, press F10 to exit SMIT and return to the shell prompt.

Installing the Communications Adaptor Support

Since Communications Server supports several communications adaptors, you must install the support for
the adaptor that your are currently using. For example, you may be communicating via a Token-Ring
adaptor for your Component Broker applications. The communications support for that adaptor must be
installed separately from the general communications support.

To install the software support for your communications adaptor, perform the following steps:

1. If you are not logged in, log in as root.

2. Insert the Communications Server compact disc into your CD-ROM drive.

3. From the shell prompt, type: smitty install_latest. The Install and Update from LATEST Available
Software window is displayed.

4. In this window:

a. Ensure that _all_latest is in the SOFTWARE to install field.

 Chapter 5. Installing the CICS and IMS Application Adaptor on AIX 55

b. Press Enter to continue.

5. Press Enter again to continue and the ARE YOU SURE? window is displayed.

6. Press Enter to begin the install.

7. When the installation is complete, press F10 to exit SMIT and return to the shell prompt.

Configuring the Communications Server

This guide assumes that either (1) your target CICS or IMS transactions run on a host machine that is
directly accessible from your node, or (2) your node reaches those transactions through a host gateway to
which your node has direct link. As far as configuring your node for APPC communications is concerned,
the host systems in both cases can be treated the same. In the following text, the term host refers to such
a host running VTAM (the mainframe version of an SNA stack).

Before you proceed, obtain the following information from your network system administrator:

1. The fully-qualified CP name for your AIX node (it looks like "MYNETID.MYCPNAME")
2. The MAC address for the host VTAM. This is normally a 12-digit number starting with "4000"

For additional information about configuring the Communications Server, see the “Configure
Communications Server” section of the Component Broker for Windows NT and AIX System
Administration Guide.

A Communications Server utility, xsnaadmin, can be used to configure and run Communications Server.
From an aixterm window, type xsnaadmin.

Configuring the Node Parameters

At the far-right end of the toolbar, there should be an icon, with legend "hostname Unconfigured" inside.

1. Login as root.

2. From the menubar select Services → Configure node parameters A dialog will pop up. In the dialog

3. For APPN support, select Network node .

4. In the pane entitled SNA addressing, type your node's fully-qualified CP name in the two fields labeled
Control point name . For Control point alias, you may keep the default, which should be your
hostname, or type a name that you choose.

5. Leave everything else at default and click OK.

Your node is defined, but it remains inactive now, as its icon will show.

Defining a Connection

1. From the menubar select Selection → New

2. In this dialog, the Port using radio button should already be selected.

3. From the pull-down selection list following Port using, select the network adaptor type on your AIX
node. The default is Token ring card.

4. Click OK. The dialog closes while another dialog pops up.

You now have a port defined. In the client area of the xsnaadmin window, you should see a top pane
entitled Connectivity and dependent LUs. Under the title there should be an item named, for example,
TRSAPO, currently inactive. Select this item if it is not already selected.

56 CICS and IMS Application Adaptor

5. From the menubar select Selection → New

6. In this dialog, the Link station to port TRSAPO radio button should already be selected.

7. Click OK. The dialog closes while another dialog pops up. Make the following entries in the dialog:

a. For Activation, select On node startup from the pull-down selection list.

b. Ensure that for Remote node type , Discover is selected, and for Remote node role , Host is
selected.

c. In the field labeled MAC address , type the host MAC address you obtained from your system
admin.

 d. Click OK.

Defining the Partner LU

1. Select the node icon at the far right side of the toolbar with the legend hostname Inactive inside. Click
the Start button at the left end of the toolbar. You should see the legend inside the node icon change
to "hostname Active", and in the top pane of the client area, you should see the item TRSAPO and the
item under it, TRL0, show their status as Active also.

2. On the lower portion of the client area, you should see a pane entitled Remote system. The top line in
the pane should show the fully-qualified CP name for the host VTAM that you configured in the
“Defining a Connection” section (you only typed the MAC address, and SNA determined the CP name
for you).

Note: If your remote system name is not listed in the Remote systems pane, you can add it by
performing the following procedure, but first, you must know the name of your gateway host.

a. Click on the Remote systems title.

b. From the toolbar, click Add .

c. Click the Define remote node radio button.

d. At the Remote node window, type the host network name.

e. Click OK to close the dialog box.

f. You will receive an informational message that the LU has been created. Click OK to
close the dialog box. Your host VTAM name should now appear in the list of Remote
systems.

You can now continue with the following steps.

a. Highlight this CP name

b. From the menubar, select Selection → new

c. In the dialog that pops up, ensure that the radio button Define partner LU on node
MYNETID.MYGTWY is selected. Click OK.

d. On the next dialog, type the fully-qualified partner LU name in the field labeled Partner LU name ,
and ensure MYNETID.MYGTWY appears in the field following the push button Location .

e. Click OK. This completes the Communications Server setup.

 Chapter 5. Installing the CICS and IMS Application Adaptor on AIX 57

Verifying the Installation of the Component Broker Run Time

A prerequisite for the CICS and IMS application adaptor is the Component Broker Connector for Windows
NT, version 2.0 and all associated prerequisites.

Note: As a minimum, the Component Broker Server must be installed.

If the server is not installed, the CICS and IMS application adaptor cannot be installed. For details on
installing the Component Broker run time, see the Chapter on Installing IBM Component Broker for
Windows NT in the Component Broker for Windows NT and AIX Planning, Performance, and Installation
Guide.

 Important

Before using the CICS and IMS application adaptor:

� Ensure that CLASSPATH contains: jdk1.1.6\lib\classes.zip
� Ensure that INCLUDE contains: jdk1.1.6\include
� Ensure that LIB contains: jdk1.1.6\lib

If you update the CLASSPATH system variable, restart your system.

Installing the CICS and IMS Application Adaptor

If you have not rebooted your system since installing the Component Broker run time, reboot your system
before installing CICS and IMS application adaptor run time.

1. Insert the CD for the Application Adaptor for CICS and IMS into the CD-ROM drive.

2. Login as root and mount the CD-ROM file system as follows:

mount /cdrom

 3. Type: smitty install_latest

The Install and Update from the LATEST Available Software window is displayed.

4. From this window:

a. In the INPUT device/directory for software field, type /cdrom/aix and C. This window is
redisplayed with additional fields.

b. In the SOFTWARE to install field, press F4 to display a list of software packages contained on
the CD.

c. In the SOFTWARE to install list, scroll down to the entry containing: CBPAA.TYPICAL ALL

d. Press F7 to select the entire package.

e. Press Enter . The Install and Update from LATEST Available Software window is redisplayed, but
the software package selected is in the SOFTWARE to install field.

f. Ensure that the AUTOMATICALLY install requisite software? and EXTEND file systems if
space needed? fields are yes.

g. Press Enter . The ARE YOU SURE? window is displayed.

h. From the ARE YOU SURE? window, press Enter to start the installation.

The installation process begins. After the files are copied, the command status, as indicated in the
upper left corner of the screen, is OK. When you receive this OK status, all files were copied and the

58 CICS and IMS Application Adaptor

system is ready to be configured. Press the F10 key to exit smit. The files are installed in the
/usr/lpp/CBPAA directory.

Note: If any errors occurred, view the $HOME/smit.log file. If the cause of the error is not clear, save a
copy of the smit.log file and report the problem to your IBM representative.

Configuring the CICS and IMS Application Adaptor

Login as root. At the command prompt, type smitty apps

1. Select Configure CBPAA (CICS and IMS Application Adaptor) and press Enter .

2. Select Y to configure Application Adaptor for CICS and IMS. If the field is not set to Y, use the Tab
key to change the value to Y.

3. Press Enter to begin configuration.

The configuration is completed when the command status, as indicated in the upper left corner of the
screen, is OK.

4. Press F10 to exit smit.

5. Log out as root

Note: If the CICS and IMS application adaptor is to access tier-3 systems that require a user ID and
password, the Component Broker server must be a secure server.

 Important

Follow the instructions in the Chapter on “Installing the Development Environment” in the Component
Broker for Windows NT and AIX Component Broker for Windows NT and AIX Planning, Performance,
and Installation Guide for details on installing the required development software for the CICS and IMS
application adaptor.

For CICS and IMS development, you must install the CICS and IMS Application Adaptor SDK and in
addition to the other development software required by your configuration (determined through the
planning of your Component Broker network).

To work with the CICS and IMS samples detailed in this book, you must install the Samples. The CICS
and IMS Application Adaptor compact disc contains only the run-time environment. All Component
Broker development software is contained on the CBToolkit compact disc.

Uninstalling the CICS and IMS Application Adaptor

Login as root. At the command prompt, type smitty remove. The Remove Installed Software window is
displayed.

1. In the Software name field, type CBPAA to remove the runtime and development environment for the
CICS and IMS Application Adaptor.

2. In the PREVIEW only? field, if the value is not n, use the Tab key to change the value to n.

3. In the REMOVE dependent software field, if the value is not y, use the Tab key to change the value
to y.

Note: CBToolkit.TOOLKIT.CICS_IMSApplicationAdaptorSDK is also removed.

4. Press Enter to remove the CICS and IMS Application Adaptor from your system.

 Chapter 5. Installing the CICS and IMS Application Adaptor on AIX 59

The uninstallation process begins. After the files are removed, the command status, as indicated in the
upper left corner of the screen, is OK. When you receive this OK status, all files were removed. Press
F10 to exit smit.

5. Log out as root.

 Environment Setup

Use the same user name to run Component Broker on AIX to run Component Broker CICS and IMS
Application Adaptor on AIX. Follow the steps in the Configuring Your Component Broker User ID section in
the Installing Component Broker for AIX chapter in Component Broker for Windows NT and AIX Quick
Beginnings to properly configure the environment.

60 CICS and IMS Application Adaptor

Chapter 6. Developing an IMS-HOD Application

This chapter provides information for building a sample Component Broker application with an IMS
backend.

This chapter contains the following information:

� “The IMS Sample Application”
� “Enterprise Access Builder Procedures” on page 64
� “Developing an IMS-HOD Business Object” on page 97

Note: To walk through this sample, the following software and Component Broker software must be
installed on your system:

� The Component Broker samples
� The CICS and IMS Application Adaptor SDK
� IBM VisualAge Java with EAB

 Important Information

Before walking through this sample, please refer to the Late Breaking News provided with Component
Broker before performing the exercise in this chapter. This document provides the latest information
regarding the CICS and IMS application adaptor samples, which may differ from the instructions for
this sample application.

The IMS Sample Application

The IMS-HOD sample application is based on an IMS Installation Verification Procedure (IVP). The IVP is
a mock phone book database, where each entry in the phone book contains the following fields:

 � Last name
 � First name
� Phone number extension
� Internal zip code

This sample application works on an IMS database and permits adding, inquiring, updating, and deleting
of phone book entry records through the ADD, DISPLAY, UPDATE, and DELETE transactions.

Although this sample application is not a full-blown IMS application, it captures the essence of an
application involving multiple 3270 panel navigation and delivering some amount of business function. This
sample application can be extended and customized to explore different IMS-HOD application issues.

WIN The sample that you build in this section is included with the product and can be built by following
the steps in the HTML file in:

CBroker\samples\InstallVerification\PAA\readme.htm

AIX The sample that you build in this section is included with the product and can be built by following
the steps in the HTML file in:

/usr/lpp/CBToolkit/samples/InstallVerification/PAA/readme.htm

 Copyright IBM Corp. 1998 61

 Important Information

The IMS sample provided in this chapter uses a TCP/IP-based emulation to communicate with the IMS
applications running on mainframe machines. For the 3270 emulator to communicate with the
mainframe, the following requirements must exist:

� A TCP/IP link must exist between your Windows NT node and the host machine where your IMS
application is running

� A TN3270 listener must be defined to the host machine

Contact your systems administrator for additional details about installing and configuring these
requirements.

Interacting with the IMS IVP

Using the IMS IVP involves navigating a sequence of 3270 panels. For this sample, the application name
is “APPL8”. After logging in to the IVP, one of the transaction paths can be started. The following
sequence completes a full-cycle for the ADD process code.

 1. Type:

 /FOR IVTCC

the transaction is started, and the next panel is displayed.

2. On this panel, the following entry fields are displayed:

 � PROCESS CODE
 � LAST NAME
 � FIRST NAME
 � EXTENSION NUMBER
� INTERNAL ZIP CODE

a. Type ADD in the PROCESS CODE field.

b. Complete the other fields as appropriate.

à ð
 \\\ IMSTERM1

\ IMS INSTALLATION VERIFICATION PROCEDURE \

 \\\

TRANSACTION TYPE : CONVERSATIONAL

 DATE : 12/1ð/97

PROCESS CODE (\1) : add

(\1) PROCESS CODE

 LAST NAME : smith ADD

 DELETE

 FIRST NAME : john UPDATE

 DISPLAY

EXTENSION NUMBER : 8-555-1234 TADD

 END

INTERNAL ZIP CODE : sm9876

 SEGMENT# :

á ñ

 c. Press Enter .

This displays a new panel.

62 CICS and IMS Application Adaptor

3. This panel contains a success or failure message in the lower-left corner of the screen. If the message
reads:

ENTRY WAS ADDED

the entry was successful. If the message reads otherwise, the entry was not added.

à ð
 \\\ IMSTERM1

\ IMS INSTALLATION VERIFICATION PROCEDURE \

 \\\

TRANSACTION TYPE : CONVERSATIONAL

 DATE : 12/1ð/97

PROCESS CODE (\1) : ADD

(\1) PROCESS CODE

 LAST NAME : SMITH ADD

 DELETE

 FIRST NAME : JOHN UPDATE

 DISPLAY

EXTENSION NUMBER : 8-555-1234 TADD

 END

INTERNAL ZIP CODE : MS9876

ENTRY WAS ADDED SEGMENT# : ððð1

á ñ

4. Click Clear . This displays a blank screen.

Note: Depending on which emulator you are using and its keyboard mapping, generally either the
Esc key or the Pause key on your keyboard will clear items.

 5. Type:

 /EXIT

This displays a screen with a certain message.

6. Type /sign off. This signs you off.

7. Click Clear . The IVP is ready to start the transaction again.

Note: The transaction is the /FOR IVPCC command , and the ADD, DISPLAY, UPDATE, and DELETE
process codes belong to this transaction.

All transaction paths follow the same sequence for a full cycle, except that on the second panel a different
process code (ADD, DISPLAY, UPDATE, or DELETE) is typed into the PROCESS CODE field.

Note: Depending on the process code specified, certain entry fields can remain empty. For example, with
the DELETE and DISPLAY process codes, only the LAST NAME field needs to be specified.

PhoneBookEntry Object Model

Based on the IMS IVP, the following Component Broker business object interface is defined.

Interface PhoneBookEntry {

attribute string lastName;

attribute string firstName;

attribute string extNumber;

attribute string internalZip;

 }

The attributes in the interface are:

 Chapter 6. Developing an IMS-HOD Application 63

lastName
This is the last name of the person to whom the phone book entry belongs. It is the key attribute used
to uniquely identify a phone book entry instance.

firstName
The first name of the person.

extNumber
The phone number extension for the person.

internalZip
The mail stop or internal address for the person. This code is used by the company for internal mail
delivery

Note: One of the critical concepts in the Component Broker Programming Model is object identity or key.
A key uniquely identifies an instance of a class.

Enterprise Access Builder Procedures

An overview of the steps is given below:

1. “Creating a Project/Package under VisualAge for Java” on page 65
2. “Creating the Procedural Adaptor Object and Key” on page 65
3. “Importing the tele.mfs File” on page 67
4. “Creating the Record Mapper” on page 68
5. “Creating the SingleLineRecord Type and Record Bean” on page 69
6. “Creating the Command Beans” on page 73
7. “Creating Navigator Beans” on page 83

WIN If you are using VisualAge for Java on Windows 95 or Windows NT, from the Start menu, select
Programs → IBM VisualAge for Java for Windows →IBM VisualAge for Java .

AIX If you are using VisualAge for Java on AIX, type vajide on the command line and press Enter .

If the VisualAge Quick Start dialog appears, select Go to the Workbench and click OK. The IDE appears.

From the Window pulldown, select Options . Select Design Time and uncheck Inherit BeanInfo of bean
superclass . Click OK.

 Important Information

Be sure that you have unchecked Inherit BeanInfo of bean superclass. If this is not unchecked, you
will receive an error message when you try to import into Object Builder.

Importing Pre-requisite Features into the Workspace

1. Select File → Quick Start .

2. Select Features in the left pane and Add Feature in the right pane.

 3. Click OK.

4. Select the following features:

� IBM Procedural Application Adapter 1.0
� CICS Connector 3.0
� IBM Component Broker Host On Demand 1.0

64 CICS and IMS Application Adaptor

� IBM Component Broker Connectors 1.0
� IBM Enterprise Access Builder Library 2.0
� IBM Component Broker PAA Samples for IMS 1.0

Click OK.

You may ignore the following expected errors this introduces in the following packages:
 – com.ibm.ivj.communications
 – com.ibm.ivj.trace
 – com.ibm.eNetwork.ECL
 – com.ibm.eNetwork.ncod.services.RAS

Note: If you do not see all of these features listed, they have been previously installed. To
confirm, perform the following steps:

a. Select File → Quick Start .

b. Select Features - Delete Feature and see which features are already loaded (then
Cancel).

Creating a Project/Package under VisualAge for Java

1. From the list of projects, select CBSamples .

2. Open the pop-up menu of CBSamples and select Add → Package . This creates a package for the
project.

3. Type paa.mysamples.ims.hod.pbe for the new package, and click Finish .

Note: To open the pop-up menu, right-click on the denoted item if you are using the default mouse
configuration. You do not have to select the item (left-click to highlight) before opening its pop-up
menu (right-click to open). You can select the item and open its pop-up menu using a single
right-click.

Creating the Procedural Adaptor Object and Key

The procedural adaptor object inherits from com.ibm.ivj.eab.paa.EntityProceduralAdapterObject, which
serves as a base implementation for all procedural adaptor objects. As a subclass of
EntityProceduralAdapterObject, the procedural adaptor object contains the CRUD methods (create (or
insert), retrieve, update, and delete). However, these methods are all empty-bodied. You must define their
implementation for your procedural adaptor object.

The attributes defined in the PhoneBookEntry interface are essential. Thus, the procedural adaptor object,
as the adaptor that connects the Component Broker data object to the backend system, should contain the
properties that correspond to these attributes.

1. From the VisualAge for Java desktop under the CBSamples project, select
paa.mysamples.ims.hod.pbe .

2. Open the pop-up menu for paa.mysamples.ims.hod.pbe, and select Add → Class .

3. In this dialog:

a. Type PhoneBookPAO in the Class name field.
b. Click Browse to select the Superclass.

1) Browse for and select EntityProceduralAdapterObject as your Superclass.
2) Click OK to close the dialog.

c. Ensure that the Compose Visually checkbox is deselected.

 4. Click Finish .

 Chapter 6. Developing an IMS-HOD Application 65

Add the properties for the PhoneBookPAO interface.

1. Select the PhoneBookPAO interface.

2. Open the pop-up menu for PhoneBookPAO and select Open , which opens the Object Editor
notebook.

3. In this notebook:

a. Select the BeanInfo tab.

b. From the menu bar, select Features → New Property Feature , which opens the New Property
Feature wizard.

c. In this window, type the name of the new property in the Property name field. For simplicity, use
the same name as used in the PhoneBookRec interface.

For example, use:

lastName

firstName

extNumber

internalZip

for the properties as defined in the pbe.cpp file. Each of these properties must be defined
individually. For this step (first time) type lastName. For each subsequent time, type firstName,
extNumber, internalZip, respectively.

1) For all properties, select java.lang.String from the pull down menu of the Property type field.
 2) Click Finish .

d. Close the Object Editor window.

Now the Key for this PAO object must be created.

1. From the VisualAge for Java desktop under the CBSamples project, select
paa.mysamples.ims.hod.pbe .

2. Open the pop-up menu for paa.mysamples.ims.hod.pbe and select Add Class .

3. In this dialog:

a. Type PhoneBookPAOKey in the Class name field.
b. Click Browse to select the Superclass.

1) Browse for and select BusinessObjectKey as your Superclass.
2) Click OK to close the dialog.

 c. Click Finish .

Add the properties for the PhoneBookPAOKey interface.

1. Select the PhoneBookPAOKey interface.

2. Open the pop-up menu for PhoneBookPAOKey and select Open , which opens the Object Editor
notebook.

3. In this notebook:

a. Select the BeanInfo tab.

b. From the menu bar, select Features → New Property Feature , which opens the wizard New
Property Feature.

c. In this window:

66 CICS and IMS Application Adaptor

1) Type the name of the new property in the Property name field. For example, use lastName
for the property that is going to be the key attribute. You can select java.lang.String for the
type of the property.

 2) Click Finish .

d. Close the Object Editor window.

Modify the PhoneBookPAOKey and PhoneBookPAO to tie the PAO and key class together.

 PhoneBookPAOKey

1. Select and expand the PhoneBookPAOKey class.

2. Highlight the getPropertyValues() method. This method is used by the Enterprise Access Builder
(EAB) run time to calculate a value to key into the CICON cache. It needs to be modified to
specifically return just the key values.

3. In the source pane, return an array of Objects that make up the key by invoking the methods that get
the key properties. For example:

return new Object[] { this.getLastName() };

4. Save the changes to the modified PAO Key class by pressing Ctrl+S .

5. Highlight the setLastName(String) method. This method is used to set the last name. It must be
modified to trim the oldValue and lastName fields.

6. In the source pane, your code should look like the following:

{

String oldValue = fieldLastName;

fieldLastName = lastName.trim();

firePropertyChange ("lastName", oldValue, lastName.trim();

}

7. Save these changes to the modified PAO Key class by pressing Ctrl+S .

 PhoneBookPAO

1. Select and expand the PhoneBookPAO class.

2. Modify the getter for the key property value getLastName() by getting the key class associated with
this PAO and returning that value. For example:

PhoneBookPAOKey key = (PhoneBookPAOKey) this.getKey();

 return key.getLastName();

3. Save the changes to the modifed PAO by pressing Ctrl+S .

Importing the tele.mfs File
1. Select the package that you have created

2. Open the pop-up menu for the package you are working under and select Tools → Records →
Create MFS Record Type ; a wizard window appears.

3. In this window:

a. In the Class Name field, type PhoneBookInfo.

b. In the MFS File field, browse through the files to locate the tele.mfs file. It should be located in
one of the following:

WIN (CBroker)\samples\InstallVerification\PAA\Backend\PhoneBook\ and select Open .

 Chapter 6. Developing an IMS-HOD Application 67

AIX $HOME/samples/InstallVerification/PAA/Backend/PhoneBook/ and select Open .

c. In the Format Name type IVTCCF.

d. In the Device Page Name type IVTCCF.

e. In the Device Type select 3270,2.

f. Check that the Project and Package names are correct.

 g. Click Finish .

4. Select the PhoneBookInfo class

5. Open the pop-up menu for the PhoneBookInfo class and select Tools → Records → Generate
Records... ; the Generate Records wizard will appear.

6. In this window:

a. In the Class Name field, type PhoneBookRecord.
b. Select the Beans radio button to generate the records as beans.
c. Select the Direct radio button to access the record fields directly.
d. Select the Dynamic Records radio button to generate the records as dynamic records.
e. Click the Finish button when this is complete. Three new classes will appear in your package:

 � PhoneBookRecord
 � PhoneBookRecordBeanInfo
 � PhoneBookRecordType

Creating the Record Mapper
1. Select the sample package that you have created and expand it.

2. Select class PhoneBookRecord .

3. Open the pop-up menu for the PhoneBookRecord class and select Tools → Mapper Editor ; a
Mapper wizard appears.

4. In this window:

a. From the Code Generation pulldown, select Set Target mapper . A window containing three fields
appear.

b. In this window:

1) Type the project and package name of this sample in the first two fields.
2) In the Class field, type PhoneBookRecordMapper.
3) Click OK when this is complete.

c. Select Change Input bean from the Code Generation pulldown menu. A window containing one
field appears.

d. In this window:

1) Select Browse . Next type PhoneBookRecord to select the class (corresponding to the sample
package) and click OK.

2) Click OK once more to select the Input Bean class. The following message appears:

All of your connections will be lost. Do you wish to proceed?

Note: This message displays because you are specifying a new input record buffer to map to
or from.

Click Yes.

3) You will now see a list of fields available from PhoneBookRecord.

68 CICS and IMS Application Adaptor

e. Click Add located at the bottom left of the wizard window and type PhoneBookPAO in the Pattern
field.

f. Select the PhoneBookPAO class corresponding to the package you are currently using.

g. Click OK when this is complete. You will now see a directory named java.lang.Object in the
Output Beans side of the window.

h. Expand this directory until the first instance of PhoneBookPAO is visible (should be able to see
extNumber, firstName, lastname, etc.)

i. Select the extNumber field of the PhoneBookPAO object. Move the cursor to the right hand side
of the screen and select EXT. At the bottom of the screen, click <—> input/output to connect the
two fields.

Note: The PhoneBookPAO extNumber field should be connected to EXT on the input side.

Repeat this step to form connections between the rest of the PhoneBookPAO fields (firstName
<—> NAME2, lastName <—> NAME1, internalZip <—> ZIP). Select Apply and click OK when this
is complete. A new class called PhoneBookRecordMapper appears in the current package.

Creating the SingleLineRecord Type and Record Bean

The IMS application base state is just a blank screen. The SingleLineRecordType class is needed to
interact with the blank screen.

1. Right-click on paa.mysamples.ims.hod.pbe and select Add → Class .

2. In this dialog:

a. Type the Class Name: SingleLineRecordType

b. Click Browse to set the Superclass to
com.ibm.ivj.eab.record.terminal.FixedLengthTerminalRecordType as described in Select Class
Instructions in Table 1.

c. Click Finish . This creates the SingleLineRecordType class.

Table 1. Select Class Instructions

Using the Select class dialog:

1. In the Pattern field, type the first few letters of the class name.

2. In the Type Names list, click on the desired class name.

3. In the Package Names list, if more than one package appears then click on the desired package name.

4. Click OK to close the dialog.

3. Right-click on the SingleLineRecordType class and select Tools →Records → Edit Record Type .
This opens the Java Record Editor.

4. Right-click on the SingleLineRecordType record, and select Create New Field As Child . This opens
the Create a Field wizard.

a. Select Simple and click Next > .
b. Type the Field Name: Value_attByte
c. Select Field Type: com.ibm.ivj.eab.record.terminal.FixedLengthTerminalAttributeType
d. Click Finish . This creates the Value_attByte field.

5. Change the Read Only property of the Value_attByte field to True by clicking on its value.

6. Right-click on the Value_attByte field, and select Create New Field As Sibling. This opens the Create
a Field wizard.

 Chapter 6. Developing an IMS-HOD Application 69

a. Select Simple and click Next > .
b. Type the Field NameValue
c. Select Field Type com.ibm.ivj.eab.record.terminal.FixedLengthTerminalFieldType .
d. Click Finish . This creates the Value field.

7. Verify that the fields look like the following:

SingleLineRecordType

 Value_attByte

 Value

8. Click on the Value field. Update the type size to 79 by clicking on the 1 to change it to 79, and press
Enter .

9. Click Done . This closes the Java Record Editor.

Note: If a dialog pops up asking to save your changes, click Yes.

10. Right-click on SingleLineRecordType and select Tools → Records → Generate Records .

11. In the Class Name field, type SingleLineRecord.

12. Leave the other fields as default and click Finish s. This creates the classes SingleLineRecord and
SingleLineRecordBeanInfo.

The IMS application first signon state is a screen with user ID , password , and application name fields.
The FirstSignonScreenRecordType class is needed to interact with this screen.

1. Right-click on paa.mysamples.ims.hod.pbe and select Add → Classs .

2. In this dialog:

a. Type the Class Name FirstSignonScreenRecordType

b. Click Browse to set the Superclass to
com.ibm.ivj.eab.record.terminal.FixedLengthTerminalRecordType as described in Select Class
Instructions in Table 1 on page 69.

c. ClickFinish . This creates the FirstSignonScreenRecordType class.

3. Right-click on the FirstSignonScreenRecordType class, and select Tools → Records → Edit Record
Type. This opens the Java Record Editor.

4. Right-click on the FirstSignonScreenRecordType record and select Create New Field As Childs. This
opens the Create a Field wizard.

a. Select Padding and click Next > .
b. Type 10 for the Padding value.
c. Click Finish . This creates the _IVJ_PADFIELD_0_ field.

5. Click Done . This closes the Java Record Editor.

Note: If a dialog pops up asking you to save your changes, click Yes.

6. Right-click on +s to open the FirstSignonScreenRecordType class to edit the constructor method.

7. Replace the try code with the following code:

try {

 int[] arraySize = null;

 addField(new Field(new FixedLengthTerminalAttributeType((byte)4), "_ððð1_attByte", true));

 addField(new Field(new FixedLengthTerminalFieldType(18, false, ð, (byte)ð), "_ððð1", null,

"Enter Your Userid:", true));

 addField(new Field(new FixedLengthTerminalAttributeType((byte)-112),

 "USERID_attByte", true));

70 CICS and IMS Application Adaptor

 addField(new Field(new FixedLengthTerminalFieldType(1ð, false, 1, (byte)32), "USERID", null,

 null, false));

 addPadding(5ð);

 addField(new Field(new FixedLengthTerminalAttributeType((byte)4), "_ððð2_attByte", true));

 addField(new Field(new FixedLengthTerminalFieldType(9, false, ð, (byte)ð), "_ððð2", null,

 "Password:", true));

 addField(new Field(new FixedLengthTerminalAttributeType((byte)-112),

 "PASSWORD_attByte", true));

 addField(new Field(new FixedLengthTerminalFieldType(1ð, false, 1, (byte)32), "PASSWORD",

null, null, false));

 addPadding(58);

 addField(new Field(new FixedLengthTerminalAttributeType((byte)4), "_ððð3_attByte", true));

 addField(new Field(new FixedLengthTerminalFieldType(13, false, ð, (byte)ð), "_ððð3", null,

"Application: ", true));

 addField(new Field(new FixedLengthTerminalAttributeType((byte)-112),

 "APPLICATION_attByte", true));

 addField(new Field(new FixedLengthTerminalFieldType(1ð, false, 1, (byte)32), "APPLICATION",

null, null, false));

}

catch (Exception e) {

throw new RecordException(e.getMessage());

}

8. Save the changes to the modified FirstSignonScreenRecordType class by pressing Ctrl+S .

9. Right-click on FirstSignonScreenRecordType and select Tools → Records → Generate Records .

10. In the Class Name field, type FirstSignonScreenRecord.

11. Leave the other fields as default and click Finish . This creates the classes FirstSignonScreenRecord
and FirstSignonScreenRecordBeanInfo.

The IMS application second signon state is a screen with user ID and password fields. The
SecondSignonScreenRecordType class is needed to interact with this screen.

1. Right-click on paa.mysamples.ims.hod.pbe and select Add → Class. .

2. In this dialog:

a. Type the Class Name SecondSignonScreenRecordType

b. Click Browse to set the Superclass to
com.ibm.ivj.eab.record.terminal.FixedLengthTerminalRecordType as described in Select Class
Instructions in Table 1 on page 69.

c. Click Finish . This creates the SecondSignonScreenRecordType class.

3. Right-click on the SecondSignonScreenRecordType class and select Tools → Records → Edit
Record Type . This opens the Java Record Editor.

4. Right-click on the SecondSignonScreenRecordType record and select Create New Field As Child .
This opens the Create a Field wizard.

a. Select Padding and click Next > .
b. Type 1ð for the Padding value
c. Click Finish . This creates the _IVJ_PADFIELD_0_ field.

 Chapter 6. Developing an IMS-HOD Application 71

5. Click Done . This closes the Java Record Editor.

Note: If a dialog pops up asking you to save your changes, click Yes.

6. Right-click on + to open the SecondSignonScreenRecordType class and edit the constructor method.

7. Replace the try code with the following code:

try {

int[] arraySize = null;

 addPadding(48ð);

FixedLengthTerminalAttributeType _ððð1_attByteType = new FixedLengthTerminalAttributeType();

 _ððð1_attByteType.setExpectedValue((byte)4);

addField(new Field(_ððð1_attByteType, "_ððð1_attByte",true));

FixedLengthTerminalFieldType _ððð1Type = new FixedLengthTerminalFieldType();

 _ððð1Type.setPaddingPolicy(ð);

 _ððð1Type.setSize(7);

 _ððð1Type.setPaddingByte((byte)ð);

addField(new Field(_ððð1Type, "_ððð1",null,new java.lang.String("USERID:"),true));

FixedLengthTerminalAttributeType USERID_attByteType = new FixedLengthTerminalAttributeType();

 USERID_attByteType.setExpectedValue((byte)-112);

addField(new Field(USERID_attByteType, "USERID_attByte",true));

FixedLengthTerminalFieldType USERIDType = new FixedLengthTerminalFieldType();

 USERIDType.setSize(8);

addField(new Field(USERIDType, "USERID"));

 addPadding(143);

FixedLengthTerminalAttributeType _ððð2_attByteType = new FixedLengthTerminalAttributeType();

 _ððð2_attByteType.setExpectedValue((byte)4);

addField(new Field(_ððð2_attByteType, "_ððð2_attByte",true));

FixedLengthTerminalFieldType _ððð2Type = new FixedLengthTerminalFieldType();

 _ððð2Type.setPaddingPolicy(ð);

 _ððð2Type.setSize(9);

 _ððð2Type.setPaddingByte((byte)ð);

addField(new Field(_ððð2Type, "_ððð2",null,new java.lang.String("PASSWORD:"),true));

FixedLengthTerminalAttributeType PASSWORD_attByteType = new FixedLengthTerminalAttributeType();

 PASSWORD_attByteType.setExpectedValue((byte)-112);

addField(new Field(PASSWORD_attByteType, "PASSWORD_attByte",true));

FixedLengthTerminalFieldType PASSWORDType = new FixedLengthTerminalFieldType();

 PASSWORDType.setSize(8);

addField(new Field(PASSWORDType, "PASSWORD"));

 addPadding(141);

FixedLengthTerminalAttributeType _ððð3_attByteType = new FixedLengthTerminalAttributeType();

 _ððð3_attByteType.setExpectedValue((byte)4);

addField(new Field(_ððð3_attByteType, "_ððð3_attByte",true));

FixedLengthTerminalFieldType _ððð3Type = new FixedLengthTerminalFieldType();

 _ððð3Type.setPaddingPolicy(ð);

72 CICS and IMS Application Adaptor

 _ððð3Type.setSize(16);

 _ððð3Type.setPaddingByte((byte)ð);

addField(new Field(_ððð3Type, "_ððð3",null,new java.lang.String("USER DESCRIPTOR:"),true));

FixedLengthTerminalAttributeType DESCRIPTOR_attByteType =

 new FixedLengthTerminalAttributeType();

 DESCRIPTOR_attByteType.setExpectedValue((byte)-112);

addField(new Field(DESCRIPTOR_attByteType, "DESCRIPTOR_attByte",true));

FixedLengthTerminalFieldType DESCRIPTORType = new FixedLengthTerminalFieldType();

 DESCRIPTORType.setSize(8);

addField(new Field(DESCRIPTORType, "DESCRIPTOR"));

}

catch (Exception e) {

throw new RecordException(e.getMessage());

}

8. Save the changes to the modified SecondSignonScreenRecordType class by pressing Ctrl+S .

9. Right-click on SecondSignonScreenRecordType and select Tools → Records → Generate Records .

10. In the Class Name field, type SecondSignonScreenRecord.

11. Leave the other fields as default and click Finish . This creates the classes
SecondSignonScreenRecord and SecondSignonScreenRecordBeanInfo.

Creating the Command Beans

In this section, you will create several Commands used to interact with the IMS application. Commands
dictate the data that gets passed to and from the backend system in a single interaction. Commands use
Record beans to define the layout of the input and output data. After you create the commands, you will
create Navigators that encapsulate sequences of Commands to perform functions for the PAO. The
following table summarizes all the Navigators and Commands used by each of the PAO methods.

Table 2. Navigators and Commands used by PAO methods (IMS-HOD)

PAO Method Name Navigator Used Commands Used

retrieve NavigatorRetrieve CmdBaseToMenu
 CmdMenuToMenuDisplay
 CmdMenuToClear
 CmdClearToBase
 CmdMenuToClear1

insert NavigatorAddUpdate CmdBaseToMenu
 CmdMenuToMenuAddUpdt
 CmdMenuToClear
 CmdClearToBase
 CmdMenuToClear1

update

del NavigatorDel CmdBaseToMenu
 CmdMenuToMenuDel
 CmdMenuToClear
 CmdClearToBase
 CmdMenuToClear1

 Chapter 6. Developing an IMS-HOD Application 73

Creating the CmdBaseToMenu Command

1. Right-click on paa.mysamples.ims.hod.pbe and select Add → Class .

2. Type the Class Name CmdBaseToMenu

3. Click Browse to set the Superclass to CommunicationCommand in package com.ibm.ivj.eab.command
as described in the Select Class Instructions in Table 1 on page 69.

4. Click Finish . This creates the CmdBaseToMenu class.

5. From the menu for the class, select Open To → BeanInfo .

6. In this dialog:

a. Select Features → Generate BeanInfoclass.
b. Select Features → Add Available Features.
c. Select items class through output, both execute() items, and both executionSuccessful() items and

click OK.
d. Close the window.

7. Right-click on CmdBaseToMenu and select Tools → Command Editor . This opens the Command
Editor window which looks like the following:

Tasks

 Communication

 Input

 Output

8. Right-click on Communication, select Add InteractionSpec and select the class
com.ibm.connector.hod.HODInteractionSpec as described in the Select Class Instructions in Table 1
on page 69. This creates a bean called ceInteractionSpec.

9. Right-click on ceInteractionSpec, and select Properties. This opens the Properties window.

a. Click on the name property and type #ENTER
b. Click OK to close the properties window.

10. Right-click on Input, select Add IByteBuffer Bean, and select the class
paa.mysamples.cics.menu.SingleLineRecord as described in the Select Class Instructions in Table 1
on page 69. This creates an input record bean called ceInput.

11. Right-click on ceInput, and select Properties. This opens the Properties window.

a. Scroll down to the Value property, click on it, and type /FOR IVTCC

b. Click OK to close the properties window.

12. Right-click on Output, select Add IByteBuffer Bean, and select the class
paa.mysamples.ims.hod.pbe.PhoneBookRecord as described in the Select Class Instructions in
Table 1 on page 69. This creates an output record bean called ceOutput1.

13. Click OK to close the Command Editor.

Command Bean Summary

The following table summarizes the properties of all the Command Beans used in this sample. You
created the CmdBaseToMenu in the previous section.

74 CICS and IMS Application Adaptor

Table 3. Command Bean Summary (IMS-HOD)

Command Name Properties Values

CmdBaseToMenu ceInteractionSpec Class: HODInteractionSpec
 Name: #ENTER

ceInput Class: SingleLineRecord
Value: /FOR IVTCC

ceOutput1 Class: PhoneBookRecord

CmdMenuToClear ceInteractionSpec Class: HODInteractionSpec
 Name: #CLEAR

ceInput Class: PhoneBookRecord

ceOutput1 Class: SingleLineRecord

CmdClearToBase ceInteractionSpec Class: HODInteractionSpec
 Name: #ENTER

ceInput Class: SingleLineRecord
 Value: /EXIT

ceOutput1 Class: SingleLineRecord

CmdMenuToMenuDisplay ceInteractionSpec Class: HODInteractionSpec
 Name: #ENTER

[ceInput] Class: PhoneBookRecord
Property Features: CMD,NAME1

ceOutput1 Class: PhoneBookRecord
Add Mapper: PhoneBookRecordMapper
Property Features: MSG, EXT, NAME2, ZIP

CmdMenuToMenuAddUpdt ceInteractionSpec Class: HODInteractionSpec
 Name: #ENTER

[ceInput] Class: PhoneBookRecord
Add Mapper: PhoneBookRecordMapper
Property Features: CMD, NAME1

ceOutput1 Class: PhoneBookRecord
Property Feature: MSG

CmdMenuToMenuDel ceInteractionSpec Class: HODInteractionSpec
 Name: #ENTER

[ceInput] Class: PhoneBookRecord
Property Features: CMD, NAME1

ceOutput1 Class: PhoneBookRecord
Property Feature: MSG

CmdFirstToSecondSignon ceInteractionSpec Class: HODInteractionSpec
 Name: #ENTER

ceInput Class: FirstSignonScreenRecord
Property Features: Application, Userid,
Password

ceOutput1 Class: SecondSignonScreenRecord

CmdSecondSignonToBase ceInteractionSpec Class: HODInteractionSpec
 Name: #ENTER

ceInput Class: SecondSignonScreenRecord
Property Feature: Password, Userid

ceOutput1 Class: SingleLineRecord

 Chapter 6. Developing an IMS-HOD Application 75

Creating the CmdMenuToClear Command

1. Right-click on paa.mysamples.ims.hod.pbe and select Add → Class .

2. Type the Class Name CmdMenuToClear

3. Click Browse to set the Superclass to com.ibm.ivj.eab.command.CommunicationCommand as
described in the Select Class Instructions in Table 1 on page 69. This creates the CmdMenuToClear
class.

4. From the menu for the class, select Open To → BeanInfo .

5. In this dialog:

a. Select Features → Generate BeanInfo.

b. Select Features → Add Available Features.

c. Select items class through output, both execute() items, and both executionSuccessful() items and
click OK.

d. Close the window.

6. Right-click on CmdMenuToClear and select Tools → Command Editor . This opens the Command
Editor.

7. Right-click on Communication, select Add InteractionSpec and select the class
com.ibm.connector.hod.HODInteractionSpec as described in the Select Class Instructions in Table 1
on page 69. This creates a bean called ceInteractionSpec.

8. Right-click on ceInteractionSpec, and select Properties. This opens the Properties window.

a. Click on the name property and type #CLEAR
b. Click OK to close the properties window.

9. Right-click on Input, select Add IByteBuffer Bean, and select the class
paa.mysamples.ims.hod.PhoneBookRecord as described in the Select Class Instructions in Table 1 on
page 69. This creates an input record bean called ceInput.

10. Right-click on Output, select Add IByteBuffer Bean, and select the class
paa.mysamples.ims.hod.SingleLineRecord as described in the Select Class Instructions in Table 1 on
page 69. This creates an output record bean called ceOutput1.

11. Click OK to close the Command Editor.

Creating the CmdClearToBase Command

1. Right-click on paa.mysamples.ims.hod.pbe and select Add → Class .

2. Type the Class Name CmdClearToBase

3. Click Browse to set the Superclass to com.ibm.ivj.eab.command.CommunicationCommand as
described in the Select Class Instructions in Table 1 on page 69.

4. Click Finish . This creates the CmdClearToBase class.

5. From the menu for the class, select Open To → BeanInfo .

6. In this dialog:

a. Select Features → Generate BeanInfo.

b. Select Features → Add Available Features.

c. Select items class through output, both execute() items, and both executionSuccessful() items and
click OK.

76 CICS and IMS Application Adaptor

d. Close the window.

7. Right-click on CmdClearToBase, and select Tools → Command Editor.... This opens the Command
Editor window.

8. Right-click on Communication, select Add InteractionSpec and select the class
com.ibm.connector.hod.HODInteractionSpec as described in the Select Class Instructions in Table 1
on page 69. This creates a bean called ceInteractionSpec.

9. Right-click on ceInteractionSpec, and select Properties. This opens the Properties window.

a. Click on the name property and type #ENTER
b. Click OK to close the properties window.

10. Right-click on Input, select Add IByteBuffer Bean, and select the class
paa.mysamples.cics.menu.SingleLineRecord as described in the Select Class Instructions in Table 1
on page 69. This creates an input record bean called ceInput

11. Right-click on ceInput, and select Properties. This opens the Properties window.

a. Scroll down to the Value property, click on it, and type /EXIT

b. Click OK to close the properties window.

12. Right-click on Output, select Add IByteBuffer Bean, and select the class
paa.mysamples.ims.hod.pbe.SingleLineRecord as described in the Select Class Instructions in Table 1
on page 69. This creates an output record bean called ceOutput1.

13. Click OK to close the Command Editor.

Creating the CmdFirstToSecondSignon Command

1. Right-click on paa.mysamples.ims.hod.pbe, and select Add → Class .

2. Type the Class Name CmdFirstToSecondSignon

3. Click Browse to set the Superclass to com.ibm.ivj.eab.command.CommunicationCommand as
described in the Select Class Instructions in Table 1 on page 69.

4. Click Finish to create the CmdFirstToSecondSignon class.

5. From the menu for the class, select Open To → BeanInfo .

6. In this dialog:

a. Select Features → Generate BeanInfo.

b. Select Features → Add Available Features.

c. Select items class through output, both execute() items, and both executionSuccessful() items and
click OK.

d. Close the window.

7. Right-click on CmdSecondSignonToBase, and select Tools → Command Editor. This opens the
Command Editor window.

8. Right-click on Communication, select Add InteractionSpec and select the class
com.ibm.connector.hod.HODInteractionSpec as described in the Select Class Instructions in Table 1
on page 69. This creates a bean called ceInteractionSpec.

9. Right-click on ceInteractionSpec, and select Properties. This opens the Properties window.

a. Click on the name property and type #ENTER

b. Click OK to close the properties window.

 Chapter 6. Developing an IMS-HOD Application 77

10. Right-click on Input, select Add IByteBuffer Bean, and select the class
paa.mysamples.ims.hod.pbe.FirstSignonScreenRecord as described in the Select Class Instructions in
Table 1 on page 69. This creates an input record bean called ceInput.

11. Right click on ceInput and select Promote Bean Feature.

a. Click the Property radio button and select APPLICATION.

 b. Click >>.

c. Repeat for USERID and PASSWORD.

 d. Click OK.

12. Right-click on Output, select Add IByteBuffer Bean, and select the class
paa.mysamples.ims.hod.pbe.SecondSignonScreenRecord as described in the Select Class Instructions
in Table 1 on page 69. This creates an input record bean called ceOutput1.

13. Click OK to close the Command Editor.

Creating the CmdSecondSignonToBase Command

1. Right-click on paa.mysamples.ims.hod.pbe and select Add → Class .

2. Type the Class Name CmdSecondSignonToBase

3. Click the Browse button to set the Superclass to com.ibm.ivj.eab.command.CommunicationCommand
as described in the Select Class Instructions in Table 1 on page 69.

4. Click Finish to create the SecondSignonToBase class.

5. From the menu for the class, select Open To → BeanInfo .

6. In this dialog:

a. Select Features → Generate BeanInfo.

b. Select Features → Add Available Features.

c. Select items class through output, both execute() items, and both executionSuccessful() items and
click OK.

d. Close the window.

7. Right-click on CmdSecondSignonToBase, and select Tools → Command Editor. This opens the
Command Editor window.

8. Right-click on Communication, select Add InteractionSpec and select the class
com.ibm.connector.hod.hodInteractionSpec as described in the Select Class Instructions in Table 1 on
page 69. This creates a bean called ceInteractionSpec.

a. Click on name property and type #ENTER

b. Click OK to close the properties window.

9. Right-click on Input, select Add IByteBuffer Bean, and select the class
paa.mysamples.ims.hod.pbe.SecondSignonScreenRecord as described in the Select Class Instructions
in Table 1 on page 69. This creates an input record bean called ceInput.

10. Right click on ceInput and select Promote Bean Feature.

a. Click on the Property radio button and select PASSWORD.

b. Repeat for USERID.

 c. Click OK.

78 CICS and IMS Application Adaptor

11. Right-click on Output, select Add IByteBuffer Bean, and select the class
paa.mysamples.ims.hod.pbe.SingleLineRecord as described in the Select Class Instructions in Table 1
on page 69. This creates an input record bean called ceOutput1.

12. Click OK to close the Command Editor.

Creating the CmdMenuToMenuDisplay Command

1. Right-click on paa.mysamples.ims.hod.pbe and select Add → Class .

2. Type the Class Name CmdMenuToMenuDisplay

3. Click Browse to set the Superclass to com.ibm.ivj.eab.command.CommunicationCommand as
described in the Select Class Instructions in Table 1 on page 69.

4. Click Finish . This creates the CmdMenuToMenuDisplay class.

5. From the menu for the class, select Open To → BeanInfo .

6. In this dialog:

a. Select Features → Generate BeanInfo.

b. Select Features → Add Available Features.

c. Select items class through output, both execute() items, and both executionSuccessful() items and
click OK.

d. Close the window.

7. Right-click on CmdMenuToMenuDisplay, and select Tools → Command Editor. This opens the
Command Editor.

8. Right-click on Communication, select Add InteractionSpec and select the class
com.ibm.connector.hod.HODInteractionSpec as described in the Select Class Instructions in Table 1
on page 69. This creates a bean called ceInteractionSpec.

9. Right-click on ceInteractionSpec, and select Properties. This opens the Properties window.

a. Click on name property and type #ENTER
b. Click OK to close the properties window.

10. Right-click on Input, select Add IByteBuffer Bean Variable, and select the class
paa.mysamples.ims.hod.pbe.PhoneBookRecord as described in the Select Class Instructions in
Table 1 on page 69. This creates an input record bean called [ceInput].

11. Right-click on Output, select Add IByteBuffer Bean, and select the class
paa.mysamples.ims.hod.pbe.PhoneBookRecord as described in the Select Class Instructions in
Table 1 on page 69. This creates an input record bean called ceOutput1.

12. Right-click on ceOutput1, select Add Mapper, and select the class
paa.mysamples.ims.hod.pbe.PhoneBookRecordMapper as described in the Select Class Instructions in
Table 1 on page 69. This creates a mapper bean called ceMapperCeOutput1.

13. Right-click on ceOutput1, select Promote Bean Feature. This opens the Promoted features dialog.

a. Click the Property radio button, and select MSG RB .

 b. Click >>.

c. Click OK. This closes the Promoted features dialog.

d. Repeat the previous step for EXT RWB , NAME2 RWB , and ZIP RWB from the list of properties.

e. Click OK to close the command editor.

14. Open the CmdMenuToMenuDisplay class.

 Chapter 6. Developing an IMS-HOD Application 79

15. In this window, click the BeanInfo tab. This will display all property features defined from
CmdMenuToMenuDisplay. There is at least one already: ceOutput1MSG, which was promoted there
with Command Editor. Now add two more property features, ceInputCMD and ceInputNAME1. At each
addition, type only the feature name and leave everything else at default.

Note: CMD corresponds to the field in the MENU panel where requests such as “DISPLAY,” “ADD,”
and “DELETE” are entered.

16. Click the Visual Composition tab.

17. Right-click on the ceInput icon and select Connect → this , then move the cursor back to the ceInput
icon again and click. In the popup menu, select Connectable Features .

18. In the dialog that comes up, click the Method radio button first. Then in the list window, select CMD
and click OK.

19. A green, dotted, arrowed connection line should appear which goes off ceInput and then loops back to
it. If the line does not look so, delete it and redo the last two steps.

Note: As the spot around ceInput gets crowded, make sure when you “click at X” it is indeed X not Y
that gets clicked. This can be achieved by paying attention to the highlighting on the artifacts
involved.

20. Right-click on the dotted green loop and select Connect → value , then move the cursor to any
background area and click on it. In the popup menu, select Connectable Features .

21. In the dialog that comes up, click the Property radio button first. Then in the list window, select
ceInputCMD and click OK.

22. The dotted green loop should turn solid, and a violet-colored line should connect the loop to the edge
of the window.

23. This finishes the promotion of the property feature CMD. Repeat the last six steps to promote NAME1
also.

24. In the window, select the menu Bean → Save Bean. This completes the creation of
CmdMenuToMenuDisplay.

25. Close the window.

Creating the CmdMenuToMenuAddUpdt Command

1. Right-click on paa.mysamples.ims.hod.pbe and select Add → Class .

2. Type the Class Name CmdMenuToMenuAddUpdt

3. Click Browse to set the Superclass to com.ibm.ivj.eab.command.CommunicationCommand as
described in the Select Class Instructions in Table 1 on page 69.

4. Click Finish s. This creates the CmdMenuToMenuAddUpdt class.

5. From the menu for the class, select Open To → BeanInfo .

6. In this dialog:

a. Select Features → Generate BeanInfo.

b. Select Features → Add Available Features.

c. Select items class through output, both execute() items, and both executionSuccessful() items and
click OK.

d. Close the window.

7. Right-click on CmdMenuToMenuAddUpdt, and select Tools → Command Editor. This opens the
Command Editor.

80 CICS and IMS Application Adaptor

8. Right-click on Communication, select Add InteractionSpec and select the class
com.ibm.connector.hod.HODInteractionSpec as described in the Select Class Instructions in Table 1
on page 69. This creates a bean called ceInteractionSpec.

9. Right-click on ceInteractionSpec, and select Properties. This opens the Properties window.

a. Click on name property and type #ENTER
b. Click OKs to close the properties window.

10. Right-click on Input, select Add IByteBuffer Bean Variable, and select the class
paa.mysamples.ims.hod.pbe.PhoneBookRecord as described in the Select Class Instructions in
Table 1 on page 69. This creates an input record bean called [ceInput].

11. Right-click on [ceInput], select Add Mapper, and select the class
paa.mysamples.ims.hod.pbe.PhoneBookRecordMapper as described in the Select Class Instructions in
Table 1 on page 69. This creates a mapper bean called ceMapperCeInput.

12. Right-click on Output, select Add IByteBuffer Bean, and select the class
paa.mysamples.ims.hod.pbe.PhonebookRecord as described in the Select Class Instructions in
Table 1 on page 69. This creates an output record bean called ceOutput1.

13. Right-click on ceOutput1, select Promote Bean Feature. This opens the Promoted features dialog.

a. Click the Property radio button, and select MSG RB from the list of properties.

b. Click >> to move the selected properties, and click OK. This closes the Promoted features dialog.

14. Click OK to close the Command Editor.

15. Open the CmdMenuToMenuAddUpdt class.

16. In this window, click the BeanInfo tab. This will display all property features defined form
CmdMenuToMenuAddUpdt. There is at least one already, ceOutput1MSG, which was promoted there
with Command Editor. Now add two more property features, ceInputCMD and ceInputNAME1. At each
addition, type only the feature name and leave everything else at default.

Note: CMD corresponds to the field in the MENU panel where requests such as “DISPLAY,” “ADD”
and “DELETE” are entered.

17. Click the Visual Composition tab.

18. Right click at the ceInput icon and select Connect → this , then move the cursor back to ceInput icon
again and click. In the popup menu, select Connectable Features .

19. In the dialog that comes up, click the Method radio button first. Then in the list window, select CMD
and click OK .

20. A green, dotted, arrowed connection line should appear which goes off ceInput and then loops back to
it. If the line does not look so, delete it and redo the last two steps.

Note: As the spot around ceInput gets crowded, make sure when you "click at X" it is indeed X not Y
that gets clicked at. This can be achieved by paying attention to the highlighting on the artifacts
involved.

21. Right click at the dotted green loop and select Connect → value, then move the cursor to any
background area and click. In the popup menu, select Connectable Features .

22. In the dialog that comes up, click the Property radio button first. Then in the list window, select
ceInputCMD and click OK .

23. The dotted green loop should turn solid, and a violet-colored line should connect the loop to the edge
of the window.

24. This finishes the promotion of the property feature CMD. Repeat the last six steps to promote NAME1
also.

 Chapter 6. Developing an IMS-HOD Application 81

25. In the window, select the menu Bean → Save Bean . This completes the creation of
CmdMenuToMenuDisplay.

26. Close the window.

Creating the CmdMenuToMenuDel Command

1. Right-click on paa.mysamples.ims.hod.pbe and select Add → Class .

2. Type the Class Name CmdMenuToMenuDel

3. Click Browse to set the Superclass to com.ibm.ivj.eab.command.CommunicationCommand as
described in the Select Class Instructions in Table 1 on page 69.

4. Click Finish . This creates the CmdMenuToMenuDel class.

5. From the menu for the class, select Open To → BeanInfo .

6. In this dialog:

a. Select Features → Generate BeanInfo.

b. Select Features → Add Available Features.

c. Select items class through output, both execute() items, and both executionSuccessfu() items and
click OK.

d. Close the window.

7. Right-click on CmdMenuToMenuDel, and select Tools → Command Editor. This opens the Command
Editor.

8. Right-click on Communication, select Add InteractionSpec and select the class
com.ibm.connector.hod.HODInteractionSpec as described in the Select Class Instructions in Table 1
on page 69. This creates a bean called ceInteractionSpec.

9. Right-click on ceInteractionSpec, and select Properties. This opens the Properties window

a. Click on name property and type #ENTER.

b. Click OK to close the properties window.

10. Right-click on Input, select Add IByteBuffer Bean Variable, and select the class
paa.mysamples.ims.hod.pbe.PhoneBookRecord as described in the Select Class Instructions in
Table 1 on page 69. This creates an input record bean called [ceInput].

11. Right-click on Output, select Add IByteBuffer Bean, and select the class
paa.mysamples.ims.hod.pbe.PhonebookRecord as described in the Select Class Instructions in
Table 1 on page 69. This creates an output record bean called ceOutput1.

12. Right-click on ceOutput1, select Promote Bean Feature. This opens the Promoted features dialog.

a. Click the Property radio button, and select MSG RB from the list of properties.

b. Click >> to move the selected properties, and click OK. This closes the Promoted features dialog.

13. Click OK to close the Command Editor.

14. Open the CmdMenuToMenuDel class.

15. In this window, click the BeanInfo tab. This will display all property features defined form
CmdMenuToMenuDel. There is at least one already, ceOutput1MSG, which was promoted there with
Command Editor. Now add two more property features, ceInputCMD and ceInputNAME1. At each
addition, only type the feature name and leave everything else at default.

Note: CMD corresponds to the field in the MENU panel where requests such as “DISPLAY,” “ADD,”
and “DELETE” are entered.

82 CICS and IMS Application Adaptor

16. Click the Visual Composition tab.

17. Right-click at the ceInput icon and select Connect → this , then move the cursor back to ceInput icon
again and click. In the popup menu, select Connectable Features .

18. In the dialog that comes up, click the Method radio button first. Then in the list window, select CMD
and click OK.

19. A green, dotted, arrowed connection line should appear which goes off ceInput and then loops back to
it. If the line does not look so, delete it and redo the last two steps.

Note: As the spot around ceInput gets crowded, make sure when you “click at X” it is indeed X not Y
that gets clicked. This can be achieved by paying attention to the highlighting on the artifacts
involved.

20. Right-click at the dotted green loop and select Connect → value, then move the cursor to any
background area and click. In the popup menu, select Connectable Features .

21. In the dialog that comes up, click the Property radio button first. Then in the list window, select
ceInputCMD and click OK.

22. The dotted green loop should turn solid, and a violet-colored line should connect the loop to the edge
of the window.

23. This finishes the promotion of the property feature CMD. Repeat the last six steps to promote NAME1
also.

24. In the window, select the menu Bean → Save Bean . This completes the creation of
CmdMenuToMenuDisplay.

25. Close the window.

 Creating Logoff/Logon/Class

1. Right-click on paa.mysamples.ims.hod.pbe and select Add → Class .
2. Type the Class Name PBELogonLogoff
3. Click Next to set the interface implement class.
4. Click Add , and then select com.ibm.ivj.eab.command.LogonLogoff.

 5. Click Add .
6. Click Finish to create the PBELogonLogoff class.

Creating Navigator Beans

In this section, you will create several Navigators used to interact with the IMS application.

Creating the NavigatorRetrieve Navigator

1. Right-click on paa.mysamples.ims.hod.pbe and select Add → Class .

2. Type the Class Name NavigatorRetrieve.

3. Click Browse to set the Superclass to com.ibm.ivj.eab.command.CommunicationNavigator as
described in the Select Class Instructions in Table 1 on page 69.

 4. Click Finish .

5. From the menu for the class, select Open To → BeanInfo .

6. In this dialog:

a. Select Features → Generate BeanInfo.

b. Select Features → Add Available Features.

 Chapter 6. Developing an IMS-HOD Application 83

c. Select items class through output, both internalExecutionStarting() items, and
returnExecutionSuccessful() and click OK.

7. Click on the Visual Composition tab.

8. Follow the Adding a Bean in the Visual Composition Editor procedure in Table 4, to add a new bean
with Class = com.ibm.connector.hod.HODConnectionSpec and Name = connSpec.

Table 4. Adding a Bean in the Visual Composition Editor

1. Click the Choose Bean... icon, (in the top-right corner of the tool palette). In this dialog:

2. Set the Bean Type to Class .

3. Click Browse and select the correct class. (See the Select class instructions.)

4. Type the appropriate name in the Name: field.

 5. Click OK.

6. Drop the bean onto the Visual Composition Editor canvas by clicking somewhere on the canvas.

9. Right-click on connSpec and select Properties. This opens the Properties Window.

a. Change the debugScreenEnabled property to True.
b. Change the hostname property to csdmec06.stl.ibm.com.
c. Change the portNumber property to 23.
d. Close the properties window.

Note: The connection spec here is only useful in the unit test environment with VAJ. To run from the
CB environment, the connection spec is set in each of the CRUD methods as described in the
following sections.

10. Right-click on the connSpec and select Connect → this.

a. Click on the window background. This opens the End connection dialog.
b. Select connectionSpec RWB and click OK.

11. Follow the Adding a Bean in the Visual Composition Editor procedure in Table 4, to add new beans
with the following combinations of Class and Name.

Table 5. Class and Name combinations in the NavigatorRetrieve Navigator (IMS-HOD)

Class Name

paa.mysamples.cics.menu.CmdBaseToMenu BaseToMenu

paa.mysamples.cics.menu.CmdMenuToMenuDisplay MenuToMenuDisplay

paa.mysamples.cics.menu.CmdMenuToClear MenuToClear

paa.mysamples.cics.menu.CmdClearToBase ClearToBase

paa.mysamples.cics.menu.CmdMenuToClear1 MenuToClear1

12. Use the Adding a Connection in the Visual Composition Editor procedure in Table 7 on page 85, to
add the following connections in the NavigatorRetrieve Navigator.

84 CICS and IMS Application Adaptor

Table 6. NavigatorRetrieve Navigator connections (IMS-HOD)

Source/Target Event

 Source: background
 Target: BaseToMenu

 internalExecutionStarting(CommandEvent)
 execute(CommandEvent)

 Source: BaseToMenu
 Target: MenuToMenuDisplay

 executionSuccessful(CommandEvent)
 execute(CommandEvent)

 Source: MenuToMenuDisplay
 Target: MenuToClear

 executionSuccessful(CommandEvent)
 execute(CommandEvent)

 Source: MenuToClear
 Target: ClearToBase

 executionSuccessful(CommandEvent)
 execute(CommandEvent)

 Source: ClearToBase
 Target: MenuToClear1

 executionSuccessful(CommandEvent)
 execute(CommandEvent)

 Source: MenuToClear1
 Target: background

 executionSuccessful(CommandEvent)
 returnExecutionSuccessful(CommandEvent)

13. Follow the Adding a Connection in the Visual Composition Editor procedure in Table 7, described
below:

Table 7. Adding a Connection in the Visual Composition Editor

1. Right-click on the Source bean (or background), and select Connect → Connectable Features(Connect). This
opens the Start connection from dialog. When selecting on the background, select only Connect.

2. Click the Event radio button.

3. Select the Source Event from the list, and click OK.

4. Click on the Target bean (or background), and select Connectable Features. This opens the End connection
to dialog. When selecting on the background, select only Connect.

5. Click the Event radio button.

6. Select the Target Event from the list, and click OK. This creates a connection and draws a dashed green line
between the source and target.

7. Right-click on the dashed green line, and select Properties. This opens the Event-to-method connection
dialog.

8. Select the Pass event data check box, and click OK. This changes the line to a solid green line.

14. Right-click on the MenuToMenuDisplay bean and select Promote Bean Feature .

15. Click the Property radio button.

16. Select ceInputCMD RWB from the list, and click >>. Similarly, move ceInputNAME1 RB and
ceOutput1MSG RWB to the Promoted features list.

17. Click OK to close the Promoted features dialog.

18. Select the pull-down menu Bean → Save Bean .

19. Close the Visual Composition Editor by clicking on the X button in the upper-right corner of the
window.

 Chapter 6. Developing an IMS-HOD Application 85

Creating the NavigatorAddUpdate Navigator

1. Right-click on paa.mysamples.cics.menu and select Add → Class .

2. Type the Class Name NavigatorAddUpdate.

3. Click the Browse button to set the Superclass to com.ibm.ivj.eab.command.CommunicationNavigator
as described in the Select Class Instructions in Table 1 on page 69. Select the check box to
Compose the class visually.

4. Click Finish . This creates the NavigatorAddUpdate class and opens it in the Visual Composition
editor.

5. From the menu for the class, select Open To → BeanInfo .

6. In this dialog:

a. Select Features → Generate BeanInfo.

b. Select Features → Add Available Features.

c. Select items class through output, both internalExecutionStarting() items, and
returnExecutionSuccessful() and click OK.

d. Click on the Visual Composition tab.

7. Follow the Adding a Bean in the Visual Composition Editor procedure in Table 4 on page 84, to add a
new bean with Class = com.ibm.connector.hod.HODConnectionSpec and Name = connSpec.

8. Right-click on connSpec and select Properties. This opens the Properties Window.

a. Change the debugScreenEnabled property to True.
b. Change the hostname property to csdmec06.stl.ibm.com.
c. Change the portNumber property to 23.
d. Close the properties window.

9. Right-click on the connSpec and select Connect → this .

a. Click on the window background. This opens the End connection dialog.
b. Select connectionSpec RWB and click OK.

10. Follow the Adding a Bean in the Visual Composition Editor procedure in Table 4 on page 84, to add a
new bean for each of the Class and Name combinations in the following table:

Table 8. Class and Name combinations in NavigatorAddUpdate Navigator (IMS-HOD)

Class Name

paa.mysamples.cics.menu.CmdBaseToMenu BaseToMenu

paa.mysamples.cics.menu.CmdMenuToMenuAddUpdt MenuToMenuAddUpdt

paa.mysamples.cics.menu.CmdMenuToClear MenuToClear

paa.mysamples.cics.menu.CmdClearToBase ClearToBase

paa.mysamples.cics.menu.CmdMenuToClear1 MenuToClear1

11. Use the Adding a Connection in the Visual Composition Editor procedure in Table 7 on page 85, to
add the following connections in the navigator.

Table 9 (Page 1 of 2). NavigatorAddUpdate Navigator connections (IMS-HOD)

Source/Target Event

 Source: background
 Target: BaseToMenu

 internalExecutionStarting(CommandEvent)
 execute(CommandEvent)

86 CICS and IMS Application Adaptor

Table 9 (Page 2 of 2). NavigatorAddUpdate Navigator connections (IMS-HOD)

Source/Target Event

 Source: BaseToMenu
 Target:

MenuToMenuAddUpdtDisplay

 executionSuccessful(CommandEvent)
 execute(CommandEvent)

 Source:
MenuToMenuAddUpdtDisplay

 Target: MenuToClear

 executionSuccessful(CommandEvent)
 execute(CommandEvent)

 Source: MenuToClear
 Target: ClearToBase

 executionSuccessful(CommandEvent)
 execute(CommandEvent)

 Source: ClearToBase
 Target: MenuToClear1

 executionSuccessful(CommandEvent)
 execute(CommandEvent)

 Source: MenuToClear1
 Target: background

 executionSuccessful(CommandEvent)
 returnExecutionSuccessful(CommandEvent)

12. Right-click on the MenuToMenuAddUpdt bean and select Promote Bean Feature .

13. Click the Property radio button.

14. Select ceInputCMD RWB from the list, and click >>. Similarly, move ceInputNAME1 RWB and
ceOutput1MSG RWB to the Promoted features list.

15. Click OK to close the Promoted features dialog.

16. Select the pull-down menu Bean → Save Bean .

17. Close the Visual Composition Editor by clicking on X in the upper-right corner of the window.

Creating the NavigatorDel Navigator

1. Right-click on paa.mysamples.ims.hod.pbe and select Add → Class .

2. Type the Class Name NavigatorDel

3. Click Browse to set the Superclass to com.ibm.ivj.eab.command.CommunicationNavigator as
described in the Select Class Instructions in Table 1 on page 69. Select the check box to Compose
the class visually.

 4. Click Finish .

5. From the menu for the class, select Open To → BeanInfo .

6. In this dialog:

a. Select Features → Generate BeanInfo.

b. Select Features → Add Available Features.

c. Select items class through output, both internalExecutionStarting() items, and
returnExecutionSuccessful() item and click OK.

7. Click on the Visual Composition tab.

8. Follow the Adding a Bean in the Visual Composition Editor procedure in Table 4 on page 84, to add a
new bean with Class = com.ibm.connector.hod.HODConnectionSpec and Name = connSpec.

9. Right-click on connSpec and select Properties. This opens the Properties Window.

a. Change the debugScreenEnabled property to True.
b. Change the hostname property to csdmec06.stl.ibm.com.
c. Change the portNumber property to 23.

 Chapter 6. Developing an IMS-HOD Application 87

d. Close the properties window.

10. Right-click on the connSpec and select Connect → this.

a. Click on the window background. This opens the End connection dialog.
b. Select connectionSpec RWB and click OK.

11. Follow the Adding a Bean in the Visual Composition Editor procedure in Table 4 on page 84, to add a
new bean for each of the Class and Name combinations in the following table:

Table 10. Class and Name combinations in the NavigatorDel Navigator

Class Name

paa.mysamples.ims.hod.pbe.CmdBaseToMenu BaseToMenu

paa.mysamples.cics.menu.CmdMenuToMenuDel MenuToMenuDel

paa.mysamples.cics.menu.CmdMenuToClear MenuToClear

paa.mysamples.cics.menu.CmdClearToBase ClearToBase

paa.mysamples.cics.menu.CmdMenuToClear1 MenuToClear1

12. Follow the Adding a Connection in the Visual Composition Editor procedure in Table 7 on page 85, to
add the connections listed in the following table:

Table 11. NavigatorDel Navigator connections

Source/Target Event

 Source: background
 Target: BaseToMenu

 internalExecutionStarting(CommandEvent)
 execute(CommandEvent)

 Source: BaseToMenu
 Target: MenuToMenuDel

 executionSuccessful(CommandEvent)
 execute(CommandEvent)

 Source: MenuToMenuDel
 Target: MenuToClear

 executionSuccessful(CommandEvent)
 execute(CommandEvent)

 Source: MenuToClear
 Target: ClearToBase

 executionSuccessful(CommandEvent)
 execute(CommandEvent)

 Source: ClearToBase
 Target: MenuToClear1

 executionSuccessful(CommandEvent)
 execute(CommandEvent)

 Source: MenuToClear1
 Target: background

 executionSuccessful(CommandEvent)
 returnExecutionSuccessful(CommandEvent)

13. Right-click on the MenuToMenuDel bean and select Promote Bean Feature .

14. Click the Property radio button.

15. Select ceInputCMD RWB from the list, and click >>. Similarly, move ceInputNAME1 RB , ceOutput1MSG
RWB to the Promoted features list.

16. Click OK to close the Promoted features dialog.

17. Select the pull-down menu Bean → Save Bean .

18. Close the Visual Composition Editor by clicking on the X button in the upper-right corner of the window

88 CICS and IMS Application Adaptor

Creating the NavigatorSignon Navigator

1. Right-click on paa.mysamples.ims.hod.pbe and select Add → Class .

2. Type the Class Name NavigatorSignon

3. Click Browse to set the Superclass to com.ibm.ivj.eab.command.CommunicationNavigator as
described in the Select Class Instructions in Table 1 on page 69. Select the check box to Compose
the class visually.

4. Click Finish . This creates the NavigatorSignon class and opens it in the Visual Composition editor.

5. From the menu for the class, select Open To → BeanInfo .

6. In this dialog:

a. Select Features → Generate BeanInfo.

b. Select Features → Add Available Features.

c. Select items class through output, both internalExecutionStarting() items, and
returnExecutionStatus() item and click the OK button.

d. Click on the Visual Composition tab.

7. Follow the Adding a Bean in the Visual Composition Editor procedure in Table 4 on page 84, to add a
new bean with Class = com.ibm.connector.hod.HODConnectionSpec and Name = connSpec.

8. Right-click on connSpec and select Properties. This opens the Properties Window.

a. Change the debugScreenEnabled property to True.
b. Change the hostname property to csdmec06.stl.ibm.com.
c. Change the logonlogoff property to PBELogonLogoff.
d. Change the portNumber property to 23.
e. Close the properties window.

9. Right-click on the connSpec and select Connect → this.

a. Click on the window background to open the End connection dialog.
b. Select connectionSpec RWB and click OK.

10. Follow the Adding a Bean in the Visual Composition Editor procedure in Table 4 on page 84, to add a
new bean for each of the Class and Name combinations in the following table:

Table 12. Class and Name combinations in the NavigatorSignon Navigator

Class Name

paa.mysamples.ims.hod.pbe.CmdFirstToSecondSignon FirstToSecondSignon

paa.mysamples.ims.hod.pbe.CmdSecondSignonToBase SecondSignonToBase

paa.mysamples.ims.hod.pbe.CmdClearToBase MenuToClear

11. Follow the Adding a Connection in the Visual Composition Editor procedure in Table 7 on page 85, to
add the connections listed in the following table.

 Chapter 6. Developing an IMS-HOD Application 89

Table 13. NavigatorSignon Navigator connections

Source/Target Event

 Source: background
 Target: FirstToSecondSignon

 internalExecutionStarting(CommandEvent)
 execute(CommandEvent)

 Source: FirstToSecondSignon
 Target: SecondSignonToBase

 executionSuccessful(CommandEvent)
 execute(CommandEvent)

 Source: SecondSignonToBase
 Target: background

 executionSuccessful(CommandEvent)
 returnExecutionSuccessful(CommandEvent)

12. Right-click on the FirstToSecondSignon bean, and select Promote Bean Feature.

13. Click the Property radio button.

14. Select ceInput APPLICATION RWB from the list, and click >>. Similarly, move ceInput PASSWORD RWB

and USERID RWB .

15. Right-click on the SecondSignonToBase bean, and select Promote Bean Feature...

16. Click the Property radio button.

17. Select ceInput PASSWORD RWB from the list, and click >>. Similarly, move USERID RWB .

18. Select the pull-down menu Bean → Save Bean .

19. Close the Visual Composition Editor by clicking on X in the upper-right corner of the window

Using the Navigators

To use the navigators, you need to add code to the PAO methods. The PAO methods that use the
Navigators are the PAO constructor, the CRUD methods, and the push-down methods. The following
instructions guide you to add code to the PhoneBookPAO PAO methods.

Creating and Editing the PBELogonLogoff Method

1. Expand the PBELogonLogoff class by clicking the + button next to it.

2. Click on logon (communication,LogonInfoItems) method and add the following code:

public void logon(com.ibm.connector.Communication arg1,

 com.ibm.connector.internal.LogonInfoItems arg2)

 throws com.ibm.connector.LogonException

{

try

 {

NavigatorSignon navigator = new NavigatorSignon();

 navigator.setCommunication(arg1);

// Hard coded userid, application and password for sample

 navigator.setFirstToSecondSignonCeInputAPPLICATION("APPL8");

 navigator.setFirstToSecondSignonCeInputUSERID("USRTðð7");

 navigator.setFirstToSecondSignonCeInputPASSWORD("USRTðð7");

 navigator.setSecondSignonToBaseCeInputUSERID("USRTðð7");

 navigator.setSecondSignonToBaseCeInputPASSWORD("USRTðð7");

 navigator.execute();

 }

catch(java.lang.Throwable e)

 {

90 CICS and IMS Application Adaptor

System.out.println("Failed to Signon");

 e.printStackTrace();

 }

}

3. Save the changes to the modified method.

Editing the PhoneBookPAO::retrieve method

1. In the Workbench, select the PhoneBookPAO method retrieve(). The source code for the retrieve
method appears in the Source pane in the lower half of the window.

2. Change the implementation to the following:

/\\

 \ This method was created in VisualAge.

 \ @exception com.ibm.ipaa.IDataKeyNotFoundException The exception description. \/

public void retrieve() throws com.ibm.ipaa.IDataKeyNotFoundException {

NavigatorRetrieve navigator = new NavigatorRetrieve();

 navigator.setConnectionSpec(this.getConnectionSpec());

 navigator.setMenuToMenuDisplayCeInputCMD("DISPLAY");

 navigator.setMenuToMenuDisplayCeInputNAME1(this.getLastName());

 navigator.execute();

String message = navigator.getMenuToMenuDisplayCeOutput1MSG();

if (!message.trim().equals("ENTRY WAS DISPLAYED"))

throw new com.ibm.ipaa.IDataKeyNotFoundException();

}

3. Select the pull-down menu Edit → Save.

Editing the PhoneBookPAO::del method

1. In the Workbench, select the PhoneBookPAO method del(). The source code for the del method
appears in the Source pane in the lower half of the window.

2. Change the implementation to the following:

/\\

 \ This method was created in VisualAge.

 \ @exception com.ibm.ipaa.IDataKeyNotFoundException The exception description. \/

public void del() throws com.ibm.ipaa.IDataKeyNotFoundException {

NavigatorDel navigator = new NavigatorDel();

 navigator.setConnectionSpec(this.getConnectionSpec());

 navigator.setMenuToMenuDelCeInputCMD("DELETE");

 navigator.setMenuToMenuDelCeInputNAME1(this.getLastName());

 navigator.execute();

String message = navigator.getMenuToMenuDelCeOutput1MSG();

if (!message.trim().equals("ENTRY WAS DELETED"))

throw new com.ibm.ipaa.IDataKeyNotFoundException();

}

3. Select the pull-down menu Edit → Save.

 Chapter 6. Developing an IMS-HOD Application 91

Editing the PhoneBookPAO::insert method

1. In the Workbench, select the PhoneBookPAO method insert(). The source code for the insert method
appears in the Source pane in the lower half of the window.

2. Change the implementation to the following:

/\\

 \ This method was created in VisualAge.

 \ @exception com.ibm.ipaa.IDataKeyAlreadyExistsException The exception

 description.

 \/

 public void insert() throws com.ibm.ipaa.IDataKeyAlreadyExistsException {

NavigatorAddUpdate navigator = new NavigatorAddUpdate();

 navigator.setConnectionSpec(this.getConnectionSpec());

 navigator.setMenuToMenuAddUpdtCeInputCMD("ADD");

 navigator.setMenuToMenuAddUpdtCeInputNAME1(this.getLastName());

 navigator.execute();

String message = navigator.getMenuToMenuAddUpdtCeOutput1MSG();

if (!message.trim().equals("ENTRY WASADDED"))

throw new com.ibm.ipaa.IDataKeyAlreadyExistsException();

}

3. Select the pull-down menu Edit → Save.

Editing the PhoneBookPAO::update method

1. In the Workbench, select the PhoneBookPAO method insert(). The source code for the insert method
appears in the Source pane in the lower half of the window.

2. Change the implementation to the following.

/\\

 \ This method was created in VisualAge.

 \ @exception com.ibm.ipaa.IDataKeyAlreadyExistsException The exception description.

 \/

public void update() throws com.ibm.ipaa.IDataKeyNotFoundException {

NavigatorAddUpdate navigator = new NavigatorAddUpdate();

 navigator.setConnectionSpec(this.getConnectionSpec());

 navigator.setMenuToMenuAddUpdtCeInputCMD("UPDATE");

 navigator.setMenuToMenuAddUpdtCeInputNAME1(this.getLastName());

 navigator.execute();

String message = navigator.getMenuToMenuAddUpdtCeOutput1MSG();

if (!message.trim().equals("ENTRY WAS UPDATED"))

throw new com.ibm.ipaa.IDataKeyNotFoundException();

}

3. Select the pull-down menu Edit → Save.

92 CICS and IMS Application Adaptor

Creating an Executable Class
1. Select your package.

2. From the Selected menu, select Add → Class . A wizard appears to request all the necessary
information required to create a class. Type the current project and package in the appropriate fields in
the wizard and ensure that the Create a new class radio button is selected. In the Class name field,
type Execute. Set the Superclass to java.lang.Object. Ensure that the Compose the class visually
radio button is NOT selected and click Next to continue to the next screen.

3. There are three classes that should be imported when the executable is run. To include these classes
as import statements, click Add Package . A list of available packages appears. From the list, select
each of the following and click Add to include them in the import statements. After adding the last one,
click Close .

com.ibm.connector.appc

com.ibm.connector.infrastructure

com.ibm.connector.infrastructure.java

4. Finally, ensure that the following fields are selected (checkmark beside them):

a. public (in modifiers section)
b. Methods which must be implemented (recommended)
c. Copy constructors from Superclass (recommended)

 d. main (String[])

5. To generate the class, click Finish and the class appears inside the package you have specified.

6. Type the code listed below into the main(String[]) method created in the Execute class and select
Save from the Edit pull-down menu. Note that the User and Password for the IMS server must be
inserted into this code where USRT006 appears:

public static void main(java.lang.String[] args) {

JavaRuntimeContext runtimeContext = new JavaRuntimeContext();

((DefaultLogonInfo) runtimeContext.getLogonInfo()).setUser("USRTðð6");

((DefaultLogonInfo) runtimeContext.getLogonInfo()).setPassword("USRTðð6");

JavaRuntimeContext.setCurrent(runtimeContext);

//((JavaRASService)runtimeContext.getRASService()).setTraceLevel(3);

com.ibm.connector.hod.HODConnectionSpec cs = new

com.ibm.connector.hod.HODConnectionSpec();

cs.setHostname("csdmecð6.stl.ibm.com");

cs.setPortNumber("23");

cs.setDebugScreenEnabled(true);

cs.setLogonLogoff("paa.samples.ims.hod.pbe.PBELogonLogoff");

cs.setSecurityType(com.ibm.connector.hod.HODConnectionSpec.SecurityTypeIMS)

;

try

 {

 com.ibm.ivj.communications.Session.startSession();

// Retrieve a record

PhoneBookPAOKey key = new PhoneBookPAOKey();

 key.setLastName("WILLIAMSON");

System.out.println("\\\ Attempting to retrieve \\\, key = " +

key.getLastName());

PhoneBookPAO phoneBook = (PhoneBookPAO) PhoneBookPAO.find(key);

 Chapter 6. Developing an IMS-HOD Application 93

phoneBook = (PhoneBookPAO) PhoneBookPAO.find(key);

 phoneBook.setConnectionSpec(cs);

 try

 {

 phoneBook.retrieve();

 }

catch (com.ibm.ipaa.IDataKeyNotFoundException e)

 {

System.out.println("\\\ Retrieve failed. Adding record \\\, key = "

 + key.getLastName());

key = new PhoneBookPAOKey();

 key.setLastName("WILLIAMSON");

phoneBook = (PhoneBookPAO) PhoneBookPAO.find(key);

phoneBook = (PhoneBookPAO) PhoneBookPAO.find(key);

 phoneBook.setFirstName("AAA");

 phoneBook.setExtNumber("2222");

 phoneBook.setInternalZip("1234567");

 phoneBook.setConnectionSpec(cs);

 try

 {

 phoneBook.insert();

 }

catch (com.ibm.ipaa.IDataKeyAlreadyExistsException ee)

 {

 ee.printStackTrace(System.out);

 }

 }

System.out.println("Display the retrieved or added record:");

System.out.println("Phone book to string is:" + phoneBook.toString());

System.out.println("First name is:" + phoneBook.getFirstName());

System.out.println("Extension number:" + phoneBook.getExtNumber());

System.out.println("Zip code is:" + phoneBook.getInternalZip());

// Update the record

key = new PhoneBookPAOKey();

 key.setLastName("WILLIAMSON");

System.out.println("\\\ Retrieve \\\, key = " + key.getLastName());

phoneBook = (PhoneBookPAO) PhoneBookPAO.find(key);

phoneBook = (PhoneBookPAO) PhoneBookPAO.find(key);

 phoneBook.setFirstName("AAA");

 phoneBook.setExtNumber("2222");

 phoneBook.setInternalZip("1111");

 phoneBook.setConnectionSpec(cs);

 try

 {

 phoneBook.update();

 }

catch (com.ibm.ipaa.IDataKeyNotFoundException e)

 {

 e.printStackTrace(System.out);

 }

System.out.println("Phone book to string is:" + phoneBook.toString());

System.out.println("First name is:" + phoneBook.getFirstName());

System.out.println("Extension number:" + phoneBook.getExtNumber());

System.out.println("Zip code is:" + phoneBook.getInternalZip());

// Retrieve a record

94 CICS and IMS Application Adaptor

key = new PhoneBookPAOKey();

 key.setLastName("WILLIAMSON");

System.out.println("\\\ Retrieve \\\, key = " + key.getLastName());

phoneBook = (PhoneBookPAO) PhoneBookPAO.find(key);

phoneBook = (PhoneBookPAO) PhoneBookPAO.find(key);

 phoneBook.setConnectionSpec(cs);

 try

 {

 phoneBook.retrieve();

 }

catch (com.ibm.ipaa.IDataKeyNotFoundException e)

 {

 e.printStackTrace(System.out);

 }

System.out.println("Phone book to string is:" + phoneBook.toString());

System.out.println("First name is:" + phoneBook.getFirstName());

System.out.println("Extension number:" + phoneBook.getExtNumber());

System.out.println("Zip code is:" + phoneBook.getInternalZip());

// delete a record

key = new PhoneBookPAOKey();

 key.setLastName("WILLIAMSON");

System.out.println("\\\ Retrieve \\\, key = " + key.getLastName());

phoneBook = (PhoneBookPAO) PhoneBookPAO.find(key);

phoneBook = (PhoneBookPAO) PhoneBookPAO.find(key);

 phoneBook.setConnectionSpec(cs);

 try

 {

 phoneBook.del();

 }

catch (com.ibm.ipaa.IDataKeyNotFoundException e)

 {

 e.printStackTrace(System.out);

 }

System.out.println("Phone book to string is:" + phoneBook.toString());

System.out.println("First name is:" + phoneBook.getFirstName());

System.out.println("Extension number:" + phoneBook.getExtNumber());

System.out.println("Zip code is:" + phoneBook.getInternalZip());

 com.ibm.ivj.communications.Session.endSession(false);

 }

catch (Exception e)

 {

 e.printStackTrace();

 }

System.exit(ð);

}

 Chapter 6. Developing an IMS-HOD Application 95

Run the Unit Test Main Method

To run this unit test program perform the following procedure:

1. Right-click on the Execute class and select Properties. This opens the properties window.

a. Click on the Class Path tab.
b. Select the Include '.' (dot) in the class path check box.
c. Select the Project path check box.
d. Click the Edit button that is next to the project path. This opens a list of projects.
e. Select the following projects:

� IBM Common Connector Framework
� IBM Component Broker Connectors
� IBM Component Broker Host On Demand
� IBM Enterprise Access Builder Library
� IBM Java Record Library
� IBM Procedural Application Adapter

 f. Click OK.

2. Right-click on the Execute class and select Run → Run main . You should see the Console window
appear and the following messages are shown in the output pane.

As the unit test runs, you can also see an IMS terminal window in which the application screens appear,
flashing quickly.

Exporting the PBE Package

After building the Execute class and creating and testing the Component Broker procedural adaptor object
within the VisualAge for Java environment, you can run the unit test program outside of the VisualAge for
Java environment. This object needs to be imported to Object Builder as a persistent object. Importing this
object requires that the procedural adaptor object and its corresponding BeanInfo class is exported outside
of VisualAge for Java. To run the sample outside of the VisualAge for Java environment, you must export
all classes you created and modify the CLASSPATH environment variable.

For ease, export the entire package. This package should contain:

� The new procedural adapter object
� Its corresponding BeanInfo class
� All EAB transaction objects

To export the package outside of VisualAge for Java:

1. Select the paa.mysamples.ims.pbe package to export.

2. From the VisualAge for Java Workbench menu, select File → Export . Select the Directory radio
button and click Next .

3. Select ONLY the .class check box.
 Important Information

If you export both .class and .java files, you will get an error when compiling the artifacts produced
by Object Builder.

 4. Click Finish .

When the export completes, the paa.mysamples.ims.pbe package is created under the MyProj directory.

96 CICS and IMS Application Adaptor

To verify that you exported the package correctly, you can run the unit test program from the command
line.

1. Ensure that your Working Directory is in your CLASSPATH. From a command prompt, type one of the
following:

WIN

java paa.mysamples.ims.pbe.Execute -nojit

AIX

 java paa.mysamples.ims.pbe.Execute

You should have the same results as you did when running inside of VisualAge for Java.

Developing an IMS-HOD Business Object

This section contains Object Builder and System Management procedures required to create a component
named “PhoneBookEntry.” To create this component, perform the procedures in the following sections.

1. “Importing the Bean”
2. “Defining the PhoneBookEntry Component” on page 98
3. “Creating Client and Server DLL Files” on page 102
4. “Packaging the Application” on page 103
5. “Building the Application - Client and Server” on page 105
6. “Installing the Application” on page 106
7. “Running the Sample Application” on page 108

Notes:

1. Before starting Object Builder, ensure that your classpath includes your Working Directory.

2. Specify your Working Directory as the base directory for the project.

3. The procedures contained in this section assume that you have correctly set your classpath to include
your Working Directory before starting Object Builder and that you have started Object Builder.

Importing the Bean

The bean to import is PhoneBookBean from the paa.mysamples.ims.pbe package from your Working
Directory.

To import this bean:

1. Select the User-Defined PA Schemas folder from the Object Builder Tasks and Objects pane.

2. Open the pop-up menu for User-Defined PA Schemas and select Import Bean . This opens the Import
Procedural Adaptor Bean wizard.

3. On this page:

a. Type paa.mysamples.imshod.pbe.PhoneBookPAO in the Class Name field.
b. Click Next to accept the remaining defaults and to continue.

4. On this page:

a. Leave the Module Name field blank.
b. Leave the default value in the Persistent Object Name field.
c. Select HOD for the Connector Type.
d. Click Next to continue.

 Chapter 6. Developing an IMS-HOD Application 97

5. On this page:

a. Select the lastName property from the Properties list box.
b. Click >> to move the associated key required to import the bean.

 6. Click Finish .

The bean is imported into Object Builder. The PhoneBookPAO schema and its corresponding persistent
object (PhoneBookBeanPO) are now in the tree view of User-Defined PA Schemas.

Defining the PhoneBookEntry Component

This exercise defines the objects required to create a component named “PhoneBookEntry.” For this
component, you will do the following:

1. Create a new business object file
2. Define the business object
3. Connect the data object implementation to the persistent object
4. Define the managed object
5. Generate the code

Creating the Business Object File

To create the PhoneBookEntry business object file:

1. From the Tasks and Objects pane, select the User-Defined Business Objects folder.

2. Open the pop-up menu for User-Defined Business Objects and select Add File , which opens the
Business Object File wizard to the Name and Attributes page.

3. On this page:

a. Type PhoneBookEntry in the Name field.
b. Accept the other defaults.

 4. Click Finish .

The PhoneBookEntry file is now under the User-Defined Business Objects folder.

Defining the Business Object

After creating the new business object file, the business object needs to be defined. A fully-configured
business object consists of the following:

� A business object interface
� An associated key
� An associated copy helper
� A business object implementation

Defining the Business Object Interface: To create the PhoneBookEntry business object interface:

1. Expand the User-Defined Business Objects folder and select PhoneBookEntry .

2. Open the pop-up menu for PhoneBookEntry and select Add Interface , which opens the Business
Object Interface wizard to the Name and Attributes page.

3. On this page:

a. Type PhoneBookEntry in the Name field.
b. Click Next to continue to the Constructs page.

4. Click Next to accept the defaults and to continue to the Interface Inheritance page.

98 CICS and IMS Application Adaptor

5. Click Next to accept the defaults and to continue to the Attributes page.

6. Define the user-defined attributes.

a. Select Attributes from the tree view.

b. Open the pop-up menu for Attributes and select Add . This displays the Add dialog.

c. In this dialog:

1) Type lastName in the Attribute Name field.
2) Select string as the Type . This displays the Size field.
3) Type ð in the Size field.
4) Click Add Another .

d. Repeat the previous step for the remaining attributes of the PhoneBookEntry interface. The
remaining attributes are:

� firstName, and click the Add Another button.
� extNumber, and click Add Another .
� internalZip, and click Refresh .

e. Click Next to continue to the Methods page.

7. Define the user-defined methods.

a. Right-click on Methods from the tree view.
b. From the pop-up menu for Methods, select Add . This opens the editor pane.
c. In the this pane:

1) Type showAll in the Method Name field.
 2) Click Refresh .

d. Right-click on Parameters from the tree view.
e. From the pop-up menu for Parameters, select Add . This opens the editor pane.
f. In this pane:

1) Type lnm in the Parameter Name field.
2) Select string as the Type . This displays the Size field.
3) Type ð in the Size field.
4) Select the Out radio button.
5) Click Add Another .

g. Repeat the previous step for the remaining parameters. These parameters are:
� fnm, and click Add Another .
� ext, and click Add Another .
� zip, and click Refresh .

 8. Click Finish .

The PhoneBookEntry interface is now under the PhoneBookEntry file.

Defining the Key: To add the key:

1. From the User-Defined Business Object folder, select the PhoneBookEntry interface.
2. Open the pop-up menu for PhoneBookEntry and select Add Key , which opens the Key wizard.
3. Select the lastName attribute from the Business Object Attributes list.
4. Click >> to move this attribute to the Key Attributes list.

 5. Click Finish .

The PhoneBookEntryKey key is now under the PhoneBookEntry interface.

 Chapter 6. Developing an IMS-HOD Application 99

Defining the Copy Helper: To add the Copy Helper:

1. From the User-Defined Business Object folder, select the PhoneBookEntry interface.

2. Open the pop-up menu for PhoneBookEntry and select Add Copy Helper , which opens the Copy
Helper wizard.

3. Click All >> to move the attributes from the Business Object Attributes list to the Copy Helper
Attributes list.

 4. Click Finish .

The PhoneBookEntryCopy copy helper is now under the PhoneBookEntry interface.

Defining the Business Object Implementation: To add the business object implementation and data
object interface:

1. From the User-Defined Business Object folder, select the PhoneBookEntry interface.

2. Open the pop-up menu for PhoneBookEntry and select Add Implementation , which opens the
Business Object Implementation - wizard to the Name and Data Access Pattern page.

3. Define the implementation.

a. Select the Delegating radio button from the Pattern for Handling State Data group box.

b. Ensure that the Create a new one now radio button is selected from the Data Object Interface
group box. This option allows you to define the business object attributes that need to be
preserved in the data object.

c. Deselect 39ð in the Select deployment platform group box.

d. Click Next to continue to the Implementation Inheritance page.

4. Click Next to accept the defaults and to continue to the Implementation Language page.

5. Click Next to accept the defaults and to continue to the Attributes page.

6. Click Next to accept the defaults and to continue to the Methods page.

7. Click Next to accept the defaults and to continue to the Key and Copy Helper page.

8. On this page:

a. Verify that the PhoneBookEntryKey key is selected from the Key list.
b. Verify that PhoneBookEntryCopy is selected from the Copy Helper list.
c. Click Next to continue to the Handle Selection page.

9. Click Next to accept the defaults and to continue to the Attributes to Override page.

10. Click Next to accept the defaults and to continue to the Methods to Override page.

11. Click Next to accept the defaults and to continue to the Data Object Interface page.

12. Click All >> to move the attributes in the Business Object Attributes list to the State Data list.

13. Click Finish .

The PhoneBookEntryBO business object implementation is now under the PhoneBookEntry interface, and
the PhoneBookEntryDO data object interface is now under the PhoneBookEntryBO business object
implementation.

100 CICS and IMS Application Adaptor

Connecting the Data Object Implementation to the Persistent Object

To create the data object implementation and to connect the data object implementation to the persistent
object, perform the following procedure.

1. From the User-Defined Business Object folder, select the PhoneBookEntryDO data object interface.

2. Open the pop-up menu for PhoneBookEntryDO and select Add Implementation . This displays the
Data Object Implementation - wizard.

3. Deselect 390 in the Select Deployment platform group box and click Next to continue to the Behavior
page.

4. Set the environment.

a. Set the BOIM with any key radio button from the Environment group box to indicate that the
data object is part of a component installed in a business object application adaptor with instances
being located by key objects.

b. Set the Procedural Adaptors radio button from the Form of Persistent Behavior and
Implementation group box.

c. Click Next to continue to the Implementation Inheritance page.

5. On this page:

a. Verify that IPAAExtLocalToServer IPAAExtLocalToServer is selected as a parent.
b. Click Next to continue to the Attributes page.

6. Click Next to accept the defaults and to continue to the Methods page.

7. Click Next to accept the defaults and to continue to the Key and Copy Helper page.

8. Click Next to accept the defaults and to continue to the Associated Persistent Objects page.

9. On this page:

a. Select Persistent Object Instances .
b. Open the pop-up menu for Persistent Object Instances and select Add .
c. Type iPhoneBookBeanPAOPO in the Instance Name field.

 d. Click Next .

10. On this page:

a. Select lastName from the Attributes list.

b. Open the pop-up menu for lastName and select Primitive .

c. Select iPhoneBookBeanPAOPO.lastName from the Persistent Object Attribute list.

d. Add 1-to-1 mappings for the other attributes under the Attributes tree view as you just did for
lastName.

 e. Click Next .

11. On this page:

a. Select insert from the Special Framework Methods list.

b. From the pop-up menu for insert, select Add Mapping .

c. Select iPhoneBookBeanPAOPO.insert from the Persistent Object Method list.

d. Add 1-to-1 mappings for the other methods under the Special Framework Methods tree view as
you just did for insert. In addition, add a mapping for the setConnectin() method.

12. Click Finish .

 Chapter 6. Developing an IMS-HOD Application 101

13. If you receive the prompt One or more data objects are not mapped to the persistent object. Do

you want to continue?, click Yes.

The PhoneBookEntryDOImpl data object implementation is now under the PhoneBookEntryDO interface,
and the PhoneBookBeanPO persistent object is now under the PhoneBookEntryDOImpl data object
implementation.

Defining the Managed Object

To add the managed object:

1. From the User-Defined Business Object folder, select the PhoneBookEntryBO business object
implementation.

2. Open the pop-up menu for PhoneBookEntryBO and select Add Managed Object , which opens the
Managed Object wizard to the Name and Service page.

3. Deselect 390 in the Select Deployment platform group box.

4. Select the session service.

5. Click Next to accept the defaults and continue to the Implementation Inheritance page.

 6. Click Finish .

Generating the Code

To generate the application code:

1. From the User-Defined Business Object folder, select PhoneBookEntry.
2. Open the pop-up menu for PhoneBookEntry and select Generate → All .

Code generation starts. Progress is indicated in the lower-left corner of the window.

Creating Client and Server DLL Files

The defined objects need to be built into two separate DLL files.

� One that runs on the client and provides access to the business object interface, key and copy helper.

� One that runs on the server and provides access to the managed object and the rest of the
component.

The client DLL file needs to be defined before the server DLL file. When the server DLL file is defined, it
needs to link to the client DLL file. After defining the objects that comprise each DLL file, these files can
be built.

Defining the Client DLL File

To add the client DLL file:

1. Select the Build Configuration folder.

2. From the pop-up menu for Build Configuration and select Add client DLL . This displays the Name
and Option page of the Add Client DLL wizard.

3. Type pbeC in the Name field.

4. Click Next to continue to the Client Source Files page.

5. Click All >> to move the client source files to the Items chosen list.

102 CICS and IMS Application Adaptor

 6. Click Finish .

The pbeC client DLL file is now under the Build Configuration folder.

Defining the Server DLL File

To add the server DLL.

1. Select the Build Configuration folder.

2. From the pop-up menu for Build Configuration, select Add Server DLL . This displays the Name and
Option page of the Server DLL wizard.

3. Type pbeS in the Name field.

4. Deselect 390 in the Select Deployment platform group box.

5. Click Next to continue to the Server Source Files page.

6. Click All >> to move the server source files to the Items chosen list.

7. Click Next to continue to the Libraries to Link With page.

8. Click All >> to move all the files from the Items Available list to the Items chosen list.

 9. Click Finish .

The pbeS server DLL file is now under the Build Configuration folder.

Building the DLL Files

To generate the makefiles to build the configuration:

1. Select the Build Configuration folder.
2. From the pop-up menu for Build Configuration, select Generate → All → All Targets .

The code generation begins.

Packaging the Application

Packaging the application consists of the following procedures:

1. Creating the application family
2. Defining the application
3. Creating the container instance
4. Configuring the managed object
5. Generating the application

Creating the Application Family

To add the application family, do the following:

1. Select the Application Configuration folder.

2. Fron the pop-up menu for Application Configuration, select Add Application Family . This displays the
Name page of the Application Family wizard.

3. Type pbeAppFam in the Name field.

 4. Click Finish .

The pbeAppFam application family is now under the Application Configuration folder.

 Chapter 6. Developing an IMS-HOD Application 103

Defining the Application

To add the Application:

1. Select the pbeAppFam application family.

2. Open the pop-up menu for pbeAppFam and select Add Application , which opens the Add Application
wizard to the Name and Environment page.

3. Type pbeApp in the Application Name field.

 4. Click Finish .

The pbeApp application is now under the pbeAppFam application family.

Creating the Container Instance

To add the new container instance:

1. Select the Container Definition folder.

2. From the pop-up menu for Container Definition, select Add Container Instance , which opens the
Container wizard.

3. Type pbeContainer in the Name field.

4. Click Next to continue to the Work Load Manager Container page.

5. Click Next to continue to the Policies and Services page.

6. On this page:

a. Set the Use PAA Services radio button.
b. Set the Session Services radio button.
c. Click Next to continue to the Sessional Policies and Services page.

7. On this page:

a. Set the Throw an exception and abandon the call radio button under Behavior for Methods
Called Outside a Session .

b. Set the Host on Demand radio button under Type of Connection used by Session .

c. Type IMS_pbe_Connection in the Connection Name field.

d. Click Next to continue to the Data Access Patterns page.

8. On this page, ensure that the Delegating check box is set under both Business Object and Data
Object blocks.

 9. Click Finish .

The pbeContainer container is now under the Container Definition folder.

Configuring the Managed Object

To add the managed object for the Application:

1. Select the pbeApp application.

2. From the pop-up menu for pbeApp, select Add Managed Object , which opens the Configure Manage
Object wizard.

3. In this window:

a. Verify that PhoneBookEntryMO PhoneBookEntryMO is in the Managed Object field.

104 CICS and IMS Application Adaptor

b. Click Next to continue to the Data Object Implementations page.

4. On this page:

 a. Select Implementation .

b. Open the pop-up menu for Implementation and select Add .

c. Select PhoneBookEntryDOImpl PhoneBookEntryDOImpl from the Data Object
Implementation list.

d. Click Next to continue to the Container page.

5. Click Next to continue to the Home page.

6. On this page, select BOIMHomeOfRegHomes from the Home Name list.

7. On this page, select pbeContainer from the Name list.

 8. Click Finish s.

The PhoneBookEntryMO managed object is now under the Application Configuration folder.

Generating the Applications

To generate the application family:

1. Select the pbeAppFam application.
2. Open the pop-up menu for pbeApp and select Generate .

Note: If you do not have InstallShield installed on your system, click Yes when the dialog concerning
InstallShield is displayed.

When code generation completes, the Method Implementation pane contains the pbeApp.ddl file. You can
now close Object Builder.

Building the Application - Client and Server

All imported and generated files are placed in one of the following directories:

WIN x:\MyProj\Working\NT directory (where x:\MyProj is the working directory when Object Builder was
started).

1. Change directory to:

 x:\MyProj\Working\NT

 2. Type:

nmake -f all.mak cpp java

AIX $HOME/MyProj/Working/AIX directory (where $HOME/MyProj is the working directory when Object
Builder was started).

1. Change directory to:

 $HOME/MyProj/Working/AIX

 2. Type:

make -f all.mak cpp java

Everything in the sample application is built.

 Chapter 6. Developing an IMS-HOD Application 105

Installing the Application

Installing an application consists of the following:

1. Loading the application
2. Configuring the application

These procedures assume that you are currently logged on to DCE and that you are currently using the
System Manager User Interface. If not, logon to DCE and start the System Manager User Interface.

Loading the Application onto System Management

To install the pbe server application:

1. Start the System Manager User Interface if it is not already started.
2. Become an Expert user (View → User Level → Expert).
3. Expand Host Images, and select your host name.
4. From the pop-menu, select Load Application . This opens the Load Application dialog.
5. Browse for and select one of the following:

WIN pbcAppFam.ddl (x:\MyProj\Working\NT\pbeAppFam\pbeAppFam.ddl).

AIX pbcAppFam.ddl ($HOME/MyProj/Working/AIX/pbeAppFam/pbeAppFam.ddl

Note: A warning may be displayed about iCachedWLMSystemManagedObjects while the DDL is loading.
You can ignore this warning.

Configuring the Application with System Management

To configure the application:

1. Configure the pbeApp application.

a. Expand Available Applications, and select pbeApp .

b. Open the pop-up menu for pbeApp and select Drag .

c. Expand Management Zones → Sample Cell and Work Group Zone → Configurations, and select
Sample Configuration.

d. Open the pop-up menu for Sample Configuration, and select Add Application .

2. Configure the HOD connection.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Sample
Configuration → HOD Connections, and select IMS_pbe_Connection.

b. Open the pop-up menu for IMS_pbe_Connection and select Edit , which opens the Object Editor.

c. Click the Main tab.

d. Modify the host name and port number fields to match the IMS region with which you are
communicating.

e. Change the security mechanism to IMS.

 f. Click OK.

3. Define the server.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations and select
Sample Configuration .

106 CICS and IMS Application Adaptor

b. Open the pop-up menu of Sample Configuration and select New → Server (free standing) . This
displays a new dialog box.

c. Type pbeSrv as the name for the server group.

d. Click OK. The pbeSrv is now under Server (free standing).

4. Associate the application with the server.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Sample
Configuration → Applications, and select pbeApp.

b. Open the pop-up menu of pbeApp and select Drag .

c. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Sample
Configuration → Server (free standing), and select pbeSrv.

d. Open the pop-up menu of pbeSrv and select Configure Application .

5. Associate the iPAAServices application with the server.

a. Host Images → myhost → Application Family Installs → iPAAApplications → Application Installs,
and select iPAAServices.

b. Open the pop-up menu for IPAAServices and select Drag .

c. Expand Management Zones → Sample Cell and Work Group Zone → Configurations, and select
Sample Configuration.

d. Open the pop-up menu for Sample Configuration and select Add Application .

e. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Sample
Configuration → Applications, and select iPAAServices.

f. Open the pop-up menu for IPAAServices and select Drag .

g. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Sample
Configuration → Server (free standing), and select pbeSrv.

h. Open the pop-up menu for pbeSrv and select Configure Application .

6. Configure the server with the host.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Server
(free standing), and select pbeSrv

b. From the pop-up menu for pbeSrv, select Drag .

c. Expand Hosts, and select your server.

d. From the pop-up menu for your server, select Configure Server (free standing) .

7. Enable security services for the server.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configuration → Sample
Configuration → Server (free standing), and select pbeSrv.

b. Open the pop-up menu for pbeSrv and select Edit , which opens the Object Editor.

c. In this notebook:

1) Select the Security Service tab.

2) Change the value for the data system principal field to the user ID that the server will use
when connecting to the IMS system.

3) Change the value for the data system password field to the password that the server will use
when connecting to the IMS system.

4) Change the value for the security enabled field from no to yes.

 Chapter 6. Developing an IMS-HOD Application 107

5) Click OK. The changes are applied and the Object Editor closes.

8. Enable security services for the client.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configuration → Sample
Configuration → Client Styles, and select myClient .

b. Open the pop-up menu for myClient and select Edit , which opens the Object Editor.

c. In this notebook:

1) Select the Security Service tab.
2) Change the value for the security enabled field from no to yes.
3) Click OK. The changes are applied and the Object Editor closes.

9. Activate the configuration.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations, and select
Sample Configuration.

b. Open the pop-up menu for Sample Configuration and select Activate , which automatically starts
the application server. Wait for a completion message in the Action Console window before
continuing.

Running the Sample Application

For IVP install instructions for IMS, see IMS/ESA Version 6 Install Volume 1. The entire book contains
information on installing and configuring the IVP sample. Chapter 11, entitled “Install/IVP Application,”
discusses the sample IMS application.

To run the sample client application, perform one of the following:

WIN

1. Copy the pbeclient.mak and pbeclient.cpp from:

 x:\CBroker\samples\PAAsamples\Application\PhoneBookCli

To:

 x:\MyProj\Working\NT

2. Change directory to:

 x:\MyProj\Working\NT

 3. Type:

nmake -f pbeclient.mak

 4. Type:

 pbeclient

AIX

1. Copy the pbecclient.mak and pbeclient.cpp from:

 /usr/lpp/CBToolkit/samples/InstallVerification/PAA/Application/PhoneBookCli

To:

 $HOME/MyProj/Working/AIX

2. Change directory to:

 $HOME/MyProj/Working/AIX

108 CICS and IMS Application Adaptor

 3. Type:

make -f pbeclient.mak

 4. Type:

 pbeclient

 Chapter 6. Developing an IMS-HOD Application 109

110 CICS and IMS Application Adaptor

Chapter 7. Developing a CICS-HOD Application

This chapter provides information for building a sample Component Broker application with a CICS
backend.

This chapter contains the following information:

� “The CICS Sample Application”
� “Enterprise Access Builder Procedures” on page 113
� “Developing a CICS-HOD Business Object” on page 142

Note: To walk through this sample, the following software and Component Broker software must be
installed on your system:

� The Component Broker samples
� The CICS and IMS Application Adaptor SDK
� IBM VisualAge Java with EAB

 Important Information

Before walking through this sample, please refer to the Late Breaking News provided with Component
Broker before performing the exercise in this chapter. This document provides the latest information
regarding the CICS and IMS application adaptor samples, which may differ from the instructions for
this sample application.

The CICS Sample Application

The CICS-HOD sample application is based on a CICS Installation Verification Procedure (IVP). The IVP
is a mock customer account database consisting of the following fields:

number The account number of the customer. This attribute is used as the key.

name The name of the customer.

address The address of the customer.

phone The phone number of the customer.

date The date of the last update to the record.

amount The balance that the customer has in his or her account.

comment Any comment about the record.

Although this sample application is not a full-blown CICS application, it captures the essence of an
application involving multiple 3270 panel navigation and delivering some amount of business function. This
sample application can be extended and customized to explore different CICS-HOD application issues.

WIN The sample that you build in this section is included with the product and can be built by following
the steps in the HTML file in:

CBroker\samples\InstallVerification\PAA\readme.htm

AIX The sample that you build in this section is included with the product and can be built by following
the steps in the HTML file in:

/usr/lpp/CBToolkit/samples/InstallVerification/PAA/readme.htm

 Copyright IBM Corp. 1998 111

This sample application can be extended and customized to explore different CICS-HOD application
issues.

Interacting with the CICS IVP

Using the CICS IVP involves navigating a sequence of 3270 screens. The following sequence takes you
through a full cycle for the ADDS transaction.

1. If your CICS server uses the IBM Transaction Server, the CICS Administration Guide discusses the
required steps to create a telnet server listening port in Chapter 4, “Using Telnet Clients.” Issue the
following command on the CICS server Windows NT system:

cicscp create telnet_server TNSERVER -P xxxx -r region

where xxxx is an unused port number on the system and region is the region name. The cicscp
command is fully described in the “cicscp - telnet server commands” in the CICS Administration
Reference.

2. To start a 3270 terminal connected to the CICS server, a suitable 3270 emulator product is required.

WIN

3. The Windows NT supplied version of Telnet 3270 will not work. A 3270 capable Telnet product, such
as IBM Personal Communications, is required.

AIX

Telnet can be used, but products such as IBM Personal Communications or Xant will give better
results, particularly to mainframe systems.

4. At the 3270 emulator screen, type:

MENU

Note: Some 3270 emulators use the Ctrl key on the right side of the keyboard instead of the Enter
key. The transaction is started and the next window is displayed.

5. At this window, the following entry fields are displayed:

 � ENTER TRANSACTION
 � NUMBER
 � AMOUNT

At this window:

a. Type ADDS in the TRANSACTION field.
b. Type 111111 in the NUMBER field.
c. Press Enter and a new window is displayed.

6. This window allows you to add the input fields for the new account record. PressEnter when finished
adding the field.

7. This window contains the menu screen again. If the account was added successfully, the following
message appears in the message field:

 RECORD ADDED

If the account was already established, the following message appears in the message field:

 DUPLICATE RECORD

8. Clear the screen to finish the navigation and reset the terminal to accept new transactions.

112 CICS and IMS Application Adaptor

All transactions follow the same sequence for a full cycle. The full cycle is described, because in this
sample IBM VisualAge Java with Enterprise Access Builder (EAB) transaction objects are used to perform
these IVP transactions, and each of these navigates through a full cycle.

Enterprise Access Builder Procedures

This exercise defines the classes required to create a Component Broker procedural adapter object (PAO)
named “MenuCustomer.” For this object, you will be:

� “Creating a Project and Package for the Samples.”
� “Creating the Procedural Adapter Object and Key” on page 114.
� “Creating Command Beans” on page 121.
� “Creating Navigator Beans” on page 130.

Creating a Project and Package for the Samples

To create a new project and package under VisualAge for Java:

1. Start VisualAge for Java by doing one of the following:

WIN From the Windows NT Start menu, select IBM VisualAge for Java for Windows → IBM
VisualAge for Java .

AIX At an AIX command prompt, type vajide and press Enter .

Verify that all of the following projects are listed in the VisualAge for Java workspace.

� Connector CICS 3.0
� IBM Common Connector Framework V2.0
� IBM Component Broker Host On Demand 1.0
� IBM Component Broker Connectors 2.0
� IBM Procedural Application Adapter 1.0
� IBM Enterprise Access Builder Library V2.0
� IBM Java Record Library V2.0

If any projects are missing, add them as follows:

a. Select File → Quick Start.
b. Select Features in the left pane and Add Feature in the right pane.

 c. Click OK.
d. Select the projects listed above.
e. Click the OK button.

Note: The sample EAB objects described in this section are contained in the “IBM Component Broker
PAA Samples” project in the paa.samples.cics.menu package. If you want to see the
completed sample, use the “Add Feature” to load IBM Component Broker PAA Samples into
your VisualAge for Java workspace.

2. Select the pull-down menu Window → Options... . Select the Design Time options window and
uncheck the Inherit BeanInfo of bean superclass. Also, you can change the colors to suit your taste
using the Appearance options windows.

 Important Information

Be sure that you have unchecked Inherit BeanInfo of bean superclass . If this is not unchecked,
you will receive an error message when you try to import into Object Builder.

3. Create the CBSamples project if it does not already exist.

 Chapter 7. Developing a CICS-HOD Application 113

a. Select the pull-down menu Selected → Add → Project
b. Type CBSamples for the name of the project and click Finish .

4. Create the paa.mysamples.cics.menu package if it does not exist.

a. From the list of projects, right-click on the CBSamples project to open the pop-up menu. Select
Add → Package .

b. Type paa.mysamples.cics.menu for the new package, and clickFinish .

Creating the Procedural Adapter Object and Key

In this section, you will create the Procedure Adapter Object (PAO), and create the key for the PAO, and
link the PAO with its key.

The PAO inherits from com.ibm.ivj.eab.paa.EntityProceduralAdapterObject, which serves as a base
implementation for all PAOs. As a subclass of EntityProceduralAdapterObject, the PAO contains the
CRUD methods (Create, Retrieve, Update, and Delete). However, these methods are all empty-bodied.
You must define their implementation for your PAO.

The properties defined in the PAO interface must contain the data attributes that the Component Broker
data object requires from the backend system. Also, the PAO must contain any push-down methods that
the Component Broker data object requires for running special procedures on the backend system.

The PAO key must contain the data attributes used by the Component Broker data object to select the
data on the backend system.

Creating the MenuCustomer Class

1. Right-click on paa.mysamples.cics.menu , and select Add → Class... .

2. In this dialog:

a. Type the Class Name: MenuCustomer

b. Click Browse to set the Superclass to com.ibm.ivj.eab.paa.EntityProceduralAdapterObject as
described in Select Class Instructions in Table 14 which follows.

 3. Click Finish .

4. To select the class name, complete the following steps:

Table 14. Select Class Instructions

Using the Select class dialog::

1. In the Pattern field, type the first few letters of the class name.

2. In the Type Names: list, click on the desired class name.

3. In the Package Names: list, if more than one package appears, click on the desired package name.

4. Click OK to close the dialog.

114 CICS and IMS Application Adaptor

Adding Properties to the MenuCustomer Class

1. Right-click the MenuCustomer class and select Open . This opens a new notebook.

2. Select the BeanInfo tab in the notebook.

3. Use the following procedure to add properties to the class.

a. Select the pull-down menu Features → New Property Feature . This opens the New Property
Feature dialog.

b. Type the name of the property you want to add in the Property Name field.

c. Leave java.lang.String as the Property type.

 d. Click Finish .

Repeat this procedure to add the following properties:

 � name
 � address
 � phone
 � date
 � amount
 � comment

Use the default property type java.lang.String for each of the properties.

Also add the property number . However, because the number is key data, you must uncheck the
Writable check box in the New Property dialog box for the number property.

4. Add the debit push-down method as follows:

a. Select the pull-down menu Features → New Method Feature . This opens the New Method
Feature dialog.

b. Type the Method name debit

c. Set the Parameter count to 1.

d. Click Next > .

e. Set the Parameter name to amount

f. Set the Parameter type to int

 g. Click Finish .

5. Verify that the list of MenuCustomer properties matches the following list.

� P address RWB

� P amount RWB

� P comment RWB

� P date RWB

� P name RWB

� P number RB

� P phone RWB

 � M debit(int)

6. To close the MenuCustomer notebook, do one of the following:

WIN Click X in the upper-right corner of the window.

AIX Click > in the upper left corner of the window and select Close .

 Chapter 7. Developing a CICS-HOD Application 115

Creating the MenuCustomerKey Class

1. Right-click on paa.mysamples.cics.menu , and select Add → Class .

2. In this dialog:

a. Type the Class NameMenuCustomerKey

b. Click Browse to set the Superclass to BusinessObjectKey in package
com.ibm.ivj.eab.businessobject as described in Select Class Instructions in Table 14 on
page 114.

 3. Click Finish .

Adding Properties to the MenuCustomerKey Class

1. Right-click the MenuCustomerKey class and select Open . This opens a new notebook.

2. Select the BeanInfo tab in the notebook.

3. Add the number property to the class as follows:

a. Select the pull-down menu Features → New Property Feature . This opens the New Property
Feature dialog.

b. Type the Property Name number

c. Select java.lang.String for the type of property.

Leave everything else in the dialog as default. The number property needs to be writable.

 d. Click Finish .

4. Verify that the MenuCustomerKey has only the following property. P number RWB

5. To close the MenuCusotmer notebook, do one of the following:

WIN Click the X button in the upper-right corner of the window.

AIX Click > in the upper left corner of the window and select Close .

Linking the PAO and its Key Class

1. In the Workbench window, expand the MenuCustomerKey class by clicking + next to it.

2. Click on the getPropertyValues() method. This puts the method source in the Source pane.

3. Change the return statement in the Source pane as follows:

protected java.lang.Object[] getPropertyValues() {

return new Object[] { this.getNumber() };

}

4. Press Ctrl+S to save the getPropertyValues() method.

5. Collapse the MenuCustomerKey class by clicking - next to it.

6. Expand the MenuCustomer class by clicking+ next to it.

7. Click on the getNumber() method. This put the method source in the Source pane.

8. Edit the getNumber() method so that it delegates to its key object as follows,

public String getNumber() {

MenuCustomerKey key = (MenuCustomerKey) this.getKey();

 return key.getNumber();

}

9. Press Ctrl+S to save the getNumber() method.

116 CICS and IMS Application Adaptor

10. Collapse the MenuCustomer class by clicking - next to it.

Creating Record Beans and a Record Mapper

In this section you will create two record beans . A record bean represents records in the CICS system. In
the case of HOD, the record data is taken from the CICS application screens, so the record beans
correspond to screens.

The two screens in this sample are as follows:

DFHDGA is the main transaction menu screen. It looks like the following:

 INSTRUCTION C version

OPERATOR INSTR - ENTER MENU

FILE INQUIRY - ENTER INQY AND NUMBER

FILE BROWSE - ENTER BRWS AND NUMBER

FILE ADD - ENTER ADDS AND NUMBER

FILE UPDATE - ENTER UPDT AND NUMBER

FILE DELETE - ENTER DELE AND NUMBER

CUSTOMER DEBIT - ENTER DEBT AND NUMBER AND AMOUNT

PRESS CLEAR TO EXIT

ENTER TRANSACTION: ____ NUMBER ______ AMOUNT _______

DFHDGB is the customer data screen. It looks like the following.

 FILE ADD/UPDATE/INQUIRY

NUMBER: 123456

NAME: ____________________

ADDRESS: ____________________

PHONE: ________

DATE: ________

AMOUNT: $ðððð.ðð

COMMENT: _________

For each screen record bean, import the BMS file to generate the dynamic record type . Then use the
record type to generate the record bean.

To exchange data between a record bean and a PAO, you must create a record mapper . The mapper
describes the mapping between the properties of the PAO and the fields on the CICS application screens.
In this sample, you will create a mapper to exchange data between DFHDGB and the MenuCustomer
PAO.

The DFHDGA record bean is used by a command bean (“Creating Command Beans” on page 121), so a
mapper is not needed.

Creating the DFHDGA Record Type and Record Bean

1. Right-click on paa.mysamples.cics.menu , and select Tools → Records → Create BMS
RecordType .

2. In the Create BMS RecordType wizard:

a. Type the Class Name DFHDGARecordType

 Chapter 7. Developing a CICS-HOD Application 117

b. Click Add s to locate the file dfhdga.bms . The BMS files are located in one of the following
places:

WIN

C:CBroker\samples\InstallVerification\PAA\Backend\Acct\

where C:\CBroker is the directory where you installed IBM Component Broker .

AIX

$HOME/samples/InstallVerification/PAA/Backend/Acct

where $HOME is the directory where you installed IBM Component Broker .

c. Click Next > .

d. Click >. This causes DFHDGA to appear in the Maps column.

e. Select DFHDGA in the Maps column.

f. Click the other > button to move DFHDGA from the Maps column to the Selected column.

g. Click Finish . This creates the class DFHDGARecordType .

3. Right-click on DFHDGARecordType, and select Tools → Records → Generate Records.

4. Type the Class Name DFHDGARecord

5. Leave the other fields as defaulted, and click Finish . This creates the classes DFHDGARecord and
DFHDGARecordBeanInfo .

Important Note About Removing Record Type Initial Values: In later sections, you will create
navigator beans and you will see how the navigators decide which commands to execute by
matching the CICS application screens with the record types. It is important, therefore, that the
screen values in the record types are actual screen constants, for example, they do not
change. Otherwise, the navigator will not match the screen to the record and you will see an
error such as:

IVJCð85ð: No output candidate matches data returned from the connector.

The MSG field of the DFHDGA screen has an initial value of “PRESS CLEAR TO EXIT,” but
its value can change. For example, after adding a record it says “RECORD ADDED
SUCCESSFULLY.” You must change the DFHDGARecordType to remove the initial value of
MSG so that the navigator does not use it for matching.

You could have modified the BMS file by removing the INITIAL string of MSG before you ran
the Create BMS RecordType tool. Instead, complete the following steps to modify the
generated code of the DFHDGARecordType.

6. Expand the DFHDGARecordType class by clicking the + button next to it.

7. Select the DFHDGARecordType() constructor. The source code for the constructor appears in the
Source pane in the lower half of the window.

8. Look for the following line of code (near the middle of the constructor):

addField(new Field(MSGType, "MSG",null,new java.lang.String("PRESS CLEAR TO EXIT"),true));

 Change the line of code to the following:

 addField(new Field(MSGType, "MSG"));

9. Select the pull-down menu Edit → Save.

10. Collapse the DFHDGARecordType class by clicking the - button next to it.

118 CICS and IMS Application Adaptor

Creating the DFHDGB Record Type and Record Bean

1. Right-click on paa.mysamples.cics.menu, and select Tools → Records → Create BMS RecordType.

2. In the Create a BMS RecordType wizard:

a. Type the Class Name DFHDGBRecordType

b. Click Add to locate the file dfhdgb.bms. The BMS files are located in one of the following places:

WIN

C:CBroker\samples\InstallVerification\PAA\Backend\Acct\

where C:\CBroker is the directory where you installed IBM Component Broker .

AIX

$HOME/samples/InstallVerification/PAA/Backend/Acct

where $HOME is the directory where you installed IBM Component Broker .

c. where C:\CBroker is the directory where you installed IBM Component Broker.

d. Click Next > .

e. Click >. This causes DFHDGB to appear in the Maps: column.

f. Select DFHDGB in the Maps column.

g. Click the other > button to move DFHDGB from the Maps column to the Selected column.

h. Click Finish . This creates the class DFHDGBRecordType.

3. Right-click on DFHDGBRecordType, and select Tools → Records → Generate Records.

4. Type the Class Name DFHDGBRecord

5. Leave the other fields as defaulted, and click Finish . This creates the classes DFHDGBRecord and
DFHDGBRecordBeanInfo.

Creating the Record Mapper

In this section you create a record mapper that is used to exchange data between the DFHDGBRecord
and the MenuCustomer PAO.

1. Right-click on the DFHDGBRecord class, and select Tools → Mapper Editor .

2. In the Mapper Editor window, select the pull-down menu Input Bean View → Record view . This
displays the DFHDGBRecord record in the right-hand pane.

3. Click Add and select the class MenuCustomer in package paa.mysamples.cics.menu as described in
Select Class Instructions in Table 14 on page 114.

4. In the following steps, you associate each property in the MenuCustomer with the corresponding field
on the screen of the CICS application. Every association is bi-directional (read and write) except for
the number property which is read-only, because it is a key.

Move the cursor slowly across the column of blank fields in the right-hand pane and a small hover
window will show the name of each field. The names include NUMB, NAME, ADDR, PHONE, DATE,
AMOUNT, and COMMENT.

a. Click the address property and the ADDR field, and click the ↔ button.
b. Click the amount property and the AMOUNT field, and click the ↔ button.
c. Click the comment property and the COMMENT field, and click the ↔ button.
d. Click the date property and the DATE field, and click the ↔ button.

 Chapter 7. Developing a CICS-HOD Application 119

e. Click the name property and the NAME field, and click the ↔ button.
f. Click the number property and the NUMB field, and click the ↔ button.

g. Click the phone property and the PHONE field, and click ↔.

 5. Click OK.

6. Click OK again. This creates the DFHDGBRecordMapper class.

Creating the SingleLine Record Type and Record Bean

The CICS application base state is just a blank screen. The SingleLineRecord class is needed to interact
with the blank screen.

1. Right-click on paa.mysamples.cics.menu, and select Add → Class.

2. In this dialog:

a. Type the Class Name SingleLineRecordType

b. Click Browse to set the Superclass to FixedLengthTerminalRecordType in package
com.ibm.ivj.eab.record.terminal as described in Select Class Instructions in Table 14 on
page 114.

c. Click Finish . This creates the SingleLineRecordType class.

3. Right-click on the SingleLineRecordType class, and select Tools → Records → Edit Record Type.
This opens the Java Record Editor.

4. Right-click on the SingleLineRecordType record, and select Create New Field As Childs. This opens
the Create a Field wizard.

a. Select Simple and click Next → .
b. Type the Field Name Value_attByte
c. Select Field Type com.ibm.ivj.eab.record.terminal.FixedLengthTerminalAttributeType
d. Click Finish . This creates the Value_attByte field

5. Change the Read Only property of the Value_attByte field to True by clicking on its value.

6. Right-click on the Value_attByte field, and select Create New Field As Sibling. This opens the Create
a Field wizard.

a. Select Simple and click Next .
b. Type the Field NameValue
c. Select Field Type com.ibm.ivj.eab.record.terminal.FixedLengthTerminalFieldType
d. Click Finish . This creates the Value field.

7. Click on the Value column of the Type Size property of the Value. Type the number 1ð to change the
Type Size and press Enter .

8. Click Done and click Yes to save your changes. This closes the Java Record Editor.

9. Right-click on SingleLineRecordType, and select Tools → Records → Generate Records.

10. Type the Class Name SingleLineRecord

11. Leave the other fields as default, and click Finish . This creates the classes SingleLineRecord and
SingleLineRecordBeanInfo.

120 CICS and IMS Application Adaptor

Verifying the Project Contents

At this point in the sample you have created all the beans used to describe the data for interacting with
the CICS application. Verify that CBSamples project in the VisualAge for Java workspace looks like the
following figure.

à ð

 h CBSamples

 h paa.mysamples.cics.menu

 Ø DFHDGARecord

 Ø DFHDGARecordBeanInfo

 Ø DFHDGARecordType

 Ø DFHDGBRecord

 Ø DFHDGBRecordBeanInfo

 Ø DFHDGBRecordMapper

 Ø DFHDGBRecordType

 Ø MenuCustomer

 Ø MenuCustomerBeanInfo

 Ø MenuCustomerKey

 Ø MenuCustomerKeyBeanInfo

 Ø SingleLineRecord

 Ø SingleLineRecordBeanInfo

 Ø SingleLineRecordType

á ñ

Creating Command Beans

In this section you will create several Commands used to interact with the CICS application.

Commands dictate the data that gets passed to and from the backend system in a single interaction.
Commands use Record beans to define the layout of the input and output data.

After you create the commands, you will create Navigators that encapsulate sequences of Commands to
perform functions for the PAO.

The following table summarizes all the Navigators and Commands used by each of the PAO methods.

Table 15. Navigators and Commands used by PAO methods (CICS-HOD)

PAO Method Name Navigator Used Commands Used

retrieve NavigatorRetrieve CmdBaseToMenu
 CmdMenuToListing
 CmdListingToMenu
 CmdMenuToBase

insert NavigatorAddUpdate CmdBaseToMenu
 CmdMenuToListingAddUpdt
 CmdListingToMenuAddUpdt
 CmdMenuToBase

update

del NavigatorDelDebit CmdBaseToMenu
 CmdMenuToMenuDelDebit
 CmdMenuToBase

debit

 Chapter 7. Developing a CICS-HOD Application 121

Creating the CmdBaseToMenu Command

1. Right-click on paa.mysamples.cics.menu , and select Add → Class .

2. Type the Class Name CmdBaseToMenu

3. Click Browse to set the Superclass to CommunicationCommand in package
com.ibm.ivj.eab.command as described in Select Class Instructions in Table 14 on page 114.

4. Click Finish . This creates the CmdBaseToMenu class.

5. Right-click on CmdBaseToMenu , and select Tools → Command Editor. This opens the Command
Editor window which looks like the following:

à ð
 h Tasks

 Ø Communication

 Ø Input

 Ø Output

á ñ

6. Right-click on Communication , select Add InteractionSpec , and select the class HODInteractionSpec
in package com.ibm.connector.hod as described in Select Class Instructions in Table 14 on page 114.
This creates a bean called ceInteractionSpec .

7. Right-click on ceInteractionSpec , and select Properties . This opens the Properties window.

a. Click on the name property and type #ENTER
b. Click OK to close the properties window.

8. Right-click on Input , select Add IByteBuffer Bean , and select the class SingleLineRecord in package
paa.mysamples.cics.menu as described in Select Class Instructions in Table 14 on page 114. This
creates an input record bean called ceInput.

9. Right-click on ceInput , and select Properties . This opens the Properties window.

a. Scroll down to the Value property, click on it, and type MENU.
b. Click OK to close the properties window.

10. Right-click on Output , select Add IByteBuffer Bean , and select the class DFHDGARecord in package
paa.mysamples.cics.menu described in Select Class Instructions in Table 14 on page 114. This
creates an output record bean called ceOutput1.

11. Click OK to close the Command Editor.

Command Bean Summary

The following table summarizes the properties of all the Command Beans used in this sample. You
created the CmdBaseToMenu in the previous section.

122 CICS and IMS Application Adaptor

Table 16. Command Bean summary (CICS-HOD)

Command Name Properties Values

CmdBaseToMenu ceInteractionSpec Class: HODInteractionSpec
 Name: #ENTER

ceInput Class:SingleLineRecord
 Value: MENU

ceOutput1 Class: DFHDGARecord

CmdMenuToBase ceInteractionSpec Class:HODInteractionSpec
 Name: #CLEAR

[ceInput] Class:DFHDGARecord

ceOutput1 Class: SingleLineRecord

CmdMenuToListing ceInteractionSpec Class:HODInteractionSpec#
 Name: #ENTER

[ceInput] Class: DFHDGARecordProperty
Features: _DFHDGA11, ceInputKEY

ceOutput1 Class: DFHDGBRecord
Add Mapper: DFHDGBRecordMapper

ceOutput2 Class: DFHDGARecordPromoted
 Feature: MSG

CmdListingToMenu ceInteractionSpec Class: HODInteractionSpec
 Name: #ENTER

[ceInput] Class: DFHDGBRecord

ceOutput1 Class: DFHDGARecord

CmdMenuToListingAddUpdt ceInteractionSpec Class: HODInteractionSpec
 Name: #ENTER

[ceInput] Class: DFHDGARecord
Property Features: ceInput_DFHDGA11,
ceInputKEY

ceOutput1 Class: DFHDGBRecord

ceOutput2 Class: DFHDGARecord
Promoted Feature: MSG

CmdListingToMenuAddUpdt ceInteractionSpec Class: HODInteractionSpec
 Name: #ENTER

[ceInput] Class: DFHDGBRecord
Add Mapper: DFHDGBRecordMapper

ceOutput1 Class: DFHDGARecord
Promoted Feature: MSG

CmdMenuToMenuDelDebit ceInteractionSpec Class: HODInteractionSpec
 Name: #ENTER

[ceInput] Class: DFHDGARecord
Property Features: ceInput_DFHDGA11,
ceInputKEY, ceAMOUNT

ceOutput1 Class: DFHDGARecord
Promoted Feature: MSG

Note: The square brackets around ceInput indicate that it is a Variable IByteBuffer Bean. You can use
the Command Editor to promote features. However, for Variable IByteBuffer Beans, such as

 Chapter 7. Developing a CICS-HOD Application 123

[ceInput], you must use the Visual Composition Editor to add each property feature and connect it
to the corresponding record property.

Creating the CmdMenuToBase Command

1. Right-click on the paa.mysamples.cics.menu , and select Add → Class .

2. Type the Class Name CmdMenuToBase

3. Click Browse to set the Superclass to CommunicationCommand in package com.ibm.ivj.eab.command
as described in Select Class Instructions in Table 14 on page 114. Click Finish . This creates the
CmdMenuToBase class.

4. Right-click on CmdMenuToBase , and select Tools → Command Editor . This opens the Command
Editor.

5. Right-click on Communication , select Add InteractionSpec and select the class HODInteractionSpec
in package com.ibm.connector.hod as described in Select Class Instructions in Table 14 on page 114.
This creates a bean called ceInteractionSpec .

6. Right-click on ceInteractionSpec , and select Properties . This opens the Properties window.

a. Click on the name property and type #CLEAR
b. Click OK to close the properties window.

7. Right-click on Input , select Add IByteBuffer Bean Variable , and select the class DFHDGARecord in
package paa.mysamples.cics.menu as described in Select Class Instructions in Table 14 on
page 114. This creates an input record bean called ceInput.

8. Right-click on Output , select Add IByteBuffer Bean , and select the class SingleLineRecord in
package paa.mysamples.cics.menu as described in Select Class Instructions in Table 14 on
page 114. This creates an output record bean called ceOutput1.

9. Click OK to close the Command Editor.

Creating the CmdMenuToListing Command

1. Right-click on paa.mysamples.cics.menu , and select Add → Class .

2. Type the Class Name CmdMenuToListing

3. Click Browse to set the Superclass to CommunicationCommand in package com.ibm.ivj.eab.command
as described in Select Class Instructions in Table 14 on page 114. Click Finish . This creates the
CmdMenuToListing class.

4. Follow the Adding Available Features procedure in Table 17, described below.

Table 17. Adding Available Features

1. From the pop-up menu for the class, select Open To → BeanInfo .

2. In this Dialog:

a. Select Features → Generate BeanInfo class. This will generate a new BeanInfo class for your command
class.

b. Select Features → Add Available Features .

c. In the Add Available Features dialog, select all features that appear in the listbox and then click OKs.

d. Close the Command Class window.

5. Right-click on CmdMenuToListing , and select Tools → Command Editor . This opens the Command
Editor.

124 CICS and IMS Application Adaptor

6. Right-click on Communication , select Add InteractionSpec and select the class HODInteractionSpec
in package com.ibm.connector.hod as described in Select Class Instructions in Table 14 on page 114.
This creates a bean called ceInteractionSpec .

7. Right-click on ceInteractionSpec , and select Properties . This opens the Properties window.

a. Click on the name property and type #ENTER
b. Click OK to close the properties window.

8. Right-click on Input , select Add IByteBuffer Bean Variable , and select the class DFHDGARecord in
package paa.mysamples.cics.menu as described in Select Class Instructions in Table 14 on
page 114. This creates an input record bean called ceInput .

9. Right-click on Output , and select Add IByteBuffer Bean and select the class DFHDGBRecord in
package paa.mysamples.cics.menu as described in Select Class Instructions in Table 14 on
page 114. This creates a bean called ceOutput1 .

10. Right-click on ceOutput1 , select Add Mapper , and select the class DFHDGBRecordMapper in package
paa.mysamples.cics.menu as described in the Table 14 on page 114. This creates an output record
bean called ceMapperCeOutput1 .

11. Right-click on Output , and select Add IByteBuffer Bean and select the class DFHDGARecord in
package paa.mysamples.cics.menu as described in Select Class Instructions in Table 14 on
page 114. This creates a bean called ceOutput2 .

12. Right-click on CeOutput2 , select Promote Bean Feature. This opens the Promoted Feature dialog.

a. Click the Property radio button select MSG RB from the list of properties.
b. Click >> and then click OK. This closes the Promoted features dialog.

13. Click OK to close the Command Editor.

Adding Features to the CmdMenuToListing Command

1. Right-click on CmdMenuToListing , select Open To → 5 BeanInfo. This opens the BeanInfo tab in
the CmdMenuToListing window.

2. Select the pull-down menu Features → New Property Feature .

3. Type the Property name ceInput_DFHDGA11 and click Finish .

4. Select the pull-down menu Features → New Property Feature .

5. Type the Property name ceInputKEY and clickFinish .

6. Verify that the list of Features contains the following list:

 � P ceInput_DFHDGA11 RWB

 � P ceInputKEY RWB

 � P ceOutput2MSG RB

7. Click on the Visual Composition tab in the CmdMenuToListing window. You see several icons and one
of them is labeled ceInput.

8. Follow the steps in Connecting a Command Input Feature in Table 18 on page 126, to connect the
following features:

 � _DFHDGA11 feature
 � KEY feature

9. Select the pull-down menu Bean → Save Bean .

10. Close the Visual Composition Editor by clicking on \X in the upper-right corner of the window.

 Chapter 7. Developing a CICS-HOD Application 125

Table 18. Connecting a Command Input Feature

1. In the Visual Composition Editor, right-click on ceInput and select Connect → this.

2. Click on ceInput. This opens a pop-up menu.

3. Select Connectable Features from the pop-up menu.

4. Click the Method radio button.

5. Select the feature name from the list and click OK.

6. Optional: Along the right edge of the ceInput icon are three black dots which are the control points for the
dashed green arrow loop. Use the mouse to drag the middle black dot slightly to the right. This will enlarge the
loop so that it does not overlap the ceInput icon.

7. Now you can see a dashed green arrow that leaves the ceInput icon and then loops back to it.

8. Right-click on the dashed green arrow and select Connect → value from the pop-up menu.

9. Click on the background of the Visual Composition window. This opens a pop-up menu.

10. Select Connectable Features from the pop-up menu.

11. Select the ceInput property that corresponds to the feature name from the list. For example ceInputKEY
corresponds to the KEY feature. Click OK.

12. Verify the arrow is now solid green, and it is connected to the edge of the window with a solid magenta line.

Creating the CmdListingToMenu Command

1. Right-click on paa.mysamples.cics.menu, and select Add → Class .

2. Type the Class Name CmdListingToMenu

3. Click Browse to set the Superclass to CommunicationCommand in package com.ibm.ivj.eab.command
as described in Select Class Instructions inTable 14 on page 114.

4. Click the Finish button. This creates the CmdListingToMenu class.

5. Follow the steps in Adding Available Features in Table 17 on page 124.

6. Right-click on CmdListingToMenu, and select Tools → Command Editor . This opens the Command
Editor.

7. Right-click on Communication, select Add InteractionSpec and select the class HODInteractionSpec in
package com.ibm.connector.hod as described in Select Class Instructions in Table 14 on page 114.
This creates a bean called ceInteractionSpec.

8. Right-click on ceInteractionSpec, and select Properties. This opens the Properties window.

a. Click on the name property and type #ENTER
b. Click OK to close the properties window.

9. Right-click on Input, select Add IByteBuffer Bean Variable, and select the class DFHDGARecord in
package paa.mysamples.cics.menu as described in Select Class Instructions in Table 14 on
page 114. This creates an input record bean called ceInput.

10. Right-click on Output, select Add IByteBuffer Bean, and select the class DFHDGARecord in package
paa.mysamples.cics.menu as described in Select Class Instructions in Table 14 on page 114. This
creates an output record bean called ceOutput1.

11. Click OK to close the Command Editor.

126 CICS and IMS Application Adaptor

Creating the CmdMenuToListingAddUpdt Command

1. Right-click on paa.mysamples.cics.menu, and select Add → Class .

2. Type the Class Name CmdMenuToListingAddUpdt.

3. Click Browse to set the Superclass to CommunicationCommand in package com.ibm.ivj.eab.command
as described in Select Class Instructions in Table 14 on page 114. This creates the
CmdMenuToListingAddUpdt class.

4. Follow the steps in Adding Available Features in Table 17 on page 124.

5. Right-click on CmdMenuToListingAddUpdt, and select Tools → Command Editor. This opens the
Command Editor.

6. Right-click on Communication, select Add InteractionSpec and select the class HODInteractionSpec in
package com.ibm.connector.hod as described in Select Class Instructions in Table 14 on page 114.
This creates a bean called ceInteractionSpec.

7. Right-click on ceInteractionSpec, and select Properties. This opens the Properties window.

a. Click on the name property and type #ENTER.
b. Click OK to close the properties window.

8. Right-click on Input, select Add IByteBuffer Bean Variable, and select the class DFHDGARecord in
package paa.mysamples.cics.menu as described in Select Class Instructions in Table 14 on
page 114. This creates an input record bean called ceInput.

9. Right-click on Output, select Add IByteBuffer Bean, and select the class DFHDGBRecord in package
paa.mysamples.cics.menu as described in Select Class Instructions inTable 14 on page 114. This
creates an output record bean called ceOutput1.

10. Right-click on Output, select Add IByteBuffer Bean, and select the class DFHDGARecord in package
paa.mysamples.cics.menu as described in Select Class Instructions in Table 14 on page 114. This
creates an output record bean called ceOutput2.

11. Right-click on ceOutput2, select Promote Bean Feature. This opens the Promoted features dialog.

a. Click the Property radio button, and select MSG RB from the list of properties.
b. Click >>, and click OK. This closes the Promoted features dialog.

12. Click OK to close the Command Editor.

Adding Features to the CmdMenuToListingAddUpdt Command

1. Right-click on CmdMenuToListingAddUpdt, select Open To → 5 BeanInfo . This opens the BeanInfo
tab in the CmdMenuToListingAddUpdt window.

2. Select the pull-down menu Features → New Property Feature .

3. Type the Property name ceInput_DFHDGA11 and click Finish .

4. Select the pull-down menu Features → New Property Feature .

5. Type the Property name ceInputKEY and click Finish .

6. Verify that the list of Features contains the following list.

 � P ceInput_DFHDGA11 RWB

 � P ceInputKEY RWB

 � P ceOutput2MSG RB

7. Click on the Visual Composition tab in the CmdMenuToListingAddUpdt window. You see several
icons and one of them is labeled ceInput.

 Chapter 7. Developing a CICS-HOD Application 127

8. Follow the steps in Connecting a Command Input Feature in Table 18 on page 126 to connect the
following features:

 � _DFHDGA11 feature
 � KEY feature

9. Follow the steps in Table 18 on page 126 to connect the KEY feature.

10. Select the pull-down menu Bean → Save Bean .

11. Close the Visual Composition Editor by clicking on the X button in the upper-right corner of the
window.

Creating the CmdListingToMenuAddUpdt Command

1. Right-click on paa.mysamples.cics.menu, and select Add → Class .

2. Type the Class Name CmdListingToMenuAddUpdt

3. Click Browse to set the Superclass to CommunicationCommand in package com.ibm.ivj.eab.command
as described in Select Class Instructions in Table 14 on page 114. This creates the
CmdListingToMenuAddUpdt class.

4. Follow the steps in Adding Available Features in Table 17 on page 124.

5. Right-click on CmdListingToMenuAddUpdt, and select Tools → Command Editor . This opens the
Command Editor.

6. Right-click on Communication, select Add InteractionSpec and select the class HODInteractionSpec in
package com.ibm.connector.hod. as described in Select Class Instructions in Table 14 on page 114.
This creates a bean called ceInteractionSpec.

7. Right-click on ceInteractionSpec, and select Properties. This opens the Properties window.

a. Click on the name property and type #ENTER
b. Click OK to close the properties window.

8. Right-click on Input, select Add IByteBuffer Bean Variable, and select the class DFHDGBRecord in
package paa.mysamples.cics.menu as described in Select Class Instructions in Table 14 on
page 114. This creates an input record bean called ceInput.

9. Right-click on ceInput, select Add Mapper, and select the class DFHDGBRecordMapper in package
paa.mysamples.cics.menu as described in Select Class Instructions in Table 14 on page 114. This
creates a mapper bean called ceMapperCeInput.

10. Right-click on Output, select Add IByteBuffer Bean, and select the class DFHDGARecord in package
paa.mysamples.cics.menu as described in Select Class Instructions in Table 14 on page 114. This
creates an output record bean called ceOutput1.

11. Right-click on ceOutput1, select Promote Bean Feature. This opens the Promoted features dialog.

a. Click the Property radio button, and select MSG RB from the list of properties.
b. Click >>, and click OK. This closes the Promoted features dialog.

12. Click OK to close the Command Editor.

Creating the CmdMenuToMenuDelDebit Command

1. Right-click on paa.mysamples.cics.menu, and select Add → Class .

2. Type the Class Name CmdMenuToMenuDelDebit

3. Click Browse to set the Superclass to CommunicationCommand in package com.ibm.ivj.eab.command
as described in Select Class Instructions in Table 14 on page 114. This creates the
CmdMenuToMenuDelDebit class.

128 CICS and IMS Application Adaptor

Follow the steps in Adding Available Features in Table 17 on page 124.

4. Right-click on CmdMenuToMenuDelDebit, and select Tools → Command Editor. This opens the
Command Editor.

5. Right-click on Communication, select Add InteractionSpec and select the class HODInteractionSpec in
package com.ibm.connector.hod. as described in Select Class Instructions in Table 14 on page 114.
This creates a bean called ceInteractionSpec.

6. Right-click on ceInteractionSpec, and select Properties. This opens the Properties window.

a. Click on the name property and type #ENTER
b. Click OK to close the properties window.

7. Right-click on Input, select Add IByteBuffer Bean Variable, and select the class DFHDGARecord in
package paa.mysamples.cics.menu as described in Select Class Instructions in Table 14 on
page 114. This creates an input record bean called ceInput.

8. Right-click on Output, select Add IByteBuffer Bean, and select the class DFHDGARecord in package
paa.mysamples.cics.menu as described in Select Class Instructions in Table 14 on page 114. This
creates an output record bean called ceOutput1.

9. Right-click on ceOutput1 , select Promote Bean Feature. This opens the Promoted features dialog.

a. Click the Property radio button, and select MSG RB from the list of properties.
b. Click >> and then click OK. This closes the Promoted features dialog.

10. Click OK to close the Command Editor.

Adding Features to the CmdMenuToMenuDelDebit Command

1. Right-click on CmdMenuToMenuDelDebit, select Open To → 5 BeanInfo . This opens the BeanInfo
tab in the CmdMenuToMenuDelDebit.

2. Select the pull-down menu Features → New Property Feature .

3. Type the Property name ceInput_DFHDGA11 and click Finish .

4. Select the pull-down menu Features → New Property Feature .

5. Type the Property name ceInputKEY and click Finish .

6. Select the pull-down menu Features → New Property Feature .

7. Type the Property name ceInputAMOUNT and click Finish .

8. Verify that the list of Features contains the following list.

 � P ceInput_DFHDGA11 RWB

 � P ceInputAMOUNT RWB

 � P ceInputKEY RWB

 � P ceOutput1MSG RB

9. Click on the Visual Composition tab in the CmdMenuToMenuDelDebit window. You see three icons
labeled ceInteractionSpec, ceInput, and ceOutput1.

10. Follow the steps in Connecting a Command Input Feature in Table 18 on page 126, to connect the
following features:

 � _DFHDGA11 feature
 � KEY feature
 � AMOUNT feature

11. Select the pull-down menu Bean → Save Bean .

12. Close the Visual Composition Editor by clicking X in the upper-right corner of the window.

 Chapter 7. Developing a CICS-HOD Application 129

This completes the creation of the Command beans. In the next section, you will create the Navigator
beans that will use the Command beans.

Creating Navigator Beans

In this section, you will create three Navigators used to interact with the CICS application.

Creating the NavigatorRetrieve Navigator

1. Right-click on paa.mysamples.cics.menu, and select Add → Class .

2. Type the Class Name NavigatorRetrieve

3. Click Browse to set the Superclass to CommunicationNavigator in package com.ibm.ivj.eab.command
as described in Select Class Instructions Table 14 on page 114. Select the Compose The Class
Visually check box.

4. Click Finish . This creates the NavigatorRetrieve class and opens it in the Visual Composition editor.

5. Click the BeanInfo tab. Follow the steps in the Adding Available Features procedure in Table 17 on
page 124, then click the Visual Composition tab.

6. Follow the Adding a Bean in the Visual Composition Editor procedure in Table 19, to add a new bean
with the following:

� Class = com.ibm.connector.hod.HODConnectionSpec
� Name = connSpec

Table 19. Adding a Bean in the Visual Composition Editor

1. Click the Choose Bean... icon, (in the top-right corner of the tool palette). In this dialog:

2. Set the Bean Type to Class .

3. Click the Browse button and select the correct class. (See the Select class instructions.)

4. Type the appropriate name in the Name: field.

 5. Click OK.

6. Drop the bean onto the Visual Composition Editor canvas by clicking somewhere on the canvas.

7. Right-click on connSpec and select Properties. This opens the Properties Window.

a. Change the debugScreenEnabled property to True.
b. Change the hostname property to the hostname of your server machine.
c. Change the portNumber property to the port number of your server machine.
d. Close the properties window.

Note: The connection specification here is only useful in the unit test environment with VisualAge for
Java. To run from the Component Broker environment, the connection spec is set in each of
the CRUD methods as described in a later section.

8. Right-click on the connSpec and select Connect → this.

a. Click on the window background. This opens the End connection dialog.
b. Select connectionSpec RWB and click the OK button.

9. Follow the Adding a Bean in the Visual Composition Editor procedure in Table 19, to add a new bean
for each of the Class and Name combinations listed in the following table:

130 CICS and IMS Application Adaptor

Table 20. Class and Name combinations in the NavigatorRetrieve (CICS-HOD)

Class Name

paa.mysamples.cics.menu.CmdBaseToMenu BaseToMenu

paa.mysamples.cics.menu.CmdMenuToListing MenuToListing

paa.mysamples.cics.menu.CmdListingToMenu ListingToMenu

paa.mysamples.cics.menu.CmdMenuToBase MenuToBase

10. Repeat the procedure in Table 21 to create all the connections listed in Table 22.

Table 21. Adding a Connection in the Visual Composition Editor (CICS-HOD)

1. Right-click on the Source bean (or background) and select Connect → Connectable Features...(Connect...).
This opens the Start connection from dialog.

2. Click the Event radio button.

3. Select the Source Event from the list, and click the OK button.

4. Click on the Target bean (or background) and select Connectable Features. This opens the End connection
to dialog.

5. Select the Target Event from the list, and click the OK button. This creates a connection and draws a dashed
green line between the source and target.

6. Right-click on the dashed green line, and select Properties . This opens the Event-to-method connection
dialog.

7. Select the Pass event data check box, and click OK. This changes the line to a solid green line.

Table 22. NavigatorRetrieve Navigator connections (CICS-HOD)

Source/Target Event

 Source: background
 Target: BaseToMenu

 internalExecutionStarting(CommandEvent)
 execute(CommandEvent)

 Source: BaseToMenu
 Target: MenuToListing

 executionSuccessful(CommandEvent)
 execute(CommandEvent)

 Source: MenuToListing
 Target: ListingToMenu

 executionSuccessful(CommandEvent)
 execute(CommandEvent)

 Source: ListingToMenu
 Target: MenuToBase

 executionSuccessful(CommandEvent)
 execute(CommandEvent)

 Source: MenuToBase
 Target: background

 executionSuccessful(CommandEvent)
 returnExecutionSuccessful(CommandEvent)

11. Right-click on the MenuToListing bean, and select Promote Bean Feature...

12. Click the Property radio button.

13. Select ceInput_DFHDGA11 RWB from the list, and click >>. Similarly, move ceInputKEY RWB and
ceOutput2MSG RWB to the Promoted features list.

14. Click OK to close the Promoted features dialog.

15. Select the pull-down menu Bean → Save Bean .

16. Close the Visual Composition Editor by clicking on the X button in the upper-right corner of the
window.

 Chapter 7. Developing a CICS-HOD Application 131

17. For the NavigatorRetrieve class, perform the procedure for changing the handleException method
described in Changing the HandleException Method in Table 23 on page 132.

Table 23. Changing the HandleException Method

1. Expand the class by clicking the + button next to it.

2. Select the handleException method. The source code for the method appears in the Source pane in the lower
half of the window.

3. Change the implementation to the following:

/\\

 \ called whenever the part throws an exception.

 \ @param exception java.lang.Throwable

 \/

private void handleException(Throwable exception) {

/\ Uncomment the following lines to print uncaught exceptions to stdout \/

System.out.println("--------- UNCAUGHT EXCEPTION ---------");

 exception.printStackTrace(System.out);

 this.internalExceptionHandler(exception);

}

4. Select the menu Edit → Save.

Creating the NavigatorAddUpdate Navigator

1. Right-click on paa.mysamples.cics.menu, and select Add → Class .

2. Type the Class Name NavigatorAddUpdate

3. Click Browse to set the Superclass to CommunicationNavigator in package com.ibm.ivj.eab.command
as described in Select Class Instructions in Table 14 on page 114. Select the Compose The Class
Visually check box.

 4. Click Finish .

5. This creates the NavigatorAddUpdate class and opens it in the Visual Composition editor.

6. Click the BeanInfo tab. Follow the steps in the Adding Available Features procedure in Table 17 on
page 124, then click the Visual Composition tab.

7. Follow the Adding a Bean in the Visual Composition Editor procedure in Table 19 on page 130, to
add a new bean with:

� Class = com.ibm.connector.hod.HODConnectionSpec
� Name = connSpec

8. Right-click on connSpec and select Properties. This opens the Properties Window.

a. Change the debugScreenEnabled property to True
b. Change the hostname property to the hostname of your server machine.
c. Change the portNumber property to the port number of your server machine.
d. Close the properties window

9. Right-click on the connSpec and select Connect → this.

a. Click on the window background. This opens the End connection dialog.
b. Select connectionSpec RWB and click the OK button.

10. Follow the Adding a Bean in the Visual Composition Editor procedure in Table 19 on page 130, to
add a new bean for each of the Class and Name combinations in the following table:

132 CICS and IMS Application Adaptor

Table 24. Class and Name combinations in NavigatorAddUpdate Navigator (CICS-HOD)

Class Name

paa.mysamples.cics.menu.CmdBaseToMenu BaseToMenu

paa.mysamples.cics.menu.CmdMenuToListingAddUpdt MenuToListingAddUpdt

paa.mysamples.cics.menu.CmdListingToMenuAddUpdt ListingToMenuAddUpdt

paa.mysamples.cics.menu.CmdMenuToBase MenuToBase

11. Follow the Adding a Connection in the Visual Composition Editor (CICS-HOD) procedure in Table 21
on page 131 to create the connections listed in the following table:

Table 25. Class and Name combinations in NavigatorAddUpdate Navigator (CICS-HOD)

Source/Target Event

 Source: background
 Target: BaseToMenu

 internalExecutionStarting(CommandEvent)
 execute(CommandEvent)

 Source: BaseToMenu
 Target: MenuToListingAddUpdt

 executionSuccessful(CommandEvent)
 execute(CommandEvent)

 Source: MenuToListingAddUpdt
 Target: ListingToMenuAddUpdt

 executionSuccessful(CommandEvent)
 execute(CommandEvent)

 Source: ListingToMenuAddUpdt
 Target: MenuToBase

 executionSuccessful(CommandEvent)
 execute(CommandEvent)

 Source: MenuToBase
 Target: background

 executionSuccessful(CommandEvent)
 returnExecutionSuccessful(CommandEvent)

12. Right-click on the MenuToListingAddUpdt bean, and select Promote Bean Feature....

13. Click the Property radio button.

14. Select ceInput_DFHDGA11 RWB from the list, and click >>. Similarly, move ceInputKEY RWB and
ceOutput2MSG RWB to the Promoted features list.

15. Click OK to close the Promoted features dialog.

16. Right-click on the ListingToMenuAddUpdt bean, and select Promote Bean Feature....

17. Click the Property radio button.

18. Select ceOutput1MSG RWB from the list, and click >>.

19. Click OK to close the Promoted features dialog.

20. Select the pull-down menu Bean → Save Bean .

21. Close the Visual Composition Editor by clicking on the X button in the upper-right corner of the
window.

22. Perform the Changing the HandleException Method procedure described in Table 23 on page 132, to
change the handleException method.

 Chapter 7. Developing a CICS-HOD Application 133

Creating the NavigatorDelDebit Navigator

1. Right-click on paa.mysamples.cics.menu, and select Add → Class .

2. Type the Class Name NavigatorDelDebit

3. Click Browse to set the Superclass to CommunicationNavigator in package com.ibm.ivj.eab.command
as described in Select Class Instructions in Table 14 on page 114. Select the Compose The Class
Visually check box.

4. Click Finish . This creates the NavigatorDelDebit class and opens it in the Visual Composition editor

5. Click the BeanInfo tab. Complete the steps in Adding Available Features in Table 17 on page 124,
and then click the Visual Composition tab.

6. Follow the Adding a Bean in the Visual Composition Editor procedure in Table 19 on page 130, to
add a new bean with the following:

� Class = com.ibm.connector.hod.HODConnectionSpec
� Name = connSpec

7. Right-click on connSpec and select Properties. This opens the Properties Window.

a. Change the debugScreenEnabled property to True
b. Change the hostname property to the hostname of your server machine.
c. Change the portNumber property to the port number of your server machine.
d. Close the properties window.

8. Right-click on the connSpec and select Connect → this.

a. Click on the window background. This opens the End connection dialog.
b. Select connectionSpec RWB and click OK.

9. Follow the Adding a Bean in the Visual Composition Editor procedure in Table 19 on page 130, to
add a new bean for each of the Class and Name combinations in the following table:

Table 26. Class and Name combinations in NavigatorDelDebit Navigator

Class Name

paa.mysamples.cics.menu.CmdBaseToMenu BaseToMenu

paa.mysamples.cics.menu.CmdMenuToMenuDelDebit MenuToMenuDelDebit

paa.mysamples.cics.menu.CmdMenuToBase MenuToBase

10. Follow the Adding a Connection in the Visual Composition Editor (CICS-HOD) procedure in Table 21
on page 131 to add the connections listed in the following table:

Table 27. NavigatorDelDebit Navigator connections

Source/Target Event

 Source: background
 Target: BaseToMenu

 internalExecutionStarting(CommandEvent)
 execute(CommandEvent)

 Source: BaseToMenu
 Target: MenuToMenuDelDebit

 executionSuccessful(CommandEvent)
 execute(CommandEvent)

 Source: MenuToMenuDelDebit
 Target: MenuToBase

 executionSuccessful(CommandEvent)
 execute(CommandEvent)

 Source: MenuToBase
 Target: background

 executionSuccessful(CommandEvent)
 returnExecutionSuccessful(CommandEvent)

11. Right-click on the MenuToMenuDelDebit bean, and select Promote Bean Feature.

134 CICS and IMS Application Adaptor

12. Click the Property radio button.

13. Select ceInput_DFHDGA11 RWB from the list, and click >>. Similarly, move ceInputKEY RWB ,
ceInputAMOUNT RWB , and ceOutput1MSG RWB to the Promoted features list.

14. Click OK to close the Promoted features dialog.

15. Select the pull-down menu Bean → Save Bean .

16. Close the Visual Composition Editor by clicking X in the upper-right corner of the window.

Using the Navigators

To use the navigators, you need to add code to the Procedural Adaptor Object (PAO) methods. The PAO
methods that use the Navigators are the CRUD methods and the push-down methods. The following
instructions guide you to add code to the MenuCustomer PAO methods.

Editing the MenuCustomer::debit method

1. In the Workbench, select the MenuCustomer method debit(int). The source code for the debit method
appears in the Source pane in the lower half of the window.

2. Change the implementation to the following.

/\\

 \ Perform the debit method.

 \ @param amount int

 \/

public void debit(int amount) {

String amnt = Integer.toString(amount);

NavigatorDelDebit navigator = new NavigatorDelDebit();

 navigator.setConnectionSpec(this.getConnectionSpec());

 navigator.setMenuToMenuDelDebitCeInput_DFHDGA11("DEBT");

 navigator.setMenuToMenuDelDebitCeInputKEY(this.getNumber());

 navigator.setMenuToMenuDelDebitCeInputAMOUNT(amnt);

 navigator.execute();

String message = navigator.getMenuToMenuDelDebitCeOutput1MSG();

if (!message.equals("ACCOUNT DEBITED"))

throw new RuntimeException("Unexpected message in debit: '"+message+"'.");

}

3. Select the pull-down menu Edit → Save.

Editing the MenuCustomer::del method

1. In the Workbench, select the MenuCustomer method del(). The source code for the del method
appears in the Source pane in the lower half of the window.

2. Change the implementation to the following.

/\\

 \ This method was created in VisualAge.

 \ @exception com.ibm.ipaa.IDataKeyNotFoundException The exception description.

 \/

public void del() throws com.ibm.ipaa.IDataKeyNotFoundException {

NavigatorDelDebit navigator = new NavigatorDelDebit();

 navigator.setConnectionSpec(this.getConnectionSpec());

 navigator.setMenuToMenuDelDebitCeInput_DFHDGA11("DELE");

 navigator.setMenuToMenuDelDebitCeInputKEY(this.getNumber());

 Chapter 7. Developing a CICS-HOD Application 135

 navigator.execute();

String message = navigator.getMenuToMenuDelDebitCeOutput1MSG();

if (!message.equals("RECORD DELETED"))

throw new com.ibm.ipaa.IDataKeyNotFoundException();

}

3. Select the pull-down menu Edit → Save.

Editing the MenuCustomer::insert method

1. In the Workbench, select the MenuCustomer method insert(). The source code for the insert method
appears in the Source pane in the lower half of the window.

2. Change the implementation to the following.

/\\

 \ This method was created in VisualAge.

 \ @exception com.ibm.ipaa.IDataKeyAlreadyExistsException The exception description.

 \/

public void insert() throws com.ibm.ipaa.IDataKeyAlreadyExistsException {

NavigatorAddUpdate navigator = new NavigatorAddUpdate();

 navigator.setConnectionSpec(this.getConnectionSpec());

 navigator.setMenuToListingAddUpdtCeInput_DFHDGA11("ADDS");

 navigator.setMenuToListingAddUpdtCeInputKEY(this.getNumber());

 navigator.execute();

String message = navigator.getListingToMenuAddUpdtCeOutput1MSG();

if (message.equals("DUPLICATE RECORD"))

throw new com.ibm.ipaa.IDataKeyAlreadyExistsException();

if (!message.equals("RECORD ADDED"))

throw new RuntimeException("Unexpected message in insert: '"+message+"'.");

}

3. Select the pull-down menu Edit → Save.

Editing the MenuCustomer::retrieve method

1. In the Workbench, select the MenuCustomer method retrieve(). The source code for the retrieve
method appears in the Source pane in the lower half of the window.

2. Change the implementation to the following.

/\\

 \ This method was created in VisualAge.

 \ @exception com.ibm.ipaa.IDataKeyNotFoundException The exception description.

 \/

public void retrieve() throws com.ibm.ipaa.IDataKeyNotFoundException {

NavigatorRetrieve navigator = new NavigatorRetrieve();

 navigator.setConnectionSpec(this.getConnectionSpec());

 navigator.setMenuToListingCeInput_DFHDGA11("INQY");

 navigator.setMenuToListingCeInputKEY(this.getNumber());

 navigator.execute();

String message = navigator.getMenuToListingCeOutput2MSG();

136 CICS and IMS Application Adaptor

if (message.equals("INVALID NUMBER - PLEASE REENTER"))

throw new com.ibm.ipaa.IDataKeyNotFoundException();

}

3. Select the pull-down menu Edit → Save.

Editing the MenuCustomer::update method

1. In the Workbench, select the MenuCustomer method update(). The source code for the update
method appears in the Source pane in the lower half of the window.

2. Change the implementation to the following:

/\\

 \ This method was created in VisualAge.

 \ @exception com.ibm.ipaa.IDataKeyAlreadyExistsException The exception description.

 \/

public void update() throws com.ibm.ipaa.IDataKeyNotFoundException {

NavigatorAddUpdate navigator = new NavigatorAddUpdate();

 navigator.setConnectionSpec(this.getConnectionSpec());

 navigator.setMenuToListingAddUpdtCeInput_DFHDGA11("UPDT");

 navigator.setMenuToListingAddUpdtCeInputKEY(this.getNumber());

 navigator.execute();

 String message;

message = navigator.getMenuToListingAddUpdtCeOutput2MSG();

if (message.equals("INVALID NUMBER - PLEASE REENTER"))

throw new com.ibm.ipaa.IDataKeyNotFoundException();

message = navigator.getListingToMenuAddUpdtCeOutput1MSG();

if (!message.equals("RECORD UPDATED"))

throw new RuntimeException("Unexpected message in update: '"+message+"'.");

}

3. Select the pull-down menu Edit → Save.

Unit Testing the EAB Object

You are now ready to unit test the object you built using Enterprise Access Builder (EAB). It is called a
unit test because it does not involve the entire Component Broker sample application, but only the portion
from the procedural adapter object downward to the CICS/IMS server.

The unit test is simply a class called Execute with a main method. The main method creates a
MenuCustomer and invokes the CRUD and push-down methods on it.

To create the Unit Test Execute Class:

1. Right-click on paa.mysamples.cics.menu, and select Add → Class .
2. In this dialog:

a. Type the Class Name Execute
b. Deselect the Compose the Class Visually and Browse check boxes.
c. Leave the default Superclass set to java.lang.Object, and click Finish .

To create the Unit Test main Method:

1. Right-click the Execute class and selectAdd → Method . This opens the Create Method wizard.

2. Click the Create a new main method radio button.

 Chapter 7. Developing a CICS-HOD Application 137

3. Click Finish . This creates the main method.

4. Select the main method in the Execute class so that it is displayed in the Source pane at the bottom
of the Workspace window.

5. Change the implementation to the following. Replace

trutycics.austin.ibm.com

and

5555

with the hostname and port number of your server machine. If you have not already done so, refer to
Appendix C for information on how to load this sample on your CICS server.

/\\

 \ This method was created in VisualAge.

 \ @param args java.lang.String[]

 \/

public static void main(String args[]) {

 // DECLARE LOCAL VARIABLES

String keynum1 = "ðð1671";

 MenuCustomerKey key;

 MenuCustomer customer;

 // CREATE THE RUN TIME CONTEXT

com.ibm.connector.infrastructure.RuntimeContext rtc =

 new com.ibm.connector.infrastructure.RuntimeContext();

com.ibm.ivj.trace.SARASService ras =

 new com.ibm.ivj.trace.SARASService();

 ras.setTraceLevel(ð);

 rtc.setRASService(ras);

 com.ibm.connector.infrastructure.RuntimeContext.setCurrent(rtc);

 // CREATE THE EAB CACHE SPACE

 com.ibm.ivj.eab.businessobject.InstanceSpaceHolder.GlobalInstanceSpace =

 com.ibm.ivj.eab.paa.WSIDBasedInstanceSpace.getInstance();

 // CREATE THE CONNECTION SPEC

com.ibm.connector.hod.HODConnectionSpec cs =

 new com.ibm.connector.hod.HODConnectionSpec();

 cs.setHostname("trutycics.austin.ibm.com");

 cs.setPortNumber("5555");

 cs.setDebugScreenEnabled(true);

 // START SESSION

 System.out.println("Start Session");

 try {

 com.ibm.ivj.communications.Session.startSession();

 }

catch (com.ibm.ivj.communications.SessionAlreadyStartedException e) {

System.out.println("SessionAlreadyStartedException caught and ignored.");

 }

138 CICS and IMS Application Adaptor

 // PREPARE KEY AND PAO FOR INSERT

key = new MenuCustomerKey();

 key.setNumber(keynum1);

customer = (MenuCustomer) MenuCustomer.find(key);

 customer.setConnectionSpec(cs);

 customer.setName("Isaac Newton");

customer.setAddress("1687 Principia St.");

 customer.setPhone("998263");

 customer.setDate("42/12/25");

 customer.setAmount("1727");

 customer.setComment("fluxions");

System.out.println("\nAttempt insert of key " + key.getNumber());

 try {

 customer.insert();

 System.out.println("insert successful");

 }

catch (com.ibm.ipaa.IDataKeyAlreadyExistsException e) {

System.out.println("insert failed: IDataKeyAlreadyExistsException");

 }

 // ATTEMPT UPDATE

key = new MenuCustomerKey();

 key.setNumber(keynum1);

customer = (MenuCustomer) MenuCustomer.find(key);

 customer.setConnectionSpec(cs);

 customer.setAmount("17ðð");

 customer.setComment("jupiter");

System.out.println("\nAttempt update of key " + key.getNumber() + ", amount 17ðð");

 try {

 customer.update();

 System.out.println("update successful");

 }

catch (com.ibm.ipaa.IDataKeyNotFoundException e) {

System.out.println("ERROR, update failed: IDataKeyNotFoundException");

 e.printStackTrace(System.out);

 }

 // ATTEMPT DEBIT

key = new MenuCustomerKey();

 key.setNumber(keynum1);

customer = (MenuCustomer) MenuCustomer.find(key);

 customer.setConnectionSpec(cs);

System.out.println("\nAttempt debit of key " + key.getNumber() + ", amount $15ð");

 customer.debit(15ð);

 // ATTEMPT RETRIEVE

key = new MenuCustomerKey();

 key.setNumber(keynum1);

customer = (MenuCustomer) MenuCustomer.find(key);

 customer.setConnectionSpec(cs);

System.out.println("\nAttempt retrieve of key " + key.getNumber());

 try {

 customer.retrieve();

 Chapter 7. Developing a CICS-HOD Application 139

System.out.println("retrieve successful, data is...");

System.out.println(" Name is " + customer.getName());

System.out.println(" Address is " + customer.getAddress());

System.out.println(" Phone is " + customer.getPhone());

System.out.println(" Date is " + customer.getDate());

System.out.println(" Amount is " + customer.getAmount());

System.out.println(" Comment is " + customer.getComment());

 }

catch (com.ibm.ipaa.IDataKeyNotFoundException e) {

System.out.println("ERROR, retrieve failed: IDataKeyNotFoundException");

 e.printStackTrace(System.out);

 }

 // END SESSION

 System.out.println("\nEnd Session");

 try {

 com.ibm.ivj.communications.Session.endSession(true);

 }

catch (com.ibm.ivj.communications.NoSessionStartedException e) {

System.out.println("NoSessionStartedException caught and ignored.");

 }

 // EXIT SUCCESS

 System.out.println("\nExit testcase");

 System.exit(ð);

}

Notice the pattern of MenuCustomer instance creation. The role of a workspace ID is similar to that of a
session. Through your main method, therefore, you should use the same number on all setWorkspaceId
calls. The call on the find method is related to cache management. If you already have an instance with
the same key (for example, number), this call allows you to reuse that instance.

Run the Unit Test Main Method

To run this unit test program perform the following procedure:

1. Right-click on the Execute class and select Properties. This opens the properties window.

a. Click on the Class Path tab.
b. Select the Include '.' (dot) in the class path check box.
c. Select the Project path check box.
d. Click the Edit button that is next to the project path. This opens a list of projects.
e. Select the following projects:

� IBM Common Connector Framework
� IBM Component Broker Connectors
� IBM Component Broker Host On Demand
� IBM Enterprise Access Builder Library
� IBM Java Record Library
� IBM Procedural Application Adapter

 f. Click OK.
g. Click OK again.

2. Right-click on the Execute class and select Run → Run main . You should see the Console window
appear and the following messages are shown in the output pane.

140 CICS and IMS Application Adaptor

Start Session

Attempt insert of key ðð1671

IBM eNetwork Host Access Class Library, Version 1.ð.2

Copyright IBM Corporation 1997, 1998. All rights reserved.

insert successful

Attempt update of key ðð1671, amount 17ðð

update successful

Attempt debit of key ðð1671, amount $15ð

Attempt retrieve of key ðð1671

retrieve successful, data is...

Name is Isaac Newton

Address is 1687 Principia St.

Phone is 998263

Date is 42/12/25

Amount is $155ð.ðð

 Comment is

End Session

Exit testcase

As the unit test runs, you can also see a CICS terminal window in which the application screens appear,
flashing quickly.

Exporting the MenuCustomer Package

After building the Execute class and creating and testing the Component Broker procedural adapter object
within the VisualAge for Java environment, you can run the unit test program outside of the VisualAge for
Java environment. This object needs to be imported to Object Builder as a persistent object. Importing this
object requires that the procedural adapter object and its corresponding BeanInfo class is exported outside
of VisualAge for Java. To run the sample outside of the VisualAge for Java environment, you must export
all classes you created and modify the CLASSPATH environment variable.

Export the entire package. The package should contain:

� The new procedural adapter object
� Its corresponding BeanInfo class
� All EAB transaction objects

To export the package outside of VisualAge for Java:

1. Select the package to export.
2. From the VisualAge for Java Workbench menu, select File → Export . This opens the Export wizard.

 3. Select Directory .
4. Click Next and do one of the following:

WIN Type x:\MyProj in the Directory field.

AIX Type $HOME/MyProj in the Directory field.
5. Select ONLY the .class check box.

 Chapter 7. Developing a CICS-HOD Application 141

 Important Information

If you export both .class and .java files, you will get an error when compiling the artifacts produced
by Object Builder.

 6. Click Finish .

When the export completes, the paa.mysamples.cics.menu directory is created under the MyProj directory.
You can exit VisualAge for Java.

To verify that you exported the package correctly, you can run the unit test program from the command
line.

1. Ensure that your Working Directory is in your CLASSPATH.
2. From a command prompt, type one of the following:

WIN java -nojit paa.mysamples.cics.menu.Execute

AIX java paa.mysamples.cics.menu.Execute

You should have the same results as you did when running inside of VisualAge for Java.

Developing a CICS-HOD Business Object

This section contains Object Builder and System Management procedures required to create a component
named “Acct.” To create this component, perform the procedures in the following sections:

1. “Importing the Bean”
2. “Defining the Acct Component” on page 143
3. “Creating Client and Server DLL Files” on page 147
4. “Packaging the Application” on page 148
5. “Building the Application - Client and Server” on page 150
6. “Installing the Application” on page 151
7. “Running the Sample Application” on page 152

Note:

1. Before starting Object Builder, ensure that your classpath includes your Working Directory.

2. Specify your Working Directory as the base directory for the project.

3. The procedures contained in this section assume that you have correctly set your classpath to
include your Working Directory before starting Object Builder and that you have started Object
Builder.

Importing the Bean

The bean to import is MenuCustomer from the paa.mysamples.cics.menu package from your Working
Directory.

To import this bean:

1. From the Object Builder Tasks and Objects pane, select the User-Defined PA Schemas folder.

2. Open the pop-up menu for User-Defined PA Schemas, and select Import Bean . This opens the
Import Procedural Adaptor Bean wizard.

3. On this page:

142 CICS and IMS Application Adaptor

a. Type paa.mysamples.cics.menu.MenuCustomer in the Bean Name field.

b. Click Next to accept the remaining defaults and to continue to the Procedural Adaptor Bean
Names and Services page.

4. On this page

a. A panel is displayed prompting for the Module Name. Leave this field blank and click the HOD
radio button.

b. Click Next to accept the defaults and continue to the next page.

5. On this page:

a. Select the number property from the Properties list box.
b. Click >> to move the associated key required to import the bean.

 6. Click Finish .

The bean is imported into Object Builder. The MenuCustomer schema and its corresponding persistent
object (MenuCustomerPO) are now in the tree view of User-Defined PA Schemas.

Defining the Acct Component

This exercise defines the objects required to create a component named Acct. For this component, you
will:

1. Create a new business object file
2. Define the business object
3. Modify the data object interface (optional)
4. Connect the pushdown methods to the data object (optional)
5. Connect the data object implementation to the persistent object
6. Define the managed object
7. Generate the code

Creating the Business Object File

To create the Acct business object file:

1. From the Tasks and Objects pane, select the User-Defined Business Objects folder.

2. Open the pop-up menu for User-Defined Business Objects, and select Add File , which opens the
Business Object File wizard to the Name page.

3. On this page:

a. Type Acct in the Name field.
b. Accept the other defaults.

 4. Click Finish .

The Acct file is now under the User-Defined Business Objects folder.

Creating the Business Object

After creating the new business object file, the business object needs to be defined. A fully-configured
business object consists of the following:

� A business object interface
� An associated key
� An associated copy helper

 Chapter 7. Developing a CICS-HOD Application 143

� A business object implementation and data object interface

Defining the Business Object Interface: To create the Acct business object interface:

1. Expand the User-Defined Business Object folder and select Acct.

2. Open the pop-up menu for Acct and select Add Interface . This displays the Name page of the
Business Object Interface wizard.

3. On this page:

a. Type Acct in the Name field.
b. Click Next to continue to the Constructs page.

4. Click Next to accept the defaults and to continue to the Interface Inheritance page.

5. Click Next to accept the defaults and to continue to the Attributes page.

6. Define the user-defined attributes.

a. Select Attributes from the tree view.
b. Open the pop-up menu for Attributes and select Add . This displays the Add dialog.
c. In this dialog:

1) Type number in the Attribute Name field.
2) Select string as the Type . This displays the Size field.
3) Type ð in the Size field
4) Click Add Another .
5) Repeat steps 1 — 3 above for each attribute of the Acct interface, using string on each

attribute. The remaining attributes are:
� name, and click Add Another .
� address and click Add Another .
� phone and click Add Another .
� Date and click Add Another .
� amount and click Add Another .
� comment and click Refresh .

6) Click Next to continue to the Methods page.
d. (Optional) On this page:

1) Select Methods from the tree view.
2) Open the pop-up menu for Methods and select Add . This displays the Add dialog.
3) In this dialog:

a) Type debit in the Method Name field.
 b) Click Refresh .

4) Select Parameters from the tree view.
5) Open the pop-up menu for Parameters and select Add . This displays the Add dialog.
6) In this dialog:

a) Type amount in the Parameter Name field.
 b) Click Refresh .

 e. Click Finish .

The Acct interface is now under the Acct file.

Defining the Key: To add the key:

1. From the User-Defined Business Object folder, select the Acct interface.

2. Open the pop-up menu of Acct, and select Add Key . This displays the Key - Name and Key Attributes
wizard.

3. Select the number attribute from the Business Object Attributes list.

4. Click >> to move the attribute to the Key Attributes list.

144 CICS and IMS Application Adaptor

 5. Click Finish .

The AcctKey key is now under the Acct interface.

Defining the Copy Helper: To add the copy helper:

1. From the User-Defined Business Object folder, select the Acct interface.

2. Open the pop-up menu for Acct and select Add Copy Helper . This displays the Copy Helper - Name
and Attributes wizard.

3. Click All>> to move the attributes from the Business Object Attributes list to the Copy Helper
Attributes list.

 4. Click Finish .

The AcctCopy copy helper is now under the Acct interface.

Defining the Business Object Implementation and Data Object Interface: To add the Business
Object Implementation and Data Object interface:

1. From the User-Defined Business Object folder, select the Acct interface.

2. Open the pop-up menu for Acct and select Add Implementation . This displays the Name and Data
Access Pattern page of the Business Object Implementation wizard.

3. Type AcctBO in the File Name field.

4. Define the implementation.

a. Select the Delegating radio button from the Pattern for Handling State Data group.

b. Ensure that the Create a new one now radio button is selected from the Data Object Interface
group box. This option allows you to define the business object attributes that need to be
preserved in the data object.

c. Deselect 390 in the Select Deployment platform group box.

d. Click Next to continue to the Implementation Inheritance page.

5. Click Next to accept the defaults and to continue to the Implementation Language page.

6. Select C++ for the implementation language, and then click Next to accept the defaults and to
continue to the Attributes page.

7. Click Next to accept the defaults and to continue to the Methods page.

8. Click Next to accept the defaults and to continue to the Key and Copy Helper page.

9. On this page:

a. Verify that the AcctKey key is selected from the Key list.
b. Verify that AcctCopy is selected from the Copy Helper list.
c. Click Next to continue to the Handle Selection page.

10. Click Next to accept the defaults and to continue to the Attributes to Override page.

11. Click Next to accept the defaults and to continue to the Methods to Override page.

12. Click Next to accept the defaults and to continue to the Data Object Interface page.

13. Click the All>> button to move the attributes in the Business Object Attributes list to the State Data
list.

14. Click Next to continue to the Data Object Methods page.

15. Select debit (if defined) on the left panel and move it to the right panel.

 Chapter 7. Developing a CICS-HOD Application 145

16. Click Finish .

The AcctBO business object implementation is now under the Acct interface, and the AcctDO data object
interface is now under the AcctBO business object implementation.

Connecting the Data Object Implementation to the Persistent Object

To create the data object implementation and to connect the data object implementation to the persistent
object:

1. From the User-Defined Business Objects folder, select the AcctDO data object interface.

2. Open the pop-up menu for AcctDO and select Add Implementation , which opens the Data Object
Implementation - Name and Platform page.

3. Deselect 390 in the Select deployment platform group box.

4. Click Next to accept the defaults and to continue to the Behavior page.

5. On this page:

a. Set the BOIM with any key radio button from the Environment group box to indicate that the
data object is part of a component installed in a business object application adapter with instances
being located by key objects.

b. Set the Procedural Adaptors radio button from the Form of Persistent Behavior and
Implementation group box.

c. Click Next to continue to the Implementation Inheritance page.

6. On this page:

a. Verify that IPAAExtLocalToServer::IDataObject is selected as a parent.
b. Click Next to continue to the Attributes page.

7. Click Next to accept the defaults and to continue to the Methods page.

8. Click Next to accept the defaults and to continue to the Key and Copy Helper page.

9. Click Next to accept the defaults and to continue to the Associated Persistent Objects page.

10. On this page:

a. Select Persistent Object Instances.
b. Open the pop-up menu for Persistent Object Instances and select Add .
c. Type iMenuCustomerPAOPO in the Instance Name field.
d. Click Next to continue to the Attributes Mapping page.

11. On this page:

a. Select number from the Attributes list.
b. Open the pop-up menu for number and select Primitive .
c. Select iMenuCustomerPAOPO .number from the Persistent Object Attribute list.
d. Add 1-to-1 mappings for the other attributes in the Attributes tree view as you did for number.
e. Click Next to continue to the Methods Mapping page.

12. On this page:

a. Select insert from the Special Framework Methods list.

b. Open the pop-up menu for insert and select Add Mapping .

c. Select iMenuCustomerPAOPO .insert from the Persistent Object Method list.

146 CICS and IMS Application Adaptor

d. Add 1-to-1 mappings for the other methods in the Special Framework Methods tree view as you
did for insert. In addition, add a mapping from setConnection() to
iMenuCustomerPO.setConnection(metadata).

e. Select debit from the User-defined Methods list (if you defined this method).

f. Open the pop-up menu for debit and select Add Mapping .

g. Ensure that iMenuCustomerPAOPO .debit is selected from the Persistent Object Method list.

13. Click Finish .

The AcctDOImpl data object implementation is now under the AcctDO interface, and the
MenuCustomerPO persistent object is now under the AcctDOImpl data object implementation.

Defining the Managed Object

To add the managed object:

1. From the User-Defined Business Objects folder, select the AcctBO business object implementation.

2. Open the pop-up menu for AcctBO and select Add Managed Object . This displays the Name and
Services page of the Managed Object wizard.

3. On this page, deselect 390 on the Select deployment platform group box.

4. Set the Session Service radio button.

5. Click Next to accept the defaults and continue to the Implementation Inheritance page.

 6. Click Finish .

Generating the Code

To generate the application code:

1. From the User-Defined Business Objects folder, select Acct.
2. Open the pop-up menu for Acct and select Generate → All .

Code generation starts. Progress is indicated in the lower-left corner of the window.

Creating Client and Server DLL Files

The defined objects need to be built into two separate DLL files.

� One that runs on the client and provides access to the business object interface, key, and copy helper.

� One that runs on the server and provides access to the managed object and the rest of the
component.

The client DLL file needs to be defined before the server DLL file. When the server DLL file is defined, it
needs to link to the client DLL file. After defining the objects the comprise each DLL file, these files can be
built.

Defining the Client DLL File

To define the client DLL file:

1. Select the Build Configuration folder.

2. Open the pop-up menu for Build Configuration, and select Add Client DLL . This displays the Name
and Options page of the Client DLL - wizard.

 Chapter 7. Developing a CICS-HOD Application 147

3. Type AcctC in the Name field.

4. Check only the Applicable Platforms you want.

5. Click Next to continue to the Client Source Files page.

6. Click All>> to move the client source files to the Items chosen list.

 7. Click Finish .

The AcctC client DLL file is now under the Build Configuration folder.

Defining the Server DLL File

To define the server DLL.

1. Select the Build Configuration folder.

2. Open the pop-up menu for Build Configuration and select Add Server DLL . This displays the Name
and Options page of the Server DLL wizard.

3. Type AcctS in the Name field.

4. Check only the Applicable Platforms you want.

5. Click Next to continue to the Server Source Files page.

6. Click All>> to move the server source files to the Items chosen list.

7. Click Next to continue to the Libraries to Link With page.

8. Select AcctC from the Items Available list.

9. Click All>> to move AcctC to the Items Chosen list.

10. Click Finish .

The AcctS server DLL file is now under the Builder Configuration folder.

Generating the Makefiles

To generate the makefiles to build the configuration:

1. Select the Build Configuration folder.
2. Open the pop-up menu for Build Configuration, and select Generate → All → All Targets .

The code generation begins.

Packaging the Application

Packaging the application consists of the following procedures:

1. Creating the application family
2. Defining the application
3. Creating the container instance
4. Configuring the managed object
5. Generating the applications.

148 CICS and IMS Application Adaptor

Creating the Application Family

To add the application family:

1. Select the Application Configuration folder.

2. Open the pop-up menu for Application Configuration and select Add Application Family . This
displays the Name page of the Add Application Family wizard.

3. Type AcctApp in the Name field.

 4. Click Finish .

The AcctApp application family is now under the Application Configuration folder.

Defining the Application

To add the Application:

1. Select the AcctApp application family.

2. Open the pop-up menu for AcctApp, and select Add Application . This displays the Name and
Environment page of the Add Application wizard.

3. Type Acct in the Application Name field.

 4. Click Finish .

The Acct application is now under the AcctApp application family.

Creating the Container Instance

To add the new container instance:

1. Select the Container Definition folder.

2. Open the pop-up menu for Container Definition and select Add Container Instance . This displays the
Container wizard.

3. Type AcctContainer in the Name field.

4. Deselect 390 on the Select deployment platform group box.

5. Click Next to continue to the Work Load Management page.

6. Click Next to continue to the Services page.

7. On the Services page, set the Use PAA Session Services radio button.

8. Click Next to continue to the Services Details page.

9. On this page, type CICS_Acct_Server in the Connection Name field.

10. Set the HOD radio button in the Connector Type used by a Session group box.

11. Click Finish .

The AcctContainer container is now under the Container Definition folder.

 Chapter 7. Developing a CICS-HOD Application 149

Configuring the Managed Object

To add the managed object for the Application:

1. Open AcctApp under the Application Configuration folder.

2. Select the Acct application.

3. Open the pop-up menu for Acct and select Add Managed Object . This displays the Configure Object
wizard.

4. In this window:

a. Verify that AcctMO AcctMO is in the Managed Object field.

b. Click the Next button to continue to the Data Object Implementations page.

5. On this page:

 a. Select Implementations.
b. Open the pop-up menu for Implementations and select Add .
c. Select AcctDOImpl AcctDOImpl from the Data Object Implementation list.
d. Click Next to continue to the Container page.

6. Click Next to continue to the Home page.

7. On this page, select BOIMHomeOfRegHomes from the Home Name list.

 8. Click Finish .

The AcctMO managed object is now under the Application Configuration folder.

Generating the Application

To generate the files for the application family:

1. Select the AcctApp application.
2. Open the pop-up menu for AcctApp and select Generate .

WIN For Windows NT only, if you do not have InstallShield installed on your system, click the Yes button
when the dialog concerning InstallShield is displayed, or set the InstallShield location with File →
Preferences → Tasks and Objects.

When code generation completes, the Method Implementation pane contains the AcctApp.ddl file. You can
now close Object Builder.

Building the Application - Client and Server

All imported and generated files are placed in one of the following directories:

WIN The Working\NT directory (where Working\NT is the subdirectory of your Working Directory).

Change your directory to:

 x:\MyProj\Working\NT

Type:

nmake -f all.mak cpp java

AIX The Working/AIX directory (where Working/AIX is the subdirectory of your Working Directory).

150 CICS and IMS Application Adaptor

Change your directory to:

 $HOME/MyProj/Working/AIX

Type:

make -f all.mak cpp java

Everything in the sample application is built.

Installing the Application

Installing an application consists of:

1. Loading the application
2. Configuring the application

These procedures assume that you are currently logged on to DCE and that you are currently using the
System Manager User Interface. If not, logon to DCE and start the System Manager User Interface.

Loading the Application onto System Management

To install the Acct server application:

1. Start the System Manager User Interface, if it is not already started.
2. Become an Expert user (View → User Level → Expert).
3. Expand Host Images and select <your host name>.
4. From the pop-menu, select Load Application . This opens the Load Application dialog.
5. Browse for and select AcctApp.ddl for one of the following:

WIN x:\MyProj\Working\NT\AcctApp\AcctApp.ddl

AIX $HOME/MyProj/Working/AIX/AcctApp/AcctApp.ddl

Note: A warning may be displayed about iCachedWLMSystemManagedObjects while the DDL is loading.
You can ignore this warning.

Configuring the Application with System Management

To configure the application:

1. Expand Available Applications and select Acct .

2. Open the pop-up menu for Acct and select Drag .

3. Expand Management Zones → Sample Cell and Work Group Zone → Configurations, and select
Sample Configuration.

4. Open the pop-up menu for Sample Configuration, and select Add Application .

5. Configure the HOD connection.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Sample
Configuration → HOD Connections, and select CICS_Acct_Server.

b. Open the pop-up menu for CICS_Acct_Server, and select Edit , which opens the Object Editor.

c. Click the Main tab.

d. Modify the host name and port number fields to match the CICS region with which you are
communicating.

e. Click OK to validate and apply the changes.

 Chapter 7. Developing a CICS-HOD Application 151

6. Define the server.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations, and select
Sample Configuration.

b. Open the pop-up menu for Sample Configuration and select New → Server (free standing) . This
displays a new dialog box.

c. Type AcctSrv as the name for the server.

d. Click OK. The AcctSrv is now under Server (free standing).

7. Associate the application with the server.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Sample
Configuration → Applications, and select Acct.

b. Open the pop-up menu for Acct and select Drag .

c. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Sample
Configuration → Server (free standing), and select AcctSrv.

d. Open the pop-up menu for AcctSrv and select Configure Application .

8. Associate the iPAAServices application with the server.

a. Open the pop-up menu for iPAAServices and select Drag .

b. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Sample
Configuration → Server (free standing), and select AcctSrv.

c. Open the pop-up menu for AcctSrv and select Configure Application .

9. Configure the server with the host.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Server
(free standing), and select AcctSrv

b. From the pop-up menu for AcctSrv, select Drag .

c. Expand Hosts and select your server.

d. From the pop-up menu for your server, select Configure Server (free standing) .

10. Activate the configuration.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations, and select
Sample Configuration.

b. Open the pop-up menu for Sample Configuration, and select Activate , which automatically starts
the application server. Wait for the completion message in the Action Console window before
continuing.

Running the Sample Application

For IVP install instructions for Windows NT, see Chapter 7 in the IBM Transaction Server for Windows NT
Installation Guide, Version 4. This chapter, entitled “Performing the Installation Verification Procedures,”
discusses how to load and run the IVP programs for CICS.

For IVP install instruction for MVS, see Section 2.6 in the IBM CICS Transaction Server for OS/390 CICS
Installation Guide. This section discusses installing and running the IVP jobs.

To run the sample client application, do one of the following:

WIN

152 CICS and IMS Application Adaptor

1. Copy acctcli.mak and acctCli.cpp from:

 x:\cbroker\samples\InstallVerification\PAA\Application\acctcli

to

 x:\Myproj\Working\NT

2. Change directory to:

 x:\MyProj\Working\NT

3. Type the following:

nmake -f acctcli.mak

 4. Type: acctcli

AIX

1. Copy acctcli.mak and acctCli.cpp from:

/usr/lpp/CBToolkit/samples/InstallVerification/PAA/Application/AcctCli

to

$HOME/MyProj/Working/AIX

2. Change directory to:

$HOME/MyProj/Working/AIX

3. Type the following:

make -f acctcli.mak

 4. Type: acctcli

 Chapter 7. Developing a CICS-HOD Application 153

154 CICS and IMS Application Adaptor

Chapter 8. Developing a CICS-ECI Application

This chapter provides information for building a sample Component Broker application with a CICS
backend. This chapter contains the following information:

� “The CICS-ECI Sample Application”
� “Developing a CICS-ECI Business Object” on page 168

Note: To walk through this sample, the following software and Component Broker software must be
installed on your system:

� The Component Broker samples
� The CICS and IMS Application Adaptor SDK
� IBM VisualAge Java with EAB

 Important Information

Before walking through this sample, please refer to the Late Breaking News provided with Component
Broker before performing the exercise in this chapter. This document provides the latest information
regarding the CICS and IMS application adaptor samples, which may differ from the instructions for
this sample application.

The CICS-ECI Sample Application

The CICS-ECI sample application is a mock account database consisting of the following fields:

 � Account Balance
 � Account Number
� Type of customer
� Type of account

 � Utilities

The CashAcct interface is implemented during this exercise. The data object implementation for this
business object leverages a procedural adaptor object that in turn uses CICS through the ECI to provide
the state data back to the data object.

Although this sample application is not a full-blown CICS application, it captures the essence of an
application involving multiple ECI requests and delivering some amount of business function. This sample
application can be extended and customized to explore different CICS-ECI application issues.

WIN The sample that you build in this section is included with the product and can be built by following
the steps in the HTML file in:

CBroker\samples\InstallVerification\PAA\readme.htm

AIX The sample that you build in this section is included with the product and can be built by following
the steps in the HTML file in:

/usr/lpp/CBToolkit/samples/InstallVerification/PAA/readme.htm

 Copyright IBM Corp. 1998 155

Preparing the CICS System to Accept ECI Requests

If you are using Transaction Server as your CICS system, a Listener Definition (LD) must be added to a
region before the region will accept inbound ECI requests. Refer to "Configuring CICS Clients" in Chapter
4 of the CICS Administration Guide for details of how to add a Listener Definition to a CICS region. If you
are using CICS/ESA 3.2.1 or later, refer to the CICS Universal Client Administration guide for details on
how to configure the CICS Universal Client and the CICS server to accept ECI requests using either the
APPC or TCP62 transport protocols.

Enterprise Access Builder Procedures

This exercise defines the classes required to create a Component Broker procedural adapter object (PAO)
named "BeCashAcct". For this object, you will perform the following steps:

1. “Creating a Project and Package Under VisualAge for Java” on page 157
2. “Creating the Procedural Adaptor Object and Key” on page 157
3. “Importing the Customer COBOL File” on page 159
4. “Creating the Record Mapper” on page 160
5. “Creating the BeCashAcctCommand Class” on page 161
6. “Modifying the Procedural Adaptor Object to Call the Commands” on page 163
7. “Creating an Executable Class” on page 165

WIN If you are using VisualAge for Java on Windows 95 or Windows NT, from the Start menu, select
Programs → IBM VisualAge for Java for Windows → IBM VisualAge for Java .

AIX If you are using VisualAge for Java on AIX, type vajide on the command line and press Enter .

If the VisualAge Quick Start dialog appears, select Go to the Workbench and click OK. The IDE appears.

From the Window pull down, select Options . Select Design Time and uncheck Inherit BeanInfo of bean
superclass . Click OK.

 Important Information

Be sure that you have unchecked Inherit BeanInfo of bean superclass. If this is not unchecked, you
will receive an error message when you try to import into Object Builder.

Importing Prerequisite Features into the Workspace

1. Select File → Quick Start .

2. Select Features in the left pane and Add Feature in the right pane.

 3. Click OK.

4. Select the following features:

� IBM Procedural Application Adapter 1.0
� CICS Connector 3.0
� IBM Component Broker Host On Demand 1.0
� IBM Component Broker Connectors 1.0
� IBM Enterprise Access Builder Library 2.0
� IBM Enterprise CICS Access Builder Library 1.0
� IBM Component Broker PAA Samples for CICS 1.0

156 CICS and IMS Application Adaptor

 5. Click OK.

You can ignore the following expected errors this introduces in the following packages:

 � com.ibm.ivj.communications
 � com.ibm.ivj.trace
 � com.ibm.eNetwork.ECL
 � com.ibm.eNetwork.ncod.services.RAS

Note: If you do not see all of these features listed, they have been previously installed. To confirm,
perform the following steps:

a. Select File → Quick Start .

b. Select Features → Delete Feature to see which features are already loaded then click
Cancel .

Creating a Project and Package Under VisualAge for Java

If the CBSamples project does not exist, complete the following steps:

1. Right-click on the Visual Age for Java desktop icon and do one of the following:.

WIN For Windows NT, click on Start → Programs → IBM VisualAge for Java for Windows .

AIX For AIX, type vajide on the command line and press Enter . Ensure that you follow the
preceding instructions for un-checking Inherit BeanInfo of bean superclass.

2. From the VisualAge for Java menu, select Selected → Add → Project .

3. In the Project Name field, type CBSamples and click Finish . The CBSamples project should be under
the VisualAge for Java list of projects.

4. From the list of projects, select CBSamples .

5. From the CBSamples menu, select Add → Package . This creates a package for the project.

6. Type paa.mysamples.cics.eci.acct for the new package and click Finish .

Creating the Procedural Adaptor Object and Key

The procedural adaptor object inherits from the com.ibm.ivj.eab.paa.EntityProceduralAdapterObject, that
serves as a base implementation for all procedural adaptor objects. As a subclass of
EntityProceduralAdapterObject, the procedural adaptor object contains the CRUD methods insert(),
retrieve(), update(), and del(). However, these methods are all empty-bodied. You must define their
implementation for your procedural adaptor object.

The attributes defined in the BeCashAcct interface are essential. Thus, the procedural adaptor object, as
the adaptor that connects the Component Broker data object to the back-end system, should contain the
properties that correspond to these attributes.

Perform the following steps:

1. From the VisualAge for Java desktop under the CBSamples project, right-click
paa.mysamples.cics.eci.acct .

2. From the pop-up menu for paa.mysamples.cics.eci.acct, select Add → Class .

3. In the dialog:

a. Type BeCashAcctPAO in the Class name field.
b. Select the Superclass as follows:

 Chapter 8. Developing a CICS-ECI Application 157

 1) Click Browse .
2) Select EntityProceduralAdapterObject as your Superclass.

 3) Click OK.

 4. Click Finish .

Add the properties for the BeCashAcctPAO class by completing the following steps:

1. Right-click the BeCashAcctPAO class.
2. From the pop-up menu for BeCashAcctPAO, select Open to open the Object Editor notebook.
3. In the notebook, select the BeanInfo tab.
4. For each new property, perform the following steps:

a. From the menu bar, select Features → New Property Feature to open the New Property Feature
wizard.

1) In this window, type the name of a new property in the Property name field. For simplicity,
consider using the same name that is used in the CashAcct class. For example, specify
balance as the first property as defined in the BeCashac.cpp file. Perform the following steps:

a) For all properties except balance, select java.lang.String from the Property type list.
For the balance property, select int (not int[]).

 b) Click Finish .

1) Repeat the previous steps for each of the following properties:

 � res_type
 � account_ID
 � type
 � utilities

b. Close the Object Editor notebook.

Create the Key for the PAO object by performing the following steps:

1. From the VisualAge for Java desktop under the CBSamples project, right-click
paa.mysamples.cics.eci.acct .

2. From the pop-up menu for paa.mysamples.cics.eci.acct , select Add → Class .

3. In the dialog:

a. Type BeCashAcctPAOKey in the Class name field. This must be the same name as your PAO class
with the suffix, key, added.

b. Select the Superclass as follows:

 1) Click Browse .
2) Select BusinessObjectKey as your Superclass.

 3) Click OK.

 c. Click Finish .

Add the properties for the BeCashAcctPAOKey class by performing the following steps:

1. Right-click the BeCashAcctPAOKey class.
2. From the pop-up menu for BeCashAcctPAOKey, select Open to open the Object Editor notebook.
3. In the notebook, select the BeanInfo tab.
4. For each new property, perform the following steps:

a. From the menu bar, select Features → New Property Feature to open the New Property Feature
wizard.

158 CICS and IMS Application Adaptor

b. In this window:

1) Type the name of a new property in the Property name field. For example, type res_type as
one of the properties that are going to be key attributes.

2) Select java.lang.String from the Property type list.

3) Accept the other defaults and click Finish .

5. Repeat the steps above for the account_ID property.
6. Close the Object Editor notebook.

Modify the BeCashAcctPAOKey and BeCashAcctPAO to tie the PAO and key classes together. The
procedure for each of these tasks follows.

Modifying the BeCashAcctPAOKey

1. Select the BeCashAcctPAOKey class and expand it by selecting Open from the pop-up menu.

2. Select the getPropertyValues() method. This method is used by the EAB run time to calculate a
value to key into the EAB cache. It must be modified to specifically return just the key values.

3. In the source window, return an array of Objects that make up the key by invoking the methods that
get the key properties. For example:

return new Object[] { this.getRes_type(), this.getAccount_ID() };

4. Save the changes to the modified PAO Key class by pressing Ctrl+S .

5. Close the Object Editor notebook.

Modifying the BeCashAcctPAO

1. Select and expand the BeCashAcctPAO class.

2. Modify the getters for the key property values, getAccount_ID() and getRes_type(), by getting the key
class associated with this PAO and returning that value.

In getAccount_ID()

 BeCashAcctPAOKey key = (BeCashAcctPAOKey) this.getKey();

 return key.getAccount_ID();

In getRes_type()

 BeCashAcctPAOKey key = (BeCashAcctPAOKey) this.getKey();

 return key.getRes_type();

3. Save the changes to the modified PAO by pressing Ctrl+S .

Importing the Customer COBOL File

To import the customer COBOL file, perform the following steps:

1. Right-click the package that you created, for example, paa.mysamples.cics.eci.acct.

2. From the pop-up menu for the package with which you are working, select Tools → Records →
Create Cobol Record Type... . A wizard window appears.

3. In this window:

a. In the Class Name field, type BeCashAcctInfo.

b. In the COBOL File field, browse through the files to locate the BeCashAcct.ccp file. It should be
located in one of the following:

 Chapter 8. Developing a CICS-ECI Application 159

WIN CBroker\samples\InstallVerification\PAA\Backend\CashAcct

AIX /usr/lpp/CBToolkit/samples/InstallVerification/PAA/Backend/CashAcct

c. Verify that the Project and Package names are correct.

d. Click Next to continue.

4. In the next window:

a. In the list of Available level 01 commareas select WS-COMMAREA-BUFFER and click > to
move it to the Selected commareas list.

b. Check the Record Type intended for CICS checkbox.

c. Click Finish when this is complete. You can ignore the warning message in the log window about
level 88 record(s) found. A new class named BeCashAcctInfo appears in the designated package.

5. Right-click the BeCashAcctInfo class.

6. From the pop-up menu for the BeCashAcctInfo class, select Tools → Records → Generate
Records... . The Generate Records wizard appears.

7. In this window:

a. In the Class Name field, type BeCashAcctRecord.
b. Select the Beans radio button to generate the records as beans.
c. Select the Direct radio button to access the record fields directly.
d. Select the Dynamic Records radio button to generate the records as dynamic records.
e. Check that the Project and Package names are correct and click Next .

8. In the next window:

a. Change the values in the following fields to the correct values for the CICS server:

� Floating Point Format - IBM
� Endian - littleEndian
� Remote Integer Endian - littleEndian
� Code Page - 437
� Machine Type - NT

For example, the code page for North American MVS is 037 and for North American NT is 437.

WIN You must change all of the values if you are going to a Transaction Server on Windows NT.
Also remember to change your endianness to littleEndian because you are running this from
Windows NT.

b. Click Finish when all the preceding values have been changed. The following new classes
appear in your package:

 � BeCashAcctRecord
 � BeCashAcctRecordBeanInfo
 � BeCashAcctRecordType

Creating the Record Mapper

To create the mapper file, perform the following steps:

1. Select the paa.mysamples.cics.eci.acct sample package that you created.

2. Right-click the BeCashAcctRecord class.

3. From the pop-up menu for the package under which you are working, select Tools → Mapper
Editor... . A Mapper wizard appears.

160 CICS and IMS Application Adaptor

4. In this window:

a. Select Code Generation → Set Target mapper . A window containing three fields appears.

b. In the window:

1) Type the project and package names of this sample in their corresponding fields.

2) In the Class field, type BeCashAcctRecordMapper and click OK.

c. Select Change Input bean from the Code Generation menu. A window containing one field
appears.

d. In the window:

1) Click Browse beside the input field. In the display window, type BeCashAcctRecord in the
Pattern field to display a list of matching classes.

2) Select the BeCashAcctRecord class (corresponding to your sample package) and click OK.

3) Click OK again to select the Input Bean class. The following message displays:

All of your connections will be lost. Do you want to proceed?

Note: This message displays because you are specifying a new input record buffer to map
to/from.

 4) Click Yes.

5) A list of fields available from BeCashAcctRecord is displayed.

e. Select Add (located at the bottom left of the Output Beans window), and select the
BeCashAcctPAO class corresponding to the package you are currently using. Click OK when this
is complete. The java.lang.Object directory is displayed in the Output Beans side of the window.

f. Expand this directory until the first instance of BeCashAcctPAO is visible (you should be able to
see account_ID, res_type, balance , and so on).

g. Select the account_ID field of the BeCashAcctPAO object. Move the cursor to the right-hand side
of the window and select COMM__ACCOUNTID. At the bottom of the window, click ↔ to connect
the two fields.

Note: The BeCashAcctPAO account_ID field should be connected to COMM__ACCOUNTID on
the input side.

h. Repeat the previous step to form connections between the rest of the BeCashAcctPAO fields.

i. Click Apply and then OK when this is completed. A new class called BeCashAcctRecordMapper
appears in the current package.

Creating the BeCashAcctCommand Class

To create the BeCashAcctCommand Class, complete the following steps:

1. Right-click the package that you have been working in,

 paa.mysamples.cics.eci.acct

2. From the pop-up menu for the package, select Add → Class . A wizard window appears.

3. In this window:

a. Type the project and package names of the sample application into their corresponding fields.

b. Select the Create a new class radio button and type BeCashAcctCommand in the Class name field.

c. To select the Superclass, click Browse s and select CommunicationCommand from the list.

 Chapter 8. Developing a CICS-ECI Application 161

 d. Click OK.

e. Ensure that the Compose the class visually radio button is NOT selected and click Finish .

4. Right-click the BeCashAcctCommand class.

5. From the pop-up menu for the class, select Open To → BeanInfo .

6. In this dialog:

a. Select Features → Generate BeanInfo class. This will generate a new BeanInfo class for your
command class.

b. Select Features → Add Available Features .

1) In the Add Available Features dialog, select the following features that may appear:

 � class
 � communication
 � connectionSpec
 � disconnectCommunication
 � expectedTriggerClass
 � input
 � interactionSpec
 � mappedObjects
 � mappingHelper
 � output

2) Click the OK button.

c. Close the command class.

7. Open the pop-up menu of the BeCashAcctCommand class, and select Tools → Command Editor . A
new dialog is displayed.

8. In this dialog:

a. Right-click on the Communication Task and select Add ConnectionSpec . A window displays all
objects that inherit from ConnectionSpec.

b. In this window:

 1) Select ECIConnectionSpec .

2) Click OK and the window closes and a connectionSpec entitled ceConnectionSpec is
displayed under the Communication Task .

Right-click on the Communication Task and select Add InteractionSpec . A window will display
all objects that inherit from InteractionSpec .

c. In this window:

 1) Select ECIInteractionSpec .

2) Click OK and the window closes and an interactionSpec entitled ceInteractionSpec is added
under the Communication Task .

Inbound side of command

d. Right-click on the Input task and select Add IByteBuffer Bean . A window displays all beans in
VisualAge for Java. Select the RecordBean created earlier, BeCashAcctRecord , and click OK.

e. Right-click on ceInput and select Promote Bean Feature . Ensure that the Property radio button
is selected and move COMM__ACCOUNTID, COMM__REQUEST__TYPE, and
COMM__RES__TYPE from the left pane to the right pane by highlighting those properties and
clicking >>.

162 CICS and IMS Application Adaptor

f. Click OK to generate run time code and the bean info class.

g. Right-click on ceInput and select Add Mapper . A window displays all mapper beans in VisualAge
for Java.

h. Select BeCashAcctRecordMapper and click OK. A ceMapperCeInput object should now be
created under the ceInput object.

Outbound side of command

i. Right-click on the Output task and select Add IByteBuffer Bean . A window displays all beans in
VisualAge for Java. Select the RecordBean created earlier, BeCashAcctRecord , and click OK.

j. Right-click on ceOutput1 and select Promote Bean Feature . A window is displayed.

k. Ensure that the Property radio button is selected, highlight COMM__ACCOUNTID and move it to
the right-hand pane by clicking >>. Do the same for COMM__RES__TYPE (These are the two key
fields).

l. Select the Method radio button and move the key attribute getters over:
getCOMM__ACCOUNTID() and getCOMM__RES__TYPE() . Move
getCOMM__RETURN__VALUE__1() over as well. Click OK when finished.

m. Select ceOutput1 and Add Mapper.

n. Select BeCashAcctRecordMapper and click OK. A ceMapperCeOutput1 object is now created
under the ceOutput1object.

Setting Properties

o. Select ceConnectionSpec, right-click on it and select Properties. A window is displayed that allows
you to change the bean properties.

p. In this window:

1) In the CICSServer field, type the name of the CICS server where the BeCashAcct program is
located. For example, HOTBOS

2) Type the address of the CICS gateway in the URL field. For example, local:

3) Click OK to close the property window and to save the changes.

9. Select ceInteractionSpec, right-click on it and select Properties. A window is displayed that allows you
to change the bean properties.

10. In this window:

a. In the programName field, type the name of the COBOL file that is being used for the transaction.
For examle, BECASHAC.

b. Optional - if the unit of work should be ended at the end of the command, change CICSELUW to
True. If you do not care, leave CICSELUW as False.

c. Click OK to close the Properties window.

11. Click OK to close the Command Editor and generate run time code.

Modifying the Procedural Adaptor Object to Call the Commands

1. Select the BeCashAcctPAO class and expand it.

2. Highlight each of the CRUD methods (insert, retrieve, update, and del).

3. For each method, add in the necessary code to set up and call each Command Object. For the
insert() method, the code should look like the following:

 Chapter 8. Developing a CICS-ECI Application 163

public void insert() throws com.ibm.ipaa.IDataKeyAlreadyExistsException {

BeCashAcctCommand bec = new BeCashAcctCommand();

 bec.setConnectionSpec(this.getConnectionSpec());

 bec.setCeInputCOMM__REQUEST__TYPE((short)1);

 bec.setCeInputCOMM__ACCOUNTID(this.getAccount_ID());

 bec.setCeInputCOMM__RES__TYPE(this.getRes_type());

 bec.execute();

 if (bec.ceOutput1GetCOMM__RETURN__VALUE__1().equals("ðððððð14"))

throw new com.ibm.ipaa.IDataKeyAlreadyExistsException();

 }

4. For the retrieve() method, the code should look like the following:

public void retrieve() throws com.ibm.ipaa.IDataKeyNotFoundException {

BeCashAcctCommand bec = new BeCashAcctCommand();

 bec.setConnectionSpec(this.getConnectionSpec());

 bec.setCeInputCOMM__REQUEST__TYPE((short)2);

 bec.setCeInputCOMM__ACCOUNTID(this.getAccount_ID());

 bec.setCeInputCOMM__RES__TYPE(this.getRes_type());

 bec.execute();

if (bec.ceOutput1GetCOMM__RETURN__VALUE__1().equals("ðððððð13"))

throw new com.ibm.ipaa.IDataKeyNotFoundException();

}

5. For the update() method, the code should look like the following:

 public void update() throws com.ibm.ipaa.IDataKeyNotFoundException {

BeCashAcctCommand bec = new BeCashAcctCommand();

 bec.setConnectionSpec(this.getConnectionSpec());

 bec.setCeInputCOMM__REQUEST__TYPE((short)3);

 bec.setCeInputCOMM__ACCOUNTID(this.getAccount_ID());

 bec.setCeInputCOMM__RES__TYPE(this.getRes_type());

 bec.execute();

if (bec.ceOutput1GetCOMM__RETURN__VALUE__1().equals("ðððððð13"))

throw new com.ibm.ipaa.IDataKeyNotFoundException();

 }

6. For the del() method, the code should look like the following:

public void del() throws com.ibm.ipaa.IDataKeyNotFoundException {

BeCashAcctCommand bec = new BeCashAcctCommand();

 bec.setConnectionSpec(this.getConnectionSpec());

 bec.setCeInputCOMM__REQUEST__TYPE((short)4);

 bec.setCeInputCOMM__ACCOUNTID(this.getAccount_ID());

 bec.setCeInputCOMM__RES__TYPE(this.getRes_type());

 bec.execute();

if (bec.ceOutput1GetCOMM__RETURN__VALUE__1().equals("ðððððð13"))

throw new com.ibm.ipaa.IDataKeyNotFoundException();

}

Modifying the Procedural Adapter Object to Connect to the CICS
Server

1. Select the BeCashAcctPAO class and expand it.
2. Select the BeCashAcctPAO constructor.
3. The constructor should look like the following:

164 CICS and IMS Application Adaptor

public BeCashAcctPAO() {

 com.ibm.ivj.communications.ECIConnectionSpec cs =

 new com.ibm.ivj.communications.ECIConnectionSpec();

 cs.setCICSServer("SERVERNAME"); // name of your CICS server

 cs.setURL("local:"); // location of system running CICS Transaction Gateway

 this.setConnectionSpec(cs);

}

The URL is either the fully-qualified name of a system running jgate, or it is "local:" if the CICS
Transaction Gateway is installed locally.

Both the CICSServer name and URL settings here in the PAO constructor take effect only in the
VisualAge for Java unit test environment. In the Component Broker environment, the corresponding
settings on the Systems Management connection image override the settings here.

Refer to server entry in “Configuring the CICS Universal Client Within the Transaction Gateway” on
page 39 in Chapter 4, “Installing the CICS and IMS Application Adaptor on Windows NT” on page 37, or
in “Configuring the CICS Universal Client Within the Transaction Gateway” on page 53 in Chapter 5,
“Installing the CICS and IMS Application Adaptor on AIX” on page 51.

Creating an Executable Class

To create an executable class, complete the following steps:

1. Select your paa.mysamples.cics.eci.acct package.

2. From the Selected menu, select Add → Class , a wizard appears to request all the necessary
information required to create a class.

a. Type the current project and package in the appropriate fields in the wizard and ensure that the
Create a new class radio button is selected.

b. In the Class name field type Execute.

c. Set the Superclass to java.lang.Object.

d. Ensure that the Compose the class visually radio button is NOT selected, and click Next to
continue to the next screen.

3. There are three classes that should be imported when the executable is run. To include these classes
as import statements, select Add Package . A list of available packages appears. From the list, select
each of the following and click Add to include them in the import statements:

 � com.ibm.connector.cics
 � com.ibm.connector.infrastructure
 � com.ibm.connector.infrastructure.java

4. After adding the last one, click Close .

5. Ensure that the following fields are selected (checkmark beside them).

� public (in modifiers section)
� Methods which must be implemented (Recommended)
� Copy constructors from superclass (Recommended)

 � main(String[])

6. To generate the class, click Finish and the class appears inside the package you have specified.

7. Type the code listed below into the main(String[]) method created in the Execute class, and select
Save from the Edit pull-down menu.

 Chapter 8. Developing a CICS-ECI Application 165

Note: The User and Password for the CICS server must be inserted into this code where CBUSER
appears:

 public static void main(java.lang.String[] args) {

 try {

 JavaRuntimeContext runtimeContext = new JavaRuntimeContext();

 ((DefaultLogonInfo) runtimeContext.getLogonInfo()).setUser("CBUSER");

 ((DefaultLogonInfo) runtimeContext.getLogonInfo()).setPassword("CBUSER");

 JavaRuntimeContext.setCurrent(runtimeContext);

 ((JavaRASService) runtimeContext.getRASService()).setTraceLevel(1);

 com.ibm.ivj.communications.Session.startSession();

 BeCashAcctPAOKey key = new BeCashAcctPAOKey();

 key.setAccount_ID("ððððð99ð");

 key.setRes_type("ð1");

 BeCashAcctPAO bec = (BeCashAcctPAO) BeCashAcctPAO.find(key);

 // Retrieve Cash Account information

 System.out.println("Retrieving ...");

 try {

 bec.retrieve();

 } catch (Exception e) {

 System.out.println("\n!!! Exception from Cash Account Retrieve " + e.toString());

 e.printStackTrace();

 }

 System.out.println("\n\n" + bec.toString());

 BeCashAcctPAOKey key1 = new BeCashAcctPAOKey();

 key1.setAccount_ID("ððððð995");

 key1.setRes_type("ð1");

 BeCashAcctPAO bec1 = (BeCashAcctPAO) BeCashAcctPAO.find(key1);

 bec1.setUtilities("This is the utilities");

 bec1.setType("2");

 bec1.setBalance(1ðð);

 // Create a Cash Account

 System.out.println("Creating ..." + bec1.toString());

 try {

 bec1.insert();

 } catch (Exception e) {

 System.out.println("\n!!! Exception from Cash Account Insert " + e.toString());

 }

 System.out.println("\n\n" + bec1.toString());

 // Update a Cash Account

 System.out.println("Updating ...");

 bec1.setUtilities("Changed Utilities");

 bec1.setType("B");

 bec1.setBalance(3ðð);

 try {

 bec1.update();

 } catch (Exception e) {

 System.out.println("\n!!! Exception from Cash Account Update " + e.toString());

 e.printStackTrace();

 }

 System.out.println("\n\n" + bec1.toString());

 // Delete a Cash Account

166 CICS and IMS Application Adaptor

 System.out.println("Deleting ...");

 try {

 bec1.del();

 } catch (Exception e) {

 System.out.println("\n!!! Exception from Cash Account Delete " + e.toString());

 e.printStackTrace();

 }

 key = new BeCashAcctPAOKey();

 key.setAccount_ID("ððððð995");

 key.setRes_type("ð1");

 // Retrieve Cash Account information

 System.out.println("Retrieving ...");

 try {

 bec.retrieve();

 } catch (Exception e) {

 System.out.println("\n!!! Expected Exception from Cash

Account Retrieve " + e.toString());

 }

 com.ibm.ivj.communications.Session.endSession(true);

 System.out.println("\nSession ended");

 runtimeContext.close();

} catch (Exception e) {

 e.printStackTrace();

 System.out.println("Error is " + e);

 }

}

Running the Customer Command Application

To run the application, select the Execute class and right-click on Properties . Select the class Path tab.
Select Compute Now to update the Class Path and click OK when processing is complete. Click Run (the
button with a running person on it found at the top of the workbench). The results will be displayed in the
console window.

Exporting the BeCashAcct Package

After building the Execute class and creating and testing the Component Broker procedural adaptor object
within the VisualAge for Java environment, you can run the unit test program outside of the VisualAge for
Java environment. This object needs to be imported to Object Builder as a persistent object. Importing this
object requires that the procedural adaptor object and its corresponding BeanInfo class is exported outside
of VisualAge for Java. To run the sample outside of the VisualAge for Java environment, you must export
all classes you created, and modify the CLASSPATH environment variable.

For ease, export the entire package. This package should contain:

� The new procedural adapter object
� Its corresponding BeanInfo class
� All EAB transaction objects

To export the package outside of VisualAge for Java:

1. Select the paa.mysamples.cics.eci.acct package to export.

2. From the VisualAge for Java Workbench menu, select File → Export . This opens the Export wizard.

 Chapter 8. Developing a CICS-ECI Application 167

3. Select the Directory radio button.

 4. Click Next .

5. Type in the directory where you want to export the classes, for example:

WIN x:\MyProj (where x: represents the drive of your choice)

AIX $HOME/MyProj

This will be your Working Directory for the remainder of this sample.

6. Select ONLY the .class check box.
 Important Information

If you export both .class and .java files, you will get an error when compiling the artifacts produced
by Object Builder.

 7. Click Finish .

When the export completes, the paa\mysamples\cics\eci\acct directory is created under the MyProj
directory.

To verify that the package exported correctly, run the unit test program from the command line:

1. Ensure that the directory in which you exported the package, your Working Directory, is in your
CLASSPATH.

2. From a command prompt, type one of the following:

WIN java -nojit paa.mysamples.cics.eci.acct.Execute

AIX java paa.mysamples.cics.eci.acct.Execute

You should have the same results as when running inside VisualAge for Java.

Developing a CICS-ECI Business Object

This section contains Object Builder and System Management procedures required to create a component
named CashAcct. To create this component, perform the procedures in the following sections.

1. “Importing the Bean” on page 169
2. “Defining the CashAcct Component” on page 169
3. “Creating Client and Server DLL Files” on page 173
4. “Packaging the Application” on page 174
5. “Building the Application - Client and Server” on page 176
6. “Installing the Application” on page 176
7. “Running the Sample Application” on page 179

Notes:

1. Before starting Object Builder, ensure that your classpath includes your Working Directory.

2. Specify your Working Directory as the base directory for the project.

3. The procedures contained in this section assume that you have correctly set your classpath to include
your Working Directory before starting Object Builder and that you have started Object Builder.

AIX To start Object Builder on AIX, type ob on the command line and press Enter .

168 CICS and IMS Application Adaptor

Importing the Bean

The bean to import is BeCashAcct from the paa.mysamples.cics.menu.acct package in your Working
Directory.

To import this bean:

1. Select the User-Defined PA Schemas folder from the Object Builder Tasks and Objects pane.

2. Open the pop-up menu for User-Defined PA Schemas and select Import Bean . This opens the
Import Procedural Adaptor Bean - Bean Selection page wizard.

3. On this page:

a. Type paa.mysamples.cics.eci.acct.BeCashAcctPAO in the bean name field.
b. Click Next to accept the remaining defaults and to continue to the Import Procedural Adaptor

Bean → Names and Connectors page.

4. Click the ECI radio button in the Connector Type box and click Next to continue to the Import
Procedural Adaptor Bean Key Selection page.

5. On this page:

a. Select the res_type and the account_ID properties from the Properties list box.
b. Click >> to move these associated keys required to import the bean.

 6. Click Finish .

The bean is imported into Object Builder. The BeCashAcctPAO schema and its corresponding persistent
object (BeCashAcctPAOPO) are now in the tree view of User-Defined PA Schemas.

Defining the CashAcct Component

This exercise defines the objects required to create a component named “CashAcct”. For this component
you will do the following:

1. Create a new business object file
2. Define the business object
3. Connect the data object implementation to the persistent object
4. Define the managed object
5. Generate the code

Creating the Business Object File

To create the CashAcct business object file:

1. Select the User-Defined Business Objects folder.

2. Open the pop-up menu for User-Defined Business Objects , and select Add File . This displays the
Name page of the Business Object File wizard.

3. On this page:

a. Type CashAcct in the Name field.
b. Accept the other defaults.

 4. Click Finish .

The CashAcct file is now under the User-Defined Business Objects folder.

 Chapter 8. Developing a CICS-ECI Application 169

Defining the Business Object

After creating the new business object file, the business object needs to be defined. A fully-configured
business object consists of the following:

� A business object interface
� An associated key
� An associated copy helper
� A business object implementation and data object interface

Defining the Business Object Interface: To create the CashAcct business object interface:

1. From the User-Defined Business Object folder, select CashAcct .

2. Open the pop-up menu for CashAcct , and select Add Interface . This displays the Name page of the
Business Object Interface wizard.

3. On this page:

a. Type CashAcct in the Name field.
b. Click Next to continue to the Constructs page.

4. Click Next to accept the defaults and to continue to the Interface Inheritance page.

5. Click Next to accept the defaults and to continue to the Attributes page.

6. Define the user-defined attributes.

a. Select Attributes from the tree view.

b. Open the pop-up menu for Attributes , and select Add . This displays the Add dialog.

c. In this dialog:

1) Type res_type in the Attribute Name field.

2) Select string as the Type . This displays the Size field.

3) Type ð in the Size field

4) Click Add Another .

5) Repeat this step for each attribute of the CashAcct interface in BeCashAcctPAO.java, but
click Refresh instead of Add Another at the end of the last step.

Note: For balance, use type long. For account_ID, acct_type , and utilities , use string.

 d. Click Finish .

The CashAcct interface is now under the CashAcct file.

Defining the Key: To add the key:

1. From the User-Defined Business Object folder, open the CashAcct interface.

2. Open the pop-up menu of CashAcct , and select Add Key . This displays the Key - Name and Key
Attributes page.

3. Select the res_type and the account_ID attributes from the Business Object Attributes list.

4. Click >> to move the attribute to the Key Attributes list.

 5. Click Finish .

The CashAcctKey key is now under the CashAcct interface.

170 CICS and IMS Application Adaptor

Defining the Copy Helper: To add the copy helper:

1. From the User-Defined Business Object folder, open the CashAcct interface.

2. Open the pop-up menu for CashAcct , and select Add Copy Helper . This displays the Copy Helper -
Name and Attributes page.

3. Click All >> to move the attributes from the Business Object Attributes list to the Copy Helper
Attributes list.

 4. Click Finish .

The CashAcctCopy copy helper is now under the CashAcct interface.

Defining the Business Object Implementation and Data Object Interface: To add the Business
Object Implementation and Data Object interface:

1. From the User-Defined Business Object folder, open the CashAcct interface.

2. Open the pop-up menu for CashAcct , and select Add Implementation . This displays the Name and
Data Access Pattern page of the Business Object Implementation wizard.

3. Type CashAcctBO in the File Name field.

4. Define the implementation.

a. Select the Delegating radio button from the Pattern for Handling State Data group.

b. Ensure that the Create a new one now radio button is selected from the Data Object Interface
group. This option allows you to define the business object attributes that need to be preserved in
the data object.

c. Deselect 390 in the Select Deployment platform group box.

d. Click Next to continue to the Implementation Inheritance page.

5. Click Next to accept the defaults and to continue to the Implementation Language page.

6. Click Next to accept the defaults and to continue to the Attributes page.

7. Click Next to accept the defaults and to continue to the Methods page.

8. Click Next to accept the defaults and to continue to the Key and Copy Helper page.

9. On this page:

a. Verify that the CashAcctKey key is selected from the Key list.
b. Verify that the CashAcctCopy copy helper is selected from the CopyHelper list.
c. Click Next to continue to the Handle Selection page.

10. Click Next to accept the defaults and to continue to the Attributes to Override page.

11. Click Next to accept the defaults and to continue to the Methods to Override page.

12. Click Next to accept the defaults and to continue to the Data Objects Interface page.

13. Click All >> to move the attributes in the Business Object Attributes list to the State Data list.

14. Click Finish .

The CashAcctBO business object implementation is now under the CashAcct interface, and the
CashAcctDO data object interface is now under the CashAcctBO business object implementation.

 Chapter 8. Developing a CICS-ECI Application 171

Connecting the Data Object Implementation to the Persistent Object

To create the data object implementation and to connect the data object implementation to the persistent
object:

1. From the User-Defined Business Object folder, select the CashAcctDO data object interface.

2. Open the pop-up menu for CashAcctDO , and select Add Implementation . This displays the Data
Object Implementation - Name and Platform page.

3. Deselect 390 in the Select Deployment platform group box.

4. Click Next to continue to the Behavior page.

5. On this page:

a. Set the BOIM with any key radio button from the Environment group box to indicate that the
data object is part of a component installed in a business object application adaptor with instances
being located by key objects.

b. Set the Procedural Adaptors radio button from the Form of Persistent Behavior and
Implementation group box.

c. Click Next to continue to the Implementation Inheritance page.

6. On this page:

a. Verify that IPAAExtLocalToServer::IDataObject is selected as a parent.
b. Click Next to continue to the Attributes page.

7. Click Next to accept the defaults and to continue to the Methods page.

8. Click Next to accept the defaults and to continue to the Key and Copy Helper page.

9. Click Next button to accept the defaults and to continue to the Associated Persistent Objects page.

10. On this page:

a. Select Persistent Object Instances.
b. Open the pop-up menu for Persistent Object Instance, and select Add .
c. Type iBeCashAcctPAOPO in the Instance Name field.
d. Click Next to continue to the Attributes Mapping page.

11. On this page:

a. Select res_type from the Attributes list.
b. Open the pop-up menu for res_type , and select Primitive .
c. Select iBeCashAcctPAOPO.res_type from the Persistent Object Attribute list.
d. Add 1-to-1 mappings for the other attributes in the Attributes tree view as you did for res_type

(acct_type will map to type).
e. Click Next to continue to the Methods Mapping page.

12. On this page:

a. Select insert from the Special Framework Methods list.

b. Open the pop-up menu for insert , and select Add mapping .

c. Select BeCashAcctPAOPO.insert from the Persistent Object Method list.

d. Add 1-to-1 mappings for the remaining CRUD methods and for the setConnection() method in the
Special Framework Methods tree view as you did for insert.

13. Click Finish .

The CashAcctDOImpl data object implementation is now under the CashAcctDO interface, and the
BeCashAcctPAOPO persistent object is now under the CashAcctDOImpl data object implementation.

172 CICS and IMS Application Adaptor

Defining the Managed Object

To add the managed object:

1. From the User-Defined Business Object folder, select the CashAcctBO business object
implementation.

2. Open the pop-up menu for CashAcctBO, and select Add Managed Object . This displays the Name
and Services page of the Managed Object wizard.

3. Type CashAcctMO in the File Name field.

4. Deselect 390 in the Select Deployment platform group box.

5. Set the Session Service radio button.

6. Click Next to continue to the Implementation Inheritance page.

 7. Click Finish .

Generating the Code

To generate the application code:

1. From the User-Defined Business Object folder, select CashAcct.
2. Open the pop-up menu for CashAcct , and select Generate → All .

Code generation starts. Progress is indicated in the lower-left corner of the window.

Creating Client and Server DLL Files

The defined objects need to be built into two separate DLL files.

� One that runs on the client and provides access to the business object interface, key, and copy helper.

� One that runs on the server and provides access to the managed object and the rest of the
component.

The client DLL file must be defined before the server DLL file. When the server DLL file is defined, it must
link to the client DLL file. After defining the objects that comprise each DLL file, these files can be built.

Defining the Client DLL File

To add the client DLL file:

1. Select the Build Configuration folder.

2. Open the pop-up menu for Build Configuration , and select Add Client DLL . This displays the Name
and Options page of the Add Client DLL wizard.

3. Type CashAcctC in the Name field.

4. Check only the Applicable Platforms you want.

5. Click Next to continue to the Client Source Files page.

6. Click All >> to move the client source files to the Items Chosen list.

 7. Click Finish .

The CashAcctC client DLL file is now under the Build Configuration folder.

 Chapter 8. Developing a CICS-ECI Application 173

Defining the Server DLL File

To add the server DLL.

1. Select the Build Configuration folder.

2. Open the pop-up menu for Build Configuration , and select Add Server DLL . This displays the Name
and Options page of the Server DLL wizard.

3. Type CashAcctS in the Name field.

4. Check only the applicable platforms you want.

5. Click Next to continue to the Server Source Files page.

6. Click All >> to move the server source files to the Items chosen list.

7. Click Next to continue to the Libraries to Link With page.

8. Select CashAcctC from the Items Available list.

9. Click >> to move CashAcctC to the Items Chosen list.

10. Click Finish .

The CashAcctS server DLL file is now under the Build Configuration folder.

Generating the Makefiles

To generate the makefiles to build the configuration:

1. Select the Build Configuration folder.
2. Open the pop-up menu for Build Configuration , and select Generate → All → All Targets .

The code generation begins.

Packaging the Application

Packaging the application consists of the following procedures:

1. Creating the application family
2. Defining the application
3. Creating the container instance
4. Configuring the managed object
5. Generating the application

Creating the Application Family

To add the application family:

1. Select the Application Configuration folder.

2. Open the pop-up menu for Application Configuration , and select Add Application Family . This
displays the Name page of the Add Application Family wizard.

3. Type CashAcctApp in the Name field.

 4. Click Finish .

The CashAcctApp application family is now under the Application Configuration folder.

174 CICS and IMS Application Adaptor

Defining the Application

To add the Application:

1. Select the CashAcctApp application family.

2. Open the pop-up menu for CashAcctApp , and select Add Application . This displays the Name and
Environment page of the Add Application wizard.

3. Type CashAcct in the Application Name field.

 4. Click Finish .

The CashAcct application is now under the CashAcctApp application family.

Creating the Container Instance

To add the new container instance:

1. Select the Container Definition folder.

2. Open the pop-up menu for Container Definition , and select Add Container Instance . This displays
the Container wizard.

3. Type CashAcctContainer in the Name field.

4. Deselect 390 on the Select deployment platform group box.

5. Click Next to continue to the Workload Management page.

6. Click Next to continue to the Service page.

7. On the Service page, set the Use PAA Session Service radio button.

8. Click Next to continue to the Service Details page.

9. On this page:

a. Type CICS_CashAcct_Server in the Connection Name field.

b. Set the ECI Connection radio button under the Connector Type used by a Session group box.

10. Click Finish .

The CashAcctContainer container is now under the Container Definition folder.

Configuring the Managed Object

To add the managed object for the Application:

1. Open CashAcctApp under the Application Configuration folder.

2. Select the CashAcct application.

3. Open the pop-up menu for CashAcct , and select Add Managed Object . This displays the Configure
Managed Object wizard.

4. In this window:

a. Verify that CashAcctMO is in the Managed Object field.
b. Click Next to continue to the Data Object Implementations page.

5. On this page:

 a. Select Implementations.
b. Open the pop-up menu for Implementations, and select Add .
c. Select CashAcctDOImpl from the Data Object Implementation list.

 Chapter 8. Developing a CICS-ECI Application 175

d. Click Next to continue to the Container page.

6. On this page, select CashAcctContainer from the Name list.

7. Click Next to continue to the Home page.

8. On this page, select BOIMHomeOfRegHomes from the Home Name list.

 9. Click Finish .

The CashAcctMO managed object is now under the Application Configuration folder.

Generating the Applications

To generate the application family:

1. Select the CashAcctApp application under the Application Configuration folder.
2. Open the pop-up menu for CashAcctApp, and select Generate .

Note: WIN On Windows NT, if InstallShield is not installed on your system, click Yes when the dialog
concerning InstallShield is displayed.

When code generation completes, the Method Implementation pane contains the CashAcctApp.ddl file.
You can now close Object Builder.

Building the Application - Client and Server

All imported and generated files are placed in one of the following subdirectories of your Working
Directory:

WIN Working\NT.

1. Change the directory to:

 x:\MyProj\Working\NT

 2. Type:

nmake -f all.mak cpp java

AIX Working/AIX.

1. Change the directory to:

 $HOME/MyProj/Working/AIX

 2. Type

make -f all.mak cpp java

Everything in the sample application is built.

Installing the Application

Installing an application consists of:

1. Loading the application
2. Configuring the application

These procedures assume that you are currently logged on to DCE and that you are currently using the
System Manager User Interface. If not, logon to DCE and start the System Manager User Interface.

176 CICS and IMS Application Adaptor

Loading the Application onto System Management

To install the CashAcct server application:

1. Start the System Manager User Interface if it is not already started.
2. Become an Expert user (View → User Level → Expert).
3. Expand Host Images, and select <your host name→.
4. From the pop-menu, select Load Application . This opens the Load Application dialog.
5. Browse for and select CashAcctApp.ddl .

WIN x:\MyProj\Working\NT\CashAcctApp\CashAcctApp.ddl

AIX $HOME/MyProj/Working/AIX/CashAcctApp/CashAcctApp.ddl

Configuring the Application with System Management

To configure the application:

1. Configure the application.

a. Expand Available Applications, and select CashAcct .

b. Open the pop-up menu for CashAcct , and select Drag .

c. Expand Management Zones → Sample Cell and Work Group Zone → Configurations, and select
Sample Configuration .

d. Open the pop-up menu for Sample Configuration , and select Add Application .

2. Configure the ECI connection.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Sample
Configuration → ECI Connections, and select CICS_CashAcct_Server .

b. Open the pop-up menu for CICS_CashAcct_Server , and select Edit , which opens the Object
Editor.

c. Click the Main tab.

d. Change the CICS Server name field to match the CICS servers with which you are
communicating as specified in your cicscli.ini file.

e. Under gateway address:

� If the Transaction Gateway is local (installed on the same computer), leave the default
(local:)

� If the network Transaction Gateway is required, type one of the following addresses:

 tcp://my.cics.gateway/
 OR

 tcp://my.other.gateway:8ð8ð/

Where my.cics.gateway represents the name used for the default port number and
my.other.gateway represents the name used with port 8080. The address format is defined by
the Transaction Gateway.

f. Click OK to validate and accept the changes.

3. Define the server.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations, and select
Sample Configuration .

 Chapter 8. Developing a CICS-ECI Application 177

b. Open the pop-up menu for Sample Configuration , and select New → Server (free standing) .
This displays a new dialog box.

c. Type CashAcctSvr as the name for the server.

d. Click OK. The CashAcctSvr server is now under Server (free standing).

4. Associate the application with the server.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Sample
Configuration → Applications, and select CashAcct .

b. Open the pop-up menu for CashAcct , and select Drag .

c. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Sample
Configuration → Server (free standing), and select CashAcctSvr .

d. Open the pop-up menu for CashAcctSvr , and select Configure Application .

5. Associate the iPAAServices with the server.

a. Host Images → myhost → Application Family Installs → iPAAApplications → Application Installs,
and select iPAAServices .

b. Open the pop-up menu for IPAAServices , and select Drag .

c. Expand Management Zones → Sample Cell and Work Group Zone → Configurations, and select
Sample Configuration .

d. Open the pop-up menu for Sample Configuration , and select Add Application .

e. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Sample
Configuration → Applications, and select iPAAServices .

f. Open the pop-up menu for iPAAServices , and select Drag .

g. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Sample
Configuration → Server (free standing), and select CashAcctSvr .

h. Open the pop-up menu for CashAcctSvr , and select Configure Application .

6. Configure the server with the host.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Server
(free standing), and select CashAcctSrv .

b. From the pop-up menu for CashAcctSrv , select Drag .

c. Expand Hosts and select your server.

d. From the pop-up menu for your server, select Configure Server (free standing) .

7. Optional: Enable security services for the server.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Sample
Configuration → Servers (free standing), and select CashAcctSrv .

b. Open the pop-up menu for CashAcctSrv , and select Edit , which opens the Object Editor.

c. In this notebook:

1) Select the Security Service tab.

2) Change the value for the data system principal field to the user ID that the server will use
when connecting to the CICS system.

3) Change the value for the data system password field to the password that the server will use
when connecting to the CICS system.

4) Change the value for the security enabled field from no to yes.

178 CICS and IMS Application Adaptor

5) Click OK. The changes are applied and the Object Editor closes.

8. Optional: Enable security services for the client.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configuration → Sample
Configuration → Client Styles, and select myClient .

b. Open the pop-up menu for myClient , and select Edit , which opens the Object Editor.

c. In this notebook:

1) Select the Security Service tab.
2) Change the value for the security enabled field from no to yes.
3) Click OK. The changes are applied and the Object Editor closes.

9. Activate the configuration.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations, and select
Sample Configuration .

b. Open the pop-up menu for Sample Configuration , and select Activate , which automatically starts
the application server. Wait for the completion message in the Action Console window before
continuing.

Running the Sample Application

Before running this sample, ensure that the IBM Transaction Server for CICS/NT is configured for the
CICS region and a single Encina shared file system (SFS). For details, see Appendix B, “Installing the
CICS-ECI Sample” on page 233.

To run the sample client application, complete one of the following procedures:

WIN

1. Copy CashAcctcli.mak and CashAcctcli.cpp from:

 x:\CBroker\samples\InstallVerification\PAA\Application\CashAcctcli

to

 x:\MyProj\Working\NT

2. Change directory to:

 x:\MyProj\Working\NT

 3. Type:

nmake -f CashAcctcli.mak

 4. Type:

 cashacctcli

AIX

1. Copy CashAcctcli.mak and CashAcctcli.cpp from:

 /usr/lpp/CBToolkit/samples/InstallVerification/PAA/Application/CashAcctCli

to

 $HOME/MyProj/Working/AIX

2. Change directory to:

 $HOME/MyProj/Working/AIX

 Chapter 8. Developing a CICS-ECI Application 179

 3. Type:

make -f Cashacctcli.mak

 4. Type:

 cashacctcli

180 CICS and IMS Application Adaptor

Chapter 9. Developing an IMS-APPC Application

This chapter provides information for building a sample Component Broker application with an IMS
backend.

This chapter contains the following information.

� “The IMS Sample Application”
� “Enterprise Access Builder Procedures” on page 182
� “Developing an IMS-APPC Business Object” on page 194

Note: To walk-through this sample, the following software and Component Broker software must be
installed on your system:

� The Component Broker samples
� The CICS and IMS Application Adaptor SDK
� IBM VisualAge Java with EAB

 Important Information

Before walking through this sample, please refer to the Late Breaking News provided with Component
Broker before performing the exercise in this chapter. This document provides the latest information
regarding the CICS and IMS application adaptor samples, which may differ from the instructions for
this sample application.

The IMS Sample Application

The IMS-APPC sample application is based on an IMS Installation Verification Procedure (IVP). The IVP is
a mock phone book database, where each entry in the phone book contains the following fields:

 � Last name
 � First name
� Phone number extension
� Internal zip code

This sample application works on an IMS database and permits adding, inquiring, updating, and deleting
of phone book entry records through the ADD, DISPLAY, UPDATE, and DELETE transactions.

Although this sample application is not a full-blown IMS application, it captures the essence of an
application involving multiple 3270 panel navigation and delivering some amount of business function. This
sample application can be extended and customized to explore different IMS-APPC application issues.

WIN The sample that you build in this section is included with the product and can be built by following
the steps in the HTML file in:

CBroker\samples\InstallVerification\PAA\readme.htm

AIX The sample that you build in this section is included with the product and can be built by following
the steps in the HTML file in:

/usr/lpp/CBToolkit/samples/InstallVerification/PAA/readme.htm

 Copyright IBM Corp. 1998 181

Enterprise Access Builder Procedures

An overview of the steps is given below:

1. “Importing Prerequisite Features into the Workspace” on page 182
2. “Creating a Project/Package under VisualAge for Java” on page 183
3. “Creating the Procedural Adaptor Object and Key” on page 183
4. “Importing the PhoneBook COBOL File” on page 185
5. “Creating the Record Mapper” on page 187
6. “Creating the Command Classes” on page 189
7. “Modifying the Procedural Adapter Object to call the Commands” on page 192
8. “Developing an IMS-APPC Business Object” on page 194
9. “Running the Sample Application” on page 205

WIN If you are using VisualAge for Java on Windows 95 or Windows NT, from the Start menu, select
Programs → IBM VisualAge for Java for Windows → IBM VisualAge for Java .

AIX If you are using Visual Age for Java on AIX, type vajide on the command line and press Enter .

If the VisualAge Quick Start dialog appears, select Go to the Workbench and click OK. The IDE appears.

From the Window pulldown, select Options . Select Design Time and uncheck Inherit BeanInfo of bean
superclass. Click OK.

 Important Information

Be sure that you have unchecked Inherit BeanInfo of bean superclass . If this is not unchecked, you
will receive an error message when you try to import into Object Builder.

Importing Prerequisite Features into the Workspace
1. Select File → Quick Start .
2. Select Features in the left pane and Add Feature in the right pane.

 3. Click OK.
4. Select the following:

� IBM Procedural Application Adapter 1.0
� CICS Connector 3.0
� IBM Component Broker Connectors 2.0
� IBM Enterprise Access Builder Library 2.0
� IBM Component Broker PAA Samples for IMS 1.0

 5. Click OK.

You can ignore the following expected errors this introduces in the following packages:
 � com.ibm.ivj.communications
 � com.ibm.ivj.trace
 � com.ibm.eNetwork.ECL
 � com.ibm.eNetwork.ncod.services.RAS

Note: If you do not see all of these features listed, they have been previously installed. To confirm,
perform the following steps:

a. Select File → Quick Start .

b. Select Features → Delete Feature and see which features are already loaded (then
Cancel).

182 CICS and IMS Application Adaptor

Creating a Project/Package under VisualAge for Java
1. From the VisualAge for Java list of projects, select IBM Component Broker PAA Samples for IMS.

2. Open the pop-up menu of IBM Component Broker PAA Samples for IMS , and select Add →
Package . This creates a package for the project.

3. Type paa.mysamples.ims.appc.pbe for the new package, and click Finish .

Note: If you are using the default mouse configuration, right-click on the denoted item. You do not have
to select the item before opening its menu. You can select the item and open its menu with a
right-click.

Creating the Procedural Adaptor Object and Key

The procedural adaptor object inherits from com.ibm.ivj.eab.paa.EntityProceduralAdapterObject, which
serves as a base implementation for all procedural adaptor objects. As a subclass of
EntityProceduralAdapterObject, the procedural adaptor object contains the CRUD methods (create (or
insert), retrieve, update, and delete). However, these methods are all empty-bodied. You must define their
implementation for your procedural adaptor object.

The attributes defined in the PhoneBookEntry interface are essential. Thus, the procedural adaptor object,
as the adaptor that connects the Component Broker data object to the backend system, should contain the
properties that correspond to these attributes.

1. From the VisualAge for Java desktop under the IBM Component Broker PAA Samples for IMS project,
select paa.mysample.ims.appc.pbe .

2. Open the pop-up menu for paa.mysample.ims.appc.pbe , and select Add → Class .

3. In this dialog:

a. In the Class name field, type APhoneBookPAO.
b. Click Browse to select the Superclass:

1) Browse for and select EntityProceduralAdapterObject as your Superclass.
2) Click OK to close the dialog.

 4. Click Finish .

Add the properties for the APhoneBookPAO interface:

1. Select the APhoneBookPAO interface.

2. Fron the pop-up menu for APhoneBookPAO , select Open , to open the Object Editor notebook.

3. In this notebook:

a. Select the BeanInfo tab.

b. From the menu bar, select Feature → New Property Feature , to open the New Property Feature
wizard.

c. In this window, type the name of the new property in the Property name field. For simplicity, use
the same name as used in the PhoneBookRec interface. For example, use:

LastName

firstName

extNumber

internalZip

for the properties as defined in the pbe.cpp file. Each of these properties must be defined
individually. For this step (first time) type Lastname. For each subsequent time, type firstName,
extNumber, internalZip, respectively.

 Chapter 9. Developing an IMS-APPC Application 183

1) For all properties, select java.lang.String from the pull-down menu of the Property type field.
2) Accept the other defaults and click Next .

 3) Click Finish .

Define the other properties (Features → New Property Feature)

4. Close the Object Editor Notebook.

Now the Key for this PAO object must be created:

1. From the VisualAge for Java desktop under the IBM Component Broker PAA Samples for IMS project,
select paa.mysample.ims.appc.pbe .

2. Froom the pop-up menu for paa.mysample.ims.appc.pbe ,s select Add → Class .

3. In this dialog:

a. In the Class name field, type APhoneBookPAOKey.
b. Click Browse to select the Superclass:

1) Browse for and select BusinessObjectKey as your Superclass.
2) Click OK to close the dialog.

 c. Click Finish .

Add the properties for the APhoneBookPAOKey interface:

1. Select the APhoneBookPAOKey interface.
2. From the pop-up menu for APhoneBookPAOKey , select Open , to open the Object Editor notebook.
3. In this notebook:

a. Select the BeanInfo tab.

b. From the menu bar, select Features → New Property Feature , to open the New Property
Feature wizard.

c. In this window:

1) In the Property name field, type the name of the new property. For example, use:

LastName

for the property that is going to be the key attribute. You can select java.lang.String for the
type of the property.

2) Accept the other defaults and click Next .

 3) Click Finish .

d. Close the object editor notebook.

Modify the APhoneBookPAOKey and APhoneBookPAO to tie the PAO and key class together.

 APhoneBookPAOKey
1. Select and expand the APhoneBookPAOKey class.

2. Highlight the getPropertyValues() method. This method is used by the Enterprise Access Builder
(EAB) run time to calculate a value to key into the EAB cache. It needs to be modified to specifically
return just the key values.

3. In the source pane, return an array of Objects that make up the key, by invoking the methods that get
the key properties. For example:

return new Object[] { this.getLastName() };

4. Save the changes to the modified PAO Key class by pressing Ctrl+S .

184 CICS and IMS Application Adaptor

 APhoneBookPAO
1. Select and expand the APhoneBookPAO class.

2. Modify the getter for the key property value getLastName() by getting the key class associated with
this PAO and returning that value. For example:

APhoneBookPAOKey key = (APhoneBookPAOKey) this.getKey();

 return key.getLastName();

3. Save the changes to the modifed PAO by pressing Ctrl+S .

Importing the PhoneBook COBOL File

In order to import the PhoneBook COBOL file, you must first create both the Input and Output Information
Classes. These two procedures follow.

Creating the Input Information Class

Complete the following steps to create the Input Information Class.

1. Select the paa.mysamples.ims.appc.pbe package that you have created.

2. From the pop-up menu for the package you are working under, select Tools → Records → Create
Cobol Record Type , and a wizard window appears.

3. In this window:

a. In the Class Name field , type APhoneBookInfoInput.

b. In the COBOL File field, browse through the files to locate the pbe.ccp file. It should be located in
one of the following directories:

WIN CBroker\samples\InstallVerification\PAA\Backend\IMSAPPC\ and select Open .

AIX $HOME/samples/InstallVerification/PAA/Backend/IMSAPPC/ and select Open .

c. Check that the Project and Package names are correct.

d. Click Next to continue to the next screen.

4. On the next screen:

a. In the list of Available level 01 commareas, select INPUT-MSG and click > to move it to the
Selected commareas list.

b. Deselect the box beside the RecordType intended for CICS field.

c. Click Finish when this is complete. A new class named APhoneBookInfoInput appears in the
designated package.

5. Select the APhoneBookInfoInput class

6. From the pop-up menu for the APhoneBookInfoInput class, select Tools → Records → Generate
Records , and the Generate Records wizard appears.

7. In this window:

a. In the Class Name field type APhoneBookRecordInput
b. Select Beans to generate the records as beans.
c. Select Direct to access the record fields directly.
d. Select Dynamic Records to generate the records as dynamic records.
e. Check that the Project and Package names are correct and click Next .

8. In the next window:

 Chapter 9. Developing an IMS-APPC Application 185

a. Change the following to the correct values for the server.

� Endian - littleEndian
� Remote Integer Endian - bigEndian
� Code Page - 037
� Machine Type - MVS

(For example, the code page for North American MVS is 037 and for North American Windows NT
it is 437).

WIN If you are going to a Transaction Server on Windows NT, you will have to change all of the
values . Also remember to change your endianness to littleEndian if you are running this from
Windows NT.

b. Click Finish when this is complete. Three new classes appear in your package:

 � APhoneBookRecordInput
 � APhoneBookRecordInputBeanInfo
 � APhoneBookRecordInputType

Creating the Output Information Class

Complete the following steps to create the Output Information Class.

1. Select the paa.mysamples.ims.appc.pbe package that you have created.

2. Froom the pop-up menu for the package you are working under, select Tools → Records → Create
Cobol Record Type , and a wizard window appears.

3. In this window:

a. In the Class Name field type APhoneBookInfoOutput.

b. In the COBOL File field, browse through the files to locate the pbe.ccp file. It should be located in
one of the following:

WIN CBroker\samples\InstallVerification\PAA\Backend\IMSAPPC\ and select Open .

AIX $HOME/samples/InstallVerification/PAA/Backend/IMSAPPC/ and select Open .

c. Check that the Project and Package names are correct.

d. Click Next to continue to the next screen.

4. On the next screen:

a. In the list of Available level 01 commareas, select OUTPUT-AREA and click > to move it to the
Selected commareas list.

b. Deselect the box beside the RecordType intended for CICS field.

c. Click Finish when this is complete. A new class named APhoneBookInfoOutput appears in the
designated package.

5. Select the APhoneBookInfoOutput class

6. From the pop-up menu for the APhoneBookInfoOutput class, select Tools → Records → Generate
Records , and the Generate Records wizard appears.

7. In this window:

a. In the Class Name field type APhoneBookRecordOutput
b. Select the Beans radio button to generate the records as beans.
c. Select the Direct radio button to access the record fields directly.
d. Select the Dynamic Records radio button to generate the records as dynamic records.

186 CICS and IMS Application Adaptor

e. Check that the Project and Package names are correct and click Next .

8. In the next window:

a. Change the following to the correct values for the server.

� Endian - littleEndian
� Remote Integer Endian - bigEndian
� Code Page - 037
� Machine Type - MVS

(The code page for North American MVS is 037 and for North American Windows NT it is 437).

WIN You will have to change all of the values if you are going to a Transaction Server on
Windows NT. Also remember to change your endianness to littleEndian (if you are running this
from Windows NT).

b. Click Finish when this is complete. Three new classes appear in your package:

 � APhoneBookRecordOutput
 � APhoneBookRecordOutputBeanInfo
 � APhoneBookRecordOutputType

Creating the Record Mapper

Creating the Input Mapper Class

1. Select the sample package again that you have created and expand it.

2. Select class APhoneBookRecordInput.

3. From the pop-up menu for the APhoneBookRecordInput class, select Tools → Mapper Editor , a
Mapper wizard appears.

4. In this window:

a. From the Code Generation pulldown, select Set Target mapper. A window containing three fields
appears.

b. In this window:

1) Type the project and package name of this sample in the first two fields.
2) In the Class field type APhoneBookRecordInputMapper.
3) Click OK when this is complete.

5. From the Code Generation pulldown, select Change Input bean . A window containing one field
appears.

6. In this window:

a. Select Browse , and then type APhoneBookRecordInput to select the class (corresponding to the
sample package) and click OK.

b. Click OK once more to select the Input Bean class. The following message displays:

All of your connections will be lost. Do you want to proceed?

Note: This message displays because you are specifying a new input record buffer to map
to/from.

c. Click Yes. You will see a list of fields available from APhoneBookRecordInput.

7. Click Add located at the bottom left of the wizard window and type APhoneBookPAO in the Pattern field.

8. Select the APhoneBookPAO class corresponding to the package you are currently using.

 Chapter 9. Developing an IMS-APPC Application 187

9. Click OK when this is complete. You will now see a directory named java.lang.Object in the Output
Beans side of the window.

10. Expand this directory until the first instance of APhoneBookPAO is visible (should be able to see
extNumber, firstName, lastname, etc.)

11. Select the extNumber field of the APhoneBookPAO object. Move the cursor to the right-hand side of
the window and select IN__EXTENSION. At the bottom of the window, click ↔ to connect the two
fields.

Note: The APhoneBookPAO extNumber field should be connected to IN__EXTENSION on the
input side.

12. Repeat the previous step to form connections between the rest of the APhoneBookPAO fields
starting with IN.

13. Click Apply and OK when this is complete. A new class called APhoneBookRecordInputMapper
appears in the current package.

Creating the Output Mapper Class

1. Select the sample package again that you have created and expand it.

2. Select class APhoneBookRecordOutput.

3. From the pop-up menu for the APhoneBookRecordOutput class, select Tools → Mapper Editor ,
and a Mapper wizard appears.

4. In this window:

a. From the Code Generation pulldown, select Set Target mapper. A window containing three fields
appears.

b. In this window:

1) Type the project and package name of this sample in the first two fields.
2) In the Class field, type APhoneBookRecordOutputMapper.
3) Click OK when this is complete.

5. From the Code Generation pulldown, select Change Input bean . A window containing one field
appears.

6. In this window:

a. Select Browse. Type APhoneBookRecordOutput to select the class (corresponding to the sample
package) and click OK.

b. Click OK once more to select the Input Bean class. The following message displays:

 All of your connections will be lost. Do you want to proceed?

Click Yes.

c. You will see a list of fields available from APhoneBookRecordOutput.

7. Click the Add button located at the bottom left of the wizard window and type APhoneBookPAO in the
Pattern field.

8. Select the APhoneBookPAO class corresponding to the package you are currently using.

9. Click OK when this is complete. There is now a directory named java.lang.Object in the Output
Beans side of the window.

10. Expand this directory until the first instance of APhoneBookPAO is visible (you should be able to see
extNumber, firstName, lastname, etc.).

188 CICS and IMS Application Adaptor

11. Select the extNumber field of the APhoneBookPAO object. Move the cursor to the right hand side of
the window and select OUT__EXTENSION. At the bottom of the window, click ↔ to connect the two
fields.

Note: The APhoneBookPAO extNumber field should be connected to OUT__EXTENSION on the
input side.

12. Repeat the previous step to form connections between the rest of the APhoneBookPAO fields
starting with IN.

13. Click Apply and OK when this is complete. A new class called APhoneBookRecordOutputMapper
appears in the current package.

Creating the Command Classes

Complete the steps in the following two procedures to create the command classes:

 � Input command
 � Output command

 Input Command

Complete the steps in the following procedure to create the input command for the command classes.

1. Select the paa.mysamplesims.appc.pbe. package that you have been working in.

2. From the pop-up menu of the package, select Add → Class and a wizard window appears.

3. In this window:

a. Type the project and package names of the sample application into their corresponding fields.

b. Select the Create a new class radio button and type APhoneBookCommandInput for the Class
name.

c. To select the Superclass, click Browse and select CommunicationCommand from the list.

 d. Click OK.

e. Ensure that the Compose the class visually radio button is NOT selected and click Finish .

4. Select the APhoneBookCommandInput class

5. From the pop-up menu for the class, select Open To → BeanInfo.

6. In this Dialog:

a. Select Features → Generate BeanInfo class. This generates a new BeanInfo class for your
command class.

b. Select Features → Add Available Features .

1) In the Add Available Features dialog, select the following features that may appear:

 class
 communication
 connectionSpec
 disconnectCommunication
 expectedTriggerClass
 input
 interactionSpec
 mappedObjects
 mappingHelper

 Chapter 9. Developing an IMS-APPC Application 189

 output

 2) Click OK.

c. Close the Command Class window.

7. From the pop-up menu of the command class, select Tools → Command Editor and a new dialog is
displayed.

8. In this dialog:

a. Right click on the Communication task and select Add InteractionSpec . A window displays all
objects that inherit from InteractionSpec.

b. In this window:

 1) Select APPCInteractionSpec.

2) Click OK to close the window and an interactionSpec entitled ceInteractionSpec will be
added under the Communication Task .

c. Select ceInteractionSpec , right click on it and select Properties . A window is displayed that
allows you to change the bean properties.

d. In this window:

1) In the codepage field, type ð37 (the codepage for an MVS system).
2) In the intEndian field, type 1.
3) In the machineType field, type 2.
4) In the mode field, type ð.
5) In the otherEndian field, type ð.
6) Click OK to close the properties window.

e. Right click on the Input task and select Add IByteBuffer Bean . A window will display all beans in
VAJ. Select the RecordBean created earlier, APhoneBookRecordInput, and click OK.

f. Right click on ceInput and select Promote Bean Feature. Ensure that the Property radio button
is selected and move IN_LAST_NAME, IN_COMMAND from the left pane to the right pane by
highlighting the property and clicking the >> button.

g. Click OK to generate runtime code and the bean info class.

h. Right click on ceInput and select Add Mapper . A window displays all mapper beans in VisualAge
for Java. Select APhoneBookRecordInputMapper and click OK. A ceMapperCeInput object
should now be created under the ceInput object.

9. Right click on the Output task and select Add IByteBuffer Bean . A window displays all beans in
VisualAge for Java. Select the RecordBean created earlier, APhoneBookRecordOutput , and click
OK.

10. Right-click on ceOutput1 and select the Promote Bean Feature . A window is displayed.

11. Ensure that the Property radio button is selected and highlight OUT__MESSAGE and move it over.
(This is the key field).

12. Click OK.

 Output Command

Complete the steps in the following procedure to create the output command for the command classes.

1. Select the paa.mysamples.ims.appc.pbe package that you have been working in.

2. From the pop-up menu of the package, select Add > Class and a wizard window appears.

190 CICS and IMS Application Adaptor

3. In this window:

a. Type the project and package names of the sample application into their corresponding fields.

b. Select the Create a new class radio button and type APhoneBookCommandOutput for the Class
name.

c. To select the Superclass, click Browse and select CommunicationCommand from the list.

 d. Click OK.

e. Ensure that the Compose the class visually radio button is NOT selected and click Finish .

f. Select the APhoneBookCommandOutput class.

g. From the pop-up menu for the class, select Open To → BeanInfo .

h. In this Dialog:

1) Select Features → Generate BeanInfo class. This generates a new BeanInfo class for your
command class.

2) Select Features → Add Available Features .

a) In the Add Available Features dialog, select the following features that may appear:

 class
 communication
 connectionSpec
 disconnectCommunication
 expectedTriggerClass
 input
 interactionSpec
 mappedObjects
 mappingHelper
 output

 b) Click OK.

i. Close the Command Class window.

4. From the pop-up menu of the command class, select Tools →From Command Editor and a new
dialog is displayed.

5. In this dialog:

a. Right click on the Communication task and select Add InteractionSpec . A window displays all
objects that inherit from InteractionSpec.

b. In this window:

 1) Select APPCInteractionSpec.

2) Click OK and the window closes and an interactionSpec entitled ceInteractionSpec is added
under the Communication Task.

c. Select ceInteractionSpec , right click on it and select Properties. A window is displayed that
allows you to change the bean properties.

d. In this window:

1) In the codepage field, type ð37 (the codepage for an MVS system).
2) In the intEndian field, type 1.
3) In the machineType field, type 2.
4) In the mode field, type ð.
5) In the otherEndian field, type ð.

 Chapter 9. Developing an IMS-APPC Application 191

6) Click OK to close the properties window.

6. Right-click on the Input task and select Add IByteBuffer Bean . A window displays all beans in
VisualAge for Java. Select the RecordBean created earlier, APhoneBookRecordInput, and click OK.

7. Right-click on ceInput and select Promote Bean Feature. Ensure that the Property radio button is
selected and move IN_LAST_NAME, IN_COMMAND from the left pane to the right pane by
highlighting the property and clicking the >> button.

8. Click OK to generate run- time code and the bean info class.

9. Right-click on ceInput and select Add Mapper . A window displays all mapper beans in VisualAge for
Java. Select APhoneBookRecordInputMapper and click OK. A ceMapperCeInput object should now
be created under the ceInput object.

10. Right-click on the Output task and select Add IByteBuffer Bean . A window displays all beans in
VisualAge for Java. Select the RecordBean created earlier, APhoneBookRecordOutput , and click
OK.

11. Right-click on ceOutput1 and select the Promote Bean Feature . A window is displayed.

12. Ensure that the Property radio button is selected, then highlight OUT_MESSAGE and move it over.
This is the key field.

13. Click OK.

a. Right-click on ceOutput1 and select Add Mapper . A window displays all mapper beans in
VisualAge for Java. Select APhoneBookRecordOutputMapper and click OK. A
ceMapperCeOutput1 object should now be created under the ceInput object.

 b. Click OK.

Modifying the Procedural Adapter Object to call the Commands
1. Select the APhoneBookPAO class and expand it.

2. Highlight each of the CRUD methods (insert, retrieve, update, and delete).

3. For each method, add in the necessary code to set up and call each Command Object. For the
insert() method, the code should look like:

public void insert() throws com.ibm.ipaa.IDataKeyAlreadyExistsException {

APhoneBookCommandOutput pbc = new APhoneBookCommandOutput();

 pbc.setConnectionSpec(this.getConnectionSpec());

 pbc.setCeInputIN__COMMAND("ADD");

 pbc.setCeInputIN__LAST__NAME(this.getLastName());

 pbc.execute();

String msg = (String) pbc.getCeOutput1OUT__MESSAGE();

if (!msg.trim().equals("ENTRY WAS ADDED"))

throw new com.ibm.ipaa.IDataKeyAlreadyExistsException();

}

For the retrieve() method, the code should look like the following:

public void retrieve() throws com.ibm.ipaa.IDataKeyNotFoundException {

APhoneBookCommandOutput pbc = new APhoneBookCommandOutput();

 pbc.setConnectionSpec(this.getConnectionSpec());

 pbc.setCeInputIN__COMMAND("DISPLAY");

 pbc.setCeInputIN__LAST__NAME(this.getLastName());

 pbc.execute();

String msg = (String) pbc.getCeOutput1OUT__MESSAGE();

192 CICS and IMS Application Adaptor

if (!msg.trim().equals("ENTRY WAS DISPLAYED"))

throw new com.ibm.ipaa.IDataKeyNotFoundException();

}

For the update() method, the code should look like the following:

public void update() throws com.ibm.ipaa.IDataKeyNotFoundException {

APhoneBookCommandOutput pbc = new APhoneBookCommandOutput();

 pbc.setConnectionSpec(this.getConnectionSpec());

 pbc.setCeInputIN__COMMAND("UPDATE");

 pbc.setCeInputIN__LAST__NAME(this.getLastName());

 pbc.execute();

String msg = (String) pbc.getCeOutput1OUT__MESSAGE();

if (!msg.trim().equals("ENTRY WAS UPDATED"))

throw new com.ibm.ipaa.IDataKeyNotFoundException();

}

For the del() method, the code should look like the following:

public void del() throws com.ibm.ipaa.IDataKeyNotFoundException {

APhoneBookCommandOutput pbc = new APhoneBookCommandOutput();

 pbc.setConnectionSpec(this.getConnectionSpec());

 pbc.setCeInputIN__COMMAND("DELETE");

 pbc.setCeInputIN__LAST__NAME(this.getLastName());

 pbc.execute();

String msg = (String) pbc.getCeOutput1OUT__MESSAGE();

if (!msg.trim().equals("ENTRY WAS DELETED"))

throw new com.ibm.ipaa.IDataKeyNotFoundException();

}

Exporting the pbe Package

After building the Execute class and creating and testing the Component Broker procedural adaptor object
within the VisualAge for Java environment, you can run the unit test program outside of the VisualAge for
Java environment. This object must be imported to Object Builder as a persistent object. Importing this
object requires that the procedural adaptor object and its corresponding BeanInfo class is exported outside
of VisualAge for Java. To run the sample outside of the VisualAge for Java environment, you must export
all classes you created and modify the CLASSPATH environment variable.

For ease, export the entire package. This package should contain the following:

� The new procedural adapter object
� Its corresponding BeanInfo class
� All EAB transaction objects

To export the package outside of VisualAge for Java:

1. Select the paa.mysamples.ims.appc.pbe package to export.

2. From the VisualAge for Java Workbench menu, select File → Export . Select the Directory radio
button and click Next .

3. This opens the Type of Export wizard. Select ONLY the .class check box.

 Chapter 9. Developing an IMS-APPC Application 193

 Important Information

If you export both .class and .java files, you will get an error when compiling the artifacts produced
by Object Builder.

4. Type one of the following in the Directory field:

WIN x:\MyProj

AIX $HOME/MyProj

 5. Click Finish .

When the export completes, the paa.mysamples.ims.appc.pbe package is created under the MyProj
directory.

Note: There is a process available to verify that the package you exported can run outside of VisualAge
for Java. For the latest information on this process, contact your IBM representative.

Developing an IMS-APPC Business Object

This section contains Object Builder and System Management procedures required to create a component
named “PhoneBookRec.” To create this component, perform the procedures in the following sections.

1. “Importing the Bean” on page 195
2. “Defining the PhoneBookRec Component” on page 195
3. “Creating Client and Server DLL Files” on page 199
4. “Packaging the Application” on page 200
5. “Building the Application - Client and Server” on page 202
6. “Installing the Application” on page 203
7. “Running the Sample Application” on page 205

Before starting Object Builder, complete one of the following procedures:

WIN

1. Ensure that your classpath includes the x:\Myproj directory.

2. Specify x:\MyProj as the base directory for the project.

3. The procedures contained in this section assume that you have correctly set your classpath to include
x:\MyProj before starting Object Builder and that you have started Object Builder.

 4. Click Finish .

AIX

1. Ensure that your classpath includes the $HOME/Myproj directory.

2. Specify $HOME/MyProj as the base directory for the project.

3. The procedures contained in this section assume that you have correctly set your classpath to include
$HOME/MyProj before starting Object Builder and that you have started Object Builder.

 4. Click Finish .

194 CICS and IMS Application Adaptor

Importing the Bean

WIN For Windows NT, the bean to import is PBBean from the paa.mysamples.ims.appc.pbe package for
the x:\MyProj directory.

AIX For AIX, the bean to import is PBBean from the paa.mysamples.ims.appc.pbe package for the
$HOME/MyProj directory.

To import this bean:

1. Select the User-Defined PA Schemas folder from the Object Builder Tasks and Objects pane.

2. From the pop-up menu for User-Defined PA Schemas , select Import Bean to open the Import
Procedural Adaptor Bean wizard.

3. On this page:

a. Type paa.mysamples.ims.appc.pbe.APhoneBookPAO in the Class Name field.
b. Click Next to accept the remaining defaults and to continue to the Names and Services page.

4. On this page:

a. Select LU6.2 for the Connector Type.
b. Click Next to accept the defaults and to continue.

5. On this page:

a. Select the lastName property from the Properties list box.
b. Click >> to move the associated key required to import the bean.

 6. Click Finish .

The bean is imported into Object Builder. The PBBean schema and its corresponding persistent object
(PBBeanPO) are now in the tree view of User-Defined PA Schemas.

Defining the PhoneBookRec Component

This exercise defines the objects required to create a component named PhoneBookRec. For this
component, you will:

1. Create a new business object file
2. Define the business object
3. Connect the data object implementation to the persistent object
4. Define the managed object
5. Generate the code

Creating the Business Object File

To create the PhoneBookRec business object file:

1. From the Tasks and Objects pane, select the User-Defined Business Objects folder.

2. From the pop-up menu for User-Defined Business Objects , select Add File to open the Business
Object File wizard to the Name and Attributes page.

3. On this page:

a. Type PhoneBookRec in the Name field.
b. Accept the other defaults.

 4. Click Finish .

 Chapter 9. Developing an IMS-APPC Application 195

The PhoneBookRec file is now under the User-Defined Business Objects folder.

Defining the Business Object

After creating the new business object file, the business object must be defined. A fully-configured
business object consists of the following:

� A business object interface
� An associated key
� An associated copy helper
� A business object implementation

Defining the Business Object Interface: To create the PhoneBookRec business object interface:

1. Expand the User-Defined Business Objects folder, and select PhoneBookRec .

2. From the pop-up menu for PhoneBookRec , select Add Interface to open the Business Object
Interface wizard to the Name and Attributes page.

3. On this page:

a. Type PhoneBookRec in the Name field.
b. Click Next to continue to the Constructs page.

4. Click Next to accept the defaults and to continue to the Interface Inheritance page.

5. Click Next to accept the defaults and to continue to the Attributes page.

6. Define the user-defined attributes.

a. Select Attributes from the tree view.
b. From the pop-up menu for Attributes, select Add to display the Add dialog.
c. In this dialog:

1) Type lastName in the Attribute Name field.
2) Select string as the Type . This displays the Size field.
3) Type ð in the Size field.
4) Click Add Another .

d. Repeat the previous step for the remaining attributes of the PhoneBookRec interface. The
remaining attributes are:
� firstName, and click Add Another .
� extNumber, and click Add Another .
� internalZip, and click Refresh .

 7. Click Finish .

The PhoneBookRec interface is now under the PhoneBookRec file.

Defining the Key: To add the key:

1. From the User-Defined Business Object folder, select the PhoneBookRec interface.
2. From the pop-up menu for PhoneBookRec , select Add Key to open the Key wizard.
3. Select the lastName attribute from the Business Object Attributes list.
4. Click >> to move this attribute to the Key Attributes list.

 5. Click Finish .

The PhoneBookRecKey key is now under the PhoneBookRec interface.

196 CICS and IMS Application Adaptor

Defining the Copy Helper: To add the Copy Helper:

1. From the User-Defined Business Object folder, select the PhoneBookRec interface.

2. From the pop-up menu for PhoneBookRec , select Add Copy Helper to open the Copy Helper
wizard.

3. Click All >> to move the attributes from the Business Object Attributes list to the Copy Helper
Attributes list.

 4. Click Finish .

The PhoneBookRecCopy copy helper is now under the PhoneBookRec interface.

Defining the Business Object Implementation: To add the business object implementation and data
object interface:

1. From the User-Defined Business Object folder, select the PhoneBookRec interface.

2. From the pop-up menu for PhoneBookRec, select Add Implementation to open the Business Object
Implementation wizard to the Name and Data Access Pattern page.

3. Define the implementation.

a. Select the Delegating radio button from the Pattern for Handling State Data group box.

b. Ensure that the Create a new one now radio button is selected from the Data Object Interface
group box. This option allows you to define the business object attributes that need to be
preserved in the data object.

c. Click Next to continue to the Implementation Inheritance page.

4. Click Next to accept the defaults and to continue to the Implementation Language page.

5. Click Next to accept the defaults and to continue to the Attributes page.

6. Click Next to accept the defaults and to continue to the Methods page.

7. Click Next to accept the defaults and to continue to the Key and Copy Helper page.

8. On this page:

a. Verify that PhoneBookRecKey is selected from the Key list.
b. Verify that PhoneBookRecCopy is selected from the Copy Helper list.
c. Click Next to continue to the Handle Selection page.

9. Click Next to accept the defaults and to continue to the Attributes to Override page.

10. Click Next to accept the defaults and to continue to the Methods to Override page.

11. Click Next to accept the defaults and to continue to the Data Object Interface page.

12. Click All >> to move the attributes in the Business Object Attributes list to the State Data list.

13. Click Finish .

The PhoneBookRecBO business object implementation is now under the PhoneBookRec interface, and
the PhoneBookRecDO data object interface is now under the PhoneBookRecBO business object
implementation.

 Chapter 9. Developing an IMS-APPC Application 197

Connecting the Data Object Implementation to the Persistent Object

To create the data object implementation and to connect the data object implementation to the persistent
object, perform the following procedure.

1. From the User-Defined Business Object folder, select the PhoneBookRecDO data object interface.

2. From the pop-up menu for PhoneBookRecDO, select Add Implementation to display the Data Object
Implementation wizard Name and Platform Page.

3. Deselect 390 in the Select deployment platform group box.

4. Click Next to accept the defaults and to continue to the Behavior page.

5. On this page:

a. Set the BOIM with any key radio button from the Environment group box to indicate that the
data object is part of a component installed in a business object application adaptor with instances
being located by key objects.

b. Set the Procedural Adaptors radio button from the Form of Persistent Behavior and
Implementation group box.

c. Click Next to continue to the Implementation Inheritance page.

6. On this page:

a. Verify that IPAAExtLocalToServer IPAAExtLocalToServer is selected as a parent.
b. Click Next to continue to the Attributes page.

7. Click Next to accept the defaults and to continue to the Methods page.

8. Click Next to accept the defaults and to continue to the Key and Copy Helper page.

9. Click Next to accept the defaults and to continue to the Associated Persistent Objects page.

10. On this page:

a. Select Persistent Object Instances .
b. From the pop-up menu for Persistent Object Instances , select Add .
c. Type APhoneBookPAOPO in the Instance Name field.

 d. Click Next .

11. On this page:

a. Select lastName from the Attributes list.
b. From the pop-up menu for lastName , select Primitive .
c. Select APhoneBookPAOPO.lastName from the Persistent Object Attribute list.
d. Add 1-to-1 mappings for the other attributes under the Attributes tree view as you just did for

lastName.
 e. Click Next .

12. On this page:

a. Select insert from the Special Framework Methods list.

b. From the pop-up menu for insert, select Add Mapping .

c. Select APhoneBookPAOPO.insert from the Persistent Object Method list.

d. Add 1-to-1 mappings for the other methods under the Special Framework Methods tree view as
you just did for insert. In addition, add a mapping for the setConnectin() method.

13. Click Finish .

198 CICS and IMS Application Adaptor

The PhoneBookRecDOImpl data object implementation is now under the PhoneBookRecDO interface, and
the APhoneBookPAOPO persistent object is now under the PhoneBookRecDOImpl data object
implementation.

Defining the Managed Object

To add the managed object:

1. From the User-Defined Business Object folder, select the PhoneBookRecBO business object
implementation.

2. From the pop-up menu for PhoneBookRecBO , select Add Managed Object to open the Managed
Object wizard to the Name and Application Adaptor page.

3. Set the Transaction Service radio button under Service to Use .

4. Deselect the 390 checkbox.

5. Click Next to accept the defaults and continue to the Implementation Inheritance page.

 6. Click Finish .

Generating the Code

To generate the application code:

1. From the User-Defined Business Object folder, select PhoneBookRec .
2. From the pop-up menu for PhoneBookRec, select Generate → All .

Code generation starts. Progress is indicated in the lower-left corner of the window.

Creating Client and Server DLL Files

The defined objects must be built into two separate DLL files;

� One that runs on the client and provides access to the business object interface, key and copy helper.
� One that runs on the server and provides access to the managed object and the rest of the

component.

The client DLL file must be defined before the server DLL file. When the server DLL file is defined, it must
link to the client DLL file. After defining the objects that comprise each DLL file, these files can be built.

Defining the Client DLL File

To add the client DLL file:

1. Select the Build Configuration folder.

2. From the pop-up menu for Build Configuration, select Add client DLL to display the Name and Option
page of the Add Client DLL wizard.

3. Type apbcC in the Name field. Deselect 390.

4. Click Next to continue to the Client Source Files page.

5. Click All >> to move the client source files to the Items chosen list.

 6. Click Finish .

The apbcC client DLL file is now under the Build Configuration folder.

 Chapter 9. Developing an IMS-APPC Application 199

Defining the Server DLL File

To add the server DLL:

1. Select the Build Configuration folder.

2. From the pop-up menu for Build Configuration , select Add Server DLL to display the Name and
Option page of the Server DLL wizard.

3. Type apbcS in the Name field.

 4. Deselect 390.

5. Click Next to continue to the Server Source Files page.

6. Click All >> to move the server source files to the Items chosen list.

7. Click Next to continue to the Libraries to Link With page.

8. Click All >> to move all the files from the Items Available list to the Items chosen list.

 9. Click Finish .

The apbcS server DLL file is now under the Build Configuration folder.

Building the DLL Files

To generate the makefiles to build the configuration:

1. Select the Build Configuration folder.
2. From the pop-up menu for Build Configuration, select Generate → All → All Targets .

The code generation begins.

Packaging the Application

Packaging the application consists of the following procedures:

1. Creating the application family
2. Defining the application
3. Creating the container instance
4. Configuring the managed object
5. Generating the application

Creating the Application Family

To add the application family:

1. Select the Application Configuration folder.

2. From the pop-up menu for Application Configuration , select Add Application Family to display the
Name page of the Application Family wizard.

3. Type apbcAppFam in the Name field.

 4. Click Finish .

The apbcAppFam application family is now under the Application Configuration folder.

200 CICS and IMS Application Adaptor

Defining the Application

To add the Application:

1. Select the apbcAppFam application family.

2. From the pop-up menu for apbcAppFam , select Add Application to open the Add Application wizard
to the Name and Environment page.

3. Type apbcApp in the Application Name field.

 4. Click Finish .

The apbcApp application is now under the apbcAppFam application family.

Creating the Container Instance

To add the new container instance:

1. Select the Container Definition folder.

2. From the pop-up menu for Container Definition, select Add Container Instance to open the Container
wizard.

3. Type apbcContainer in the Name field.

 4. Deselect 390.

5. Click Next to continue to the Work Load Manager Container page.

6. Click Next to continue to the Policies and Services page.

7. On this page:

a. Set the Use PAA Transaction Services radio button.
b. Click Next to continue to the Services page.

8. On this page:

a. Set the Throw an exception and abandon the call radio button under Behavior for Methods
Called Outside a Session .

b. Type IMS_pbc_Connection in the Connection Name field.

c. Click Next to continue to the Data Access Patterns page.

9. On this page, ensure that the Delegating check box is set under both Business Object and Data
Object blocks.

10. Click Finish .

The apbcContainer container is now under the Container Definition folder.

Configuring the Managed Object

To add the managed object for the Application:

1. Select the apbcApp application.

2. From the pop-up menu for apbcApp , select Add Managed Object to open the Configure Manage
Object wizard.

3. In this window:

a. Verify that PhoneBookRecMO PhoneBookRecMO is in the Managed Object field.
b. Click Next to continue to the Data Object Implementations page.

 Chapter 9. Developing an IMS-APPC Application 201

4. On this page:

 a. Select Implementation .
b. From the pop-up menu for Implementation , select Add .
c. Select PhoneBookRecDOImpl PhoneBookRecDOImpl from the Data Object Implementation list.
d. Click Next to continue to the Container page.

5. Click Next to continue to the Home page.

6. On this page, select BOIMHomeOfRegHomes from the Home Name list.

7. On this page, select the Default Home radio button under Default Home.

 8. Click Finish .

The PhoneBookRecMO managed object is now under the Application Configuration folder.

Generating the Applications

To generate the application family:

1. Select the apbcAppFam application.
2. From the pop-up menu for apbcApp , select Generate .

Note: If you do not have InstallShield installed on your system, click Yes when the dialog concerning
InstallShield is displayed. When code generation completes, the Method Implementation pane
contains the apbcApp.ddl file. You can now close Object Builder.

Building the Application - Client and Server

Perform one of the following procedures:

WIN All imported and generated files are placed in the x:\MyProj\Working\NT directory (where x:\MyProj

is the working directory when Object Builder was started).

1. Change directory to:

 x:\MyProj\Working\NT

 2. Type:

nmake -f all.mak cpp java

AIX All imported and generated files are placed in the $HOME/MyProj/Working/AIX directory (where
$HOME/MyProj is the working directory when Object Builder was started).

1. Change directory to:

 $HOME/MyProj/Working/AIX

 2. Type:

make -f all.mak cpp java

Everything in the sample application is built.

202 CICS and IMS Application Adaptor

Installing the Application

Installing an application consists of:

1. Loading the application
2. Configuring the application

These procedures assume that you are currently logged on to DCE, and that you are currently using the
System Manager User Interface. If not, logon to DCE and start the System Manager User Interface.

Loading the Application onto System Management

To install the pbc server application:

1. Start the System Manager User Interface if it is not already started.

2. Become an Expert user (View → User Level → Expert).

3. Expand Host Images, and select your host name.

4. From the pop-menu, select Load Application to open the Load Application dialog. Do one of the
following:

WIN For Windows NT, browse for and select apbcAppFam.ddl
(x:\MyProj\Working\NT\apbcAppFam\apbcAppFam.ddl).

AIX For AIX, browse for and select apbcAppFam.ddl
($HOME/MyProj/Working/AIX/apbcAppFam/apbcAppFam.ddl).

Note: A warning may be displayed about iCachedWLMSystemManagedObjects while the DDL is loading.
You can ignore this warning.

Configuring the Application with System Management

Configuring the apbcApp application:

1. Expand Available Applications, and select apbcApp .

2. Open the pop-up menu for apbcApp , and select Drag .

3. Expand Management Zones → Sample Cell and Work Group Zone → Configurations, and select
Sample Configuration .

4. From the pop-up menu for Sample Configuration, select Add Application .

5. Define the server:

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations, and select
Sample Configuration .

b. From the pop-up menu of Sample Configuration , select New → Server (free standing) to
display a new dialog box.

c. Type apbcSrv as the name for the server group.

d. Click OK. The apbcSrv is now under Server (free standing).

6. Associate the application with the server.

a. Expand Management Zones → Sample Cell and Work Group Zone →Configurations → Sample
Configuration → Applications, and select apbcApp .

b. From the pop-up menu of apbcApp , select Drag .

 Chapter 9. Developing an IMS-APPC Application 203

c. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Sample
Configuration → Server (free standing), and select apbcSrv .

d. From the pop-up menu of apbcSrv , select Configure Application .

7. Associate the iPAAServices with the server.

a. Expand Management Zones →Sample Cell and Work Group Zone → Configurations →
Applications, and select iPAAServices .

Note: If iPAAServices is not found in the Applications branch, you can add it by performing the
following steps:

1) Expand Host Images → myhost → Application Family Installs → iPAAApplications →
Application Installs, and select iPAAServices .

2) From the pop-up menu for IPAAServices , select Drag .

3) Expand Management Zones → Sample Cell and Work Group Zone → Configurations, and
select Sample Configuration .

4) From the pop-up menu for Sample Configuration , select Add Application .

b. From the pop-up menu for IPAAServices, select Drag .

c. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Sample
Configuration → Server (free standing), and select apbcSrv .

d. From the pop-up menu for apbcSrv , select Configure Application .

8. Configure the server with the host.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Server
(free standing), and select apbcSrv .

b. From the pop-up menu for apbcSrv , select Drag .

c. Expand Hosts, and select your server.

d. From the pop-up menu for your server, select Configure Server (free standing) .

9. Configure the APPC connection:

a. On the System Management GUI main window, expand Management Zones → Sample Cell and
Work Group Zone → Configurations → Sample Configuration → and select APPC Connections .

b. Right-click on IMS_pbe_Connection.

c. In the pop-up menu, click Edit . A new dialog opens.

d. Click the Main tab.

e. In this window:

1) Type your fully-qualified local LU name in the Fully-qualified Local LU name field. This is not
your CP name, but an LU name under your node Control Point. You can obtain this from your
network administrator.

2) Type your fully-qualified partner LU name in the Fully-qualified Partner LU name field (IBM
internal users can type USIBMSTY.STY7IM16).

3) For the Mode Name , type L62MDEð1.

4) For the Remote Procedure Type , click IMS.

5) For the Transaction Program name (TPN) , type IVTNO.

6) For the Security mechanism , click IMS.

7) For the Transaction type, click Pessimistic .

204 CICS and IMS Application Adaptor

8) Accept all other remaining defaults.

10. Activate the configuration.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations, and select
Sample Configuration .

b. From the pop-up menu for Sample Configuration, select Activate to automatically start the
application server. Wait for a completion message in the Action Console window before
continuing.

Running the Sample Application

For IVP install instructions for IMS, see IMS/ESA Version 6 Install Volume 1. The entire book contains
information on installing and configuring the IVP sample. Chapter 11, entitled “Install/IVP Application,”
discusses the sample IMS application.

To run the sample client application, perform one of the following procedures:

WIN

1. Copy the pbcclient.mak and pbcclient.cpp from:

 x:\CBroker\samples\installVerification\Application\IMSAPPCCli

to:

 x:\MyProj\Working

2. Change directory to:

 x:\MyProj\Working

3. Edit the pbcclient.mak file. Replace pbcC.lib with apbcC.lib.

 4. Type:

nmake -f pbcclient.mak

 5. Type:

 pbcclient

AIX

1. Copy the pbcclient.mak and pbcclient.cpp from:

/usr/lpp/CBToolkit/samples/InstallVerification/Application/IMSAPPCCli

to:

 $HOME/MyProj/Working/AIX

2. Change directory to:

 $HOME/MyProj/Working/AIX

3. Edit the pbcclient.mak file. Replace pbcC.lib with apbcC.lib.

 4. Type:

make -f pbcclient.mak

 5. Type:

 pbcclient

 Chapter 9. Developing an IMS-APPC Application 205

206 CICS and IMS Application Adaptor

Chapter 10. Developing a CICS-APPC Application

This chapter provides information for building a sample Component Broker application with a CICS
backend. This chapter contains the following information:

� “The CICS-APPC Sample Application”
� “Enterprise Access Builder Procedures” on page 208
� “Developing a CICS-APPC Business Object” on page 218

Note: To walk through this sample, the following software and Component Broker software must be
installed on your system:

� The Component Broker samples
� The CICS and IMS Application Adaptor SDK
� IBM VisualAge Java with EAB

 Important Information

Before walking through this sample, please refer to the Late Breaking News provided with Component
Broker before performing the exercise in this chapter. This document provides the latest information
regarding the CICS and IMS application adaptor samples, which may differ from the instructions for
this sample application.

The CICS-APPC Sample Application

The CICS-APPC sample application is a mock account database consisting of the following fields:

 � Account Balance
 � Account Number
� The type of customer
� The type of account

 � Utilities

The ACashAcct interface will be implemented during this exercise. The data object implementation for this
business object will leverage a procedural adaptor object that in turn uses CICS through the APPC to
provide the state data back to the data object.

Although this sample application is not a full-blown CICS application, it captures the essence of an
application involving multiple APPC requests and delivering some amount of business function. This
sample application can be extended and customized to explore different CICS-APPC application issues.

WIN The sample that you build in this section is included with the product and can be built by following
the steps in the HTML file in:

CBroker\samples\InstallVerification\PAA\readme.htm

AIX The sample that you build in this section is included with the product and can be built by following
the steps in the HTML file in:

/usr/lpp/CBToolkit/samples/InstallVerification/PAA/readme.htm

 Copyright IBM Corp. 1998 207

Preparing the CICS System to Accept APPC Requests

If you are using Transaction Server as your CICS system, refer to the "CICS Intercommunication Guide"
and "CICS Interproduct Communication Guide" for details on how to configure a CICS system to
communicate with partner systems using APPC as a transport protocol. If you are using CICS/ESA 3.2.1
or later, refer to " " for details on how to configure a CICS system to communicate with partner systems
using APPC as a transport protocol.

Enterprise Access Builder Procedures

This exercise defines the classes required to create a Component Broker procedural adapter object (PAO)
named "ABeCashAcct". For this object, you will perform the following steps:

1. “Creating a Project/Package under VisualAge for Java” on page 209
2. “Creating the Procedural Adaptor Object and Key” on page 209
3. “Importing the Customer COBOL File” on page 211
4. “Creating the Record Mapper” on page 212
5. “Creating the ABeCashAcctCommand Class” on page 213
6. “Modifying the Procedural Adaptor Object to call the Commands” on page 216
7. “Exporting the ABeCashAcct Package” on page 217
8. “Running the Sample Application” on page 229

WIN If you are using VisualAge for Java on Windows 95 or Windows NT, from the Start menu, select
Programs → IBM VisualAge for Java for Windows → IBM VisualAge for Java .

AIX If you are using VisualAge for Java on AIX, type vajide on the command line and press Type .

If the VisualAge Quick Start dialog appears, select Go to the Workbench and click OK. The IDE appears.

From the Window pull down, select Options . Select Design Time and un-check Inherit BeanInfo of bean
superclass . Click OK.

 Important Information

Be sure that you have unchecked Inherit BeanInfo of bean superclass. If this is not unchecked, you
will receive an error message when you try to import into Object Builder.

Importing Pre-requisite Features into the Workspace

1. Select File → Quick Start .

2. Select Features in the left pane and Add Feature in the right pane.

 3. Click OK.

4. Select the following features:

� IBM Procedural Application Adapter 1.0
� CICS Connector 3.0
� IBM Component Broker Host On Demand 1.0
� IBM Component Broker Connectors 1.0
� IBM Enterprise Access Builder Library 2.0
� IBM Enterprise CICS Access Builder Library 1.0
� IBM Component Broker PAA Samples for CICS 1.0

208 CICS and IMS Application Adaptor

 5. Click OK.

You can ignore the following expected errors this introduces in the following packages:

 � com.ibm.ivj.communications
 � com.ibm.ivj.trace
 � com.ibm.eNetwork.ECL
 � com.ibm.eNetwork.ncod.services.RAS

Note: If you do not see all of these features listed, they have been previously installed. To confirm,
perform the following steps:

a. Select File → Quick Start .

b. Select Features → Delete Feature to see which features are already loaded then click
Cancel .

Creating a Project/Package under VisualAge for Java
1. Create the Component Broker Samples project, if it does not already exist:

a. Right-click on the VisualAge for Java desktop.

b. From the pop-up menu, select Add → Project .

c. Type CBSamples in the Project Name field, and press Type . The CBSamples project should be
under the VisualAge for Java list of projects.

2. From the list of projects, select CBSamples.

3. Open the pop-up menu of CBSamples , and select Add → Package. This creates a package for the
project.

4. Type paa.mysamples.cics.appc.acct for the new package, and click Finish .

Note: If you are using the default mouse configuration, right-click on the denoted item. You do not have
to select the item before opening its menu. You can select the item and open its menu with a
right-click.

Creating the Procedural Adaptor Object and Key

The procedural adaptor object inherits from com.ibm.ivj.eab.paa.EntityProceduralAdapterObject, which
serves as a base implementation for all procedural adaptor objects. As a subclass of
EntityProceduralAdapterObject, the procedural adaptor object contains the CRUD methods (create (or
insert), retrieve, update, and delete). However, these methods are all empty-bodied. You must define their
implementation for your procedural adaptor object.

The attributes defined in the ABeCashAcct interface are essential. Thus, the procedural adaptor object, as
the adaptor that connects the Component Broker data object to the backend system, should contain the
properties that correspond to these attributes.

1. From the VisualAge for Java desktop under the CBSamples project, select
paa.mysamples.cics.appc.acct .

2. Open the pop-up menu for paa.mysamples.cics.appc.acct , and select Add → Class .

3. In this dialog:

a. Type ABeCashAcctPAO in the Class Name field.
b. Click Browse to select the Superclass.

1) Browse for and select EntityProceduralAdapterObject as your Superclass.
2) Click OK to close the dialog.

 Chapter 10. Developing a CICS-APPC Application 209

 4. Click Finish .

Add the properties for the ABeCashAcctPAO class.

1. Select the ABeCashAcctPAO class.

2. Open the pop-up menu for ABeCashAcctPAO , and select Open , which opens the Object Editor
notebook.

3. In this notebook:

a. Select the BeanInfo tab.

b. From the menu bar, select Features → New Property Feature , which opens the New Property
Feature wizard.

c. In this window:

1) Type the name of the new property in the Property name field. For simplicity, use the same
name as used in the ACashAcct interface. For example, use:

balance

res_type

account_ID

type

utilities

 for the properties as defined in the ABeCashac.ccp file. Each of these properties must be
defined individually. For this step (first time) type balance. For each subsequent time, type
res_type, account_ID, type or utilities, respectively.

d. For all properties except balance, select java.lang.String from the pull down menu of the
Property type field. For the balance property, select int (not int[]).

e. Accept the other defaults and click Finish .

4. Close the object editor.

Next, create the Key for the PAO object by completing the following steps:

1. From the VisualAge for Java desktop under the CBSamples project, select
paa.mysamples.cics.appc.acct .

2. Open the pop-up menu for paa.mysamples.cics.appc.acct , and select Add → Class .

3. In this dialog:

a. Type ABeCashAcctPAOKey in the Class Name field.
b. Click Browse to select the Superclass.

1) Browse for and select BusinessObjectKey as your Superclass.
2) Click OK to close the dialog.

 c. Click Finish .

Add the properties for the ABeCashAcctPAOKey class:

1. Select the ABeCashAcctPAOKey class.

2. Open the pop-up menu for ABeCashAcctPAOKey , and select Open , which opens the Object Editor
notebook.

3. In this notebook:

a. Select the BeanInfo tab.

b. From the menu bar, select Features → New Property Feature , which opens the New Property
Feature wizard.

210 CICS and IMS Application Adaptor

c. In this window:

1) Type the name of the new property in the Property name field. For example, use:

res_type

account_ID

for the properties that are going to be the key attributes. You can select java.lang.String for
the type of the two properties.

2) Accept the other defaults and click Next .

 3) Click Finish .

4) Close the object editor.

4. Modify the ABeCashAcctPAOKey and ABeCashAcctPAO to tie the PAO and key class together:

 ABeCashAcctPAOKey

1. Select and expand the ABeCashAcctPAOKey class.

2. Highlight the getPropertyValues() method. This method is used by the Enterprise Access Builder
(EAB) run time to calculate a value to key into the Enterprise Access Builder (EAB) cache. It needs to
be modified to specifically return just the key values.

3. In the source pane, return an array of Objects that make up the key, by invoking the methods that get
the key properties. For example:

return new Object[] { this.getRes_type(), this.getAccount_ID()};

4. Save the changes to the modified PAO Key class by pressing Ctrl+S .

 ABeCashAcctPAO

1. Select and expand the ABeCashAcctPAO class.

2. Modify the getters for the key property values (getRes_type() and getAccount_ID()) by getting the key
class associated with this PAO and returning that value.

In getAccount_ID()

ABeCashAcctPAOKey key = (ABeCashAcctPAOKey) this.getKey();

return key.getAccount_ID();

In getRes_type()

ABeCashAcctPAOKey key = (ABeCashAcctPAOKey) this.getKey();

return key.getRes_type();

3. Save the changes to the modified PAO by pressing Ctrl+S .

Importing the Customer COBOL File
1. Select the paa.mysamples.cics.appc.acct package that you have created

2. From the pop-up menu for the package you are working under, select Tools → Records → Create
Cobol Record Type , and a wizard window appears.

3. In this window:

a. In the Class Name field, type ABeCashAcctInfo.

b. In the COBOL File field, browse through the files to locate the BeCashAcct.ccp file. It should be
located in one of the following:

WIN CBroker\samples\InstallVerification\PAA\Backend\CashAcct\ and select Open .

 Chapter 10. Developing a CICS-APPC Application 211

AIX $HOME/samples/InstallVerification/PAA/Backend/ACashAcct and select Open .

c. Check that the Project and Package names are correct.

d. Select Next to continue to the next screen.

4. On the next screen:

a. In the list of Available level 01 commareas select WS-COMMAREA-BUFFER and click > to move
it to the Selected commareas list.

b. Check the box beside the RecordType intended for CICS field.

c. Click Finish when this is complete. A new class named ABeCashAcctInfo appears in the
designated package.

5. Select the ABeCashAcctInfo class.

6. From the pop-up menu for the ABeCashAcctInfo class, select Tools →Records → Generate
Records , and the Generate Records wizard appears.

7. In this window:

a. In the Class Name field type ABeCashAcctRecord.
b. Select the Beans radio button to generate the records as beans.
c. Select the Direct radio button to access the record fields directly.
d. Select the Dynamic Records radio button to generate the records as dynamic records.
e. Check that the Project and Package names are correct and click Next .

8. In the next window:

a. Change the values in the following fields to the correct values for the CICS server:

� Floating Point Format - IBM
� Endian - littleEndian
� Remote Integer Endian - littleEndian
� Code Page - 437
� Machine Type - NT

For example, the code page for North American MVS is 037 and for North American NT is 437.

WIN You must change all of the values if you are going to a Transaction Server on Windows NT.
Also remember to change your endianness to littleEndian because you are running this from
Windows NT.

b. Click Finish when all the preceding values have been changed. The following new classes
appear in your package:

 � ABeCashAcctRecord
 � ABeCashAcctRecordBeanInfo
 � ABeCashAcctRecordType

Creating the Record Mapper
1. Select the sample package again that you have created and expand it.

2. Select class ABeCashAcctRecord .

3. From the pop-up menu for the ABeCashAcctRecord class, select Tools → Mapper Editor , and a
Mapper wizard appears.

4. In this window

a. From the Code Generation pulldown, select Set Target mapper. A window containing three fields
appears.

212 CICS and IMS Application Adaptor

b. In this window:

1) Type the project and package name of this sample in the first two fields.
2) In the Class field, type ABeCashAcctRecordMapper.

 3) Click OK.

c. From the Code Generation pulldown, select Change Input bean . A window containing one field
appears.

d. In this window:

1) Click the Browse button beside the field and type ABeCashAcct in the Pattern field, a list of
matching classes appear.

2) Select the ABeCashAcctRecord class (corresponding to the sample package) and click OK.

3) Click OK again to select the Input Bean class. The following message displays:

All of your connections will be lost. Do you want to proceed?

Note: This message displays because you are specifying a new input record buffer to map
to/from.

 4) Click Yes.

5) You will now see a list of fields available from ABeCashAcctRecord .

e. Select the Add button located at the bottom left of the wizard window and type ABeCashAcct in
the Pattern field, a list of classes appears.

f. Select the ABeCashAcctPAO class corresponding to the package you are currently using.

g. Click OK when this is complete. There is now a directory named java.lang.Object in the Output
Beans side of the window.

h. Expand this directory until the first instance of ABeCashAcctPAO is visible (should be able to see
account_ID, res_type, balance , etc.)

i. Select the account_ID field of the ABeCashAcctPAO object. Move the cursor to the right-hand
side of the window and select COMM__ACCOUNTID. At the bottom of the window, click ↔ to
connect the two fields.

Note: The ABeCashAcctPAO account_ID field should be connected to COMM__ACCOUNTID
on the input side.

j. Repeat the previous step to form connections between the rest of the ABeCashAcctPAO fields.

k. Click Apply and OK when this is complete. A new class called ABeCashAcctRecordMapper
appears in the current package.

Creating the ABeCashAcctCommand Class
1. Select the package that you have been working in.

2. Open the pop-up menu of the package, and select Add → Class . A wizard appears.

3. In this window:

a. Type the project and package names of the sample application into their corresponding fields.

b. Select Create a new class and type ABeCashAcctCommand for the Class Name.

c. To select the Superclass, click Browse and select CommunicationCommand from the list.

 d. Click OK.

e. Ensure that the Compose the class visually radio button is NOT selected and click Finish .

 Chapter 10. Developing a CICS-APPC Application 213

4. Select the ABeCashAcctCommand class

5. From the pop-up menu for the class, select Open To → BeanInfo .

6. In this dialog:

a. Select Features → Generate BeanInfo class. This will generate a new BeanInfo class for your
command class.

b. Select Features → Add Available Features .

1) In the Add Available Features dialog, select the following features that may appear:

 � class
 � communication
 � connectionSpec
 � disconnectCommunication
 � expectedTriggerClass
 � input
 � interactionSpec
 � mappedObjects
 � mappingHelper
 � output

2) Click the OK button.

c. Close the command class.

7. Open up the pop-up menu of the command class, and select Tools → Command Editor . A new
dialog will be displayed.

8. In this dialog:

a. Right-mouse click on the Communication task and select Add ConnectionSpec. A window
displays all objects that inherit from ConnectionSpec.

b. In this window:

 1) Choose APPCConnectionSpec.

2) Click OK to close the window. A connectionSpec entitled ceConnectionSpec is displayed
under the Communication task.

c. Select ceConnectionSpec , right-mouse click on it and select Properties. A window displays that
allows you to change the bean properties.

d. In this window:

1) In the CICSProgramName field, type the name of the CICS program, BECASHAC.

2) In the LocalLUName field, type your local LU name. e.g., PAAð1ðð1

3) In the modeName field, type the mode name. e.g., LU62PS.

4) In the partnerLUName field, type the partner LU Name. e.g., USIBMZP.CICS4

5) In the remoteProcType field, type one of the following (the sample uses 2 for CICS_DTP):

0 for unknown

1 for IMS

2 for CICSDTP

3 for CICSDPL

6) In the securityType field, type one of the following (the sample uses ð for unknown):

214 CICS and IMS Application Adaptor

0 for unknown

1 for IMS

2 for CICS

7) In the transactionProgramName field, type BDTP. This is the transaction program used by the
APPC support. It should correspond to the remoteProcType above.

8) In the transactionType field, type one of the following (the sample uses 2 for optimistic)α

0 for unknown

1 for non-transactional

2 for optimistic

3 for pessimistic

9) Click OK to close the property window to save the changes.

e. Right-click on the Communication task and select Add InteractionSpec . A window displays all
objects that inherit from InteractionSpec.

f. In this window:

 1) Select APPCInteractionSpec.

2) Select OK and the window closes and an interactionSpec entitled ceInteractionSpec is added
under the Communication Task.

g. Select ceInteractionSpec , right-click on it and select Properties. A window is displayed that
allows you to change the bean properties.

h. In this window:

1) In the codepage field, type ð37 (the codepage for an MVS system).
2) In the intEndian field, type ð.
3) In the machineType field, type one of the following (the sample uses ð for MVS):

0 for MVS

1 for OS2

2 for NT

3 for AIX

4) In the mode field, type ð.
5) In the otherEndian field, type 1.
6) In the progName field, type BECASHAC.
7) Click OK to close the properties window.

Inbound Side of Command

1. Right-click on the Input task and select Add IByteBuffer Bean . A window displays all beans in
VisualAge for Java. Choose the RecordBean created earlier, ABeCashAcctRecord, and click OK.

2. Right-click on ceInput and select Promote Bean Feature. Ensure that the Property radio button is
selected and move COMM__RES__TYPE, COMM__ACCOUNTID and COMM__REQUEST__TYPE
from the left pane to the right pane by highlighting those properties and clicking the >> button.

3. Click OK to generate run time code and the bean info class.

4. Right-mouse click on ceInput and select Add Mapper . A window displays all mapper beans in
VisualAge for Java.

5. Select ABeCashAcctRecordMapper and select OK.

 Chapter 10. Developing a CICS-APPC Application 215

A ceMapperCeInput object should now be created under the ceInput object.

Outbound Side of Command

1. Right-click on the Output task and select Add IByteBuffer Bean . A window displays all beans in
VisualAge for Java. Select the RecordBean created earlier, ABeCashAcctRecord , and click OK.

2. Right-click on ceOutput1 and select the Promote Bean Feature . A window is displayed.

3. Ensure that the Property radio button is selected and highlight COMM__ACCOUNTID and move it
over. Do the same for COMM__RES__TYPE (These are the two key fields)

4. Click the Method radio button and move the key attribute getters over: getCOMM__ACCOUNTID()
and getCOMM__RES_TYPE(). Move getCOMM__RETURN__VALUE__1() over as well. Click OK
when finished.

5. Select ceOutput1 and Add Mapper.

6. Select ABeCashAcctRecordMapper and click OK. A ceMapperCeOutput1 object should now be
created under the ceOutput1 object.

 7. Click OK.

Modifying the Procedural Adaptor Object to call the Commands
1. Select the ABeCashAcctPAO class and expand it.

2. Highlight each of the CRUD methods (insert, retrieve, update, and del).

3. For each method, add in the necessary code to set up and call each Command Object. For the
insert() method, the code should look like:

public void insert() throws com.ibm.ipaa.IDataKeyAlreadyExistsException {

ABeCashAcctCommand bec = new ABeCashAcctCommand();

 bec.setConnectionSpec(this.getConnectionSpec());

 bec.setCeInputCOMM__REQUEST__TYPE((short)1);

 bec.setCeInputCOMM__ACCOUNTID(this.getAccount_ID());

 bec.setCeInputCOMM__RES__TYPE(this.getRes_type());

 bec.execute();

 if (bec.ceOutput1GetCOMM__RETURN__VALUE__1().equals("ðððððð14"))

throw new com.ibm.ipaa.IDataKeyAlreadyExistsException();

}

For the retrieve() method, the code should look like:

public void retrieve() throws com.ibm.ipaa.IDataKeyNotFoundException {

ABeCashAcctCommand bec = new ABeCashAcctCommand();

 bec.setConnectionSpec(this.getConnectionSpec());

 bec.setCeInputCOMM__REQUEST__TYPE((short)2);

 bec.setCeInputCOMM__ACCOUNTID(this.getAccount_ID());

 bec.setCeInputCOMM__RES__TYPE(this.getRes_type());

 bec.execute();

if (bec.ceOutput1GetCOMM__RETURN__VALUE__1().equals("ðððððð13"))

throw new com.ibm.ipaa.IDataKeyNotFoundException();

}

For the update() method, the code should look like:

public void update() throws com.ibm.ipaa.IDataKeyNotFoundException {

ABeCashAcctCommand bec = new ABeCashAcctCommand();

 bec.setConnectionSpec(this.getConnectionSpec());

 bec.setCeInputCOMM__REQUEST__TYPE((short)3);

 bec.setCeInputCOMM__ACCOUNTID(this.getAccount_ID());

216 CICS and IMS Application Adaptor

 bec.setCeInputCOMM__RES__TYPE(this.getRes_type());

 bec.execute();

if (bec.ceOutput1GetCOMM__RETURN__VALUE__1().equals("ðððððð13"))

throw new com.ibm.ipaa.IDataKeyNotFoundException();

}

For the del() method, the code should look like:

public void del() throws com.ibm.ipaa.IDataKeyNotFoundException {

ABeCashAcctCommand bec = new ABeCashAcctCommand();

 bec.setConnectionSpec(this.getConnectionSpec());

 bec.setCeInputCOMM__REQUEST__TYPE((short)4);

 bec.setCeInputCOMM__ACCOUNTID(this.getAccount_ID());

 bec.setCeInputCOMM__RES__TYPE(this.getRes_type());

 bec.execute();

if (bec.ceOutput1GetCOMM__RETURN__VALUE__1().equals("ðððððð13"))

throw new com.ibm.ipaa.IDataKeyNotFoundException();

}

Exporting the ABeCashAcct Package

After building the Execute class and creating and testing the Component Broker procedural adaptor object
within the VisualAge for Java environment, you can run the unit test program outside of the VisualAge for
Java environment. This object needs to be imported to Object Builder as a persistent object. Importing this
object requires that the procedural adaptor object and its corresponding BeanInfo class is exported outside
of VisualAge for Java. To run the sample outside of the VisualAge for Java environment, you must export
all classes you created and modify the CLASSPATH environment variable.

For ease, export the entire package. This package should contain:

� The new procedural adapter object
� Its corresponding BeanInfo class
� All Enterprise Access Builder (EAB) transaction objects

To export the package outside of VisualAge for Java:

1. Select the paa.mysamples.cics.appc.acct package to export.

2. From the VisualAge for Java Workbench menu, select File → Export . This opens the Export wizard.

 3. Click Next .

Type one of the following in the Directory field.

WIN x:\MyProj

AIX $HOME/MyProj

4. Select ONLY the .class check boxes.
 Important Information

If you export both .class and .java files, you will get an error when compiling the artifacts produced
by Object Builder.

 5. Click Finish .

When the export completes, the paa.mysamples.cics.appc.acct directory is created under the MyProj
directory.

 Chapter 10. Developing a CICS-APPC Application 217

Note: There is a process available to verify that the package you exported can run outside of VisualAge
for Java. For the latest information on this process, contact your IBM representative.

Developing a CICS-APPC Business Object

This section contains Object Builder and System Management procedures required to create a component
named “ACashAcct”. To create this component, perform the procedures in the following sections.

1. “Importing the Bean”
2. “Defining the ACashAcct Component” on page 219
3. “Creating Client and Server DLL Files” on page 223
4. “Packaging the Application” on page 224
5. “Building the Application - Client and Server” on page 226
6. “Installing the Application” on page 226
7. “Running the Sample Application” on page 229

Notes:

1. Before starting Object Builder, ensure that your classpath includes one of the following:

WIN x:\MyProj

Specify x:\Myproj as the base directory for the project.

The procedures contained in this section assume that you have correctly set your classpath to include
x:\MyProj before starting Object Builder and that you have started Object Builder.

AIX $HOME/MyProj

Specify $HOME/MyProj as the base directory for the project.

The procedures contained in this section assume that you have correctly set your classpath to include
$HOME/MyProj before starting Object Builder and that you have started Object Builder.

Importing the Bean

The bean to import is ABeCashAcct from the paa.mysamples.cics.menu.acct package in one of the
following directories:

WIN x:\MyProj

AIX $HOME/MyProj

To import this bean:

1. Select the User-Defined PA Schemas folder from the Object Builder Tasks and Objects pane.

2. From the pop-up menu for User-Defined PA Schemas, select Import Bean to open the Import
Procedural Adaptor Bean wizard.

3. On this page:

a. Type paa.mysamples.cics.appc.acct.ABeCashAcctPAO in the Class Name field.
b. Click Next to accept the remaining defaults and to continue to the Import Procedural Adaptor

Bean → Names and Services page.

4. On this page:

a. Select LU.6.2 for the Connector Type.

218 CICS and IMS Application Adaptor

b. Click Next to accept the defaults and continue to the Procedural Adaptor Bean Key Selection
page.

5. On this page:

a. Select the res_type and the account_ID properties from the Properties list box.
b. Click >> to move these associated key required to import the bean.

 6. Click Finish .

The bean is imported into Object Builder. The ABeCashAcctPAO schema and its corresponding
persistent object (ABeCashAcctPAOPO) are now in the tree view of User-Defined PA Schemas.

Defining the ACashAcct Component

This exercise defines the objects required to create a component named “ACashAcct”. For this component
you will:

1. Create a new business object file
2. Define the business object
3. Connect the data object implementation to the persistent object
4. Define the managed object
5. Generate the code

Creating the Business Object File

To create the ACashAcct business object file:

1. Select the User-Defined Business Objects folder.

2. From the pop-up menu for User-Defined Business Objects, select Add File to display the Name page
of the Business Object File wizard.

3. On this page:

a. Type ACashAcct in the Name field.
b. Accept the other defaults.

4. Click the Finish button.

The ACashAcct file is now under the User-Defined Business Objects folder.

Defining the Business Object

After creating the new business object file, the business object needs to be defined. A fully-configured
business object consists of the following:

� A business object interface
� An associated key
� An associated copy helper
� A business object implementation and data object interface

Defining the Business Object Interface: To create the ACashAcct business object interface:

1. From the User-Defined Business Object folder, select ACashAcct.

2. From the pop-up menu for ACashAcct, select Add Interface to display the Name and Attributes page
of the Business Object Interface wizard.

3. On this page:

a. Type ACashAcct in the Name field.

 Chapter 10. Developing a CICS-APPC Application 219

b. Click Next to continue to the Constructs page.

4. Click Next accept the defaults and to continue to the Interface Inheritance page.

5. Click Next to accept the defaults and to continue to the Attributes page.

6. Define the user-defined attributes.

a. Select Attributes from the tree view.

b. Fromn the pop-up menu for Attributes, select Add to display the Add dialog.

c. In this dialog:

1) Type res_type in the Attribute Name field.

2) Select string as the Type . This displays the Size field.

3) Type ð in the Size field.

4) Click Add Another .

5) Repeat this step for each attribute of the ACashAcct interface, but click Refresh instead of
Add Another at the end of the step.

Note: For balance, use type long. For account_ID, acct_type, and utilities, use string.

 d. Click Finish .

The ACashAcct interface is now under the ACashAcct file.

Defining the Key: To add the key:

1. From the User-Defined Business Object folder, select the ACashAcct interface.
2. From the pop-up menu of ACashAcct, select Add Key to display the Key wizard.
3. Type ACashAcctKey in the File Name field.
4. Select the res_type and the account_ID attributes from the Business Object Attributes list.
5. Click >> to move the attribute to the Key Attributes list.

 6. Click Finish .

The ACashAcctKey key is now under the ACashAcct interface.

Defining the Copy Helper: To add the copy helper:

1. From the User-Defined Business Object folder, select the ACashAcct interface.

2. From the pop-up menu for ACashAcct, select Add Copy Helper to display the Copy Helper wizard.

3. Type ACashAcctCopy in the File Name field.

4. Click All>> to move the attributes from the Business Object Attributes list to the Copy Helper
Attributes list.

 5. Click Finish .

The ACashAcctCopy copy helper is now under the ACashAcct interface.

Defining the Business Object Implementation and Data Object Interface: To add the Business
Object Implementation and Data Object interface:

1. From the User-Defined Business Object folder, open the ACashAcct interface.

2. From the pop-up menu for ACashAcct, select Add Implementation to display the Name and Data
Access Pattern page of the Business Object Implementation wizard.

3. Type ACashAcctBO in the File Name field.

4. Define the implementation.

220 CICS and IMS Application Adaptor

a. Select the Delegating radio button from the Pattern for Handling State Data group box.

b. Ensure that the Create a new one now radio button is selected from the Data Object Interface
group box. This option allows you to define the business object attributes that need to be
preserved in the data object.

c. Deselect 390 in the Select deployment platform group box.

d. Click Next to continue to the Implementation Inheritance page.

5. Click Next to accept the defaults and to continue to the Implementation Language page.

6. Click Next to accept the defaults and to continue to the Attributes page.

7. Click Next to accept the defaults and to continue to the Methods page.

8. Click Next to accept the defaults and to continue to the Key and Copy Helper Selection page.

9. On this page:

a. Verify that the ACashAcctKey key is selected from the Key list.
b. Verify that the ACashAcctCopy copy helper is selected from the Copy Helper list.
c. Click Next to continue to the Handle Selection page.

10. Click Next to accept the defaults and to continue to the Attributes to Override page.

11. Click Next to accept the defaults and to continue to the Data Object Interface page.

12. Type ACashAcctDO in the Data Object File Name field.

13. Click All>> to move the attributes in the Business Object Attributes list to the State Data list.

14. Click the Finish button.

The ACashAcctBO business object implementation is now under the ACashAcct interface, and the
ACashAcctDO data object interface is now under the ACashAcctBO business object implementation.

Connecting the Data Object Implementation to the Persistent Object

To create the data object implementation and to connect the data object implementation to the persistent
object:

1. From the User-Defined Business Object folder, select the ACashAcctDO data object interface.

2. From the pop-up menu for ACashAcctDO, select Add Implementation to display the Data Object
Implementation wizard.

3. Deselect 390 in the Select deployment platform group box and click Next to continue to the
Behavior page.

4. Set the environment.

a. Set the BOIM with any key radio button from the Environment group box to indicate that the
data object is part of a component installed in a business object application adaptor with instances
being located by key objects.

b. Set the Procedural Adaptors radio button from the Form of Persistent Behavior and
Implementation group box.

c. Click Next to continue to the Implementation Inheritance page.

5. On this page, verify that IPAAExtLocalToServer is selected as parents.

6. Click Next to continue to the Attributes page.

7. Click Next to continue to the Methods page.

8. Click Next to continue to the Key and Copy Helper page.

 Chapter 10. Developing a CICS-APPC Application 221

9. Click Next to accept the defaults and to continue to the Associated Persistent Objects page.

10. On this page:

a. Select Persistent Object Instances.
b. From the pop-up menu for Persistent Object Instance, select Add .
c. Type iABeCashAcctPAOPO in the Instance Name field.
d. Click the Next button to continue to the Attributes Mapping page.

11. On this page:

a. Select Res_type from the Attributes list.
b. From the pop-up menu for Res_type, select Primitive .
c. Select ABeCashAcctPAOPO.Res_type from the Persistent Object Attribute list.
d. Add 1-to-1 mappings for the other attributes in the Attributes tree view as you did for Res_type.
e. Click the Next button to continue to the Methods Mapping page.

12. On this page:

a. Select insert from the Special Framework Methods list.

b. From the pop-up menu for insert, select Add Mapping .

c. Select iABeCashAcctPAOPO.insert from the Persistent Object Method list.

d. Add 1-to-1 mappings for the other methods, retrieve, update, delete, and setConnection in the
Special Framework Methods tree view as you did for insert.

13. Click Finish .

The ACashAcctDOImpl data object implementation is now under the ACashAcctDO interface, and the
ABeCashAcctPAOPO persistent object is now under the ACashAcctDOImpl data object implementation.

Defining the Managed Object

To add the managed object:

1. From the User-Defined Business Object folder, select the ACashAcctBO business object
implementation.

2. From the pop-up menu for ACashAcctBO, select Add Managed Object to display the Name and
Services page of the Managed Object wizard.

3. Type ACashAcctMO in the File Name field.

4. Select the Transaction Service radio button in the Service to Use group.

5. Deselect 390 in the Select deployment platform group box.

6. Click Next to accept the defaults and continue to the Implementation Inheritance page.

 7. Click Finish .

Generating the Code

To generate the application code:

1. From the User-Defined Business Object folder, select ACashAcct.
2. From the pop-up menu for ACashAcct, select Generate → All .

Code generation starts. Progress is indicated in the lower-left corner of the window.

222 CICS and IMS Application Adaptor

Creating Client and Server DLL Files

The defined objects need to be built into two separate DLL files.

� One that runs on the client and provides access to the business object interface, key, and copy helper.

� One that runs on the server and provides access to the managed object and the rest of the
component.

The client DLL file needs to be defined before the server DLL file. When the server DLL file is defined, it
needs to link to the client DLL file. After defining the objects that comprise each DLL file, these files can
be built.

Defining the Client DLL File

To add the client DLL file:

1. Select the Build Configuration folder.

2. From the pop-up menu for Build Configuration, select Add client DLL to display the Name and Option
page of the Add Client DLL wizard.

3. Type ACashAcctC in the Name field.

4. Check only the Applicable Platforms you want.

5. Click Next to continue to the Client Source Files page.

6. Click All>> to move the client source files to the Items chosen list.

 7. Click Finish .

The ACashAcctC client DLL file is now under the Build Configuration folder.

Defining the Server DLL File

To add the server DLL.

1. Select the Build Configuration folder.

2. From the pop-up menu for Build Configuration, select Add Server DLL to display the Name and
Option page of the Server DLL wizard.

3. Type ACashAcctS in the Name field.

4. Click only the Applicable Platforms you want.

5. Click Next to continue to the Server Source Files page.

6. Click All>> to move the server source files to the Items chosen list.

7. Click Next to continue Libraries to Link With page.

8. Select ACashAcctC from the Items Available list.

9. Click >> to move ACashAcctC.dll to the Items Chosen list.

10. Click Finish .

The ACashAcctS server DLL file is now under the Builder Configuration folder.

 Chapter 10. Developing a CICS-APPC Application 223

Generating the Makefiles

To generate the makefiles to build the configuration:

1. Select the Build Configuration folder.
2. Open the pop-up menu for Build Configuration, and select Generate → All → All Targets .

The code generation begins.

Packaging the Application

Packaging the application consists of the following procedures:

1. Creating the application family
2. Defining the application
3. Creating the container instance
4. Configuring the managed object
5. Generating the application

Creating the Application Family

To add the application family:

1. Select the Application Configuration folder.

2. From the pop-up menu for Application Configuration, select Add Application Family to display the
Name page of the Application Family wizard.

3. Type ACashAcctApp in the Name field.

 4. Click Finish .

The ACashAcctApp application family is now under the Application Configuration folder.

Defining the Application

To add the Application:

1. Select the ACashAcctApp application family.

2. From the pop-up menu for ACashAcctApp, select Add Application to display the Name and
Environment page of the Add Application wizard.

3. Type ACashAcct in the Application Name field.

 4. Click Finish .

The ACashAcct application is now under the ACashAcctApp application family.

Creating the Container Instance

To add the new container instance:

1. Select the Container Definition folder.

2. From the pop-up menu for Container Definition, select Add Container Instance to displays the
Container wizard.

3. Type ACashAcctContainer in the Name field.

4. Click Next to continue to the Workload Management Container page.

5. Click Next to continue to the Services page.

224 CICS and IMS Application Adaptor

6. On this page:

a. Set the Use PAA Transaction Services radio button.

b. Click Next to continue to the Services Details page.

7. On this page, type APPC_ACashAcct_Server in the Connection Name field.

8. Select the Throw an exception and abandon the call radio button.

 9. Click Finish .

The ACashAcctContainer container is now under the Container Definition folder.

Configuring the Managed Object

To add the managed object for the Application:

1. Select the ACashAcct application.

2. From the pop-up menu for ACashAcct, select Add Managed Object to display the Configure Manage
Object wizard.

3. In this window:

a. Verify that ACashAcctMO is in the Managed Object field.
b. Click Next to continue to the Data Object Implementations page.

4. On this page:

 a. Select Implementation.
b. From the pop-up menu for Implementation, select Add .
c. Select ACashAcctDOImpl ACashAcctDOImpl from the Data Object Implementation list.
d. Click Next to continue to the Container page.

5. On this page, select ACashAcctContainer from the Name list.

6. Click Next to continue to the Home page.

7. On this page, select BOIMHomeOfRegHomes from the Home Name list.

 8. Click Finish .

The ACashAcctMO managed object is now under the Application Configuration folder.

Generating the Applications

To generate the application family:

1. Select the ACashAcctApp application.
2. From the pop-up menu for ACashAcctApp, select Generate .

Note: If you do not have InstallShield installed on your system, Click Yes when the dialog concerning
InstallShield is displayed.

When code generation completes, the Method Implementation pane contains the ACashAcctApp.ddl file.
You can now close Object Builder.

 Chapter 10. Developing a CICS-APPC Application 225

Building the Application - Client and Server
WIN

All imported and generated files are placed in the x:\MyProj\Working\NT directory (where x:\MyProj is
the working directory when Object Builder was started).

1. Change directory to:

 x:\MyProj\Working\NT

 2. Type:

nmake -f all.mak cpp java

3. Everything in the sample application is built.

AIX

All imported and generated files are placed in the $HOME/MyProj/Working/AIX directory (where
$HOME/MyProj/Working/AIX is the working directory when Object Builder was started).

1. Change directory to:

 $HOME/MyProj/Working/AIX

 2. Type:

make -f all.mak cpp java

3. Everything in the sample application is built.

Installing the Application

Installing an application consists ofα

1. Loading the application
2. Configuring the application

These procedures assume that you are currently logged on to DCE and that you are currently using the
System Manager User Interface. If not, logon to DCE and start the System Manager User Interface.

Loading the Application onto System Management

To install the ACashAcct server application:

1. Start the System Manager User Interface, if it is not already started.
2. Become an Expert user (View → User Level → Expert).
3. Expand Host Images, and select <your host name> .
4. From the pop-menu, select Load Application to open the Load Application dialog.

WIN Browse for and select ACashAcctApp.ddl (x:\MyProj\Working\NT\ACashAcct\ACashAcctApp.ddl).

AIX Browse for and select ACashAcctApp.ddl
($HOME/MyProj/Working/AIX/ACashAcct/ACashAcctApp.ddl).

226 CICS and IMS Application Adaptor

Configuring the Application with System Management

1. To configure the application:

a. Expand Available Applications, and select ACashAcct.

b. From the pop-up menu for ACashAcct, select Drag .

c. Expand Management Zones → Sample Cell and Work Group Zone → Configurations and select
Sample Configuration.

d. From the pop-up menu for Sample Configuration, select Add Application .

2. Configure the APPC connection.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Sample
Configuration → APPC Connections and select APPC_ACashAcct_Server.

b. From the pop-up menu for APPC_ACashAcct_Server, select Edit to open the Object Editor.

c. Click the Main tab.

d. Change the Fully-qualified Local LU name field to match the local LU6.2 LU that you will use to
communicate with your CICS/IMS system (for example, PAA01001).

e. Change the Fully-qualified Partner LU name field to match the partner LU6.2 LU that you will
use to communicate with your CICS/IMS system (for example, CICS4).

f. Change the Mode Name field to match the mode name that you will use to communicate with
your CICS/IMS system (for example, LU62PS).

g. Change the Remote Procedure Type field to match the type of program with which you will be
communicating (for example, CICS_DPL or CICS_DTP). The CICS_DPL flavor appends eight
bytes (converted to the target code page) that correspond to the CICS application to which the
DTP program should EXEC CICS LINK.

h. Change the Transaction Program Name field to match the CICS transaction program (TP) that
you will run (for example, BDPL or BDTP).

i. Change the CICS Program Name field to match the CICS program name that you will run under
the transaction program (for example, BECASHAC).

j. Change the transaction type field to be either optimistic or pessimistic. Pessimistic will talk initiate
the conversation as sync-level 2 for the entire while optimistic will only talk sync-level 2 during the
prepare and commit parts of the transaction.

k. Click OK to validate and accept the changes.

3. Define the server.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations and select
Sample Configuration.

b. From the pop-up menu for Sample Configuration, select New → Server (free standing) to display
a new dialog box.

c. Type ACashAcctSvr as the name for the server.

d. Click OK. The ACashAcctSvr server is now under Server (free standing).

4. Associate the application with the server.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Sample
Configuration → Applications and select ACashAcct.

b. From the pop-up menu for ACashAcc, select Drag .

 Chapter 10. Developing a CICS-APPC Application 227

c. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Sample
Configuration → Server (free standing) and select ACashAcctSvr.

d. From the pop-up menu for ACashAcctSvr, select Configure Application .

5. Associate the iPAAServices with the server.

a. If the data directory has been refreshed, add the iPAAServices application to Sample
Configurations; otherwise skip to step 5b:

1) Expand Host Images → myhost → Application Family Installs → iPAAApplications →
Application Installs and select iPAAServices.

2) From the pop-up menu for IPAAService, select Drag .

3) Expand Management Zones → Sample Cell and Work Group Zone → Configurations and
select Sample Configuration.

4) From the pop-up menu for Sample Configuration, select Add Application .

b. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Sample
Configuration → Applications and select iPAAServices.

c. From the pop-up menu for iPAAServices, select Drag .

d. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Sample
Configuration → Server (free standing), and select ACashAcctSvr.

e. From the pop-up menu for ACashAcctSvr, select Configure Application .

6. Configure the server with the host.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations → Server
(free standing) and select ACashAcctSrv

b. From the pop-up menu for ACashAcctSrv, select Drag .

c. Expand Host and select your host.

d. From the pop-up menu for your server, select Configure Server (free standing) .

7. Optional: Enable security services for the server.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configuration → Sample
Configuration → Server (free standing) and select ACashAcctSrv.

b. From the pop-up menu for ACashAcctSrv, select Edit to open the Object Editor.

c. In this notebook:

1) Select the Security Service tab.

2) Change the value for the data system principal field to the user ID that the server will use
when connecting to the CICS system.

3) Change the value for the data system password field to the password that the server will use
when connecting to the CICS system.

4) Change the value for the security enabled field from no to yes .

5) Click OK. The changes are applied and the Object Editor closes.

8. Optional: Enable security services for the client.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configuration → Sample
Configuration → Client Styles and select myClient.

b. From the pop-up menu for myClient, select Edit to open the Object Editor.

c. In this notebook:

228 CICS and IMS Application Adaptor

1) Select the Security Service tab.
2) Change the value for the security enabled field from no to yes.
3) Click OK. The changes are applied and the Object Editor closes.

9. Activate the configuration.

a. Expand Management Zones → Sample Cell and Work Group Zone → Configurations, and select
Sample Configuration .

b. From the pop-up menu for Sample Configuration, select Activate , automatically start the
application server. Wait for the completion message in the Action Console window before
continuing.

Running the Sample Application

Before running this sample ensure that the IBM Transaction Server for CICS/NT is configured for the CICS
region and a single Encina shared file system (SFS). For details, see Appendix C, “Installing the CICS
DTP Sample Programs” on page 237.

To run the sample client application, complete one of the following procedures:

WIN

1. Copy ACashAcctcli.mak and ACashAcctcli.cpp from:

 x:\CBroker\samples\InstallVerification\PAA\Application\ACashAcctcli

TO:

 x:\MyProj\Working\NT

2. Change directory to:

 x:\MyProj\Working\NT

 3. Type:

nmake -f ACashAcctcli.mak

 4. Type:

 Acashacctcli

AIX

1. Copy ACashAcctcli.mak and ACashAcctcli.cpp from:

 /usr/lpp/CBToolkit/samples/InstallVerification/PAA/Application/ACashAcctCli

To:

 $HOME/MyProj/Working/AIX

2. Change directory to:

 $HOME/MyProj/Working/AIX

 3. Type:

make -f acashacctcli.mak

 4. Type:

 acashacctcli

 Chapter 10. Developing a CICS-APPC Application 229

230 CICS and IMS Application Adaptor

Appendix A. Installing the IVPs and CICS HOD Sample
Programs

This appendix provides procedures to install the CICS and IMS Installation Verification Programs (IVPs), to
install, set up, and configure the CICS HOD sample programs on a CICS region. Included are:

� IVP installation instructions
� Files required for the CICS HOD sample programs
� Installing on a CICS Transaction Server (NT or AIX)

IVP Install Instructions

This section contains information on where to find IVP install instructions for the CICS-HOD IVP and the
IMS-HOD IVP. This information may be useful for understanding how to install the CICS Transaction
Server.

� For Windows NT, in the IBM Transaction Server for Windows NT Installation Guide, Version 4 Chapter
6, entitled “Performing the Installation Verification Procedures” discusses how to load and run the IVP
programs for CICS.

� For MVS, in the IBM CICS Transaction Server for OS/390 CICS Installation Guide Section 2.6
discusses installing and running the IVP jobs.

� For IMS, in IMS/ESA Version 6 Install Volume 1, the entire book contains information on installing and
configuring the IVP sample. Chapter 11, entitled “Install/IVP Application,” discusses the sample IMS
application.

Files for CICS HOD Sample Programs

The CICS HOD sample application is a modification of the CICS install verification sample (IVP) called
Menu Customer. The IVP has four transactions BRWS, ADDS, INQY, and UPDT. Two new transactions
are added to the IVP for delete (DELE) and debit (DEBT).

The CICS IVP modification files are in the directory
CBroker/samples/InstallVerification/PAA/Backend/Acct

The CICS IVP modification files are as follows.

makefile.nt used to compile the modified IVP (Windows NT only)

readme contains helpful information

dfhdall.ccs a C program to handle all the IVP transactions

dfhdga.bms the menu screen description (with the two new
transactions)

dfhdgb.bms the add/update record screen description (not
modified)

mod_ivp.bat used to install the modified IVP (Windows NT only)

unmod_ivp.bat used to uninstall the modified IVP (Windows NT only)

 Copyright IBM Corp. 1998 231

Installing on a CICS Transaction Server (NT or AIX)

1. Stop the CICS region in which you want to install the modified IVP.

2. If you have not already done so, install the unmodified CICS IVP application into the CICS region with
the following command:

cicsivp -r reg_name

where reg_name is the name of the CICS region.

3. Copy the modified IVP files to a subdirectory on the system running the CICS region (for example,
x:\USERCICS) and make it the current directory.

4. Compile the programs as follows.

WIN Ensure that the enviroment variable CICSPATH points to the directory where the CICS
server is installed. Run the supplied makefile:

nmake -f makefile.nt

AIX Issue the following commands:

 cicsmap dfhdga.bms

cicsmap ext dir/dfhdgb.bms

 cicsmap ext_dir/dfhdgc.bms

cicstcl -e -d -lC dfhdall.ccs

cicstcl -e -d -lC ext_dir/dfhdbrw.ccs

cicstcl -e -d -lC ivp_dir/dfhdmnu.ccs

where ext_dir is the directory that contains the modified IVP source code.

5. Add the definitions to the CICS region as follows:

WIN Run the supplied command file:

 mod_ivp.bat

AIX Issue the following commands:

cicsupdate -r reg_name -c pd DFHDGA PathName=ext_dir/dfhdga.map

cicsupdate -r reg_name -c pd DFHDALL PathName=ext_dir/dfhdall

cicsupdate -r reg_name -c pd DFHDMNU PathName=ext_dir/dfhdmnu

cicsupdate -r reg_name -c pd DFHDBRW PathName=ext_dir/dfhdbrw

cicsadd -r reg_name -c td -P DELE ProgName=DFHDALL

 "InvocationMode=in_out_terminal|any_start|at_normal_running

cicsadd -r reg_name -c td -P DEBT ProgName=DFHDALL

 "InvocationMode=in_out_terminal|any_start|at_normal_running

where reg_name is the name of the CICS region and ext_dir is the directory that contains the
modified IVP source code.

6. Start the CICS region.

The modified CICS IVP is now ready to use.

232 CICS and IMS Application Adaptor

Appendix B. Installing the CICS-ECI Sample

This appendix contains information on installing the CICS-ECI sample and the contents of the t3-trans
subdirectory

CICS-ECI Sample Install Instructions

To use the Component Broker CICS and IMS application adaptor CICS-ECI sample program, you must
install the tier-3 portion of the sample to an IBM Transaction Server for NT CICS system. The IBM
Transaction Server is available from your IBM representative or third-party reseller.

Perform the following procedure to install the CICS/NT and the tier-3 sample.

1. Install the Transaction Server for CICS/NT from the IBM Transaction Server compact disc and
configure a single CICS region with a single Encina shared file system (SFS). See the CICS
Installation Guide or the CICS Quick Beginnings for details.

2. Start the Encina SFS and SFS server, but do not start the CICS region. If the CICS region is running,
shut it down. See the CICS Administration Guide for details.

3. Copy all files (except the DLL files) for the sample programs from the
x:\CBroker\samples\InstallVerification\PAA\Businessobjects\CashAcct\t3-trans directory (where
x:\CBroker is the directory where you installed Component Broker) to a subdirectory on the system
running the CICS region (for example, x:\usercics).

4. Change to your samples directory (x:\usercics).

5. Run BOSSTOWN_DEF_TX to add the definitions to the CICS region and Encina SFS. This command
requires the following four parameters:

� The name of the CICS region.
� The directory where the files are located.
� The name of the Encina SFS. This will be in the form of /:./ccicss/sfs/sfsserver
� The name of the Encina SFS log volume. This will be in the form of log_SSFSSERV

These parameters are user-supplied configuration parameters which you provided during the setup of
the CICS region and the Encina SFS and are part of the script itself. Details about the SFS server and
the log volume can be obtained from the CICS Admin Utility. During the first run, it is normal to receive
delete errors, because these objects being deleted do not yet exist.

6. Create the appropriate listeners (LD stanza). See the CICS Administration Guide for details.

7. Create the transient data queue. The BECASHAC program uses a transient data queue for tracing
purposes, and this queue must exist to run the program. To create this queue, perform the following
procedure:

a. Right-click your CICS region.

b. From the pop-up menu, select Resources → Transient Data Queue .

c. From the menu bar, select Transient Data Queue → New.

d. In the resulting dialog:

1) Click the General tab.

2) Enter BOSS in the TDQ name field and select a Queue Type of extrapartition.

3) Click the Extrapartition tab.

 Copyright IBM Corp. 1998 233

4) Enter a name under Queue File to specify the file where you want your transient data queue
output to go. Select line oriented as the Record type and 250 as the Record length .

5) Click the Security tab.

6) Select Public as the Resource level security key .

7) Click the Permanent button.

8. Copy the eight (8) DLL files from the
x:\CBroker\samples\InstallVerification\PAA\Businessobjects\CashAcct\t3-trans directory to a directory in
your PATH statement (for example, the lib subdirectory).

9. Start the CICS region.

10. Start the CICS terminal to the server and run the “BBCA” transaction to get a screen-based interface
for the database.

You are now ready to run the Component Broker CICS-ECI sample.

Content of the t3-trans Directory

The t3-trans directory contains the following files.

README
Basically, the contents of this section.

BOSSTOWN_DEF_TX.CMD
A DOS command script to setup the sample.

BSCASH.MAP
A map file for BECASHAC. This file is required at run time.

BSCASH
A map file for BECASHAC. This file is required at run time.

BBCASHAC.IBMCOB
CICS BMS program that accesses BECASHAC from a CICS terminal. This file is required at run
time.

BECASHAC.IBMCOB
The CICS backend ECI program for the Cash Account. This file is required at run time.

BBCASH.BMS
The BMS source file for the BECASHAC program.

BBCASHAC.CCP
The source file for BBCASHAC.IBMCOB.

BECASHAC.CCP
The source file for BECASHAC.IBMCOB.

Library Files
These files should be copied to a directory in your PATH statement (for example, the lib
subdirectory).

 � ARZLITE.DLL
 � IWZODBC.DLL
 � IWZRFBTR.DLL
 � IWZRFSTL.DLL
 � IWZRFVSA.DLL
 � IWZRLIB.DLL

234 CICS and IMS Application Adaptor

 � IWZRLIBM.DLL
 � IWZRMSTL.DLL

Note: The BS* and BB* files are required for the CICS terminal interface to the CashAcct database table,
which is useful for debugging.

 Appendix B. Installing the CICS-ECI Sample 235

236 CICS and IMS Application Adaptor

Appendix C. Installing the CICS DTP Sample Programs

This appendix provides procedures to install, set up, and configure the two CICS DTP sample programs
on a CICS region. Procedures included are:

� “Installing on CICS/ESA”
� “Installing on a CICS Transaction Server (NT or AIX)”

Installing on CICS/ESA
1. Transfer the files from your Component Broker installation to an appropriate MVS system using, for

example, ftp or the send option of IBM Personal Communications. Put both sets of programs as
members of a Cobol source library dataset.

2. Translate, compile, and link-edit the programs using standard CICS jobs. The programs must be
compiled with the TRUNC(BIN) compiler option. Make sure the resulting executables end up in a load
library that can be accessed by CICS.

3. Logon to the CICS region and add definitions for the transactions and programs using the CEDA
transaction as follows:

CEDA DEF PROGRAM(CICSDPL) GROUP(BOSSTOWN) LANG(COBOL)

CEDA DEF PROGRAM(CICSDTP) GROUP(BOSSTOWN) LANG(COBOL)

CEDA DEF TRANS(BDPL) GROUP(BOSSTOWN) PROGRAM(CICSDPL)

CEDA DEF TRANS(BDTP) GROUP(BOSSTOWN) PROGRAM(CICSDTP)

Add descriptions as appropriate. Install the new definitions with the CEDA transaction as follows:

CEDA IN GROUP(BOSSTOWN)

4. Add the following DCT entry for the CICS region:

 BOSS DFHDCT TYPE=INTRA,

 DESTID=BOSS,

 DESTFAC=FILE,

 DSCNAME=BOSSMSG,

 TRIGLEV=ð

On earlier versions of CICS/ESA this would be done by compiling the above entry in a load library. On
later version of CICS such as CICS Transaction Server, CEDA can be used for adding DCT entries.

The two programs are now ready to use.

Installing on a CICS Transaction Server (NT or AIX)
1. Copy the two files to a subdirectory on the system running the CICS region (for example,

x:\USERCICS).

2. Change directory to the CICS directory (x:\USERCICS).

3. Compile the programs as follows:

WIN Run the supplied command file:

 bosstown_dtp.cmd

AIX Issue the following commands:

 Copyright IBM Corp. 1998 237

- cicstcl -e -d -libmcob cicsdtp.ccp

- cicstcl -e -d -libmcob cicsdpl.ccp

4. Add the definitions to the CICS region as follows:

WIN Run the supplied command file:

 bosstown_def_dtp.cmd region directory sna_tpn_profile

where:

� region is the name of the region
� directory is the directory where the files are located
� sna_tpn_profile is the file name of the SNA TPN profile transaction you are using

AIX Issue the following commands:

cicsadd -c pd -r %r -P "CICSDTP" GroupName="BOSSTOWN" PathName="x:\USERCICS\CICSDTP"
cicsadd -c pd -r %r -P "CICSDPL" GroupName="BOSSTOWN" PathName="x:\USERCICS\CICSDPL"

cicsadd -c td -r %r -P "BDTP" GroupName="BOSSTOWN" ProgName="CICSDTP"
cicsadd -c td -r %r -P "BDPL" GroupName="BOSSTOWN" ProgName="CICSDPL"

cicsadd -c tdd -r %1 -P "BOSS" GroupName="BOSSTOWN" DestType=extrapartition

 ExtrapartitionFile="x:\usercics\bosstrace.out" RecordType=line_oriented

 RecordLen=25ð

where %r is the name of the CICS region.

5. Start (or restart if already running) the CICS region.

The two programs are now ready for use.

238 CICS and IMS Application Adaptor

Appendix D. Help with Using VisualAge for Java

This appendix contains information about the code that is generated by the EAB portion of VAJ. This
section describes the following:

� Interfaces that have run-time implementations
� Interfaces generated as a result of using the VAJ tools
� Interfaces that have implementations that contain the customer supplied code
� What the generated code is expected to do (How it fits in with the framework.)
� The rules to which the generated code is to conform
� What a call stack looks like and what information can be extracted from it

Required Reading in VisualAge for Java

This section contains required reading in VisualAge for Java.

To find instructions on setting up the Run Time Context and the Trace Level of the JavaRASService, in
the VisualAge for Java help, select Tasks → Accessing Enterprise Applications and Data → Setting Up
Connector Run-Time Context.

To find instructions on modifying VCE generated code to properly handle exceptions from the Commands,
in the VisualAge for Java help, select Tasks → Accessing Enterprise Applications and Data → Overview
→ Creating and Using an Enterprise Access Builder Command → Implementing the handleException
method for the EAB Command.

To find a description of the particular exception thrown by the EAB or CCF run time, do a search using the
VisualAge for Java Help search facility specifying the exception name; for example
NoConnectionAvailableException. The search engine displays the exception description in the API
documentation of VisualAge for Java; for example in this case the description of the
NoConnectionAvailableException in the com.ibm.connector package would be displayed. Alternatively, the
description of this exception can be found by following this path in the VisualAge for Java help: Reference
→ IBM Tool APIs → Com.ibm.connector

To find general information on using the VisualAge for Java debugger, in the VisualAge for Java help,
select Tasks → Running and Debugging Your Programs → Debugging during the Development Cycle →
Selecting Exceptions for the Debugger to Catch or alternatively → Concepts → Integrated Development
Environment (IDE) → The Integrated Debugger.

Interpreting the output from the JavaRASService trace facility.

The RASService trace level can be set to the following values, as described in the reference of the
com.ibm.connector.infrastructure.java.JavaRASService class:

RAS_TRACE_OFF default value, no trace output is produced

RAS_TRACE_ERROR_EXCEPTION errors and exceptions are logged

RAS_TRACE_ENTRY_EXIT methods' entry and exit points are logged

RAS_TRACE_INTERNAL methods' entry, exit and internal state (field values) of the objects are logged

By examining the state of the object before and after method invocation, you can determine the probable
cause of an error.

 Copyright IBM Corp. 1998 239

Trace from the command

The output from a single Command with all the necessary values specified (Input, Output,
ConnectionSpec, InteractionSpec) and traceLevel set to RAS_TRACE_ENTRY_EXIT is as follows:

->Command.execute(CommandEvent)

 ->CommunicationCommand.beforeInternalExecution()

 ->CommandCommunicationPrimitive.beforeExecute(CommandEvent)
 ->Communication.connect() 1
 <-Communication.connect()

 <-CommandCommunicationPrimitive.beforeExecute(CommandEvent)

 ->CommandObjectTransferPrimitive.beforeExecute(CommandEvent)

 <-CommandObjectTransferPrimitive.beforeExecute(CommandEvent)

 ->CommandMappingPrimitive.beforeExecute(CommandEvent)

 <-CommandMappingPrimitive.beforeExecute(CommandEvent)

 <-CommunicationCommand.beforeInternalExecution()

 ->CommandCommunicationPrimitive.execute() 2
 ->Communication.execute()

 <-Communication.execute()

 <-CommandCommunicationPrimitive.execute()

 ->CommunicationCommand.afterInternalExecution()

 ->CommandCommunicationPrimitive.afterExecute(CommandEvent)
 ->Communication.disconnect() 3
 <-Communication.disconnect()

 <-CommandCommunicationPrimitive.afterExecute(CommandEvent)

 ->CommandObjectTransferPrimitive.afterExecute(CommandEvent)

 <-CommandObjectTransferPrimitive.afterExecute(CommandEvent)

 ->CommandMappingPrimitive.afterExecute(CommandEvent)

 <-CommandMappingPrimitive.afterExecute(CommandEvent)

 <-CommunicationCommand.afterInternalExecution()

<-Command.execute(CommandEvent)

Examining the state of the CommandCommunicationPrimitive object's fields before and after the
beforeExecute() method, can show problems that occurred during establishing a connection to the
back-end system, or incorrect settings of the values on the Command, for example the ConnectionSpec.

Examining the state of the CommandCommunicationPrimitive object's fields such as Input and Output
before and after the execute() method, can show problems that occurred during an interaction with the
back end. For example, with the traceLevel set to RAS_TRACE_INTERNAL, the log before the execute()
method is:

240 CICS and IMS Application Adaptor

[com.ibm.ivj.eab.command.CommandCommunicationPrimitive]

 fieldInput:

 [[com.ibm.ivj.eab.sample.eci.adder.AdderRecord@1196]

number: []

 notifyWhenContentsUpdated: [true]

 res: [ð]

 op2: [-44]

 op1: [33]

]

fieldOutput:

 [[com.ibm.ivj.eab.sample.eci.adder.AdderRecord@1196]

number: []

 notifyWhenContentsUpdated: [true]

 res: [ð]

 op2: [-44]

 op1: [33]

]

fieldConnectionSpec:

 [[com.ibm.connector.cics.CICSConnectionSpec@b1cfe2c2]

 URL: [lem]

 logonLogoff: []

 serverSecurityClassName: []

 minConnections: [ð]

 maxConnections: [ð]

 terminalModel: []

 clientSecurityClassName: []

class: [class com.ibm.connector.cics.CICSConnectionSpec]

 unusedTimeout: [ð]

 CICSServer: [ulysses]

 connectionTimeout: [ð]

 reapTime: [ð]

]

fieldInteractionSpec:

 [[com.ibm.connector.cics.ECIInteractionSpec@2b2c]

 identifier: [[B@2b3a]

 ECITimeout: [ð]

 userid: []

class: [class com.ibm.connector.cics.ECIInteractionSpec]

 password: []

 programName: [adder]

 mode: [ð]

 CICSELUW: [false]

 TPNTransactionName: [false]

 transactionName: []

]

fieldCommunication:

 [[com.ibm.connector.cics.CICSCommunication@1286]

class: [class com.ibm.connector.cics.CICSCommunication]

 connectionSpec: [com.ibm.connector.cics.CICSConnectionSpec@b1cfe2c2]

]

fieldDisconnectCommunication:

 [true]

fieldInternalBeforeAfter:

 [false]

fieldIsExternalCommunication:

 [false]

The log after the execute() method is:

 Appendix D. Help with Using VisualAge for Java 241

[com.ibm.ivj.eab.command.CommandCommunicationPrimitive]

 fieldInput:

 [[com.ibm.ivj.eab.sample.eci.adder.AdderRecord@1196]

number: []

 notifyWhenContentsUpdated: [true]

 res: [-11]

 op2: [-44]

 op1: [33]

]

fieldOutput:

 [[com.ibm.ivj.eab.sample.eci.adder.AdderRecord@1196]

number: []

 notifyWhenContentsUpdated: [true]

res: [-11] different value than before the method call

 op2: [-44]

 op1: [33]

]

fieldConnectionSpec:

 [[com.ibm.connector.cics.CICSConnectionSpec@b1cfe2c2]

 URL: [lem]

 logonLogoff: []

 serverSecurityClassName: []

 minConnections: [ð]

 maxConnections: [ð]

 terminalModel: []

 clientSecurityClassName: []

class: [class com.ibm.connector.cics.CICSConnectionSpec]

 unusedTimeout: [ð]

 CICSServer: [ulysses]

 connectionTimeout: [ð]

 reapTime: [ð]

]

fieldInteractionSpec:

 [[com.ibm.connector.cics.ECIInteractionSpec@2b2c]

 identifier: [[B@2b3a]

 ECITimeout: [ð]

 userid: []

class: [class com.ibm.connector.cics.ECIInteractionSpec]

 password: []

 programName: [adder]

 mode: [ð]

 CICSELUW: [false]

 TPNTransactionName: [false]

 transactionName: []

]

fieldCommunication:

 [[com.ibm.connector.cics.CICSCommunication@1286]

class: [class com.ibm.connector.cics.CICSCommunication]

 connectionSpec: [com.ibm.connector.cics.CICSConnectionSpec@b1cfe2c2]

]

fieldDisconnectCommunication:

 [true]

fieldInternalBeforeAfter:

 [false]

fieldIsExternalCommunication:

 [false]

242 CICS and IMS Application Adaptor

Examining the state of the CommandCommunicationPrimitive object's fields before and after the
afterExecute() method can show problems that occurred during disconnecting from the back end.

Trace from the navigation

The output from a Navigation consisting of two Commands, both with all the necessary values specified
(Input, Output, InteractionSpec), is shown below. In this example, both commands have the
ConnectionSpec specified which causes the connection to be established for each of them. These
commands are therefore, identical to the command above in terms of the execution flow, and their traces
within the navigation can be verified as described above (points 1,2,3).

>Command.execute(CommandEvent)

 ->CommunicationNavigator.beforeInternalExecution()

 ->CommandCommunicationPrimitive.beforeExecute(CommandEvent)4
 <-CommandCommunicationPrimitive.beforeExecute(CommandEvent)

 ->CommandObjectTransferPrimitive.beforeExecute(CommandEvent)

 <-CommandObjectTransferPrimitive.beforeExecute(CommandEvent)

 ->CommandMappingPrimitive.beforeExecute(CommandEvent)

 <-CommandMappingPrimitive.beforeExecute(CommandEvent)

 <-CommunicationNavigator.beforeInternalExecution()

 ->CommunicationNavigator.afterInternalExecution()

 ->CommandCommunicationPrimitive.afterExecute(CommandEvent)

 <-CommandCommunicationPrimitive.afterExecute(CommandEvent)

 ->CommandObjectTransferPrimitive.afterExecute(CommandEvent)

 <-CommandObjectTransferPrimitive.afterExecute(CommandEvent)

 ->CommandMappingPrimitive.afterExecute(CommandEvent)

 <-CommandMappingPrimitive.afterExecute(CommandEvent)

 <-CommunicationNavigator.afterInternalExecution()

First Command execution starts here
 ->Command.execute(CommandEvent)

 ->CommunicationCommand.beforeInternalExecution()

 ->CommandCommunicationPrimitive.beforeExecute(CommandEvent)
 ->Communication.connect() 1
 <-Communication.connect()

 <-CommandCommunicationPrimitive.beforeExecute(CommandEvent)

 ->CommandObjectTransferPrimitive.beforeExecute(CommandEvent)

 <-CommandObjectTransferPrimitive.beforeExecute(CommandEvent)

 ->CommandMappingPrimitive.beforeExecute(CommandEvent)

 <-CommandMappingPrimitive.beforeExecute(CommandEvent)

 <-CommunicationCommand.beforeInternalExecution()

 ->CommandCommunicationPrimitive.execute() 2
 ->Communication.execute()

 <-Communication.execute()

 <-CommandCommunicationPrimitive.execute()

 ->CommunicationCommand.afterInternalExecution()

 ->CommandCommunicationPrimitive.afterExecute(CommandEvent)
 ->Communication.disconnect() 3
 <-Communication.disconnect()

 <-CommandCommunicationPrimitive.afterExecute(CommandEvent)

 ->CommandObjectTransferPrimitive.afterExecute(CommandEvent)

 <-CommandObjectTransferPrimitive.afterExecute(CommandEvent)

 ->CommandMappingPrimitive.afterExecute(CommandEvent)

 <-CommandMappingPrimitive.afterExecute(CommandEvent)

 <-CommunicationCommand.afterInternalExecution()

Second Command execution starts here
 ->Command.execute(CommandEvent)

 ->CommunicationCommand.beforeInternalExecution()

 Appendix D. Help with Using VisualAge for Java 243

 ->CommandCommunicationPrimitive.beforeExecute(CommandEvent)
 ->Communication.connect() 1
 <-Communication.connect()

 <-CommandCommunicationPrimitive.beforeExecute(CommandEvent)

 ->CommandObjectTransferPrimitive.beforeExecute(CommandEvent)

 <-CommandObjectTransferPrimitive.beforeExecute(CommandEvent)

 ->CommandMappingPrimitive.beforeExecute(CommandEvent)

 <-CommandMappingPrimitive.beforeExecute(CommandEvent)

 <-CommunicationCommand.beforeInternalExecution()

 ->CommandCommunicationPrimitive.execute() 2
 ->Communication.execute()

 <-Communication.execute()

 <-CommandCommunicationPrimitive.execute()

 ->CommunicationCommand.afterInternalExecution()

 ->CommandCommunicationPrimitive.afterExecute(CommandEvent)
 ->Communication.disconnect() 3
 <-Communication.disconnect()

 <-CommandCommunicationPrimitive.afterExecute(CommandEvent)

 ->CommandObjectTransferPrimitive.afterExecute(CommandEvent)

 <-CommandObjectTransferPrimitive.afterExecute(CommandEvent)

 ->CommandMappingPrimitive.afterExecute(CommandEvent)

 <-CommandMappingPrimitive.afterExecute(CommandEvent)

 <-CommunicationCommand.afterInternalExecution()

 ->CommunicationNavigator.returnExecutionSuccessful()

 ->CommunicationNavigator.beforeInternalExecution()

 ->CommandCommunicationPrimitive.beforeExecute(CommandEvent)

 <-CommandCommunicationPrimitive.beforeExecute(CommandEvent)

 ->CommandObjectTransferPrimitive.beforeExecute(CommandEvent)

 <-CommandObjectTransferPrimitive.beforeExecute(CommandEvent)

 ->CommandMappingPrimitive.beforeExecute(CommandEvent)

 <-CommandMappingPrimitive.beforeExecute(CommandEvent)

 <-CommunicationNavigator.beforeInternalExecution()

 <-CommunicationNavigator.returnExecutionSuccessful()

 <-Command.execute(CommandEvent)

 <-Command.execute(CommandEvent)

 ->CommunicationNavigator.afterInternalExecution()

 ->CommandCommunicationPrimitive.afterExecute(CommandEvent)5
 <-CommandCommunicationPrimitive.afterExecute(CommandEvent)

 ->CommandObjectTransferPrimitive.afterExecute(CommandEvent)

 <-CommandObjectTransferPrimitive.afterExecute(CommandEvent)

 ->CommandMappingPrimitive.afterExecute(CommandEvent)

 <-CommandMappingPrimitive.afterExecute(CommandEvent)

 <-CommunicationNavigator.afterInternalExecution()

<-Command.execute(CommandEvent)

4 This is the place in the flow of the execution where the communication.connect() method would be
called when the ConnectionSpec is specified at the Navigator level (instead of being called in Commands
1). Examining the state of the CommandCommunicationPrimitive object's fields before and after the
beforeExecute() method in this case, can show problems that occurred during establishing a connection to
the back-end system, or incorrect settings of the values on the Command at the navigation level.

5 This is the place in the flow of the execution where the communication.disconnect() method would be
called when the ConnectionSpec is specified at the Navigator level (instead of being called in Commands
3). Examining the state of the CommandCommunicationPrimitive object's fields before and after the
afterExecute() method, can show problems that occurred during disconnecting from the back-end system.

244 CICS and IMS Application Adaptor

Setting Breakpoints in the VCE generated code

This section describes how to set Breakpoints in Commands and in Navigators.

Breakpoints in commands

Before you execute the command, you can examine its Input, Output, InteractionSpec, and possibly
ConnectionSpec fields. To verify the result of the execution of the Command, you can set the breakpoint
at the call to the Command execute() method. For the single Command run from the application, you
explicitly call this method, and therefore it can be easily located. While in the debugger, examining the
Command object before and after the execute() method, shows the changes to the Command's fields
resulting from the interaction with the back-end system, most importantly the Input and Output fields and
how they changed during the call to execute(). For example, sfollowing is the sample Command seen in
the debugger Value pane just before the execute() method is called:

 Appendix D. Help with Using VisualAge for Java 245

[com.ibm.ivj.eab.command.CommunicationCommand]

 FieldInput: Command's Input
 [[com.ibm.ivj.eab.sample.eci.adder.AdderRecord@c5c]

number: []

 notifyWhenContentsUpdated: [true]

 res: [ð]

 op2: [-44]

 op1: [33]

]

FieldOutput: Command's Output
 [[com.ibm.ivj.eab.sample.eci.adder.AdderRecord@c5c]

number: [] notifyWhenContentsUpdated: [true]

 res: [ð]

 op2: [-44]

 op1: [33]

]

fieldExpectedTriggerClass:

 [null]

ivjcommunicationHelper:

 [[com.ibm.ivj.eab.command.CommandCommunicationPrimitive]

 fieldInput:

 [[com.ibm.ivj.eab.sample.eci.adder.AdderRecord@c5c]

number: []

 notifyWhenContentsUpdated: [true]

 res: [ð]

 op2: [-44]

 op1: [33]

]

 fieldOutput:

 [[com.ibm.ivj.eab.sample.eci.adder.AdderRecord@c5c]

number: []

 notifyWhenContentsUpdated: [true]

 res: [ð]

 op2: [-44]

 op1: [33]

]

FieldConnectionSpec: Command's ConectionSpec
 [[com.ibm.connector.cics.CICSConnectionSpec@b1cfe2c2]

 URL: [lem]

 logonLogoff: []

 serverSecurityClassName: []

 minConnections: [ð]

 maxConnections: [ð]

 terminalModel: []

 clientSecurityClassName: []

class: [class com.ibm.connector.cics.CICSConnectionSpec]

 unusedTimeout: [ð]

 CICSServer: [ulysses]

 connectionTimeout: [ð]

 reapTime: [ð]

]

FieldInteractionSpec: Command's InteractionSpec
 [[com.ibm.connector.cics.ECIInteractionSpec@14ðb]

 identifier: [[B@1419]

 ECITimeout: [ð]

 userid: []

class: [class com.ibm.connector.cics.ECIInteractionSpec]

 password: []

246 CICS and IMS Application Adaptor

 programName: [adder]

 mode: [ð]

 CICSELUW: [false]

 TPNTransactionName: [false]

 transactionName: []

]

fieldCommunication:

 [null]

fieldDisconnectCommunication:

s [true]

fieldInternalBeforeAfter:

 [false]

fieldIsExternalCommunication:

 [false]

]

ivjmappingHelper:

 [[com.ibm.ivj.eab.command.CommandMappingPrimitive]

 fieldInput:

 [[com.ibm.ivj.eab.sample.eci.adder.AdderRecord@c5c]

number: []

 notifyWhenContentsUpdated: [true]

 res: [ð]

 op2: [-44]

 op1: [33]

]

 fieldOutput:

 [[com.ibm.ivj.eab.sample.eci.adder.AdderRecord@c5c]

 number: []

 notifyWhenContentsUpdated: [true]

 res: [ð]

 op2: [-44]

 op1: [33]

]

 objectMapperAssociations:

 [{}]

 fieldMappedObjects:

 null]

]

ivjobjectTransferHelper:

 [com.ibm.ivj.eab.command.CommandObjectTransferPrimitive@e61]

Breakpoints in Navigators

The same breakpoints as in the Command above should be used to verify the execution of the Navigator,
considering that in this case, the calls to the execute() methods of the Commands in the Navigator are
made from the VCE generated code. For the correctly constructed Navigators, these calls are made from
VCE methods named connEtoM1, connEtoM2, ..., reflecting connection of the event to the execute()
method.

Interpreting the call stack output

This section shows an example of a call stack and the information that can be extracted from it.

 Appendix D. Help with Using VisualAge for Java 247

ComponentId: 1ð7

ProcessssId: 693

ThreadId: 74ð

FunctioniName: mapException

ProbeId: 929

SourceId: 1.12 src/paat3-comm/com/ibm/ivj/communications/Registration.java

Manufacturer: IBM

Product: Component Broker

Version: 2.ð

SOMProcessType: 5

ServerName: testsrv

clientHostName:

clientUserId:

TimeStamp: 12/22/98 11:36:46.ð7389697ð

UnitOfWork: 9349:imfvt4

Severity: 2

Category: 2

FormatWarning: ð

PrimaryMessage: The function mapException:929 raised CORBA exception, error code is ðx2.

ExtendedMessage: "Mapping registration Exception: Stack Trace:

com.ibm.ivj.connmgr.ServerLimitExceededException

 at com.ibm.ivj.connmgr.PoolServerLimitsOnePerUserStrategy.queueRequest

(PoolServerLimitsOnePerUserStrategy.java:17ð)

 at com.ibm.ivj.connmgr.PoolServerLimitsOnePerUserStrategy.getConnection

(PoolServerLimitsOnePerUserStrategy.java:568)

 at com.ibm.ivj.connmgr.HODConnectionManager.getConnection(HODConnectionManager.java:168)

 at com.ibm.ivj.communications.Registration.connect(Registration.java:315)

 at com.ibm.som.communications.CBSessionRegistration.connect(CBSessionRegistration.java:151)

 at com.ibm.ivj.communications.Registration.getRegistration(Registration.java:898)

 at com.ibm.ivj.communications.Communication.connect(Communication.java:214)

 at com.ibm.ivj.eab.command.CommandCommunicationPrimitive.beforeExecute

(CommandCommunicationPrimitive.java:149)

 at com.ibm.ivj.eab.command.CommunicationNavigator.connEtoM3(CommunicationNavigator.java:235)

 at com.ibm.ivj.eab.command.CommunicationNavigator.beforeInternalExecution

(CommunicationNavigator.java:82)

 at com.ibm.ivj.eab.command.Command.fireBeforeInternalExecution(Command.java:252)

 at com.ibm.ivj.eab.command.Command.execute(Command.java:179)

 at com.ibm.ivj.eab.command.Command.execute(Command.java:153)

 at com.ibm.ivj.eab.command.CommunicationNavigator.execute(CommunicationNavigator.java:543)

 at paa.samples.ims.hod.pbe.PhoneBookPAO.insert(_PhoneBookPAOPOIFImpl.java:77)

 at _PhoneBookPAOPOIFImpl.insert(_PhoneBookPAOPOIFImpl.java:97)

 at _PhoneBookPAOPOIFSkelton.insert(_PhoneBookPAOPOIFSkelton.java:1ð7)

"

RawDataLen: ð

248 CICS and IMS Application Adaptor

Appendix E. Interchange Files within VisualAge for Java

With VisualAge for Java, there is more information required to represent the visually built navigations than
.java and .class files. If you only export the .java and .class files from VisualAge for Java and import these
files into another version of VisualAge for Java, some required information for visual representation is lost.
To correctly populate all the information required, you must create a repository (.dat) file from the
VisualAge for Java sample. You may need to Version or Edition the appropriate projects, packages, and
classes to create this repository file.

To export a file:

1. Select the package or project you want to export.

2. From the VisualAge for Java Workbench menu, select File → export .

3. Select an export destination by clicking the Repository radio button and then clicking Next .

4. In the Directory text entry field, type the file name of your repository file (for example, c:\filename.dat)
and then click Finish .

When you need to import a package that was exported or import a package that was previously created,
perform the following steps:

1. Create a new project (if you are importing a new project).

2. You can only import interchange (.dat) files directly into the repository. From the VisualAge for Java
Workbench menu, select File → import .

3. Select the interchange file and click Next .

4. Type the name of the interchange file and click Update .

5. Set the radio button for package or project depending on whether you exported a package or a
project.

6. Select the package you want to import and clicke Finish . This adds the p ackage to the repository.

7. Open the pop-up menu for the project and select Add Package , which opens the Add Package
wizard.

8. For this wizard:

� Select Add package(s) from the repository check box.
 � Click Browse .
� Browse for and select the correct packages.

You should see the package you just added to the repository under the specific project. If you do not see
this package, it could be associated with another project. If it is associated with another project, go to that
project and bring in the new version.

 Copyright IBM Corp. 1998 249

250 CICS and IMS Application Adaptor

 Appendix F. IMS Configuration

This appendix contains useful information for setting up IMS to be accessed from Component Broker.

Two idle IMS Message Processing Regions (MPRs) must be available for use by the IMS transactions
used by that Data Object (DO). If a Component Broker application uses 10 DOs that are in IMS, then 20
IMS regions (MPRs) are used by the Component Broker-initiated IMS transactions. Failure to have enough
MPRs available could cause some Component Broker DO requests to remain queued for execution within
IMS, preventing successful execution of the Component Broker application.

The IMS system definition (IMS gen stage 1) must include a TRANSACT macro defining the transaction code
used for the Component Broker DO request and this must have the MAXREGN and PARLIM operands
specified appropriately. MAXREGN must be greater than twice the number of DOs in IMS for the Component
Broker application and PARLIM must equal 0. You can also specify MAXREGN=ð which allows an arbitrary
number of regions to be used. The SCHDTYPE=PARALLEL operand must also be specified on the
corresponding APPLCTN definition.

The Component Broker application uses a distributed syncpoint. This causes the IMS transactions
representing the DOs to be idle but still scheduled in their dependent regions until the commit point is
reached for the entire application. The requirement to have a sufficient number of IMS MPRs available
stems from the need for all IMS transactions that are initiated by the single Component Broker application
instance to be concurrently executing. Having too few MPRs causes the Component Broker application
instance to be incomplete, because it must wait for a new MPR to start executing the DO. The application
programs making up the DO transactions in IMS are very light in resource usage compared to most IMS
transactions -- they are waiting much of the time. These new MPRs that must be added to the IMS system
(or existing ones reserved for use by the Component Broker applications) are less of a resource impact on
the performance and capacity of the IMS system than other MPRs. Their primary impact is in the use of
Real and Virtual storage with much less impact on CPU and IO workload. Storage tends to be plentiful on
newer computers, thus minimizing the impact of the additional storage being used.

The IMS transaction program implementing the Data Object access to IMS controlled data must by defined
with a suitable PROCOPT in the PSBGEN, and must issue suitable locking for the data segments being
processed. This is very important for distributed sync point to work correctly as the IMS data retrieval and
data update transactions need to sync together. IMS has added special processing to recognize all the
transactions that are part of the same distributed logical unit of work and automatically propagates the
locks from the first transaction to the second one in order to have a consistent unit of work and to prevent
deadlocks. This simplifies the application program responsibility for data access control but still leaves two
responsibilities:

� The processing option (PROCOPT parameter in PSBGEN)
� Locking of data by the retrieval transaction to prevent other updates

The exclusive processing option (PROCOPT=E) must never be specified for Component Broker transactions.
This option specifies that only one transaction accessing the database can run at a time, thus preventing
the second Component Broker transaction from being concurrently processed and reaching the
coordinated sync point. Almost always you should specify PROCOPT=A for both transactions (this allows all
update, insert, and delete activity). Using other processing options, particularly PROCOPT=GOx can result in
deadlock or waiting for locks held by other (non-Component Broker) transactions, and should be done only
after careful analysis of the impact. It is valid in some special situations but usually has undesirable
results.

The first transaction doing the IMS data retrieval should lock the data for update by issuing a GHU or
GHN call. The update is done by the second Component Broker update transaction and the locks obtained

 Copyright IBM Corp. 1998 251

by the GHx call are transferred to this second transaction as part of the special IMS support for distributed
sync points. This is a new function in IMS and is used only for transactions using distributed sync point
(LU 6.2 sync level of syncpt). Other transactions doing data retrieval continue to be prohibited from using
the hold form of get calls if you want to avoid lock interference and its adverse performance impact.

There is a possibility of deadlock or lock conflict for inserted data. This varies widely by database type and
definition (both logical and physical). In general, inserting data next to updated data is safe (the locking for
update will also implicitly lock the insert) but conflicts in free space access can still occur. Normal IMS
tuning and lock conflict diagnosis techniques apply with no special considerations needed for Component
Broker.

252 CICS and IMS Application Adaptor

 Appendix G. Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the information. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

 Copyright IBM Corp. 1998 253

IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been
made on development-level systems and there is no guarantee that these measurements will be the same
on generally available systems. Furthermore, some measurement may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

 Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,
or other countries, or both:

CICS
AIX
DB2
IBM
MVS/ESA
OS/2
OS/390
PowerPC
VisualAge

AFS and DFS are trademarks of Transarc Corporation in the United States, or other countries, or both.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Microsoft, Windows, and the Windows 95 logo are trademarks or registered trademarks of Microsoft
Corporation.

Oracle and Oracle8 are registered trademarks of Oracle Corporation.

254 CICS and IMS Application Adaptor

UNIX is a registered trademark in the United States and other countries licensed exclusively through
X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks of others.

 Appendix G. Notices 255

IBM

Part Number: C092703

Printed in U.S.A.

C
ð
9
2
7
ð
3

GCð9-27ð3-ð3

