
IBM
®

DB2
®

Universal Database

Administration Guide: Implementation

Version 7

SC09-2944-01

���

IBM
®

DB2
®

Universal Database

Administration Guide: Implementation

Version 7

SC09-2944-01

���

Before using this information and the product it supports, be sure to read the general information under
“Appendix M. Notices” on page 461.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book ix
Who Should Use This Book x
How This Book is Structured. x
A Brief Overview of the Other Volumes of the
Administration Guide. xii

Administration Guide: Planning xii
Administration Guide: Performance . . . xiii

Part 1. Administering Using the
Control Center. 1

Chapter 1. Administering DB2 Using GUI
Tools 3
Administration Tools 4
Common Tool Features. 6

Show SQL and Show Command 7
Show Related 7
Generate DDL. 8
Filter 9
Help 10

The Control Center. 11
Main Elements of the Control Center. . . 11
Using a Customized Control Center in DB2
for OS/390 12
Systems That Can Be Administered . . . 13
Objects that can be Administered 13
Displaying Systems in the Control Center 14
Managing DB2 for OS/390 Objects . . . 15
Adding DB2 for OS/390 Subsystems . . . 15
Managing Gateway Connections 16
Functions You Can Perform from the
Control Center 16
Creating New Objects 17
Working with Existing Objects 17
Locating Objects (DB2 for OS/390 only). . 18

The Satellite Administration Center 18
The Command Center. 19
The Script Center 20

Using an Existing Script with the Script
Center 21
Scheduling a Saved Command Script to
Run 21

The Journal 21
Working with Jobs 22

The License Center. 22
The Alert Center 23
Client Configuration Assistant 23
Performance Monitor 24

Event Monitor 25
Using the Monitor Tools 26
Monitoring Performance at a Point in Time 28
Predefined Monitors 29
Action Required When an Object Appears
in the Alert Center 31
Analyzing an Event for a Period of Time 31
Event Analyzer 32

Analyzing SQL Statements 34
Improving Performance of a Query . . . 34
Analyzing a Simple Dynamic SQL
Statement 35

Managing Remote Databases 36
Managing Users. 38

Granting and Revoking Authorities and
Privileges 38

Moving Data 39
Managing Storage 41

Estimating Table and Index Size 41
Checking Available Space in a Table Space 42
Adding More Space to a Table Space . . . 43

Troubleshooting 43
Replicating Data 44
Using Lightweight Directory Access Protocol 45
Using a Java Control Center 46

Running the Control Center as a Java
Applet 46

Using Your Java Tools for Administration . . 46

Part 2. Implementing Your Design 49

Chapter 2. Before Creating a Database . . 51
Prerequisites Before Creating a Database . . 52

Starting DB2 52
Starting DB2 UDB on Windows NT . . . 53
Using Multiple Instances of the Database
Manager 53
Organizing and Grouping Objects by
Schema 54
Enabling Parallelism 55

© Copyright IBM Corp. 1993, 2001 iii

Enabling Data Partitioning 57
Stopping DB2 59

Details on Creating a Database 60
Designing Logical and Physical Database
Characteristics 61
Creating an Instance 61
License Management 70
Establishing the Environment Variables
and the Profile Registry 70
Creating a DB2 Administration Server
(DAS) 78
Creating a Node Configuration File . . . 95
Creating the Database Configuration File 97
Replicating Configuration Information
Using Response Files 98
Enabling FCM Communications 98

Chapter 3. Creating a Database 101
Definition of Initial Nodegroups 103
Definition of Initial Table Spaces 103
Definition of System Catalog Tables 104
Definition of Database Directories 105

Local Database Directory 105
System Database Directory. 106
Node Directory 106

DCE Directory Services 107
Lightweight Directory Access Protocol
(LDAP) Directory Services 107
Creating Nodegroups 108
Definition of Database Recovery Log . . . 109
Binding Utilities to the Database 109
Cataloging a Database 109
Creating a Table Space 111

Creating a System Temporary Table Space 113
Creating a User Temporary Table Space 114
Creating Table Spaces in Nodegroups . . 114
Raw I/O 114

Creating a Schema 116
Setting a Schema 118

Creating and Populating a Table 118
Large Object (LOB) Column
Considerations 121
Defining Constraints 123
Defining a Generated Column on a New
Table 127
Creating a User-Defined Temporary Table 129
Defining an Identity Column on a New
Table 130
Creating a Sequence 131

Comparing IDENTITY Columns and
Sequences 133
Creating a Typed Table 133
Populating a Typed Table 133
Hierarchy Table 134
Creating a Table in Multiple Table Spaces 134
Creating a Table in a Partitioned Database 135

Creating a Trigger. 136
Trigger Dependencies 138

Creating a User-Defined Function (UDF) or
Method 138

Creating a Function Mapping 140
Creating a Function Template 140

Creating a User-Defined Type (UDT) . . . 142
Creating a User-Defined Distinct Type 142
Creating a User-Defined Structured Type 143
Creating a Type Mapping 143

Creating a View 144
Creating a Typed View 147

Creating a Summary Table 147
Creating an Alias 149
Creating a Wrapper 151
Creating a Server 152

Using Server Options to Help Define
Data Sources and Facilitate
Authentication Processing 153

Creating a Nickname 159
Referencing Nickname and Data Source
Objects 160
Working with Nickname and Data Source
Objects 160
Identifying Existing Nicknames and Data
Sources 160

Creating an Index, Index Extension, or an
Index Specification 161

Using an Index 165
Using the CREATE INDEX Statement . . 165

Creating a User-Defined Extended Index
Type 168

Details on Index Maintenance. 169
Details on Index Searching 169
Details on Index Exploitation 170
A Scenario for Defining an Index
Extension 171

Chapter 4. Altering a Database 175
Before Altering a Database 175

Changing Logical and Physical Design
Characteristics 175
Changing the License Information . . . 175

iv Administration Guide: Implementation

||

|
||

Changing Instances 175
Changing Environment Variables and the
Profile Registry Variables 179
Changing the Node Configuration File 179
Changing the Database Configuration . . 179

Altering a Database 181
Dropping a Database 181
Altering a Nodegroup 182
Altering a Table Space 182
Dropping a Schema 188
Modifying a Table in Both Structure and
Content 188
Altering a User-Defined Structured Type 204
Deleting and Updating Rows of a Typed
Table 204
Renaming an Existing Table 204
Dropping a Table 205
Dropping a User-Defined Temporary
Table 207
Dropping a Trigger 207
Dropping a User-Defined Function (UDF),
Type Mapping, or Method 207
Dropping a User-Defined Type (UDT) or
Type Mapping 208
Altering or Dropping a View 209
Dropping a Summary Table 210
Dropping a Wrapper 211
Altering or Dropping a Server 212
Altering or Dropping a Nickname . . . 213
Dropping an Index, Index Extension, or
an Index Specification 214
Statement Dependencies When Changing
Objects 215

Part 3. Database Security 219

Chapter 5. Controlling Database Access 221
Selecting User IDs and Groups for Your
Installation 221

Windows NT Platform Considerations 223
UNIX Platform Considerations 224
General Rules 224

Selecting an Authentication Method for Your
Server. 225
Authentication Considerations for Remote
Clients 230
Partitioned Database Considerations . . . 230
Using DCE Security Services to Authenticate
Users 231

How to Set up a DB2 User for DCE. . . 231

How to Setup a DB2 Server to Use DCE 233
How to Set up a DB2 Client Instance to
Use DCE. 235
DB2 Restrictions Using DCE Security . . 235

Federated Database Authentication
Processing 237

Authentication Settings 237
Passing User IDs and Passwords to Data
Sources 238
Federated Database Authentication
Example 240

Privileges, Authorities, and Authorization 242
System Administration Authority
(SYSADM) 244
System Control Authority (SYSCTRL) . . 245
System Maintenance Authority
(SYSMAINT) 246
Database Administration Authority
(DBADM) 247
LOAD Authority 247
Database Privileges 248
Schema Privileges. 249
Table Space Privileges 250
Table and View Privileges 251
Nickname Privileges 253
Server Privileges 254
Package Privileges 254
Index Privileges 255
Sequence Privileges 255

Controlling Access to Database Objects . . 255
Granting Privileges 256
Revoking Privileges 257
Managing Implicit Authorizations by
Creating and Dropping Objects 259
Establishing Ownership of a Plan or a
Package 259
Allowing Indirect Privileges Through a
Package 259
Allowing Indirect Privileges Through a
Package Containing Nicknames 260
Controlling Access to Data with Views 261
Monitoring Access to Data Using the
Audit Facility 264
Data Encryption 264

Tasks and Required Authorizations 266
Using the System Catalog 267

Retrieving Authorization Names with
Granted Privileges 268
Retrieving All Names with DBADM
Authority 268

Contents v

||

||

Retrieving Names Authorized to Access a
Table 268
Retrieving All Privileges Granted to Users 269
Securing the System Catalog Views . . . 270

Chapter 6. Auditing DB2 Activities . . . 273
Audit Facility Behavior 275
Audit Facility Usage Scenarios 277
Audit Facility Messages. 281
Audit Facility Record Layouts 282
Audit Facility Tips and Techniques 297
Controlling DB2 Audit Facility Activities . . 299

Part 4. Moving Data 303

Chapter 7. Utilities for Moving Data . . . 305

Part 5. Recovery 307

Chapter 8. Recovering a Database . . . 309

Part 6. Appendixes 311

Appendix A. Naming Rules 313
General Naming Rules 313
Object Naming Rules 313

Additional Information about Schema
Names 314
Additional Information about Passwords 316

Using Delimited Identifiers in Object Names 317
How Case-Sensitive Values Are Preserved in
a Federated System 317

Appendix B. Using Distributed Computing
Environment (DCE) Directory Services . . 319
Creating Directory Objects 319

Database Objects 320
Database Locator Objects 321
Routing Information Objects 322

Attributes of Each Object Class 324
Details About Each Attribute 325

Directory Services Security 329
Configuration Parameters and Registry
Variables 331
CATALOG and ATTACH Commands, and
the CONNECT Statement 332

CATALOG GLOBAL DATABASE
Command 332

CONNECT Statement 333
ATTACH Command 333

How a Client Connects to a Database . . . 333
Connecting to Databases in the Same Cell 335
Connecting to a Database in a Different
Cell 336

How Directories Are Searched 337
ATTACH Command 337
CONNECT Statement 338

Temporarily Overriding DCE Directory
Information 339
Directory Services Tasks 340

DCE Administrator Tasks 340
Database Administrator Tasks. 341
Database User Tasks 342

Directory Services Restrictions 343

Appendix C. User Exit for Database
Recovery 345

Appendix D. Issuing Commands to
Multiple Database Partitions 347
Commands 347

Command Descriptions 348
Specifying the Command to Run. . . . 349
Running Commands in Parallel on
UNIX-Based Platforms 350
Monitoring rah Processes on UNIX-Based
Platforms 351
Additional rah (Run All Hosts)
Information (Solaris and AIX Only) . . . 352

Prefix Sequences 352
Specifying the List of Machines 355

Eliminating Duplicate Entries from the
List of Machines 355

Controlling the rah Command 356
$RAHDOTFILES on UNIX-Based
Platforms 357
Setting the Default Environment Profile
on Windows NT 358

Determining Problems with rah on
UNIX-Based Platforms 359

Appendix E. How DB2 for Windows NT
Works with Windows NT Security . . . 361
A Sample Scenario with Server
Authentication: 362
A Sample Scenario with Client
Authentication and a Windows NT Client
Machine: 362

vi Administration Guide: Implementation

||

||

||
||
||
|
||
||
||
|
||

|
||

A Sample Scenario with Client
Authentication and a Windows 95 Client
Machine: 363
Using a Backup Domain Controller with
DB2 363
User Authentication with DB2 for Windows
NT. 364

User Name and Group Name Restrictions 364
DB2 for Windows NT Security Service 365
Installing DB2 on a Backup Domain
Controller 365
Authentication With Groups and Domain
Security 366

Appendix F. Using the Windows NT
Performance Monitor 369
Registering DB2 with the Windows NT
Performance Monitor 369
Enabling Remote Access to DB2 Performance
Information 370
Displaying DB2 and DB2 Connect
Performance Values 370
Accessing Remote DB2 Performance
Information 372
Resetting DB2 Performance Values 372

Appendix G. Working with Windows NT
or Windows 2000 Database Partition
Servers 375
Listing Database Partition Servers in an
Instance 375
Adding a Database Partition Server to an
Instance 375
Changing the Database Partition 377
Dropping a Database Partition From an
Instance 378

Appendix H. Configuring Multiple Logical
Nodes 381

Appendix I. High Speed Inter-Node
Communications 383
High Speed Interconnection Using TCP/IP 384

Prerequisites for Using an IBM Netfinity
SP Switch 384

High Speed Interconnection Using VI . . . 385
Virtual Interface (VI) Hardware Setup . . 386
Enabling DB2 to Run Using VI 393

Appendix J. Lightweight Directory Access
Protocol (LDAP) Directory Services . . . 395
Supporting LDAP Client and Server
Configurations 395

Support for Windows 2000 Active
Directory. 396

Configuring DB2 to Use Active Directory 397
Configuring DB2 in the IBM LDAP
Environment 397

Creating an LDAP User 398
Configuring the LDAP User for DB2
Applications 399

Registration of DB2 Servers After Installation 399
Update the Protocol Information for the DB2
Server. 401
Catalog a Node Alias for ATTACH 401
Deregistering the DB2 Server 402
Registration of Databases 402
Attaching to a Remote Server 402
Deregistering the Database. 403
Refreshing LDAP Entries in Local Database
and Node Directories 403
Searching 405
Registering Host Databases 405
Setting DB2 Registry Variables at the User
Level 407
Enabling LDAP Support After Installation is
Complete 407
Disabling LDAP Support 408
LDAP Support and DB2 Connect 408
Security Considerations 408

Security Considerations for Windows
2000 Active Directory 409

Extending the Directory Schema with DB2
Object Classes and Attributes 410

Extending the Directory Schema for IBM
eNetwork Directory Version 2.1 411
Extending the Directory Schema for
Windows 2000 Active Directory 411
DB2 Objects in the Windows 2000 Active
Directory. 413
Object Classes and Attributes Used by
DB2 413

Appendix K. Extending the Control Center 427
Performance Considerations 427
Packaging Considerations 427
Interface Descriptions 427

CCExtension 428
CCObject 429

Contents vii

||

CCMenuAction 432
CCToolBarAction 432

Usage Scenario. 433
MyExtension.java 434
MySample.java. 434
MyDatabaseActions.java 435
MyInstance.java 435
MyDB2.java. 436
MyDatabases.java 437
MySYSPLAN.java. 437
MyTable.java 438
MyDBUser.java 439
MyToolbarAction.java 439
MyAlterAction.java 440
MyAction.java 440
MyDropAction.java 440
MyCascadeAction.java 441
MyCreateAction.java 441

Appendix L. Using the DB2 Library . . . 443

DB2 PDF Files and Printed Books 443
DB2 Information 443
Printing the PDF Books 452
Ordering the Printed Books 453

DB2 Online Documentation 454
Accessing Online Help 454
Viewing Information Online 456
Using DB2 Wizards 458
Setting Up a Document Server 459
Searching Information Online 460

Appendix M. Notices 461
Trademarks 464

Index 467

Contacting IBM 477
Product Information 477

viii Administration Guide: Implementation

About This Book

The Administration Guide in its three volumes provides information necessary
to use and administer the year 2000 ready, DB2* relational database
management system (RDBMS) products, and includes:
v Information about database design (found in Administration Guide: Planning)
v Information about implementing and managing databases (found in

Administration Guide: Implementation)
v Information about configuring and tuning your database environment to

improve performance (found in Administration Guide: Performance).

Many of the tasks described in this book can be performed using different
interfaces:
v The Command Line Processor, which allows you to access and manipulate

databases from a graphical interface. From this interface, you can also
execute SQL statements and DB2 utility functions. Most examples in this
book illustrate the use of this interface. For more information about using
the command line processor, see the Command Reference.

v The application programming interface, which allows you to execute DB2
utility functions within an application program. For more information about
using the application programming interface, see the Administrative API
Reference.

v The Control Center, which allows you to graphically perform
administrative tasks such as configuring the system, managing directories,
backing up and recovering the system, scheduling jobs, and managing
media. The Control Center also contains Replication Administration to
graphically set up the replication of data between systems. Further, the
Control Center allows you to execute DB2 utility functions through a
graphical user interface. There are different methods to invoke the Control
Center depending on your platform. For example, use the db2cc command
on a command line, (on OS/2) select the Control Center icon from the DB2
folder, or use start panels on Windows platforms. For introductory help,
select Getting started from the Help pull-down of the Control Center
window. The Visual Explain and Performance Monitor tools are invoked
from the Control Center.

There are other tools that you can use to perform administration tasks. They
include:
v The Script Center to store small applications called scripts. These scripts

may contain SQL statements, DB2 commands, as well as operating system
commands.

© Copyright IBM Corp. 1993, 2001 ix

v The Alert Center to monitor the messages that result from other DB2
operations.

v The Tool Settings to change the settings for the Control Center, Alert
Center, and Replication.

v The Journal to schedule jobs that are to run unattended.
v The Data Warehouse Center to manage warehouse objects.

Who Should Use This Book

This book is intended primarily for database administrators, system
administrators, security administrators and system operators who need to
design, implement and maintain a database to be accessed by local or remote
clients. It can also be used by programmers and other users who require an
understanding of the administration and operation of the DB2 relational
database management system.

How This Book is Structured

This book contains information about the following major topics:

Administering Using the Control Center

v Chapter 1. Administering DB2 Using GUI Tools, introduces the graphical
user interface (GUI) tools used to administer the database.

Implementing Your Design

v Chapter 2. Before Creating a Database, describes the prerequisites needed
before creating a database and the objects within a database.

v Chapter 3. Creating a Database, decribes the tasks associated with creating a
database and the objects within a database.

v Chapter 4. Altering a Database, describes the prerequisites and the tasks
associated with altering or dropping a database and the objects within a
database.

Database Security

v Chapter 5. Controlling Database Access, describes how you can control
access to your database’s resources.

v Chapter 6. Auditing DB2 Activities, describes how you can detect and
monitor unwanted or unanticipated access to data.

Moving Data

v Chapter 7. Utilities for Moving Data, describes the Load, AutoLoader,
Import and Export utilities.

x Administration Guide: Implementation

|
|

|
|

|
|

|
|
|

|
|

Recovery

v Chapter 8. Recovering a Database, describes factors to consider when
choosing database and table space recovery methods. Recovery tasks
include backing up and restoring a database or table space, and using
roll-forward recovery.

Appendixes

v Appendix A. Naming Rules, presents the rules to follow when naming
databases and objects.

v Appendix B. Using Distributed Computing Environment (DCE) Directory
Services, provides information about how you can use DCE Directory
Services.

v Appendix C. User Exit for Database Recovery, discusses how user exit
programs can be used with database log files and describes some sample
user exit programs.

v Appendix D. Issuing Commands to Multiple Database Partitions, discusses
the use of the db2_all and rah shell scripts to send commands to all
partitions in a partitioned database environment.

v Appendix E. How DB2 for Windows NT Works with Windows NT Security,
describes how DB2 works with Windows NT security.

v Appendix F. Using the Windows NT Performance Monitor, describes the
two performance monitors available to DB2 for Windows NT users: the DB2
Performance Monitor, and the Windows NT Performance Monitor.

v Appendix G. Working with Windows NT or Windows 2000 Database
Partition Servers, describes the utilities used by Windows NT and Windows
2000 to work with partitioned database servers.

v Appendix H. Configuring Multiple Logical Nodes, describes how to
configure multiple logical nodes in a partitioned database environment.

v Appendix I. High Speed Inter-Node Communications, describes how to
enable Virtual Interface Architecture for use with DB2 Enterprise - Extended
Edition in the Windows NT environment.

v Appendix J. Lightweight Directory Access Protocol (LDAP) Directory
Services, provides information about how you can use LDAP Directory
Services.

v Appendix K. Extending the Control Center, provides information about how
you can extend the Control Center by adding new tool bar buttons
including new actions, adding new object definitions, and adding new
action definitions.

v Appendix L. Using the DB2 Library, provides information about the
structure of the DB2 library, including wizards, online help, messages, and
books.

About This Book xi

|
|
|
|

|
|
|

A Brief Overview of the Other Volumes of the Administration Guide

Administration Guide: Planning
The Administration Guide: Planning is concerned with database design. It
presents logical and physical design issues; distributed transaction issues; and
high availability topics. The specific chapters and appendixes in that volume
are briefly described here:

The World of DB2 Universal Database

v ″Administering DB2 Universal Database″ presents an introduction to, and
an overview of, DB2 Universal Database.

Database Concepts

v ″Basic Relational Database Concepts″ presents an overview of database
objects, including recovery objects, storage objects, and system objects.

v ″Federated Systems″ discusses federated systems, which are database
management systems (DBMSs) that support applications and users
submitting SQL statements referencing two or more DBMSs or databases in
a single statement.

v ″Parallel Database Systems″ provides an introduction to the types of
parallelism available with DB2.

v ″About Data Warehousing″ provides an overview of data warehousing and
data warehousing tasks.

v ″About Spatial Extender″ introduces Spatial Extender by explaining its
purpose and discussing the data that it processes.

Database Design

v ″Logical Database Design″ discusses the concepts and guidelines for logical
database design.

v ″Physical Database Design″ discusses the guidelines for physical database
design, including considerations related to data storage.

Distributed Transaction Processing

v ″Designing Distributed Databases″ discusses how you can access multiple
databases in a single transaction.

v ″Designing for Transaction Managers″ discusses how you can use your
databases in a distributed transaction processing environment, such as
CICS.

High Availability Systems

v ″Introducing High Availability and Failover Support″ presents an overview
of the high availability failover support that is provided by DB2.

xii Administration Guide: Implementation

|
|

Appendixes

v ″Planning Database Migration″ describes information about migrating
databases to Version 7.

v ″Incompatibilities Between Releases″ describes the incompatibilities
introduced from release to release up to, and including, Version 7.

v ″National Language Support (NLS)″ describes DB2 National Language
Support, including information about countries, languages, and code pages.

Administration Guide: Performance
The Administration Guide: Performance is concerned with performance issues;
that is, those topics and issues concerned with establishing, testing, and
improving the performance of your application, and that of the DB2 Universal
Database product itself. The specific chapters and appendixes in that volume
are briefly described here:

Introduction to Performance

v ″Elements of Performance″ introduces concepts and considerations for
managing and improving DB2 UDB performance.

v ″Architecture and Processing Overview″ introduces underlying DB2
Universal Database architecture and processes.

Tuning Application Performance

v ″Application Considerations″ describes some techniques for improving
database performance when designing your applications.

v ″Environmental Considerations″ describes some techniques for improving
database performance when setting up your database environment.

v ″System Catalog Statistics″ describes how statistics about your data can be
collected and used to ensure optimal performance.

v ″Understanding the SQL Compiler″ describes what happens to an SQL
statement when it is compiled using the SQL compiler.

v ″SQL Explain Facility″ describes the Explain facility, which allows you to
examine the choices the SQL compiler has made to access your data.

Tuning and Configuring Your System

v ″Operational Performance″ describes an overview of how the database
manager uses memory and other considerations that affect run-time
performance.

v ″Using the Governor″ describes an introduction to the use of a governor to
control some aspects of database management.

v ″Scaling Your Configuration″ describes some considerations and tasks
associated with increasing the size of your database systems.

About This Book xiii

|
|

|
|

|
|

|
|
|

|
|

|
|

v ″Redistributing Data Across Database Partitions″ discusses the tasks
required in a partitioned database environment to redistribute data across
partitions.

v ″Benchmark Testing″ presents an overview of benchmark testing and how
to perform benchmark testing.

v ″Configuring DB2″ discusses the database manager and database
configuration files and the values for the configuration parameters.

Appendixes

v ″DB2 Registry and Environment Variables″ describes profile registry values
and environment variables.

v ″Explain Tables and Definitions″ describes the tables used by the DB2
Explain facility and how to create those tables.

v ″SQL Explain Tools″ describes how to use the DB2 explain tools: db2expln
and dynexpln.

v ″db2exfmt — Explain Table Format Tool″ describes how to use the DB2
explain tool to format the explain table data.

xiv Administration Guide: Implementation

|
|

|
|

|
|

|
|

|
|

Part 1. Administering Using the Control Center

© Copyright IBM Corp. 1993, 2001 1

2 Administration Guide: Implementation

Chapter 1. Administering DB2 Using GUI Tools

DB2 Universal Database provides graphical user interface (GUI) tools to help
you administer local and remote databases easily from one central location
called the Control Center.

This chapter presents an overview of the DB2 Universal Database
administration tools that are available to you and explains how you can use
them to get your job done easily and efficiently. It also gives you a summary
of the Java Control Center and how you can customize the Control Center to
include your own Java-enabled tools.

This chapter provides information on:
v “Administration Tools” on page 4
v “Common Tool Features” on page 6
v “The Control Center” on page 11
v “The Satellite Administration Center” on page 18
v “The Command Center” on page 19
v “The Script Center” on page 20
v “The Journal” on page 21
v “The License Center” on page 22
v “The Alert Center” on page 23
v “Client Configuration Assistant” on page 23
v “Performance Monitor” on page 24
v “Managing Remote Databases” on page 36
v “Managing Users” on page 38
v “Moving Data” on page 39
v “Managing Storage” on page 41
v “Troubleshooting” on page 43
v “Replicating Data” on page 44
v “Using Lightweight Directory Access Protocol” on page 45
v “Using a Java Control Center” on page 46
v “Using Your Java Tools for Administration” on page 46

© Copyright IBM Corp. 1993, 2001 3

|
|
|

Administration Tools

The tools for administering DB2 are part of the Administration Client, a
selectable component with most of the DB2 Universal Database products. The
Administration Client is also available on a set of CD-ROMs that include the
Administration Clients for all the operating systems on which DB2 is
available. They allow you to install and use the Administration Client on any
workstation: It does not matter whether your database servers are local or
remote, or what operating system the database servers are running on. The
tools enable you to perform the same functions from a Graphical User
Interface as you could from the Command Line Processor. These functions
include the entering of DB2 commands, SQL statements, or system
commands. With the tools, however, you do not have to remember complex
statements or commands and you get additional assistance.

Note: The Administration Client is an installation option.

The following tools are available from the Control Center toolbar:
v The Control Center. The Control Center is the main DB2 graphical tool for

administering your database. From the Control Center, you get a clear
overview of all the systems and database objects that are cataloged locally.

v The Satellite Administration Center. The Satellite Administration Center
allows you to administer DB2 Satellite servers.

v The Command Center. The Command Center enables you to issue DB2
database commands, SQL statements, and operating system commands;
recall previous commands; and scroll through access plans for SQL queries.

v The Script Center. The Script Center enables you to create, run and
schedule operating system commands, DB2 command scripts, and SQL
statement scripts.

v The Alert Center. The Alert Center notifies you when thresholds that you
have set have been exceeded or when a node in a multinode environment
is no longer responding.

v The Journal. The Journal allows you to view the status of jobs, reschedule
jobs, and to view the recovery history log and messages log.

v The Information Center. The Information Center gives you quick access to
the information in the DB2 product manuals and sample programs and
provides access to other sources of DB2 information on the Web.

v The License Center. The License Center displays the status of your license
as well as allowing you to configure your system for proper license
monitoring.

For some functions that you can perform with the GUI tools, you are given
the option of using a Wizard. Wizards are invoked from the pop-up menus in
the Control Center. They provide a greater level of help by prompting you

4 Administration Guide: Implementation

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

step-by-step on how to fill in the information necessary for the task you are
doing and even making calculations and recommendations based on
information you supply. Wizards are very useful if you are a new database
administrator or someone who only administers a database occasionally.

In DB2 Universal Database, the following Wizards exist:
v Backup Database. This asks you basic questions about the data in the

database, the availability of the database, and recoverability requirements. It
then suggests a backup plan, creates the job script, and schedules it. To
invoke the Backup Database Wizard, select the icon representing the
database you want to backup, click the right mouse button, and select
Backup —> Database using Wizard.

v Create Database. This Wizard allows you to create a database, assign
storage, and select basic performance options. To invoke the Create
Database Wizard, select the Databases icon, click the right mouse button,
and select Create —> Database using Wizard.

v Create Table. This Wizard helps you to design columns using predefined
column templates, create a primary key for the table, and assign the table to
one or more table spaces. To invoke the Wizard, select the Tables icon, click
the right mouse button, and select Create —> Table using Wizard.

v Create Table Space. This Wizard lets you create a new table space and set
basic storage and performance options. To invoke it, select the Table Space
icon, click the right mouse button, and select Create —> Table space using
Wizard.

v Create Index. Use this Wizard to determine which indexes to create or drop
for a given set of SQL statements. The recommendations are based on the
workload that you specify. To invoke the Create Index Wizard, select the
Indexes folder, click the right mouse button, and select Create —> Index
using Wizard.

v Performance Configuration. This Wizard helps you tune databases by
requesting information about the database, its data, and the purpose of the
system. It then recommends new configuration parameters for the database
and instance and automatically applies them if you wish. To invoke this
Wizard, select the icon for a database, click the right mouse button, and
select Configure using Wizard.

v Restore Database. This Wizard walks you through the process of recovering
a database. To invoke the Wizard, select the icon for a database, click the
right mouse button, and select Restore —> Database using Wizard.

v Configure Multisite Update. This Wizard lets you configure databases to
enable applications to update multiple sites simultaneously. Doing this is
important when the data at all the sites must be consistent. To invoke this
Wizard, select an instance, click the right mouse button, and select
Multisite Update —> Configure using Wizard.

Chapter 1. Administering DB2 Using GUI Tools 5

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

Note: Wizards do not exist for the DB2 for OS/390 subsystem.

Besides the graphical tools that you can invoke from the Control Center
toolbar, there are some additional GUI tools that are not invoked directly from
the Control Center toolbar.
v Performance Monitor. Performance Monitor is a tool to monitor DB2 objects

such as instances, databases, tables, table spaces, and connections. You use
this tool to detect performance problems and tune databases for optimum
performance. The Performance Monitor is invoked as a selection on the
pop-up menus in the Control Center.

v Event Monitor. Event Monitor is a tool that lets you analyze resource usage
by recording the state of the database at the time specific events occur. An
Event Monitor is created by typing db2emcrt from a DB2 command line.

v Event Analyzer. Event Analyzer is a tool that allows you to analyze the
data collected by the Event Monitor. An Event Analyzer is invoked by
typing db2evmon from a DB2 command line.

v Visual Explain. The visual explain function lets you view the access plan for
SQL statements as a graph so that you can tune your SQL queries for better
performance. Prior to Version 6, you used the Visual Explain tool to view
the access plans. Now, Visual Explain is no longer a separate tool; the
function is available on pop-up menus from various database objects in the
Control Center, and also from the Command Center.

In addition to these tools, another useful tool for database administration that
is not part of the Control Center is the Client Configuration Assistant. The
Client Configuration Assistant is a tool that contains Wizards to help users set
up clients to communicate with remote servers.

All these tools are described in greater detail later on. The following section
gives an overview of features found in the tools.

Common Tool Features

The following features are available in several tools:
v Show SQL and Show Command
v Show Related
v Generate DDL
v Filter
v Help

6 Administration Guide: Implementation

|
|
|
|
|
|

|

|

|

|

|

Show SQL and Show Command
If a tool generates SQL statements, then the Show SQL push button will be
available on the tool interface. Similarly, a tool that generates DB2 commands
will have a Show Command push button available. Clicking one of these
push buttons allows you to:
v See the SQL statements or DB2 commands that the tool generates based on

the choices you made in the graphical interface. This information helps you
to understand how the interface is working.

v Save the statements or commands as a script for future reuse. This
capability saves you from having to retype the SQL statements or DB2
commands if you want to run the same statements or commands again.
Once the SQL statements or DB2 commands have been saved in a script,
you can schedule the script, or edit the script to make changes, or create
similar scripts without having to retype the statements or commands.

To show the SQL statements or DB2 commands:
1. From the Control Center, go to a window or notebook for working with a

tool that generates SQL statements or DB2 commands. The Show SQL
push button or the Show Command push buttom is shown as available.

2. Click on the Show SQL push button or Show Command push button. The
appropriate window opens.

Saving SQL statements and DB2 commands is particularly helpful if the SQL
statements or DB2 commands are complex.

When you use the Show Command or Show SQL push buttons, you can
either create new scripts which you can later edit, or you can close the dialog
box to return to the original dialog to make changes. If you click the Create
Script push button, the New Command Script window appears. There you
can edit the SQL statements or the DB2 commands before saving the script.

Show Related
Show Related shows the immediate relationship between tables, indexes,
views, aliases, triggers, table spaces, User Defined Functions, and User
Defined Types. For example, if you select a table and you choose to show
related views, you only see any views that are based directly on the table. You
would not see any views that are based on the related views because those
views were not created directly from the table.

Showing related objects helps you to:
v Understand the structure of the database.
v Determine what indexes already exist for a table.
v Determine what objects are stored in a table space.

Chapter 1. Administering DB2 Using GUI Tools 7

|
|
|
|

|
|
|

|
|
|
|
|
|

|

|
|
|

|
|

|
|

|
|
|
|
|

v Know what other objects are related to an object and are therefore affected
by any actions you may take. For example, if you want to drop a table with
dependent views, Show related shows you which views will become
inoperative.

To use the Show Related feature:
v From the Control Center, select an object from the Contents pane and click

the right mouse button.
v Select Show Related

v Click on the tab to open the page for the related objects you want. Different
related objects are listed depending on the tab you select. Only objects that
are directly related to the object that you have selected are shown.
You can click the right mouse button on a related object on the selected
Page and select Show Related from the pop-up menu. The selected Page
changes to show the objects related to your latest selection. You can also
click on the down arrow next to the selected object to display a list of
objects you previously selected to show relationships.

v Click Close to close the Show Related notebook and return to the Control
Center.

Generate DDL
The Generate DDL function allows you to re-create and save in a script file
the DDL and SQL statements and statistics of:
v Database objects
v Authorization statements
v Table spaces, nodegroups and buffer pools
v Database statistics

This allows you to:
v Save the DDL to create identically defined tables, databases, and indexes in

another database, for example, for a database warehouse application
v Use the DDL to copy a database from the test environment to a production

environment or from one system to another
v Edit the DDL to create similar objects

Clicking the Generate DDL push button brings up the Show Command
window with statements generated by a utility known as the db2look utility.
From the Show Command window, you can click the Save Script push button
to save the statements. The statements are put into a script. If you click the
Generate button, the Run Script window opens.

Note: Generating DDL statements is different when working with the Control
Center for System 390. See the help information for specifics on those
differences.

8 Administration Guide: Implementation

|
|
|
|
|

You can select whether you want to generate DDL statements for selected
schemas or all schemas within the database. You can then edit the script if
you want to make changes before you use the script in a production
environment. To create identical databases using the generated DDL
statements, you would simply use the script which you generated and run it
in the new environment.

To generate DDL statements:
1. Highlight the object for which you want to generate DDL statements, and

click the right mouse button.
2. Select Generate DDL. The Run script window appears.
3. Type a user ID and password, and click OK. A job is created with the

contents of the db2look command. A DB2 message window appears with
the job ID of the new job.

4. Click on OK to close the message window.
5. Use the Job History page of the Journal notebook to view the results of the

job and to view the contents of a saved script associated with the job.
6. Select the job and click the right mouse button. Select Show Results from

the pop-up menu. The Job Results window opens. The output of the
db2look command is shown in the Job Output pane.

7. Select Create Script to create a script of the results. The New Command
Script window appears.

8. Save the new script if you want to use it again.

Filter
In the Control Center, you can filter information that is displayed in the
Contents pane, or you can filter information that is retrieved from a table as
an actual result set. You can limit the number of objects that are displayed or
the number of objects that are returned by creating filters for one or more
objects. Once you have set the filter, you need to clear or delete the filter if
you want to display all the objects in the tree once again.

Filtering the Display
To reduce the number of objects that appear in the Contents pane for more
manageable administration:
1. Select the Filter icon from the Contents pane toolbar, located at the bottom

of Control Center, or select Filter from the View menu bar.
2. Select the criteria to be used to reduce the number of objects.
3. Select the Enable filter checkbox to activate the filter.

When you later select an object to view its contents, the filter you have
associated with the object limits the view according to the criteria you set
earlier.

Chapter 1. Administering DB2 Using GUI Tools 9

Filtering Retrieved Data
To reduce the number of rows returned in a query and improve the response
time, you can define the output, or the result set that shows in the Contents
pane when selecting an object.
1. Select a folder object from the tree and click the right mouse button.
2. From the pop-up menu, select Filter. The Filter window opens.
3. Use the Filter function to define a set of criteria for retrieving rows

belonging to that object.

Defining a Filter to Retrieve a Specific Set of Data
To define a filter to retrieve a specific set of data:
1. From the Control Center, expand either the Databases or Subsystems

folders depending on your platform.
2. Select an object for which you want to define the filter. Click the right

mouse button on that object.
3. Select Filter from the popup menu. This opens the Filter notebook.
4. On the Locate page, specify the name or other descriptive filter criteria of

the selected object. The result of the filter is the results set associated with
the selected object shown in the Contents pane of the Control Center.

5. On the Locate page, select a radio button to specify whether to meet all
the conditions selected in the fields on the Locate page or to meet at least
one condition.

6. On the Advanced page of the Filter notebook, you can use additional
criteria by editing the text that is shown to further limit the number of
returned rows.

7. Click OK to use the filter criteria you defined.

To automatically invoke this filter notebook based on numbers of rows, select
Tools from the menu bar, and select Tools Settings from the popup menu. The
Select filtering when numbers of row exceeds checkbox allows you to
predefine a threshold of returned rows from any selection. When the
threshold is reached, the Filter notebook appears so that you can limit the
current retrieval based on the defined criteria. This is especially useful when a
table has grown unexpectedly and was previously unfiltered. Depending on
your platform, and your data, you could be attempting to return millions of
rows, when you need only a subset of rows.

Help
Extensive help information is provided with the administration tools. A help
button exists on all windows and notebooks as well as on the menu toolbar.
You can get general help as well as help on how to fill out the fields and
perform tasks. From the help menus, you can also access the index of terms or
the reference information and the information provided in the product
manuals.

10 Administration Guide: Implementation

|
|
|
|
|
|

The Control Center

Use the Control Center as your main point of administration to manage
systems, DB2 instances, databases, database objects, such as tables, views, and
user groups. You can also use the Control Center to access DB2 for OS/390
subsystems. All DB2 databases must be cataloged before they appear in the
Control Center. The Figure 1 shows the primary features of the Control Center.
Because of operating system differences, the Control Center on your system
may appear different from the diagram.

Main Elements of the Control Center
The main elements of the Control Center are:
v Menu Bar. The menu bar is at the top of the screen. Selecting a menu from

the menu bar allows you to perform many functions, such as shutting
down the DB2 tools, accessing the graphical tools, and getting access to
online help and product information. You should familiarize yourself with
these functions by clicking on each item on the menu bar.

Icons for other tools

Control
Center
Toolbar

Object
Tree
Pane

Menu bar

Contents
Pane

Contents Pane Toolbar

Figure 1. Control Center Features

Chapter 1. Administering DB2 Using GUI Tools 11

v Control Center Toolbar. Icons for the Control Center and the other tools are
located on the Control Center toolbar. Hover help identifies each icon when
the cursor is placed over the icon.
You can change the settings for these tools by selecting the Tools Settings
icon from the Control Center toolbar.

v Object Tree. The object tree is located on the left pane of the screen. It
displays icons for all the database servers and objects that you can manage
from the Control Center. You must first catalog a remote database server
before it appears in the Object Tree pane. Some objects in the Object Tree
pane contain other objects. A plus sign (+) to the left of the object indicates
that the object is collapsed. You can expand it by clicking the plus sign. A
minus sign (−) appears to the left of an object when it has been expanded.
To collapse the object, click the minus sign.

v Contents Pane. The Contents pane is located on the right pane of the
screen. This pane shows all the objects that are contained in the selected
object in the Object Tree pane, for example, if you select the tables folder in
the Object Tree pane, all your tables show up in the Contents pane. If you
select the databases folder, the Contents pane changes to show all
databases. You can filter the columns that appear in the Contents pane by
clicking the Filter icon in the Contents pane toolbar and specifying the
required information or you can filter objects by selecting Tools on the
toolbar and then Tools Settings. You must ensure that the Enable Filter
check box is selected in the Contents Pane filter dialog.

v Contents Pane Toolbar. This toolbar appears at the bottom of the Contents
pane. It allows you to tailor the information in the Contents pane. This
toolbar is a common control which appears at the bottom or to the side of
most detailed views throughout the product.

When working in the Control Center you may see that some fields are
highlighted by a bold red border. This border indicates that this is a
mandatory field requiring input from you. Once you have selected a value or
entered a value, the red border will disappear.

Using a Customized Control Center in DB2 for OS/390
Use the Customized Control Center on the DB2 for OS/390 platform as your
own defined point of administration to manage subsystems, databases, or
database objects, such as tables, views, and database users. You can use this
Customized Control Center to access any DB2 for OS/390 objects that you
define.

The main elements of the Customized Control Center are the same as those
listed for the default Control Center. The Customized Control Center allows
you to specify objects that you want to include in a personalized Control
Center. This user-defined tree can be saved and invoked to administer DB2
objects. It does not replace the Control Center tree, which is the default for all

12 Administration Guide: Implementation

|
|
|
|
|
|
|
|

users, but is useful if you want to access a set of objects in the same way each
time the Control Center is invoked. You can create as many customized trees
as you need, and each one can contain a different set of objects, which can be
ordered in any way that you choose.

Using a customized tree reduces the effort of navigating through a fixed
hierarchy of DB2 objects, and provides a method of grouping related objects.
For example, you can define a tree that contains only tables with payroll
information.

Systems That Can Be Administered
From the Control Center, you can administer database objects for the DB2
Universal Database family of products for OS/2, Windows, and UNIX
platforms. Refer to the Quick Beginnings books for your platform-specific
installation and setup information.

You can also replicate data from DB2 for AS/400, DB2 for VSE and VM
systems, and DB2 for OS/390 to the DB2 Universal Database family of
products. Refer to the Replication Guide and Reference manual for information
on replication between products.

Objects that can be Administered
If you want to administer objects from the Control Center, you must add them
to the object tree. If you remove a database, or uncatalog it outside of the
Control Center, and you want to use the Control Center to perform tasks on
it, you must add it to the object tree.

The DB2 Universal Database objects that you can administer from the Control
Center are:
v Systems
v Instances
v Tables
v Views
v Indexes
v Triggers
v User-defined types
v User-defined functions
v Packages
v Aliases
v Replication Objects
v Users and Groups

Chapter 1. Administering DB2 Using GUI Tools 13

The DB2 for OS/390 Version 5 objects that you can administer from the
Control Center are:
v Buffer Pools
v Views
v Catalog Tables
v Storage Groups
v Aliases
v Synonyms
v DB2 Users
v Locations
v Application Objects (Collections, Packages, Plans, Procedures)
v Databases
v Tables
v Table Spaces
v Indexes
v Replication Source
v Replication Subscriptions

For DB2 for OS/390 Version 6, the objects you can administer from the
Control Center are all of the objects mentioned for Version 5, plus:
v Schemas
v Triggers
v User Defined Functions
v Distinct Types

To see what actions can be performed on each of these objects, select the
object in the Object pane and click the right mouse button. A pop-up window
appears listing the functions.

Displaying Systems in the Control Center
To display all of the systems that are cataloged on your system and which
have DB2 installed:
1. Expand the Object Tree by clicking the plus sign (+) beside Systems. Icons

representing the local machine and any remote machines are displayed.
Your local system is represented by the Local icon. It only appears if the
local machine is a DB2 server. If you click the right mouse button on the
Local icon, one of the options in the pop-up menu is called Attach to
administration server. The Administration Server lets you take advantage
of functions such as performance monitoring and scheduling. It is used by
the DB2 administration tools to satisfy DB2 service requests and it is
automatically created and started for you. The default name for the DB2

14 Administration Guide: Implementation

Administration Server varies by platform. For example, on Windows and
OS/2 platforms, “DB2DAS00” is used; on AIX “db2as” is used.

2. Expand the Local icon. The instance of DB2 on the local machine is
displayed in a tree structure.
On OS/2, Windows and supported DB2 UNIX-based systems, you can
think of each copy of the database manager code as a separate instance,
that is stored in a directory on your machine. On DB2 for OS/390, an
instance is referred to as a subsystem. A default local instance is created
when you install DB2. You can have several instances on a single system.
You can use these instances to separate the development environment
from the production environment, or to restrict sensitive information to a
particular group of people. You can also tune an instance for a particular
environment.

3. Expand the Instances icon. For each database that exists, an icon and the
name are displayed.

Managing DB2 for OS/390 Objects
Using the Control Center, you can perform many of the functions of the
existing DB2 for OS/390 Version 5 and DB2 UDB for OS/390 Version 6
products, such as creating, altering, and dropping objects, as well as run
utilities that reorganize or load your data. However, before you can
administer a DB2 for OS/390 subsystem from the Control Center, you must
first add it to the object tree by configuring a connection to it.

Adding DB2 for OS/390 Subsystems
If you have the Client Configuration Assistant installed, you can use it to
configure a connection to a DB2 for OS/390 system easily. If you do not have
the Client Configuration Assistant installed, you will have to configure the
connection to the DB2 for OS/390 system manually, using the Command Line
Processor (CLP).

You use the Client Configuration Assistant to search the network for all the
DB2 for OS/390 systems which are available on the LAN to your client. If you
would like to add one of the DB2 for OS/390 systems, you can use the Add
Database Wizard to add the system, import a connection by using a profile,
or add the connection manually.

If you choose to search the network, you need to have a DB2 Connect product
on your network with a connection defined for the system. If you choose to
use an access profile, you need to select the DB2 Connect server connection
that represents the system from the profile. If you choose to manually
configure the connection, you need to know the system name, the
communication protocol, and the communication protocol parameters such as
the host name and the port number for TCP/IP, or the Symbolic Destination
Name for SNA. Once you add the DB2 for OS/390 system, objects for DB2
Connect server connections will appear in the Control Center’s local system.

Chapter 1. Administering DB2 Using GUI Tools 15

When you add a DB2 for OS/390 Version 5 or later system, it appears in its
own section of the Control Center object tree. To see the DB2 for OS/390 and
other database objects that reside in a particular system, expand the object tree
from the DB2 for OS/390 system icon that represents your DB2 for OS/390
system.

To see the list of actions that you can perform on a particular object, select the
object as it appears in the object tree and click the right mouse button. A
pop-up menu appears and shows the available actions you can perform on
that object. For example, you can create, alter, or drop a view, as well as see
its contents, modify the privileges on it, and show a list of other objects that
are related to it. See the online help for the DB2 for OS/390 objects for more
information on what functions you can perform.

Managing Gateway Connections
When a DB2 Connect server is cataloged, a Gateway Connections folder is
displayed in the Control Center object tree under the instance object of the
local system. The Gateway Connections folder contains a hierarchy of objects
used to manage connections to host and AS/400 databases that are cataloged
locally. The actions associated with these connection management objects can
be used to list, force, and monitor host and AS/400 database connections.

The object tree under the Gateway Connections folder is used for managing
connections to host and AS/400 databases but not for database administration
tasks. However, if you need to add, change, or remove a host or AS/400
database on the local system, use the Client Configuration Assistant.

Functions You Can Perform from the Control Center
From the Control Center, you can:
v Manage database objects. You can create, alter, and drop databases, table

spaces, tables, views, indexes, triggers, and schemas. You can also manage
users.

v Manage data. You can load, import, export, reorganize data, and gather
statistics.

v Schedule jobs. Jobs may be pending, running, or completed executions of
scripts. You can schedule jobs to start at particular times.

v Perform preventive maintenance by backing up and restoring databases or
table spaces.

v Monitor performance and perform troubleshooting.
v Replicate data.
v Configure and tune instances and databases.
v Manage database connections, such as DB2 Connect servers and

subsystems. Manage applications.
v Analyze queries using Explain SQL to look at access plans.

16 Administration Guide: Implementation

|
|
|

|
|

v Change the font used for displaying Menus and Text throughout the
Control Center. You can change to one of the available fonts, the size of
font, and the color shown. The Control Center must be restarted for the
changes to take effect.

v Launch other tools. For example, you can launch the Satellite
Administration Center or the Command Center.

To see all the actions that you can perform on an object, simply select the
object from the Object Tree pane or the Contents pane and click the right
mouse button. A pop-up menu appears showing all the functions that you can
perform on that type of object; for example, if you select the tables folder, you
can create a new table with or without the help of a Wizard, monitor the
performance of tables, filter which tables appear in the Contents pane and so
on. The functions you can perform are different, depending on the object you
select.

Click the right mouse button on the objects in the Contents pane to perform
additional functions on a specific object. For example, if you select one of
your tables in the Contents pane and click the right mouse button, a pop-up
window displays functions you can use on that table.

Creating New Objects
To create new objects:
1. Expand the databases folder. Object types are displayed as folder icons.
2. Click the right mouse button on the folder icon for an object, for example,

click on the Tables icon. The pop-up menu is displayed. For some objects,
you get two options to perform a function. One option is to use the
Wizard. Wizards do not exist for all functions that you can perform.

3. Select Create. Since there is a Wizard to create a table, you get two
options, one of which is to create the table using the Wizard. If you choose
the Wizard option, you are prompted for information and given
suggestions on what choices you should make. The Wizard is especially
useful for new users or people who create database objects infrequently.

Working with Existing Objects
When you click an object such as the table folder in the Object Tree pane, all
tables already existing appear in the Contents pane. You can then select a
table you want to work with and click the right mouse button to invoke any
functions that you wish to perform on that specific table.

For more information about using the Control Center, go to its online help,
available from its Help menu or by pressing F1 anywhere in the Control
Center.

Chapter 1. Administering DB2 Using GUI Tools 17

Locating Objects (DB2 for OS/390 only)
You can search for a database or subsystem object easily by using the Locate
notebook. This allows you to:
v Find an object without having to navigate through the tree structure of the

Control Center. The object could be in a database or subsystem, table space,
or across databases and tables and supporting objects.

v Locate objects (table spaces, tables, and indexes) across multiple databases
within a subsystem.

Use the Locate page of the Locate notebook to specify the search criteria. Use
the Advanced page of the Locate notebook to further customize the search.
Edit the text provided on the Advanced page and add or modify the search
criteria.

To locate an object defined within a database or a DB2 for OS/390 subsystem:
1. From the Control Center, click the right mouse button on an object. Select

Locate from the popup menu. The Locate notebook opens.
2. From the Object type field, select the type of database object to search. The

list of target objects available varies, depending on the object from which
you begin your search.

3. On the Locate page, fill in the search criteria. You must type in at least one
search criterion and you can use wild cards to help in the search.
Characters are folded to uppercase unless you use valid delimiters to
enclose lower case characters or the extended character set.

4. On the Locate page, select a radio button to specify whether to meet all
the conditions selected in the fields on the Locate page or meet at least
one of the conditions.

5. Click OK to use the search criteria. The results of your search are
displayed in the Locate Result window. The format of the output table
depends on the type of object for which you searched.

6. To repeat the search with the same or different criteria, click APPLY.
7. You can select a row that appears in the Locate Result window and right

click on that row to see a popup menu with additional actions that you
can perform.

The Satellite Administration Center

The Satellite Administration Center is a set of tools that is available from the
DB2 Control Center. They allow you to set up and administer collections of
DB2 servers from a central point. Each DB2 server that belongs to a group is
known as a satellite. Administering satellites from a central point means that
DB2 can be hidden from anyone using a DB2 satellite, thereby avoiding the
need for them to learn about database administration.

18 Administration Guide: Implementation

Use groups to organize DB2 servers that have shared characteristics, such as
the applications that run on them or the database configuration that supports
the application. The DB2 servers are similar in terms of their database
configuration, usage, and purpose.

By grouping the DB2 servers together, you can administer groups of DB2
servers rather than having to administer each DB2 server individually. If you
acquire additional DB2 servers to serve the same function as the DB2 servers
of an existing group, you can add them to that group by using the Satellite
Administration Center.

From the Satellite Administration Center, you can create groups, satellites,
application versions, batches, and authentication credentials. You can also
define success code sets and perform other functions associated with the
administration of the satellite environment. Information about the satellite
environment is stored in a central database known as the satellite control
database. This database records, among other things, which satellites are in
the environment, the group each satellite belongs to, and which version of the
end-user application a satellite is running. This database is on a DB2 server
that is known as the DB2 control server.

Before the functionality of the Satellite Administration Center can be enabled,
you must first catalog a satellite control database (SATCTLDB) on the Control
Center. When it is enabled, you can use the Satellite Control Center to set up
and maintain satellites, groups, and the batches that the satellites execute
when they synchronize for their application version.

To set up and maintain its database configuration, each satellite connects to
the satellite control database to download the batches that correspond to its
version of the end-user application. The satellite executes these batches locally,
then reports the results back to the satellite control database. This process of
downloading batches, executing them, then reporting the results of the batch
execution is known as synchronization. A satellite synchronizes to maintain its
consistency with the other satellites that belong to its group and are running
the same version of the end-user application.

The Command Center

You can start the Command Center from the Control Center by clicking the
Command Center icon on the toolbar.

The Command Center lets you:
v See the resulting output of one or many SQL statements and DB2

commands in a result window. You can scroll through the results and
generate a report.

Chapter 1. Administering DB2 Using GUI Tools 19

|
|
|
|
|
|
|
|
|

v Create, and save command scripts to the Script Center. You can edit the
command script to create new scripts. From the Script Center, the command
script can then be scheduled to run as a job at any time that you specify.

v Run SQL statements, DB2 commands and operating system commands.
When you run DB2 commands from the Command Center, you do not have
to precede the command by DB2. You can run operating system commands
in any supported operating system script language, such as REXX, by
preceding them with an exclamation mark (!). Using the Command Center
to run the commands and statements allows you to issue many commands
at once, without the need to type and run each command individually.

v Get quick access to the DB2 administration tools, such as the Control
Center, from the main toolbar.

v See the access plan and statistics associated with an SQL statement before
execution.

The Script Center

You can start the Script Center by selecting its icon from the Control Center
Toolbar. The Script Center is a tool that allows you to create scripts by writing
a set of commands and statements, which you can schedule to run whenever
you require. You can import scripts that you created earlier or scripts that you
saved in the Command Center. You can select scripts from the set of scripts
saved and you can edit existing scripts to create new scripts, copy scripts, or
remove scripts.

You can edit a script inside the Script Center or outside the Script Center
using your own editor. If you run a script from within the Script Center, you
get the added advantage of having the results logged in the Journal.

To run operating system commands from a script in the Script Center:
1. Select Script —> New. The New Command Script window opens.
2. For Script Type, select the OS command radio button.
3. Enter the script name, description, and working directory.
4. Enter the commands.
5. Click on OK.

From the Script Center you can view information such as the description and
script type, about all command scripts that are known to the system and you
can perform the following tasks:
v Create a command script that contains DB2 and operating system

commands
v Run a saved command script immediately

20 Administration Guide: Implementation

|
|
|
|
|
|
|

|
|
|
|
|
|
|

v Schedule a script to run at a later date or at a regular interval; for example,
you might want to create a script that collects statistics for several tables.
You could then schedule the job to run overnight. You can schedule jobs by
running them unattended at scheduled intervals by specifying the hours,
days, weeks, months, multiple times a week, or multiple times a month you
want to run the job. A job is created whenever you schedule a script or run
a script immediately.

v Access the Journal from the toolbar to see the jobs that use a particular
script and to see the status of all scheduled jobs

v Edit a saved command script

Using an Existing Script with the Script Center
To use the Script Center with pre-existing scripts which you did not create
from the Script Center:
1. From the Control Center toolbar, click on the Script Center icon. The

Script Center opens.
2. Select Script —> Import. The File Browser window opens.
3. Select an existing script file and click on OK. The New Command Script

window opens. The script is displayed in the lower part of the window
which is a script editor. Complete the Instance, Script name, Script
description and Working directory fields, and select a Script type.

4. Click on OK. The script will be created in the Script Center.

Scheduling a Saved Command Script to Run
To schedule a script:
1. Click the Script Center icon on the Control Center toolbar. The Script

Center opens.
2. Click with the right mouse button on the script you want to schedule to

run and select Schedule from the pop-up menu. The Scheduler window
opens.

3. Select the frequency for the job, and a completion action, such as a
completion message or another command script to be launched.

4. Click OK. This starts a pending job that you can track in the Journal.

The Journal

You can start the Journal by selecting its icon from the Control Center toolbar.
The Journal allows you to monitor jobs and review results. From the Journal,
you can also display the recovery history and DB2 messages. The Journal
allows you to:
v Monitor pending jobs, running jobs, and job histories
v Review results
v Display recovery history and alert messages

Chapter 1. Administering DB2 Using GUI Tools 21

|
|
|
|

v Show the log of DB2 messages

Working with Jobs
Use the Journal to work with jobs. To open the Journal:
1. Click the Journal icon from the Script Center toolbar. The Journal opens.
2. To see the jobs that are scheduled to be run at a later time, click the

Pending jobs push button. You see your job in the list of pending jobs.
You also see all the information about the jobs. You can perform actions on
a pending job, such as reschedule it, show the scripts associated with it, or
run it immediately. When a saved script is modified, all jobs that are
dependent on it inherit the new modified behavior.

From the Journal, you can also see the jobs that are currently running and the
job histories.

The other pages in the Journal window are:
v The Recovery page. This page displays the recovery history (the details

from backup, restore operations, and load operations) and lets you restore
the recovery log.

v Alerts page. This page shows all alerts.
v The Messages page. This page shows all messages issued through the DB2

administration tools.

The online help for the Journal provides detailed steps for working with jobs
and logs.

The License Center

You use the License Center to display license status and usage information for
DB2 products installed on your system. You can also use the License Center to
configure your system for proper license monitoring. The License Center
allows you to:
v Add a new license.
v Upgrade from a trial license of the product to a permanent license.
v View the details of your license.

If you view the details of the license information, you see the:
v Product name
v Version information
v Expiry date
v Registered users
v Concurrent users
v Number of entitled users

22 Administration Guide: Implementation

|
|
|
|
|
|

|
|

v Concurrent number of users
v Enforcement policy
v Number of processors (for DB2 Universal Database Enterprise Edition and

Enterprise – Extended Edition).

The Alert Center

The Alert Center is the tool that monitors your system to warn you about
potential problems. You can set the Alert Center to automatically open to
display any monitored objects that have exceeded their threshold and are
therefore in a state of alarm or warning. You set up the thresholds using the
Performance Monitor, which is invoked from the Control Center. The color of
the icon indicates the severity of the warning. A red icon indicates an alarm.
A yellow icon indicates a warning.

Client Configuration Assistant

The Client Configuration Assistant (CCA) is primarily a tool that contains
wizards to help set up clients to local or remote DB2 servers. However, the
tool can also be used to easily help configure DB2 Connect servers.

The Client Configuration Assistant lets you maintain a list of databases to
which your applications can connect. It catalogs nodes and databases while
shielding you from the inherent complexities of these tasks.

From the Client Configuration Assistant you can perform the following tasks:
v Add, modify, and delete database connection entries.
v Test the connection to a selected database.
v Configure database manager configuration parameters.
v Configure CLI/ODBC settings.
v Bind DB2 utilities and other applications to a selected database.
v Import and export configuration information. This allows you to use the

existing configuration on a machine that was previously configured to
configure new machines.

v Change the password for the user ID that you use to connect to a selected
database.

The Client Configuration Assistant provides the following methods to assist in
adding new database connection entries:
v Use a profile. A profile can be exported from a previously configured

machine and used to configure new machines. Server profiles can be
exported from the Control Center, and client or server profiles can be
exported from the CCA.

Chapter 1. Administering DB2 Using GUI Tools 23

|
|

|
|
|
|
|
|
|

|

|
|
|

v Search the network. The CCA can search the network for DB2 systems
which have an administration server running. A Search and Known (or
directed) Discovery mode is provided. Search Discovery mode is subject to
network configuration restrictions. (Typically network routers will not allow
a Search Discovery request to be transmitted.) Known Discovery requires
only a few pieces of information to find the server system desired. Host or
AS/400 systems that have been previously defined on a gateway, can also
be found.

v Manually configure a connection to a database. All information must be
provided, but a wizard is started to help make the task simpler.

Performance Monitor

The Performance Monitor provides information about the state of DB2
Universal Database and the data that it controls. It is a graphical utility that
can be customized for your database environment. You can define thresholds
or zones that trigger warnings or alarms when the values being collected by
the Performance Monitor are not within acceptable ranges.

You can monitor DB2 objects such as instances, databases, tables, table spaces,
and connections by selecting the object in the Object Tree pane or in the
Contents pane and clicking the right mouse button. From there, you can
choose to start monitoring activity.

When an object is being monitored, the color of the icon appears green,
yellow, or red to indicate the status of the monitor. The colors represent the
severity of the problems as defined by the thresholds that you have set. Green
signifies that the monitor is running and everything is fine. Yellow is a
warning and signifies that the object being monitored is approaching the
threshold. Red indicates an alarm and that the object being monitored has
reached the threshold value. You can use the predefined monitors that are
included with DB2 or you can create your own monitors.

To see what information the Performance Monitor is collecting, click the right
mouse button on the object and select Show Monitor Activity in the pop-up
window.

Use the information from the Performance Monitor to:
v Detect performance problems
v Tune databases for optimum performance
v Analyze performance trends
v Analyze the performance of database applications
v Prevent problems from occurring

24 Administration Guide: Implementation

|
|
|
|
|
|
|
|

The Performance monitor lets you analyze trends by creating a visual
presentation of database information such as disk activity, buffer pool usage,
amount of prefetch, lock usage, and record blocking at specific intervals.

You use the tool when you need to monitor an existing problem or when you
want to observe the performance of your system. It lets you take a snapshot
of database activity and performance data at a point in time. These snapshots
are used for comparison over time. Each point on the graph represents a data
value. The steps for taking snapshots are provided in “Monitoring
Performance at a Point in Time” on page 28. This information can help you to
identify and analyze potential problems, or identify exception conditions that
are based on thresholds that you set. Use the performance tool if you need to
know the performance of the database manager and its database applications
at a single point in time and look at trends over time. Use it also to get a
visual overview of what elements are in a state of alarm. This helps you to
identify which parameters may need tuning. You can then look closely at the
parameters that have been set for that element and change it to improve
performance.

Event Monitor
In contrast to taking a point in time snapshot, an event monitor collects
information on database activities over a period of time. This collected
information provides a good summary of the activity for a particular database
event, for example, a database connection or an SQL statement. Event
monitoring records the state of the database at the time specific events occur.
It allows you to obtain a trace of the activity on the database. Event monitor
records are stored and then analyzed after the data has been captured. Use the
event monitor when you need to know how long a transaction took or, for
example, how much CPU an SQL statement used. You then use the Event
Analyzer to read the data recorded from the event monitor.

For each database connection, there is one connection event record produced.
For each statement run in that connect, a statement record is produced. Each
connection event record maps to one row in the Connections View window of
the Event Analyzer. This window shows information for each application that
connected during the monitored period, including:
v Application name
v Execution ID
v Connect time
v Total CPU time
v Lock wait time
v Total sort time
v Deadlocks
v Disconnect time

Chapter 1. Administering DB2 Using GUI Tools 25

|
|
|
|
|
|
|
|
|
|
|
|
|
|

v Application ID

Each statement event record maps to one row in the Statements View window
in the Event Analyzer.

Using the Monitor Tools
The Performance Monitor and the Event Analyzer provide the following
benefits:
v Comprehensive, flexible data collection. Over 200 performance variables are

supported including buffer pool and I/O, lock and deadlock, sorting,
communication, agent, and logging information. Data is shown for database
managers, databases, table spaces, tables, buffer pools, connections,
transactions, and SQL statements.

v Easy-to-use, intuitive viewing. Data can be viewed in real time using
easy-to-read graphs or textual views conveniently organized into logical
groups. Both details and summary views are provided, with the ability to
access more detailed information.

v Robust alert capabilities. For any performance measurement, you can define
exception conditions by specifying a threshold value. The threshold values
are used to visually identify when a performance measurement reaches or
exceeds the threshold value by plotting a measurement in a particular zone
on the performance graph. When the threshold value is reached, you can
specify that you want any or all of the following actions to occur:
– You are notified through the Alert Center.
– You receive an audible alarm.
– A program is run.
– A message is displayed.

Or, you may decide that no notification should be given.

Figure 2 on page 27 illustrates how the monitors work together.

26 Administration Guide: Implementation

Considerations for Monitoring and Tuning a Database
Before you start monitoring and tuning your database, you should do the
following:
v Define your objectives. For example, you may want to understand how

applications use resources at the instance level at a specific point in time so
that you can, for example, check if database concurrency is reduced when a
special application is started. Or you may want to understand which
instance-level events occur when an application is running, for example, if
there is poor overall performance when a particular application is running.

v Determine what information you will analyze. For example, to see if
bottlenecks are hardware related, you may want to take snapshots to
monitor database connection activity or table space, buffer pool, and I/O
activity. To see if the bottlenecks are environment-related, you would use
the Event Analyzer to monitor if:

CONNECTION 1 CONNECTION 2

STMT Event
Record Returned

STMT Event
Record Returned

STMT Event
Record Returned

STMT Event
Record Returned

You connect to a database

and enter statements.

Each record returned is

equivalent to 1 row in the

Connections View window

of the Event Analyzer.

Each record returned is

equivalent to 1 row in the

Statements View window

of the Event Analyzer.

Snapshot

Returned

Time Stamp Time Stamp Time Stamp Time Stamp

Data Value

Snapshot

Returned

Snapshot

Returned

Snapshot

Returned

STMT 1A STMT 1B STMT 2A STMT 2B

S
n

a
p

s
h

o
t

M
o

n
it
o

r
E

v
e
n

t
M

o
n

it
o

r

•

•

•

•

Connection Event

Record Returned

Connection Event

Record Returned

Figure 2. Comparison: Getting Snapshots and Monitoring Events. (Event Monitor, Event Analyzer)

Chapter 1. Administering DB2 Using GUI Tools 27

– Too many database tasks are scheduled during peak time
– There is a high number of user connections
– Database partitioning (hardware load balancing) is not well optimized
– The server is being used for more than just a database server

Some of the visible effects are, for example:
– Queries/responses are slow
– Scheduled tasks are not completing on time
– Applications are timing out

v Decide whether you will use the predefined monitors that are available
with DB2 or whether you will create your own monitors.

The next section describes how to take snapshots and how to use the Alert
Center to keep track of any performance-related problems.

Monitoring Performance at a Point in Time
If you want to do complex data collection and analyze the data to pinpoint
potential problems, use the Performance Monitor to take snapshots of your
system and watch performance data change over time.

The tool lets you:
v Graph performance information
v Set the capture frequency of performance snapshots
v View the results of performance calculations
v Define threshold values and threshold actions
v Generate and store alerts
v View summary information (for example, all databases)

The following types of information are captured:
v Information about long-lived activities (such as database activity when an

application is taking too long to complete).
v Counters that keep track of information about the current level of activity

(such as the number of open cursors for a database).
v Cumulative information about database activity (such as the maximum

number of connections made while a database instance is active, or the total
number of SQL statements executed against a particular database).

Taking snapshots at predefined intervals provides a picture of the current
state of the activity in the database manager and its applications. This
information can be used to:
v Detect performance problems
v Analyze performance trends

28 Administration Guide: Implementation

|

v Tune database manager and database configuration parameters
v Analyze the performance of database applications

Performance information is available for the following database objects:
v Instances
v Databases
v Tables
v Table spaces
v Database connections

For each, a variety of performance variables can be monitored. The
Performance Variable Reference Help, available from the Help menu of any
Snapshot Monitor window, provides a description of all the performance
variables. These variables are organized into categories. The following
categories exist:
v Instance: Agents, Connections, Sort
v Database: Lock and Deadlock, Buffer Pool and I/O, Connections, Sort, SQL

Statement Activity
v Table: Table
v Table space: Buffer Pool and I/O
v Database Connections: Buffer Pool and I/O, Lock and Deadlock, Sort, SQL

Statement Activity

For detailed information on how to generate snapshots, see the online help.

Predefined Monitors
The DB2 Performance Monitor contains a set of predefined monitors, which
you can use as they are or which you can copy and modify to meet your
requirements. They provide a comprehensive set of performance calculations.
You cannot change the name, equation, or text description of an IBM-supplied
performance monitor; however, you can change the threshold values and the
alert actions. Use the predefined monitors to learn about performance
monitoring and to create your own monitors by copying a predefined monitor
and adding or removing performance variables from your copy.

The Predefined Monitors that are supplied with DB2 are:
v Monitoring Capacity. Use this monitor to get information on system

capacity. This monitor can be checked on a regular basis to see the overall
usage of your system over time.

v Sort. Use this monitor to ensure that your sort heap and sort heap threshold
parameters are set correctly. This monitor should be run when you first
start your system, in peak periods of activity, or as applications change.

Chapter 1. Administering DB2 Using GUI Tools 29

|
|
|
|
|

|

|
|

|

|

|
|

v Locking. Use this monitor to determine how much locking is occurring in
your system, and whether your lock list parameters are set appropriately.

v Cache. Use this monitor to optimize cache usage. By monitoring these
values during peak periods, you can determine if you need to increase the
size of the cache.

v Bufferpool. Use this monitor on small tables to determine whether they
require their own buffer pools.

v Deadlocks. Use this monitor to determine whether your applications are
getting into deadlocks.

v Fast Communication Manager. Use this monitor to see the percentage of
memory used to transfer information between nodes.

v Prefetchers. Use this monitor to determine whether you have enough
prefetchers defined for the system.

v Disk Performance. Use this monitor to watch input and output. This
monitor contains performance variables that focus on disk performance at
the database and table space levels.

v Global Memory. Use this monitor to watch application memory usage.
v Long Running Memory. Use this monitor to help determine why a query is

taking a long time to complete.
v Gateway Connections. Use this monitor to watch DB2 Connect server

connections.

For examples of how to use a predefined monitor, see the online help
provided for performance monitoring.

To see a list of available monitors, from the Control Center, click the right
mouse button on the Systems folder, and select List Monitors from the
pop-up menu. The List Monitors window opens. It lists the monitors that are
stored on the JDBC server to which you are currently connected. For each
monitor, you see the name of the monitor, a description, the status, whether it
is the default monitor, and who created the monitor. The “Status of the
monitors” indicates the status of the monitors on the local system, and not on
the JDBC server. The “Default for” level indicates the default monitor at the
instance, database, table, table space or connections level. For the predefined
monitors, the “Created by” column contains NULLID. The right side of the
window contains push buttons which allow you to perform various tasks on
the monitors. See “Running the Control Center as a Java Applet” on page 46
for more information on the JDBC server.

You can choose which monitor is started as the default monitor for an object.

Once you have started a performance monitor, you can click on the Alert
Center button on the toolbar to see the status of any objects that you are

30 Administration Guide: Implementation

|

|
|
|
|
|
|
|
|
|
|
|
|
|

monitoring and which are in a state of alert because they have reached any of
their threshold values. They appear only for the period of time during which
the threshold is exceeded.

If you want to keep a close watch on the objects being monitored, you can
keep the Alert Center open or you can keep the Show Monitor window open
on the summary page and look for any red or yellow entries. You can also
modify the Control Center settings so the Alert Center opens automatically if
a new warning or alarm is added to it. From the Alerts Center, you can also
temporarily suspend the alerts while monitoring continues.

Action Required When an Object Appears in the Alert Center
You can set the Alert Center to open automatically to display any monitored
objects that are in a state of alarm or warning (that is, their thresholds have
been exceeded). You can change this default from the Tools Settings window.

If you see an object in the Alert Center, click the right mouse button on the
object and select Performance Monitor —> Show Monitor to view the
performance details for that database object.

Analyzing an Event for a Period of Time
The Event Analyzer is another DB2 performance tool. Use this tool when you
want diagnostic information for an event that has taken place. You use the
Event Analyzer in conjunction with an event monitor. For example, you can
use an event monitor to trace database activity, such as connections,
transactions, statements, and deadlocks, while a database is active. An event
monitor can also record cumulative performance data that is logged when an
application disconnects from the database. After the event monitor has created
the event monitor file, you look at your performance information using the
Event Analyzer.

The event monitor tools let you perform the following:
v Create event monitors to monitor the types of database events that are of

interest to you.
v Activate an event monitor to start collecting event data. The data is stored

in a file.
v Stop an event monitor from collecting event data.
v View the trace-type summary information that is produced by the event

monitor.
v Remove an event monitor when you no longer have a need for it. You are

also given the option to clean up its trace files.
v Display a list of event monitors associated with the database.
v View the definition of an event monitor.

Chapter 1. Administering DB2 Using GUI Tools 31

The Event Analyzer lets you view the data generated by an event monitor for
the following event types:
v Database connection activity (the period of time between a connection and

its disconnection)
v Transactions (units of work)
v SQL statement executions
v Detection of deadlock activity

Event Analyzer
You can create an event monitor for the following event types and then use
the Event Analyzer to view the collected information: however, use the
db2evmon executable (described in the Command Reference and the System
Monitor Guide and Reference) to view data generated for the:
v Deadlocks
v Database activity
v Table space activity
v Table activity
v Statement activity

To analyze event data using an event monitor and the Event Analyzer, follow
the steps below. They represent only one example of how to create an event
monitor for connection and statement events. To create an event monitor:
1. From a command line in the Command Center, type db2emcrt. The Event

Monitor window opens.
2. Click on Event Monitor and choose Create from the menu. The Create

Event Monitor window opens.
3. In the field, specify a name for the event monitor you are creating. This

new event monitor cannot have the same name as any existing monitor.
Blank spaces are not allowed in the name.

4. In the DB2 Universal Database Enterprise - Extended Edition product
only, select a node where the event monitor files will reside from the “On
Node” drop down list.

5. In the DB2 Universal Database Enterprise Enterprise - Extended Edition
product only, select a scope for the event monitor. By default, the scope is
Global.

6. Select one or more of the check boxes to indicate the type of events that
you want to monitor. Note that the Deadlocks event type is the default
selection.

7. Indicate when you want this monitor to start. Note that “Start now” is
the default selection.

8. Define one or more conditions for connections, statements, or transactions
that will control monitoring at these levels.

32 Administration Guide: Implementation

|
|
|

|
|
|

|
|

9. Identify a path (directory name) where the monitor will write the event
data files.

10. Click on Options to open a window for Specifying Event Monitor File
options. These options determine how monitor output is handled and can
affect the performance of your event monitor.

11. Click on OK to create the monitor, or Cancel to exit without creating a
monitor.

12. Turn off the event monitoring, by clicking the right mouse button on an
event monitor and select Stop Event Monitoring from the pop-up menu.
This forces the event monitor to write the trace file. If the monitor is not
turned off, information is only written to disk when the buffer is full or
all connections end. From the Event Monitors window, you can view the
resultant event data by clicking the right mouse button on the event
monitor you created, and selecting View Event Monitor Files from the
pop-up menu. The Monitored Periods View window opens.

To access the event data from the Event Analyzer:
1. From a command line in the Command Center, type db2eva to start the

Event Analyzer. The Event Analyzer window opens.
2. In the Path field, identify the path (directory name) where the data files

are stored. If the files have not been moved, this will be the path that was
specified when the event monitor was created. If the files were moved,
then specify that directory. You can click ... to list existing directories.

Note: If data files are stored remotely, you must FTP the files to your local
machine in order to view them. Depending on file size, this transfer
could take some time. Files can be transferred to any local path. It is
not necessary to choose the same path that was used when they
were created.

3. Click OK to access the data files contained in the directory, or Cancel to
exit. The Monitored Periods View window opens.

4. Click the right mouse button on a monitored period, and select Open as
—> Connections from the pop-up menu. The Connections View window
opens. This shows the list of connections that were made during the event
monitoring session. (There may be more than one connection listed. The
connection you are interested in may not be the first one in the list.)

5. Click the right mouse button on a connection, and select Open as —>
Statements from the pop-up menu. The SQL Statements View window
opens. It displays all statements for the selected connection. Columns of
information are provided for each statement, including:
v Operation

v Package name

v Creator

Chapter 1. Administering DB2 Using GUI Tools 33

|
|
|
|

|
|
|
|
|

|
|

|

|

|

v Start time

v Elapsed time

v Total CPU time

v Text

The online help for the event monitor and the Event Analyzer provide
detailed instructions for creating event monitors and viewing the resultant
event data.

Analyzing SQL Statements

You can view the access plan for explained SQL statements as a graph and
use this information to tune your SQL queries for better performance.

An access plan graph shows details of:
v Tables (and their associated columns) and indexes
v Operators (such as table scans, sorts, and joins)
v Table spaces and functions

Prior to Version 6, you would use a tool called Visual Explain to view the
access plans. Now, you can no longer invoke Visual Explain as a separate tool
from the command line, however, you can still invoke the visual explain
function from various database objects in the Control Center and from the
Command Center. In this section, the term visual explain function is used for
this capability.

You use the visual explain function to:
v View the statistics that were used at the time of optimization. You can then

compare these statistics to the current catalog statistics to help you
determine whether rebinding the package might improve performance.

v Determine whether or not an index was used to access a table. If an index
was not used, the visual explain function can help you determine which
columns might benefit from being indexed.

v View the effects of performing various tuning techniques by comparing the
before and after versions of the access plan graph for a query.

v Obtain information about each operation in the access plan, including the
total estimated cost and number of rows retrieved (cardinality).

Improving Performance of a Query
You use the visual explain function to analyze and assist in the tuning of SQL
statements. It presents a graphical view of the access plan for explained SQL
statements. Tables and indexes, and each operation on them, are represented
as nodes, and the flow of data is represented by the links between the nodes.

34 Administration Guide: Implementation

|

|

|

|

You can use the information available from this graph to find ways to tune
your SQL queries for better performance.

The visual explain function captures information about how SQL statements
are compiled. This information allows you to understand the plan and
potential execution performance of SQL statements.

This information can help you:
v Design application programs.
v Design databases.
v Understand how two tables are joined: the join method that is used, the

order in which the tables are joined, the occurrence of sorts, and the type of
sorts.

v Determine ways of improving the performance of SQL statements (for
example, by creating a new index).

v View the statistics that were used at the time of optimization. You can then
compare these statistics to the current catalog statistics to help you
determine whether re-binding the package might improve performance. It
also helps you determine whether collecting statistics might improve
performance.

v Determine whether or not an index was used to access a table. If an index
was not used, the visual explain function can help you determine which
columns could be included in an index to help improve query performance.

v View the effects of performing various tuning techniques for the purpose of
better performance by comparing the before and after versions of the access
plan graph for a query.

v Obtain information about each operation in the access plan, including the
total estimated cost and number of rows retrieved.

After using the visual explain function to understand the access plan for an
explained SQL statement, you may determine that an index might improve
the performance of that query. You should use the Index Wizard to receive
recommended indexes for the query; or, you could use the
RECOMMENDED_INDEXES EXPLAIN-mode. For more information on the
Index Wizard, go to the Control Center and enter the Information Center.

Refer to the Administration Guide: Performance for more information on the
RECOMMENDED_INDEXES EXPLAIN-mode.

Analyzing a Simple Dynamic SQL Statement
This section provides a simple example of how to get started analyzing a
dynamic SQL query.

Chapter 1. Administering DB2 Using GUI Tools 35

|
|
|

|
|
|
|
|
|

1. From the Control Center, click the right mouse button on the SAMPLE
database, and select Explain SQL from the pop-up menu. The Explain
SQL Statement window opens.

2. In the SQL text field, enter the following SQL statement:
select * from staff order by name

3. Click OK. The Access Plan Graph window opens. The graph represents
the path that the optimizer chose as the most efficient in order to provide
the results for your query.

4. Optional: Double-click any of the nodes (for example, the RETURN
operator node). The Operator Details window opens, showing the details
for that operator.

The explained SQL statement is saved automatically. To view it later:
1. From the Control Center, click the right mouse button on the SAMPLE

database, and select Show explained statements history from the pop-up
menu. The Explained Statements History window opens.

2. Locate the entry you want. You can look at the SQL text column to see the
SQL statement you had previously explained.

3. Click the right mouse button on the entry, and select Show access plan
from the pop-up menu. The Access Plan Graph window opens.

The online help for the visual explain function (accessible from the Help
menu) provides details on how to interpret the Access Plan Graph window in
order to improve the performance of SQL statements. The online help also
contains detailed examples to help you learn how to use Visual Explain.

Managing Remote Databases

The following section shows you how to:
v Add a remote system
v Add the instance you want to work with for that system
v Add the database you want to work with under that instance

DB2 first checks in the node directory (which contains an entry for all servers
to which a database client can connect and the communications protocol used
in the connection) to see if the remote system is already known. If the remote
system is not known, with a system, instance, or database on a remote system,
you need to set yourself up as a client to the remote system.

After you install DB2, you can use the Client Configuration Assistant to
search the network for systems, instances, and databases and configure
communications for them. You then add the remote system by cataloging it.
This creates an entry for the system in the node directory so that its instances
and databases can be made known. Next, you must add the instances and

36 Administration Guide: Implementation

|
|
|
|

databases for the system by cataloging them to create an entry for them in the
node directory and database directory, respectively. This creates an entry for
them in the node directory and database directory, respectively). When the
configuration is complete, the remote systems are displayed in the Control
Center so that you can work with them.

To add a remote system:
1. From the Control Center, click the right mouse button on the Systems

object and select Add from the pop-up menu. The Add System window
opens.

2. Enter the system name in the System name field.
If the Discover configuration parameter for the instance is set to search
and the discover comm configuration parameter is not blank, you can
select Refresh to get a list of the remote systems. You can then select one
of the systems from the list below the System name field.

3. Type the remote instance name in the Remote instance name field.
4. Select the type of operating system for the remote system from the

Operating system list.
5. Select the protocol you want used for communications with the remote

locations. For a local system, Local is automatically selected and is the
only valid protocol. For the remote systems the possible protocols are:
v APPC
v IPX/SPX
v NetBIOS
v TCP/IP
v Named pipe (on Windows NT and Windows 9x operating systems only)

Only the protocols that the computer is currently set up for appear in the
listbox.

6. Enter the appropriate protocol parameters.
7. Enter a comment to be associated with the system.
8. Click Apply to add the system to the node directory.

Next, add the instance you want to work with on that system:
1. From the Control Center, click the right mouse button on the Instances

object belonging to the system you just added.
2. Select Add from the pop-up menu. The Add Instance window opens.
3. Enter the required values in the fields.
4. Click the Refresh push button to have a list of existing instances

displayed.
5. Select the instance you want to work with.

Chapter 1. Administering DB2 Using GUI Tools 37

|
|
|

|

6. Click the Apply push button, then the Close push button.

Finally, add the database you want to work with under that instance:
1. From the Control Center, click the right mouse button on the Databases

object.
2. Select Add from the pop-up menu. The Add Database window opens.
3. Enter the database name, type of communication protocol, and, optionally,

an alias. An alias in this case is an alternative name used to identify a
database.

4. Click the Refresh push button to display a list of existing databases for
that instance.

5. Select a database.
6. Click the Apply push button, then the Close push button.

Managing Users

As a database administrator, you might need to control the type of access
people have to data, or restrict their view of the data. The following
information tells you how to use the administration tools to manage database
authorities and privileges for database objects.

Database authorities involve actions on a database as a whole. When a
database is created, some authorities are automatically granted to anyone who
accesses the database. For example, CONNECT, CREATETAB, BINDADD and
IMPLICIT_SCHEMA authorities are granted to all users. Database privileges
involve actions on specific objects within the database. When a database is
created, some privileges are automatically granted to anyone who accesses the
database. For example, SELECT privilege is granted on catalog views and
EXECUTE and BIND privilege on each successfully bound utility is granted to
all users.

Together, privileges and authorities act to control access to an instance and its
database objects. Users can access only those objects for which they have the
appropriate authorization, that is, the required privilege or authority.

Granting and Revoking Authorities and Privileges
You can use the DB2 administration tools to grant and revoke privileges for
users and groups for databases, table spaces, tables, views, and schemas.
1. From the Control Center, click the right mouse button on the database,

table, view, schema or index for which you want to grant or revoke
privileges. Select Authorities or Privileges from the pop-up menu. The
Authorities window or Privileges window opens.

2. Select the User page to work with user authorities or privileges or the
Group page to work with group authorities or privileges.

38 Administration Guide: Implementation

|

3. Select one or more users or groups. To add a user or group to the list, click
the Add User or Add Group push button.

4. Along the bottom of the window, select Yes, No, or Grant for each
individual authority or privilege. Grant is displayed only for objects for
which it is a valid option.

5. When you have finished, click the Apply push button.

If you want to review or change the objects that a particular user is
authorized to, you can select a user, and click the right mouse button, then
add or change authorization to an object or remove authorization.

Moving Data

DB2 provides the Import, Export, and Load utilities to help you move data
into a table from existing sources. The information provided in this section is
a brief overview of moving data. For more detailed information on moving
data, you should refer to the Data Movement Utilities Guide and Reference
manual.

The Import utility takes data from an input file and inserts it into a table or
view. In this case, the input file contains data that was extracted from an
existing source of data, such as a Lotus 1–2–3 file or an ASCII file. You can
also use the import utility to re-create a table or view that was saved by using
the Export utility. The following information tells you how to import data.

Once you have an input file available in a supported format, use the Import
notebook to insert data from the file into an existing table. If this table already
contains data, you can either replace or append to the existing data with the
data in the file.

You can also use the Import notebook to create a new table that is populated
by an input file, or delete existing rows in the selected table and repopulate it
using data from the input file.

To import a file into an existing table:
1. Open the File page of the Import notebook.
2. Optional. Specify the Import notebook.
3. Optional. Retrieve Large objects.
4. Optional. Specify column import options.
5. Click OK

To open the File page of the Import notebook:
1. From the Control Center, expand the object tree until you find the Tables

folder.

Chapter 1. Administering DB2 Using GUI Tools 39

|
|
|
|
|

|
|
|
|
|

2. Click the Tables folder. Any existing tables are displayed in the contents
pane.

3. Click the right mouse button on a table in the contents pane and select
Import from the pop-up menu. The Import notebook opens with the File
page displayed.

To specify the file options:
1. In the Import file field of the File page, enter the name of the file that

contains the data you want to import.
2. Specify the type of file to import by selecting one of the following

v Non-delimited ASCII format (ASC)
Non-delimited ASCII data is data that is aligned in columns.

v Delimited ASCII format (DEL)
Delimited ASCII data is a commonly used way of storing data that
separates column values with a user-defined delimiting character, such
as a comma.

v Worksheet format (WSF)
v Integrated exchange format (IXF)

PC/IXF is a structured description of a database table or view. Data that
was exported in PC/IXF format can be imported or loaded into another
DB2 Universal Database product database.

See the online help for the specific products and releases that are
supported.

3. Optional: Specify file type modifiers by clicking the corresponding
Options push button. The Options window for that format opens.

4. Select an Import mode. The available import modes vary depending on
the file type you selected.

5. Optional: In the Commit records field, enter the number of records to
import before the changes are committed.

6. Optional: In the Restart field, enter the number of records in the file to
skip before beginning the import action.

7. Optional: In the Compound field, type a number to specify how many
SQL statements will be executed (in an executable block).

8. Optional: Select the Insert an implied decimal point on decimal data
(IMPLIEDDECIMALPOINT) check box.

9. In the Message file field, type the name of the file that will contain
warning and error messages that occur during import.

To retrieve large objects from separate files, use the Large Objects page of the
Import notebook to retrieve large objects (LOBs) from the path or paths that
store the LOB files:

40 Administration Guide: Implementation

1. Click the Retrieve large objects (LOBs) in separate files (LOBSINFILE)
check box to enable the options on the Large Objects page.

2. Specify the location of separate LOB files in the LOB paths list box by
clicking the Add push button. These paths are searched (in the order in
which they appear in the LOB paths list box) for the LOB files specified in
the LOB column of the input file.

3. Click OK to accept the defaults on the other notebook pages and begin the
import process.

Specify column import options. Use the Columns page of the Import
notebook to specify column import options:
1. Click one of the radio buttons in the Include columns by box to specify

the column method that will be used to import data file columns into the
table. The available methods vary depending on the file type and mode
you selected on the File page.

2. Optional: Specify or change the import file column attributes by clicking
the Change push button.
This option is not available if you selected the Default (method D) radio
button.

Managing Storage

As a database administrator, you need to estimate the size of tables and
indexes, to check the amount of space available in a table space, and to add
more space to an existing table space when it gets full.

This section describes how to:
v Estimate the size of tables and indexes
v Check the amount of space available in a table space
v Add more space to an existing table space when it starts to get full

Estimating Table and Index Size
You can estimate the amount of storage space required for new or existing
tables or indexes by invoking the Estimate Size dialog. Invoke this dialog by
selecting individual tables and indexes and clicking the right mouse button on
them, or select Estimate Size from the Create Table and Create Index
windows. The size is estimated on the definition of the particular table and its
dependent indexes. The estimate is the projected amount of storage space that
would be used when the table has a given number of rows. The minimum
and maximum space is also estimated based on the smallest and largest size
of variable length fields. When invoked on a table or an index, the Estimate
Size dialog is prefilled with the specifications of the table, and contains
numbers relating to the table and all of its dependent indexes. When you click
the Refresh push button, the estimated size, minimum size, and maximum

Chapter 1. Administering DB2 Using GUI Tools 41

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

size are updated based on the number you enter in the New total number of
rows and New average row length fields.

Estimating the size of a table or index is helpful if you want to:
v Create a new table and you want to know how large to make the table

space.
v Create a new table based on the size estimate of an existing table.
v Know how much space is used by different table and index objects in a

table space because the system is running out of storage space.
v Estimate the projected size of a table prior to loading data.

Note: When you use Estimate Size on the DB2 Universal Database
Enterprise-Extended Edition product, ensure the size estimates are
based on the logical size of the data in the table.

If you have not updated the statistics for the table for some time, you can
click the Run statistics push button to update the statistics for the selected
table. If you select an index and then press the Run statistics button, the
statistics are run on the related table.

To estimate the size for a table:
v Open the Estimate Size window.
v Select a different value for New total number of rows or accept the default.
v Click Refresh to view the size estimates for the new value.
v Select a different value for New average row length or accept the default.
v Click Refresh to view the size estimates for the new value.

Checking Available Space in a Table Space
To check the amount of space available in a DMS table space:
1. From the Control Center, double-click on the Table Spaces icon. A list of

all the table spaces appears in the contents pane.
2. Scroll to the columns titled Allocated size, Size used and Percentage used

to see details related to the amount of space available in a table space.
Space is measured in pages where one page is 4 KB.

You can customize the order of the columns and which columns are displayed
by using the Customize Columns icon at the bottom of the Contents pane.

To check the available space in an SMS table space, use the facilities provided
by your operating system to monitor space usage and to ensure that available
room in the directory for the table space is not exhausted.

42 Administration Guide: Implementation

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

Adding More Space to a Table Space
Capacity for a DMS table space is the total size of containers allocated to the
table space. When a DMS table space reaches capacity (depending on the
usage of the table space, 90% is a possible threshold), you should add more
space to it. The database manager will automatically rebalance the tables in
the DMS table space across all available containers. During rebalancing, data
in the table space remains accessible.

For a DMS table space that has reached its capacity, you can add another
container:
1. From the Control Center, click the right mouse button on the table space in

the Contents pane for which you want to add a container, and select Alter
from the pop-up menu. The Alter Table Space window opens.

2. Click Add. The Add Container window opens.
3. Select the File or Raw device radio button, and complete the fields. See

the online help for assistance.
4. Click OK.

In general, you cannot extend the size of an SMS table space very easily
because SMS capacity depends on the space available in the file system and
the maximum size of the file supported by the operating system. However,
depending on your operating system, you may be able to increase the size of
a file system using the operating system facilities. For an SMS table space on a
UNIX-based system, you can increase the size of the table spaces by using the
appropriate UNIX-based system commands. See the documentation for the
UNIX-based system you are running. If the file system containing the SMS
table space also contains non-DB2 files, you may be able to move these files to
another file system, thus making more room available in the file system for
DB2’s use. You can also perform a redirected restore which involves restoring
a table space into a larger number of containers than it was backed up from.
You can perform a redirected restore from the Restore Database notebook:
From the database you want to restore, select Restore —> Database from the
pop-up menu.

Troubleshooting

DB2 provides a troubleshooting manual that is intended for technical support
representatives for DB2 servers and clients. It helps you to:
v Identify problems or errors in a concise manner
v Solve problems based on their symptoms
v Use available diagnostic tools
v Develop a troubleshooting strategy for your day-to-day DB2 operations.

The Troubleshooting Guide presents these basic troubleshooting topics:

Chapter 1. Administering DB2 Using GUI Tools 43

|
|

v Good troubleshooting practices
v Troubleshooting on the server
v Troubleshooting on the client
v Troubleshooting host communications
v Troubleshooting applications
v Troubleshooting and problem determination.

The Troubleshooting Guide presents these advanced troubleshooting topics:
v The DB2 process model
v Using logged information
v Taking traces
v Diagnostic tools for UNIX-based, OS/2, and Microsoft Windows operating

systems.

Up-to-date bulletins and technical documentation are available from the
World Wide Web at http://www.software.ibm.com/data/db2/library/.

See the section at the end of this book for the details on how to contact IBM.

Replicating Data

Replication is the process of taking changes stored in the database log at the
source server and applying them to the target server. You can use replication
to define, synchronize, automate, and manage copy operations for data across
your enterprise. You can automatically deliver the data from a host system to
target sites. For example, you can copy data and applications to branch
offices, retail outlets, and even sales representatives’ laptops.

The two operational components in replication are Capture and Apply. The
Capture component captures changes made to data in source tables which
have been defined for replication by reading the database log. The Apply
component reads the changed data previously captured and stored in a
change data table and applies it to the target tables.

Using the Control Center, you can do the setup required for replication using
the Define as replication source and Define subscription actions. The
replication components Capture and Apply run outside the DB2
administration tools.

Replication administrators can perform the following actions from the Control
Center:
v Define replication sources
v Define replication subscriptions

44 Administration Guide: Implementation

v Specify SQL to enhance data during the Apply process

The high-level steps for replicating data are as follows. Refer to the Replication
Guide and Reference for details.
1. Design a replication scenario (map the source and target tables).
2. Define a replication source (this relates to the Capture action).

To define a replication source:
1. Specify source columns to capture.
2. Choose replication options.
3. Define a replication subscription (this relates to the Apply action).
4. Alter the source table with the Data Capture Changes option.
5. Start Capture to read and store data changes.
6. Start Apply to replicate changes to target tables.

To define a replication subscription:
1. Name the subscription set.
2. Specify the database and target table.
3. Specify the target columns.
4. Specify the row selection.
5. Specify SQL for run-time processing.
6. Set the subscription timing.

Using Lightweight Directory Access Protocol

The Client Configuration Assistant (CCA) can be used to add and delete
entries on an LDAP server. All the database instances registered on the LDAP
server will be cataloged (cached) automatically on the client. They will show
up in Control Center as regular nodes on the navigator tree. These databases
can be managed the same way as the other databases that you have cataloged
on your machine (except the ADD DATABASE and DROP DATABASE
options are not yet available in this release).

To administer an LDAP database, select the database and click the right
mouse button. A pop-up window lists the functions which you can perform.
For more information on LDAP, see “Appendix J. Lightweight Directory
Access Protocol (LDAP) Directory Services” on page 395.

Chapter 1. Administering DB2 Using GUI Tools 45

|

|

Using a Java Control Center

You can run the Control Center as a Java application or as a Java applet
through a web server. In both cases, you need a supported Java Virtual
Machine (JVM) installed on your machine to run the Control Center. To run
the Control Center as a Java application, you must also have the correct Java
Runtime Environment (JRE) installed. A Java Virtual Machine can be a Java
Runtime Environment (JRE) for running applications or a Java-enabled
browser for running applets.

Java applications are run just like other applications on your machine,
provided you have the correct JRE installed.

Running the Control Center as a Java Applet
Java applets are programs that run within Java-enabled browsers. The Control
Center applet code can reside on a remote machine and is served to the
client’s browser through a web server. If you run the Control Center as a java
applet, you must use a supported Java-enabled browser running on a
Windows 32-bit or OS/2 operating system. Currently, there are no supported
browsers for UNIX operating systems.

The Control Center JDBC Applet Server must be started with a user account
that has administrator authority on the machine where the Applet Server
resides. You can set your Control Center JDBC Applet Server to start
automatically at startup time.

To run the Control Center as a Java applet, you must have a Web server set
up on the machine that contains the Control Center applet code and the
Control Center JDBC Applet Server. The Web server must allow access to the
sqllib directory. If you choose to use a virtual directory, substitute this
directory for the home directory. For example, if you name your virtual
directory temp, then you should use sqllib/temp. DB2 does not support the
installation of the Control Center on a FAT drive for OS/2 because an OS/2
FAT drive does not support long filenames required by Java. For more
information on installing and configuring the Control Center as a Java
application or Java applet, refer to the Quick Beginnings manual for your
platform.

Using Your Java Tools for Administration

DB2 includes a set of Java interfaces that allow you to extend the capabilities
of the Control Center. The Java interfaces allow you to:
v Add additional items to the menu list when working with objects.
v Add buttons to the Control Center toolbar.

46 Administration Guide: Implementation

|
|

|
|
|
|
|
|

To use this capability, you must have the right level of Java software installed.
See the “Appendix K. Extending the Control Center” on page 427 for more
information on using this function.

Chapter 1. Administering DB2 Using GUI Tools 47

48 Administration Guide: Implementation

Part 2. Implementing Your Design

© Copyright IBM Corp. 1993, 2001 49

50 Administration Guide: Implementation

Chapter 2. Before Creating a Database

After determining the design of your database, you must create the database
and the objects within it. These objects include schemas, nodegroups, table
spaces, tables, views, wrappers, servers, nicknames, type mappings, function
mappings, aliases, user-defined types (UDTs), user-defined functions (UDFs),
triggers, constraints, indexes, and packages. You can create these objects using
SQL statements in the command line processor, from the Control Center, or
through APIs in applications.

For information on SQL statements, refer to the SQL Reference manual. For
information on command line processor commands, refer to the Command
Reference. For information on APIs, refer to the Administrative API Reference
manual.

Note: Your platform may support a user interface where you can create
database objects. This interface can be used instead of the SQL
statements, command line processor commands, or APIs. Check the
Quick Beginnings manual for your platform to determine if you have
this capability.

In this chapter the method for completing tasks using the Control Center is
highlighted by placing it within a box. This is followed immediately by a
comparable method using the command line, sometimes with examples. In
some cases, there may be tasks showing only one method. When working
with the Control Center, recall that you can use the help there to provide
more detail than the overview information found here.

This chapter focuses on the information you should know before you create a
database with all of its objects. There are several prerequisite concepts and
topics as well as several tasks you must perform before creating a database.

The chapter following this one contains brief discussions of the various objects
that may be part of the implementation of your database design.

The final chapter in this part presents topics you must consider before you
alter a database and then explains how to alter or drop database objects.

For those areas where DB2 Universal Database interacts with the operating
system, some of the topics in this and the following chapters may present
operating system-specific differences. You may be able to take advantage of
native operating system capabilities or differences beyond those offered by

© Copyright IBM Corp. 1993, 2001 51

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

DB2 UDB. Refer to your appropriate Quick Beginnings manuals and specific
operating system documentation for precise differences.

As an example, Windows NT** supports an application type known as a
“service”. DB2 for Windows NT can have a DB2 instance defined as a service.
A service can be started automatically at system boot, by a user through the
Services control panel applet, or by a Win32-based application that uses the
service functions included in the Microsoft** Win32** application
programming interface (API). Services can execute even when no user is
logged on to the system.

Prerequisites Before Creating a Database

Before you implement a database, you should understand the following
prerequisite tasks:
v “Starting DB2”
v “Starting DB2 UDB on Windows NT” on page 53
v “Using Multiple Instances of the Database Manager” on page 53
v “Organizing and Grouping Objects by Schema” on page 54
v “Enabling Parallelism” on page 55
v “Enabling Data Partitioning” on page 57
v “Stopping DB2” on page 59

Starting DB2
You may need to start or stop DB2 during normal business operations; for
example, you must start an instance before you can perform the following
tasks:
v Connect to a database on the instance
v Precompile an application
v Bind a package to a database
v Access host databases.

To start a DB2 instance on your system:
1. Log in with a user ID or name that has SYSADM, SYSCTRL, or

SYSMAINT authority on the instance; or log in as the instance owner.
2. On UNIX operating systems, run the startup script as follows:

. INSTHOME/sqllib/db2profile (for Bourne or Korn shell)
source INSTHOME/sqllib/db2cshrc (for C shell)

where INSTHOME is the home directory of the instance you want to use.
3. Use one of these two methods to start the instance:

52 Administration Guide: Implementation

a. To start the instance using the Control Center:

1) Expand the object tree until you see the Instances folder.

2) Right-click the instance that you want to start, and select start from the pop-up
menu.

b. To start the instance using the command line, enter:
db2start

Note: The db2start command starts the instance according to the rules in
“Setting the Current Instance” on page 68.

Starting DB2 UDB on Windows NT
The db2start command will launch DB2 as an NT service. DB2 on Windows
NT can still be run as a process by specifying the ″/D″ switch when invoking
DB2START. DB2 can also be started as a service using the Control Panel or
″NET START″ command.

In order to successfully launch DB2 as a service from DB2START, the user
account must have the correct privilege as defined by the Windows NT
operating system to start an NT service. The user account can be a member of
the Administrators, Server Operators, or Power Users group.

When running in a partitioned database environment, each database partition
server is started as an NT service.

Using Multiple Instances of the Database Manager
Multiple instances of the database manager may be created on a single server.
This means that you can create several instances of the same product on a
physical machine, and have them running concurrently. This provides
flexibility in setting up environments.

You may wish to have multiple instances to create the following
environments:
v Separate your development environment from your production

environment.
v Separately tune each for the specific applications it will service.
v Protect sensitive information from administrators. For example, you may

wish to have your payroll database protected on its own instance so that
owners of other instances will not be able to see payroll data.

DB2 program files are physically stored in one location on a particular
machine. Each instance that is created points back to this location so the
program files are not duplicated for each instance created. Several related
databases can be located within a single instance.

Chapter 2. Before Creating a Database 53

Instances are cataloged as either local or remote in the node directory. Your
default instance is defined by the DB2INSTANCE environment variable. You
can attach to other instances to perform maintenance and utility tasks that can
only be done at an instance level, such as creating a database, forcing off
applications, monitoring a database, or updating the database manager
configuration. When you attempt to attach to an instance that is not in your
default instance, the node directory is used to determine how to communicate
with that instance.

The Command Reference provides information about the type of connection that
is required to execute each command.

DB2 support for multiple instances varies by operating system. Refer to the
Quick Beginnings guide appropriate to your platform for information on
defining multiple DB2 instances on one machine.

To attach to another instance, which may be remote, use the ATTACH
command as described in the Command Reference manual.

To use the Control Center:

1. Expand the object tree until you see the Instances folder.

2. Click on the instance you want to attach.

3. Right-click the selected instance name.

4. In the Attach-DB2 window, type your user ID and password, and click OK.

To attach to an instance using the command line, enter:
db2 attach to <instance name>

For example, to attach you to the instance called testdb2 that was previously
cataloged in the node directory:

db2 attach to testdb2

After performing maintenance activities for the testdb2 instance, you can then
detach from that instance by executing the following command:

db2 detach

Organizing and Grouping Objects by Schema
Database object names may be made up of a single identifier or they may be
schema-qualified objects made up of two identifiers. The schema, or high-order
part, of a schema-qualified object provides a means to classify or group
objects in the database. When an object such as a table, view, alias, distinct
type, function, index, package or trigger is created, it is assigned to a schema.
This assignment is done either explicitly or implicitly.

54 Administration Guide: Implementation

|

Explicit use of the schema occurs when you use the high-order part of a
two-part object name when referring to that object in a statement. For
example, USER A issues a CREATE TABLE statement in schema C as follows:

CREATE TABLE C.X (COL1 INT)

Implicit use of the schema occurs when you do not use the high-order part of
a two-part object name. When this happens, the CURRENT SCHEMA special
register is used to identify the schema name used to complete the high-order
part of the object name. The initial value of CURRENT SCHEMA is the
authorization ID of the current session user. If you wish to change this during
the current session, you can use the SET SCHEMA statement to set the special
register to another schema name. Refer to the SQL Reference for more
information.

As described in “Definition of System Catalog Tables” on page 104, some
objects are created within certain schemas when the database is created.

In dynamic SQL statements, a schema qualified object name implicitly uses
the CURRENT SCHEMA special register value as the qualifier for unqualified
object name references. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
database object names.

Before creating your own objects, you need to consider whether you want to
create them in your own schema or by using a different schema that logically
groups the objects. If you are creating objects that will be shared, using a
different schema name can be very beneficial. For more information on how
to explicitly create a schema, see “Creating a Schema” on page 116.

Enabling Parallelism
You must modify configuration parameters to take advantage of parallelism
within a database partition or within a non-partitioned database. For example,
intra-partition parallelism can be used to take advantage of the multiple
processors on a symmetric multi-processor (SMP) machine.

Enabling Intra-Partition Parallelism
The Control Center can be used to find out, or modify, the values of
individual entries in a specific database, or in the database manager
configuration file.

You could also use the GET DATABASE CONFIGURATION and the GET
DATABASE MANAGER CONFIGURATION commands to find out the values
of individual entries in a specific database, or in the database manager
configuration file. To modify individual entries for a specific database or in
the database manager configuration file, use the UPDATE DATABASE

Chapter 2. Before Creating a Database 55

CONFIGURATION and the UPDATE DATABASE MANAGER
CONFIGURATION commands respectively.

Configuration parameters that affect intra-partition parallelism include the
max_querydegree and intra_parallel database manager parameters, and the
dft_degree database parameter. For more information on configuration
parameters, refer to the Administration Guide: Performance.

Enabling Intra-Partition Query Parallelism
In order for intra-partition query parallelism to occur, you must modify
database configuration parameters and database manager configuration
parameters.

INTRA_PARALLEL
Database manager configuration parameter. Refer to Administration
Guide: Performance for more information on this parameter.

DFT_DEGREE
Database configuration parameter. Provides the default for the
DEGREE bind option and the CURRENT DEGREE special register.
Refer to Administration Guide: Performance for more information on this
parameter.

DEGREE
Precompile or bind option for static SQL. Refer to the Command
Reference for more information.

CURRENT DEGREE
Special register for dynamic SQL. Refer to the SQL Reference for more
information.

For more information on the configuration parameter settings, and how to
enable applications to process in parallel, refer to ″Configuring DB2″ in the
Administration Guide: Performance.

Enabling Inter-Partition Query Parallelism
Inter-partition parallelism occurs automatically based on the number of
database partitions and the distribution of data across these partitions.

Enabling Utility Parallelism
This section provides an overview of how to enable intra-partition parallelism
for the following utilities:
v Load
v Create index
v Backup database / table space
v Restore database / table space

56 Administration Guide: Implementation

Inter-partition parallelism for utilities occurs automatically based on the
number of database partitions.

Load: The Load utility automatically makes use of parallelism, or you can
use the following parameters on the LOAD command:
v CPU_PARALLELISM
v DISK_PARALLELISM

Refer to the Data Movement Utilities Guide and Reference for information about
the LOAD command.

AutoLoader: You can enable multiple split processes for the AutoLoader by
specifying the MODIFIED BY ANYORDER parameter for the LOAD
specification in the autoloader.cfg file. For more information, refer to Data
Movement Utilities Guide and Reference.

Create Index: To enable parallelism when creating an index:
v The INTRA_PARALLEL database manager configuration parameter must be

ON
v The table must be large enough to benefit from parallelism
v Multiple processors must be enabled on an SMP machine.

Refer to the SQL Reference for information on the CREATE INDEX statement.

Enabling Data Partitioning
When running in a partitioned database environment, you can create a
database from any node that exists in the db2nodes.cfg file using the CREATE
DATABASE command or the sqlecrea() application programming interface
(API). For information, refer to the Command Reference and Administrative API
Reference manuals.

Before creating a partitioned database, you must determine if you will be
attaching as a local or remote client to the instance where the database is to be
created. Second, you must attach to the instance. You must also select which
database partition will be the catalog node for the database. The database
partition to which you attach and execute the CREATE DATABASE command
becomes the catalog node for that particular database.

The catalog node is the database partition on which all system catalog tables
are stored. All access to system tables must go through this database partition.
All federated database objects (wrappers, servers, nicknames, etc.) are stored
in the system catalog tables at this node.

If possible, you should create each database in a separate instance. If this is
not possible (that is, you must create more than one database per instance),

Chapter 2. Before Creating a Database 57

|
|
|
|
|

|
|
|
|
|
|

you should spread the catalog nodes among the available database partitions.
Doing this reduces contention for catalog information at a single database
partition.

Note: You should regularly do a backup of the catalog node and avoid
putting user data on it (whenever possible), because other data
increases the time required for the backup.

When you create a database, it is automatically created across all the database
partitions defined in the db2nodes.cfg file.

When the first database in the system is created, a system database directory
is formed. It is appended with information about any other databases that you
create. The system database directory is sqldbdir and is located in the sqllib
directory under your home directory. This directory must reside on a shared
file system, (for example, NFS on UNIX platforms) because there is only one
system database directory for all the database partitions that make up the
partitioned database.

Also resident in the sqldbdir directory is the system intention file. It is called
sqldbins, and ensures that the database partitions remain synchronized. The
file must also reside on a shared file system since there is only one directory
across all database partitions. The file is shared by all the partitions making
up the database.

Configuration parameters have to be modified to take advantage of data
partitioning. Use the GET DATABASE CONFIGURATION and the GET
DATABASE MANAGER CONFIGURATION commands to find out the values
of individual entries in a specific database, or in the database manager
configuration file. To modify individual entries in a specific database, or in the
database manager configuration file, use the UPDATE DATABASE
CONFIGURATION and the UPDATE DATABASE MANAGER
CONFIGURATION commands respectively.

The database manager configuration parameters affecting a partitioned
database include conn_elapse, fcm_num_anchors, fcm_num_buffers,
fcm_num_connect, fcm_num_rqb, max_connretries, max_coordagents, max_time_diff,
num_poolagents, and stop_start_time.

For more information on configuration parameters, refer to the Administration
Guide: Performance.

Backup Database / Table Space
To enable I/O parallelism when backing up a database or table space:
v Use more than one target media.
v Configure table spaces for parallel I/O.

58 Administration Guide: Implementation

|
|
|

v Use the PARALLELISM parameter on the BACKUP command to specify the
degree of parallelism.

v Use the WITH num-buffers BUFFERS parameter on the BACKUP command
to ensure enough buffers are available to accommodate the degree of
parallelism. The number of buffers should equal the number of target
media you have plus the degree of parallelism selected plus a few extra.
Also, use a backup buffer size that is:
– As large as feasible. 4 MB or 8 MB (1024 or 2048 pages) is a good rule of

thumb.
– At least as large as the largest (extentsize * number of containers)

product of the table spaces being backed up.

Refer to the Command Reference for information on the BACKUP DATABASE
command.

Restore Database / Table Space
To enable I/O parallelism when restoring a database or table space:
v Use more than one source media.
v Configure table spaces for parallel I/O.
v Use the PARALLELISM parameter on the RESTORE command to specify

the degree of parallelism.
v Use the WITH num-buffers BUFFERS parameter on the RESTORE

command to ensure enough buffers are available to accommodate the
degree of parallelism. The number of buffers should equal the number of
target media you have plus the degree of parallelism selected plus a few
extra.
Also, use a restore buffer size that is:
– As large as feasible. 4 MB or 8 MB (1024 or 2048 pages) is a good rule of

thumb.
– At least as large as the largest (extentsize * number of containers)

product of the table spaces being restored.
– The same as, or an even multiple of, the backup buffer size.

Refer to the Command Reference for information on the RESTORE DATABASE
command.

Stopping DB2
The db2stop command can only be run at the server. No database connections
are allowed when running this command; however, if there are any instance
attachments, they are forced off before DB2 is stopped.

Note: If command line processor sessions are attached to an instance, you
must run the terminate command to end each session before running

Chapter 2. Before Creating a Database 59

the db2stop command. The db2stop command stops the instance
defined by the DB2INSTANCE environment variable.

To stop a DB2 instance on your system, you must do the following:
1. Log in or attach to an instance with a user ID or name that has SYSADM,

SYSCTRL, or SYSMAINT authority on the instance; or, log in as the
instance owner.

2. Display all applications and users that are connected to the specific
database that you want to stop. To ensure that no vital or critical
applications are running, list applications. You need SYSADM, SYSCTRL,
or SYSMAINT authority for this.

3. Force all applications and users off the database. You require SYSADM or
SYSCTRL authority to force users.

4. On UNIX operating systems, run the startup script as follows:
. INSTHOME/sqllib/db2profile (for Bourne or Korn shell)
source INSTHOME/sqllib/db2cshrc (for C shell)

where INSTHOME is the home directory of the instance you want to use.
5. Use one of these methods to stop the instance:

a. Expand the object tree until you find the Instances folder.

b. Click each instance you want to stop.

c. Right-click any of the selected instances, and select stop from the pop-up menu.

d. On the Confirm stop window, click OK.

To stop the instance using the command line, enter:
db2stop

Details on Creating a Database

Before creating a database, you should consider or carry out the following
tasks:
v Designing Logical and Physical Database Characteristics
v Creating an Instance
v Establishing the Environment Variables and the Profile Registry
v Creating a DB2 Administration Server (DAS)
v Creating a Node Configuration File
v Creating the Database Configuration File
v Replicating Configuration Information Using Response Files
v Enabling FCM Communications

60 Administration Guide: Implementation

|

Designing Logical and Physical Database Characteristics
You must make logical and physical database design decisions before you
create a database. To find out more about logical and physical database
design, refer to Administration Guide: Planning.

Creating an Instance
An instance is a logical database manager environment where you catalog
databases and set configuration parameters. Depending on your needs, you
can create more than one instance. You can use multiple instances to do the
following:
v Use one instance for a development environment and another instance for a

production environment.
v Tune an instance for a particular environment.
v Restrict access to sensitive information.
v Control the assignment of SYSADM, SYSCTRL, and SYSMAINT authority

for each instance.
v Optimize the database manager configuration for each instance.
v Limit the impact of an instance failure. In the event of an instance failure,

only one instance is affected. Other instances can continue to function
normally.

It should be noted that multiple instances have some minor disadvantages:
v Additional system resources (virtual memory and disk space) are required

for each instance.
v More administration is required because of the additional instances to

manage.

The instance directory stores all information that pertains to a database
instance. You cannot change the location of the instance directory once it is
created. The directory contains:
v The database manager configuration file
v The system database directory
v The node directory
v The DB2 diagnostic file (db2diag.log)
v The node configuration file (db2nodes.cfg)
v Any other files that contain debugging information, such as the

exception/register dump or the call stack for the DB2 processes.

On UNIX operating systems, the instance directory is located in the
INSTHOME/sqllib directory, where INSTHOME is the home directory of the
instance owner.

Chapter 2. Before Creating a Database 61

In a partitioned database system, the instance directory is shared between all
database partition servers belonging to the instance. Therefore, the instance
directory must be created on a network share drive that all machines in the
instance can access.

As part of your installation procedure, you create an initial instance of DB2
called “DB2”. On UNIX, the initial instance can be called anything you want
within the naming rules guidelines. The instance name is used to set up the
directory structure.

To support the immediate use of this instance, the following are set during
installation:
v The environment variable DB2INSTANCE is set to “DB2”.
v The DB2 registry variable DB2INSTDEF is set to “DB2”.

On UNIX, the default can be called anything you want within the naming
rules guidelines.

These settings establish “DB2” as the default instance. You can change the
instance that is used by default, but first you have to create an additional
instance.

Before using DB2, the database environment for each user must be updated so
that it can access an instance and run the DB2 programs. This applies to all
users (including administrative users).

On UNIX operating systems, sample script files are provided to help you set
the database environment. The files are: db2profile for Bourne or Korn shell,
and db2cshrc for C shell. These scripts are located in the sqllib subdirectory
under the home directory of the instance owner. The instance owner or any
user belonging to the instance’s SYSADM group can customize the script for
all users of an instance. Alternatively, the script can be copied and customized
for each user.

The sample script contains statements to:
v Update a user’s PATH by adding the following directories to the existing

search path: the bin, adm, and misc subdirectories under the sqllib
subdirectory of the instance owner’s home directory.

v Set the DB2INSTANCE environment variable to the instance name.

Setting the DB2 Environment Automatically

Note: This discussion only applies to the UNIX operating system
environments.

62 Administration Guide: Implementation

By default, the scripts affect the user environment for the duration of the
current session only. You can change the .profile file to enable it to run the
db2profile script automatically when the user logs on using the Bourne or
Korn shell. For users of the C shell, you can change the .login file to enable it
to run the db2shrc script file.

Add one of the following statements to the .profile or .login script files:
v For users who share one version of the script, add:

. INSTHOME/sqllib/db2profile (for Bourne or Korn shell)
source INSTHOME/sqllib/db2cshrc (for C shell)

where INSTHOME is the home directory of the instance that you wish to use.
v For users who have a customized version of the script in their home

directory, add:
. USERHOME/db2profile (for Bourne or Korn shell)
source USERHOME/db2cshrc (in C shell)

where USERHOME is the home directory of the user.

Setting the DB2 Environment Manually

Note: This discussion only applies to the UNIX operating system
environments.

To choose which instance you want to use, enter one of the following
statements at a command prompt. The period (.) and the space are required.
v For users who share one version of the script, add:

. INSTHOME/sqllib/db2profile (for Bourne or Korn shell)
source INSTHOME/sqllib/db2cshrc (for C shell)

where INSTHOME is the home directory of the instance that you wish to use.
v For users who have a customized version of the script in their home

directory, add:
. USERHOME/db2profile (for Bourne or Korn shell)
source USERHOME/db2cshrc (in C shell)

where USERHOME is the home directory of the user.

If you want to work with more than one instance at the same time, run the
script for each instance that you want to use in separate windows. For
example, assume that you have two instances called test and prod, and their
home directories are /u/test and /u/prod.

In window 1:
v In Bourne or Korn shell, enter:

Chapter 2. Before Creating a Database 63

|
|

. /u/test/sqllib/db2profile

v In C shell, enter:
source /u/test/sqllib/db2cshrc

In window 2:
v In Bourne or Korn shell, enter:

. /u/prod/sqllib/db2profile

v In C shell, enter:
source /u/prod/sqllib/db2cshrc

Use window 1 to work with the test instance and window 2 to work with
the prod instance.

Note: Enter the which db2 command to ensure that your search path has
been set up correctly. This command returns the absolute path of the
DB2 CLP executable. Verify that it is located under the instance’s
sqllib directory.

Multiple Instances on a System
It is possible to have more than one instance on a system. However, you may
only work within one instance of DB2 at a time.

The instance owner and the group that is the System Administration
(SYSADM) group are associated with every instance. The instance owner and
the SYSADM group are assigned during the process of creating the instance.
One user ID or username can be used for only one instance. That user ID or
username is also referred to as the instance owner.

Each instance owner must have a unique home directory. All of the files
necessary to run the instance are created in the home directory of the instance
owner’s user ID or username. If it becomes necessary to remove the instance
owner’s user ID or username from the system, you could potentially lose files
associated with the instance and lose access to data stored in this instance. For
this reason, it is recommended that you dedicate an instance owner user ID or
username to be used exclusively to run DB2.

The primary group of the instance owner is also important. This primary
group automatically becomes the system administration group for the instance
and gains SYSADM authority over the instance. Other user IDs or usernames
that are members of the primary group of the instance owner also gain this
level of authority. For this reason, you may want to assign the instance
owner’s user ID or username to a primary group that is reserved for the
administration of instances. (Also, ensure that you assign a primary group to
the instance owner user ID or username; otherwise, the system-default
primary group is used.)

64 Administration Guide: Implementation

If you already have a group that you want to make the system administration
group for the instance, you can simply assign this group as the primary group
when you create the instance owner user ID or username. To give other users
administration authority on the instance, add them to the group that is
assigned as the system administration group.

To separate SYSADM authority between instances, ensure that each instance
owner user ID or username uses a different primary group. However, if you
choose to have a common SYSADM authority over multiple instances, you
can use the same primary group for multiple instances.

Add an Instance
If you have Administrative authority on OS/2, or you belong to the
Administrative group on Windows NT, or you have root authority on UNIX
platforms, you can add additional DB2 instances. The machine where you add
the instance becomes the instance-owning machine (node zero). Ensure that
you add instances on a machine where an Administration Server resides.

To add another instance, perform the following steps:
1. Log on under a user ID or name that has Administrative authority or

belongs to the local Administrators group.
2. To add an instance, use one of the following methods:

To use the Control Center:

a. Expand the object tree until you find the Instances folder of the system that you
want.

b. Right-click the instance folder, and select Add from the pop-up menu.

c. Complete the information, and click Apply.

To add an instance using the command line, enter:
db2icrt <instance_name>

3. Create an Administration Server.

When using the db2icrt command to add another instance of DB2, you should
provide the login name of the instance owner and optionally specify the
authentication type of the instance. The authentication type applies to all
databases created under that instance. The authentication type is a statement
of where the authenticating of users will take place. For more information on
authentication, see “Chapter 5. Controlling Database Access” on page 221.

Note: You can choose to update your instance configuration using the
db2iupdt command.

Chapter 2. Before Creating a Database 65

|
|

You can change the location of the instance directory from DB2PATH using
the DB2INSTPROF environment variable. You require write-access for the
instance directory. If you want the directories created in a path other than
DB2PATH, you have to set DB2INSTPROF BEFORE entering the db2icrt
command.

DB2 Enterprise - Extended Edition Details When Adding Instances: When
working with DB2 Universal Database Enterprise - Extended Edition, you will
also need to declare that you are adding a new instance that is a partitioned
database system. This is done using –s eee on the command line.

UNIX Details When Creating Instances: When working with UNIX
operating systems, the db2icrt command has the following optional
parameters:
v –h or –?

This parameter is used to display a help menu for the command.
v –d

This parameter sets the debug mode for use during problem determination.
v –a AuthType

This parameter specifies the authentication type for the instance. Valid
authentication types are SERVER, CLIENT, DCS, or DCE. If not specified,
the default is SERVER, if a DB2 server is installed. Otherwise, it is set to
CLIENT.

Notes:

1. The authentication type of the instance applies to all databases owned
by the instance.

2. On UNIX operating systems, the authentication type DCE is not a valid
choice.

v –u FencedID
This parameter is the user under which the fenced user-defined functions
(UDFs) and stored procedures will execute. This is not required if you
install the DB2 client or the DB2 Application Development Client. For other
DB2 products, this is a required parameter.

Note: FencedID may not be “root” or “bin”.
v –p PortName

This parameter specifies the TCP/IP service name or port number to be
used. This value will then be set in the instance’s database configuration file
for every database in the instance.

v –s InstType
Allows different types of instances to be added. Valid instance types are: ee,
eee and client.

66 Administration Guide: Implementation

|
|
|

Examples:
v To add an instance for a DB2 server, you can use the following command:

db2icrt -u db2fenc1 db2inst1

v If you installed the DB2 Connect Enterprise Edition only, you can use the
instance name as the Fenced ID also:

db2icrt -u db2inst1 db2inst1

v To add an instance for a DB2 client, you can use the following command:
db2icrt db2inst1 –s client –u fencedID

DB2 client instances are created when you want a workstation to connect to
other database servers and you have no need for a local database on that
workstation.

Windows NT Details When Creating Instances: When working with the
Windows NT operating system, the db2icrt command has the following
optional parameters:
v –s InstType

Allows different types of instances to be created. Valid instance types are:
ee, eee and client.

v /p:InstProf_Path
This is an optional parameter to specify a different instance profile path. If
you do not specify the path, the instance directory is created under the
SQLLIB directory, and given the shared name DB2 concatenated to the
instance name. Read and write permissions are automatically granted to
everyone in the domain. Permissions can be changed to restrict access to
the directory.
If you do specify a different instance profile path, you must create a shared
drive or directory. This will allow the opportunity for everyone in the
domain to access the instance directory unless permissions have been
changed.

v /u:username,password
When creating a partitioned database environment, you must declare the
logon and account name and password of the DB2 service.

v /r:base_port,end_port
This is an optional parameter to specify the TCP/IP port range for the Fast
Communications Manager (FCM). If you specify the TCP/IP port range,
you must ensure that the port range is available on all machines in the
partition database system.

For example, on DB2 for Windows NT Enterprise - Extended Edition, you
could have the following example:

Chapter 2. Before Creating a Database 67

|

|

|

|
|
|
|

db2icrt inst1 –s eee
/p:\\machineA\db2mpp
/u:yourname,yourpwd /r:9010,9015

Note: The db2icrt command grants to the username used to create the
instance:
v Act as a part of the operating system
v Create a token object
v Increase quota
v Log on as a service
v Replace a process level token

The instance requires these user rights to access the shared drive,
authenticate the user account, and run DB2 as a Windows NT service.

Listing Instances
To get a list of all the instances that are available on a system using the
Control Center:

1. Expand the object tree until you find the Instances folder for the system.

2. Right-click the Instances folder, and select Add from the pop-up menu.

3. On the Add Database window, click Refresh.

4. Click the drop-down arrow to see a list of database instances.

5. Click Cancel to exit the window.

To list all instances that are available on a system using the command line,
enter:

db2ilist

To determine which instance applies to the current session, enter:
set db2instance

Note: On UNIX operating systems, enter:
db2 get instance

Setting the Current Instance
When you run commands to start or stop an instance’s database manager,
DB2 applies the command to the current instance. DB2 determines the current
instance as follows:
v If the DB2INSTANCE environment variable is set for the current session, its

value is the current instance. To set the DB2INSTANCE environment
variable, enter:

set db2instance=<new_instance_name>

68 Administration Guide: Implementation

|

|

|

|

v If the DB2INSTANCE environment variable is not set for the current
session, DB2 uses the setting for the DB2INSTANCE environment variable
from the system environment variables. On Windows NT, system
environment variables are set in System Environment. On Windows 95,
they are set in the autoexec.bat file. On OS/2, they are set in the
config.sys file.

v If the DB2INSTANCE environment variable is not set at all, DB2 uses the
registry variable, DB2INSTDEF.
To set the DB2INSTDEF registry variable at the global level of the registry,
enter:

db2set db2instdef=<new_instance_name> -g

Auto-Starting Instances
On UNIX operating systems, to enable an instance to auto-start after each
system restart, enter the following command:

db2iauto -on InstName

where InstName is the login name of the instance.

On UNIX operating systems, to prevent an instance from auto-starting after
each system restart, enter the following command:

db2iauto -off InstName

where InstName is the login name of the instance.

Running Multiple Instances Concurrently
You can start multiple DB2 instances as long as they use the same level of
code.

To run multiple instances concurrently using the Control Center:

1. Expand the object tree until you find the Databases folder.

2. Right-click an instance, and select Start from the pop-up menu.

3. Repeat Step 2 until you have started all the instances that you want to run
concurrently.

To run multiple instances concurrently using the command line:
1. Set the DB2INSTANCE variable to the name of the other instance that you

want to start by entering:
set db2instance=<another_instName>

2. Start the instance by entering the db2start command.

Chapter 2. Before Creating a Database 69

|

|
|

|

|

License Management
The management of licenses for your DB2 products is done primarily through
the License Center within the Control Center of the online interface to the
product. From the License Center you can check the license information,
statistics, registered users, and current users for each of the installed products.

Establishing the Environment Variables and the Profile Registry
Environment and registry variables control your database environment.

Prior to the introduction of the DB2 profile registry, changing your
environment variables on Windows or OS/2 workstations (for example)
required you to change an environment variable and reboot. Now, your
environment is controlled, with a few exceptions, by registry variables stored
in the DB2 profile registries. Users with system administration (SYSADM)
authority for a given instance can update registry values for that instance. Use
the db2set command to update registry variables without rebooting; this
information is stored immediately in the profile registries. The DB2 registry
applies the updated information to DB2 server instances and DB2 applications
started after the changes are made.

When updating the registry, changes do not affect the currently running DB2
applications or users. Applications started following the update use the new
values.

Note: The DB2 environment variables DB2INSTANCE, DB2NODE, DB2PATH, and
DB2INSTPROF may not, depending on the operating system, be stored in
the DB2 profile registries. In order to update these environment
variables, the set command must be used. These changes are in effect
until the next time the system is rebooted. On UNIX platforms, the
export command may be used instead of the set command.

Using the profile registry allows for centralized control of the environment
variables. “DB2 Registry and Environment Variables” in the Administration
Guide: Performance lists many of the environment variables and registry
variables. Different levels of support are now provided through the different
environment profiles. Remote administration of the environment variables is
also available when using the DB2 Administration Server.

There are four profile registries:
v The DB2 Instance Level Profile Registry. The majority of the DB2

environment variables are placed within this registry. The environment
variable settings for a particular instance are kept in this registry. Values
defined in this level override their settings in the global level.

v The DB2 Global Level Profile Registry. If an environment variable is not set
for a particular instance, this registry is used. This registry has the

70 Administration Guide: Implementation

|
|
|
|
|
|

machine-wide environment variable settings. In DB2 UDB EEE, one
global-level profile exists at each machine.

v The DB2 Instance Node Level Profile Registry. In a system where the
database is divided across different database partitions, this registry resides
on every node (that is, machine), and contains environment variable
settings for all instances storing data on the node. Values defined at this
level override comparable settings in the instance and global levels.

v The DB2 Instance Profile Registry. This registry contains a list of all instance
names recognized by this system.

Users can override DB2 Instance Profile Registry environment variable
settings for their session by changing session environment variable settings
using the set command (or the export command on UNIX platforms).

DB2 configures the operating environment by checking for registry values and
environment variables and resolving them in the following order:
1. Environment variables set with the set command. (Or the export

command on UNIX platforms.)
2. Registry values set with the instance node level profile (using the db2set

-i command with a node number as shown below).
3. Registry values set with the instance profile (using the db2set -i

command as shown below).
4. Registry values set with the global profile (using the db2set -g command

as shown below).

Using the db2set Command
The db2set command supports the local declaration of the registry variables
(and environment variables).

To display help information for the command, use:
db2set ?

To list the complete set of all supported registry variables, use:
db2set -lr

To list all defined registry variables for the current or default instance, use:
db2set

To list all defined registry variables in the profile registry, use:
db2set -all

To show the value of a registry variable in the current or default instance, use:
db2set registry_variable_name

To show the value of a registry variable at all levels, use:

Chapter 2. Before Creating a Database 71

|
|
|

|

|

|

|

|

|

db2set registry_variable_name -all

To delete a variable’s value at a specified level, you can use the same
command syntax to set the variable but specify nothing for the variable value.
For example, to delete the variable’s setting at the node level, enter:

db2set registry_variable_name= -i instance_name
node_number

To delete a variable’s value and to restrict its use, if it is defined at a higher
profile level, enter:

db2set registry_variable_name= -null instance_name

This command will delete the setting for the parameter you specify and
restrict high level profiles from changing this variable’s value (in this case,
DB2 global-level profile). However, the variable you specify could still be set
by a lower level profile (in this case, the DB2 node-level profile).

To change a registry variable for in the current or default instance, use:
db2set registry_variable_name=new_value

To change a registry variable default for all databases in the instance, use:
db2set registry_variable_name=new_value

-i instance_name

To change a registry variable default for all instances in the system, use:
db2set registry_variable_name=new_value -g

To set registry variables at the user level, use:
db2set -ul

To set registry variables at the user level for a specific user, use:
db2set -ul user_name

Notes:

1. The parameters ″-i″, ″-g″, and ″-ul″ cannot be used at the same time in the
same command.

2. Some parameters will always default to the global level profile. They
cannot be set at the instance or node level profiles; for example, db2system
and db2instdef.

3. On UNIX, you must have system administration (SYSADM) authority to
change registry values for an instance. Only users with root authority can
change parameters in global-level registries.

When running in an LDAP environment, it is possible to set a DB2 registry
variable value in LDAP such that its scope is global to all machines and all

72 Administration Guide: Implementation

|

|

|

users that belong to a directory partition or to a Windows NT domain.
Currently, the only DB2 registry variable that can be set at the LDAP global
level is DB2LDAP_SEARCH_SCOPE.

To set this variable at the LDAP global level, use the -gl option for the db2set
command.

Note: This is different from the -g option which is used to set DB2 registry
variables at the machine global level. -gl is specific to the LDAP global
level. Also, setting this DB2 registry variable in LDAP is only
supported on Windows platforms.

To set the search scope value at the global level in LDAP, use:
db2set -gl db2ldap_search_scope = value

where the value can be “local”, “domain”, or “global”.

To change a registry variable default for a particular node in an instance, use:
db2set registry_variable_name=new_value

-i instance_name node_number

To reset a registry variable for an instance back to the default found in the
Global Profile Registry, use:

db2set -r registry_variable_name

To reset a registry variable for a node in an instance back to the default found
in the Global Profile Registry, use:

db2set -r registry_variable_name node_number

Setting Environment Variables on OS/2
It is strongly recommended that all DB2-specific registry variables be defined
in the DB2 profile registry. If DB2 variables are set outside of the registry,
remote administration of those variables is not possible, and the workstation
must be rebooted in order for the variable values to take effect.

On OS/2, you should have no environment variables defined in config.sys
apart from DB2PATH and DB2INSTPROF. All variables should be defined in
the profile registries using the db2set command except for those that remain
true environment variables.

DB2INSTANCE also remains a true environment variable, however, it is not
required if you make use of the DB2INSTDEF registry variable. This registry
variable defines the default instance name to use if DB2INSTANCE is not set.

DB2INSTANCE and DB2PATH are set when DB2 is installed; DB2INSTPROF
can be set after installation. The environment variable DB2PATH must be set;

Chapter 2. Before Creating a Database 73

|
|

|

|
|

|

|

this environment variable is set during installation and you should not
modify it. Setting DB2INSTANCE and DB2INSTPROF environment variables
is optional.

To determine the setting of an environment variable, enter:
set variable

To change the setting of an environment variable, enter the following
command:

set variable=value

To set system environment variables, do the following: Edit the config.sys file,
and reboot the system to have the change take effect.

The different profile registries are located according to the following:
v The DB2 Instance Level Profile Registry file is located under:

%DB2INSTPROF%\instance_name\PROFILE.ENV

v The DB2 Global Level Profile Registry is located under:
%DB2INSTPROF%\DEFAULT.ENV

v The DB2 Instance Profile Registry is located under:
%DB2INSTPROF%\PROFILES.REG

Setting Environment Variables on Windows NT and Windows 95
It is strongly recommended that all DB2-specific registry variables be defined
in the DB2 profile registry. If DB2 variables are set outside of the registry,
remote administration of those variables is not possible, and the workstation
must be rebooted in order for the variable values to take effect.

Windows 32-bit operating systems have one system environment variable,
DB2INSTANCE, that can only be set outside the profile registry; however, you
are not required to set DB2INSTANCE. The DB2 profile registry variable
DB2INSTDEF may be set in the global level profile to specify the instance
name to use if DB2INSTANCE is not defined.

DB2 Enterprise - Extended Edition servers on Windows NT have two system
environment variables, DB2INSTANCE and DB2NODE, that can only be set
outside the profile registry. You are not required to set DB2INSTANCE. The
DB2 profile registry variable DB2INSTDEF may be set in the global level
profile to specify the instance name to use if DB2INSTANCE is not defined.

The DB2NODE environment variable is used to route requests to a target
logical node within a machine. This environment variable must be set in the
session in which the application or command is issued and not in the DB2
profile registry. If this variable is not set, the target logical node defaults to the
logical node which is defined with port zero (0) on the machine.

74 Administration Guide: Implementation

To determine the settings of an environment variable, use the echo command.
For example, to check the value of the DB2PATH environment variable, enter:

echo %db2path%

To set system environment variables, do the following:

On Windows 95 and Windows 98: Edit the autoexec.bat file, and reboot the
system to have the change take effect.

On Windows NT 4.x: You can set the DB2 environment variables
DB2INSTANCE, DB2PATH, and DB2INSTPROF as follows:
v Select Start, Settings, Control Panel.
v Double-click on the System icon.
v In the System Control Panel, in the System Environment Variables section,

do the following:
1. If the DB2INSTANCE variable does not exist:

a. Select any system environment variable.
b. Change the name in the Variable field to DB2INSTANCE.
c. Change the Value field to the instance name, for example db2inst.

2. If the DB2INSTANCE variable already exists, append a new value:
a. Select the DB2INSTANCE environment variable.
b. Change the Value field to the instance name, for example db2inst.

3. Select Set.
4. Select OK.
5. Reboot your system for these changes to take effect.

Note: The environment variable DB2INSTANCE can also be set at the session
(process) level. For example, if you want to start a second DB2 instance
called TEST, issue the following commands in a command window:

set db2instance=TEST
db2start

The profile registries are located as follows:
v The DB2 Instance Level Profile Registry in the Windows NT operating

system registry, with the path:
\HKEY_LOCAL_MACHINE\SOFTWARE\IBM\DB2\PROFILES\instance_name

Note: The instance_name is specific to the database partition you are
working with.

v The DB2 Global Level Profile Registry in the Windows NT registry, with the
path:

\HKEY_LOCAL_MACHINE\SOFTWARE\IBM\DB2\GLOBAL_PROFILE

Chapter 2. Before Creating a Database 75

v The DB2 Instance Node Level Profile Registry in the Windows NT registry,
with the path:

...\SOFTWARE\IBM\DB2\PROFILES\instance_name\NODES\node_number

Note: The instance_name and the node_number are specific to the database
partition you are working with.

DB2 UDB provides the capability of accessing DB2 UDB registry variables at
the instance level on a remote machine. Currently, DB2 UDB registry variables
are stored in three different levels: machine or global level, instance level, and
node level. The registry variables stored at the instance level (including the
node level) can be redirected to another machine by using
DB2REMOTEPREG. When DB2REMOTEPREG is set, DB2 UDB will access the
DB2 UDB registry variables from the machine pointed to by
DB2REMOTEPREG. For example,

db2set DB2REMOTEPREG=rmtwkstn

where rmtwkstn is the remote workstation name.

Note: Care should be taken in setting this option since all DB2 instance
profiles and instance listings will be located on the specified remote
machine name.

This feature may be used in combination with setting DBINSTPROF to point
to a remote LAN drive on the same machine that contains the registry.

Setting Environment Variables on UNIX Systems
It is strongly recommended that all DB2-specific registry variables be defined
in the DB2 profile registry. If DB2 variables are set outside of the registry,
remote administration of those variables is not possible.

On UNIX operating systems, you must set the system environment variable
DB2INSTANCE.

The scripts db2profile (for Korn shell) and db2cshrc (for Bourne shell or C
shell) are provided as examples to help you set up the database environment.
You can find these files in insthome/sqllib, where insthome is the home
directory of the instance owner.

These scripts include statements to:
v Update a user’s path with the following directories:

– insthome/sqllib/bin

– insthome/sqllib/adm

– insthome/sqllib/misc

v Set DB2INSTANCE to the default local instance_name for execution.

76 Administration Guide: Implementation

Note: Except for PATH and DB2INSTANCE, all other DB2-supported
variables must be set in the DB2 profile registry. To set variables that
are not supported by DB2, define them in your script files, db2profile
and db2cshrc.

An instance owner or SYSADM user may customize these scripts for all users
of an instance. Alternatively, users can copy and customize a script, then
invoke a script directly or add it to their .profile or .login files.

To change the environment variable for the current session, issue commands
similar to the following:
v For Korn shell:

db2instance=inst1
export db2instance

v For Bourne shell or C shell:
set db2instance inst1

In order for the DB2 profile registry to be administered properly, the following
file ownership rules must be followed on UNIX operating systems. (For
information on DB2 Administration Server (DAS), see “Creating a DB2
Administration Server (DAS)” on page 78.)
v The DB2 Instance Level Profile Registry file is located under:

INSTHOME/sqllib/profile.env

The access permissions and ownership of this file should be:
-rw-r--r-- Instance_Owner DAS_Instance_Group profile.env

The INSTHOME is the home path of the instance owner.
v The DB2 Global Level Profile Registry is located under:

– /var/db2/<version_id>/default.env for AIX, Solaris, SINIX, and
NUMA-Q(Sequent) operating systems (where <version_id> is the current
version).

– /var/opt/db2/<version_id>/default.env for the HP-UX operating system
(where <version_id> is the current version).

The access permissions and ownership of this file should be:
-rw-r--r-- DAS_Instance_Owner DAS_Instance_Group default.env

In order to modify a global registry variables, a user must be logged on as:
root or the DAS instance owner. See “Creating a DB2 Administration Server
(DAS)” on page 78 for more information on the DB2 Administration Server.

v The DB2 Instance Node Level Profile Registry is located under:
INSTHOME/sqllib/nodes/node_number.env

Chapter 2. Before Creating a Database 77

|
|
|
|

|

|

|

The access permissions and ownership of the directory and this file should
be:

drwxrwxr-x Instance_Owner DAS_Instance_Group nodes

-rw-r--r-- Instance_Owner DAS_Instance_Group node_number.env

Note: The Instance_Owner and the DAS_Instance_Owner should both be
members of the DAS_Instance_Group.

The INSTHOME is the home path of the instance owner.
v The DB2 Instance Profile Registry is located under:

– /var/db2/<version_id>/profiles.reg for AIX, Solaris, SINIX, and
NUMA-Q(Sequent) operating systems (where <version_id> is the current
version).

– /var/opt/db2/<version_id>/profiles.reg for the HP-UX operating
system (where <version_id> is the current version).

The access permissions and ownership of this file should be:
-rw-r--r-- root system profiles.reg

Creating a DB2 Administration Server (DAS)
DB2 Administration Server (DAS) is a special DB2 administration control
point used only to assist with administration tasks on other DB2 servers. You
must have a running DAS if you want to use the Client Configuration
Assistant or the Control Center. DAS assists the Control Center and Client
Configuration Assistant when working on the following administration tasks:
v Enabling remote administration of DB2 servers.
v Providing the facility for job management, including the ability to schedule

the execution of both DB2 and operating system command scripts. These
command scripts are user-defined. The Control Center is used to define the
schedule of jobs, view the results of completed jobs, and perform other
administrative tasks against jobs located either remotely or locally to the
DAS.

v Providing a means for discovering information about the configuration of
DB2 instances, databases, and other DB2 Administration Servers in
conjunction with the DB2 Discovery utility. This information is used by the
Client Configuration Assistant and the Control Center to simplify and
automate the configuration of client connections to DB2 databases.

You can only have one DAS on a machine. DAS is configured during
installation to start when the operating system is booted.

DAS is used to perform remote tasks on the host system on behalf of a client
request from the Control Center or the Client Configuration Assistant.

78 Administration Guide: Implementation

|

Authorized access to DAS requires clients with SYSADM authority. All of the
clients can be part of the SYSADM_GROUP configuration parameter.

Some of the requested tasks may require specific authority to run. The DAS
runs under the identifier of a specific user. The privileges granted to that user
must be restricted to only those commands associated with the tasks or
operations to be carried out by the administrator. Generally, the tasks or
operations required include:
v Query the operating system (OS) configuration information.
v Query the OS for user and group information.
v Act against other DB2 instances to start or stop them.
v Execute scheduled jobs.
v Collect information for Connectivity and Protocol Configuration.

For more information on setting up DAS communications, refer to the Quick
Beginnings for your platform.

Creating the DAS
Typically, the setup program creates a DAS on the instance-owning machine
during DB2 installation. If, however, the setup program failed to create it, you
can manually create a DAS.

As an overview of what occurs during the installation process as it relates to
DAS, consider the following:
v On the OS/2 or Windows NT platforms:

Log on to the machine you want to create the DAS on using an account
that has local Administrator authority. If a specific user is to be identified,
create a user with local Administrator authority. Enter db2admin create. If a
specific user account is desired, you must use “/USER:” and
“/PASSWORD:” when issuing db2admin create.)
When creating the DAS, you can optionally provide a user account name
and a user password. If valid, the user account name and password will
identify the owner of the DAS. Do not use the user ID or account name
created for the DAS as a User Account. Set the password for the account
name to “Password Never Expires”. After you create the DAS, you can
establish or modify its ownership by providing a user account name and
user password with the db2admin setid command. Refer to the Command
Reference for more information on this command.
On DB2 UDB for Windows NT Enterprise - Extended Edition, if you are
using the Client Configuration Assistant or the Control Center to automate
connection configuration to a DB2 server, the database partition server that
is on the same machine as the DAS will be the coordinator node. This
means that all physical connections from the client to the database will be

Chapter 2. Before Creating a Database 79

directed to the database partition server on the instance-owning machine
before being routed to other database partition servers.
On DB2 UDB for Windows NT Enterprise - Extended Edition, creating
additional Administration Servers on other machines allows the Client
Configuration Assistant or Control Center to configure other systems as
coordinator nodes using DB2 Discovery. To do this, perform the following:
1. Log on to the machine using an account that has local Administrator

authority.
2. Create a Windows NT account that has local Administrator authority

that will be used by the DAS. Ensure that the username of the account
adheres to the DB2 naming conventions. When creating the account for
the DAS, note the following:
– Do not use the account for the DAS as a User Account.
– Set the password for the account to Password Never Expires.

3. Run the following command:
db2admin create /user:username

/password:passwrd

where username and passwrd are the username and password for the
DAS.

v On UNIX platforms:
1. Ensure that you have root authority.
2. At a command prompt, issue the following command from the instance

subdirectory in the path of the DB2 Universal Database instance:
dasicrt ASName

– On AIX:
/usr/lpp/db2_nn_00&/instance/

dasicrt ASname

– On HP-UX, NUMA-Q(Sequent), or Solaris:
/opt/IBMdb2/<version_id>/instance/

dasicrt ASname

– On Linux:
/usr/IBMdb2/<version_id>/instance/

dasicrt ASname

where ASName is the instance name of the Administration Server and
db2_nn_00& or <version_id> is the current version identifier.

Note: If you are running NIS and NIS+, you need to set up the user and
group names in such a way that:
– The primary group of the DAS must be in the secondary group of

all the instances.

80 Administration Guide: Implementation

– The secondary group of the DAS must contain the primary group
of all the instances.

Secondary group lists are modified automatically only if NIS and
NIS+ is not running on the system.

Because a user ID can only own one instance, you must have a separate
user ID to own each DB2 Administration Server (DAS) that you create.

Once you create an Administration Server, you should use it to establish
directory structures and access permissions.

Starting and Stopping the DAS
To manually start or stop the DAS, you must first log on to the machine using
an account or user ID that has local administrative authority.

When working on DB2 for OS/2 or DB2 for Windows NT, you must do the
following:
v To start the DAS, enter db2admin start

v To stop the DAS, enter db2admin stop

Note: For both cases under Windows NT, the person using these commands
must have SYSADM, SYSCTRL, or SYSMAINT authority.

When working on DB2 for any of the UNIX operating systems, you must do
the following:
v To start the DAS:

1. Log in as the DAS owner.
2. Run the start up script using one of the following:

. INSTHOME/sqllib/db2profile (for Bourne or Korn shell)
source INSTHOME/sqllib/db2cshrc (for C shell)

where INSTHOME is the home directory of the instance.
3. To start the DAS use the db2admin command:

db2admin start

Note: The DAS is automatically started after each system reboot.
v To stop the DAS:

1. Log in as the DAS owner.
2. Run the start up script using one of the following:

. INSTHOME/sqllib/db2profile (for Bourne or Korn shell)
source INSTHOME/sqllib/db2cshrc (for C shell)

where INSTHOME is the home directory of the instance.

Chapter 2. Before Creating a Database 81

3. Stop the DAS using the db2admin command as follows:
db2admin stop

Note: For both cases under UNIX, the person using these commands must
have logged on with the authorization ID of the DAS owner.

Listing the DAS
To obtain the name of the DAS instance on your machine, enter:

db2admin

This command is also used to start or stop the DAS, create a new user and
password, drop a DAS instance, and establish or modify the user account
associated with the DAS instance.

Configuring the DAS
To see the current values for those administration configuration parameters
relevant to the DAS, enter:

db2 get admin cfg

This will show you the current values that were given as defaults during the
installation of the product or those that were given during previous updates
to the configuration parameters.

To update individual entries in the database manager configuration file
relevant to the DAS, enter:

db2 update admin cfg using ...

Refer to the Command Reference for more information on which database
manager configuration parameters can be modified.

To reset the configuration parameters to the recommended database manager
defaults, enter:

db2 reset admin cfg

Changes to the database manager configuration file become effective only
after they are loaded into memory (that is, when a db2admin stop is followed
by a db2admin start; or, in the case of a Windows NT platform, stopping and
starting the service.)

To set up the communications protocols for the DAS, refer to the Quick
Beginnings for your platform.

Security Considerations for the DAS
You must first log on to the machine using an account or user ID that has
local Administrator authority.

82 Administration Guide: Implementation

Note: On Windows NT, you should not use the Services utility in the Control
Panel to change the logon account for the DAS since some of the
required access rights will not be set for the logon account. Always use
the db2admin command to set or change the logon account for the DB2
Administration Server (DAS).

After creating the DAS, you can set or change the logon account using the
db2admin command as follows:

db2admin setid username password

where username and password are the username and password of an account
that has local Administrator authority.

It is recommended that the user ID or the username have SYSADM authority
on each of the servers within the environment so that it can start or stop other
instances if required.

Updating the DAS
On UNIX operating systems, if DB2 is updated by installing a Program
Temporary Fix (PTF) or a code patch, all DB2 Administration Servers (DAS) as
well as all existing instances should be updated. To update a DAS, use the
dasiupdt command available in the instance subdirectory under the
subdirectory specific to the installed DB2 version and release.

You must first log on to the machine as “root” (on UNIX), using an account,
or with a user ID that has local administrative authority.

The command is used as follows:
dasiupdt InstName

The InstName is the login name of the instance owner. There are also optional
parameters for this command that can be placed before the InstName and
separated by spaces:
v –h or –?

Displays a help menu for this command.
v –d

Sets the debug mode, which is used for problem analysis.

Removing the DAS
You must first log on to the machine as “root” (on UNIX), using an account,
or with a user ID that has local administrative authority.

To remove the DAS:
v On the OS/2 or Windows NT operating systems:

Chapter 2. Before Creating a Database 83

1. Stop the DAS, using db2admin stop.
2. Backup (if needed) all the files in the db2das00 subdirectory under the

sqllib subdirectory. The instance directory is indicated by the
DB2INSTPROF registry variable.

Note: This example assumes db2das00 is the name of the DAS to be
removed.

3. Drop the DAS, using db2admin drop.

Note: Under Windows NT, the person using this command must have
SYSADM, SYSCTRL, or SYSMAINT authority.

v On UNIX operating systems:
1. Log in as the DAS owner.
2. Run the startup script using one of the following:

. INSTHOME/sqllib/db2profile (for Bourne or Korn shell)
source INSTHOME/sqllib/db2cshrc (for C shell)

where INSTHOME is the home directory of the instance.
3. Stop the DAS using the db2admin command as follows:

db2admin stop

4. Back up (if needed) all the files in the sqllib subdirectory under the
home directory of the DAS. The instance directory is indicated by the
DB2INSTPROF registry variable.

5. Log off.
6. Log in as root and remove the DAS using the dasidrop command as

follows:
dasidrop ASName

where the ASName is the instance name of the Administration Server.
This command is found in the instance subdirectory under the
subdirectory specific to the installed DB2 version and release.

Note: The dasidrop command removes the sqllib directory under the
home directory of the DB2 Administration Server (DAS).

Setting Up DAS with EEE Systems
The following information shows the steps necessary to configure DB2 EEE
servers (Solaris, NT, Sequent, HP-UX, and AIX) for remote administration
using the Control Center.

During installation, the setup program creates a single DAS on the
instance-owning machine. You may want to create additional DAS on other
machines to allow the Control Center or the Client Configuration Assistant

84 Administration Guide: Implementation

access to other coordinator nodes. The overhead of working as a coordinator
node can then be spread to more than one node in an instance.

To distribute the coordinator function:
1. Create a new DAS on the selected additional machines in the partitioned

database system.
2. Catalog each DAS as a separate system in the Control Center or Client

Configuration Assistant.
3. Catalog the same instance under each new system, and each time specify

the same machine name used to catalog the DAS.

There are two aspects to configuration: That which is required for the DB2
Administration Server (DAS), and that which is recommended for the target,
administered DB2 instance. In the three sections which follow, a section is
devoted to each of the two configuration topics. Each of the configuration
topics is preceded by a section describing the assumed environment.

Example Environment:

product/version:
DB2 UDB EEE V7.1

install path:
install_path

TCP services file:
tcp_services_file

DB2 Instance:

name: db2inst

owner ID:
db2inst

instance path:
instance_path

nodes: 3 nodes, db2nodes.cfg:
v 0 hostA 0 hostA0switch
v 1 hostA 1 hostA1switch
v 2 hostB 0 hostBswitch

DB name:
db2instDB

DAS:

name: db2as

Chapter 2. Before Creating a Database 85

owner/user ID:
db2as

instance path:
das_path

install/run host:
hostA

internode communications port:
16000 (unused port for hostA and hostB)

Note: Please substitute site-specific values for the above fields. For example,
the following table contains example pathnames for each supported
EEE platform:

Table 1. Example Pathnames for Supported EEE Platforms

Paths DB2 UDB EEE for AIX DB2 UDB EEE for Solaris DB2 UDB EEE for
Windows NT

install_path /usr/lpp/<v_r_ID> /opt/IBMdb2/<v_r_ID> C:\sqllib

instance_path /home/db2inst/sqllib /home/db2inst/sqllib C:\profiles\db2inst

das_path /home/db2as/sqllib /home/db2as/sqllib C:\profiles\db2as

tcp_services_file /etc/services /etc/services C:\winnt\system32
\drivers\etc\services

In the table, <v_r_ID> is the platform-specific version and release identifier.
For example in DB2 UDB EEE for AIX in Version 5.2, the <v_r_ID> is
db2_05_00.

When installing DB2 UDB EEE, the setup program creates a DAS on the
instance-owning machine. The database partition server resides on the same
machine as the DAS and is the connection point for the instance. That is, this
database partition server is the coordinator node for requests issued to the
instance from the Control Center or the Client Configuration Assistant.

DAS Configuration: The DAS is an administrative control point which
performs certain tasks on behalf of the Control Center. There can be at most
one DAS per physical machine. In the case of an EEE instance which consists
of several machines, at least one of the machines must be running a DAS so
that the Control Center can administer the EEE instance. This DAS (db2as)
“represents” the system that is present in the Control Center navigator tree as
the parent of the target DB2 instance (db2inst).

For example, db2inst consists of three nodes distributed across two physical
machines or hosts. The minimum requirement can be fulfilled by running
db2das on either hostA or hostB.

86 Administration Guide: Implementation

Notes:

1. The number of partitions present on hostA does not have any bearing on
the number of DASes that can be run on that host. You can run only one
copy of db2as on hostA regardless of the multiple logical nodes (MLN)
configuration for that host.

2. It is not necessary to create the DAS ID, db2as, on all hosts. Rather, it is
necessary for it to exist only on the host upon which it is running. As well,
it is not necessary for the home directory of the DAS ID to be mounted on
all hosts. In particular with this example, the ID db2as must exist on
hostA, is not required on hostB, and db2as’s home directory does not need
to be mounted on hostB.

Control Center Communications with DAS: Service Ports: The Control
Center communicates with the DAS using a TCP service port, 523. Since this
port is reserved for exclusive use by DB2 UDB, it is not necessary to insert
new entries into the tcp_services_file.

Internode Administrative Communications: Service Ports: For some
administrative tasks, the DAS must establish communications with all nodes.
In order to do so, a named TCP port must be defined in the tcp_services_file
for each host which participates in the instance.

Note: Windows NT EEE will attempt to add the TCP port entry into the
tcp_services_file for you.

For example, db2inst is defined across two hosts, hostA and hostB. As
specified in “Example Environment” on page 85, port 16000 is unused on both
hosts. Therefore, the following line must be inserted into the tcp_services_file
for both hostA and hostB.

db2ccmsrv 16000/tcp

The db2ccmsrv port name must be present, spelled exactly as shown above,
and the same port number selected must be used on all hosts.

Internode Administrative Communications: UNIX DB2 EEE Servers: Once
the TCP port line is inserted into the tcp_services_file on hostA and hostB, it is
necessary to start an administrative listener process or daemon, db2cclst, on
all hosts that participate in the instance. You can do so manually from the
command line, or configure the system to automatically invoke db2cclst every
time the system boots:

Manual:
From the ID of the instance you wish to administer, db2inst, invoke
the following command from either hostA or hostB:

rah '<install_path>/bin/db2cclst'

Chapter 2. Before Creating a Database 87

|

For example, on AIX this command invocation would appear as:
rah '/usr/lpp/<v_r_ID>/bin/db2cclst'

The rah command is found in the instance subdirectory in the
version and release subdirectory. The exact name of the version and
release subdirectory varies by operating system. instance is the home
directory of the instance you wish to use.

In this case, <v_r_ID> is the platform-specific version and release
identifier. For example in DB2 UDB EEE for AIX in Version 5.2, the
<v_r_ID> is db2_05_00.

Automatic:
As root, add an appropriate entry to the
/etc/inittab

file. For example, on AIX this command invocation should be run on
hostA and hostB:

mkitab "db2cclst::once:su - db2inst -c
/usr/lpp/<v_r_ID>/bin/db2cclst"

Every time either machine boots, db2cclst is invoked without user
intervention.

In the table, <v_r_ID> is the platform-specific version and release
identifier. For example in DB2 UDB EEE for AIX in Version 5.2, the
<v_r_ID> is db2_05_00.

To verify that the listener daemon is active on each host, the following
command can be invoked from the instance ID, db2inst:

rah 'ps -ef | grep db2cclst'

If you do not find the db2cclst process running on each host, additional
diagnostic information can be obtained by adding the following line to
/etc/syslog.conf on each host:

*.info /tmp/db2/user.info

where the file /tmp/db2/user.info can be replaced with a more appropriate
file.

Note: The file must exist and the SYSLOG daemon must be asked to re-read
its configuration file after the changes are made:

kill -1 <syslogd PID>

where syslogd PID can be obtained by executing

88 Administration Guide: Implementation

|

|

|
|

|
|

|
|

|
|
|

ps -ef | grep syslogd

Then, after manually invoking the listener as described above, you can
view the syslog file /tmp/db2/user.info on the failing host for error
messages generated by db2cclst.

Internode Administrative Communications: Windows NT DB2 EEE
Servers: The DB2 Remote Command Service (db2rcmd.exe) automatically
handles internode administrative communications. In the event that a failure
does occur, the Windows NT registry will contain diagnostic information.

Security: In order for the DAS to perform some administrative tasks against
an instance, it must possess sufficient authority. In particular, the DAS must
be a System Administrator (SYSADM) for the target, administered instance.

It is necessary to grant the DAS such authority for all DB2 instances that it
will administer. Candidate instances are those which are installed on the same
machine as the DAS. For a DB2 EEE instance, at least one database partition
server must be present on the same machine as the DAS for it to be eligible as
described above.

For example on UNIX, one way in which db2as can be granted the required
authority to administer db2inst is to ensure that the primary groups of db2inst
and db2as are identical. Alternatively, it is sufficient to make the primary
group of db2inst a secondary group of db2as, and the primary group of db2as
a secondary group of db2inst. Finally, another option would be to set the
SYSADM_GROUP database administration configuration parameter for
db2inst to the primary group of db2as.

On Windows NT, db2as must be a member of the Local Administrators group
on hostA and hostB. In addition to the option of creating the db2as ID and
adding it to the Local Administrators group on both hosts, you could create a
domain ID for db2as and add this domain ID to the Local Administrators
group on each host.

Environment: Installation for the DAS should configure certain registry
variables that are necessary for proper operation. To verify the current values
for these variables, execute the following command from either the DB2
instance ID, db2inst, or the DAS ID, db2das:

db2set -g

At least the following parameters must be defined with the following values:
DB2SYSTEM=hostA
DB2ADMINSERVER=db2as

Chapter 2. Before Creating a Database 89

As well, in order to communicate with the DAS from the Control Center,
ensure that the DB2COMM registry variable is set to “TCPIP”. To verify this
setting, execute the following command from the DAS ID, db2as, and check at
the global (-g) and instance (-i) levels (only one need be set):

db2set -all

Along the same lines, verify that the DB2COMM parameter is set to “TCPIP”
for the DB2 instance to enable communications between the Control Center
and db2inst by issuing the following command from the db2inst ID:

db2set -all

If you modify this parameter for the DAS, then you must restart the DAS for
the change to take effect. Restart of the DB2 instance is also required if this
parameter is modified for the DB2 instance. For db2inst, you would issue a
db2stop followed by a db2start, whereas db2admin stop and db2admin start
would be issued for the DAS.

Discovery of Administration Servers, Instances, and Databases: Known
Discovery allows you to discover instances and databases on systems that are
known to your client, and add new systems so that their instances and
databases can be discovered. Search Discovery provides all of the facilities of
Known Discovery and adds the option to allow your local network to be
searched for other DB2 servers.

To have a server support Known Discovery, set the discover parameter in the
DAS configuration file to KNOWN. To have it support Search Discovery, set this
parameter to SEARCH. To prevent discovery of a server, and all of its instances
and databases, set this parameter to DISABLE.

Note: The TCP/IP host name returned to a client by Search Discovery is the
same host name that is returned by your DB2 server system when you
enter the hostname command. On the client, the IP address that this
host name maps to is determined by either the TCP/IP domain name
server (DNS) configured on your client machine or, if no DNS is
configured, a mapping entry in the client’s hosts file. If you have
multiple adapter cards configured on your DB2 server system, you
must ensure that TCP/IP is configured on the server to return the
correct hostname, and that the DNS or local client’s hosts file, maps the
hostname to the IP address desired.

On the client, enabling Discovery is also done using the discover parameter;
however, in this case, the discover parameter is set in the client instance (or
server acting as a client) as follows:
v KNOWN

90 Administration Guide: Implementation

Allows the Client Configuration Assistant to refresh systems in the known
list, and to add new systems to the list by using the Add Systems push
button. When the discover parameter is set to KNOWN, the Client
Configuration Assistant will not be able to search the network.

v SEARCH

Enables all of the facilities of Known Discovery, and enables network
searching.
The “Other Systems (Search the network)” icon only appears if this choice
is made. This is the default setting.

v DISABLE

Disables Discovery. In this case, the Search the network option is not
available in the “Add Database Wizard”.

Note: The discover parameter defaults to SEARCH on all client and server
instances. The discover parameter defaults to SEARCH on all DB2
Administration Servers (DAS) except DAS installed in a UNIX
Enterprise - Extended Edition environment, where discover defaults to
KNOWN.

Additional Settings for Search Discovery: Search Discovery requires that the
discover_comm parameter be set on both the server (in the DB2 Administration
Server’s configuration file) and the client (in the database manager
configuration file).

The discover_comm parameter is used to control the communications protocols
that the server will listen to for search requests from clients, and that clients
will use to send out search requests. The discover_comm parameter can be set
to TCP/IP or NetBIOS. Only these protocols are currently supported.

On the DAS, the values specified for discover_comm must be equal to, or a
subset of, the values set for DB2COMM.

Note: To avoid problems with the Control Center and the Client
Configuration Assistant, ensure that the DB2COMM registry variable is
set in the DB2 registry using the db2set command. It is not
recommended that you use any other method to set the DB2COMM
registry variable.

On the server, the discover_comm parameter is set in the DAS configuration
file. On the client (or a server acting as a client), discover_comm is set in the
database manager configuration file.

Note: When using Search Discovery, at least one protocol specified by the
discover_comm parameter on the client must match those specified by

Chapter 2. Before Creating a Database 91

the discover_comm parameter on the DAS. If there is no match, the
server will not respond to the client’s requests.

To check the settings for the DB2COMM registry variable, enter:
db2set db2comm

In addition, two DB2 profile registry variables can be used to tune Search
Discovery via NetBIOS on the client: DB2DISCOVERYTIME and
DB2NBDISCOVERYRECVBUFS. The default values for these registry variables
should be suitable in most cases.

The DB2DISCOVERYTIME and DB2NBDISCOVERRCVBUFS profile registry
variables are set in the client instance (or a server acting as a client). Set the
registry variables as follows:
v To set the DB2DISCOVERYTIME registry value to 60 seconds, enter the

following command:
db2set db2discoverytime=60

This specifies that Search Discovery should wait 60 seconds for a response
from servers.

v To set the DB2NBDISCOVERRCVBUFS registry value to 20, enter:
db2set db2nbdiscoverrcvbufs=20

This specifies the number of NetBIOS buffers that will be allocated for
concurrent response messages from discovered servers.

Hiding Server Instances and Databases from Discovery: You may have
multiple instances, and multiple databases within these instances, on a server.
You may want to hide some of these from the Discovery process.

To allow clients to discover server instances on a system, set the discover_inst
database manager configuration parameter in each server instance on the
system to ENABLE (this is the default value). Set this parameter to DISABLE to
hide this instance and its databases from Discovery.

To allow a database to be discovered from a client, set the discover_db database
configuration parameter to ENABLE (this is the default value). Set this
parameter to DISABLE to hide the database from Discovery.

Setting Discovery Parameters: The discover and discover_comm parameters are
set in the DAS configuration file on the server system, and in the database
manager configuration file on the client. Set the parameters as follows:
v On the DAS:

Update the DAS configuration file using the command process:

92 Administration Guide: Implementation

update admin cfg using discover [DISABLE | KNOWN |
SEARCH]

update admin cfg using discover_comm [NETBIOS | TCPIP]

Stop and restart the DAS by entering the following commands:
db2admin stop
db2admin start

Note: Search Discovery will only operate on NetBIOS and TCP/IP.
v Using the Control Center:

1. Start the Client Configuration Assistant.

2. Click on the Client Settings push button.

3. Select the Communications tab.

4. Select the parameters that you want to modify from the Parameters window.

5. Select a value for the parameter that you want to modify from the Value box.

6. Click on the OK push button to close the Client Settings windows. A DB2
message window opens.

7. Click on the OK push button and restart your applications so that your changes
can take effect.

Note: If the discover_comm includes NETBIOS, you must ensure that the
Workstation name (nname) parameter is set for both the client and the
DAS. Also, you must ensure that the DB2NBADAPTERS registry
variable is set to the Adapter number that you want to use.

Use the Control Center to set the discover_inst and discover_db parameters:

1. Expand the object tree until you find the Instances folder.

2. Right-click the instance, and select Configure from the pop-up menu.

3. On the “Environment” page, select the discover_inst parameter.

4. To allow the server instance to be discovered from a client, select Enable and click
OK.

5. Right-click on the database in the object tree, and select Configure from the
pop-up menu.

6. On the “Environment” page, select the discover_db parameter.

7. To allow the database to be discovered from a client, select Enable and click OK.

Setting Up the DAS to Use the Client Configuration Assistant and the
Control Center
You must configure DB2 Discovery to retrieve information about systems on
your network. DB2 Discovery is a feature that is used by the Client
Configuration Assistant and Control Center. Configuring for this feature may

Chapter 2. Before Creating a Database 93

require you to update instance lists and the DB2 Administration Server (DAS)
configuration to ensure that DB2 Discovery retrieves the correct information.

Update Instance Lists: A DB2 Administration Server (DAS) may not be
aware of all the instances in a partitioned database system because initially
when an instance is created, only the DAS on the instance-owning machine is
aware of the instance.

If you created an instance on a machine that does not have a DAS, you can
create a DAS on this machine to make the instance known.

Perform the following steps if you created more than one DAS, and you want
each DAS to be aware of all the instances in your partitioned database system:
1. For each DAS

Run the db2ilist command on the Administration Server machine to
display a list of instances known to this DAS.

Note: If the list of instances is complete, you do not need to carry out the
remaining steps but can proceed to the next section.

2. For each instance that is missing from the instance list in the previous
step

On the instance-owning machine, run the db2nlist command to see if
there is an entry for the machine that has the DAS. If there is not, you
must run the db2ncrt command to add this machine to the instance.

Note: The network shared drive for the instance must be available on the
DAS machine.

Update the DAS Configuration
By default, the setup program sets the DB2SYSTEM registry variable to the
Windows NT computer name. The system names that are retrieved by
Discovery are the systems on which a DB2 Administration Server (DAS)
resides. Discovery uses these systems as coordinator nodes when connections
are established.

There are two ways of updating a DAS configuration:
v If you want to be able to select a coordinator node from a list of DB2

systems, set DISCOVER=SEARCH (which is the default) in each DB2
Administration Server’s configuration file.
When there are multiple DAS present, the same instance may appear in
more than one system on the Client Configuration Assistant or Control
Center’s interface; however, each system will have a different
communications access path to instances. Users can select different DB2
systems as coordinator nodes for communications and thereby redistribute
the workload.

94 Administration Guide: Implementation

v If you do not want users to be able to select the coordinator node, set
DISCOVER=KNOWN on all DAS, except set DISCOVER=SEARCH on just one
DAS in the DAS configuration. Discovery uses the database partition server
where the DAS resides as a coordinator node when connections are
established.

Creating a Node Configuration File
If your database is to operate in a partitioned database environment, you
must create a node configuration file called db2nodes.cfg. This file must be
located in the sqllib subdirectory of the home directory for the instance
before you can start the database manager with parallel capabilities across
multiple partitions. The file contains configuration information for all database
partitions in an instance, and is shared by all database partitions for that
instance.

Windows NT Considerations: If you are using DB2 Enterprise - Extended
Edition on Windows NT, the node
configuration file is created for you when you
create the instance. You should not attempt to
create or modify the node configuration file
manually.

Note: You should not create files or directories under the sqllib subdirectory
other than those created by DB2 to prevent the loss of data if an
instance is deleted. There are two exceptions. If your system supports
stored procedures, put the stored procedure applications in the
function subdirectory under the sqllib subdirectory. (For information
on stored procedures, refer to “Stored Procedures” in Administration
Guide: Performance.) The other exception is when user-defined distinct
functions (UDFs) have been created. UDF executables are allowed in
the same directory.

The file contains one line for each database partition that belongs to an
instance. Each line has the following format:

nodenum hostname [logical-port [netname]]

Tokens are delimited by blanks. The variables are:

nodenum
The node number, which can be from 0 to 999, uniquely defines a
node. Node numbers must be in ascending sequence. You can have
gaps in the sequence.

Once a node number is assigned, it cannot be changed. (Otherwise the
information in the partitioning map, which specifies how data is
partitioned, would be compromised.)

Chapter 2. Before Creating a Database 95

|
|
|
|
|
|

If you drop a node, its node number can be used again for any new
node that you add.

The node number is used to generate a node name in the database
directory. It has the format:

NODEnnnn

The nnnn is the node number, which is left-padded with zeros. This
node number is also used by the CREATE DATABASE and DROP
DATABASE commands.

hostname
The hostname of the IP address for inter-partition communications.
(There is an exception when netname is specified. In this situation,
netname is used for most communications, with hostname only being
used for DB2START, DB2STOP, and db2_all.)

logical-port
This parameter is optional, and specifies the logical port number for
the node. This number is used with the database manager instance
name to identify a TCP/IP service name entry in the etc/services
file.

The combination of the IP address and the logical port is used as a
well-known address, and must be unique among all applications to
support communications connections between nodes.

For each hostname, one logical-port must be either 0 (zero) or blank
(which defaults to 0). The node associated with this logical-port is the
default node on the host to which clients connect. You can override
this with the DB2NODE environment variable in db2profile script, or
with the sqlesetc() API.

If you have multiple nodes on the same host (that is, more than one
nodenum for a host), you should assign the logical-port numbers to the
logical nodes in ascending order, from 0, with no gaps.

netname
This parameter is optional, and is used to support a host that has
more than one active TCP/IP interface, each with its own hostname.

The following example shows a possible node configuration file for an
RS/6000 SP system on which SP2EN1 has multiple TCP/IP interfaces, two
logical nodes, and uses SP2SW1 as the DB2 Universal Database interface. It
also shows the node numbers starting at 1 (rather than at 0), and a gap in the
nodenum sequence:

96 Administration Guide: Implementation

nodenum hostname logical-port netname
1 SP2EN1 0 SP2SW1
2 SP2EN1 1 SP2SW1
4 SP2EN2 0
5 SP2EN3

You can update the db2nodes.cfg file using an editor of your choice. (The
exception is: an editor should not be used on Windows NT.) You must be
careful, however, to protect the integrity of the information in the file, as data
partitioning requires that the node number not be changed. The node
configuration file is locked when you issue DB2START and unlocked after
DB2STOP ends the database manager. The DB2START command can update
the file, if necessary, when the file is locked. For example, you can issue
DB2START with the RESTART option or the ADDNODE option.

Note: If the DB2STOP command is not successful and does not unlock the
node configuration file, issue DB2STOP FORCE to unlock it.

Creating the Database Configuration File
A database configuration file is also created for each database. The creation of
this file is done for you. This file contains values for various configuration
parameters that affect the use of the database, such as:
v Parameters specified and/or used when creating the database (for example,

database code page, collating sequence, DB2 release level)
v Parameters indicating the current state of the database (for example, backup

pending flag, database consistency flag, roll-forward pending flag)
v Parameters defining the amount of system resources that the operation of

the database may use (for example, buffer pool size, database logging, sort
memory size).

These parameters are described in detail in “Configuring DB2” found in
Administration Guide: Performance.

You should not manually change the parameters in the configuration file. You
should only use the supported interface.

Performance Tip: Many of the configuration parameters come with default
values, but may need to be updated to achieve optimal performance for your
database.

For multiple partitions: When you have a database that is partitioned across
more than one partition, the configuration file should be the same on all
database partitions. Consistency is required since the SQL compiler compiles
distributed SQL statements based on information in the local node
configuration file and creates an access plan to satisfy the needs of the SQL
statement. Maintaining different configuration files on database partitions

Chapter 2. Before Creating a Database 97

|
|

could lead to different access plans, depending on which database partition
the statement is prepared. Use db2_all to keep the configuration files
synchronized across all database partitions.

Replicating Configuration Information Using Response Files
A response-file generator utility called db2rspgn is available to create a
response file that can be used when re-installing your system or when you
wish to replicate to identical system the registry variables, database manager
configuration parameters, and database administration configuration
parameters of your current system.

After having installed a system with one or more DB2 products, and after
tuning parameters for the environment, you can use db2rspgn to generate the
required values into a response file. The response file can then be used to
re-create the identical system.

The command line syntax declares the destination directory for the response
file(s) and any supporting files. In addition, you can optionally specify the
instances you wish copied; and, you can optionally disable the administration
instance and/or the DataLinks server instance. See Administering Satellites
Guide and Reference for more information on mass deployment issues.

Refer to the appropriate Quick Beginnings to see the details on the syntax of
this utility and a discussion on how to use the generated response files.

Enabling FCM Communications
In a partitioned database environment, most communication between database
partitions is handled by the Fast Communications Manager (FCM). To enable
the FCM at a database partition and allow communication with other
database partitions, you must create a service entry in the partition’s services
file of the etc directory as shown below. The FCM uses the specified port to
communicate. If you have defined multiple partitions on the same host, you
must define a range of ports as shown below.

Windows NT Considerations
If you are using DB2 Enterprise - Extended Edition in the Windows
NT environment, the TCP/IP port range is automatically added to the
services file by:
v The install program when it creates the instance or adds a new

node
v The db2icrt utility when it creates a new instance
v The db2ncrt utility when it adds the first node on the machine

For additional information, refer to the DB2 Enterprise - Extended
Edition for Windows Quick Beginnings.

The syntax of a service entry is as follows:

98 Administration Guide: Implementation

|
|
|
|
|

DB2_instance port/tcp #comment

DB2_instance
The value for instance is the name of the database manager instance.
All characters in the name must be lowercase. Assuming an instance
name of db2puser, you would specify DB2_db2puser

port/tcp
The TCP/IP port that you want to reserve for the database partition.

#comment
Any comment that you want to associate with the entry. The comment
must be preceded by a pound sign (#).

If the /etc/services file is shared, you must ensure that the number of ports
allocated in the file is either greater than or equal to the largest number of
multiple database partitions in the instance. When allocating ports, also
ensure that you account for any processor that can be used as a backup.

If the /etc/services file is not shared, the same considerations apply, with
one additional consideration: you must ensure that the entries defined for the
DB2 instance are the same in all /etc/services files (though other entries that
do not apply to your partitioned database do not have to be the same).

If you have multiple database partitions on the same host in an instance, you
must define more than one port for the FCM to use. To do this, include two
lines in the etc/services file to indicate the range of ports you are allocating.
The first line specifies the first port, while the second line indicates the end of
the block of ports. In the following example, five ports are allocated for the
instance sales. This means no processor in the instance has more than five
database partitions.

DB2_sales 9000/tcp
DB2_sales_END 9004/tcp

Note: You must specify END in uppercase only. Also you must ensure that you
include both underscore (_) characters.

Chapter 2. Before Creating a Database 99

100 Administration Guide: Implementation

Chapter 3. Creating a Database

This chapter provides a brief look at each of the various objects that may be
part of the implementation of your database design.

The previous chapter focused on the information you need to know before
creating a database. That chapter also covered several topics and tasks you
must perform before creating a database.

The final chapter in this part presents what you must consider before altering
a database. In addition, the chapter explains how to alter or drop database
objects.

When you create a database, each of the following tasks are done for you:
v Setting up of all the system catalog tables that are needed by the database
v Allocation of the database recovery log
v Creation of the database configuration file and the default values are set
v Binding of the database utilities to the database

The following database privileges are automatically granted to PUBLIC:
CREATETAB, BINDADD, CONNECT, IMPLICIT_SCHEMA, and SELECT
privilege on the system catalog views.

To create a database using the Control Center:

1. Expand the object tree until you find the Databases folder.

2. Right-click the Databases folder, and select Create —> Database Using Wizard
from the pop-up menu.

3. Follow the steps to complete this task.

The following command line processor command creates a database called
personl, in the default location, with the associated comment ″Personnel DB
for BSchiefer Co″.

create database personl
with "Personnel DB for BSchiefer Co"

If you want to create a database in a different, possibly remote, database
manager instance, see “Using Multiple Instances of the Database Manager” on
page 53. This topic also provides an introduction to the command you need to
use if you want to perform any instance-level administration against an
instance other than your default instance, including remote instances.

© Copyright IBM Corp. 1993, 2001 101

Note: Refer to the Command Reference for information about the default
database location and about specifying a different location with the
CREATE DATABASE command.

The tasks carried out by you, or done for you by the database manager, when
you create a database are discussed in the following sections:
v “Definition of Initial Nodegroups” on page 103
v “Definition of Initial Table Spaces” on page 103
v “Definition of System Catalog Tables” on page 104
v “Definition of Database Directories” on page 105
v “DCE Directory Services” on page 107
v “Lightweight Directory Access Protocol (LDAP) Directory Services” on

page 107
v “Definition of Database Recovery Log” on page 109
v “Binding Utilities to the Database” on page 109
v “Cataloging a Database” on page 109
v “Creating Nodegroups” on page 108
v “Creating a Table Space” on page 111
v “Creating a Schema” on page 116
v “Creating and Populating a Table” on page 118
v “Creating a Trigger” on page 136
v “Creating a User-Defined Function (UDF) or Method” on page 138
v “Creating a User-Defined Type (UDT)” on page 142
v “Creating a View” on page 144
v “Creating a Summary Table” on page 147
v “Creating an Alias” on page 149
v “Creating a Wrapper” on page 151
v “Creating a Server” on page 152
v “Creating a Nickname” on page 159
v “Creating an Index, Index Extension, or an Index Specification” on page 161

For additional information related to the physical implementation of your
database, refer to Administration Guide: Planning.

102 Administration Guide: Implementation

Definition of Initial Nodegroups

When a database is initially created, database partitions are created for all
partitions specified in the db2nodes.cfg file. Other partitions can be added or
removed with the ADD NODE and DROP NODE commands.

Three nodegroups are defined:
v IBMCATGROUP for the SYSCATSPACE table space, holding system catalog

tables
v IBMTEMPGROUP for the TEMPSPACE1 table space, holding temporary

tables created during database processing
v IBMDEFAULTGROUP for the USERSPACE1 table space, by default holding

user tables and indexes.

Definition of Initial Table Spaces

When a database is created, three table spaces are defined:
v SYSCATSPACE for the system catalog tables (see “Definition of System

Catalog Tables” on page 104)
v TEMPSPACE1 for system temporary tables created during database

processing
v USERSPACE1 for user-defined tables and indexes

Note: When you first create a database no user temporary table space is
created.

If you do not specify any table space parameters with the CREATE
DATABASE command, the database manager creates these table spaces using
system managed storage (SMS) directory containers. These directory
containers are created in the subdirectory created for the database (refer to
Administration Guide: Planning for more information on database physical
directories). The extent size for these table spaces is set to the default.

To define initial table spaces using the Control Center:

1. Expand the object tree until you see the Databases folder.

2. Right-click the Databases folder, and select Create —> Database Using Wizard
from the pop-up menu.

3. Follow the steps to complete this task.

To define initial table spaces using the command line, enter:
CREATE DATABASE <name>

CATALOG TABLESPACE
MANAGED BY SYSTEM USING ('<path>')

Chapter 3. Creating a Database 103

EXTENTSIZE <value> PREFETCHSIZE <value>
USER TABLESPACE

MANAGED BY DATABASE USING (FILE'<path>' 5000,
FILE'<path>' 5000)

EXTENTSIZE <value> PREFETCHSIZE <value>
TEMPORARY TABLESPACE

MANAGED BY SYSTEM USING ('<path>')
WITH "<comment>"

If you do not want to use the default definition for these table spaces, you
may specify their characteristics on the CREATE DATABASE command. For
example, the following command could be used to create your database on
OS/2:

CREATE DATABASE PERSONL
CATALOG TABLESPACE

MANAGED BY SYSTEM USING ('d:\pcatalog','e:\pcatalog')
EXTENTSIZE 16 PREFETCHSIZE 32

USER TABLESPACE
MANAGED BY DATABASE USING (FILE'd:\db2data\personl' 5000,

FILE'd:\db2data\personl' 5000)
EXTENTSIZE 32 PREFETCHSIZE 64

TEMPORARY TABLESPACE
MANAGED BY SYSTEM USING ('f:\db2temp\personl')

WITH "Personnel DB for BSchiefer Co"

In this example, the definition for each of the initial table spaces is explicitly
provided. You only need to specify the table space definitions for those table
spaces for which you do not want to use the default definition.

The coding of the MANAGED BY phrase on the CREATE DATABASE
command follows the same format as the MANAGED BY phrase on the
CREATE TABLESPACE command. For additional examples, see “Creating a
Table Space” on page 111.

Refer to the Administration Guide: Planning manual and the information on
designing and choosing table spaces before creating your database.

Definition of System Catalog Tables

A set of system catalog tables is created and maintained for each database.
These tables contain information about the definitions of the database objects
(for example, tables, views, indexes, and packages), and security information
about the type of access that users have to these objects. These tables are
stored in the SYSCATSPACE table space.

These tables are updated during the operation of a database; for example,
when a table is created. You cannot explicitly create or drop these tables, but

104 Administration Guide: Implementation

you can query and view their content. When the database is created, in
addition to the system catalog table objects, the following database objects are
defined in the system catalog:
v A set of user-defined functions (UDFs) is created in the SYSFUN schema.

For more information about these system-created functions, refer to the SQL
Reference.

v A set of read-only views for the system catalog tables is created in the
SYSCAT schema. Refer to “Catalog Views” in the SQL Reference for
information about these views.

v A set of updatable catalog views is created in the SYSSTAT schema. These
updatable views allow you to update certain statistical information to
investigate the performance of a hypothetical database, or to update
statistics without using the RUNSTATS utility. Refer to “Updatable Catalog
Views” in the SQL Reference for information about these views.

After your database has been created, you may wish to limit the access to the
system catalog views, as described in “Securing the System Catalog Views” on
page 270.

Definition of Database Directories

Three directories are used when establishing or setting up a new database.
v Local Database Directory
v System Database Directory
v Node Directory

Local Database Directory
A local database directory file exists in each path (called a “drive” on some
operating systems) in which a database has been defined. This directory
contains one entry for each database accessible from that location. Each entry
contains:
v The database name provided with the CREATE DATABASE command
v The database alias name (which is the same as the database name, if an

alias name is not specified)
v A comment describing the database, as provided with the CREATE

DATABASE command
v The name of the root directory for the database
v Other system information.

To see the contents of this file for a particular database, issue the following
command, where location specifies the location of the database:

LIST DATABASE DIRECTORY ON location

Chapter 3. Creating a Database 105

|
|
|

System Database Directory
A system database directory file exists for each instance of the database manager,
and contains one entry for each database that has been cataloged for this
instance. Databases are implicitly cataloged when the CREATE DATABASE
command is issued and can also be explicitly cataloged with the CATALOG
DATABASE command. For information about cataloging databases, see
“Cataloging a Database” on page 109.

For each database created, an entry is added to the directory containing the
following information:
v The database name provided with the CREATE DATABASE command
v The database alias name (which is the same as the database name, if an

alias name is not specified)
v The database comment provided with the CREATE DATABASE command
v The location of the local database directory

v An indicator that the database is indirect, which means that it resides on the
same machine as the system database directory file

v Other system information.

To see the contents of this file, issue the LIST DATABASE DIRECTORY
command without specifying the location of the database directory file.

In a partitioned database environment, you must ensure that all database
partitions always access the same system database directory file, sqldbdir, in
the sqldbdir subdirectory of the home directory for the instance.
Unpredictable errors can occur if either the system database directory or the
system intention file sqldbins in the same sqldbdir subdirectory are symbolic
links to another file that is on a shared file system. These files are described in
“Enabling Data Partitioning” on page 57.

Node Directory
The database manager creates the node directory when the first database
partition is cataloged. To catalog a database partition, use the CATALOG
NODE command. To list the contents of the local node directory, use the LIST
NODE DIRECTORY command. The node directory is created and maintained
on each database client. The directory contains an entry for each remote
workstation having one or more databases that the client can access. The DB2
client uses the communication end point information in the node directory
whenever a database connection or instance attachment is requested.

The entries in the directory also contain information on the type of
communication protocol to be used to communicate from the client to the
remote database partition. Cataloging a local database partition creates an

106 Administration Guide: Implementation

|
|

alias for an instance that resides on the same machine. A local node should be
cataloged when there is more than one instance on the same workstation to be
accessed from the user’s client.

DCE Directory Services

DCE is an Open Systems Foundation** (OSF**) architecture that provides tools
and services to support the creation, use, and maintenance of applications in a
distributed heterogeneous computing environment. It is a layer between the
operating system, the network, and a distributed application that allows client
applications to access remote servers.

With local directories, the physical location of the target database is
individually stored on each client workstation in the database directory and
node directory. The database administrator can therefore spend a large
amount of time updating and changing these directories. The DCE directory
services provide a central directory alternative to the local directories. It
allows information about a database or a database manager instance to be
recorded once in a central location, and any changes or updates to be made at
that one location.

DCE is not a prerequisite for running DB2, but if you are operating in a DCE
environment, see “Appendix B. Using Distributed Computing Environment
(DCE) Directory Services” on page 319 for more information.

Lightweight Directory Access Protocol (LDAP) Directory Services

Lightweight Directory Access Protocol (LDAP) is an industry standard access
method to directory services. A directory service is a repository of resource
information about multiple systems and services within a distributed
environment; and it provides client and server access to these resources. Each
database server instance will publish its existence to an LDAP server and
provide database information to the LDAP directory when the databases are
created. When a client connects to a database, the catalog information for the
server can be retrieved from the LDAP directory. Each client is no longer
required to store catalog information locally on each machine. Client
applications search the LDAP directory for information required to connect to
the database.

LDAP is not a prerequisite for running DB2, but if you are operating in an
LDAP environment, see “Appendix J. Lightweight Directory Access Protocol
(LDAP) Directory Services” on page 395 for more information.

Chapter 3. Creating a Database 107

Creating Nodegroups

You create a nodegroup with the CREATE NODEGROUP statement. This
statement specifies the set of nodes on which the table space containers and
table data are to reside. This statement also:
v Creates a partitioning map for the nodegroup. For details about the

partitioning map, refer to Administration Guide: Planning.
v Generates a partitioning map ID.
v Inserts records into the following catalog tables:

– SYSCAT.NODEGROUPS
– SYSCAT.PARTITIONMAPS
– SYSCAT.NODEGROUPDEF

To create a nodegroup using the Control Center:

1. Expand the object tree until you see the Nodegroups folder.

2. Right-click the Nodegroups folder, and select Create from the pop-up menu.

3. On the Create Nodegroups window, complete the information, use the arrows to
move nodes from the Available nodes box to the Selected nodes box, and click
Ok.

To create a nodegroup using the command line, enter:
CREATE NODEGROUP <name> ON NODES (<value>,<value>)

Assume that you want to load some tables on a subset of the database
partitions in your database. You would use the following command to create a
nodegroup of two nodes (1 and 2) in a database consisting of at least three (0
to 2) nodes:

CREATE NODEGROUP mixng12 ON NODES (1,2)

For more information about creating nodegroups, refer to the SQL Reference
manual.

The CREATE DATABASE command or sqlecrea() API also create the default
system nodegroups, IBMDEFAULTGROUP, IBMCATGROUP, and
IBMTEMPGROUP. (Refer to Administration Guide: Planning for more
information on nodegroups.)

108 Administration Guide: Implementation

Definition of Database Recovery Log

A database recovery log keeps a record of all changes made to a database,
including the addition of new tables or updates to existing ones. This log is
made up of a number of log extents, each contained in a separate file called a
log file.

The database recovery log can be used to ensure that a failure (for example, a
system power outage or application error) does not leave the database in an
inconsistent state. In case of a failure, the changes already made but not
committed are rolled back, and all committed transactions, which may not
have been physically written to disk, are redone. These actions ensure the
integrity of the database.

For more information, see Data Movement Utilities Guide and Reference.

Binding Utilities to the Database

When a database is created, the database manager attempts to bind the
utilities in db2ubind.lst to the database. This file is stored in the bnd
subdirectory of your sqllib directory.

Binding a utility creates a package, which is an object that includes all the
information needed to process specific SQL statements from a single source
file.

Note: If you wish to use these utilities from a client, you must bind them
explicitly. Refer to the Quick Beginnings manual appropriate to your
platform for information.

If for some reason you need to bind or rebind the utilities to a database, issue
the following commands using the command line processor:

connect to sample
bind @db2ubind.lst

Note: You must be in the directory where these files reside to create the
packages in the sample database. The bind files are found in the BND
subdirectory of the SQLLIB directory. In this example, sample is the
name of the database.

Cataloging a Database

When you create a new database, it is automatically cataloged in the system
database directory file. You may also use the CATALOG DATABASE
command to explicitly catalog a database in the system database directory file.
The CATALOG DATABASE command allows you to catalog a database with a

Chapter 3. Creating a Database 109

|

different alias name, or to catalog a database entry that was previously
deleted using the UNCATALOG DATABASE command.

The following command line processor command catalogs the personl
database as humanres:

catalog database personl as humanres
with "Human Resources Database"

Here, the system database directory entry will have humanres as the database
alias, which is different from the database name (personl).

You can also catalog a database on an instance other than the default. In the
following example, connections to database B are to INSTANCE_C.

catalog database b as b at node instance_c

Note: The CATALOG DATABASE command is also used on client nodes to
catalog databases that reside on database server machines. For more
information, refer to the Quick Beginnings manual appropriate to your
platform.

For information on the Distributed Computing Environment (DCE) cell
directory, see “DCE Directory Services” on page 107 and “Appendix B. Using
Distributed Computing Environment (DCE) Directory Services” on page 319.

Note: To improve performance, you may cache directory files, including the
database directory, in memory. (Refer to “Directory Cache Support
(dir_cache)” in the Administration Guide: Performance for information
about enabling directory caching.) When directory caching is enabled, a
change made to a directory (for example, using a CATALOG
DATABASE or UNCATALOG DATABASE command) by another
application may not become effective until your application is restarted.
To refresh the directory cache used by a command line processor
session, issue a db2 terminate command.

In addition to the application level cache, a database manager level cache is
also used for internal, database manager look-up. To refresh this “shared”
cache, issue the db2stop and db2start commands.

For more information about directory caching, refer to “Directory Cache
Support (dir_cache)” in the Administration Guide: Performance.

110 Administration Guide: Implementation

Creating a Table Space

Creating a table space within a database assigns containers to the table space
and records its definitions and attributes in the database system catalog. You
can then create tables within this table space.

Refer to Administration Guide: Planning for design information on table spaces.

The syntax of the CREATE TABLESPACE statement is discussed in detail in
the SQL Reference. For information on SMS and DMS table spaces, refer to the
Administration Guide: Planning.

To create a table space using the Control Center:

1. Expand the object tree until you see the Table spaces folder.

2. Right-click the Table spaces folder, and select Create —> Table Space Using
Wizard from the pop-up menu.

3. Follow the steps in the wizard to complete your task.

To create an SMS table space using the command line, enter:
CREATE TABLESPACE <NAME>

MANAGED BY SYSTEM
USING ('<path>')

To create a DMS table space using the command line, enter:
CREATE TABLESPACE <NAME>

MANAGED BY DATABASE
USING (FILE'<path>' <size>)

The following SQL statement creates an SMS table space on OS/2 or Windows
NT using three directories on three separate drives:

CREATE TABLESPACE RESOURCE
MANAGED BY SYSTEM
USING ('d:\acc_tbsp', 'e:\acc_tbsp', 'f:\acc_tbsp')

The following SQL statement creates a DMS table space on OS/2 using two
file containers each with 5,000 pages:

CREATE TABLESPACE RESOURCE
MANAGED BY DATABASE
USING (FILE'd:\db2data\acc_tbsp' 5000,

FILE'e:\db2data\acc_tbsp' 5000)

In the above two examples, explicit names have been provided for the
containers. However, if you specify relative container names, the container is
created in the subdirectory created for the database (refer to Administration
Guide: Planning for more information on database physical directories).

Chapter 3. Creating a Database 111

|
|
|

|

In addition, if part of the path name specified does not exist, the database
manager creates it. If a subdirectory is created by the database manager, it
may also be deleted by the database manager when the table space is
dropped.

The assumption in the above examples is that the table spaces are not
associated with a specific nodegroup. The default nodegroup
IBMDEFAULTGROUP is used when the following parameter is not specified
in the statement:

IN nodegroup

The following SQL statement creates a DMS table space on a UNIX-based
system using three logical volumes of 10 000 pages each, and specifies their
I/O characteristics:

CREATE TABLESPACE RESOURCE
MANAGED BY DATABASE
USING (DEVICE '/dev/rdblv6' 10000,

DEVICE '/dev/rdblv7' 10000,
DEVICE '/dev/rdblv8' 10000)

OVERHEAD 24.1
TRANSFERRATE 0.9

The UNIX devices mentioned in this SQL statement must already exist, and
the instance owner and the SYSADM group must be able to write to them.

The following example creates a DMS table space on a nodegroup called
ODDNODEGROUP in a UNIX partitioned database. ODDNODEGROUP must
be previously created with a CREATE NODEGROUP statement. In this case,
the ODDNODEGROUP nodegroup is assumed to be made up of database
partitions numbered 1, 3, and 5. On all database partitions, use the device
/dev/hdisk0 for 10 000 4 KB pages. In addition, declare a device for each
database partition of 40 000 4 KB pages.

CREATE TABLESPACE PLANS
MANAGED BY DATABASE
USING (DEVICE '/dev/HDISK0' 10000, DEVICE '/dev/n1hd01' 40000) ON NODE 1

(DEVICE '/dev/HDISK0' 10000, DEVICE '/dev/n3hd03' 40000) ON NODE 3
(DEVICE '/dev/HDISK0' 10000, DEVICE '/dev/n5hd05' 40000) ON NODE 5

UNIX devices are classified into two categories: character serial devices and
block-structured devices. For all file-system devices, it is normal to have a
corresponding character serial device (or raw device) for each block device (or
cooked device). The block-structured devices are typically designated by names
similar to “hd0” or “fd0”. The character serial devices are typically designated
by names similar to “rhd0”, “rfd0”, or “rmt0”. These character serial devices
have faster access than block devices. The character serial device names
should be used on the CREATE TABLESPACE command and not block device
names.

112 Administration Guide: Implementation

The overhead and transfer rate help to determine the best access path to use
when the SQL statement is compiled. For information on the OVERHEAD
and TRANSFERRATE parameters, refer to “Tuning Application Performance”
in the Administration Guide: Performance.

DB2 can greatly improve the performance of sequential I/O using the
sequential prefetch facility, which uses parallel I/O. Refer to “Understanding
Sequential Prefetching” in the Administration Guide: Performance for details on
this facility.

You can also create a table space that uses a page size larger than the default
4 KB size. The following SQL statement creates an SMS table space on a
UNIX-based system with an 8 KB page size.

CREATE TABLESPACE SMS8K
PAGESIZE 8192
MANAGED BY SYSTEM
USING ('FSMS_8K_1')
BUFFERPOOL BUFFPOOL8K

Notice that the associated buffer pool must also have the same 8 KB page
size.

The created table space cannot be used until the buffer pool it references is
activated.

The ALTER TABLESPACE SQL statement can be used to add a container to a
DMS table space and modify the PREFETCHSIZE, OVERHEAD, and
TRANSFERRATE settings for a table space. The transaction issuing the table
space statement should be committed as soon as possible, to prevent system
catalog contention.

Note: The PREFETCHSIZE should be a multiple of the EXTENTSIZE. For
example if the EXTENTSIZE is 10, the PREFETCHSIZE should be 20 or
30. For more information, refer to “Understanding Sequential
Prefetching” in the Administration Guide: Performance.

Creating a System Temporary Table Space
A system temporary table space is used to store system temporary tables.
When a database is created, one of the three default table spaces defined is a
system temporary table space called “TEMPSPACE1”.

Note: A database must always have at least one system temporary table space
since system temporary tables can only be stored in such a table space.

You can use the CREATE TABLESPACE statement to create another system
temporary table space. For example,

Chapter 3. Creating a Database 113

CREATE SYSTEM TEMPORARY TABLESPACE tmp_tbsp
MANAGED BY SYSTEM
USING ('d:\tmp_tbsp','e:\tmp_tbsp')

The only nodegroup that can be specified when creating a system temporary
table space is IBMTEMPGROUP.

Creating a User Temporary Table Space
A user temporary table space is used to store declared temporary tables.

You can use the CREATE TABLESPACE statement to create a user temporary
table space:

CREATE USER TEMPORARY TABLESPACE usr_tbsp
MANAGED BY DATABASE
USING (FILE 'd:\db2data\user_tbsp' 5000,

FILE 'e:\db2data\user_tbsp' 5000)

Like regular table spaces, user temporary table spaces may be created in any
nodegroup other than IBMTEMPGROUP. The default nodegroup used when
creating a user temporary table space is IBMDEFAULTGROUP.

The DECLARE GLOBAL TEMPORARY TABLE statement defines declared
temporary tables for use within a user temporary table space.

Creating Table Spaces in Nodegroups
By placing a table space in a multiple database partition nodegroup, all of the
tables within the table space are divided or partitioned across each database
partition in the nodegroup. The table space is created into a nodegroup. Once
in a nodegroup, the table space must remain there; it cannot be changed to
another nodegroup. The CREATE TABLESPACE statement is used to associate
a table space with a nodegroup.

Raw I/O
DB2 Universal Database supports direct disk access (raw I/O). This allows
you to attach a direct disk access (raw) device to any DB2 Universal Database
system. (The only exceptions are the Windows 95, and Windows 98 operating
systems.) The following list demonstrates the physical and logical methods for
identifying this type of device:
v On Windows, to specify a physical hard drive, use the following syntax:

\\.\PhysicalDriveN

where N represents one of the physical drives in the system. In this case, N
could be replaced by 0, 1, 2, or any other positive integer:

\\.\PhysicalDisk5

114 Administration Guide: Implementation

|
|
|
|
|

|

|

|
|

|

v On Windows, to specify a logical raw partition (that is, an unformatted
partition) use the following syntax:

\\.\N:

where N: represents a logical drive letter in the system. For example, N:
could be replaced by E: or any other drive letter.

v Note: You must have Windows NT Version 4.0 with Service Pack 3 installed
to be able to write logs to a device.

v On UNIX-based platforms, use the character serial device name; for
example, /dev/rhd0

Using Raw I/O on Linux
Linux has a pool of raw device nodes that must be bound to a block device
before raw I/O can be performed on it. There is a raw device controller that
acts as the central repository of raw to block device binding information.
Binding is performed using a utility named raw, which is normally supplied
by the Linux distributor.

Before you set up raw I/O on Linux, you require the following:
v One or more free IDE or SCSI disk partitions
v Linux kernel 2.4.0 or later (However, some Linux distributions offer raw

I/O on 2.2 kernels.)
v A raw device controller named /dev/rawctl or /dev/raw. If not, create a

symbolic link:
ln -s /dev/your_raw_dev_ctrl /dev/rawctl

v The raw utility, which is usually provided with the Linux distribution
v DB2 Version 7.1 FixPak 3 or later

Note: Of the distributions currently supporting raw I/O, the naming of raw
device nodes is different:
Distribution Raw device nodes Raw device controller
------------ -------------------- ---------------------
RedHat 6.2 /dev/raw/raw1 to 255 /dev/rawctl
SuSE 7.0 /dev/raw1 to 63 /dev/raw

DB2 supports either of the above raw device controllers, and most
other names for raw device nodes. Raw devices are not supported by
DB2 on Linux/390.

To configure raw I/O on Linux:

In this example, the raw partition to be used is /dev/sda5. It should not
contain any valuable data.

Chapter 3. Creating a Database 115

|
|

|

|
|

|
|

|
|

|
|
|
|
|
|

|

|

|
|

|
|

|

|

|

|
|

|
|
|
|

|
|
|

|

|
|

Step 1. Calculate the number of 4 096-byte pages in this partition, rounding
down if necessary. For example:

fdisk /dev/sda
Command (m for help): p

Disk /dev/sda: 255 heads, 63 sectors, 1106 cylinders
Units = cylinders of 16065 * 512 bytes

Device Boot Start End Blocks Id System
/dev/sda1 1 523 4200997 83 Linux
/dev/sda2 524 1106 4682947+ 5 Extended
/dev/sda5 524 1106 4682947 83 Linux

Command (m for help): q
#

The number of pages in /dev/sda5 is
num_pages = floor(((1106-524+1)*16065*512)/4096)
num_pages = 11170736

Step 2. Bind an unused raw device node to this partition. This needs to be
done every time the machine is rebooted, and requires root access.
Use raw -a to see which raw device nodes are already in use:
raw /dev/raw/raw1 /dev/sda5
/dev/raw/raw1: bound to major 8, minor 5

Step 3. Set global read permissions on the raw device controller and the disk
partition. Set global read and write permissions on the raw device:
chmod a+r /dev/rawctl
chmod a+r /dev/sdb1
chmod a+rw /dev/raw/raw1

Step 4. Create the table space in DB2, specifying the raw device, not the disk
partition. For example:
CREATE TABLESPACE dms1
MANAGED BY DATABASE
USING (DEVICE '/dev/raw/raw1' 11170736)

Table spaces on raw devices are also supported for all other page sizes
supported by DB2.

Creating a Schema

While organizing your data into tables, it may also be beneficial to group
tables (and other related objects) together. This is done by defining a schema
through the use of the CREATE SCHEMA statement. Information about the
schema is kept in the system catalog tables of the database to which you are
connected. As other objects are created, they can be placed within this schema.

116 Administration Guide: Implementation

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|

The syntax of the CREATE SCHEMA statement is described in detail in the
SQL Reference. The new schema name cannot already exist in the system
catalogs and it cannot begin with ″SYS″.

If a user has SYSADM or DBADM authority, then the user can create a
schema with any valid name. When a database is created,
IMPLICIT_SCHEMA authority is granted to PUBLIC (that is, to all users).

The definer of any objects created as part of the CREATE SCHEMA statement
is the schema owner. This owner can GRANT and REVOKE schema privileges
to other users.

This statement must be issued by a user with DBADM authority.

Schemas may also be implicitly created when a user has IMPLICIT_SCHEMA
authority. With this authority, users implicitly create a schema whenever they
create an object with a schema name that does not already exist.

If users do not have IMPLICIT_SCHEMA authority, the only schema they can
create is one that has the same name as their own authorization ID.

Direct access to objects within a schema is not allowed since the schema is
used to enforce uniqueness in the database. This becomes clear when
considering the possibility that two users could create two tables (or other
objects) with the same name. Without a schema to enforce uniqueness,
ambiguity would exist if a third user attempted to query the table. It is not
possible to determine which table to use without some further qualification.

To allow another user to access a table without entering a schema name as
part of the qualification on the table name requires that a view be established
for that user. The definition of the view would define the fully-qualified table
name including the user’s schema; the user would simply need to query using
the view name. The view would be fully-qualified by the user’s schema as
part of the view definition.

To create a schema using the Control Center:

1. Expand the object tree until you see the Schema folder.

2. Right-click the Schema folder, and select Create from the pop-up menu.

3. Complete the information for the new schema, and click Ok.

To create a schema using the command line, enter:
CREATE SCHEMA <name> AUTHORIZATION <name>

Chapter 3. Creating a Database 117

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

The following is an example of a CREATE SCHEMA statement that creates a
schema for an individual user with the authorization ID ″joe″:

CREATE SCHEMA joeschma AUTHORIZATION joe

Setting a Schema
You may want to establish a default schema for use by unqualified object
references in dynamic SQL statements issued from within a specific DB2
connection. This is done by setting the special register CURRENT SCHEMA to
the schema you wish to use as the default. Any user can set this special
register: no authorization is required.

The syntax of the SET SCHEMA statement is described in detail in the SQL
Reference manual.

The following is an example of how to set the CURRENT SCHEMA special
register:

SET CURRENT SCHEMA = 'SCHEMA01'

This statement can be used from within an application program or issued
interactively. Once set, the value of the CURRENT SCHEMA special register is
used as the qualifier (schema) for unqualified object references in dynamic
SQL statements, with the exception of the CREATE SCHEMA statement where
an unqualified reference to a database object exists.

The initial value of the CURRENT SCHEMA special register is equal to the
authorization ID of the current session user.

Creating and Populating a Table

After you determine how to organize your data into tables, the next step is to
create those tables, by using the CREATE TABLE statement. The table
descriptions are stored in the system catalog of the database to which you are
connected.

The syntax of the CREATE TABLE statement is described in detail in the SQL
Reference. For information on creating a summary table, see “Creating a
Summary Table” on page 147. For information about naming tables, columns,
and other database objects, see “Appendix A. Naming Rules” on page 313.

The CREATE TABLE statement gives the table a name, which is a qualified or
unqualified identifier, and a definition for each of its columns. You can store
each table in a separate table space, so that a table space contains only one
table. If a table will be dropped and created often, it is more efficient to store
it in a separate table space and then drop the table space instead of the table.
You can also store many tables within a single table space. In a partitioned

118 Administration Guide: Implementation

database environment, the table space chosen also defines the nodegroup and
the database partitions on which table data is stored.

The table does not contain any data at first. To add rows of data to it, use one
of the following:
v The INSERT statement, described in the SQL Reference

v The LOAD or IMPORT commands, described in the Command Reference

v The autoloader utility if working in a partitioned database environment as
described in the Data Movement Utilities Guide and Reference.

Details concerning the movement of data into and out of tables is presented in
Data Movement Utilities Guide and Reference.

Adding data to a table can be done without logging the change. The NOT
LOGGED INITIALLY clause on the CREATE TABLE statement prevents
logging the change to the table. Any changes made to the table by an INSERT,
DELETE, UPDATE, CREATE INDEX, DROP INDEX, or ALTER TABLE
operation in the same unit of work in which the table is created are not
logged. Logging begins in subsequent units of work.

A table consists of one or more column definitions. A maximum of 500
columns can be defined for a table. Columns represent the attributes of an
entity. The values in any column are all the same type of information. Refer to
the SQL Reference for more information.

Note: The maximum of 500 columns is true when using a 4 KB page size. The
maximum is 1012 columns when using an 8 KB, 16 KB, or 32 KB page
size.

A column definition includes a column name, data type, and any necessary null
attribute, or default value (optionally chosen by the user).

The column name describes the information contained in the column and
should be something that will be easily recognizable. It must be unique within
the table; however, the same name can be used in other tables. See
“Appendix A. Naming Rules” on page 313 for information about naming
rules.

The data type of a column indicates the length of the values in it and the kind
of data that is valid for it. The database manager uses character string,
numeric, date, time and large object data types. Graphic string data types are
only available for database environments using multi-byte character sets. In
addition, columns can be defined with user-defined distinct types, which are
discussed in “Creating a User-Defined Type (UDT)” on page 142.

Chapter 3. Creating a Database 119

|
|

The default attribute specification indicates what value is to be used if no
value is provided. The default value can be specified, or a system-defined
default value used. Default values may be specified for columns with, and
without, the null attribute specification.

The null attribute specification indicates whether or not a column can contain
null values.

To create a table using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click the Tables folder, and select Create —> Tables Using Wizard from the
pop-up menu.

3. Follow the steps in the wizard to complete your tasks.

To create a table using the command line, enter:
CREATE TABLE <NAME>

(<column_name> <data_type> <null_attribute>)
IN <TABLE_SPACE_NAME)

The following is an example of a CREATE TABLE statement that creates the
EMPLOYEE table in the RESOURCE table space. This table is defined in the
sample database:

CREATE TABLE EMPLOYEE
(EMPNO CHAR(6) NOT NULL PRIMARY KEY,
FIRSTNME VARCHAR(12) NOT NULL,
MIDINIT CHAR(1) NOT NULL WITH DEFAULT,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3),
PHONENO CHAR(4),
PHOTO BLOB(10M) NOT NULL)

IN RESOURCE

When creating a table, you can choose to have the columns of the table based
on the attributes of a structured type. Such a table is called a “typed table”.

A typed table can be defined to inherit some of its columns from another
typed table. Such a table is called a “subtable”, and the table from which it
inherits is called its “supertable”. The combination of a typed table and all its
subtables is called a “table hierarchy”. The topmost table in the table
hierarchy (the one with no supertable) is called the “root table” of the
hierarchy.

The following sections build on the previous example to cover other options
you should consider:
v “Large Object (LOB) Column Considerations” on page 121

120 Administration Guide: Implementation

v “Defining a Unique Constraint” on page 123
v “Defining a Generated Column on a New Table” on page 127
v “Creating a User-Defined Temporary Table” on page 129
v “Defining an Identity Column on a New Table” on page 130
v “Creating a Sequence” on page 131
v “Comparing IDENTITY Columns and Sequences” on page 133
v “Creating a Typed Table” on page 133
v “Populating a Typed Table” on page 133
v “Hierarchy Table” on page 134
v “Creating a Table in Multiple Table Spaces” on page 134
v “Creating a Table in a Partitioned Database” on page 135

You can also create a table that is defined based on the result of a query. This
type of table is called a summary table. For more information, see “Creating a
Summary Table” on page 147.

Large Object (LOB) Column Considerations
Before creating a table that contains large object columns, you need to make
the following decisions:
1. Do you want to log changes to LOB columns?

If you do not want to log these changes, you must turn logging off by
specifying the NOT LOGGED clause when you create the table:

CREATE TABLE EMPLOYEE
(EMPNO CHAR(6) NOT NULL PRIMARY KEY,
FIRSTNME VARCHAR(12) NOT NULL,
MIDINIT CHAR(1) NOT NULL WITH DEFAULT,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3),
PHONENO CHAR(4),
PHOTO BLOB(10M) NOT NULL NOT LOGGED)

IN RESOURCE

If the LOB column is larger than 1 GB, logging must be turned off. (As a
rule of thumb, you may not want to log LOB columns larger than 10 MB.)
As with other options specified on a column definition, the only way to
change the logging option is to re-create the table.

Even if you choose not to log changes, LOB columns are shadowed to allow
changes to be rolled back, whether the roll back is the result of a system
generated error, or an application request. Shadowing is a recovery
technique where current storage page contents are never overwritten. That
is, old, unmodified pages are kept as “shadow” copies. These copies are
discarded when they are no longer needed to support a transaction
rollback.

Chapter 3. Creating a Database 121

|

|

|

|

|

|

|

Note: When recovering a database using the RESTORE and
ROLLFORWARD commands, LOB data that was “NOT LOGGED”and
was written since the last backup will be replaced by binary zeros.

2. Do you want to minimize the space required for the LOB column?
You can make the LOB column as small as possible using the COMPACT
clause on the CREATE TABLE statement. For example:

CREATE TABLE EMPLOYEE
(EMPNO CHAR(6) NOT NULL PRIMARY KEY,
FIRSTNME VARCHAR(12) NOT NULL,
MIDINIT CHAR(1) NOT NULL WITH DEFAULT,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3),
PHONENO CHAR(4),
PHOTO BLOB(10M) NOT NULL NOT LOGGED COMPACT)

IN RESOURCE

There is a performance cost when appending to a table with a compact LOB
column, particularly if the size of LOB values are increased (because of
storage adjustments that must be made).

On platforms such as OS/2 where sparse file allocation is not supported
and where LOBs are placed in SMS table spaces, consider using the
COMPACT clause. Sparse file allocation has to do with how physical disk
space is used by an operating system. An operating system that supports
sparse file allocation does not use as much physical disk space to store
LOBs as compared to an operating system not supporting sparse file
allocation. The COMPACT option allows for even greater physical disk
space “savings” regardless of the support of sparse file allocation. Because
you can get some physical disk space savings when using COMPACT, you
should consider using COMPACT if your operating system does not
support sparse file allocation.

Note: DB2 system catalogs use LOB columns and may take up more space
than in previous versions.

3. Do you want better performance for LOB columns, including those LOB
columns in the DB2 system catalogs?
There are large object (LOB) columns in the catalog tables. LOB data is not
kept in the buffer pool with other data but is read from disk each time it is
needed. Reading from disk slows down the performance of DB2 where the
LOB columns of the catalogs are involved. Since a file system usually has
its own place for storing (or caching) data, using a SMS table space, or a
DMS table space built on file containers, make avoidance of I/O possible
when the LOB has previously been referenced.

122 Administration Guide: Implementation

Defining Constraints
This section discusses how to define constraints:
v “Defining a Unique Constraint”
v “Defining Referential Constraints” on page 124
v “Defining a Table Check Constraint” on page 127.

For more information on constraints, refer to the section on planning for
constraint enforcement in the Administration Guide: Planning; and to the SQL
Reference.

Defining a Unique Constraint
Unique constraints ensure that every value in the specified key is unique. A
table can have any number of unique constraints, with at most one unique
constraint defined as a primary key.

You define a unique constraint with the UNIQUE clause in the CREATE
TABLE or ALTER TABLE statements. The unique key can consist of more than
one column. More than one unique constraint is allowed on a table. However,
a unique constraint may not be defined on a subtable.

Once established, the unique constraint is enforced automatically by the
database manager when an INSERT or UPDATE statement modifies the data
in the table. The unique constraint is enforced through a unique index.

When a unique constraint is defined in an ALTER TABLE statement and an
index exists on the same set of columns of that unique key, that index
becomes the unique index and is used by the constraint.

You can take any one unique constraint and use it as the primary key. The
primary key can be used as the parent key in a referential constraint (along
with other unique constraints). There can be only one primary key per table.
You define a primary key with the PRIMARY KEY clause in the CREATE
TABLE or ALTER TABLE statement. The primary key can consist of more than
one column.

A primary index forces the value of the primary key to be unique. When a
table is created with a primary key, the database manager creates a primary
index on that key.

Some performance tips for indexes used as unique constraints include:
v When performing an initial load of an empty table with indexes, LOAD

gives better performance than IMPORT. This is true no matter whether you
are using the INSERT or REPLACE modes of LOAD.

Chapter 3. Creating a Database 123

v When appending a substantial amount of data to an existing table with
indexes (using IMPORT INSERT, or LOAD INSERT), LOAD gives slightly
better performance than IMPORT.

v If you are using the IMPORT command for an initial large load of data,
create the unique key after the data has been imported or loaded. This
avoids the overhead of maintaining the index while the table is being
loaded. It also results in the index using the least amount of storage.

v If you are using the load utility in REPLACE mode, create the unique key
before loading the data. In this case, creation of the index during the load is
more efficient than using the CREATE INDEX statement after the load.

Defining Referential Constraints
Referential integrity is imposed by adding referential constraints to table and
column definitions. Referential constraints are established with the FOREIGN
KEY clause, and the REFERENCES clause in the CREATE TABLE or ALTER
TABLE statements. Refer to the SQL Reference for more information on the
effects of a referential constraint on typed tables or to a parent table that is a
typed table.

The identification of foreign keys enforces constraints on the values within the
rows of a table or between the rows of two tables. The database manager
checks the constraints specified in a table definition and maintains the
relationships accordingly. The goal is to maintain integrity whenever one
database object references another.

For example, primary and foreign keys each have a department number
column. For the EMPLOYEE table, the column name is WORKDEPT, and for
the DEPARTMENT table, the name is DEPTNO. The relationship between
these two tables is defined by the following constraints:
v There is only one department number for each employee in the EMPLOYEE

table, and that number exists in the DEPARTMENT table.
v Each row in the EMPLOYEE table is related to no more than one row in the

DEPARTMENT table. There is a unique relationship between the tables.
v Each row in the EMPLOYEE table that has a non-null value for

WORKDEPT is related to a row in the DEPTNO column of the
DEPARTMENT table.

v The DEPARTMENT table is the parent table, and the EMPLOYEE table is
the dependent table.

The SQL statement defining the parent table, DEPARTMENT, is:
CREATE TABLE DEPARTMENT

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(29) NOT NULL,
MGRNO CHAR(6),

124 Administration Guide: Implementation

|
|
|

ADMRDEPT CHAR(3) NOT NULL,
LOCATION CHAR(16),

PRIMARY KEY (DEPTNO))
IN RESOURCE

The SQL statement defining the dependent table, EMPLOYEE, is:
CREATE TABLE EMPLOYEE

(EMPNO CHAR(6) NOT NULL PRIMARY KEY,
FIRSTNME VARCHAR(12) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3),
PHONENO CHAR(4),
PHOTO BLOB(10m) NOT NULL,

FOREIGN KEY DEPT (WORKDEPT)
REFERENCES DEPARTMENT ON DELETE NO ACTION)

IN RESOURCE

By specifying the DEPTNO column as the primary key of the DEPARTMENT
table and WORKDEPT as the foreign key of the EMPLOYEE table, you are
defining a referential constraint on the WORKDEPT values. This constraint
enforces referential integrity between the values of the two tables. In this case,
any employees that are added to the EMPLOYEE table must have a
department number that can be found in the DEPARTMENT table.

The delete rule for the referential constraint in the employee table is NO
ACTION, which means that a department cannot be deleted from the
DEPARTMENT table if there are any employees in that department.

Although the previous examples use the CREATE TABLE statement to add a
referential constraint, the ALTER TABLE statement can also be used. See
“Modifying a Table in Both Structure and Content” on page 188.

Another example: The same table definitions are used as those in the previous
example. Also, the DEPARTMENT table is created before the EMPLOYEE
table. Each department has a manager, and that manager is listed in the
EMPLOYEE table. MGRNO of the DEPARTMENT table is actually a foreign
key of the EMPLOYEE table. Because of this referential cycle, this constraint
poses a slight problem. You could add a foreign key later (see “Adding
Primary and Foreign Keys” on page 192). You could also use the CREATE
SCHEMA statement to create both the EMPLOYEE and DEPARTMENT tables
at the same time (see the example in the SQL Reference).

FOREIGN KEY Clause: A foreign key references a primary key or a unique
key in the same or another table. A foreign key assignment indicates that
referential integrity is to be maintained according to the specified referential
constraints. You define a foreign key with the FOREIGN KEY clause in the
CREATE TABLE or ALTER TABLE statement.

Chapter 3. Creating a Database 125

The number of columns in the foreign key must be equal to the number of
columns in the corresponding primary or unique constraint (called a parent
key) of the parent table. In addition, corresponding parts of the key column
definitions must have the same data types and lengths. The foreign key can
be assigned a constraint name. If you do not assign a name, one is
automatically assigned. For ease of use, it is recommended that you assign a
constraint name and do not use the system-generated name.

The value of a composite foreign key matches the value of a parent key if the
value of each column of the foreign key is equal to the value of the
corresponding column of the parent key. A foreign key containing null values
cannot match the values of a parent key, since a parent key by definition can
have no null values. However, a null foreign key value is always valid,
regardless of the value of any of its non-null parts.

The following rules apply to foreign key definitions:
v A table can have many foreign keys
v A foreign key is nullable if any part is nullable
v A foreign key value is null if any part is null.

REFERENCES Clause: The REFERENCES clause identifies the parent table
in a relationship, and defines the necessary constraints. You can include it in a
column definition or as a separate clause accompanying the FOREIGN KEY
clause, in either the CREATE TABLE or ALTER TABLE statements.

If you specify the REFERENCES clause as a column constraint, an implicit
column list is composed of the column name or names that are listed.
Remember that multiple columns can have separate REFERENCES clauses,
and that a single column can have more than one.

Included in the REFERENCES clause is the delete rule. In our example, the
ON DELETE NO ACTION rule is used, which states that no department can
be deleted if there are employees assigned to it. Other delete rules include ON
DELETE CASCADE, ON DELETE SET NULL, and ON DELETE RESTRICT.
Refer to Administration Guide: Planning for more information on DELETE rules
when implementing referential integrity.

Implications for Utility Operations: The load utility will turn off constraint
checking for self-referencing and dependent tables, placing these tables into
check pending state. After the load utility has completed, you will need to
turn on the constraint checking for all tables for which it was turned off. For
example, if the DEPARTMENT and EMPLOYEE tables are the only tables that
have been placed in check pending state, you can execute the following
command:

SET INTEGRITY FOR DEPARTMENT, EMPLOYEE IMMEDIATE CHECKED

126 Administration Guide: Implementation

|
|
|
|
|
|
|

|

The import utility is affected by referential constraints in the following ways:
v The REPLACE and REPLACE CREATE functions are not allowed if the

object table has any dependents other than itself.
To use these functions, first drop all foreign keys in which the table is a
parent. When the import is complete, re-create the foreign keys with the
ALTER TABLE statement.

v The success of importing into a table with self-referencing constraints
depends on the order in which the rows are imported.

Defining a Table Check Constraint
A table check constraint specifies a search condition that is enforced for each
row of the table on which the table check constraint is defined. You create a
table check constraint on a table by associating a check-constraint definition
with the table when the table is created or altered. This constraint is
automatically activated when an INSERT or UPDATE statement modifies the
data in the table. A table check constraint has no effect on a DELETE or
SELECT statement. A check constraint can be associated with a typed table.

A constraint name cannot be the same as any other constraint specified within
the same CREATE TABLE statement. If you do not specify a constraint name,
the system generates an 18-character unique identifier for the constraint.

A table check constraint is used to enforce data integrity rules not covered by
key uniqueness or a referential integrity constraint. In some cases, a table
check constraint can be used to implement domain checking. The following
constraint issued on the CREATE TABLE statement ensures that the start date
for every activity is not after the end date for the same activity:

CREATE TABLE EMP_ACT
(EMPNO CHAR(6) NOT NULL,
PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,
EMPTIME DECIMAL(5,2),
EMSTDATE DATE,
EMENDATE DATE,
CONSTRAINT ACTDATES CHECK(EMSTDATE <= EMENDATE))

IN RESOURCE

Although the previous example uses the CREATE TABLE statement to add a
table check constraint, the ALTER TABLE statement can also be used. See
“Modifying a Table in Both Structure and Content” on page 188.

Defining a Generated Column on a New Table
A generated column is defined in a base table where the stored value is
computed using an expression, rather than being specified through an insert
or update operation. When creating a table where it is known that certain
expressions or predicates will be used all the time, you can add one or more

Chapter 3. Creating a Database 127

|

|
|

|
|
|

|
|

generated columns to that table. By using a generated column there is
opportunity for performance improvements when querying the table data.

For example, there are two ways in which the evaluation of expressions can
be costly when performance is important:
1. The evaluation of the expression must be done many times during a query.
2. The computation is complex.

To improve the performance of the query, you can define an additional
column that would contain the results of the expression. Then, when issuing a
query that includes the same expression, the generated column can be used
directly; or, the query rewrite component of the optimizer can replace the
expression with the generated column.

It is also possible to create a non-unique index on a generated column.

Where queries involve the joining of data from two or more tables, the
addition of a generated column can allow the optimizer a choice of possibly
better join strategies.

The following is an example of defining a generated column on the CREATE
TABLE statement:

CREATE TABLE t1 (c1 INT,
c2 DOUBLE,
c3 DOUBLE GENERATED ALWAYS AS (c1 + c2)
c4 GENERATED ALWAYS AS

(CASE WHEN c1 > c2 THEN 1 ELSE NULL END))

After creating this table, indexes can be created using the generated columns.
For example,

CREATE INDEX i1 ON t1(c4)

Queries can take advantage of the generated columns. For example,
SELECT COUNT(*) FROM t1 WHERE c1 > c2

can be written as
SELECT COUNT(*) FROM t1 WHERE c4 IS NOT NULL

Another example:
SELECT c1 + c2 FROM t1 WHERE (c1 + c2) * c1 > 100

can be written as
SELECT c3 FROM t1 WHERE c3 * c1 > 100

128 Administration Guide: Implementation

Generated columns will be used to improve performance of queries. As a
result, generated columns will likely be added after the table has been created
and populated. See “Creating and Populating a Table” on page 118 for more
information.

Creating a User-Defined Temporary Table
You use the DECLARE GLOBAL TEMPORARY TABLE statement to define a
temporary table. The statement is used from within an application. The
user-defined temporary table only persists until the application disconnects
from the database.

The description of this table does not appear in the system catalog making it
not persistent for, and not able to be shared with, other applications.

When the application using this table terminates or disconnects from the
database, any data in the table is deleted and the table is implicitly dropped.

An example of how you can define a temporary table as follows:
DECLARE GLOBAL TEMPORARY TABLE gbl_temp

LIKE empltabl
ON COMMIT DELETE ROWS
NOT LOGGED
IN usr_tbsp

This statement creates a user temporary table called gbl_temp. The user
temporary table is defined with columns that have exactly the same name and
description as the columns of the empltabl. The implicit definition only
includes the column name, datatype, nullability characteristic, and column
default value attributes. All other column attributes including unique
constraints, foreign key constraints, triggers, and indexes are not defined.
When a COMMIT operation is performed, all data in the table is deleted if no
WITH HOLD cursor is open on the table. Changes made to the user
temporary table are not logged. The user temporary table is placed in the
specified user temporary table space. This table space must exist or the
declaration of this table will fail.

Refer to the SQL Reference for additional information on the DECLARE
GLOBAL TEMPORARY TABLE statement.

Note: A user-defined temporary table does not support:
v LOB-type columns (or a distinct-type column based on a LOB)
v User-defined type columns
v LONG VARCHAR columns
v DATALINK columns

Chapter 3. Creating a Database 129

Defining an Identity Column on a New Table
An identity column provides a way for DB2 to automatically generate a
guaranteed-unique numeric value for each row that is added to the table.
When creating a table where you know that you need to uniquely identify
each row that will be added to the table, you can add an identity column to
the table.

Once created, you cannot alter the table description to include an identity
column.

It is the AS IDENTITY clause on the CREATE TABLE statement that allows
for the specification of the identity column.

The following is an example of defining an identity column on the CREATE
TABLE statement:

CREATE TABLE table (col1 INT,
col2 DOUBLE,
col3 INT NOT NULL GENERATED ALWAYS AS IDENTITY

(START WITH 100, INCREMENT BY 5))

In this example the third column is the identity column. You can also specify
the value used in the column to uniquely identify each row when added.
Here the first row entered has the value of “100” placed in the column; every
subsequent row added to the table has the associated value increased by five.

Some additional example uses of an identity column are an order number, an
employee number, a stock number, or an incident number. The values for an
identity column can be generated by DB2: ALWAYS or BY DEFAULT.

An identity column defined as GENERATED ALWAYS is guaranteed to be
unique. The values used are always generated by DB2. Applications are not
allowed to provide an explicit value. An identity column defined as
GENERATED BY DEFAULT gives applications a way to explicitly provide a
value for the identity column. If the application does not provide a value,
then DB2 will generate one. Since the application controls the value, DB2
cannot guarantee the uniqueness of the value. The GENERATED BY
DEFAULT clause is meant for use for data propagation where the intent is to
copy the contents of an existing table; or, for the unload and reloading of a
table.

Note: Identity columns are not currently supported in a partitioned database
environment.

If rows are inserted into a table with explicit identity column values specified,
the next internally generated value is not updated, and may conflict with
existing values in the table. Duplicate values will generate an error message.

130 Administration Guide: Implementation

|
|
|

Refer to SQL Reference for additional information on defining an identity
column on a new table.

Creating a Sequence
A sequence is a database object that allows the automatic generation of values.
Sequences are ideally suited to the task of generating unique key values.
Applications can use sequences to avoid possible concurrency and
performance problems resulting from the generation of a unique counter
outside the database.

Unlike an identity column attribute, a sequence is not tied to a particular table
column nor is it bound to a unique table column and only accessible through
that table column.

A sequence can be created, or altered, so that it generates values in one of
these ways:
v Increment or decrement monotonically without bound
v Increment or decrement monotonically to a user-defined limit and stop
v Increment or decrement monotonically to a user-defined limit and cycle

back to the beginning and start again

The following is an example of creating a sequence object:
CREATE SEQUENCE order_seq

START WITH 1
INCREMENT BY 1
NOMAXVALUE
NOCYCLE
CACHE 24

In this example, the sequence is called order_seq. It will start at 1 and
increase by 1 with no upper limit. There is no reason to cycle back to the
beginning and restart from 1 because there is no assigned upper limit. The
number associated with the CACHE parameter specifies the maximum number
of sequence values that the database manager preallocates and keeps in
memory.

The sequence numbers generated have the following properties:
v Values can be any exact numeric data type with a scale of zero. Such data

types include: SMALLINT, BIGINT, INTEGER, and DECIMAL.
v Consecutive values can differ by any specified integer increment. The

default increment value is 1.
v Counter value is recoverable. The counter value is reconstructed from logs

when recovery is required.
v Values can be cached to improve performance. Preallocating and storing

values in the cache reduces synchronous I/O to the log when values are

Chapter 3. Creating a Database 131

|

|
|
|
|
|

|
|
|

|
|

|

|

|
|

|

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|

|
|

|
|

|
|

generated for the sequence. In the event of a system failure, all cached
values that have not been committed are never used and considered lost.
The value specified for CACHE is the maximum number of sequence values
that could be lost.

If a database that contains one or more sequences is recovered to a prior point
in time, then this could cause the generation of duplicate values for some
sequences. To avoid possible duplicate values, a database with sequences
should not be recovered to a prior point in time.

Sequences are only supported in a single node database.

There are two expressions used with a sequence.

The PREVVAL expression returns the most recently generated value for the
specified sequence for a previous statement within the current session.

The NEXTVAL expression returns the next value for the specified sequence. A
new sequence number is generated when a NEXTVAL expression specifies the
name of the sequence. However, if there are multiple instances of a NEXTVAL
expression specifying the same sequence name within a query, the counter for
the sequence is incremented only once for each row of the result.

The same sequence number can be used as a unique key value in two
separate tables by referencing the sequence number with a NEXTVAL
expression for the first table, and a PREVVAL expression for any additional
tables.

For example:
INSERT INTO order (orderno, custno)

VALUES (NEXTVAL FOR order_seq, 123456);
INSERT INTO line_item (orderno, partno, quantity)

VALUES (PREVVAL FOR order_seq, 987654, 1)

The NEXTVAL or PREVVAL expressions can be used in the following
locations:
v INSERT statement, VALUES clause
v SELECT statement, SELECT list
v SET assignment statement
v UPDATE statement, SET clause
v VALUES or VALUES INTO statement

132 Administration Guide: Implementation

|
|
|
|

|
|
|
|

|

|

|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|

|
|

|

|

|

|

|

Comparing IDENTITY Columns and Sequences
While there are similarities between IDENTITY columns and sequences, there
are also differences. The characteristics of each can be used when designing
your database and applications.

An identity column has the following characteristics:
v An identity column can be defined as part of a table only when the table is

created. Once a table is created, you cannot alter it to add an identity
column. (However, existing identity column characteristics may be altered.)

v An identity column automatically generates values for a single table.
v When an identity column is defined as GENERATED ALWAYS, the values

used are always generated by the database manager. Applications are not
allowed to provide their own values during the modification of the contents
of the table.

A sequence object has the following characteristics:
v A sequence object is a database object that is not tied to any one table.
v A sequence object generates sequential values that can be used in any SQL

statement.
v Since a sequence object can be used by any application, there are two

expressions used to control the retrieval of the next value in the specified
sequence and the value generated previous to the statement being executed.
The PREVVAL expression returns the most recently generated value for the
specified sequence for a previous statement within the current session. The
NEXTVAL expression returns the next value for the specified sequence. The
use of these expressions allows the same value to be used across several
SQL statements within several tables.

While these are not all of the characteristics of these two items, these
characteristics will assist you in determining which to use depending on your
database design and the applications using the database.

Creating a Typed Table
You can create a typed table using a variant of the CREATE TABLE statement.
Refer to the Application Development Guide for all the information you need on
typed tables.

Populating a Typed Table
You can populate a typed table after creating the structured types and then
creating the corresponding tables and subtables. Refer to the Application
Development Guide for all the information you need on typed tables.

Chapter 3. Creating a Database 133

|

|
|
|

|

|
|
|

|

|
|
|
|

|

|

|
|

|
|
|
|
|
|
|
|

|
|
|

Hierarchy Table
A hierarchy table is a table that is associated with the implementation of a
typed table hierarchy. It is created at the same time as the root table of the
hierarchy. Refer to the Application Development Guide for all the information
you need on hierarchy tables.

Creating a Table in Multiple Table Spaces
Table data can be stored in the same table space as the index for the table,
and any long column data associated with the table. You can also place the
index in a separate table space, and place any long column data in a separate
table space, apart from the table space for the rest of the table data. All table
spaces must exist before the CREATE TABLE statement is run. The separation
of the parts of the table can only be done using DMS table spaces.

To create a table in multiple table spaces using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click the Tables folder, and select Create —> Tables Using Wizard from the
pop-up menu.

3. Type the table name and click Next.

4. Select columns for your table.

5. On the Table space page, click Use separate index space and Use separate long
space, specify the information, and click Finish.

To create a table in multiple table spaces using the command line, enter:
CREATE TABLE <name>

(<column_name> <data_type> <null_attribute>)
IN <table_space_name>
INDEX IN <index_space_name>
LONG IN <long_space_name>

The following example shows how the EMP_PHOTO table could be created to
store the different parts of the table in different table spaces:

CREATE TABLE EMP_PHOTO
(EMPNO CHAR(6) NOT NULL,
PHOTO_FORMAT VARCHAR(10) NOT NULL,
PICTURE BLOB(100K))

IN RESOURCE
INDEX IN RESOURCE_INDEXES
LONG IN RESOURCE_PHOTO

This example will cause the EMP_PHOTO data to be stored as follows:
v Indexes created for the EMP_PHOTO table will be stored in the

RESOURCES_INDEXES table space

134 Administration Guide: Implementation

v Data for the PICTURE column will be stored in the RESOURCE_PHOTO
table space

v Data for the EMPNO and PHOTO_FORMAT columns will be stored in the
RESOURCE table space.

For additional considerations on the use of multiple DMS table spaces for a
single table, refer to Administration Guide: Planning.

Refer to the SQL Reference for more information about the CREATE TABLE
statement.

Creating a Table in a Partitioned Database
Before creating a table that will be physically divided or partitioned, you need
to consider the following:
v Table spaces can span more than one database partition. The number of

partitions they span depends on the number of partitions in a nodegroup.
v Tables can be collocated by being placed in the same table space or by

being placed in another table space that, together with the first table space,
is associated with the same nodegroup. For more information, refer to
Administration Guide: Planning.

One additional option exists when creating a table in a partitioned database
environment: the partitioning key. A partitioning key is a key that is part of the
definition of a table. It determines the partition on which each row of data is
stored.

It is important to select an appropriate partitioning key because it cannot be
changed later. Furthermore, any unique indexes (and therefore unique or
primary keys) must be defined as a superset of the partitioning key. That is, if
a partitioning key is defined, unique keys and primary keys must include all
of the same columns as the partitioning key (they may have more columns).

If you do not specify the partitioning key explicitly, the following defaults are
used. Ensure that the default partitioning key is appropriate.

v If a primary key is specified in the CREATE TABLE statement, the first
column of the primary key is used as the partitioning key.

v If there is no primary key, the first column that is not a long field is used.
v If no columns satisfy the requirements for a default partitioning key, the

table is created without one (this is allowed only in single-partition
nodegroups).

Following is an example:
CREATE TABLE MIXREC (MIX_CNTL INTEGER NOT NULL,

MIX_DESC CHAR(20) NOT NULL,
MIX_CHR CHAR(9) NOT NULL,

Chapter 3. Creating a Database 135

|
|

|
|

MIX_INT INTEGER NOT NULL,
MIX_INTS SMALLINT NOT NULL,
MIX_DEC DECIMAL NOT NULL,
MIX_FLT FLOAT NOT NULL,
MIX_DATE DATE NOT NULL,
MIX_TIME TIME NOT NULL,
MIX_TMSTMP TIMESTAMP NOT NULL)
IN MIXTS12
PARTITIONING KEY (MIX_INT) USING HASHING

In the preceding example, the table space is MIXTS12 and the partitioning key
is MIX_INT. If the partitioning key is not specified explicitly, it is MIX_CNTL. (If
no primary key is specified and no partitioning key is defined, the
partitioning key is the first non-long column in the list.)

A row of a table, and all information about that row, always resides on the
same database partition.

The size limit for one partition of a table is 64 GB, or the available disk space,
whichever is smaller. (This assumes a 4 KB page size for the table space.) The
size of the table can be as large as 64 GB (or the available disk space) times
the number of database partitions. If the page size for the table space is 8 KB,
the size of the table can be as large as 128 GB (or the available disk space)
times the number of database partitions. If the page size for the table space is
16 KB, the size of the table can be as large as 256 GB (or the available disk
space) times the number of database partitions. If the page size for the table
space is 32 KB, the size of the table can be as large as 512 GB (or the available
disk space) times the number of database partitions.

Creating a Trigger

A trigger defines a set of actions that are executed in conjunction with, or
triggered by, an INSERT, UPDATE, or DELETE clause on a specified base
table or a typed table. Some uses of triggers are to:
v Validate input data
v Generate a value for a newly-inserted row
v Read from other tables for cross-referencing purposes
v Write to other tables for audit-trail purposes

You cannot use triggers with nicknames.

You can use triggers to support general forms of integrity or business rules.
For example, a trigger can check a customer’s credit limit before an order is
accepted or update a summary data table.

The benefits of using a trigger are:

136 Administration Guide: Implementation

v Faster application development: Because a trigger is stored in the database,
you do not have to code the actions it does in every application.

v Easier maintenance: Once a trigger is defined, it is automatically invoked
when the table that it is created on is accessed.

v Global enforcement of business rules: If a business policy changes, you only
need to change the trigger and not each application program.

To create a trigger using the Control Center:

1. Expand the object tree until you see the Triggers folder.

2. Right-click the Triggers folder, and select Create from the pop-up menu.

3. Specify information for the trigger.

4. Specify the action that you want the trigger to invoke, and click Ok.

To create a trigger using the command line, enter:
CREATE TRIGGER <name>

<action> ON <table_name>
<operation>
<triggered_action>

The following SQL statement creates a trigger that increases the number of
employees each time a new person is hired, by adding 1 to the number of
employees (NBEMP) column in the COMPANY_STATS table each time a row
is added to the EMPLOYEE table.

CREATE TRIGGER NEW_HIRED
AFTER INSERT ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
UPDATE COMPANY_STATS SET NBEMP = NBEMP+1;

A trigger body can include one or more of the following SQL statements:
INSERT, searched UPDATE, searched DELETE, full-selects, SET
transition-variable, and SIGNAL SQLSTATE. The trigger can be activated
before or after the INSERT, UPDATE, or DELETE statement to which it refers.
Refer to the SQL Reference for complete syntax information on the CREATE
TRIGGER statement. Refer to the Application Development Guide for
information about creating and using triggers.

Note: If the trigger is a BEFORE trigger, the column name specified by the
triggered action may not be a generated column other than an identity
column. That is, the generated identity value is visible to BEFORE
triggers.

When creating an atomic trigger, care must be taken with the end-of-statement
character. The database manager, by default, considers a “;” the
end-of-statement marker. You should manually edit the end-of-statement

Chapter 3. Creating a Database 137

|
|
|
|

|
|
|

character in your script to create the atomic trigger so that you are using a
character other than “;”. For example, the “;” could be replaced by another
special character like “#”.

Then you must either:
v Change the delimiter from the tools—>tools settings menu with script tab

selected in the Command Center and then run the script; Or,
v From the Command Line Processor, use:

db2 -td <delimiter> -vf <script>

where the delimiter is the alternative end-of-statement character and the
<script> is the modified script with the new delimiter in it.

Trigger Dependencies
All dependencies of a trigger on some other object are recorded in the
SYSCAT.TRIGDEP catalog. A trigger can depend on many objects. These
objects and the dependent trigger are presented in detail in the SQL Reference
discussion on the DROP statement.

If one of these objects is dropped, the trigger becomes inoperative but its
definition is retained in the catalog. To revalidate this trigger, you must
retrieve its definition from the catalog and submit a new CREATE TRIGGER
statement.

If a trigger is dropped, its description is deleted from the SYSCAT.TRIGGERS
catalog view and all of its dependencies are deleted from the
SYSCAT.TRIGDEP catalog view. All packages having UPDATE, INSERT, or
DELETE dependencies on the trigger are invalidated.

If the dependent object is a view and it is made inoperative, the trigger is also
marked inoperative. Any packages dependent on triggers that have been
marked inoperative are invalidated. (For more information, see “Statement
Dependencies When Changing Objects” on page 215.)

Creating a User-Defined Function (UDF) or Method

User-defined functions (UDFs) extend and add to the support provided by
built-in functions of SQL, and can be used wherever a built-in function can be
used. You can create UDFs as either:
v An external function, which is written in a programming language
v A sourced function, whose implementation is inherited from some other

existing function

There are three types of UDFs:

138 Administration Guide: Implementation

|
|
|

|

|
|

|

|

|
|

Scalar Returns a single-valued answer each time it is called. For example, the
built-in function SUBSTR() is a scalar function. Scalar UDFs can be
either external or sourced.

Column
Returns a single-valued answer from a set of like values (a column). It
is also sometimes called an aggregating function in DB2. An example
of a column function is the built-in function AVG(). An external
column UDF cannot be defined to DB2, but a column UDF which is
sourced upon one of the built-in column functions can be defined.
This is useful for distinct types.

For example, if there is a distinct type SHOESIZE defined with base
type INTEGER, a UDF AVG(SHOESIZE) which is sourced on the
built-in function AVG(INTEGER) could be defined, and it would be a
column function.

Table Returns a table to the SQL statement which references it. Table
functions may only be referenced in the FROM clause of a SELECT
statement. Such a function can be used to apply SQL language
processing power to data which is not DB2 data, or to convert such
data into a DB2 table.

For example, table functions can take a file and convert it to a table,
tabularize sample data from the World Wide Web, or access a Lotus
Notes database and return information such as the date, sender, and
text of mail messages. This information can be joined with other tables
in the database.

A table function can only be an external function. It cannot be a
sourced function.

Information about existing UDFs is recorded in the SYSCAT.FUNCTIONS and
SYSCAT.FUNCPARMS catalog views. The system catalog does not contain the
executable code for the UDF. (Therefore, when creating your backup and
recovery plans you should consider how you will manage your UDF
executables.)

Statistics about the performance of UDFs are important when compiling SQL
statements. For information about how to update UDF statistics in the system
catalog, refer to “Updating Statistics for User-Defined Functions” in
Administration Guide: Performance.

For details on using the CREATE FUNCTION statement to write a UDF to
suit your specific application, refer to the Application Development Guide. Refer
to the SQL Reference for details on UDF syntax.

Chapter 3. Creating a Database 139

Creating a Function Mapping
In a federated database, create a function mapping when you need to map a
local function or a local function template (described in “Creating a Function
Template”) with a function at one or more data sources. Default function
mappings are provided for many data source functions.

Function mappings are useful when:
v New, built-in functions become available at a data source.
v You need to map a user-defined function at a data source to a local

function.
v An application requires different default behavior than that provided by the

default mapping.

Function mappings defined with CREATE FUNCTION MAPPING statements
are stored in the federated database.

Functions (or function templates) must have the same number of input
parameters as the data source function. Additionally, the data types of the
input parameters on the federated side should be compatible with the data
types of the input parameters on the data source side. These requirements
apply to returned values as well.

Use the CREATE FUNCTION MAPPING statement to create a function
mapping. For example, to create a function mapping between an Oracle
AVGNEW function and a DB2 equivalent at server ORACLE1:

CREATE FUNCTION MAPPING ORAVGNEW FOR SYSIBM.AVG(INT) SERVER ORACLE1
OPTIONS (REMOTE_NAME 'AVGNEW')

You must hold one of the SYSADM or DBADM authorities at the federated
database to use this statement. Function mapping attributes are stored in
SYSCAT.FUNCMAPPINGS.

The federated server will not bind input host variables or retrieve results of
LOB, LONG VARCHAR/VARGRAPHIC, DATALINK, distinct and structured
types. No function mapping can be created when an input parameter or the
returned value includes one of these types.

For additional details on using and creating function mappings, refer to the
Application Development Guide. Refer to the SQL Reference for details on
CREATE FUNCTION MAPPING syntax.

Creating a Function Template
In a federated system, function templates provide “anchors” for function
mappings. They are used to enable the mapping of a data source function

140 Administration Guide: Implementation

when a corresponding DB2 function does not exist at the federated server. A
function mapping requires the presence of a function template or an existing
similar function at DB2.

The template is just a function shell: name, input parameters, and the return
value. There is no local executable for the function.

Because there is no local executable for the function, it is possible that a call to
the function template will fail even though the function is available at the
data source. For example, consider the query:

SELECT myfunc(C1)
FROM nick1
WHERE C2 < 'A'

If DB2 and the data source containing the object referenced by nick1 do not
have the same collating sequence, the query will fail because the comparison
must be done at DB2 while the function is at the data source. If the collating
sequences were the same, the comparison operation could be done at the data
source that has the underlying function referenced by myfunc.

Functions (or function templates) must have the same number of input
parameters as the data source function. The data types of the input
parameters on the federated side should be compatible with the data types of
the input parameters on the data source side. These requirements apply to
returned values as well.

You create function templates using the CREATE FUNCTION statement with
the AS TEMPLATE keyword. After the template is created, you map the
template to the data source using the CREATE FUNCTION MAPPING
statement.

For example, to create a function template and a function mapping for
function MYS1FUNC on server S1:

CREATE FUNCTION MYFUNC(INT) RETURNS INT AS TEMPLATE

CREATE FUNCTION MAPPING S1_MYFUNC FOR MYFUNC(INT) SERVER S1 OPTIONS
(REMOTE_NAME 'MYS1FUNC')

For details on using and creating function templates, refer to the Application
Development Guide. Refer to the SQL Reference for details on CREATE
FUNCTION syntax.

Chapter 3. Creating a Database 141

Creating a User-Defined Type (UDT)

A user-defined type (UDT) is a named data type that is created in the
database by the user. A UDT can be a distinct type which shares a common
representation with a built-in data type or a structured type which has a
sequence of named attributes that each have a type. A structured type can be
a subtype of another structured type (called a supertype), defining a type
hierarchy.

UDTs support strong typing, which means that even though they share the
same representation as other types, values of a given UDT are considered to
be compatible only with values of the same UDT or UDTs in the same type
hierarchy.

The SYSCAT.DATATYPES catalog view allows you to see the UDTs that have
been defined for your database. This catalog view also shows you the data
types defined by the database manager when the database was created. For a
complete list of all data types, refer to the SQL Reference.

A UDT cannot be used as an argument for most of the system-provided, or
built-in, functions. User-defined functions must be provided to enable these
and other operations.

You can drop a UDT only if:
v It is not used in a column definition for an existing table.
v It is not used as the type of an existing typed table or typed view.
v It is not used in a UDF function that cannot be dropped. A UDF cannot be

dropped if a view, trigger, table check constraint, or another UDF is
dependent on it.

When a UDT is dropped, any functions that are dependent on it are also
dropped.

Creating a User-Defined Distinct Type
A user-defined distinct type is a data type derived from an existing type, such
as an integer, decimal, or character type. You can create a distinct type by
using the CREATE DISTINCT TYPE statement.

The following SQL statement creates the distinct type t_educ as a smallint:
CREATE DISTINCT TYPE T_EDUC AS SMALLINT WITH COMPARISONS

Instances of the same distinct type can be compared to each other, if the
WITH COMPARISONS clause is specified on the CREATE DISTINCT TYPE
statement (as in the example). The WITH COMPARISONS clause cannot be
specified if the source data type is a large object, a DATALINK, LONG
VARCHAR, or LONG VARGRAPHIC type.

142 Administration Guide: Implementation

Instances of distinct types cannot be used as arguments of functions or
operands of operations that were defined on the source type. Similarly, the
source type cannot be used in arguments or operands that were defined to
use a distinct type.

After you have created a distinct type, you can use it to define columns in a
CREATE TABLE statement:

CREATE TABLE EMPLOYEE
(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3),
PHONENO CHAR(4),
PHOTO BLOB(10M) NOT NULL,
EDLEVEL T_EDUC)

IN RESOURCE

Creating the distinct type also generates support to cast between the distinct
type and the source type. Hence, a value of type T_EDUC can be cast to a
SMALLINT value and the SMALLINT value can be cast to a T_EDUC value.

Refer to the SQL Reference for complete syntax information on the CREATE
DISTINCT TYPE statement. Refer to the Application Development Guide for
information about creating and using a distinct type.

You can transform UDTs into base data types, and base data types into UDTs,
using transformations. Creation of a transform function is through a CREATE
TRANSFORM statement.

Support for transforms is also found through the CREATE METHOD
statement and extensions to the CREATE FUNCTION statement. Refer to the
SQL Reference for details on this support.

Creating a User-Defined Structured Type
A structured type is a user-defined type that contains one or more attributes,
each of which has a name and a data type of its own. A structured type can
serve as the type of a table, in which each column of the table derives its
name and data type from one of the attributes of the structured type. Refer to
the Application Development Guide for all the information you need on
structured types.

Creating a Type Mapping
In a federated system, a type mapping lets you map specific data types in
data source tables and views to DB2 distinct data types. A type mapping can
apply to one data source or a range (type, version) of data sources.

Chapter 3. Creating a Database 143

Default data type mappings are provided for built-in data source types and
built-in DB2 types. New data type mappings (that you create) will be listed in
the SYSCAT.TYPEMAPPINGS view.

You create type mappings with the CREATE TYPE MAPPING statement. You
must hold one of the SYSADM or DBADM authorities at the federated
database to use this statement.

An example of a type mapping statement is:
CREATE TYPE MAPPING MY_ORACLE_DEC FROM SYSIBM.DECIMAL(10,2)
TO SERVER ORACLE1 TYPE NUMBER([10..38],2)

You cannot create a type mapping for a LOB, LONG
VARCHAR/VARGRAPHIC, DATALINK, structured or distinct type.

For details on using and creating type mappings, refer to the Application
Development Guide. Refer to the SQL Reference for details on CREATE TYPE
MAPPING syntax.

Creating a View

Views are derived from one or more base tables, nicknames, or views, and can
be used interchangeably with base tables when retrieving data. When changes
are made to the data shown in a view, the data is changed in the table itself.

A view can be created to limit access to sensitive data, while allowing more
general access to other data.

When inserting into a view where the SELECT-list of the view definition
directly or indirectly includes the name of an identity column of a base table,
the same rules apply as if the INSERT statement directly referenced the
identity column of the base table. Refer to the SQL Reference for more
information on the INSERT statement.

In addition to using views as described above, a view can also be used to:
v Alter a table without affecting application programs. This can happen by

creating a view based on an underlying table. Applications that use the
underlying table are not affected by the creation of the new view. New
applications can use the created view for different purposes than those
applications that use the underlying table.

v Sum the values in a column, select the maximum values, or average the
values.

v Provide access to information in one or more data sources. You can
reference nicknames within the CREATE VIEW statement and create

144 Administration Guide: Implementation

multi-location/global views (the view could join information in multiple
data sources located on different systems).
When you create a view that references nicknames using standard CREATE
VIEW syntax, you will see a warning alerting you to the fact that the
authentication ID of view users will be used to access the underlying object
or objects at data sources instead of the view creator authentication ID. Use
the FEDERATED keyword to suppress this warning.

An alternative to creating a view is to use a nested or common table
expression to reduce catalog lookup and improve performance. Refer to the
SQL Reference for more information about common table expressions.

To create a view using the Control Center:

1. Expand the object tree until you see the Views folder.

2. Right-click the Views folder, and select Create from the pop-up menu.

3. Complete the information, and click Ok.

To create a view using the command line, enter:
CREATE VIEW <name> (<column>, <column>, <column>)

SELECT <column_names> FROM <table_name>
WITH CHECK OPTION

For example, the EMPLOYEE table may have salary information in it, which
should not be made available to everyone. The employee’s phone number,
however, should be generally accessible. In this case, a view could be created
from the LASTNAME and PHONENO columns only. Access to the view
could be granted to PUBLIC, while access to the entire EMPLOYEE table
could be restricted to those who have the authorization to see salary
information. For information about read-only views, refer to the SQL Reference
manual.

With a view, you can make a subset of table data available to an application
program and validate data that is to be inserted or updated. A view can have
column names that are different from the names of corresponding columns in
the original tables.

The use of views provides flexibility in the way your programs and end-user
queries can look at the table data.

The following SQL statement creates a view on the EMPLOYEE table that lists
all employees in Department A00 with their employee and telephone
numbers:

Chapter 3. Creating a Database 145

CREATE VIEW EMP_VIEW (DA00NAME, DA00NUM, PHONENO)
AS SELECT LASTNAME, EMPNO, PHONENO FROM EMPLOYEE
WHERE WORKDEPT = 'A00'
WITH CHECK OPTION

The first line of this statement names the view and defines its columns. The
name EMP_VIEW must be unique within its schema in SYSCAT.TABLES. The
view name appears as a table name although it contains no data. The view
will have three columns called DA00NAME, DA00NUM, and PHONENO,
which correspond to the columns LASTNAME, EMPNO, and PHONENO
from the EMPLOYEE table. The column names listed apply one-to-one to the
select list of the SELECT statement. If column names are not specified, the
view uses the same names as the columns of the result table of the SELECT
statement.

The second line is a SELECT statement that describes which values are to be
selected from the database. It may include the clauses ALL, DISTINCT,
FROM, WHERE, GROUP BY, and HAVING. The name or names of the data
objects from which to select columns for the view must follow the FROM
clause.

The WITH CHECK OPTION clause indicates that any updated or inserted
row to the view must be checked against the view definition, and rejected if it
does not conform. This enhances data integrity but requires additional
processing. If this clause is omitted, inserts and updates are not checked
against the view definition.

The following SQL statement creates the same view on the EMPLOYEE table
using the SELECT AS clause:

CREATE VIEW EMP_VIEW
SELECT LASTNAME AS DA00NAME,

EMPNO AS DA00NUM,
PHONENO

FROM EMPLOYEE
WHERE WORKDEPT = 'A00'
WITH CHECK OPTION

You can create a view that uses a UDF in its definition. However, to update
this view so that it contains the latest functions, you must drop it and then
re-create it. If a view is dependent on a UDF, that function cannot be dropped.

The following SQL statement creates a view with a function in its definition:
CREATE VIEW EMPLOYEE_PENSION (NAME, PENSION)

AS SELECT NAME, PENSION(HIREDATE,BIRTHDATE,SALARY,BONUS)
FROM EMPLOYEE

146 Administration Guide: Implementation

The UDF function PENSION calculates the current pension an employee is
eligible to receive, based on a formula involving their HIREDATE,
BIRTHDATE, SALARY, and BONUS.

Creating a Typed View
You can create a typed view using the CREATE VIEW statement. Refer to the
Application Development Guide for all the information you need on typed views.

Creating a Summary Table

A summary table is a table whose definition is based on the result of a query.
As such, the summary table typically contains pre-computed results based on
the data existing in the table or tables that its definition is based on. If the
SQL compiler determines that a query will run more efficiently against a
summary table than the base table, the query executes against the summary
table, and you obtain the result faster than you otherwise would.

The creation of a summary table with the replication option can be used to
replicate tables across all nodes in a partitioned database environment. These
are known as “replicated summary tables”. For more overview information on
such tables, refer to Administration Guide: Planning.

Note: Summary tables are not used with static SQL or nicknames.

In general a summary table, or a replicated summary table, is used for
optimization of a query if the isolation level of the summary table, or the
replicated summary table, is higher than or equal to the isolation level of the
query. For example, if a query is running under the cursor stability (CS)
isolation level, only summary tables, and replicated summary tables, that are
defined under CS or higher isolation levels are used for optimization.

To create a summary table, you use the CREATE SUMMARY TABLE
statement with the AS fullselect clause and the IMMEDIATE or REFRESH
DEFERRED options.

You have the option of uniquely identifying the names of the columns of the
summary table. The list of column names must contain as many names as
there are columns in the result table of the full select. A list of column names
must be given if the result table of the full select has duplicate column names
or has an unnamed column. An unnamed column is derived from a constant,
function, expression, or set operation that is not named using the AS clause of
the select list. If a list of column names is not specified, the columns of the
table inherit the names of the columns of the result set of the full select.

When you create the summary table, you have the option of specifying
whether the summary table is refreshed automatically when the base table is

Chapter 3. Creating a Database 147

changed, or whether it is refreshed by using the REFRESH TABLE statement.
To have the summary table refreshed automatically when changes are made to
the base table or tables, specify the REFRESH IMMEDIATE keyword. An
immediate refresh is useful when:
v You have queries that take a long time to complete when run against a base

table
v The base table or tables are infrequently changed
v The refresh is not expensive.

The summary table, in this situation, can provide pre-computed results. If you
want the refresh of the summary table to be deferred, specify the REFRESH
DEFERRED keyword. Summary tables specified with REFRESH DEFERRED
will not reflect changes to the underlying base tables. You should use
summary tables where this is not a requirement. For example, if you run DSS
queries, you would use the summary table to contain legacy data.

A summary table defined with REFRESH DEFERRED may be used in place of
a query when it:
v Conforms to the restrictions for a fullselect of a refresh immediate summary

table, except:
– The SELECT list is not required to include COUNT(*) or COUNT_BIG(*)
– The SELECT list can include MAX and MIN column functions
– A HAVING clause is allowed.

The SQL special register CURRENT REFRESH AGE SQL is set to ANY or has
a value of 99999999999999. The collection of nines is the maximum value
allowed in this special register which is a timestamp duration value with a
data type of DECIMAL(20,6).

Note: Summary tables defined with REFRESH DEFERRED are not used to
optimize static SQL.

You use the CURRENT REFRESH AGE special register to specify the amount
of time that the summary table with deferred refresh can be used for a
dynamic query before it must be refreshed. To set the value of the CURRENT
REFRESH AGE special register, you can use the SET CURRENT REFRESH
AGE statement. For more information about the CURRENT REFRESH AGE
special register and the SET CURRENT REFRESH AGE statement, refer to the
SQL Reference.

Summary tables defined with REFRESH IMMEDIATE are applicable to both
static and dynamic queries and do not need to use the CURRENT REFRESH
AGE special register.

148 Administration Guide: Implementation

Note: Setting the CURRENT REFRESH AGE special register to a value other
than zero should be done with caution. By allowing a summary table
that may not represent the values of the underlying base table to be
used to optimize the processing of the query, the result of the query
may not accurately represent the data in the underlying table. This may
be reasonable when you know the underlying data has not changed, or
you are willing to accept the degree of error in the results based on
your knowledge of the data.

With activity affecting the source data, a summary table over time will no
longer contain accurate data. You will need to use the REFRESH TABLE
statement. Refer to the SQL Reference for more information.

If you want to create a new base table that is based on any valid fullselect,
specify the DEFINITION ONLY keyword when you create the table. When the
create table operation completes, the new table is not treated as a summary
table, but rather as a base table. For example, you can create the exception
tables used in LOAD and SET INTEGRITY as follows:

CREATE TABLE XT AS
(SELECT T.*, CURRENT TIMESTAMP AS TIMESTAMP,CLOB(",32K)
AS MSG FROM T) DEFINITION ONLY

Here are some of the key restrictions regarding summary tables:
1. You cannot alter a summary table.
2. You cannot alter the length of a column for a base table if that table has a

summary table.
3. You cannot import data into a summary table.
4. You cannot create a unique index on a summary table.
5. You cannot create a summary table based on the result of a query that

references one or more nicknames.

Refer to the SQL Reference for a complete statement of summary table
restrictions.

Creating an Alias

An alias is an indirect method of referencing a table, nickname, or view, so
that an SQL statement can be independent of the qualified name of that table
or view. Only the alias definition must be changed if the table or view name
changes. An alias can be created on another alias. An alias can be used in a
view or trigger definition and in any SQL statement, except for table
check-constraint definitions, in which an existing table or view name can be
referenced.

Chapter 3. Creating a Database 149

An alias name can be used wherever an existing table name can be used, and
can refer to another alias if no circular or repetitive references are made along
the chain of aliases.

The alias name cannot be the same as an existing table, view, or alias, and can
only refer to a table within the same database. The name of a table or view
used in a CREATE TABLE or CREATE VIEW statement cannot be the same as
an alias name in the same schema.

You do not require special authority to create an alias, unless the alias is in a
schema other than the one owned by your current authorization ID, in which
case DBADM authority is required.

An alias can be defined for a table, view, or alias that does not exist at the
time of definition. However, it must exist when an SQL statement containing
the alias is compiled.

When an alias, or the object to which an alias refers, is dropped, all packages
dependent on the alias are marked invalid and all views and triggers
dependent on the alias are marked inoperative.

To create an alias using the Control Center:

1. Expand the object tree until you see the Aliases folder.

2. Right-click the Aliases folder, and select Create from the pop-up menu.

3. Complete the information, and click Ok.

To create an alias using the command line, enter:
CREATE ALIAS <alias_name> FOR <table_name>

The alias is replaced at statement compilation time by the table or view name.
If the alias or alias chain cannot be resolved to a table or view name, an error
results. For example, if WORKERS is an alias for EMPLOYEE, then at
compilation time:

SELECT * FROM WORKERS

becomes in effect
SELECT * FROM EMPLOYEE

The following SQL statement creates an alias WORKERS for the EMPLOYEE
table:

CREATE ALIAS WORKERS FOR EMPLOYEE

150 Administration Guide: Implementation

Note: DB2 for MVS/ESA employs two distinct concepts of aliases: ALIAS and
SYNONYM. These two concepts differ from DB2 Universal Database as
follows:
v ALIASes in DB2 for MVS/ESA:

– Require their creator to have special authority or privilege
– Cannot reference other aliases.

v SYNONYMs in DB2 for MVS/ESA:
– Can only be used by their creator
– Are always unqualified
– Are dropped when a referenced table is dropped
– Do not share namespace with tables or views.

Creating a Wrapper

In a federated database, the CREATE WRAPPER statement registers a
wrapper. The statement defines the mechanism by which a federated server
can interact with a certain category of data source.

Specific libraries must be used for specific data source types, versions,
communication protocols, and operating systems. For example, AS/400 and
DB2 for OS/390 data sources are accessed using the libdrda.dll library for
federated databases operating on Windows NT operating systems using APPC
communications.

You must have SYSADM or DBADM authority at the federated database to
use the CREATE WRAPPER statement.

Creating a wrapper from the Control Center or from the command line
processor registers it to the federated database.

To create a wrapper using the Control Center:

1. Expand the object tree until you see the Federated Database Objects folder.

2. Right-click the Federated Database Objects folder, and select Create wrapper
from the pop-up menu.

3. Complete the information, and click Ok.

To create a wrapper using the command line, enter:
CREATE WRAPPER <wrapper_name> LIBRARY '<library_name>'

The following SQL statement registers the wrapper ORACLE8 on a Windows
NT operating system:

Chapter 3. Creating a Database 151

CREATE WRAPPER ORACLE8 LIBRARY 'libnet8.dll'

For details on using the CREATE WRAPPER statement, refer to the SQL
Reference.

Creating a Server

In a federated database, create servers to define data sources to DB2 and
describe their characteristics: name, wrapper, type, version, location, and
options. This information is used to map nicknames to specific data
management systems and to provide information to the DB2 optimizer. Server
information is located in the SYSCAT.SERVERS and
SYSCAT.SERVEROPTIONS catalog views.

Note: In this section, servers represent data sources, not DRDA servers or
DB2 servers. To access other data sources (for example, Oracle), DB2
Connect is required.

You can create a server object only if a wrapper has been created.

You must have SYSADM or DBADM authority at the federated database to
use this statement.

You can create user mappings to manage differences in authentication
processing between DB2 and data source servers. User mappings are
discussed in detail in “User Mappings” on page 238.

When a server is dropped, all objects dependent on that server are dropped
(such as user mappings, nicknames, function mappings, type mappings, and
plans).

Provide server options when creating a server. These options contain
necessary details about the server (such as the node name). Server options can
also set specific performance and security values.

You can create servers from the Control Center or the command line
processor.

To create a server using the Control Center:

1. Expand the object tree until you see the Servers folder under the Federated
Database Objects folder.

2. Right-click the Servers folder, and select Create server from the pop-up menu.

3. Complete the information, and click Ok.

152 Administration Guide: Implementation

|

|

To create a server using the command line, enter:
CREATE SERVER <server_name> TYPE <server_type>

VERSION <server_version> WRAPPER <wrapper_name>
OPTIONS (<server_option_name> <string_constant>)

The following sample SQL statement creates the Oracle server ORA8:
CREATE SERVER ORA8 TYPE ORACLE VERSION 8 WRAPPER ORACLE8 OPTIONS
(NODE 'ONODE')

The following sample SQL statement creates the DB2 server DB2TEST:
CREATE SERVER DB2TEST TYPE DB2 VERSION 6.1 WRAPPER DB2UDB OPTIONS
(NODE 'DB2TEST', DBNAME 'TEST1')

The definition of NODE, in SERVER SQL statements, varies depending on the
data source. If the data source is a DB2 DBMS, the value refers to an instance
of DB2 that has one or more databases. In the previous example, note that the
DBNAME option specifies the database name. If the data source is a DB2 for
OS/390 DBMS, the value refers to the LOCATION name of the DB2 for
OS/390 system. If the data source is an Oracle DBMS, the DBNAME option is
not needed because an Oracle instance contains only one database.

For additional details about the CREATE SERVER statement syntax, refer to
the SQL Reference. For additional details about using the CREATE SERVER
statement, refer to the Installation and Configuration Supplement.

Using Server Options to Help Define Data Sources and Facilitate
Authentication Processing

You can set variables called server options to values that affect how a federated
server accesses data sources. This section:
v Explains the purpose of server options
v Describes what SQL statements you use to specify server options
v Shows the server options and their settings

Purposes of Server Options
In general, you use server options to:
v Supply and update information about data sources. A server reference

includes both basic information about a data source—for example, its
name—and information that can change over time. Some of the changeable
information is conveyed by values assigned to server options. For example,
the value assigned to the cpu_ratio option indicates whether the data
source’s CPU is faster or slower than the DB2 system CPU. If the DB2
system gets one or more processor upgrades, this value should change.

v Facilitate authentication. You can set some server options to ensure that
user IDs and passwords are sent to the data source in the proper case. For
example, you can set the fold_id option so that before the federated server

Chapter 3. Creating a Database 153

|

sends a user ID to a data source, the federated server transforms the name
to the case (upper or lower) that the data source requires. Alternatively, if
you define the user ID to the federated server in the required case, you can
set the fold_id option to prevent the server from trying to change the case
and consuming overhead in the process.

v Optimize queries. Some server options and their values facilitate
optimization. For example: in the CREATE SERVER statement, you can
specify certain performance statistics as option values. Specifically, you can
set the cpu_ratio option to a value that indicates the relative speeds of the
data source’s and federated server’s CPUs. And you can set the io_ratio
option to a value that indicates the relative rates of the I/O devices of the
data source and federated server. When you run CREATE SERVER, these
statistics are added to the catalog view SYSCAT.SERVEROPTIONS, and the
optimizer uses them in developing its access plan for the data source. If a
statistic changes (as might happen, for instance, if the data source CPU is
upgraded), you can use the ALTER SERVER statement to update
SYSCAT.SERVEROPTIONS with this change. The optimizer then uses your
update in developing its next access plan for the data source.

SQL for Server Options
There are three SQL statements in which you can assign values to server
options: CREATE SERVER, ALTER SERVER, and SET SERVER OPTION.

Use the CREATE SERVER statement to set an option to a value that persists
indefinitely over time for multiple connections to a data source. With this
statement, you can set an option to a value other than the default or, if an
option has no default value, you can set it to an initial value.

Use the ALTER SERVER statement if, after setting a server option to a value
with the CREATE SERVER statement, you want to set it to a different value
that persists over multiple connections.

Use the SET SERVER OPTION statement to change server option values
temporarily for the duration of a single connection to a database. SET
SERVER OPTION statements must be issued first within the first unit of work
following the connection to the data source.

For example, to temporarily enable the use of plan hints for the Oracle server
ORASEB1, issue the statement:

SET SERVER OPTION plan_hints TO 'Y' FOR SERVER ORASEB1

Server Options and Their Settings
The table below describes the server options and the values that you can set
them to. Unless otherwise stated, all server option values must be enclosed in
single quotes.

154 Administration Guide: Implementation

Table 2. Server Options and Their Settings

Option Valid Settings Default
Setting

collating_sequence Specifies whether the data source uses the same default
collating sequence as the federated database, based on the
code set and the country information. If a data source has a
collating sequence that differs from DB2’s collating sequence,
most operations depending on DB2’s collating sequence
cannot be remotely evaluated at a data source. An example is
executing MAX column functions against a nickname
character column at a data source with a different collating
sequence. Because results might differ if the MAX function is
evaluated at the remote data source, DB2 will perform the
aggregate operation and the MAX function locally.

If your query contains an equal sign, it is possible to
push-down that portion of the query even if the collating
sequences are different (set to ’N’). For example, the predicate
C1 = ’A’ could be pushed-down to a data source. Of course,
such queries cannot be pushed-down when the collating
sequence at the data source is case-insensitive. When a data
source is case-insensitive, the results from C1= ’A’ and C1 =
’a’ are the same, which is not acceptable in a case-sensitive
environment (DB2).

Administrators can create federated databases with a
particular collating sequence that matches the data source
collating sequence. This approach may speed performance if
all data sources use the same collating sequence or if most or
all column functions are directed against data sources that use
the same collating sequence.

’Y’ Data source’s collating sequence is the same as
federated database’s.

’N’ Data source’s collating sequence is not the same as
federated database’s.

’I’ Data source’s collating sequence is different from
federated database’s and is case-insensitive (for
example, ’TOLLESON’ and ’TolLESon’ are considered
equal).

’N’

comm_rate Specifies the communication rate between a federated server
and its associated data sources. Expressed in megabytes per
second.

’2.0’

Chapter 3. Creating a Database 155

Table 2. Server Options and Their Settings (continued)

Option Valid Settings Default
Setting

connectstring Specifies initialization properties needed to connect to an OLE
DB provider. For the complete syntax and semantics of the
connection string, see the ″Data Link API of the OLE DB Core
Components″ in the Microsoft OLE DB 2.0 Programmer’s
Reference and Data Access SDK, Microsoft Press, 1998.

None

cpu_ratio Indicates how much faster or slower a data source’s CPU runs
than the federated server’s CPU. A value of “1.0” indicates an
equal speed between the data source’s CPU and the federated
server’s CPU. A value <1.0 indicates a slower data source
CPU. A value >1.0 indicates a faster data source CPU.

’1.0’

dbname Name of the data source database that you want the federated
server to access. Required for DB2 family data sources; does
not apply to Oracle** data sources.

None.

fold_id (See notes 1 and 4
at the end of this table.)

Applies to user IDs that the federated server sends to data
sources for authentication. Valid values are:

’U’ The federated server folds the user ID to uppercase
before sending it to the data source. This is a logical
choice for DB2 Family and Oracle** data sources (See
note 2 at end of this table.)

’N’ The federated server does nothing to the user ID
before sending it to the data source. (See note 2 at
end of this table.)

’L’ The federated server folds the user ID to lowercase
before sending it to the data source.

If none of these settings are used, the federated server tries to
send the user ID to the data source in uppercase. If the user
ID fails, the server tries sending it in lowercase.

None.

fold_pw (See notes 1, 3
and 4 at the end of this
table.)

Applies to passwords that the federated server sends to data
sources for authentication. Valid values are:

’U’ The federated server folds the password to uppercase
before sending it to the data source. This is a logical
choice for DB2 Family and Oracle** data sources.

’N’ The federated server does nothing to the password
before sending it to the data source.

’L’ The federated server folds the password to lowercase
before sending it to the data source.

If none of these settings are used, the federated server tries to
send the password to the data source in uppercase. If the
password fails, the server tries sending it in lowercase.

None.

156 Administration Guide: Implementation

||
|
|
|
|

|

Table 2. Server Options and Their Settings (continued)

Option Valid Settings Default
Setting

io_ratio Denotes how much faster or slower a data source’s I/O
system runs than the federated server’s I/O system. A value
of “1.0” indicates an equal speed between the data source’s
CPU and the federated server’s CPU. A value <1.0 indicates a
slower data source CPU. A value >1.0 indicates a faster data
source CPU.

’1.0’

node Name by which a data source is defined as an instance to its
RDBMS. Required for all data sources.

For a DB2 family data source, this name is the node specified
in the federated database’s DB2 node directory. To view this
directory, issue the db2 list node directory command.

For an Oracle** data source, this name is the server name
specified in the Oracle** tnsnames.ora file. To access this
name on the Windows NT platform, specify the View
Configuration Information option of the Oracle** SQL Net
Easy Configuration tool.

None.

password Specifies whether passwords are sent to a data source.

’Y’ Passwords are always sent to the data source and
validated. This is the default value.

’N’ Passwords are not sent to the data source (regardless
of any user mappings) and not validated.

’ENCRYPTION’
Passwords are always sent to the data source in
encrypted form and validated. Valid only for DB2
Family data sources that support encrypted
passwords.

’Y’

plan_hints Specifies whether plan hints are to be enabled. Plan hints are
statement fragments that provide extra information for data
source optimizers. This information can, for certain query
types, improve query performance. The plan hints can help
the data source optimizer decide whether to use an index,
which index to use, or which table join sequence to use.

’Y’ Plan hints are to be enabled at the data source if the
data source supports plan hints.

’N’ Plan hints are not to be enabled at the data source.

’N’

Chapter 3. Creating a Database 157

||
|
|
|
|
|

|

Table 2. Server Options and Their Settings (continued)

Option Valid Settings Default
Setting

pushdown
’Y’ DB2 will consider letting the data source evaluate

operations.

’N’ DB2 will retrieve only columns from the remote data
source and will not let the data source evaluate other
operations, such as joins.

’Y’

varchar_no_trailing_blanks Specifies if this data source uses non-blank padded
VARCHAR comparison semantics. For varying-length
character strings that contain no trailing blanks, some DBMS’
s non-blank-padded comparison semantics return the same
results as DB2’s comparison semantics. If you are certain that
all VARCHAR table/view columns at a data source contain no
trailing blanks, consider setting this server option to ’Y’ for a
data source. This option is often used with Oracle** data
sources. Ensure that you consider all objects that can
potentially have nicknames (including views).

’Y’ This data source has non-blank-padded comparison
semantics similar to DB2’s.

’N’ This data source does not have the same
non-blank-padded comparison semantics as DB2’s.

’N’

Notes on this table:
1. This field is applied regardless of the value specified for authentication.
2. Because DB2 stores user IDs in uppercase, the values ‘N’ and ‘U’ are

logically equivalent to each other.
3. The setting for fold_pw has no effect when the setting for password is ‘N’.

Because no password is sent, case cannot be a factor.
4. Avoid null settings for either of these options. A null setting may seem

attractive because DB2 will make multiple attempts to resolve user IDs
and passwords; however, performance might suffer (it is possible that DB2
will send a user ID and password four times before successfully passing
data source authentication).

Using Pass-Through Sessions with Servers
Pass-through sessions let applications communicate directly with a server
using the server’s native client access method and native SQL dialect.

Pass-through sessions are useful when:
v Applications must create objects at the data source or perform INSERT,

UPDATE, or DELETE operations

158 Administration Guide: Implementation

v DB2 does not support a unique data source operation

When referencing objects in a pass-through session, use the true name of the
object (not the nickname).

Use the SET PASSTHRU statement to start a pass-through session and access
a server directly. This statement must be issued dynamically. An example of
this statement is:

SET PASSTHRU BACKEND

which opens a pass-through session to the data source BACKEND.

For more information on SET PASSTHRU and SQL processing in pass-through
sessions, see the SQL Reference.

Creating a Nickname

In a federated database, nicknames are identifiers for data source tables,
aliases, and views. Distributed requests typically reference nicknames, not
data source tables or views.

Nicknames are part of the means by which DB2 provides location
transparency. Nicknames rely on server definitions for data source location
information to find and efficiently access data sources. An ALTER SERVER
statement can, for example, transparently update server performance data and
version information for all users and applications without requiring new
nicknames or changes to application code.

Nicknames can be created in the Control Center or from the command line
processor. You can define more than one nickname for the same data source
table or view.

Nicknames cannot be used in static SQL statements.

Before creating a nickname, run the equivalent of the RUNSTATS command at
the data source and update statistics for data source objects. Statistical
information is gathered from data sources when a nickname is created and
stored in the federated database catalog. This catalog data includes table and
column definitions, and, if available, index definitions and statistics.

The following SQL statement creates the nickname CUSTOMER:
CREATE NICKNAME CUSTOMER for OS390A.SHAWNB.CUSTLIST

Chapter 3. Creating a Database 159

You must hold one of the SYSADM or DBADM authorities, or, you must have
either the database privilege IMPLICIT_SCHEMA or the schema privilege
CREATEIN (for the current schema) at the federated database to use this
statement.

For additional details on using the CREATE NICKNAME statement, refer to
the SQL Reference.

Referencing Nickname and Data Source Objects
References to data source objects typically use the defined nickname. The one
exception is a reference within a pass-through session (see “Using
Pass-Through Sessions with Servers” on page 158 for more information). For
example, if you define the nickname DEPT for the data source table
DB2MVS1.PERSON.DEPT, the statement SELECT * FROM DEPT is allowed;
the statement SELECT * FROM DB2MVS1.PERSON.DEPT is not allowed.

Working with Nickname and Data Source Objects
Most utility commands (LOAD, IMPORT, EXPORT, REORGCHK,
REORGANIZE TABLE) do not support nicknames.

COMMENT ON is supported; it updates the system catalog at the federated
database.

Insert, update, and delete operations are not supported against nicknames.

Identifying Existing Nicknames and Data Sources
After you have created several nicknames, you might want to use the
following information to identify to which data source a given nickname
corresponds or identify all nicknames at a given data source.

Identifying a Nickname and Its Data Source
This example assumes that you know the nickname (PAYROLL) and who
created it (ACCTG), but need additional information about the data source.
Use the following SQL statement to first obtain information about what
PAYROLL is known as at its data source (SERVER).
select option, setting

from syscat.taboptions
where tabname = 'PAYROLL'

and tabschema = 'ACCTG'
and option in ('SERVER','REMOTE_SCHEMA','REMOTE_TABLE');

The answer set from this statement is DB2_MVS, FINANCE, DEPTJ35_PAYROLL.
You now know that PAYROLL is the nickname for the table called
DEPTJ35_PAYROLL owned by FINANCE at the server named DB2_MVS. You
can use this information in a subsequent SELECT statement:

160 Administration Guide: Implementation

|
|

|

select option,setting
from syscat.serveroptions
where servername = 'DB2_MVS'

and option in ('NODE','DBNAME');

The answer set from this statement is REGIONW and DB2MVSDB3. You now know
that the table DEPTJ35_PAYROLL is in a database named DB2MVSDB3, on a
node called REGIONW.

With this information, you can use the LIST NODE DIRECTORY command to
obtain information about the REGIONW node, such as the communications
protocol and security type used. If the node had been for a data source other
than the DB2 Family, you would need to check that data source’s
configuration files to find similar information. For example, if the node had
been an Oracle data source, you would get similar information from the
Oracle tnsnames.ora file.

For details on system catalog views, refer to the SQL Reference.

Identifying All Nicknames Known to DB2
The following SQL statement provides a list of all nicknames known to the
federated database, including the schema name and remote server for each
nickname.

select tabname,tabschema, setting as remote_server
from syscat.taboptions
where option = 'SERVER';

Creating an Index, Index Extension, or an Index Specification

An index is a list of the locations of rows, sorted by the contents of one or
more specified columns. Indexes are typically used to speed up access to a
table. However, they can also serve a logical data design purpose. For
example, a unique index does not allow entry of duplicate values in the
columns, thereby guaranteeing that no two rows of a table are the same.
Indexes can also be created to specify ascending or descending order of the
values in a column.

An index extension is an index object for use with indexes that have
structured type or distinct type columns.

An index specification is a metadata construct. It tells the optimizer that an
index exists for a data source object (table or view) referenced by a nickname.
An index specification does not contain lists of row locations–it is just a
description of an index. The optimizer uses the index specification to improve
access to the object indicated by the nickname. When a nickname is first
created, an index specification is generated if an index exists for the
underlying table at the data source in a format DB2 can recognize.

Chapter 3. Creating a Database 161

|
|
|
|
|
|
|

Note: If needed, create index specifications on table nicknames or view
nicknames where the view is over one table.

Manually create an index or an index specification when:
v It would improve performance. For example, if you want to encourage the

optimizer to use a particular table or nickname as the inner table of a
nested loop join, create an index specification on the joining column if no
index exists. Refer to the Administration Guide: Performance for more
information about when you would want an index or an index
specification.

v An index for a base table was added after the nickname for that table was
created.

Index specifications can be created when no index exists on the base table
(DB2 will not check for the remote index when you issue the CREATE INDEX
statement). An index specification does not enforce uniqueness of rows even
when the UNIQUE keyword is specified.

The DB2 Index Advisor is a wizard that assists you in choosing an optimal set
of indexes. You can access this wizard through the Control Center. The
comparable utility is called db2advis.

An index is defined by columns in the base table. It can be defined by the
creator of a table, or by a user who knows that certain columns require direct
access. A primary index key is automatically created on the primary key,
unless a user-defined index already exists.

Any number of indexes can be defined on a particular base table, and they
can have a beneficial effect on the performance of queries. However, the more
indexes there are, the more the database manager must modify during update,
delete, and insert operations. Creating a large number of indexes for a table
that receives many updates can slow down processing of requests. Therefore,
use indexes only where a clear advantage for frequent access exists.

Any column that is part of an index key is limited to 255 bytes.

Note: The DB2_INDEX_2BYTEVARLEN registry variable can be used to allow
columns with a length greater than 255 bytes to be specified as part of
an index key.

The maximum number of columns in an index is 16. If you are indexing a
typed table, the maximum number of columns is 15. The maximum length of
an index key is 1024 bytes. As previously mentioned, many index keys on a
table can slow down processing of requests. Similarly, large index keys can
also slow down processing requests.

162 Administration Guide: Implementation

|
|

|

|
|
|

An index key is a column or collection of columns on which an index is
defined, and determines the usefulness of an index. Although the order of the
columns making up an index key does not make a difference to index key
creation, it may make a difference to the optimizer when it is deciding
whether or not to use an index.

If the table being indexed is empty, an index is still created, but no index
entries are made until the table is loaded or rows are inserted. If the table is
not empty, the database manager makes the index entries while processing the
CREATE INDEX statement.

For a clustering index, new rows are inserted physically close to existing rows
with similar key values. This yields a performance benefit during queries
because it results in a more linear access pattern to data pages and more
effective pre-fetching.

If you want a primary key index to be a clustering index, a primary key
should not be specified at CREATE TABLE. Once a primary key is created, the
associated index cannot be modified. Instead, perform a CREATE TABLE
without a primary key clause. Then issue a CREATE INDEX statement,
specifying clustering attributes. Finally, use the ALTER TABLE statement to
add a primary key that corresponds to the index just created. This index will
be used as the primary key index.

Generally, clustering is more effectively maintained if the clustering index is
unique.

Column data which is not part of the unique index key but which is to be
stored/maintained in the index is called an include column. Include columns
can be specified for unique indexes only. When creating an index with include
columns, only the unique key columns are sorted and considered for
uniqueness. Use of include columns improves the performance of data
retrieval when index access is involved.

The database manager uses a B+ tree structure for storing indexes where the
bottom level consists of leaf nodes. The leaf nodes or pages are where the
actual index key values are stored. When creating an index, you can enable
those index leaf pages to be merged or reorganized online. Online index
reorganization is used to prevent the situation where, after much delete and
update activity, many leaf pages of an index have only a few index keys left
on them. In such a situation, and without online reorganization, space could
only be reclaimed by an off-line reorganization of the data and index. When
deciding whether to create an index with the ability to reorganize index pages
online, you should consider this question: Is the added performance cost of
checking for space to merge each time a key deletion occurs and the actual
cost to complete the merge, if there is enough space, greater than the benefit

Chapter 3. Creating a Database 163

of better space utilization for the index and less than a reduced need to
perform an off-line reorganization to reclaim space?

Note: Pages freed after an online reorganization merge are available for re-use
only for other indexes in the same table. With a full reorganization,
those pages that are freed are available to other objects (when working
with Database Managed Storage) or to disk space (when working with
System Managed Storage). In addition, an online reorganization will
not free up any non-leaf pages of the index, whereas a full
reorganization will make the index as small as possible by making the
index as small as possible, reducing the non-leaf and leaf pages as well
as the number of levels of the index.

See “Using the CREATE INDEX Statement” on page 165 for more information
on how to implement an index that will reorganize online.

Indexes for tables in a partitioned database are built using the same CREATE
INDEX statement. They are partitioned based on the partitioning key of the
table. An index on a table consists of the local indexes in that table on each
node in the nodegroup. Note that unique indexes defined in a multiple
partition environment must be a superset of the partitioning key.

Performance Tip: If you are going to carry out the following series of tasks:
1. Create Table
2. Load Table
3. Create Index
4. Perform RUNSTATS

then you should consider ordering the execution of tasks in the following
way:
1. Create the table
2. Create the index
3. Load the table with the statistics yes option requested.

Refer to Data Movement Utilities Guide and Reference for more information on
LOAD performance improvements.

Indexes are maintained after they are created. Subsequently, when application
programs use a key value to randomly access and process rows in a table, the
index based on that key value can be used to access rows directly. This is
important, because the physical storage of rows in a base table is not ordered.
When a row is inserted, unless there is a clustering index defined, the row is
placed in the most convenient storage location that can accommodate it. When
searching for rows of a table that meet a particular selection condition and the

164 Administration Guide: Implementation

|

|

|

|

|

|
|

table has no indexes, the entire table is scanned. An index optimizes data
retrieval without performing a lengthy sequential search.

The data for your indexes can be stored in the same table space as your table
data, or in a separate table space containing index data. The table space used
to store the index data is determined when the table is created (see “Creating
a Table in Multiple Table Spaces” on page 134).

To create an index using the Control Center:

1. Expand the object tree until you see the Indexes folder.

2. Right-click the Indexes folder, and select Create —> Index Using Wizard from the
pop-up menu.

3. Follow the steps in the wizard to complete your task.

To create an index using the command line, enter:
CREATE INDEX <name> ON <table_name> (<column_name>)

The following two sections, “Using an Index” and “Using the CREATE
INDEX Statement”, provide more information on creating an index.

Using an Index
An index is never directly used by an application program. The decision on
whether to use an index and which of the potentially available indexes to use
is the responsibility of the optimizer.

The best index on a table is one that:
v Uses high-speed disks
v Is highly-clustered
v Is made up of only a few narrow columns

For a detailed discussion of how an index can be beneficial, refer to “Index
Scan Concepts” in the Administration Guide: Performance.

Using the CREATE INDEX Statement
You can create an index that will allow duplicates (a non-unique index) to
enable efficient retrieval by columns other than the primary key, and allow
duplicate values to exist in the indexed column or columns.

The following SQL statement creates a non-unique index called LNAME from
the LASTNAME column on the EMPLOYEE table, sorted in ascending order:

CREATE INDEX LNAME ON EMPLOYEE (LASTNAME ASC)

Chapter 3. Creating a Database 165

The following SQL statement creates a unique index on the phone number
column:

CREATE UNIQUE INDEX PH ON EMPLOYEE (PHONENO DESC)

A unique index ensures that no duplicate values exist in the indexed column
or columns. The constraint is enforced at the end of the SQL statement that
updates rows or inserts new rows. This type of index cannot be created if the
set of one or more columns already has duplicate values.

The keyword ASC puts the index entries in ascending order by column, while
DESC puts them in descending order by column. The default is ascending
order.

You can create a unique index on two columns, one of which is an include
column. The primary key is defined on the column that is not the include
column. Both of them are shown in the catalog as primary keys on the same
table. Normally there is only one primary key per table.

The INCLUDE clause specifies additional columns to be appended to the set
of index key columns. Any columns included with this clause are not used to
enforce uniqueness. The included columns may improve the performance of
some queries through index-only access. The columns must be distinct from
the columns used to enforce uniqueness (otherwise you will receive error
message SQLSTATE 42711). The limits for the number of columns and sum of
the length attributes apply to all of the columns in the unique key and in the
index.

A check is performed to determine if an existing index matches the primary
key definition (ignoring any INCLUDE columns in the index). An index
definition matches if it identifies the same set of columns without regard to
the order of the columns or the direction (either ascending or descending)
specifications. If a matching index definition is found, the description of the
index is changed to indicate that it is the primary index, as required by the
system, and it is changed to unique (after ensuring uniqueness) if it was a
non-unique index.

This is why it is possible to have more than one primary key on the same
table as indicated in the catalog.

When working with a structured type, it might be necessary to create
user-defined index types. This requires a means of defining index
maintenance, index search, and index exploitation functions. Refer to the SQL
Reference for information on the requirements for creating an index type.

The following SQL statement creates a clustering index called INDEX1 on the
LASTNAME column of the EMPLOYEE table:

166 Administration Guide: Implementation

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|

CREATE INDEX INDEX1 ON EMPLOYEE (LASTNAME) CLUSTER

To use the internal storage of the database effectively, use clustering indexes
with the PCTFREE parameter associated with the ALTER TABLE statement so
that new data can be inserted on the correct pages. When data is inserted on
the correct pages, clustering order is maintained. Typically, the greater the
INSERT activity on the table, the larger the PCTFREE value (on the table) that
will be needed in order to maintain clustering. Since this index determines the
order by which the data is laid out on physical pages, only one clustering
index can be defined for any particular table.

If, on the other hand, the index key values of these new rows are, for
example, always new high key values, then the clustering attribute of the
table will try to place them at the end of the table. Having free space in other
pages will do little to preserve clustering. In this case, placing the table in
append mode may be a better choice than a clustering index and altering the
table to have a large PCTFREE value. You can place the table in append mode
by issuing: ALTER TABLE APPEND ON. See “Changing Table Attributes” on
page 201 for additional overview information on ALTER TABLE. Refer to the
SQL Reference for additional detailed information on ALTER TABLE.

The above discussion also applies to new ″overflow″ rows that result from
UPDATEs that increase the size of a row.

The MINPCTUSED clause of the CREATE INDEX statement specifies the
threshold for the minimum amount of used space on an index leaf page. If
this clause is used, online index reorganization is enabled for this index. Once
enabled, the following considerations are used to determine if an online
reorganization takes place: After a key is deleted from a leaf page of this
index and a percentage of used space on the page is less than the specified
threshold value, the neighboring index leaf pages are checked to determine if
the keys on the two leaf pages can be merged into a single index leaf page.

For example, the following SQL statement creates an index with online index
reorganization enabled:

CREATE INDEX LASTN ON EMPLOYEE (LASTNAME) MINPCTUSED=20

When a key is deleted from this index, if the remaining keys on the index
page take up twenty percent or less space on the index page, then an attempt
is made to delete an index page by merging the keys of this index page with
those of a neighboring index page. If the combined keys can all fit on a single
page, this merge is performed and one of the index pages is deleted.

The PCTFREE clause of the CREATE INDEX statement specifies the
percentage of each index page to leave as free space when the index is built.
Leaving more free space on the index pages will result in fewer page splits.

Chapter 3. Creating a Database 167

|
|
|
|
|
|
|
|

|
|

This will reduce the need to reorganize the table in order to regain sequential
index pages which increases prefetching. And prefetching is one important
component that may improve performance. Again, if there are always high
key values, then you will want to consider lowering the value of the
PCTFREE clause of the CREATE INDEX statement. In this way there will be
limited wasted space reserved on each index page.

If you have a replicated summary table, its base table (or tables) must have a
unique index, and the index key columns must be used in the query that
defines the replicated summary table. Refer to Administration Guide: Planning
for more information on replicated summary tables.

For intra-partition parallelism, create index performance is improved by using
multiple processors for the scanning and sorting of data that is performed
during index creation. The use of multiple processors is enabled by setting
intra_parallel to YES(1) or ANY(-1). The number of processors used during
index creation is determined by the system and is not affected by the
configuration parameters dft_degree or max_querydegree, by the application
runtime degree, or by the SQL statement compilation degree. If the database
configuration parameter indexsort is NO, then index creation will not use
multiple processors.

In multiple partition databases, unique indexes must be defined as supersets
of the partitioning key.

Creating a User-Defined Extended Index Type

To support user-defined index types, DB2 Universal Database allows you to
create and apply your own logic for the primary components that make up
how an index works. Those components that can be substituted are:
v Index maintenance. This allows the ability to map index column content to

an index key. Such a mapping is done through a user-defined mapping
function. Exactly one structured type column can participate in an extended
index. Unlike an ordinary index, an extended index may have more than
one index entry per row. Multiple index entries per row could enable a text
document to be stored as an object with a separate index entry for each
keyword in the document.

v Index exploitation. This enables the application designer to associate
filtering conditions (range predicates) with a user-defined function (UDF)
that would otherwise be opaque to the optimizer. This enables DB2 to
avoid making a separate UDF call for each row, and thereby avoids context
switching between client and server, greatly improving performance.

Note: The user-defined function definition must be deterministic and must
not allow external actions in order to be exploitable by the optimizer.

168 Administration Guide: Implementation

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

An optional data filter function can also be specified. The optimizer uses the
filter against the fetched tuple before the user-defined function is evaluated.

Only a structured type or distinct type column can use the index extension to
create a user-defined extended index type on these objects. The user-defined
extended index type must not:
v Be defined with clustering indexes
v Have INCLUDE columns

Details on Index Maintenance
You define two of the components that make up the operations of an index
through the CREATE INDEX EXTENSION statement.

Index maintenance is the process of transforming the index column content
(or source key) to a target index key. The transformation process is defined
using a table function that has previously been defined in the database.

The FROM SOURCE KEY clause specifies a structured data type or distinct
type for the source key column supported by this index extension. A single
parameter name and data type are given and associated with the source key
column.

The GENERATE KEY USING clause specifies the user-defined table function
used to generate the index key. The output from this function must be
specified in the TARGET KEY clause specification. The output from this
function can also be used as input for the index filtering function specified on
the FILTER USING clause.

Details on Index Searching
Index searching maps search arguments to search ranges.

The WITH TARGET KEY clause of the CREATE INDEX EXTENSION
statement specifies the target key parameters that are the output of the
user-defined table function specified on the GENERATE KEY USING clause.
A single parameter name and data type are given and associated with the
target key column. This parameter corresponds to the columns of the
RETURNS table of the user-defined table function of the GENERATE KEY
USING clause.

The SEARCH METHODS clause introduces one or more search methods
defined for the index. Each search method consists of a method name, search
arguments, a range producing function, and an optional index filter function.
Each search method defines how index search ranges for the underlying
user-defined index are produced by a user-defined table function. Further,

Chapter 3. Creating a Database 169

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

each search method defines how the index entries in a particular search range
can be further qualified by a user-defined scalar function to return a single
value.
v The WHEN clause associates a label with a search method. The label is an

SQL identifier that relates to the method name specified in the index
exploitation rule (found in the PREDICATES clause of a user-defined
function). One or more parameter names and data types are given for use
as arguments in the range function and/or index filtering function. The
WHEN clause specifies the action that can be taken by the optimizer when
the PREDICATES clause of the CREATE FUNCTION statement matches an
incoming query.

v The RANGE THROUGH clause specifies the user-defined external table
function that produces index key ranges. This enables the optimizer to
avoid calling the associated UDF when the index keys fall outside the key
ranges.

v The FILTER USING clause is an optional way of specifying a user-defined
external table function or a case expression used to filter index entries
returned from the range-producing function. If the value returned by the
index filter function or case expression is 1, the row corresponding to the
index entry is retrieved from the table. If the value returned is something
other than 1, the index entry is discarded. This feature is valuable when the
cost of the secondary filter is low compared to the cost of evaluating the
original method, and the selectivity of the secondary filter is relatively low.

Details on Index Exploitation
Index exploitation occurs in the evaluation of the search method.

The CREATE FUNCTION (External Scalar) statement creates a user-defined
predicate used with the search methods defined for the index extension.

The PREDICATES clause identifies those predicates using this function that
can possibly exploit the index extensions (and that can possibly use the
optional SELECTIVITY clause for the predicate’s search condition). If the
PREDICATES clause is specified, the function must be defined as
DETERMINISTIC with NO EXTERNAL ACTION.
v The WHEN clause introduces a specific use of the function being defined in

a predicate with a comparison operator (=, >, <, and others) and a constant
or expression (using the EXPRESSION AS clause). When a predicate uses
this function with the same comparison operator and the given constant or
expression, filtering and index exploitation may be used. The use of a
constant is provided mainly to cover Boolean expressions where the result
type is either a 1 or a 0. For all other cases, the EXPRESSION AS clause is
the better choice.

v The FILTER USING clause identifies a filter function that can be used to
perform additional filtering of the result table. It is an alternative and faster

170 Administration Guide: Implementation

|
|
|

version of the defined function (used in the predicate) that reduces the
number of rows on which the user-defined predicate must be executed to
determine if rows qualify. Should the results produced by the index be
close to the results expected by the user-defined predicate, then the
application of this filter function may be redundant.

v You can optionally define a set of rules for each search method of an index
extension to exploit the index. You can also define a search method in the
index extension to describe the search targets, the search arguments, and
how these can be used to perform the index search.
– The SEARCH BY INDEX EXTENSION clause identifies the index

extension.
– The optional EXACT clause indicates that the index lookup is exact in its

predicate evaluation. This clause tells the database not to apply the
original user-provided predicate function or the filter function after the
index lookup. If the index lookup is not used, then the original predicate
and the filter functions have to be applied. If the EXACT clause is not
used, then the original user-provided predicate is applied after the index
lookup. The EXACT predicate is useful when the index lookup returns
the same results as the predicate. This prevents the query execution from
applying the user-defined predicate on the results obtained from the
index lookup. If the index is expected to provide only an approximation
of the predicate, do not specify the EXACT clause.

– The WHEN KEY clause defines the search target. Only one search target
is specified for a key. The value given following the WHEN KEY clause
identifies a parameter name of the function being defined. This clause is
evaluated as true when the values of the named parameter are columns
that are covered by an index based on the index extension specified.

– The USE clause defines the search argument. The search argument
identifies which method defined in the index extension will be used. The
method name given here must match a method defined in the index
extension. The one or more parameter values identify parameter names
of the function being defined and which must be different from any of
the parameter names specified in the search target. The number of
parameter values and the data type of each must match the parameters
defined for the method in the index extension. The match must be exact
for built-in and distinct data types, and be within the same structure
types.

A Scenario for Defining an Index Extension
A scenario for defining an index extension follows:
1. Define the structured types (for shapes). Use the CREATE TYPE statement

to define a type hierarchy where shape is a supertype and nullshape,
point, line, and polygon are subtypes. These structured types model
spatial entities. For example, the location of a store is a point; the path of a
river is a line; and, the boundary of a business zone is a polygon. A

Chapter 3. Creating a Database 171

minimum bounded rectangle (mbr) is an attribute. The gtype attribute
identifies whether the associated entity is a point, a line, or a polygon.
Geographical boundaries are modeled by numpart, numpoint, and
geometry attributes. All other attributes are ignored because they are of no
interest to this scenario.

2. Create the index extension.
v Use the CREATE FUNCTION statement to create functions that are used

for key transformation (gridentry), range-producing (gridrange), and
index filter (checkduplicate and mbroverlap).

v Use the CREATE INDEX EXTENSION statement to create the remaining
needed components of the index.

3. Create the key transformation which corresponds to the index maintenance
component of an index.

CREATE INDEX EXTENSION iename (parm_name datatype, ...)
FROM SOURCE KEY (parm_name datatype)
GENERATE KEY USING table_function_invocation
...

The FROM SOURCE KEY clause identifies the parameter and data type of
the key transformation. The GENERATE KEY USING clause identifies the
function used to map the source key with the value generated from the
function.

4. Define the range-producing and index-filter functions which correspond to
the index search component of an index.

CREATE INDEX EXTENSION iename (parm_name datatype, ...)
...
WITH TARGET KEY

WHEN method_name (parm_name datatype, ...)
RANGE THROUGH range_producing_function_invocation
FILTER USING index_filtering_function_invocation

The WITH TARGET KEY clause identifies the search method definition.
The WHEN clause identifies the method name. The RANGE THROUGH
clause identifies the function used to limit the scope of the index to be
used. The FILTER USING clause identifies the function used to eliminate
unnecessary items from the resulting index values.

Note: The FILTER USING clause could identify a case expression instead
of an index filtering function.

5. Define the predicates to exploit the index extension.
CREATE FUNCTION within (x shape, y shape)

RETURNS INTEGER
...
PREDICATES

WHEN = 1

172 Administration Guide: Implementation

FILTER USING mbrWithin (x..mbr..xmin, ...)
SEARCH BY INDEX EXTENSION grid_extension
WHEN KEY (parm_name) USE method_name(parm_name)

The PREDICATES clause introduces one or more predicates that are
started with each WHEN clause. The WHEN clause begins the
specification for the predicate with a comparison operator followed by
either a constant or an EXPRESSION AS clause. The FILTER USING clause
identifies a filter function that can be used to perform additional filtering
of the result table. This is a cheaper version of the defined function (used
in the predicate) that reduces the number of rows on which the
user-defined predicate must be executed to determine the rows that
qualify. The SEARCH BY INDEX EXTENSION clause specifies where the
index exploitation takes place. Index exploitation defines the set of rules
using the search method of an index extension that can be used to exploit
the index. The WHEN KEY clause specifies the exploitation rule. The
exploitation rule describes the search targets and search arguments as well
as how they can be used to perform the index search through a search
method.

6. Define a filter function.
CREATE FUNCTION mbrWithin (...)

The function defined here is created for use in the predicate of the index
extension.

In order for the query optimizer to successfully exploit indexes created to
improve query performance, a SELECTIVITY option is available on function
invocation. In cases where you have some idea of the percentage of rows that
the predicate may return, you can use the SELECTIVITY option on function
invocation to help the DB2 optimizer choose a more efficient access path.

In the following example, the within user-defined function computes the
center and radius (based on the first and second parameters, respectively),
and builds a statement string with an appropriate selectivity:

SELECT * FROM customer
WHERE within(loc, circle(100, 100, 10)) = 1 SELECTIVITY .05

In this example, the indicated predicate (SELECTIVITY .05) filters out 95
percent of the rows in the customer table.

Chapter 3. Creating a Database 173

|
|

174 Administration Guide: Implementation

Chapter 4. Altering a Database

This chapter focuses on what you must consider before altering a database;
and, how to alter or drop database objects.

Before Altering a Database

Some time after a database design has been implemented, a change to the
database design may be required. You should reconsider the major design
issues that you had with the previous design. You should pay particular
attention to the following:
v “Changing Logical and Physical Design Characteristics”
v “Changing the License Information”
v “Changing Instances”
v “Changing Environment Variables and the Profile Registry Variables” on

page 179
v “Changing the Node Configuration File” on page 179
v “Changing the Database Configuration” on page 179

Changing Logical and Physical Design Characteristics
Before you make changes affecting the entire database, you should review all
the logical and physical design decisions. For example, when altering a table
space, you should review your design decision regarding the use of SMS or
DMS storage types. (Refer to Administration Guide: Planning for more
information.)

Changing the License Information
As part of the management of licenses for your DB2 products, you may find
that you have a need to increase the number of licenses. You can use the
License Center within the Control Center to check usage of the installed
products and increase the number of licenses based on that usage.

Changing Instances
Instances are designed to be as independent as possible from the effects of
subsequent installation and removal of products.

In most cases, existing instances automatically inherit or lose access to the
function of the product being installed or removed. However, if certain
executables or components are installed or removed, existing instances do not
automatically inherit the new system configuration parameters or gain access
to all the additional function. The instance must be updated.

© Copyright IBM Corp. 1993, 2001 175

If DB2 is updated by installing a Program Temporary Fix (PTF) or a patch, all
the existing DB2 instances should be updated using the db2iupdt command.
You should also update the Administration Server (DAS) using the dasiupdt
command.

You should ensure you understand the instances and database partition
servers you have in an instance before attempting to change or delete an
instance.

Listing Instances
To get a list of all the instances that are available on a system using the
Control Center:

1. Expand the object tree until you see the Databases folder.

2. Right-click the database you want the list instances for, and select Add from the
pop-up menu.

3. Click Refresh, and click the arrow at the end of the Database name field to see
the list of instances.

4. Press Cancel.

To get a list of all the instances that are available on a system using the
command line, enter:

db2ilist

To determine which instance applies to the current session (on OS/2 or
supported Windows platforms) use:

set db2instance

Updating Instance Configuration
Running the db2iupdt command updates the specified instance by performing
the following:
v Replaces the files in the sqllib subdirectory under the instance owner’s

home directory.
v If the node type is changed, then a new database manager configuration file

is created. This is done by merging relevant values from the existing
database manager configuration file with the default database manager
configuration file for the new node type. If a new database manager
configuration file is created, the old file is backed up to the backup
subdirectory of the sqllib subdirectory under the instance owner’s home
directory.

The db2iupdt command is found in the instance subdirectory in the version
and release subdirectory (the exact name varies by operating system).

176 Administration Guide: Implementation

The command is used as shown:
db2iupdt InstName

The InstName is the log in name of the instance owner.

There are other optional parameters associated with this command:
v –h or –?

Displays a help menu for this command.
v –d

Sets the debug mode for use during problem determination.
v –a AuthType

Specifies the authentication type for the instance. Valid authentication types
are SERVER, CLIENT, DCS, or DCE. If not specified, the default is SERVER,
if a DB2 server is installed. Otherwise, it is set to CLIENT. The
authentication type of the instance applies to all databases owned by the
instance.
On UNIX operating systems, DCE is not a valid authentication type.

v –e
Allows you to update each instance that exists. Those that exist can be
shown using db2ilist.

v –u FencedID
Names the user under which the fenced user-defined functions (UDFs) and
stored procedures will execute. This is not required if you install the DB2
client or the DB2 Software Developer’s Kit. For other DB2 products, this is a
required parameter.

Note: FencedID may not be “root” or “bin”.
v –k

This parameter preserves the current instance type. If you do not specify
this parameter, the current instance is upgraded to the highest instance type
available in the following order:
– Partitioned database server with local and remote clients (DB2 Enterprise

- Extended Edition default instance type)
– Database Server with local and remote clients (DB2 Universal Database

Enterprise Edition default instance type)
– Client (DB2 client default instance type)

Examples:
v If you installed DB2 Universal Database Workgroup Edition or DB2

Universal Database Enterprise Edition after the instance was created, enter
the following command to update that instance:

Chapter 4. Altering a Database 177

|

|
|

|
|
|
|

db2iupdt -u db2fenc1 db2inst1

v If you installed the DB2 Connect Enterprise Edition after creating the
instance, you can use the instance name as the Fenced ID also:

db2iupdt -u db2inst1 db2inst1

v To update client instances, you can use the following command:
db2iupdt db2inst1

Removing Instances
To remove an instance using the Control Center:

1. Expand the object tree until you see the instance you want to remove.

2. Right-click the instance name, and select Remove from the pop-up menu.

3. Check the Confirmation box, and click Ok.

To remove an instance using the command line, enter:
db2idrop <instance_name>

The preparation and details to removing an instance using the command line
are:
1. Stop all applications that are currently using the instance.
2. Stop the Command Line Processor by running db2 terminate commands

in each DB2 command window.
3. Stop the instance by running the db2stop command.
4. Back up the instance directory indicated by the DB2INSTPROF registry

variable. On UNIX operating systems, consider backing up the files in the
INSTHOME/sqllib directory (where INSTHOME is the home directory of the
instance owner). For example, you might want to save the database
manager configuration file, db2systm, the db2nodes.cfg file, user-defined
functions (UDFs), or fenced stored procedure applications.

5. (On UNIX operating systems only) Log off as the instance owner.
6. (On UNIX operating systems only) Log in as a user with root authority.
7. Issue the db2idrop command:

db2idrop InstName

where InstName is the name of the instance being dropped.

This command removes the instance entry from the list of instances and
removes the instance directory.

8. (On UNIX operating systems only) Optionally, as a user with root
authority, remove the instance owner’s user ID and group (if used only for
that instance). Do not remove these if you are planning to re-create the
instance.

178 Administration Guide: Implementation

This step is optional since the instance owner and the instance owner
group may be used for other purposes.

The db2idrop command removes the instance entry from the list of instances
and removes the sqllib subdirectory under the instance owner’s home
directory.

Changing Environment Variables and the Profile Registry Variables
You must consider which environment variables (if any) need to be changed
on your particular operating system. If any environment variables are
changed and you are not on a UNIX platform, you need to restart the system
for the new environment variables to take effect. Review whether you should
reset the profile registry variables in the Global Profile registry before altering
your database. You can then reset the profile registry variables to those that
are best suited to the new database environment. If only profile registry
variables have been changed, the system does not need to be restarted.

Changing the Node Configuration File
If you are planning changes to any nodegroups (both adding or deleting
nodes, or moving existing nodes), you should refer to “Scaling Your
Configuration Through Adding Processors” in the Administration Guide:
Performance for details on what should be done.

Changing the Database Configuration
If you are planning changes to the database, you should review the values for
the configuration parameters. Some of the values can be adjusted from time to
time as part of the ongoing changes made to the database based on how it is
used.

To change the database configuration, use the Performance Configuration
Wizard in the Control Center. This wizard helps you tune performance and
balance memory requirements for a single database per instance by suggesting
which configuration parameters to modify and providing suggested values for
them.

Note: If you modify any parameters, the values are not updated until:
v For database parameters, the first new connection to the database

after all applications were disconnected.
v For database manager parameters, the next time you stop and start

the instance.

In most cases the values recommended by the Performance Configuration
Wizard will provide better performance than the default values, because they
are based on information about your workload and you own particular server.
However, note that the values are designed to improve the performance of,

Chapter 4. Altering a Database 179

though not necessarily optimize, your database system. Think of them as a
starting point on which you can make further adjustments to obtain
optimized performance.

To change the database configuration using the Control Center:

1. Expand the object tree until you see the Databases folder.

2. Right-click the instance or database you want to change, and select Configure
Performance Using Wizard from the pop-up menu.

3. Click on each page and change information as required.

4. Click on the Results page to review you work and apply any suggested
configuration parameters.

5. When you are finished applying updates, click Finish.

To change the database manager configuration using the command line, enter:
UPDATE DBM CFG FOR <database_alias>

USING <config_keyword>=<value>

You can update one or more <config_keyword>=<value> combinations in a
single command. Most changes to the database manager configuration file
become effective only after they are loaded into memory. For a server
configuration parameter, this occurs during the running of the START
DATABASE MANAGER command. For a client configuration parameter, this
occurs when the application is restarted.

To view or print the current database manager configuration parameters, use
the GET DATABASE MANAGER CONFIGURATION command.

For details on how to refine your system by benchmarking, and to configure
your system, refer to “Benchmark Testing” and “Configuring DB2” in the
Administration Guide: Performance.

For multiple partitions: When you have a database that is partitioned across
more than one partition, the database configuration file should be the same on
all database partitions. Consistency is required since the SQL compiler
compiles distributed SQL statements based on information in the node
configuration file and creates an access plan to satisfy the needs of the SQL
statement. Maintaining different configuration files on database partitions
could lead to different access plans, depending on which database partition
the statement is prepared. Use db2_all to maintain the configuration files
across all database partitions.

180 Administration Guide: Implementation

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

Altering a Database

There are nearly as many tasks when altering databases as there are in the
creation of databases. These tasks update or drop aspects of the database
previously created. The tasks include:
v “Dropping a Database”
v “Altering a Nodegroup” on page 182
v “Altering a Table Space” on page 182
v “Dropping a Schema” on page 188
v “Modifying a Table in Both Structure and Content” on page 188
v “Altering a User-Defined Structured Type” on page 204
v “Deleting and Updating Rows of a Typed Table” on page 204
v “Renaming an Existing Table” on page 204
v “Dropping a Table” on page 205
v “Dropping a Trigger” on page 207
v “Dropping a User-Defined Function (UDF), Type Mapping, or Method” on

page 207
v “Dropping a User-Defined Type (UDT) or Type Mapping” on page 208
v “Altering or Dropping a View” on page 209
v “Dropping a Summary Table” on page 210
v “Altering or Dropping a Server” on page 212
v “Altering or Dropping a Nickname” on page 213
v “Dropping an Index, Index Extension, or an Index Specification” on

page 214
v “Statement Dependencies When Changing Objects” on page 215

Dropping a Database
Although some of the objects in a database can be altered, the database itself
cannot be altered: it must be dropped and re-created. Dropping a database
can have far-reaching effects, because this action deletes all its objects,
containers, and associated files. The dropped database is removed
(uncataloged) from the database directories.

To drop a database using the Control Center:

1. Expand the object tree until you see the Databases folder.

2. Right-click the database you want to drop, and select Drop from the pop-up
menu.

3. Click on the Confirmation box, and click Ok.

To drop a database using the command line, enter:
DROP DATABASE <name>

The following command deletes the database SAMPLE:
DROP DATABASE SAMPLE

Chapter 4. Altering a Database 181

Note: If you intend to continue experimenting with the SAMPLE database,
you should not drop it. If you have dropped the SAMPLE database,
and find that you need it again, you can re-create it.

Altering a Nodegroup
Details on altering a nodegroup are found in the “Scaling Your Configuration
Through Adding Processors” chapter in Administration Guide: Performance.

Once you add or drop nodes, you must redistribute the current data across
the new set of nodes in the nodegroup. To do this, use the REDISTRIBUTE
NODEGROUP command. For information, refer to “Redistributing Data
Across Database Partitions” in the Administration Guide: Performance and to the
Command Reference.

Altering a Table Space
When you create a database, you create at least three table spaces: one catalog
table space (SYSCATSPACE); one user table space (with a default name of
USERSPACE1); and one system temporary table space (with a default name of
TEMPSPACE1). You must keep at least one of each of these table spaces. You
can add additional user and temporary table spaces if you wish.

Note: You cannot drop the catalog table space SYSCATSPACE, or create
another one, and there must always be at least one system temporary
table space. You can create other system temporary table spaces. You
also cannot change the page size or the extent size of a table space after
it has been created.

This section discusses how to change table spaces as follows:
v “Adding a Container to a DMS Table Space”
v “Modifying Containers in a DMS Table Space” on page 183
v “Adding a Container to an SMS Table Space on a Partition” on page 185
v “Renaming a Table Space” on page 185
v “Switching the State of a Table Space” on page 185
v “Dropping a User Table Space” on page 186
v “Dropping a System Temporary Table Space” on page 186.

Refer to Administration Guide: Planning for design information on table spaces.

Adding a Container to a DMS Table Space
You can increase the size of a DMS table space (that is, one created with the
MANAGED BY DATABASE clause) by adding one or more containers to the
table space.

182 Administration Guide: Implementation

|
|
|
|
|

|

|

|

The contents of the table space are re-balanced across all containers. Access to
the table space is not restricted during the re-balancing. If you need to add
more than one container, you should add them at the same time.

To add a container to a DMS table space using the Control Center:

1. Expand the object tree until you see the Table Spaces folder.

2. Right-click the table space where you want to add the container, and select Alter
from the pop-up menu.

3. Click Add, complete the information, and click Ok.

4. If the table space is in a partitioned database environment, click Advanced if you
need to change performance parameters for the table space.

5. Click Ok.

To add a container to a DMS table space using the command line, enter:
ALTER TABLESPACE <name>

ADD (DEVICE '<path>' <size>)

The following example illustrates how to add two new device containers
(each with 10 000 pages) to a table space on a UNIX-based system:

ALTER TABLESPACE RESOURCE
ADD (DEVICE '/dev/rhd9' 10000,

DEVICE '/dev/rhd10' 10000)

Note that the ALTER TABLESPACE statement allows you to change other
properties of the table space that can affect performance. Refer to “Table Space
Impact on Query Optimization” in the Administration Guide: Performance for
more information.

Modifying Containers in a DMS Table Space
You can increase the size of the containers in a DMS table space (that is, one
created with the MANAGED BY DATABASE clause) by resizing one or more
containers or by extending one or more containers associated with the table
space. You should consider the resizing method if you know the new upper
limit for the size of the container. You should consider the extend method if
you do not know (nor care about) the current size of the container.

To resize one or more containers in a DMS table space using the command
line, enter:

ALTER TABLESPACE <name>
RESIZE (DEVICE '<path>' <size>)

The following example illustrates how to increase two device containers (each
already existing with 1 000 pages) in a table space on a UNIX-based system:

Chapter 4. Altering a Database 183

|
|
|
|
|
|

ALTER TABLESPACE HISTORY
RESIZE (DEVICE '/dev/rhd7' 2000,

DEVICE '/dev/rhd8' 2000)

Following this action, the two devices have increased from 1 000 pages in size
to 2 000 pages. Similar to adding new containers, the contents of the table
space are re-balanced across all containers. Access to the table space is not
restricted during the re-balancing.

To extend one or more containers in a DMS table space using the command
line, enter:

ALTER TABLESPACE <name>
EXTEND (DEVICE '<path>' <size>)

The following example illustrates how to increase two device containers (each
already existing with 1 000 pages) in a table space on a UNIX-based system:

ALTER TABLESPACE HISTORY
EXTEND (DEVICE '/dev/rhd11' 1000,

DEVICE '/dev/rhd12' 1000)

Following this action, the two devices have increased from 1 000 pages in size
to 2 000 pages. Similar to adding new containers, the contents of the table
space are re-balanced across all containers. Access to the table space is not
restricted during the re-balancing.

DMS containers (both file and raw device containers) which are added during
or after table space creation, or are extended after table space creation, are
performed in parallel through prefetchers. To achieve an increase in
parallelism of these create or resize container operations, you can increase the
number of prefetchers running in the system. The only process which is not
done in parallel is the logging of these actions and, in the case of creating
containers, the tagging of the containers.

Note: To maximize the parallelism of the CREATE TABLESPACE or ALTER
TABLESPACE statements (with respect to adding new containers to an
existing table space) ensure the number of prefetchers is greater than or
equal to the number of containers being added.

Note: You cannot reduce the size of the containers.

Note that the ALTER TABLESPACE statement allows you to change other
properties of the table space that can affect performance. Refer to “Table Space
Impact on Query Optimization” in the Administration Guide: Performance for
more information.

184 Administration Guide: Implementation

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

Adding a Container to an SMS Table Space on a Partition
To add a container to an SMS table space using the command line, enter the
following:

ALTER TABLESPACE <name>
ADD ('<path>')
ON NODE (<partition_number>)

The partition specified by number, and every partition (or node) in the range
of partitions, must exist in the nodegroup on which the table space is defined.
A partition_number may only appear explicitly or within a range in exactly
one on-nodes-clause for the statement.

The following example shows how to add a new container to partition
number 3 of the nodegroup used by table space “plans” on a UNIX based
operating system:

ALTER TABLESPACE plans
ADD ('/dev/rhdisk0')
ON NODE (3)

Renaming a Table Space
You can give an existing table space a new name without being concerned
with the individual objects within the table space. When renaming a table
space, all the catalog records referencing that table space are changed.

You cannot rename the SYSCATSPACE table space.

You cannot rename a table space that is in a “roll-forward pending” or
“roll-forward in progress” state.

When restoring a table space that has been renamed since it was backed up,
you must use the new table space name in the RESTORE DATABASE
command. If you use the previous table space name, it will not be found.
Similarly, if you are rolling forward the table space with the ROLLFORWARD
DATABASE command, ensure that you use the new name. If the previous
table space name is used, it will not be found.

Switching the State of a Table Space
The SWITCH ONLINE clause of the ALTER TABLESPACE statement can be
used to remove the OFFLINE state from a table space if the containers
associated with that table space have become accessible. The table space has
the OFFLINE state removed while the rest of the database is still up and
being used.

An alternative to the use of this clause is to disconnect all applications from
the database and then to have the applications connect to the database again.
This removes the OFFLINE state from the table space.

Chapter 4. Altering a Database 185

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|

To remove the OFFLINE state from a table space using the command line,
enter:

ALTER TABLESPACE <name>
SWITCH ONLINE

Dropping a User Table Space
When you drop a user table space, you delete all the data in that table space,
free the containers, remove the catalog entries, and cause all objects defined in
the table space to be either dropped or marked as invalid.

You can reuse the containers in an empty table space by dropping the table
space, but you must COMMIT the DROP TABLESPACE command before
attempting to reuse the containers.

You can drop a user table space that contains all of the table data including
index and LOB data within that single user table space. You can also drop a
user table space that may have tables spanned across several table spaces.
That is, you may have table data in one table space, indexes in another, and
any LOBs in a third table space. You must drop all three table spaces at the
same time in a single statement. All of the table spaces that contain tables that
are spanned must be part of this single statement or the drop request will fail.
Refer to the SQL Reference for details on how to drop table spaces containing
spanned table data.

To drop a user table space using the Control Center:

1. Expand the object tree until you see the Table Spaces folder.

2. Right-click on the table space you want to drop, and select Drop from the pop-up
menu.

3. Check the Confirmation box, and click Ok.

To drop a user table space using the command line, enter:
DROP TABLESPACE <name>

The following SQL statement drops the table space ACCOUNTING:
DROP TABLESPACE ACCOUNTING

Dropping a System Temporary Table Space
You cannot drop a system temporary table space without first creating
another system temporary table space because the database must always have
at least one system temporary table space. For example, if you wish to add a
container to an SMS temporary table space, you must add a new system
temporary table space first and then drop the old system temporary table
space.

186 Administration Guide: Implementation

|
|

|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

To drop a system table space using the Control Center:

1. Expand the object tree until you see the Table Spaces folder.

2. If there is only one other system temporary table space, right-click the Table
Spaces folder, and select Create —> Table Space Using Wizard from the pop-up
menu. Otherwise, skip to step four.

3. Follow the steps in the wizard to create the new system temporary table space if
needed.

4. Click again on the Table Spaces folder to display a list of table spaces in the right
side of the window (the Contents pane).

5. Right-click on the system temporary table space you want to drop, and click Drop
from the pop-up menu.

6. Check the Confirmation box, and click Ok.

If you only have one system temporary table space, before deleting it, you
must create another. This can be done using the command line by entering:

CREATE SYSTEM TEMPORARY TABLESPACE <name>
MANAGED BY SYSTEM USING ('<device>')

Then, to drop a system table space using the command line, enter:
DROP TABLESPACE <name>

The following SQL statement creates a new system temporary table space
called TEMPSPACE2:

CREATE SYSTEM TEMPORARY TABLESPACE TEMPSPACE2
MANAGED BY SYSTEM USING ('d')

Once TEMPSPACE2 is created, you can then drop the original system
temporary table space TEMPSPACE1 with the command:

DROP TABLESPACE TEMPSPACE1

You can reuse the containers in an empty table space by dropping the table
space, but you must COMMIT the DROP TABLESPACE command before
attempting to reuse the containers.

Dropping a User Temporary Table Space
You can only drop a user temporary table space if there are no current
declared temporary tables defined in that table space. When you drop the
table space, no attempt is made to drop all of the declared temporary tables in
the table space.

Note: A declared temporary table is implicitly dropped when the application
that declared it disconnects from the database.

Chapter 4. Altering a Database 187

Dropping a Schema
Before dropping a schema, all objects that were in that schema must be
dropped themselves or moved to another schema. The schema name must be
in the catalog when attempting the DROP statement; otherwise an error is
returned.

To drop a schema using the Control Center:

1. Expand the object tree until you see the Schemas folder.

2. Right-click on the schema you want to drop, and select Drop from the pop-up
menu.

3. Check the Confirmation box, and click Ok.

To drop a schema using the command line, enter:
DROP SCHEMA <name>

In the following example, the schema ″joeschma″ is dropped:
DROP SCHEMA joeschma RESTRICT

The RESTRICT keyword enforces the rule that no objects can be defined in the
specified schema for the schema to be deleted from the database.

Modifying a Table in Both Structure and Content
Tasks that are required for modifying the structure and content of the table
include the following:
v “Adding Columns to an Existing Table”
v “Modifying a Column Definition” on page 189
v “Removing Rows From a Table or View” on page 190
v “Altering a Constraint” on page 191
v “Defining a Generated Column on an Existing Table” on page 196
v “Declaring a Table Volatile” on page 199
v “Changing Partitioning Keys” on page 200
v “Changing Table Attributes” on page 201
v “Refreshing the Data in a Summary Table” on page 204

Note that you cannot alter triggers for tables; you must drop any trigger that
is no longer appropriate (see “Dropping a Trigger” on page 207), and add its
replacement (see “Creating a Trigger” on page 136).

Adding Columns to an Existing Table
A column definition includes a column name, data type, and any necessary
constraints.

188 Administration Guide: Implementation

|

|

When columns are added to a table, the columns are logically placed to the
right of the right-most existing column definition. When a new column is
added to an existing table, only the table description in the system catalog is
modified, so access time to the table is not affected immediately. Existing
records are not physically altered until they are modified using an UPDATE
statement. When retrieving an existing row from the table, a null or default
value is provided for the new column, depending on how the new column
was defined. Columns that are added after a table is created cannot be
defined as NOT NULL: they must be defined as either NOT NULL WITH
DEFAULT or as nullable.

To add columns to an existing table using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click on the table you want to add columns to, and select Alter from the
pop-up menu.

3. Check the Columns page, complete the information for the column, and click Ok.

To add columns to an existing table using the command line, enter:
ALTER TABLE <table_name>

ADD <column_name> <data_type> <null_attribute>

Columns can be added with an SQL statement. The following statement uses
the ALTER TABLE statement to add three columns to the EMPLOYEE table:

ALTER TABLE EMPLOYEE
ADD MIDINIT CHAR(1) NOT NULL WITH DEFAULT
ADD HIREDATE DATE
ADD WORKDEPT CHAR(3)

Modifying a Column Definition
You can modify the characteristics of a column by increasing the length of an
existing VARCHAR column. The number of characters may increase up to a
value dependent on the page size used.

To modify columns of an existing table using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. In the list of tables in the right pane, right-click on the table for which you want
to modify a column, and select Alter from the pop-up menu.

3. Check the Columns page, select the column, and click Change.

4. Type the new byte count for the column in Length, and click Ok.

To modify columns of an existing table using the command line, enter:

Chapter 4. Altering a Database 189

|
|
|
|
|
|
|
|
|
|

ALTER TABLE ALTER COLUMN
<column_name> <modification_type>

For example, to increase a column up to 4000 characters, use something
similar to the following:

ALTER TABLE ALTER COLUMN
COLNAM1 SET DATA TYPE VARCHAR(4000)

You cannot alter the column of a typed table. However, you can add a scope
to an existing reference type column that does not already have a scope
defined. For example:

ALTER TABLE ALTER COLUMN
COLNAMT1 ADD SCOPE TYPTAB1

For more information about the ALTER TABLE statement, refer to the SQL
Reference manual.

Removing Rows From a Table or View
You can change the contents of a table or view by deleting rows. Deleting a
row from a view deletes the rows from the table on which the view is based.
The DELETE statement is used to:
v Delete one or more rows that have been optionally determined by a search

condition. This is known as a searched DELETE.
v Delete exactly one row that has been determined by the current position of

a cursor. This is known as a positioned DELETE.

The DELETE statement can be embedded in an application program or issued
as a dynamic SQL statement.

If the table being modified is involved with other tables through referential
constraints then there are considerations with carrying out the deletion of
rows. If the identified table or the base table of the identified view is a parent,
the rows selected for delete must not have any dependents in a relationship
with a delete rule of RESTRICT. Further, the DELETE must not cascade to
descendent rows that have dependents in a relationship with a delete rule of
RESTRICT.

If the delete operation is not prevented by a RESTRICT delete rule, the
selected rows are deleted. For additional information concerning what
happens to the rows that are dependents of the selected rows, you should
refer to the SQL Reference.

For example, to delete the department (DEPTNO) “D11” from the table
(DEPARTMENT), use:

DELETE FROM department WHERE deptno='D11'

190 Administration Guide: Implementation

|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|

|

If an error occurs during the running of a multiple row DELETE, no changes
are made to the table. If an error occurs that prevents deleting all rows
matching the search condition and all operations required by existing
referential constraints, no changes are made to the tables.

Unless appropriate locks already exist, one or more exclusive locks are
acquired during the running of a successful DELETE statement. Locks are
released following a COMMIT or ROLLBACK statement. Locks can prevent
other applications from performing operations on the table.

Modifying an Identity Column Definition
If you are recreating a table followed by an import or load operation, and if
you have an IDENTITY column in the table then it will be reset to start
generating the IDENTITY value from 1 following the recreation of the
contents of the table. When inserting new rows into this recreated table, you
do not want the IDENTITY column to begin from 1 again. You do not want
duplicate values in the IDENTITY column. To prevent this from occuring, you
should:
1. Recreate the table.
2. Load data into the table using the MODIFIED BY IDENTITYOVERRIDE

clause. The data is loaded into the table but no identity values are
generated for the rows.

3. Run a query to get the last counter value for the IDENTITY column:
SELECT MAX(<IDENTITY column>)

This will return with the equivalent value of what would have been the
IDENTITY column value of the table.

4. Use the RESTART clause of the ALTER TABLE statement:
ALTER TABLE <table name> ALTER COLUMN <IDENTITY column>

RESTART WITH <last counter value>

5. Insert a new row into the table. The IDENTITY column value will be
generated based on the value specified in the RESTART WITH clause.

Altering a Constraint
You can only alter constraints by dropping them and then adding new ones to
take their place. For more information, see:
v “Adding a Constraint”
v “Dropping a Constraint” on page 194

For more information on constraints, see “Defining Constraints” on page 123.

Adding a Constraint
You add constraints with the ALTER TABLE statement. For more information
on this statement, including its syntax, refer to the SQL Reference manual.

Chapter 4. Altering a Database 191

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|

|

|

|
|

|

|
|

|
|

For more information on constraints, see “Defining Constraints” on page 123.

Adding a Unique Constraint: Unique constraints can be added to an
existing table. The constraint name cannot be the same as any other constraint
specified within the ALTER TABLE statement, and must be unique within the
table (this includes the names of any referential integrity constraints that are
defined). Existing data is checked against the new condition before the
statement succeeds.

The following SQL statement adds a unique constraint to the EMPLOYEE
table that represents a new way to uniquely identify employees in the table:

ALTER TABLE EMPLOYEE
ADD CONSTRAINT NEWID UNIQUE(EMPNO,HIREDATE)

Adding Primary and Foreign Keys: To add constraints to a large table, it is
more efficient to put the table into the check pending state, add the
constraints, and then check the table for a consolidated list of violating rows.
Use the SET INTEGRITY statement to explicitly set the check pending state: if
the table is a parent table, check pending is implicitly set for all dependent
and descendent tables.

To add primary keys using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click on the table you want to modify, and select Alter from the pop-up
menu.

3. On the Primary Key page, select one or more columns as primary keys, and click
the arrow to move them.

4. Optional: Enter the constraint name of the primary key.

5. Click Ok.

To add primary keys using the command line, enter:
ALTER TABLE <name>

ADD CONSTRAINT <column_name>
PRIMARY KEY <column_name>

When a foreign key is added to a table, packages and cached dynamic SQL
containing the following statements may be marked as invalid:
v Statements that insert or update the table containing the foreign key
v Statements that update or delete the parent table.

See “Statement Dependencies When Changing Objects” on page 215 for
information.

192 Administration Guide: Implementation

To add foreign keys using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click on the table you want to modify, and select Alter from the pop-up
menu.

3. On the Foreign Keys page, click Add.

4. On the Add Foreign Keys window, specify the parent table information.

5. Select one or more columns to be foreign keys, and click the arrow to move them.

6. Specify what action is to take place on the dependent table when a row of the
parent table is deleted or updated. You can also add a constraint name for he
foreign key.

7. Click Ok.

To add foreign keys using the command line, enter:
ALTER TABLE <name>

ADD CONSTRAINT <column_name>
FOREIGN KEY <column_name>
ON DELETE <action_type>
ON UPDATE <action_type>

The following examples show the ALTER TABLE statement to add primary
keys and foreign keys to a table:

ALTER TABLE PROJECT
ADD CONSTRAINT PROJECT_KEY

PRIMARY KEY (PROJNO)
ALTER TABLE EMP_ACT

ADD CONSTRAINT ACTIVITY_KEY
PRIMARY KEY (EMPNO, PROJNO, ACTNO)

ADD CONSTRAINT ACT_EMP_REF
FOREIGN KEY (EMPNO)
REFERENCES EMPLOYEE
ON DELETE RESTRICT

ADD CONSTRAINT ACT_PROJ_REF
FOREIGN KEY (PROJNO)
REFERENCES PROJECT
ON DELETE CASCADE

Adding a Table Check Constraint: Check constraints can be added to an
existing table with the ALTER TABLE statement. The constraint name cannot
be the same as any other constraint specified within an ALTER TABLE
statement, and must be unique within the table (this includes the names of
any referential integrity constraints that are defined). Existing data is checked
against the new condition before the statement succeeds.

To add constraints to a large table, it is more efficient to put the table into the
check-pending state, add the constraints, and then check the table for a
consolidated list of violating rows. Use the SET INTEGRITY statement to

Chapter 4. Altering a Database 193

explicitly set the check-pending state: if the table is a parent table, check
pending is implicitly set for all dependent and descendent tables.

When a table check constraint is added, packages and cached dynamic SQL
that insert or update the table may be marked as invalid. See “Statement
Dependencies When Changing Objects” on page 215 for more information.

To add a table check constraint using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click on the table you want to modify, and select Alter from the pop-up
menu.

3. On the Check Constraints page, click Add.

4. On the Add Check Constraint window, complete the information, and click Ok.

5. On the Check Constraints page, click Ok.

To add a table check constraint using the command line, enter:
ALTER TABLE <name>

ADD CONSTRAINT <name> (<constraint>)

The following SQL statement adds a constraint to the EMPLOYEE table that
the salary plus commission of each employee must be more than $25,000:

ALTER TABLE EMPLOYEE
ADD CONSTRAINT REVENUE CHECK (SALARY + COMM > 25000)

Dropping a Constraint
You drop constraints with the ALTER TABLE statement. For more information
on this statement, including its syntax, refer to the SQL Reference manual.

For more information on constraints, see “Defining Constraints” on page 123.

Dropping a Unique Constraint: You can explicitly drop a unique constraint
using the ALTER TABLE statement. The name of all unique constraints on a
table can be found in the SYSCAT.INDEXES system catalog view.

The following SQL statement drops the unique constraint NEWID from the
EMPLOYEE table:

ALTER TABLE EMPLOYEE
DROP UNIQUE NEWID

Dropping this unique constraint invalidates any packages or cached dynamic
SQL that used the constraint.

Dropping Primary and Foreign Keys: To drop a primary key using the
Control Center:

194 Administration Guide: Implementation

1. Expand the object tree until you see the Tables folder.

2. Right-click on the table you want to modify, and select Alter from the pop-up
menu.

3. On the Primary Key page, select the primary key at right to drop, and click the
arrow to move it to the Available columns box on the left.

4. Click Ok.

To drop a primary key using the command line, enter:
ALTER TABLE <name>

DROP PRIMARY KEY

When a foreign key constraint is dropped, packages or cached dynamic SQL
statements containing the following may be marked as invalid:
v Statements that insert or update the table containing the foreign key
v Statements that update or delete the parent table.

See “Statement Dependencies When Changing Objects” on page 215 for more
information.

To drop a foreign key using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click on the table you want to modify, and select Alter from the pop-up
menu.

3. On the Foreign Keys page, click Add.

4. Select the foreign key at right to drop, and click on the arrow to move it to the
Available columns box on the left.

5. On the Foreign Keys page, click Ok.

To drop a foreign key using the command line, enter:
ALTER TABLE <name>

DROP FOREIGN KEY <foreign_key_name>

The following examples use the DROP PRIMARY KEY and DROP FOREIGN
KEY clauses in the ALTER TABLE statement to drop primary keys and foreign
keys on a table:

ALTER TABLE EMP_ACT
DROP PRIMARY KEY
DROP FOREIGN KEY ACT_EMP_REF
DROP FOREIGN KEY ACT_PROJ_REF

ALTER TABLE PROJECT
DROP PRIMARY KEY

Chapter 4. Altering a Database 195

For information about the ALTER TABLE statement, refer to the SQL Reference
manual.

Dropping a Table Check Constraint: You can explicitly drop or change a
table check constraint using the ALTER TABLE statement, or implicitly drop it
as the result of a DROP TABLE statement.

When you drop a table check constraint, all packages and cached dynamic
SQL statements with INSERT or UPDATE dependencies on the table are
invalidated. (See “Statement Dependencies When Changing Objects” on
page 215 for more information.) The name of all check constraints on a table
can be found in the SYSCAT.CHECKS catalog view. Before attempting to drop
a table check constraint having a system-generated name, look for the name in
the SYSCAT.CHECKS catalog view.

To drop a table check constraint using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click on the table you want to modify, and select Alter from the pop-up
menu.

3. On the Check Constraints page, select the check constraint to drop, click Remove,
and click Ok.

To drop a table check constraint using the command line:
ALTER TABLE <table_name>

DROP CHECK <check_constraint_name>

The following SQL statement drops the table check constraint REVENUE from
the EMPLOYEE table:

ALTER TABLE EMPLOYEE
DROP CHECK REVENUE

Defining a Generated Column on an Existing Table
A generated column is defined on a base table where the stored value is
computed using an expression, rather than being specified through an insert
or update operation. A generated column can be created when a table is
created or as a modification to an existing table.

Perform the following steps to define a generated column:
1. Place the table in a check pending state.

SET INTEGRITY FOR t1 OFF

2. Alter the table to add one or more generated columns.
ALTER TABLE t1 ADD COLUMN c3 DOUBLE GENERATED ALWAYS AS (c1 + c2),

ADD COLUMN c4 GENERATED ALWAYS AS
(CASE WHEN c1 > c3 THEN 1 ELSE NULL END))

196 Administration Guide: Implementation

3. At this point there are several ways to complete this task based on the
work to be done against the table:
v The table is very large and you are not confident that you have

sufficient log space to complete the task. After loading the data but
before you turn the integrity checking back on, you need to:

COMMIT

Then you need to use the db2gncol utility to establish the values for the
generated columns. This utility is located under the sqllib directory in
the bin subdirectory. You use the utility as follows:

db2gncol -d <dbname> -s <schema> -t <table_name>
-c <commitcount>

The dbname specifies an alias name for the database in which the table is
located. The schema specifies the schema name of the table and is case
sensitive. The table_name specifies the table for which new values for its
columns generated by expressions are to be computed. Both schema and
table_name are case-sensitive. The commitcount is the number of rows to
process between each internal commit to clean up the logs. This
parameter influences the size of the log space required to perform the
generation of the column values.

There are also two optional parameters that are not shown in the
example above. They are -u <username> and -p <password> which
identify a user and password. The user must have SYSADM or DBADM
authority. If there is no user and password identified, the current user
ID will be used.

If you wish help information on this utility, enter:
db2gncol -h

When the help parameter is used, all other parameters are ignored.

The table is locked for the entire process even though it is in a check
pending state. The reason for the lock is that there are other utilities that
can access tables that are in a check pending state. The lock prevents
conflicts with these other utilities.

v You anticipate that the log space for updating the generated columns is
expected to be sufficient for SET INTEGRITY. This will normally be the
case. After loading the data you recompute and reassign the values for
the generated columns using:

SET INTEGRITY FOR t1 IMMEDIATE CHECKED
FORCE GENERATED

Note: Exception tables can be used at this point.

Chapter 4. Altering a Database 197

|
|
|

v The table is very large, you are not confident you will have sufficient
log space to complete the task, and you do not choose the first method
presented above. After loading the data but before you turn the integrity
checking back on, you need to:
a. Get an exclusive lock on the table. This prevents all but

uncommitted read transactions from accessing the table.
LOCK TABLE t1

b. Move the table to the online state with the data unchecked.
SET INTEGRITY FOR t1 ALL IMMEDIATE UNCHECKED

c. Update the generated columns using intermittent commits and
predicates to avoid the logs filling up.

UPDATE t1 SET (c3, c4) = (DEFAULT, DEFAULT) WHERE <predicate>

d. Bring up the table online and check its integrity.
SET INTEGRITY FOR t1 OFF
SET INTEGRITY FOR t1 IMMEDIATE CHECKED

e. Unlock the table by completing the transaction using a commit
statement.

COMMIT

v You know that the table was created with the not logged initially
option. In this way, logging for the table is turned off with the usual
implications and risks while working with the generated column values.
a. Activate the not logged initially option.

ALTER TABLE t1 ACTIVATE NOT LOGGED INITIALLY

b. Generate the values.
SET INTEGRITY FOR t1 IMMEDIATE CHECKED FORCE GENERATED

c. Turn the not logged initially off again by committing the transaction.
COMMIT

The values for generated columns can also simply be checked by applying the
expression as if it is an equality check constraint:

SET INTEGRITY FOR t1 IMMEDIATE CHECKED

If values have been placed in a generated column using LOAD for example,
and you know that the values match the generated expression, then the table
can be taken out of the check pending state without checking or assigning the
values:

SET INTEGRITY FOR t1 GENERATED COLUMN IMMEDIATE UNCHECKED

Generated columns may only be defined on data types for which an equal
comparison is defined. The excluded data types for the generated columns

198 Administration Guide: Implementation

|

include: Structured types, LOBs, CLOBs, DBCLOBs, LONG VARCHAR,
LONG VARGRAPHIC, and user-defined types defined using the same
excluded data types.

Generated columns cannot be used in constraints, unique indexes, referential
constraints, primary keys, and global temporary tables. A table created with
LIKE and materialized views does not inherit generated column properties.

Generated columns cannot be inserted or updated without the keyword
DEFAULT. When inserting, the use of DEFAULT avoids the need to
enumerate the columns in the column list. Instead, generated columns can be
set to DEFAULT in the values list. When updating, DEFAULT enables the
recomputation of generated columns that have been placed online by SET
INTEGRITY without being checked.

The order of processing of triggers requires that BEFORE-triggers may not
reference generated columns in their header (before update) or in their bodies.
In the order of processing, generated columns are processed after
BEFORE-triggers.

The db2look utility will not see the check constraints generated by a
generated column.

When using replication, the target table must not use generated columns in its
mapping. There are two choices when replicating:
v The target table must define the generated column as a normal column; that

is, not a generated column
v The target table must omit the generated column in the mapping

There are several restrictions when working with generated columns:
v Generated columns must not have dependencies on each other.
v The expressions used to create the generated columns must not contain

subqueries. This includes expressions with functions that READS SQL
DATA.

v No check constraints are allowed on generated columns.
v No unique indexes are allowed on generated columns. This includes unique

constraints and primary keys.

Declaring a Table Volatile
A volatile table is defined as a table whose contents can vary from empty to
very large at run time. The volatility or extreme changeability of this type of
table makes reliance on the statistics collected by RUNSTATS inaccurate.
Statistics are gathered at, and only reflect, a point in time. To generate an
access plan that uses a volatile table can result in an incorrect or poorly

Chapter 4. Altering a Database 199

|
|

|
|
|
|
|

performing plan. For example, if statistics are gathered when the volatile table
is empty, the optimizer tends to favor accessing the volatile table using a table
scan rather than an index scan.

To prevent this, you should consider declaring the table as volatile using the
ALTER TABLE statement. By declaring the table volatile, the optimizer will
consider using index scan rather than table scan. The access plans that use
declared volatile tables will not depend on the existing statistics for that table.

To declare a table volatile using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click on the table you want to modify, and select Alter from the pop-up
menu.

3. On the Table page, select the Cardinality varies significantly at run time check
box, and click Ok.

To declare a table as “volatile” using the command line, enter:
ALTER TABLE <table_name>

VOLATILE CARDINALITY

Changing Partitioning Keys
You can only change a partitioning key on tables in single-partition
nodegroups. First drop the existing partitioning key, and then create another.

The following SQL statement drops the partitioning key MIX_INT from the
MIXREC table:

ALTER TABLE MIXREC
DROP PARTITIONING KEY

For more information, see the ALTER TABLE statement in the SQL Reference
manual.

You cannot change the partitioning key of a table in a multiple partition
nodegroup. If you try to drop it, an error is returned.

To change the partitioning key of multiple partition nodegroups, either:
v Export all of the data to a single-partition nodegroup and then follow the

above instructions.
v Export all of the data, drop the table, recreate the table redefining the

partitioning key, and then import all of the data.

Neither of these methods are practical for large databases; it is therefore
essential that you define the appropriate partitioning key before implementing
the design of large databases.

200 Administration Guide: Implementation

|
|
|

|

|
|

|

|
|

|
|

|
|
|

Changing Table Attributes
You may have reason to change table attributes such as the data capture
option, the percentage of free space on each page (PCTFREE), the lock size, or
the append mode.

The amount of free space to be left on each page of a table is specified
through PCTFREE, and is an important consideration for the effective use of
clustering indexes. The amount to specify depends on the nature of the
existing data and expected future data. PCTFREE is respected by LOAD and
REORG but is ignored by insert, update and import activities.

Setting PCTFREE to a larger value will maintain clustering for a longer
period, but will also require more disk space.

You can specify the size (granularity) of locks used when the table is accessed
by using the LOCKSIZE parameter. By default, when the table is created, row
level locks are defined. Use of table level locks may improve the performance
of queries by limiting the number of locks that need to be acquired and
released.

By specifying APPEND ON, you can improve the overall performance of the
table. It allows for faster insertions, while eliminating the maintenance of
information about the free space.

A table with a clustering index cannot be altered to have append mode turned
on. Similarly, a clustering index cannot be created on a table with append
mode.

Altering an Identity Column
Modify the attributes of an existing identity column with the ALTER TABLE
statement. For more information on this statement, including its syntax, refer
to the SQL Reference.

There are several ways to modify an identity column so that it has some of
the characteristics of sequences.

There are some tasks that are unique to the ALTER TABLE statement and the
identity column:
v RESTART resets the sequence associated with the identity column to the

value specified implicitly or explicitly as the starting value when the
identity column was originally created.

v RESTART WITH <numeric-constant> resets the sequence associated with
the identity column to the exact numeric constant value. The numeric
constant could be any positive or negative value with no non-zero digits to
the right of any decimal point that could be assigned to the identity
column.

Chapter 4. Altering a Database 201

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|

|
|
|
|
|

Altering a Sequence
Modify the attributes of an existing sequence with the ALTER SEQUENCE
statement. For more information on this statement, including its syntax, refer
to the SQL Reference.

The attributes of the sequence that can be modified include:
v Changing the increment between future values
v Establishing new minimum or maximum values
v Changing the number of cached sequence numbers
v Changing whether the sequence will cycle or not
v Changing whether sequence numbers must be generated in order of request
v Restarting the sequence

There are two tasks that are not found as part of the creation of the sequence.
They are:
v RESTART. Resets the sequence to the value specified implicitly or explicitly

as the starting value when the sequence was created.
v RESTART WITH numeric-constant. Resets the sequence to the exact

numeric constant value. The numeric constant can be any positive or
negative value with no non-zero digits to the right of any decimal point.

After restarting a sequence or changing to CYCLE, it is possible to generate
duplicate sequence numbers. Only future sequence numbers are affected by
the ALTER SEQUENCE statement.

The data type of a sequence cannot be changed. Instead, you must drop the
current sequence and then create a new sequence specifying the new data
type.

All cached sequence values not used by DB2 are lost when a sequence is
altered.

Dropping a Sequence
To delete a sequence, use the DROP statement. For more information on this
statement, including its syntax, refer to the SQL Reference.

A specific sequence can be dropped by using:
DROP SEQUENCE sequence_name

where the sequence_name is the name of the sequence to be dropped and
includes the implicit or explicit schema name to exactly identify an existing
sequence.

202 Administration Guide: Implementation

|
|
|
|

|

|

|

|

|

|

|

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|

|

|
|
|

Sequences that are system-created for IDENTITY columns cannot be dropped
using the DROP SEQUENCE statement.

Once a sequence is dropped, all privileges on the sequence are also dropped.

Altering Summary Table Properties
With some restrictions, you can change a summary table to a regular table or
a regular table to a summary table. You cannot change other table types; only
regular and summary tables can be changed. For example, you cannot change
a replicated summary table to a regular table, nor the reverse.

Once a regular table has been altered to a summary table, the table is placed
in a check pending state. When altering in this way, the fullselect in the
summary table definition must match the original table definition, that is:
v The number of columns must be the same.
v The column names and positions must match.
v The data types must be identical.

If the summary table is defined on an original table, then the original table
cannot itself be altered into a summary table. If the original table has triggers,
check constraints, referential constraints, or a defined unique index, then it
cannot be altered into a summary table. If altering the table properties to
define a summary table, you are not allowed to alter the table in any other
way in the same ALTER TABLE statement.

When altering a regular table into a summary table, the fullselect of the
summary table definition cannot reference the original table directly or
indirectly through views, aliases, or summary tables.

To change a summary table to a regular table, use the following:
ALTER TABLE sumtable

SET SUMMARY AS DEFINITION ONLY

To change a regular table to a summary table, use the following:
ALTER TABLE regtable

SET SUMMARY AS <fullselect>

The restrictions on the fullselect when altering the regular table to a summary
table are very much like the restrictions when creating a summary table using
the CREATE SUMMARY TABLE statement.

Refer to the SQL Reference for additional information on the CREATE
SUMMARY TABLE statement.

Chapter 4. Altering a Database 203

|
|

|

|
|
|
|
|
|

Refreshing the Data in a Summary Table
You can refresh the data in one or more summary tables by using the
REFRESH TABLE statement. The statement can be embedded in an
application program, or issued dynamically. To use this statement, you must
have either SYSADM or DBADM authority, or CONTROL privilege on the
table to be refreshed.

The following example shows how to refresh the data in a summary table:
REFRESH TABLE SUMTAB1

For more information about the REFRESH TABLE statement, refer to the SQL
Reference.

Altering a User-Defined Structured Type
After creating a structured type, you may find that you need to add or drop
attributes associated with that structured type. This is done using the ALTER
TYPE (Structured) statement. Refer to the Application Development Guide for all
the information you need on structured types.

Deleting and Updating Rows of a Typed Table
Rows can be deleted from typed tables using either searched or positioned
DELETE statements. Rows can be updated in typed tables using either
searched or positioned UPDATE statements. Refer to the Application
Development Guide for all the information you need on typed tables.

Renaming an Existing Table
You can give an existing table a new name within a schema and maintain the
authorizations and indexes that were created on the original table.

The existing table to be renamed can be an alias identifying a table. The
existing table to be renamed must not be the name of a catalog table, a
summary table, a typed table, or an object other than a table or an alias.

The existing table cannot be referenced in any of the following:
v Views
v Triggers
v Referential constraints
v Summary table
v The scope of an existing reference column

Also, there must be no check constraints within the table nor any generated
columns other than the identity column. Any packages or cached dynamic
SQL statements dependent on the original table are invalidated. Finally, any
aliases referring to the original table are not modified.

204 Administration Guide: Implementation

You should consider checking the appropriate system catalog tables to ensure
that the table being renamed is not affected by any of these restrictions.

Packages must be re-bound if they refer to a table that has just been renamed.
The packages can be implicitly re-bound if:
v Another table is renamed using the original name of the table, or
v An alias or view is created using the original name of the table.

One of these two choices must be completed before any implicit or explicit
re-binding is attempted. If neither choice is made, any re-bind will fail.

To rename an existing table using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click on the table you want to rename, and select Rename from the pop-up
menu.

3. Type the new table name, and click Ok.

To rename an existing table using the command line, enter:
RENAME TABLE <schema_name>.<table_name> TO <new_name>

The SQL statement below renames the EMPLOYEE table within the
COMPANY schema to EMPL:

RENAME TABLE COMPANY.EMPLOYEE TO EMPL

For more information about the RENAME TABLE statement, refer to the SQL
Reference manual.

Dropping a Table
A table can be dropped with a DROP TABLE SQL statement.

When a table is dropped, the row in the SYSCAT.TABLES catalog that
contains information about that table is dropped, and any other objects that
depend on the table are affected. For example:
v All column names are dropped.
v Indexes created on any columns of the table are dropped.
v All views based on the table are marked inoperative. (See “Recovering

Inoperative Views” on page 210 for more information.)
v All privileges on the dropped table and dependent views are implicitly

revoked.
v All referential constraints in which the table is a parent or dependent are

dropped.

Chapter 4. Altering a Database 205

v All packages and cached dynamic SQL statements dependent on the
dropped table are marked invalid, and remain so until the dependent
objects are re-created. This includes packages dependent on any supertable
above the subtable in the hierarchy that is being dropped. (See “Statement
Dependencies When Changing Objects” on page 215 for more information.)

v Any reference columns for which the dropped table is defined as the scope
of the reference become “unscoped”.

v An alias definition on the table is not affected, because an alias can be
undefined

v All triggers dependent on the dropped table are marked inoperative.
v All files that are linked through any DATALINK columns are unlinked. The

unlink operation is performed asynchronously which means the files may
not be immediately available for other operations.

To drop a table using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click on the table you want to drop, and select Drop from the pop-up
menu.

3. Check the Confirmation box, and click Ok.

To drop a table using the command line, enter:
DROP TABLE <table_name>

The following statement drops the table called DEPARTMENT:
DROP TABLE DEPARTMENT

An individual table cannot be dropped if it has a subtable. However, all the
tables in a table hierarchy can be dropped by a single DROP TABLE
HIERARCHY statement, as in the following example:

DROP TABLE HIERARCHY person

The DROP TABLE HIERARCHY statement must name the root table of the
hierarchy to be dropped.

There are differences when dropping a table hierarchy compared to dropping
a specific table:
v DROP TABLE HIERARCHY does not activate deletion-triggers that would

be activated by individual DROP table statements. For example, dropping
an individual subtable would activate deletion-triggers on its supertables.

v DROP TABLE HIERARCHY does not make log entries for the individual
rows of the dropped tables. Instead, the dropping of the hierarchy is logged
as a single event.

206 Administration Guide: Implementation

Refer to the SQL Reference for more information on the DROP statement.

Dropping a User-Defined Temporary Table
There are a few considerations to be noted when dropping a user-defined
temporary table; that is, one created using the DECLARE GLOBAL
TEMPORARY TABLE statement.

When dropping such a table, the table name must be qualified by the schema
name SESSION and must exist in the application that created the table.

Packages cannot be dependent on this type of table and therefore they are not
invalidated when such a table is dropped.

When a user-defined temporary table is dropped, and its creation preceded
the active unit of work or savepoint, then the table is functionally dropped
and the application is not able to access the table. However, the table still has
some space reserved in its table space and this prevents the user temporary
table space from being dropped until the unit of work is committed or the
savepoint is ended.

Refer to the SQL Reference for more information on the DROP statement.

Dropping a Trigger
A trigger object can be dropped using the DROP statement, but this procedure
will cause dependent packages to be marked invalid, as follows:
v If an update trigger without an explicit column list is dropped, then

packages with an update usage on the target table are invalidated.
v If an update trigger with a column list is dropped, then packages with

update usage on the target table are only invalidated if the package also
had an update usage on at least one column in the column-name list of the
CREATE TRIGGER statement.

v If an insert trigger is dropped, packages that have an insert usage on the
target table are invalidated.

v If a delete trigger is dropped, packages that have a delete usage on the
target table are invalidated.

A package remains invalid until the application program is explicitly bound
or rebound, or it is run and the database manager automatically rebinds it.

Dropping a User-Defined Function (UDF), Type Mapping, or Method
A user-defined function (UDF), function template, or function mapping can be
dropped using the DROP statement.

You can disable a function mapping with the mapping option DISABLE. Refer
to the SQL Reference for more information on how to do this.

Chapter 4. Altering a Database 207

A UDF cannot be dropped if a view, trigger, table check constraint, or another
UDF is dependent on it. Functions implicitly generated by the CREATE
DISTINCT TYPE statement cannot be dropped. It is not possible to drop a
function that is in either the SYSIBM schema or the SYSFUN schema.

Other objects can be dependent on a function or function template. All such
dependencies, including function mappings, must be removed before the
function can be dropped, with the exception of packages which are marked
inoperative. Such a package is not implicitly rebound. It must either be
rebound using the BIND or REBIND commands or it must be prepared by use
of the PREP command. Refer to the Command Reference manual for more
information on these commands. Dropping a UDF invalidates any packages or
cached dynamic SQL statements that used it.

Dropping a function mapping marks a package as invalid. Automatic rebind
will take place and the optimizer will attempt to use the local function. In the
case where the local function is a template, the implicit rebind will fail.

(For more information, see “Statement Dependencies When Changing Objects”
on page 215.)

Dropping a User-Defined Type (UDT) or Type Mapping
You can drop a user-defined type (UDT) or type mapping using the DROP
statement. You cannot drop a UDT if it is used:
v In a column definition for an existing table or view (distinct types)
v As the type of an existing typed table or typed view (structured type)
v As the supertype of another structured type

You cannot drop a default type mapping; you can only override it by creating
another type mapping.

The database manager attempts to drop all functions that are dependent on
this distinct type. If the UDF cannot be dropped, the UDT cannot be dropped.
A UDF cannot be dropped if a view, trigger, table check constraint, or another
UDF is dependent on it. Dropping a UDT invalidates any packages or cached
dynamic SQL statements that used it.

If you have created a transform for a UDT, and you are planning to drop the
UDT, you should consider if it is necessary to drop the transform. This is
done through the DROP TRANSFORM statement. Refer to the SQL Reference
for details on this statement. Note that only transforms defined by you or
other application developers can be dropped; built-in transforms and their
associated group definitions cannot be dropped.

208 Administration Guide: Implementation

For more information about the user-defined types, refer to the SQL Reference
and Application Development Guide manuals.

Altering or Dropping a View
The ALTER VIEW statement modifies an existing view by altering a reference
type column to add a scope. Any other changes you make to a view require
that you drop and then re-create the view.

When altering the view, the scope must be added to an existing reference type
column that does not already have a scope defined. Further, the column must
not be inherited from a superview.

The data type of the column-name in the ALTER VIEW statement must be
REF (type of the typed table name or typed view name).

Other database objects such as tables and indexes are not affected although
packages and cached dynamic statements are marked invalid. See “Statement
Dependencies When Changing Objects” on page 215 for more information.

Refer to the SQL Reference for additional information on the ALTER VIEW
statement.

To alter a view using the Control Center:

1. Expand the object tree until you see the Views folder.

2. Right-click on the view you want to modify, and select Alter from the pop-up
menu.

3. In the Alter view window, enter or modify a comment, and click Ok.

To alter a view using the command line, enter:
ALTER VIEW <view_name> ALTER <column name>

ADD SCOPE <typed table or view name>

To drop a view using the Control Center:

1. Expand the object tree until you see the Views folder.

2. Right-click on the view you want to drop, and select Drop from the pop-up
menu.

3. Check the Confirmation box, and click Ok.

To drop a view using the command line, enter:
DROP VIEW <view_name>

The following example shows how to drop the EMP_VIEW:

Chapter 4. Altering a Database 209

|

|
|

DROP VIEW EMP_VIEW

Any views that are dependent on the view being dropped will be made
inoperative. (See “Recovering Inoperative Views” for more information.)

As in the case of a table hierarchy, it is possible to drop an entire view
hierarchy in one statement by naming the root view of the hierarchy, as in the
following example:

DROP VIEW HIERARCHY VPerson

For more information on dropping and creating views, refer to the SQL
Reference manual.

Recovering Inoperative Views
Views can become inoperative:
v As a result of a revoked privilege on an underlying table
v If a table, alias, or function is dropped
v If the superview becomes inoperative
v When the views they are dependent on are dropped.

The following steps can help you recover an inoperative view:
1. Determine the SQL statement that was initially used to create the view.

You can obtain this information from the TEXT column of the
SYSCAT.VIEW catalog view.

2. Re-create the view by using the CREATE VIEW statement with the same
view name and same definition.

3. Use the GRANT statement to re-grant all privileges that were previously
granted on the view. (Note that all privileges granted on the inoperative
view are revoked.)

If you do not want to recover an inoperative view, you can explicitly drop it
with the DROP VIEW statement, or you can create a new view with the same
name but a different definition.

An inoperative view only has entries in the SYSCAT.TABLES and
SYSCAT.VIEWS catalog views; all entries in the SYSCAT.VIEWDEP,
SYSCAT.TABAUTH, SYSCAT.COLUMNS and SYSCAT.COLAUTH catalog
views are removed.

Dropping a Summary Table
You cannot alter a summary table, but you can drop it.

All indexes, primary keys, foreign keys, and check constraints referencing the
table are dropped. All views and triggers that reference the table are made

210 Administration Guide: Implementation

|

|
|
|

|
|

|
|
|

inoperative. All packages depending on any object dropped or marked
inoperative will be invalidated. See “Statement Dependencies When Changing
Objects” on page 215 for more information on package dependencies.

To drop a summary table using the Control Center:

1. Expand the object tree until you see the Tables folder.

2. Right-click on the summary table you want to drop, and select Drop from the
pop-up menu.

3. Check the Confirmation box, and click Ok.

To drop a summary table using the command line, enter:
DROP TABLE <table_name>

The following SQL statement drops the summary table XT:
DROP TABLE XT

Recovering Inoperative Summary Tables
Summary tables can become inoperative as a result of a revoked SELECT
privilege on an underlying table.

The following steps can help you recover an inoperative summary table:
v Determine the SQL statement that was initially used to create the summary

table. You can obtain this information from the TEXT column of the
SYSCAT.VIEW catalog view.

v Re-create the summary table by using the CREATE SUMMARY TABLE
statement with the same summary table name and same definition.

v Use the GRANT statement to re-grant all privileges that were previously
granted on the summary table. (Note that all privileges granted on the
inoperative summary table are revoked.)

If you do not want to recover an inoperative summary table, you can
explicitly drop it with the DROP TABLE statement, or you can create a new
summary table with the same name but a different definition.

An inoperative summary table only has entries in the SYSCAT.TABLES and
SYSCAT.VIEWS catalog views; all entries in the SYSCAT.VIEWDEP,
SYSCAT.TABAUTH, SYSCAT.COLUMNS and SYSCAT.COLAUTH catalog
views are removed.

Dropping a Wrapper
The DROP statement can remove a wrapper from the database. The following
example shows how to drop the DRDA wrapper:

DROP WRAPPER DRDA

Chapter 4. Altering a Database 211

All server definitions, user-defined function mappings, and user-defined data
type mappings that are dependent on the wrapper are dropped. All
user-defined mappings, nicknames, user-defined type mappings, and user
mappings that are dependent on the dropped server definitions are also
dropped. Any index specifications dependent on the dropped nicknames are
dropped, and any views dependent on these nicknames are marked
inoperative. All packages dependent on the dropped objects and inoperative
views are invalidated.

You must hold one of the SYSADM or DBADM authorities to DROP
wrappers.

Refer to the SQL Reference for more information on dropping wrappers.

Altering or Dropping a Server
The ALTER SERVER statement modifies an existing server definition in the
federated database catalog. Use this statement to:
v Modify the definition of a specific data source.
v Modify the definition of multiple data sources of a specific type or version.
v Make changes in the configuration of a specific data source. For example, if

the DBMS identified by a specific server is migrated to a new workstation
with a faster processor, you should update the cpu_ratio server option.

You cannot use this statement to modify the dbname or node server options.

The following example shows how to alter the ORA1 server:
ALTER SERVER ORA1 OPTIONS (SET CPU_RATIO '5.0')

Servers can be dropped from the federated database. The following example
shows how to drop the ORALOC01 Server:

DROP SERVER ORALOC01

All nicknames for tables and views residing at the data source are dropped.
Any index specifications dependent on these nicknames are dropped. Any
user-defined function mappings, user-defined type mappings, and user
mappings that are dependent on the dropped server definition are also
dropped. All packages dependent on the dropped server definition, function
mappings, nicknames, and index specifications are invalidated.

You must hold one of the SYSADM or DBADM authorities to ALTER or
DROP servers.

For more information on dropping and altering servers, refer to the SQL
Reference.

212 Administration Guide: Implementation

|
|
|
|
|
|
|
|

|
|
|
|
|
|

Altering or Dropping a Nickname
The ALTER NICKNAME statement is used to update locally stored
information about a data source table or view. You could use this statement,
for example, to change the local name for a column or to map a column data
type to a different data type. You can also use this statement to add column
options. For more information on ALTER NICKNAME syntax, see the SQL
Reference.

When a nickname is dropped, views created on that nickname are marked as
inoperative. You cannot alter nickname column names or data types when the
nickname is referenced in a view.

You must hold one of the SYSADM or DBADM authorities, or, you must have
either the CONTROL or ALL database privilege on the nickname, the
ALTERIN (for the current schema) schema privilege, or be the nickname
definer at the federated database to use this statement.

Altering a Nickname Column and Dropping a Nickname
The following example shows how to alter the nickname TESTNN, changing
the local name of a column from COL1 to NEWCOL:

ALTER NICKNAME TESTNN ALTER COLUMN COL1 LOCAL NAME NEWCOL

The following example shows how to drop the nickname TESTNN:
DROP NICKNAME TESTNN

Altering Nickname Column Options
You specify column information in the form of values that you assign to
parameters called column options. You can specify any of these values in either
upper- or lowercase. The table below describes the values and provides
additional information.

Chapter 4. Altering a Database 213

Table 3. Column Options and Their Settings

Option Valid Settings Default
Setting

numeric_string
‘Y’ Yes, this column contains only strings of numeric data.

IMPORTANT: If this column contains only numeric
strings followed by trailing blanks, it is inadvisable to
specify ‘Y’.

‘N’ No, this column is not limited to strings of numeric
data.

By setting numeric_string to ‘Y’ for a column, you are
informing the optimizer that this column contains no blanks
that could interfere with sorting of the column’s data. This
option is helpful when the collating sequence of a data source is
different from DB2. Columns marked with this option will not
be excluded from local (data source) evaluation because of a
different collating sequence.

‘N’

varchar_no_trailing_blanks Indicates whether trailing blanks are absent from a specific
VARCHAR column:

‘Y’ Yes, trailing blanks are absent from this VARCHAR
column.

‘N’ No, trailing blanks are not absent from this VARCHAR
column.

If data source VARCHAR columns contain no padded blanks,
then the optimizer’s strategy for accessing them depends in part
on whether they contain trailing blanks. By default, the
optimizer “assumes” that they actually do contain trailing
blanks. On this assumption, it develops an access strategy that
involves modifying queries so that the values returned from
these columns are the ones that the user expects. If, however, a
VARCHAR column has no trailing blanks, and you let the
optimizer know this, it can develop a more efficient access
strategy. To tell the optimizer that a specific column has no
trailing blanks, specify that column in the ALTER NICKNAME
statement (for syntax, see the SQL Reference).

‘N‘

Dropping an Index, Index Extension, or an Index Specification
You cannot change any clause of an index definition, index extension, or
index specification; you must drop the index or index extension and create it
again. (Dropping an index or an index specification does not cause any other
objects to be dropped but may cause some packages to be invalidated.)

To drop an index, index extension, or an index specification using the Control
Center:

214 Administration Guide: Implementation

1. Expand the object tree until you see the Indexes folder.

2. Right-click on the index you want to drop, and select Drop from the pop-up
menu.

3. Check the Confirmation box, and click Ok.

To drop an index, index extension, or an index specification using the
command line, enter:

DROP INDEX <index_name>

The following SQL statement drops the index called PH:
DROP INDEX PH

The following SQL statement drops the index extension called IX_MAP:
DROP INDEX EXTENSION ix_map RESTRICT

The name of the index extension must identify an index extension described
in the catalog. The RESTRICT clause enforces the rule that no index can be
defined that depends on the index extension definition. If an underlying index
depends on this index extension, then the drop fails.

A primary key or unique key index (unless it is an index specification) cannot
be explicitly dropped. You must use one of the following methods to drop it:
v If the primary index or unique constraint was created automatically for the

primary key or unique key, dropping the primary key or unique key will
cause the index to be dropped. Dropping is done through the ALTER
TABLE statement.

v If the primary index or the unique constraint was user-defined, the primary
key or unique key must be dropped first, through the ALTER TABLE
statement. After the primary key or unique key is dropped, the index is no
longer considered the primary index or unique index, and it can be
explicitly dropped.

Any packages and cached dynamic SQL statements that depend on the
dropped indexes are marked invalid. See “Statement Dependencies When
Changing Objects” for more information. The application program is not
affected by changes resulting from adding or dropping indexes.

Statement Dependencies When Changing Objects
Statement dependencies include package and cached dynamic SQL statements.
A package is a database object that contains the information needed by the
database manager to access data in the most efficient way for a particular
application program. Binding is the process that creates the package the

Chapter 4. Altering a Database 215

database manager needs in order to access the database when the application
is executed. The Application Development Guide discusses how to create
packages in detail.

Packages and cached dynamic SQL statements can be dependent on many
types of objects. Refer to the SQL Reference for a complete list of those objects.

These objects could be explicitly referenced, for example, a table or
user-defined function that is involved in an SQL SELECT statement. The
objects could also be implicitly referenced, for example, a dependent table that
needs to be checked to ensure that referential constraints are not violated
when a row in a parent table is deleted. Packages are also dependent on the
privileges which have been granted to the package creator.

If a package or cached dynamic SQL statement depends on an object and that
object is dropped, the package or cached dynamic SQL statement is placed in
an ″invalid″ state. If a package depends on a user-defined function and that
function is dropped, the package is placed in an ″inoperative″ state.

A cached dynamic SQL statement that is in an invalid state is automatically
re-optimized on its next use. If an object required by the statement has been
dropped, execution of the dynamic SQL statement may fail with an error
message.

A package that is in an invalid state is implicitly rebound on its next use.
Such a package can also be explicitly rebound. If a package was marked
invalid because a trigger was dropped, the rebound package no longer
invokes the trigger.

A package that is in an inoperative state must be explicitly rebound before it
can be used. Refer to the Application Development Guide for more information
about binding and rebinding packages.

Federated database objects have similar dependencies. For example, dropping
a server invalidates any packages or cached dynamic SQL referencing
nicknames associated with that server.

In some cases, it is not possible to rebind the package. For example, if a table
has been dropped and not re-created, the package cannot be rebound. In this
case, you need to either re-create the object or change the application so it
does not use the dropped object.

In many other cases, for example if one of the constraints was dropped, it is
possible to rebind the package.

216 Administration Guide: Implementation

The following system catalog views help you to determine the state of a
package and the package’s dependencies:
v SYSCAT.PACKAGEAUTH
v SYSCAT.PACKAGEDEP
v SYSCAT.PACKAGES

For more information about object dependencies, refer to the DROP statement
in the SQL Reference manual.

Chapter 4. Altering a Database 217

218 Administration Guide: Implementation

Part 3. Database Security

© Copyright IBM Corp. 1993, 2001 219

220 Administration Guide: Implementation

Chapter 5. Controlling Database Access

One of the most important responsibilities of the database administrator and
the system administrator is database security. Securing your database involves
several activities:
v Preventing accidental loss of data or data integrity through equipment or

system malfunction.
v Preventing unauthorized access to valuable data. You must ensure that

sensitive information is not accessed by those without a “need to know”.
v Preventing unauthorized persons from committing mischief through

malicious deletion or tampering with data.
v Monitoring access of data by users which is discussed in “Chapter 6.

Auditing DB2 Activities” on page 273.

The following topics are discussed:
v “Selecting User IDs and Groups for Your Installation”
v “Selecting an Authentication Method for Your Server” on page 225
v “Authentication Considerations for Remote Clients” on page 230
v “Partitioned Database Considerations” on page 230
v “Using DCE Security Services to Authenticate Users” on page 231
v “Federated Database Authentication Processing” on page 237
v “Privileges, Authorities, and Authorization” on page 242
v “Controlling Access to Database Objects” on page 255
v “Tasks and Required Authorizations” on page 266
v “Using the System Catalog” on page 267.

Planning for Security: Start by defining your objectives for a database access
control plan, and specifying who shall have access to what and under what
circumstances. Your plan should also describe how to meet these objectives by
using database functions, functions of other programs, and administrative
procedures.

Selecting User IDs and Groups for Your Installation

Security issues are important to the DB2 Administrator from the moment the
product is installed. The respective platform-specific Quick Beginnings books
present all of the information required to plan for, install, and configure DB2.

The steps to completing the installation of DB2 require a user name, a group
name, and a password. During the installation, the administrator has default

© Copyright IBM Corp. 1993, 2001 221

|

|
|

values for each of these requirements. Once the defaults have been used
during the installation of DB2, the administrator is strongly recommended to
create new user names, group names, and passwords before creating the
instances where the databases will reside. Using new user names, group
names, and passwords will minimize the risk of a user other than the
administrator learning of the defaults and using them in an improper fashion
within instances and databases.

Passwords are very important when authenticating users. If no authentication
requirements are set at the operating system level and the database is using
the operating system to authenticate users, then users will be allowed to
connect. For example on a UNIX operating system, undefined passwords are
treated as NULL. And any user without a defined password will be treated as
if they have a NULL password. From the operating system’s perspective, this
is a match and the user is validated and able to connect to the database. You
should require passwords at the operating system level if you want the
operating system to do the authentication of users for your database.

Another security recommendation following the installation of DB2 is the
changing of the default privileges granted to users. During the installation
process, System Administration (SYSADM) privileges are granted by default
to the following users on each operating system:

OS/2 A valid DB2 user ID which belongs to the
User Profile Management (UPM)
Administrator or Local Administrator group.

Windows 95 or Windows 98 Any Windows 95 or Windows 98 user.

Windows NT or Windows 2000
A valid DB2 username which belongs to the
Administrators group.

UNIX A valid DB2 username which belongs to the
primary group of the instance owner’s user
ID.

SYSADM privileges are the most powerful set of privileges available within
DB2. (Privileges are discussed later in this chapter.) As a result, you may not
want all of these users to have SYSADM privileges by default. DB2 provides
the administrator with the ability to grant and revoke privileges to groups
and individual user IDs.

The platform-specific information to create and assign groups and user IDs is
found in the various Quick Beginnings books. By updating the database
manager configuration parameter SYSADM_GROUP, the administrator can
control which group is defined as the System Administrative group with
System Administrator privileges. You must follow the guidelines below to

222 Administration Guide: Implementation

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

complete the security requirements for both DB2 installation and the
subsequent instance and database creation.

Any group defined as the System Administration group (by updating
SYSADM_GROUP) must exist. The name of this group should allow for easy
identification as the group created for instance owners. User IDs and groups
that belong to this group have system administrator authority for their
respective instances.

You should consider creating an instance owner user ID that is easily
recognized as being associated with a particular instance. This user ID should
have as one of its groups, the name of the SYSADM group created above.
Another recommendation is to only use this instance owner user ID as a
member of the instance owner group and not to use it in any other group.
This should control the proliferation of user IDs and groups that could modify
the instance environment.

The created user ID should always be associated with a password to allow for
authentication before entry into the data and databases within the instance.
The recommendation when creating a password is to follow your
organization’s password naming guidelines.

Windows NT Platform Considerations
When working in the Enterprise – Extended Edition for Windows NT, System
Administration (SYSADM) authority is granted to any valid DB2 user account
which belongs to the local Administrators group on the machine where the
account is defined.

For example, if a user logs on to a domain account and tries to access a DB2
database, DB2 goes to a Domain Controller to enumerate groups (including
the Administrator’s group). You can change this behavior in either of two
ways:
1. Set the registry variable DB2_GRP_LOOKUP = local and add the domain

accounts (or global groups) to the local Administrators group.
2. Update the database manager configuration file to specify a new group. If

you want that group enumerated on the local machine, then you must also
set the DB2_GRP_LOOKUP registry variable.

By default in a Windows NT domain environment, only domain users that
belong to the Administrators group at the Primary Domain Controller (PDC)
have SYSADM authority on an instance. Since DB2 always performs
authorization at the machine where the account is defined, adding a domain
user to the local Administrators group on the server does not grant the
domain user SYSADM authority to the group.

Chapter 5. Controlling Database Access 223

To avoid adding a domain user to the Administrators group at the PDC, you
should create a global group and add the users (both domain and local) that
you want to grant SYSADM authority. To do this, enter the following
commands:

DB2STOP
DB2 UPDATE DBM CFG USING SYSADM_GROUP global_group
DB2START

UNIX Platform Considerations
On UNIX-based platforms, a group for fenced User Defined Functions (UDFs)
and stored procedures must be created, and any user IDs that use fenced
UDFs or stored procedures must be a member of this group. As with the
SYSADM group, the name of the fenced UDFs or stored procedures group
should allow for easy identification. User IDs that belong to the fenced UDFs
or stored procedures group have whatever authority and privileges that are
associated with the group as their default.

For security reasons, we recommend you do not use the instance name as the
Fenced ID. However, if you are not planning to use fenced UDFs or stored
procedures, you can set the Fenced ID to the instance name instead of creating
another user ID.

The recommendation is to create a user ID that will be recognized as being
associated with this group. The user for fenced UDFs and stored procedures is
specified as a parameter of the instance creation script (db2icrt ... -u
<FencedID>). This is not required if you install the DB2 Clients or the DB2
Software Developer’s Kit.

General Rules
There are rules for the naming of all objects and users. Some of these rules are
specific to the platform you are working on. For example, there is a rule
regarding the use of upper and lower case letters in a name.
v On UNIX platforms, names must be in lower case.
v On OS/2, names must be in upper case.
v On Windows platforms, names can be in upper, lower, and mixed-case.

See “Appendix A. Naming Rules” on page 313 for DB2 naming rules.

The db2icrt command creates the main SQL library (sqllib) directory under the
home directory of the instance owner.

224 Administration Guide: Implementation

|
|
|
|
|
|
|

Selecting an Authentication Method for Your Server

Access to an instance or a database first requires that the user be authenticated.
The authentication type for each instance determines how and where a user
will be verified. The authentication type is stored in the database manager
configuration file at the server. It is initially set when the instance is created.
Refer to “Configuring DB2” in Administration Guide: Performance for more
information on the authentication database manager configuration parameter.
There is one authentication type per instance, which covers access to that
database server and all the databases under its control.

If you intend to access data sources from a federated database, you must
consider data source authentication processing and definitions for federated
authentication types. See “Federated Database Authentication Processing” on
page 237 for more information.

The following authentication types are provided:

SERVER
Specifies that authentication occurs on the server using local operating
system security. If a user ID and password are specified during the
connection or attachment attempt, they are compared to the valid user
ID and password combinations at the server to determine if the user
is permitted to access the instance. This is the default security
mechanism.

Note: The server code detects whether a connection is local or remote.
For local connections, when authentication is SERVER, a user
ID and password are not required for authentication to be
successful.

If the remote instance has SERVER authentication, there are two ways
that authentication can take place:
v The user ID and password are provided by the user.
v The user ID and password are retrieved by DB2 and then passed to

the server for validation. (The user is already logged on to the local
machine or to the domain.)

SERVER_ENCRYPT
Specifies that the server accepts encrypted SERVER authentication
schemes. If the client authentication is not specified, the client is
authenticated using the method selected at the server.

If the client authentication is DCS or SERVER, the client is
authenticated by passing the user ID and password to the server. If
the client authentication is DCS_ENCRYPT or SERVER_ENCRYPT, the
client is authenticated by passing a user ID and encrypted password.

Chapter 5. Controlling Database Access 225

|
|
|
|
|
|
|
|

|
|

|

|
|
|

If SERVER_ENCRYPT is specified at the client and SERVER is
specified at the server, an error is returned because of the mismatch in
the authentication levels.

CLIENT
Specifies that authentication occurs on the database partition where
the application is invoked using operating system security. The user
ID and password specified during a connection or attachment attempt
are compared with the valid user ID and password combinations on
the client node to determine if the user ID is permitted access to the
instance. No further authentication will take place on the database
server.

If the user performs a local or client login, the user is known only to
that local client workstation.

If the remote instance has CLIENT authentication, two other
parameters determine the final authentication type: trust_allclnts and
trust_clntauth.

CLIENT level security for TRUSTED clients only:

Trusted clients are clients that have a reliable, local security system.
Specifically, all clients are trusted clients except for Windows 95 and
Windows 98 operating systems.

When the authentication type of CLIENT has been selected, an
additional option may be selected to protect against clients whose
operating environment has no inherent security.

To protect against unsecured clients, the administrator can select
Trusted Client Authentication by setting the trust_allclnts parameter to
NO. This implies that all trusted platforms can authenticate the user
on behalf of the server. Untrusted clients are authenticated on the
Server and must provide a user ID and password. You use the
trust_allclnts configuration parameter to indicate whether you are
trusting clients. The default for this parameter is YES.

Note: It is possible to trust all clients (trust_allclnts is YES) yet have
some of those clients as those who do not have a native safe
security system for authentication.

You may also want to complete authentication at the server even for
trusted clients. To indicate where to validate trusted clients, you use
the trust_clntauth configuration parameter. The default for this
parameter is CLIENT. Refer to “Configuring DB2” in Administration
Guide: Performance for more information on this parameter.

226 Administration Guide: Implementation

Note: For trusted clients only, if no user ID or password is explicitly
provided when attempting to CONNECT or ATTACH, then
validation of the user takes place at the client. The
trust_clntauth parameter is only used to determine where to
validate the information provided on the USER/USING clauses.

To protect against all clients except DRDA clients from DB2 for MVS
and OS/390, DB2 for VM and VSE, and DB2 for OS/400, set the
trust_allclnts parameter to DRDAONLY. Only these clients can be
trusted to perform client-side authentication. All other clients must
provide a user ID and password to be authenticated by the server.

The trust_clntauth parameter is used to determine where the above
clients are authenticated: if trust_clntauth is ″client″, authentication
takes place at the client. If trust_clntauth is ″server″, authentication
takes place at the client when no password is provided and at the
server when a password is provided.

Table 4. Authentication Modes using TRUST_ALLCLNTS and TRUST_CLNTAUTH Parameter
Combinations.

TRUST_
ALLCLNTS

TRUST_
CLNTAUTH

Untrusted
non–
DRDA
Client
Authen-
tication
no
password

Untrusted
non–
DRDA
Client
Authen-
tication
with
password

Trusted
non–
DRDA
Client
Authen-
tication
no
password

Trusted
non–
DRDA
Client
Authen-
tication
with
password

DRDA
Client
Authen-
tication
no
password

DRDA
Client
Authen-
tication
with
password

YES CLIENT CLIENT CLIENT CLIENT CLIENT CLIENT CLIENT

YES SERVER CLIENT SERVER CLIENT SERVER CLIENT SERVER

NO CLIENT SERVER SERVER CLIENT CLIENT CLIENT CLIENT

NO SERVER SERVER SERVER CLIENT SERVER CLIENT SERVER

DRDAONLY CLIENT SERVER SERVER SERVER SERVER CLIENT CLIENT

DRDAONLY SERVER SERVER SERVER SERVER SERVER CLIENT SERVER

DCS Primarily used to catalog a database accessed using DB2 Connect.
(Refer to the DB2 Connect User’s Guide section on Security for more
details on this topic.) When it is used to specify the authentication
type for an instance in the database manager configuration file, it
means the same as authentication SERVER, unless the server is being
accessed via the Distributed Relational Database Architecture (DRDA)
Application Server (AS) architecture using the Advanced
Program-To-Program Communications (APPC) protocol. In this case,
using DCS indicates that authentication will occur at the server, but

Chapter 5. Controlling Database Access 227

||
|
|
|
|
|
|
|
|

only in the APPC layer. Further authentication will not occur in the
DB2 code. This value is only supported when the APPC SECURITY
parameter for the connection is specified as SAME or PROGRAM.

DCS_ENCRYPT
Specifies that DB2 Connect accepts encrypted SERVER authentication
schemes. If the client authentication is not specified, the client is
authenticated using the method selected at the server.

If the client authentication is DCS or SERVER, the client is
authenticated by passing the user ID and password to DB2 Connect. If
the client authentication is DCS_ENCRYPT or SERVER_ENCRYPT, the
client is authenticated by passing a user ID and encrypted password.

If DCS_ENCRYPT is specified at the client and DCS is specified at the
server, an error is returned because of the mismatch in the
authentication levels.

DCE Specifies that the user is authenticated using DCE Security Services.
For more information on DCE Security, see “Using DCE Security
Services to Authenticate Users” on page 231.

DCE_SERVER_ENCRYPT
Specifies that the server accepts DCE authentication or encrypted
SERVER authentication schemes. If the client authentication is DCE or
not specified, the client is authenticated using DCE Security Services.
For more information on DCE Security, see “Using DCE Security
Services to Authenticate Users” on page 231.

If the client authentication is SERVER or DCS, the client is
authenticated by passing the user ID and password to the server. If
the client authentication is SERVER_ENCRYPT or DCS_ENCRYPT, the
client is authenticated by passing a user ID and encrypted password.
The authentication type of the client cannot be specified as
DCE_SERVER_ENCRYPT. If the authentication type of an instance is
specified as DCE_SERVER_ENCRYPT, all local applications will use
DCE as the authentication scheme. This also applies for any utility
commands that do not require a database connection or an instance
attachment.

In addition to allowing a mix of DCE and SERVER_ENCRYPT
authentication types, the DCE_SERVER_ENCRYPT authentication type
also alleviates one of the limitations when using groups within DCE.
When the authentication type is set to DCE_SERVER_ENCRYPT, the
assumption is that the group list being requested other than at
authentication time, come from the base operating system and not
from DCE. You, as the administrator, can then set up a user on the
server to match the short DCE name in order to provide group list
support outside that which is supported at authentication time.

228 Administration Guide: Implementation

|
|
|

KERBEROS
Used when both the DB2 client and server are on operating systems
that support the Kerberos security protocol. The Kerberos security
protocol performs authentication as a third party authentication
service by using conventional cryptography to create a shared secret
key. This key becomes a user’s credential and is used to verify the
identity of users during all occasions when local or network services
are requested. The key eliminates the need to pass the user name and
password across the network as clear text. Using the Kerberos security
protocol enables the use of a single sign-on to a remote DB2 server.

KRB_SERVER_ENCRYPT
Specifies that the server accepts KERBEROS authentication or
encrypted SERVER authentication schemes. If the client authentication
is KERBEROS, the client is authenticated using the Kerberos security
system. If the client authentication is not KERBEROS, then the system
authentication type is equivalent to SERVER_ENCRYPT.

Note: The Kerberos authentication types are only supported on clients
and servers running Windows 2000.

Notes:

1. The type of authentication you choose is important only if you have
remote database clients accessing the database or when you are using
federated database functionality. Most users accessing the database
through local clients are always authenticated on the same machine as the
database. An exception can exist when DCE Security Services are used. For
information about supporting and using remote clients, refer to your Quick
Beginnings manual.

2. Do not inadvertently lock yourself out of your instance when you are
changing the authentication information, since access to the configuration
file itself is protected by information in the configuration file. The
following database manager configuration file parameters control access to
the instance:
v AUTHENTICATION *
v SYSADM_GROUP *
v TRUST_ALLCLNTS
v TRUST_CLNTAUTH
v SYSCTRL_GROUP
v SYSMAINT_GROUP

* Indicates the two most important parameters, and those most likely to
cause a problem.

Chapter 5. Controlling Database Access 229

There are some things that can be done to ensure this does not happen: If
you do accidentally lock yourself out of the DB2 system, you have a
fail-safe option available on all platforms that will allow you to override
the usual DB2 security checks to update the database manager
configuration file using a highly privileged local operating system security
user. This user always has the privilege to update the database manager
configuration file and thereby correct the problem. However, this security
bypass is restricted to a local update of the database manager
configuration file. You cannot use a fail-safe user remotely or for any other
DB2 command. This special user is identified as follows:
v UNIX platforms: the instance owner
v NT platform: someone belonging to the local “administrators” group
v OS/2 platform: a UPM administrator
v Other platforms: there is no local security on the other platforms, so all

users pass local security checks anyway
3. See “Appendix E. How DB2 for Windows NT Works with Windows NT

Security” on page 361 for additional information on Windows NT Security.

Authentication Considerations for Remote Clients

When cataloging a database for remote access, the authentication type may be
specified in the database directory entry.

For databases accessed using DB2 Connect: If a value is not specified, SERVER
authentication is assumed.

For databases accessed remotely but not using DB2 Connect: The
authentication type is not required. However, if it is not specified the client
must first contact the server to obtain the value before beginning the
authentication flow. If specified, authentication can begin immediately
provided the value specified matches that at the server. If a mismatch is
detected then DB2 attempts to recover which may result in more flows to
reconcile the difference or in an error if DB2 cannot recover. In the case of a
mismatch, the value at the server is assumed to be correct.

Partitioned Database Considerations

In a partitioned database, each partition of the database must have the same
set of users and groups defined. If the definitions are not the same, the user
may be authorized to do different things on different partitions. Consistency
across all partitions is recommended.

230 Administration Guide: Implementation

|
|
|
|
|
|
|
|

Using DCE Security Services to Authenticate Users

When considering security for your distributed database environment,
Distributed Computing Environment (DCE) Security Services are a good
option because DCE provides:
v Centralized administration of users and passwords.
v No transmission of clear text passwords and user IDs.
v A single sign-on for users.

DB2 supports DCE default login contexts, connection login contexts, and
delegated contexts. A default login context is established when a user does a
dce_login on a client. Subsequent DB2 commands have access to this context
and may perform user authentication without further user intervention (that
is, no requirement for a user ID or password). A connection login context is
established for a DB2 session using the user ID and password provided on
CONNECT or ATTACH using the USER/USING clause. Finally, a delegated
login context occurs when a DB2 client is used as part of a DCE server
application. The DCE server application (that is also a DB2 client), receives
requests from a DCE client application, from which point the original identity
of the user originates. Provided the DCE client and DCE server are correctly
configured to allow the DCE server to be a delegate for the DCE client, DB2
will obtain the delegated token and forward this to the DB2 server. This
allows the DB2 server to use the original identity of the DCE client, rather
than using the identity of the DCE server, to process requests. Information on
how to establish a delegated login context can be obtained from the DCE
documentation for your platform.

Note: There are several vendor products that support DCE. To ensure that
DB2 UDB for Windows NT can work with IBM’s DCE product in the
area of security services, two new DLLs have been provided:
db2dces.ibm and db2dcec.ibm. (These DLL files are only appropriate for
Windows NT.) If you purchase and use IBM’s DCE product for security
services, these two files must be copied to db2dces.dll and
db2dcec.dll respectively. If you are considering another vendor’s DCE
product, you should contact the vendor service organization and the
DB2 UDB service organization to discuss whether the vendor’s DCE
implementation for security services will work with DB2 UDB.

How to Set up a DB2 User for DCE
Users must be registered in the Distributed Computing Environment (DCE)
Registry and have correct attributes before being used with DB2. See the
appropriate platform-specific DCE documentation for information on how to
create a DCE principal.

Each DB2 user wishing to use a DCE-authenticated server must have a DCE
principal and account defined in the DCE Registry with the client flag

Chapter 5. Controlling Database Access 231

enabled. This principal must also have an entry in its Extended Registry
Attributes (ERA) section showing what authorization name will be used for
this principal when it connects to a particular DCE authenticated server.

You may also wish to have user principals be members of groups in order to
use group privileges in the database. Similar information in the group ERA
maps the group name to a DB2 authorization name. The authorization name
is a secondary authorization name but the same restrictions apply. Please refer
to your DCE documentation for additional information on how to create
groups and add members.

The information in the ERA maps a user’s DCE principal or group name to a
DB2 authorization name for a particular server’s DCE principal name. To use
an ERA, an ERA schema indicating the format of this attribute must be
defined. This needs to be done once per DCE cell and is accomplished by
completing the following steps:
1. Login to DCE as a valid DCE administrator
2. Invoke dcecp and enter the following at the prompt:

> xattrschema create /.:/sec/xattrschema/db2map \
> -aclmgr {{principal r m r m } {group r m r m }} \
> -annotation {Schema entry for DB2 database access} \
> -encoding stringarray \
> -multivalued no \
> -uuid 1cbe84ca-9df3-11cf-84cd-02608c2cd17b

This creates the Extended Registry Attribute db2map.

To view this mapping, issue the following command at the dcecp prompt:
> xattrschema show /.:/sec/xattrschema/db2map

You will see the following:
{axlmgr
{{principal {{query r} {update m} {test r} {delete m}}}
{group {{query r} {update m} {test r} {delete m}}}}}

{annotation {Schema entry for DB2 database access}}
{applydefs no}
{intercell rejects}
{multivalued no}
{reserved no}
{scope {}}
{trigbind {}}
{trigtype none}
{unique no}
{uuid 1cbe84ca-9df3-11cf-84cd-02608c2cd17b}

Note: Restrictions on the contents of the authorization name recorded in the
ERA are not enforced by DCE. If a DCE principal or group is given an
invalid authorization name, an error results when an attempt is made

232 Administration Guide: Implementation

|
|
|
|
|

|

|

|
|
|
|
|
|

|

by DB2 to authenticate that user. (Recall that authentication may occur
at CONNECT, ATTACH, DB2START, or any other operation where
authentication is required.) It is also highly recommended that you
ensure the assignment of authorization names to DCE principals is
one-to-one and unique. DCE does not check these conditions.

If a DB2 client is to access a DB2 UDB server, once they are registered as DCE
principals, the ERA information must be added to provide the mapping from
the principal name to the authorization name. This must be done once for
each user or group; and, is accomplished by completing the following steps:
v Login to DCE as a valid DCE administrator
v Invoke dcecp and at the prompt enter the following:

> principal modify principal_name \
> -add {db2map map_1 map_2...map_n}

where map_n uses the following format:
DCE_server_principal,DB2_authid

where DCE_server_principal is a valid DCE principal name for a DB2 UDB
server (or is the wildcard * which indicates this mapping is valid for any
DB2 server not already specified in another map_n entry) and DB2_authid is
a valid DB2 authorization name.

If a DCE group is to be used for a DCE principal, it must also have a
mapping to a DB2 authid which has the proper authority such as SYSADM
or SYSCTRL authority.

Please note that the authorization identifier (authid) specified in the DCE
schema used to map a DCE principal name to a DB2 authid must be
specified in uppercase. Use of a lowercase or mixed case authid will result
in an error.

How to Setup a DB2 Server to Use DCE
Servers must be registered principals in the Distributed Computing
Environment (DCE) Registry and have correct attributes before being used
with DB2. See the appropriate platform-specific DCE documentation for
information on how to create a DCE server principal.

The DCE Security client runtime code must be installed and accessible by the
server instance.

Each DB2 server that wishes to use DCE as an authentication mechanism
must register with DCE at the time of issuing DB2START. To avoid having to
do this manually, DCE provides a method whereby a server maintains its own
user ID and password (key) information in a special file called a keytab file. At
DB2START, DB2 reads the database manager configuration file and obtains

Chapter 5. Controlling Database Access 233

the authentication type for the instance. If it finds the authentication type is
DCE, DCE calls are made by the DB2 server to obtain the information from
the keytab file. It is this information that is used to register the server with
DCE. This registration allows the server to accept DCE tokens from DCE
clients and to use them to authenticate these users.

The instance administrator must create the keytab file for the instance using
DCE commands. Detailed information on how to create a keytab file is
included in the DCE documentation for your platform. In that document, refer
to the details associated with the keytab file and the commands dcecp keytab or
rgy_edit. The DB2 keytab file must be named keytab.db2 and must reside in the
security subdirectory of the sqllib directory for the instance. (For Intel-based
operating systems, the file must reside in the security subdirectory of the
INSTANCENAME subdirectory of the sqllib directory. INSTANCENAME is the
instance name of the instance you are working with.) It should contain only
one entry for the server principal for the specified instance; anything else
results in an error at DB2START time. On UNIX operating system platforms,
this file must be protected with file permissions to only allow read/write for
the instance owner.

Following is an example of the creation of the keytab file:
v Log in to DCE as a valid DCE user
v Invoke rgy_edit, and enter the following at the prompt:

> ktadd -p principal_name -pw principal_password \
> -f keytab.db2

To start DB2 using DCE authentication once the DCE configuration is
complete, you must tell DB2 it is to use DCE authentication by updating the
database manager configuration file with authentication type “DCE”. This is
done by issuing the following CLP command:

db2 update database manager configuration using authentication DCE
sysadm_group DCE_group_name

Then perform a dce_login to a valid DB2 DCE user who has SYSADM
authority and issue DB2START.

Note: Before starting DB2 using DCE authentication, ensure you have defined
a DCE user principal to be used as your SYSADM for the instance so
that you have a valid DCE user ID from which to start, stop, and
administer the instance. Please see “How to Set up a DB2 User for
DCE” on page 231 for instructions on how to do this.

In addition to these instructions, ensure the principal created is a
member of the SYSADM_GROUP for the instance. By default, this
group name is DB2ADMIN for DCE authentication when no group is

234 Administration Guide: Implementation

|
|
|
|
|
|
|
|
|
|
|
|
|

|

explicitly specified (that is, when the SYSADM_GROUP is null), but it
can be updated before changing the authentication type for the instance
to a group name (authorization name) of your choice. The DCE group
that you select must have an ERA defined that maps it to the specified
SYSADM_GROUP authorization name.

One of the functions of the DB2 Administration Server is to start DB2
instances. When AUTHENTICATION = DCE, the DCE principal used
in the DB2 keytab file for the instance must have a valid DCE principal
to DB2 authid mapping. This mapping is required for the DB2
Administration Server to start the DB2 instance. The valid mapping
allows this ID to act as a client as well as a server.

How to Set up a DB2 Client Instance to Use DCE
A client-only instance may be established to use DCE authentication for local
operations by updating the database manager configuration file and setting
the authentication type to DCE. There is no requirement to have a keytab file
for a client-only instance since there is no server that needs to register to DCE.
In general, it is not recommended (or required) that a client-only DB2 instance
use DCE authentication, but it is supported.

A client that wishes to access a remote database using DCE security requires
access to the applicable DCE Security product. Optionally, the client may
choose to catalog the authentication type for the target database in the
database directory. If the client chooses to specify DCE authentication, the
fully-qualified DCE server principal name must also be specified. If DCE
authentication is not specified in the directory, the authentication and
principal information is obtained from the server at CONNECT time.

DB2 Restrictions Using DCE Security
Using DCE authentication places some restrictions on certain SQL functions
provided by DB2 and related to group support. The following restrictions
exist when using DCE authentication:
v When using the GRANT or REVOKE statements, the keywords USER and

GROUP must be specified to qualify the authorization name specified,
otherwise an error is issued.

v When using the AUTHORIZATION clause of the CREATE SCHEMA
statement, the group membership of the authorization name specified will
not be considered in evaluating the authorizations required to perform the
statements that follow this clause. This may result in an authorization
failure during execution of the CREATE SCHEMA statement.

v When a package is rebound by a user other than the original binder of the
package, the privileges of the original binder are reevaluated. In this case,
group membership of the original binder are not considered when
reevaluating privileges. This may result in an authorization failure during
rebinding.

Chapter 5. Controlling Database Access 235

DCE authentication as performed by DB2 flows DCE Tickets obtained using
the OSF DCE Generic Security Services Application Programming Interface
(GSSAPI). As such, all authentication for DCE Security takes place at the
database protocol layer. Certain communication mechanisms may provide
additional communication layer security, which is not necessarily integrated
with DCE. In cases where the communication layer authentication can be kept
entirely independent of the database protocol layer authentication, no
restrictions will be enforced. However, the criteria for both the database
protocol layer and the communication layer authentication must be satisfied
before a connection can be successfully established. In cases where the
database protocol layer and the communication protocol layer authentication
mechanisms interact, their use may be restricted if some combinations result
in a security exposure.

DCE authentication may be used in conjunction with TCPIP SOCKS support;
however, the two security mechanisms work independently of one another.
This may mean that not only must the user provide a valid DCE login
context, but must also be logged on to a local operating system user ID that
meets the criteria of the SOCKS Server.

DCE authentication may be used in conjunction with NT Named Pipes;
however, the two security mechanisms work independent of one another. Not
only must the user provide a valid DCE login context, but he must also be
logged on to the NT Domain to a user ID that meets the criteria for the NT
Named Pipes support.

In order to address possible confusion where DCE principals and local
operating system user IDs are both used for authentication, as in the above
two examples, an integrated DCE logon can be used. In this case, when
logging on to a system, the user is automatically logged into the appropriate
DCE principal as well. See the DCE documentation for your platform for
details on how to use this feature, if it is supported. Note that in using this
approach, the same name is used for the DCE principal and the local
operating system ID. This may mean that the same value that is contained in
the DCE encrypted ticket also flows on the wire unencrypted in the
communication layer.

DCE authentication can only be used with APPC communications when the
SECURITY parameter is set to NONE. This is to avoid the possibility of
sending an unencrypted principal and/or password in the communication
layer, while using an encrypted DCE token for the same principal in the
database protocol layer. DCE Security at the APPC layer is not supported by
DB2 at this time.

236 Administration Guide: Implementation

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

Federated Database Authentication Processing

If you have installed the distributed join installation feature and set the
database manager configuration variable federated to ’YES’, your DB2 system is
operating as a federated system. Database authentication settings in a
federated system differ slightly from standard DB2 definitions. More
importantly, in a federated system you must consider the authentication
requirements of your data sources. In general, data sources (DB2, Oracle, DB2
for OS/390, and so on) are set up to require authentication. That means you
must ensure that IDs and passwords (as required) can flow to data sources.
DB2 provides several methods for supporting authentication at data sources,
all of which are explained in this section.

Authentication Settings

SERVER
Specifies that clients connecting to DB2 provide a user ID and
password to access DB2. In this case a user ID and password are
available for transmission to data sources. You control what is actually
passed to the data sources through server options and user mappings,
but authentication information is available for transmission to the data
source.

CLIENT
Specifies that authentication takes place on the database partition
where the application is invoked using operating system security. No
passwords are available for transmission directly to data sources. In
this case, if a data source requires authentication, you must create one
or more user mappings. You must also ensure that server options are
set properly to transmit correct user ID and password information to
the data source.

Exercise extreme caution when using CLIENT authentication.
Consider this form of authentication only for secure networks. A user
has SYSADM authority for the federated database when the following
conditions are met:
v Authentication is set to CLIENT.
v The user has root status at the client.
v The user knows the SYSADM’s authorization name.
v The user defines an authorization name on the client that is the

same as the SYSADM’s on DB2.

DCS Specifies that authentication takes place at a data source – not DB2. In
this case, standard DB2 authentication processing is bypassed. User
IDs and passwords are passed directly to data sources, depending on
server option settings. Authentication takes place only at Oracle or
DB2 Family data sources.

Chapter 5. Controlling Database Access 237

|
|
|
|
|
|
|
|
|
|

Exercise caution when authentication is set to DCS. Authentication is
done at neither the client nor at DB2. Any user who knows the
SYSADM authentication name can assume SYSADM authority for the
federated server.

DCE If authentication is set to DCE, only a user ID is available for
transmission to data sources. No password is available. If a data
source requires authentication processing (user ID and password), you
must define a user mapping that will transmit a password (and
possibly a user ID) to the data source. If the data source trusts the
DB2 connection, user mappings are not required because the ID
received from the external security system can be passed to the data
source.

Other DB2 authentication settings are possible, and one or more can result in
the availability of a password at DB2 for transmission to data sources. If DB2
and client authentication settings result in the transmission of a password to
DB2, that password is available for additional authentication processing at
data sources. See Table 4 on page 227 for more information.

Passing User IDs and Passwords to Data Sources
There are four ways to control the transmission of authentication information
to data sources: DB2 authentication settings, user mappings, server options,
and APPC security settings:

Authentication Settings
The purpose of this section is to clarify how authentication settings influence
global authentication processing in a federated system (the definitions for
authentication settings are in “Authentication Settings” on page 237). For
example, if DB2 authentication is set to SERVER or DCS, a user ID and
password are required for a connection. Therefore, a user ID and password
are available for transmission to data sources. If authentication is set to DCE
or CLIENT, and authentication is not taking place at the DB2 system
containing the federated database, only a user ID is available. If data source
authentication processing requires a password (or perhaps a different user ID
and a password), you must create a user mapping. If authentication is set to
CLIENT, and the trust_clntauth parameter setting is SERVER, it is possible that
a password is sent to DB2 and that it is available for transmission to data
sources.

User Mappings
DB2 can send either the authorization name used to connect to DB2 or an
authorization name defined at DB2. User mappings store authorization names
defined at DB2. They are created with the CREATE USER MAPPING
statement.

238 Administration Guide: Implementation

User mappings are flexible: you can map an ID to a new ID and password or
just a password. You can use them to provide missing information or to
change an ID and password to values accepted at the data source.

To create or alter a user mapping, you must hold one of the SYSADM or
DBADM authorities, or your authentication ID must match the authorization
name specified for the statement.

An example of a user mapping statement is:
CREATE USER MAPPING FOR "SHAWN" SERVER DB21 OPTIONS (REMOTE_AUTHID "SHAWNBCA",
REMOTE_PASSWORD "MAPLELEAF")

where a DB2 authentication ID (SHAWN) is mapped to the remote ID
SHAWNBCA and remote password MAPLELEAF for a server named DB21.

If the only difference between the authorization name (or password) at DB2
and the authorization name (or password) at the data source is the case of the
passed string, consider using server options to fold the case to the desired
setting instead of creating new IDs and passwords. See “Server Options” for
more information.

You must create a user mapping when your authentication setting is DCE and
a data source requires authentication processing (a password is expected). DB2
will only pass the DCE user ID to data sources. A password must be mapped
to that user ID and then sent to the data source.

Server Options
Server options can be used to provide overall authentication support. Use
them to indicate if passwords are passed to data sources (typically yes) and
whether user IDs and passwords need to be folded to uppercase or lowercase.
Server options are set using the CREATE SERVER, ALTER SERVER, and SET
SERVER OPTION statements.

Server options specific to authentication processing are discussed in the rest of
this section. A more complete list of server options is in “Using Server
Options to Help Define Data Sources and Facilitate Authentication Processing”
on page 153.

Password Server Option: The default setting for password is ’Y’ (passwords
are sent to data sources). Leave or set this option to ’Y’ for all cases where a
data source will perform authentication and is not expecting an encrypted
password.

DB2 can transmit encrypted passwords. Set the server option password to
’ENCRYPTION’ if passwords should be sent in an encrypted form to DB2

Chapter 5. Controlling Database Access 239

Family data sources. It is recommended that you set password to
’ENCRYPTION’ if your authentication setting at DB2 is DCS_ENCRYPT or
SERVER_ENCRYPT.

A user ID is always sent to data sources.

ID and Password Folding Options: Authorization names and passwords, in
some cases, might need to change. Different data sources can have different
authorization name and password requirements (regarding the use of
uppercase or lowercase) for IDs and passwords.

DB2 provides two server options that can help you resolve naming
differences. The option names are fold_id and fold_pw, and their settings are:

’U’ DB2 folds the authorization name or password to uppercase before
sending it to the data source.

’N’ DB2 does not fold the authorization name or password.

’L’ DB2 folds the authorization name or password to lowercase before
sending it to the data source.

null DB2 first sends the authorization name or password as uppercase; if
that fails, DB2 folds it to lowercase and sends it again.

The null setting might seem attractive because it covers many possibilities.
However, from a performance perspective, it is best to set these options so
that only one attempt is made for connections. If both the fold_id and
fold_pw options are set to null, it is possible that DB2 will make four attempts
to send the authorization name and password:
1. Both authorization name and password in uppercase.
2. Authorization name in uppercase and password in lowercase.
3. Authorization name in lowercase and password in uppercase.
4. Both authorization name and password in lowercase.

APPC Security Settings
If you are connecting across APPC to a DRDA data source, that requires a
user ID and password, or if your authentication setting is DCS and you are
authenticating at a DRDA data source, ensure that your APPC security setting
is PROGRAM for the connection between DB2 and that data source.

Federated Database Authentication Example
This section provides an overview of federated system authentication and
authorization steps. See Figure 3 on page 241 for an overview of federated
database authentication and authorization processing.

240 Administration Guide: Implementation

|
|
|
|

The task in this scenario is to enable the user DJINSTL to perform a UNION
operation against two nicknames (NN1 and NN2). The nicknames represent
two tables. One data source is a DB2 for OS/390 system where DJINSTL has a
different user ID and password (see Figure 3) named MVS1. A user mapping
will be required to access information at MVS1. The other data source is a
DB2 system where DJINSTL’s ID and password are the same. This data
source, DB21, simply requires that the user ID and password are sent in
uppercase.

DB2 authentication is set to SERVER. DJINSTL will access DB2 from a
Windows NT client across a TCP/IP connection. The connection from DB2 to
DB2 for OS/390 is also TCP/IP. The federated database name is DJDB1.

First ensure that DB2 is expecting a password and that a password is being
sent. Also, ensure that the client and server authentication types match. Check
the DB2 server authentication type by issuing the command:

GET DATABASE MANAGER CONFIGURATION

from the DB2 server. Check the client authentication type by issuing the
command:

Figure 3. Federated Database Authentication and Authorization Processing

Chapter 5. Controlling Database Access 241

LIST DATABASE DIRECTORY

from the client. In both cases, ensure that authentication is set to SERVER. If
the setting for the client is DCS or CLIENT, you can change it by using the
UNCATALOG DATABASE and CATALOG DATABASE commands.

Next, ensure that passwords will be sent to the data sources. After connecting
to the federated database DJDB1, issue the commands:

ALTER SERVER MVS1 OPTIONS (SET password 'Y')
ALTER SERVER DB21 OPTIONS (SET password 'Y')

Next, ensure that passwords are sent to the DB21 data source in the proper
case:

ALTER SERVER DB21 OPTIONS (ADD fold_id 'U')
ALTER SERVER DB21 OPTIONS (ADD fold_pw 'U')

The next step is to grant privileges allowing the user DJINSTL to connect to
the federated database DJDB1 and select nicknames:

GRANT CONNECT ON DATABASE DJDB1 TO DJINSTL;

Now, map DJINSTL’s DB2 ID and password to the correct user ID and
password for the MVS1 server:

CREATE USER MAPPING FOR "DJINSTL" SERVER MVS1 OPTIONS (REMOTE_AUTHID "SHAWN",
REMOTE_PASSWORD "MVS4YOU")

At this point, the DB2 user ID DJINSTL can send requests to data sources.
Additional steps might be required to access data source objects referenced by
nicknames (privileges are usually required for tables and views referenced by
nicknames).

Privileges, Authorities, and Authorization

Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects. Users can access only those objects
for which they have the appropriate authorization, that is, the required
privilege or authority.

The following authorities exist:
v “System Administration Authority (SYSADM)” on page 244
v “System Control Authority (SYSCTRL)” on page 245
v “System Maintenance Authority (SYSMAINT)” on page 246
v “Database Administration Authority (DBADM)” on page 247
v “LOAD Authority” on page 247

242 Administration Guide: Implementation

|

|

The following types of privileges exist:
v “Database Privileges” on page 248
v “Schema Privileges” on page 249
v “Table Space Privileges” on page 250
v “Table and View Privileges” on page 251
v “Nickname Privileges” on page 253
v “Server Privileges” on page 254
v “Package Privileges” on page 254
v “Index Privileges” on page 255.

Figure 4 illustrates the relationship between authorities and their span of
control (database, database manager).

A user or group can have one or more of the following levels of authorization:
v Administrative authority (SYSADM or DBADM) gives full privileges for a

set of objects.
v System authority (SYSCTRL or SYSMAINT) gives full privileges for

managing the system, but does not allow access to the data.

Authorities

Instance

SYSCTRL

SYSMAINT

SYSADM

Database1

Database2

DBADM

DBADM

Load

Load

Figure 4. Hierarchy of Authorities

Chapter 5. Controlling Database Access 243

v LOAD authority (LOAD) gives LOAD utility or AutoLoader utility
privileges to load data into tables.

v Ownership privilege (also called CONTROL privilege in some cases) gives
full privileges for a specific object.

v Individual privileges may be granted to allow a user to carry out specific
functions on specific objects.

v Implicit privileges may be granted to a user who has the privilege to
execute a package. While users can run the application, they do not
necessarily require explicit privileges on the data objects used within the
package. For more information see “Allowing Indirect Privileges Through a
Package” on page 259.

Users with administrative authority (SYSADM or DBADM) or ownership
privileges (CONTROL) can grant and revoke privileges to and from others,
using the GRANT and REVOKE statements. (See “Controlling Access to
Database Objects” on page 255.) It is also possible to grant a table, view, or
schema privilege to another user if that privilege is held WITH GRANT
OPTION. However, the WITH GRANT OPTION does not allow the person
granting the privilege to revoke the privilege once granted. You must have
SYSADM authority, DBADM authority, or CONTROL privilege to revoke the
privilege.

A user or group can be authorized for any combination of individual
privileges or authorities. When a privilege is associated with a resource, that
resource must exist. For example, a user cannot be given the SELECT
privilege on a table unless that table has previously been created.

Note: Care must be taken when an authorization name is given authorities
and privileges and there is no user created with that authorization
name. At some later time, a user can be created with that authorization
name and automatically receive all of the authorities and privileges
associated with that authorization name.

Refer to the Command Reference, the Administrative API Reference, or the SQL
Reference for information about what authorization is required for a particular
command, API, or SQL statement.

System Administration Authority (SYSADM)
SYSADM authority is the highest level of administrative authority. Users with
SYSADM authority can run utilities, issue database and database manager
commands, and access the data in any table in any database within the
database manager instance. It provides the ability to control all database
objects in the instance, including databases, tables, views, indexes, packages,
schemas, servers, aliases, data types, functions, procedures, triggers, table
spaces, nodegroups, buffer pools, and event monitors.

244 Administration Guide: Implementation

SYSADM authority is assigned to the group specified by the sysadm_group
configuration parameter (refer to “Configuring DB2” in Administration Guide:
Performance). Membership in that group is controlled outside the database
manager through the security facility used on your platform. Refer to the
Quick Beginnings for information on how to use your system security facility
to create, change, or delete SYSADM authorities.

Only a user with SYSADM authority can perform the following functions:
v Migrate a database
v Change the database manager configuration file (including specifying the

groups having SYSCTRL or SYSMAINT authority)
v Grant DBADM authority.

In addition, a user with SYSADM authority can perform the functions of users
with the following authorities:
v “System Control Authority (SYSCTRL)”
v “System Maintenance Authority (SYSMAINT)” on page 246
v “Database Administration Authority (DBADM)” on page 247

Note: When users with SYSADM authority create databases, they are
automatically granted explicit DBADM authority on the database. If the
database creator is removed from the SYSADM group, and if you want
to also prevent them from accessing that database as a DBADM, you
must explicitly revoke this DBADM authority.

System Control Authority (SYSCTRL)
SYSCTRL authority is the highest level of system control authority. This
authority provides the ability to perform maintenance and utility operations
against the database manager instance and its databases. These operations can
affect system resources, but they do not allow direct access to data in the
databases. System control authority is designed for users administering a
database manager instance containing sensitive data.

SYSCTRL authority is assigned to the group specified by the sysctrl_group
configuration parameter (refer to “Configuring DB2” in Administration Guide:
Performance). If a group is specified, membership in that group is controlled
outside the database manager through the security facility used on your
platform.

Only a user with SYSCTRL authority or higher can do the following:
v Update a database, node, or distributed connection services (DCS) directory
v Force users off the system
v Create or drop a database
v Drop, create, or alter a table space

Chapter 5. Controlling Database Access 245

v Restore to a new database.

In addition, a user with SYSCTRL authority can perform the functions of
users with “System Maintenance Authority (SYSMAINT)” authority.

Users with SYSCTRL authority also have the implicit privilege to connect to a
database.

Note: When users with SYSCTRL authority create databases, they are
automatically granted explicit DBADM authority on the database. If the
database creator is removed from the SYSCTRL group, and if you want
to also prevent them from accessing that database as a DBADM, you
must explicitly revoke this DBADM authority.

System Maintenance Authority (SYSMAINT)
SYSMAINT authority is the second level of system control authority. This
authority provides the ability to perform maintenance and utility operations
against the database manager instance and its databases. These operations can
affect system resources, but they do not allow direct access to data in the
databases. System maintenance authority is designed for users maintaining
databases within a database manager instance that contains sensitive data.

SYSMAINT authority is assigned to the group specified by the sysmaint_group
configuration parameter (refer to “Configuring DB2” in Administration Guide:
Performance). If a group is specified, membership in that group is controlled
outside the database manager through the security facility used on your
platform.

Only a user with SYSMAINT or higher system authority can do the following:
v Update database configuration files
v Back up a database or table space
v Restore to an existing database
v Perform roll forward recovery
v Start or stop an instance
v Restore a table space
v Run trace
v Take database system monitor snapshots of a database manager instance or

its databases.

A user with SYSMAINT, DBADM, or higher authority can do the following:
v Query the state of a table space
v Update log history files

246 Administration Guide: Implementation

|

|

|

v Quiesce a table space
v Reorganize a table
v Collect catalog statistics using the RUNSTATS utility.

Users with SYSMAINT authority also have the implicit privilege to connect to
a database.

Database Administration Authority (DBADM)
DBADM authority is the second highest level of administrative authority. It
applies only to a specific database, and allows the user to run certain utilities,
issue database commands, and access the data in any table in the database.
When DBADM authority is granted, BINDADD, CONNECT, CREATETAB,
CREATE_NOT_FENCED, and IMPLICIT_SCHEMA privileges are granted as
well. Only a user with SYSADM authority can grant or revoke DBADM
authority. Users with DBADM authority can grant privileges on the database
to others and can revoke any privilege from any user regardless of who
granted it.

Only a user with DBADM or higher authority can do the following:
v Read log files
v Create, activate, and drop event monitors.

A user with DBADM, SYSMAINT, or higher authority can do the following:
v Query the state of a table space
v Update log history files
v Quiesce a table space.
v Reorganize a table
v Collect catalog statistics using the RUNSTATS utility.

Note: A DBADM can only perform the above functions on the database for
which DBADM authority is held.

LOAD Authority
Users having LOAD authority at the database level, as well as INSERT
privilege on a table, can use the LOAD command or the AutoLoader utility to
load data into a table.

Users having LOAD authority at the database level, as well as INSERT
privilege on a table, can LOAD RESTART or LOAD TERMINATE if the
previous load operation is a load to insert data.

If the previous load operation was a load replace, the DELETE privilege must
also have been granted to that user before the user can LOAD RESTART or
LOAD TERMINATE.

Chapter 5. Controlling Database Access 247

If the exception tables are used as part of a LOAD, the user must have
INSERT privilege on the exception tables.

The user with this authority can perform QUIESCE TABLESPACES FOR
TABLE, RUNSTATS, and LIST TABLESPACES commands.

Database Privileges
Figure 5 shows the database privileges.

Database privileges involve actions on a database as a whole:
v CONNECT allows a user to access the database
v BINDADD allows a user to create new packages in the database
v CREATETAB allows a user to create new tables in the database
v CREATE_NOT_FENCED allows a user to create a user-defined function

(UDF) or procedure that is “not fenced”. UDFs or procedures that are “not
fenced” must be extremely well tested because the database manager does
not protect its storage or control blocks from these UDFs or procedures. (As
a result, a poorly written and tested UDF or procedure that is allowed to
run “not fenced” can cause serious problems for your system.) (Refer to the
Application Development Guide or the SQL Reference for more information.)

v IMPLICIT_SCHEMA allows any user to create a schema implicitly by
creating an object using a CREATE statement with a schema name that does
not already exist. SYSIBM becomes the owner of the implicitly created
schema and PUBLIC is given the privilege to create objects in this schema.

v LOAD allows a user to load data into a table.

CONNECT
(Database)

CREATE_NOT_FENCED
(Database)

CREATETAB
(Database)

IMPLICIT_SCHEMA
(Database)

BINDADD
(Database)

LOAD
(Database)

Database privileges

Figure 5. Database Privileges

248 Administration Guide: Implementation

Only users with SYSADM or DBADM authority can grant and revoke these
privileges to and from other users.

Note: When a database is created, the following privileges are automatically
granted to PUBLIC:
v CREATETAB
v BINDADD
v CONNECT
v IMPLICIT_SCHEMA
v USE privilege on USERSPACE1 table space
v SELECT privilege on the system catalog views.

To remove any privilege, a DBADM or SYSADM must explicitly revoke the
privilege from PUBLIC.

Implicit Schema Authority (IMPLICIT_SCHEMA) Considerations
When a new database is created, or when a database is migrated from the
previous release, PUBLIC is given IMPLICIT_SCHEMA database authority.
With this authority, any user can create a schema by creating an object and
specifying a schema name that does not already exist. SYSIBM becomes the
owner of the implicitly created schema and PUBLIC is given the privilege to
create objects in this schema.

If control of who can implicitly create schema objects is required for the
database, IMPLICIT_SCHEMA database authority should be revoked from
PUBLIC. Once this is done, there are only three (3) ways that a schema object
is created:
v Any user can create a schema using their own authorization name on a

CREATE SCHEMA statement.
v Any user with DBADM authority can explicitly create any schema which

does not already exist, and can optionally specify another user as the owner
of the schema.

v Any user with DBADM authority has IMPLICIT_SCHEMA database
authority (independent of PUBLIC) so that they can implicitly create a
schema with any name at the time they are creating other database objects.
SYSIBM becomes the owner of the implicitly created schema and PUBLIC
has the privilege to create objects in the schema.

A user always has the ability to explicitly create their own schema using their
own authorization name.

Schema Privileges
Schema privileges are in the object privilege category. Object privileges are
shown in Figure 6 on page 250.

Chapter 5. Controlling Database Access 249

Schema privileges involve actions on schemas in a database. A user may be
granted any of the following privileges:
v CREATEIN allows the user to create objects within the schema.
v ALTERIN allows the user to alter objects within the schema.
v DROPIN allows the user to drop objects from within the schema.

The owner of the schema has all of these privileges and the ability to grant
them to others. The objects that are manipulated within the schema object
include: tables, views, indexes, packages, data types, functions, triggers,
procedures, and aliases.

Table Space Privileges
The table space privileges involve actions on the table spaces in a database. A
user may be granted the USE privilege for a table space which then allows
them to create tables within the table space.

ALTERIN
CREATEIN
DROPIN

CONTROL
(Nicknames)

ALL
ALTER
INDEX

REFERENCES

CONTROL
(Indexes)

CONTROL
(Tables)

ALL
ALTER

DELETE
INDEX

INSERT
REFERENCES

SELECT
UPDATE

(Server)

PASSTHRU

(Schema
Owners)

CONTROL
(Packages)

BIND
EXECUTE

ALL
DELETE
INSERT
SELECT
UPDATE

CONTROL
(Views)

USE

CONTROL
(Table
spaces)

Object privileges

Database
objects

Figure 6. Object Privileges

250 Administration Guide: Implementation

The owner of the table space, typically the creator who has SYSADM or
SYSCTRL authority, has the USE privilege and the ability to grant this
privilege to others. By default, at database creation time the USE privilege for
table space USERSPACE1 is granted to PUBLIC, though this privilege can be
revoked.

The USE privilege cannot be used with SYSCATSPACE or any system
temporary table spaces.

Table and View Privileges
Table and view privileges involve actions on tables or views in a database. A
user must have CONNECT privilege on the database to use any of the
following privileges:
v CONTROL provides the user with all privileges for a table or view

including the ability to drop it, and to grant and revoke individual table
privileges. You must have SYSADM or DBADM authority to grant
CONTROL. The creator of a table automatically receives CONTROL
privilege on the table. The creator of a view automatically receives
CONTROL privilege only if they have CONTROL privilege on all tables
and views referenced in the view definition, or they have SYSADM or
DBADM authority.

v ALTER allows the user to add columns to a table, to add or change
comments on a table and its columns, to add a primary key or unique
constraint and to create or drop a table check constraint. The user can also
create triggers on the table, although additional authority on all the objects
referenced in the trigger (including SELECT on the table if the trigger
references any of the columns of the table) is required. A user with ALTER
privilege on all the descendent tables can drop a primary key; a user with
ALTER privilege on the table and REFERENCES privilege on the parent
table, or REFERENCES privilege on the appropriate columns, can create or
drop a foreign key. A user with ALTER privilege can also COMMENT ON a
table.

v DELETE allows the user to delete rows from a table or view.
v INDEX allows the user to create an index on a table. Creators of indexes

automatically have CONTROL privilege on the index. For more
information, see “Index Privileges” on page 255.

v INSERT allows the user to insert a row into a table or view, and to run the
IMPORT utility.

v REFERENCES allows the user to create and drop a foreign key, specifying
the table as the parent in a relationship. The user might have this privilege
only on specific columns.

v SELECT allows the user to retrieve rows from a table or view, to create a
view on a table, and to run the EXPORT utility.

Chapter 5. Controlling Database Access 251

|
|

v UPDATE allows the user to change an entry in a table, a view, or for one or
more specific columns in a table or view. The user may have this privilege
only on specific columns.

The privilege to grant these privileges to others may also be granted using the
WITH GRANT OPTION on the GRANT statement.

Note: When a user or group is granted CONTROL privilege on a table, all
other privileges on that table are automatically granted WITH GRANT
OPTION. If you subsequently revoke the CONTROL privilege on the
table from a user, that user will still retain the other privileges that
were automatically granted. To revoke all the privileges that are
granted with the CONTROL privilege, you must either explicitly revoke
each individual privilege or specify the ALL keyword on the REVOKE
statement, for example:

REVOKE ALL
ON EMPLOYEE FROM USER HERON

When working with typed tables, there are implications regarding table and
view privileges.

Note: Privileges may be granted independently at every level of a table
hierarchy. As a result, a user granted a privilege on a supertable within
a hierarchy of typed tables may also indirectly affect any subtables.
However, a user can only operate directly on a subtable if the necessary
privilege is held on that subtable.

The supertable/subtable relationships among the tables in a table hierarchy
mean that operations such as SELECT, UPDATE, and DELETE will affect the
rows of the operation’s target table and all its subtables (if any). This behavior
can be called “substitutability”. For example, suppose that you have created
an Employee table of type Employee_t with a subtable Manager of type
Manager_t. A manager is a (specialized) kind of employee, as indicated by the
type/subtype relationship between the structured types Employee_t and
Manager_t and the corresponding table/subtable relationship between the
tables Employee and Manager. As a result of this relationship, the SQL query:

SELECT * FROM Employee

will return the object identifier and Employee_t attributes for both employees
and managers. Similarly, the update operation:

UPDATE Employee SET Salary = Salary + 1000

will give a thousand dollar raise to managers as well as regular employees.

A user with SELECT privilege on Employee will be able to perform this
SELECT operation even if they do not have an explicit SELECT privilege on

252 Administration Guide: Implementation

|
|

Manager. However, such a user will not be permitted to perform a SELECT
operation directly on the Manager subtable, and will therefore not be able to
access any of the non-inherited columns of the Manager table.

Similarly, a user with UPDATE privilege on Employee will be able to perform
an UPDATE operation on Manager, thereby affecting both regular employees
and managers, even without having the explicit UPDATE privilege on the
Manager table. However, such a user will not be permitted to perform
UPDATE operations directly on the Manager subtable, and will therefore not
be able to update non-inherited columns of the Manager table.

The following manuals provide information about the authorizations required
to execute specific commands, APIs, or SQL statements:
v SQL Reference

v Command Reference

v Administrative API Reference.

Refer to Administration Guide: Performance for information about the
authorization required to update catalog statistics.

For information about how view privileges are determined, refer to the
CREATE VIEW statement in the SQL Reference manual.

Nickname Privileges
Nickname privileges involve actions on nicknames in a database. These
privileges do not affect privileges on the data source objects referenced by
nicknames. A user must have CONNECT privilege on the database to use any
of the following privileges:
v CONTROL provides the user with all privileges for a nickname including

the ability to drop it, and to grant and revoke individual nickname
privileges. You must have SYSADM or DBADM authority to grant
CONTROL. The creator of a nickname automatically receives CONTROL
privilege on the nickname.

v ALTER allows the user to change column names in a nickname, add or
change the DB2 type that the column’s data type maps to, and set column
options for nickname columns.

v INDEX allows the user to create an index specification on a nickname.
Creators of index specifications automatically have CONTROL privilege on
the index.

v REFERENCES allows the user to create and drop a foreign key, specifying
the nickname as the parent in a relationship. The user may have this
privilege only on specific columns.

Chapter 5. Controlling Database Access 253

|
|
|

|
|
|
|
|
|

The privilege to grant these privileges to others can also be granted using the
WITH GRANT OPTION on the GRANT statement.

Note: When a user or group is granted CONTROL privilege on a nickname,
all other privileges on that nickname are automatically granted WITH
GRANT OPTION. If you subsequently revoke the CONTROL privilege
on the nickname from a user, that user will still retain the other
privileges that were automatically granted.

To access data source data, you must also have the proper authorization for
the objects at data sources referenced by nicknames.

When a user accesses a view that references one or more nicknames, that user
must be authorized to access the view and the objects that the nicknames
reference at data sources.

Server Privileges
There is one server privilege: PASSTHRU. This privilege controls which
authorization IDs can issue DDL and DML statements directly (pass-through
operations) to data sources.

DB2 provides two SQL statements to control pass-through operations:
v GRANT PASSTHRU, which grants the authority to issue SET PASSTHRU

statements against a data source and pass-through DML and DDL
statements to that data source.

v REVOKE PASSTHRU, which revokes the authority to issue SET PASSTHRU
statements against a data source and pass-through DML and DDL
statements to that data source.

A sample statement granting pass-through authorization to the user SHAWN
for the server ORACLE1 is:

GRANT PASSTHRU ON SERVER ORACLE1 TO USER SHAWN

For complete information on the syntax of PASSTHRU statements, see the
SQL Reference.

Package Privileges

A package is a database object that contains the information needed by the
database manager to access data in the most efficient way for a particular
application program. Package privileges enable a user to create and
manipulate packages. The user must have CONNECT privilege on the
database to use any of the following privileges:
v CONTROL provides the user with the ability to rebind, drop, or execute a

package as well as the ability to extend those privileges to others. The
creator of a package automatically receives this privilege. A user with

254 Administration Guide: Implementation

CONTROL privilege is granted the BIND and EXECUTE privileges, and can
grant BIND and EXECUTE privileges to other users as well. To grant
CONTROL privilege, the user must have SYSADM or DBADM authority.

v BIND allows the user to rebind an existing package.
v EXECUTE allows the user to execute a package.

In addition to these package privileges, the BINDADD database privilege
allows users to create new packages or rebind an existing package in the
database.

Users with the authority to execute a package containing nicknames don’t
need additional privileges or an authority level for the nicknames within the
package; however, they will need to pass authentication checks at the data
sources containing the objects referenced by the nicknames. In addition,
package users must have the appropriate privileges or authority levels for
data source objects at the data source.

It is possible that packages containing nicknames might require additional
authorization steps because DB2 uses dynamic SQL when communicating
with DB2 Family data sources. The authorization ID running the package at
the data source must have the appropriate authority to execute the package
dynamically at that data source. See the SQL Reference for more information
about how DB2 processes static and dynamic SQL.

Index Privileges
The creator of an index or an index specification automatically receives
CONTROL privilege on the index. CONTROL privilege on an index is really
the ability to drop the index. To grant CONTROL privilege on an index, a
user must have SYSADM or DBADM authority.

The table-level INDEX privilege allows a user to create an index on that table
(see “Table and View Privileges” on page 251).

Sequence Privileges
The creator of a sequence automatically receives the USAGE privilege. The
USAGE privilege is needed to use NEXTVAL and PREVVAL expressions for
the sequence. To allow other users to use the NEXTVAL and PREVVAL
expressions, sequence privileges must be granted to PUBLIC. This allows all
users to use the expressions with the specified sequence.

Controlling Access to Database Objects

Controlling data access requires an understanding of direct and indirect
privileges, administrative authorities, and packages. This section explains
these topics and provides some examples.

Chapter 5. Controlling Database Access 255

|

|
|
|
|
|

Directly granted privileges are stored in the system catalog. Methods for
auditing the implementation of the database access control plan are discussed
in “Using the System Catalog” on page 267.

Authorization is controlled in three ways:
v Explicit authorization is controlled through privileges controlled with the

GRANT and REVOKE statements
v Implicit authorization is controlled by creating and dropping objects
v Indirect privileges are associated with packages.

The following topics are discussed:
v “Granting Privileges”
v “Revoking Privileges” on page 257
v “Managing Implicit Authorizations by Creating and Dropping Objects” on

page 259
v “Allowing Indirect Privileges Through a Package” on page 259
v “Controlling Access to Data with Views” on page 261
v “Monitoring Access to Data Using the Audit Facility” on page 264.

Granting Privileges
The GRANT statement allows an authorized user to grant privileges. A
privilege can be granted to one or more authorization names in one statement;
or to PUBLIC, which makes the privileges available to all users. Note that an
authorization name can be either an individual user or a group.

On operating systems where users and groups exist with the same name, you
should specify whether you are granting the privilege to the user or group.
Both the GRANT and REVOKE statements support the keywords USER and
GROUP. If these optional keywords are not used, the database manager
checks the operating system security facility to determine whether the
authorization name identifies a user or a group. If the authorization name
could be both a user and a group, an error is returned.

The following example grants SELECT privileges on the EMPLOYEE table to
the user HERON:

GRANT SELECT
ON EMPLOYEE TO USER HERON

The following example grants SELECT privileges on the EMPLOYEE table to
the group HERON:

GRANT SELECT
ON EMPLOYEE TO GROUP HERON

256 Administration Guide: Implementation

To grant privileges on most database objects, the user must have SYSADM
authority, DBADM authority, or CONTROL privilege on that object; or, the
user must hold the privilege WITH GRANT OPTION. Privileges can be
granted only on existing objects. To grant CONTROL privilege to someone
else, the user must have SYSADM or DBADM authority. To grant DBADM
authority, the user must have SYSADM authority.

Refer to the SQL Reference for more information about the GRANT statement.

Revoking Privileges
The REVOKE statement allows authorized users to revoke privileges
previously granted to other users. To revoke privileges on database objects,
you must have DBADM authority, SYSADM authority, or CONTROL privilege
on that object. Note that holding a privilege WITH GRANT OPTION is not
sufficient to revoke that privilege. To revoke CONTROL privilege from
another user, you must have SYSADM or DBADM authority. To revoke
DBADM authority, you must have SYSADM authority. Privileges can only be
revoked on existing objects.

Note: A user without DBADM authority or CONTROL privilege on a table or
view is not able to revoke a privilege that they granted through their
use of the WITH GRANT OPTION. Also, there is no cascade on the
revoke to those who have received privileges granted by the person
being revoked. For more information on the authority required to
revoke privileges, refer to the SQL Reference manual.

If a privilege has been granted to both a user and a group with the same
name, you must specify the GROUP or USER keyword when revoking the
privilege. The following example revokes the SELECT privilege on the
EMPLOYEE table from the user HERON:

REVOKE SELECT
ON EMPLOYEE FROM USER HERON

The following example revokes the SELECT privilege on the EMPLOYEE table
from the group HERON:

REVOKE SELECT
ON EMPLOYEE FROM GROUP HERON

Note that revoking a privilege from a group may not revoke it from all
members of that group. If an individual name has been directly granted a
privilege, it will keep it until that privilege is directly revoked.

If a table privilege is revoked from a user, privileges are also revoked on any
view created by that user which depends on the revoked table privilege.

Chapter 5. Controlling Database Access 257

However, only the privileges implicitly granted by the system are revoked. If
a privilege on the view was granted directly by another user, the privilege is
still held.

You may have a situation where you want to GRANT a privilege to a group
and then REVOKE the privilege from just one member of the group. There are
only a couple of ways to do that without receiving the error message
SQL0556N:
v You can remove the member from the group; or, create a new group with

fewer members and GRANT the privilege to the new group.
v You can REVOKE the privilege from the group and then GRANT it to

individual users (authorization IDs).

If an explicitly granted table (or view) privilege is revoked from a user with
DBADM authority, privileges will not be revoked from other views defined
on that table. This is because the view privileges are available through the
DBADM authority and are not dependent on explicit privileges on the
underlying tables.

If you have defined a view based on one or more underlying tables or views
and you lose the SELECT privilege to one or more of those tables or views,
then the view cannot be used.

Note: When CONTROL privilege is revoked from a user on a table or a view,
the user continues to have the ability to grant privileges to others.
When given CONTROL privilege, the user also receives all other
privileges WITH GRANT OPTION. Once CONTROL is revoked, all of
the other privileges remain WITH GRANT OPTION until they are
explicitly revoked.

All packages that are dependent on revoked privileges are marked invalid,
but can be validated if rebound by a user with appropriate authority.
Packages can also be rebuilt if the privileges are subsequently granted again
to the binder of the application; running the application will trigger a
successful implicit rebind. If privileges are revoked from PUBLIC, all packages
bound by users having only been able to bind based on PUBLIC privileges are
invalidated. If DBADM authority is revoked from a user, all packages bound
by that user are invalidated including those associated with database utilities.
Attempting to use a package that has been marked invalid causes the system
to attempt to rebind the package. If this rebind attempt fails, an error occurs
(SQLCODE -727). In this case, the packages must be explicitly rebound by a
user with:
v Authority to rebind the packages
v Appropriate authority for the objects used within the packages

258 Administration Guide: Implementation

|
|
|
|

|
|

|
|

These packages should be rebound at the time the privileges are revoked.
Refer to the SQL Reference for more information about the REVOKE and
REBIND PACKAGE statements.

If you have defined a trigger based on one or more privileges and you lose
one or more of those privileges, then the trigger cannot be used.

Managing Implicit Authorizations by Creating and Dropping Objects
The database manager implicitly grants certain privileges to a user who issues
a CREATE SCHEMA, CREATE TABLESPACE, CREATE TABLE, CREATE
VIEW, or CREATE INDEX statement, or who creates a new package using a
PREP or BIND command. Privileges are also granted when objects are created
by users with SYSADM or DBADM authority. Similarly, privileges are
removed when an object is dropped.

When the created object is a table space, table, index, or package, the user
receives CONTROL privilege on the object. When the object is a view, the
CONTROL privilege for the view is granted implicitly only if the user has
CONTROL privilege for all tables and views referenced in the view definition.

When the object explicitly created is a schema, the schema owner is given
ALTERIN, CREATEIN, and DROPIN privileges WITH GRANT OPTION. An
implicitly created schema has CREATEIN granted to PUBLIC.

For information about how view privileges are determined, refer to the
CREATE VIEW statement in the SQL Reference manual.

Establishing Ownership of a Plan or a Package
The BIND and PRECOMPILE commands create or change an application
package. On either one, use the OWNER option to name the owner of the
resulting package. There are simple rules for naming the owner of a package:
v Any user can name themselves as the owner. This is the default if the OWNER

option is not specified.
v An ID with SYSADM or DBADM authority can name any authorization ID

as the owner using the OWNER option.

Not all operating systems that can bind a package using DB2 database
products support the OWNER option.

Refer to the Command Reference for more information on the BIND and
PRECOMPILE commands.

Allowing Indirect Privileges Through a Package
Access to data within a database can be requested by application programs, as
well as by persons engaged in an interactive workstation session. A package
contains statements that allow users to perform a variety of actions on many
database objects. Each of these actions requires one or more privileges.

Chapter 5. Controlling Database Access 259

Privileges granted to individuals binding the package and to PUBLIC are used
for authorization checking when static SQL is bound. Privileges granted
through groups are not used for authorization checking when static SQL is
bound. The user with a valid authID who binds a package must either have
been explicitly granted all the privileges required to execute the static SQL
statements in the package or have been implicitly granted the necessary
privileges through PUBLIC unless VALIDATE RUN was specified when
binding the package. If VALIDATE RUN was specified at BIND time, all
authorization failures for any static SQL statements within this package will
not cause the BIND to fail, and those SQL statements are revalidated at run
time. PUBLIC, group, and user privileges are all used when checking to
ensure the user has the appropriate authorization (BIND or BINDADD
privilege) to bind the package.

Packages may include both static and dynamic SQL. To process a package
with static SQL, a user need only have EXECUTE privilege on the package.
This user can then indirectly obtain the privileges of the package binder for
any static SQL in the package but only within the restrictions imposed by the
package.

To process a package with any dynamic SQL statements, the user must have
EXECUTE privilege on the package. The user needs EXECUTE privilege on
the package plus any privileges required to execute the dynamic SQL
statements in the package. The binder’s authorities and privileges are used for
any static SQL in the package.

Allowing Indirect Privileges Through a Package Containing Nicknames
When a package contains references to nicknames, authorization processing
for package creators and package users is slightly more complex. When a
package creator successfully binds packages that contain nicknames, the
package creator does not have to pass authentication checking or privilege
checking for the tables and views that the nicknames reference at the data
source. However, the package executor must pass authentication and
authorization checking at data sources.

For example, assume that a package creator’s .SQC file contains several SQL
statements. One static statement references a local table. Another dynamic
statement references a nickname. When the package is bound, the package
creator’s authid is used to verify privileges for the local table, but no checking
is done for the data source objects that the nickname identifies. When another
user executes the package, assuming they have the EXECUTE privilege for
that package, that user does not have to pass any additional privilege
checking for the statement referencing the table. However, for the statement
referencing the nickname, the user executing the package must pass
authentication checking and privilege checking at the data source.

260 Administration Guide: Implementation

When the .SQC file contains only dynamic SQL statements and a mixture of
table and nickname references, DB2 authorization checking for local objects
and nicknames is similar. Package users must pass privilege checking for any
local objects (tables, views) within the statements and also pass privilege
checking for nickname objects (package users must pass authentication and
privilege checking at the data source containing the objects that the nicknames
identify). In both cases, users of the package must have the EXECUTE
privilege.

The ID and password of the package executor is used for all data source
authentication and privilege processing. This information can be changed by
creating a user mapping.

Note: Nicknames cannot be specified in static SQL. Do not use the
DYNAMICRULES option (set to BIND) with packages containing
nicknames.

It is possible that packages containing nicknames might require additional
authorization steps because DB2 uses dynamic SQL when communicating
with DB2 Family data sources. The authorization ID running the package at
the data source must have the appropriate authority to execute the package
dynamically at that data source. See the SQL Reference for more information
about how DB2 processes static and dynamic SQL.

Controlling Access to Data with Views
A view provides a means of controlling access or extending privileges to a
table by allowing:
v Access only to designated columns of the table.

For users and application programs that require access only to specific
columns of a table, an authorized user can create a view to limit the
columns addressed only to those required.

v Access only to a subset of the rows of the table.
By specifying a WHERE clause in the subquery of a view definition, an
authorized user can limit the rows addressed through a view.

v Access only to a subset of the rows or columns in data source tables or
views. If you are accessing data sources through nicknames, you can create
local DB2 views that reference nicknames. These views can reference
nicknames from one or many data sources.

Note: Because you can create a view that contains nickname references for
more than one data source, your users can access data in multiple
data sources from one view. These views are called multi-location
views. Such views are useful when joining information in columns of
sensitive tables across a distributed environment or when individual
users lack the privileges needed at data sources for specific objects.

Chapter 5. Controlling Database Access 261

|
|
|
|
|
|
|
|

To create a view, a user must have SYSADM authority, DBADM authority, or
CONTROL or SELECT privilege for each table or view referenced in the view
definition. The user must also be able to create an object in the schema
specified for the view. That is, CREATEIN privilege for an existing schema or
IMPLICIT_SCHEMA authority on the database if the schema does not already
exist. See “Creating a View” on page 144 for more information.

If you are creating views that reference nicknames, you do not need
additional authority on the data source objects (tables and views) referenced
by nicknames in the view; however, your users must have SELECT authority
or the equivalent authorization level for the underlying data source objects
when they access the view.

If your users do not have the proper authority at the data source for
underlying objects (tables and views), you can:
1. Create a data source view over those columns in the data source table that

are OK for the user to access
2. Grant the SELECT privilege on this view to users
3. Create a nickname to reference the view

Users can then access the columns by issuing a SELECT statement that
references the new nickname.

The following scenario provides a more detailed example of how views can
be used to restrict access to information.

Many people might require access to information in the STAFF table, for
different reasons. For example:
v The personnel department needs to be able to update and look at the entire

table.
This requirement can be easily met by granting SELECT and UPDATE
privileges on the STAFF table to the group PERSONNL:

GRANT SELECT,UPDATE ON TABLE STAFF TO GROUP PERSONNL

v Individual department managers need to look at the salary information for
their employees.
This requirement can be met by creating a view for each department
manager. For example, the following view can be created for the manager
of department number 51:

CREATE VIEW EMP051 AS
SELECT NAME,SALARY,JOB FROM STAFF
WHERE DEPT=51

GRANT SELECT ON TABLE EMP051 TO JANE

The manager with the authorization name JANE would query the EMP051
view just like the STAFF table. When accessing the EMP051 view of the

262 Administration Guide: Implementation

STAFF table, this manager views the following information:

NAME SALARY JOB

Fraye 45150.0 Mgr

Williams 37156.5 Sales

Smith 35654.5 Sales

Lundquist 26369.8 Clerk

Wheeler 22460.0 Clerk

v All users need to be able to locate other employees. This requirement can
be met by creating a view on the NAME column of the STAFF table and
the LOCATION column of the ORG table, and by joining the two tables on
their respective DEPT and DEPTNUMB columns:

CREATE VIEW EMPLOCS AS
SELECT NAME, LOCATION FROM STAFF, ORG
WHERE STAFF.DEPT=ORG.DEPTNUMB

GRANT SELECT ON TABLE EMPLOCS TO PUBLIC

Users who access the employee location view will see the following
information:

NAME LOCATION

Molinare New York

Lu New York

Daniels New York

Jones New York

Hanes Boston

Rothman Boston

Ngan Boston

Kermisch Boston

Sanders Washington

Pernal Washington

James Washington

Sneider Washington

Marenghi Atlanta

O’Brien Atlanta

Quigley Atlanta

Naughton Atlanta

Abrahams Atlanta

Chapter 5. Controlling Database Access 263

NAME LOCATION

Koonitz Chicago

Plotz Chicago

Yamaguchi Chicago

Scoutten Chicago

Fraye Dallas

Williams Dallas

Smith Dallas

Lundquist Dallas

Wheeler Dallas

Lea San Francisco

Wilson San Francisco

Graham San Francisco

Gonzales San Francisco

Burke San Francisco

Quill Denver

Davis Denver

Edwards Denver

Gafney Denver

Monitoring Access to Data Using the Audit Facility
The DB2 audit facility generates, and allows you to maintain, an audit trail for
a series of predefined database events. While not a facility that prevents
access to data, the audit facility can monitor and keep a record of attempts to
access or modify data objects.

SYSADM authority is required to use the audit facility administrator tool,
db2audit.

See “Chapter 6. Auditing DB2 Activities” on page 273 for a detailed
description of the DB2 audit facility.

Data Encryption
One part of your security plan may involve encrypting your data. To do this,
you can use encryption and decryption built-in functions: ENCRYPT,
DECRYPT_BIN, DECRYPT_CHAR, and GETHINT. For more information on
these functions, including their syntax, refer to the SQL Reference.

264 Administration Guide: Implementation

|

|
|
|
|

The ENCRYPT function encrypts data using a password-based encryption
method. These functions also allow you to encapsulate a password hint. The
password hint is embedded in the encrypted data. Once encrypted, the only
way to decrypt the data is by using the correct password. Developers that
choose to use these functions should plan for the management of forgotten
passwords and unusable data.

The result of the ENCRYPT functions is the same data type as the first
argument.

Only VARCHARs can be encrypted.

The declared length of the result is one of the following:
v The length of the data argument plus 42 when the optional hint parameter

is specified.
v The length of the data argument plus 10 when the optional hint parameter

is not specified.

The DECRYPT_BIN and DECRYPT_CHAR functions decrypt data using
password-based decryption.

The result of the DECRYPT_BIN and DECRYPT_CHAR functions is the same
data type as the first argument.

The declared length of the result is the length of the original data.

The GETHINT function returns an encapsulated password hint. A password
hint is a phrase that will help data owners remember passwords. For example,
the word “Ocean” can be used as a hint to remember the password ″Pacific″.

The password that is used to encrypt the data is determined in one of two
ways:
v Password Argument. The password is a string that is explicitly passed

when the ENCRYPT function is invoked. The data is encrypted and
decrypted with the given password.

v Special Register Password. The SET ENCRYPTION PASSWORD statement
encrypts the password value and sends the encrypted password to the
database manager to store in a special register. ENCRYPT, DECRYPT_BIN
and DECRYPT_CHAR functions invoked without a password parameter
use the value in the ENCRYPTION PASSWORD special register.
The initial or default value for the special register is an empty string.

Valid lengths for passwords are between 6 and 127 inclusive. Valid lengths for
hints are between 0 and 32 inclusive.

Chapter 5. Controlling Database Access 265

|
|
|
|
|
|

|
|

|

|

|
|

|
|

|
|

|
|

|

|
|
|

|
|

|
|
|

|
|
|
|
|

|

|
|

When the ENCRYPTION PASSWORD special register is set from the client,
the password is encrypted at the client, sent to the database server, and then
decrypted. To ensure that the password is not left readable, it is also
re-encrypted at the database server. DECRYPT_BIN and DECRYPT_CHAR
functions must decrypt the special register before use. The value found in the
ENCRYPTION PASSWORD is also not left readable. Gateway security is not
supported.

Tasks and Required Authorizations

Not all organizations divide job responsibilities in the same manner. Table 5
lists some other common job titles, the tasks that usually accompany them,
and the authorities or privileges that are needed to carry out those tasks.

Table 5. Common Job Titles, Tasks, and Required Authorization

JOB TITLE TASKS REQUIRED AUTHORIZATION

Department Administrator Oversees the departmental
system; creates databases

SYSCTRL authority. SYSADM
authority if the department has
its own instance.

Security Administrator Authorizes other users for some
or all authorizations and
privileges

SYSADM or DBADM authority.

Database Administrator Designs, develops, operates,
safeguards, and maintains one or
more databases

DBADM and SYSMAINT
authority over one or more
databases. SYSCTRL authority in
some cases.

System Operator Monitors the database and
carries out backup functions

SYSMAINT authority.

Application Programmer Develops and tests the database
manager application programs;
may also create tables of test
data

BINDADD, BIND on an existing
package, CONNECT and
CREATETAB on one or more
databases, some specific schema
privileges, and a list of privileges
on some tables.

User Analyst Defines the data requirements for
an application program by
examining the system catalog
views

SELECT on the catalog views;
CONNECT on one or more
databases.

Program End User Executes an application program EXECUTE on the package;
CONNECT on one or more
databases. See the note following
this table.

266 Administration Guide: Implementation

|
|
|
|
|
|
|

Table 5. Common Job Titles, Tasks, and Required Authorization (continued)

JOB TITLE TASKS REQUIRED AUTHORIZATION

Information Center Consultant Defines the data requirements for
a query user; provides the data
by creating tables and views and
by granting access to database
objects

DBADM authority over one or
more databases.

Query User Issues SQL statements to retrieve,
add, delete, or change data; may
save results as tables

CONNECT on one or more
databases; CREATEIN on the
schema of the tables and views
being created; and, SELECT,
INSERT, UPDATE, DELETE on
some tables and views.

Note: If an application program contains dynamic SQL statements, the
Program End User may need other privileges in addition to EXECUTE and
CONNECT (such as SELECT, INSERT, DELETE, and UPDATE).

Using the System Catalog

Information about each database is automatically maintained in a set of views
called the system catalog, which is created when the database is generated.
This system catalog describes tables, columns, indexes, programs, privileges,
and other objects.

Six of these views list the privileges held by users and the identity of the user
granting each privilege:

SYSCAT.DBAUTH Lists the database privileges

SYSCAT.TABAUTH Lists the table and view privileges

SYSCAT.COLAUTH Lists the column privileges

SYSCAT.PACKAGEAUTH Lists the package privileges

SYSCAT.INDEXAUTH Lists the index privileges

SYSCAT.SCHEMAAUTH Lists the schema privileges

SYSCAT.PASSTHRUAUTH Lists the server privilege

Privileges granted to users by the system will have SYSIBM as the grantor.
SYSADM, SYSMAINT and SYSCTRL are not listed in the system catalog.

The CREATE and GRANT statements place privileges in the system catalog.
Users with SYSADM and DBADM authorities can grant and revoke SELECT

Chapter 5. Controlling Database Access 267

|
|
|

privilege on the system catalog views. The following examples show how to
extract information about privileges by using these SQL queries:
v “Retrieving Authorization Names with Granted Privileges”
v “Retrieving All Names with DBADM Authority”
v “Retrieving Names Authorized to Access a Table”
v “Retrieving All Privileges Granted to Users” on page 269
v “Securing the System Catalog Views” on page 270.

Retrieving Authorization Names with Granted Privileges
No single system catalog view contains information about all privileges. The
following statement retrieves all authorization names with privileges:

SELECT DISTINCT GRANTEE, GRANTEETYPE, 'DATABASE' FROM SYSCAT.DBAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, 'TABLE ' FROM SYSCAT.TABAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, 'PACKAGE ' FROM SYSCAT.PACKAGEAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, 'INDEX ' FROM SYSCAT.INDEXAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, 'COLUMN ' FROM SYSCAT.COLAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, 'SCHEMA ' FROM SYSCAT.SCHEMAAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, 'SERVER ' FROM SYSCAT.PASSTHRUAUTH
ORDER BY GRANTEE, GRANTEETYPE, 3

Periodically, the list retrieved by this statement should be compared with lists
of user and group names defined in the system security facility. You can then
identify those authorization names that are no longer valid.

Note: If you are supporting remote database clients, it is possible that the
authorization name is defined at the remote client only and not on your
database server machine.

Retrieving All Names with DBADM Authority
The following statement retrieves all authorization names that have been
directly granted DBADM authority:

SELECT DISTINCT GRANTEE FROM SYSCAT.DBAUTH
WHERE DBADMAUTH = 'Y'

Retrieving Names Authorized to Access a Table
The following statement retrieves all authorization names that are directly
authorized to access the table EMPLOYEE with the qualifier JAMES:

SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.TABAUTH
WHERE TABNAME = 'EMPLOYEE'

AND TABSCHEMA = 'JAMES'

268 Administration Guide: Implementation

UNION
SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.COLAUTH

WHERE TABNAME = 'EMPLOYEE'
AND TABSCHEMA = 'JAMES'

To find out who can update the table EMPLOYEE with the qualifier JAMES,
issue the following statement:

SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.TABAUTH
WHERE TABNAME = 'EMPLOYEE' AND TABSCHEMA = 'JAMES' AND

(CONTROLAUTH = 'Y' OR
UPDATEAUTH = 'Y' OR UPDATEAUTH = 'G')

UNION
SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.DBAUTH

WHERE DBADMAUTH = 'Y'
UNION
SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.COLAUTH

WHERE TABNAME = 'EMPLOYEE' AND TABSCHEMA = 'JAMES' AND
PRIVTYPE = 'U'

This retrieves any authorization names with DBADM authority, as well as
those names to which CONTROL or UPDATE privileges have been directly
granted. However, it will not return the authorization names of users who
only hold SYSADM authority.

Remember that some of the authorization names may be groups, not just
individual users.

Retrieving All Privileges Granted to Users
By making queries on the system catalog views, users can retrieve a list of the
privileges they hold and a list of the privileges they have granted to other
users. For example, the following statement retrieves a list of the database
privileges that have been directly granted to an individual authorization
name:

SELECT * FROM SYSCAT.DBAUTH
WHERE GRANTEE = USER AND GRANTEETYPE = 'U'

The following statement retrieves a list of the table privileges that were
directly granted by a specific user:

SELECT * FROM SYSCAT.TABAUTH
WHERE GRANTOR = USER

The following statement retrieves a list of the individual column privileges
that were directly granted by a specific user:

SELECT * FROM SYSCAT.COLAUTH
WHERE GRANTOR = USER

Chapter 5. Controlling Database Access 269

The keyword USER in these statements is always equal to the value of a
user’s authorization name. USER is a read-only special register. Refer to the
SQL Reference for more information on special registers.

Securing the System Catalog Views
During database creation, SELECT privilege on the system catalog views is
granted to PUBLIC. (See “Database Privileges” on page 248 for other
privileges that are automatically granted to PUBLIC.) In most cases, this does
not present any security problems. For very sensitive data, however, it may be
inappropriate, as these tables describe every object in the database. If this is
the case, consider revoking the SELECT privilege from PUBLIC; then grant
the SELECT privilege as required to specific users. Granting and revoking
SELECT on the system catalog views is done in the same way as for any view,
but you must have either SYSADM or DBADM authority to do this.

At a minimum, you should consider restricting access to the following catalog
views:
v SYSCAT.DBAUTH
v SYSCAT.TABAUTH
v SYSCAT.PACKAGEAUTH
v SYSCAT.INDEXAUTH
v SYSCAT.COLAUTH
v SYSCAT.PASSTHRUAUTH
v SYSCAT.SCHEMAAUTH

This would prevent information on user privileges from becoming available to
everyone with access to the database. With this information, an unethical user
could gain unauthorized access to the database.

You should also examine the columns for which statistics are gathered (refer
to “Catalog Statistics” in the Administration Guide: Performance). Some of the
statistics recorded in the system catalog contain data values which could be
sensitive information in your environment. If these statistics contain sensitive
data, you may wish to revoke SELECT privilege from PUBLIC for the
SYSCAT.COLUMNS and SYSCAT.COLDIST catalog views.

If you wish to limit access to the system catalog views, you could define
views to let each authorization name retrieve information about its own
privileges.

For example, the following view MYSELECTS includes the owner and name
of every table on which a user’s authorization name has been directly granted
SELECT privilege:

270 Administration Guide: Implementation

|
|
|

CREATE VIEW MYSELECTS AS
SELECT TABSCHEMA, TABNAME FROM SYSCAT.TABAUTH
WHERE GRANTEETYPE = 'U'

AND GRANTEE = USER
AND SELECTAUTH = 'Y'

The keyword USER in this statement is always equal to the value of the
authorization name.

The following statement makes the view available to every authorization
name:

GRANT SELECT ON TABLE MYSELECTS TO PUBLIC

And finally, remember to revoke SELECT privilege on the base table:
REVOKE SELECT ON TABLE SYSCAT.TABAUTH FROM PUBLIC

Chapter 5. Controlling Database Access 271

272 Administration Guide: Implementation

Chapter 6. Auditing DB2 Activities

Authentication, authorities, and privileges can be used to control known or
anticipated access to data, but these methods may be insufficient to prevent
unknown or unanticipated access to data. To assist in the detection of this
latter type of data access, DB2 provides an audit facility. Successful
monitoring of unwanted data access and subsequent analysis can lead to
improvements in the control of data access and the ultimate prevention of
malicious or careless unauthorized access to the data. The monitoring of
application and individual user access, including system administration
actions, can provide a historical record of activity on your database systems.

The DB2 audit facility generates, and allows you to maintain, an audit trail for
a series of predefined database events. The records generated from this facility
are kept in an audit log file. The analysis of these records can reveal usage
patterns which would identify system misuse. Once identified, actions can be
taken to reduce or eliminate such system misuse.

The audit facility acts at an instance level, recording all instance level
activities and database level activities.

When working in a partitioned database environment, many of the auditable
events occur at the partition at which the user is connected (the coordinator
node) or at the catalog node (if they are not the same partition). The
implication of this is that audit records can be generated by more than one
partition. Part of each audit record contains information on the coordinator
node and originating node identifiers.

The audit log (db2audit.log) and the audit configuration file (db2audit.cfg) are
located in the instance’s security subdirectory. At the time you create an
instance, read/write permissions are set on these files, where possible, by the
operating system. By default, the permissions are read/write for the instance
owner only. It is recommended that you do not change these permissions.

Users of the audit facility administrator tool, db2audit, must have SYSADM
authority/privileges.

The audit facility must be stopped and started explicitly. When starting, the
audit facility uses existing audit configuration information. Since the audit
facility is independent of the DB2 server, it will remain active even if the
instance is stopped. In fact, when the instance is stopped, an audit record may
be generated in the audit log.

© Copyright IBM Corp. 1993, 2001 273

Authorized users of the audit facility can control the following actions within
the audit facility:
v Start recording auditable events within the DB2 instance.
v Stop recording auditable events within the DB2 instance.
v Configure the behavior of the audit facility, including selecting the

categories of the auditable events to be recorded.
v Request a description of the current audit configuration.
v Flush any pending audit records from the instance and write them to the

audit log.
v Extract audit records by formatting and copying them from the audit log to

a flat file or ASCII delimited files. Extraction is done for one of two reasons:
in preparation for analysis of log records or in preparation for pruning of
log records.

v Prune audit records from the current audit log.

There are different categories of audit records that may be generated. In the
description of the categories of events available for auditing (below), you
should notice that following the name of each category is a one-word
keyword used to identify the category type. The categories of events available
for auditing are:
v Audit (AUDIT). Generates records when audit settings are changed or

when the audit log is accessed.
v Authorization Checking (CHECKING). Generates records during

authorization checking of attempts to access or manipulate DB2 objects or
functions.

v Object Maintenance (OBJMAINT). Generates records when creating or
dropping data objects.

v Security Maintenance (SECMAINT). Generates records when granting or
revoking: object or database privileges, or DBADM authority. Records are
also generated when the database manager security configuration
parameters SYSADM_GROUP, SYSCTRL_GROUP, or SYSMAINT_GROUP
are modified.

v System Administration (SYSADMIN). Generates records when operations
requiring SYSADM, SYSMAINT, or SYSCTRL authority are performed.

v User Validation (VALIDATE). Generates records when authenticating users
or retrieving system security information.

v Operation Context (CONTEXT). Generates records to show the operation
context when a database operation is performed. This category allows for
better interpretation of the audit log file. When used with the log’s event
correlator field, a group of events can be associated back to a single
database operation. For example, an SQL statement for dynamic SQL, a

274 Administration Guide: Implementation

|
|
|
|

|
|
|
|
|

package identifier for static SQL, or an indicator of the type of operation
being performed, such as CONNECT, can provide needed context when
analyzing audit results.

Note: The SQL statement providing the operation context might be very
long and is completely shown within the CONTEXT record. This can
make the CONTEXT record very large.

v You can audit failures, successes, or both.

Any operation on the database may generate several records. The actual
number of records generated and moved to the audit log depends on the
number of categories of events to be recorded as specified by the audit facility
configuration. It also depends on whether successes, failures, or both, are
audited. For this reason, it is important to be selective of the events to audit.

Audit Facility Behavior

The audit facility records auditable events including those affecting database
instances. For this reason, the audit facility is an independent part of DB2 that
can operate even if the DB2 instance is stopped. If the audit facility is active,
then when a stopped instance is started, auditing of database events in the
instance resumes.

The timing of the writing of audit records to the audit log can have a
significant impact on the performance of databases in the instance. The
writing of the audit records can take place synchronously or asynchronously
with the occurrence of the events causing the generation of those records. The
value of the audit_buf_sz database manager configuration parameter
determines when the writing of audit records is done.

If the value of this parameter is zero (0), the writing is done synchronously.
The event generating the audit record will wait until the record is written to
disk. The wait associated with each record causes the performance of DB2 to
decrease.

If the value of audit_buf_sz is greater than zero, the record writing is done
asynchronously. The value of the audit_buf_sz when it is greater than zero is
the number of 4 KB pages used to create an internal buffer. The internal buffer
is used to keep a number of audit records before writing a group of them out
to disk. The statement generating the audit record as a result of an audit
event will not wait until the record is written to disk, and can continue its
operation.

In the asynchronous case, it could be possible for audit records to remain in
an unfilled buffer for some time. To prevent this from happening for an

Chapter 6. Auditing DB2 Activities 275

|
|
|
|
|
|

|
|
|
|
|
|
|

extended period, the database manager will force the writing of the audit
records regularly. An authorized user of the audit facility may also flush the
audit buffer with an explicit request.

There are differences when an error occurs dependent on whether there is
synchronous or asynchronous record writing. In asynchronous mode there
may be some records lost because the audit records are buffered before being
written to disk. In synchronous mode there may be one record lost because
the error could only prevent at most one audit record from being written.

The setting of the ERRORTYPE audit facility parameter controls how errors
are managed between DB2 and the audit facility. When the audit facility is
active, and the setting of the ERRORTYPE audit facility parameter is AUDIT,
then the audit facility is treated in the same way as any other part of DB2. An
audit record must be written (to disk in synchronous mode; or to the audit
buffer in asynchronous mode) for an audit event associated with a statement
to be considered successful. Whenever an error is encountered when running
in this mode, a negative SQLCODE is returned to the application for the
statement generating an audit record. If the error type is set to NORMAL, then
any error from db2audit is ignored and the operation’s SQLCODE is returned.
See “Audit Facility Usage Scenarios” on page 277 for additional details on the
ERRORTYPE audit facility parameters (and other related parameters).

Depending on the API or SQL statement and the audit settings for the DB2
instance, none, one, or several audit records may be generated for a particular
event. For example, an SQL UPDATE statement with a SELECT subquery may
result in one audit record containing the results of the authorization check for
UPDATE privilege on a table and another record containing the results of the
authorization check for SELECT privilege on a table.

For dynamic data manipulation language (DML) statements, audit records are
generated for all authorization checking at the time that the statement is
prepared. Reuse of those statements by the same user will not be audited
again since no authorization checking takes place at that time. However, if a
change has been made to one of the catalog tables containing privilege
information, then in the next unit of work, the statement privileges for the
cached dynamic SQL statements are checked again and one or more new
audit records created.

For a package containing only static DML statements, the only auditable event
that could generate an audit record is the authorization check to see if a user
has the privilege to execute that package. The authorization checking and
possible audit record creation required for the static SQL statements in the
package is carried out at the time the package is precompiled or bound. The
execution of the static SQL statements within the package is not auditable.

276 Administration Guide: Implementation

When a package is bound again either explicitly by the user, or implicitly by
the system, audit records are generated for the authorization checks required
by the static SQL statements.

For statements where authorization checking is performed at statement
execution time (for example, data definition language (DDL), GRANT, and
REVOKE statements), audit records are generated whenever these statements
are used.

Note: When executing DDL, the section number recorded for all events
(except the context events) in the audit record will be zero (0) no matter
what the actual section number of the statement might have been.

Audit Facility Usage Scenarios

A review of each part of the following syntax diagrams will assist you in the
understanding of how the audit facility can be used.

Chapter 6. Auditing DB2 Activities 277

|
|

The following is a description and the implied use of each parameter:

configure
This parameter allows the modification of the db2audit.cfg

db2audit

describe
extract
flush
prune

Audit Configuration

Audit Extraction

status

database database name
category

audit
checking
objmaint
secmaint
sysadmin
validate
context

audit
checking
objmaint
secmaint
sysadmin
validate
context

both
success
failure

Audit Configuration:

Audit Extraction:

status
failure
success

configure reset

all

all

start
stop

,

,

scope

delasc
file output file

errortype audit
normal

date
pathname

YYYYMMDDHH
Path_with_temp_space

Figure 7. DB2AUDIT Syntax

278 Administration Guide: Implementation

configuration file in the instance’s security subdirectory. Updates to
this file can occur even when the instance is shut down. Updates
occurring when the instance is active dynamically affect the auditing
being done by DB2 across all partitions. The configure action on the
configuration file causes the creation of an audit record if the audit
facility has been started and the audit category of auditable events is
being audited.

The following are the possible actions on the configuration file:
v RESET. This action causes the configuration file to revert to the

initial configuration (where SCOPE is all of the categories except
CONTEXT, STATUS is FAILURE, ERRORTYPE is NORMAL, and
the audit facility is OFF). This action will create a new audit
configuration file if the original has been lost or damaged.

v SCOPE. This action specifies which category or categories of events
are to be audited. This action also allows a particular focus for
auditing and reduces the growth of the log. It is recommended that
the number and type of events being logged be limited as much as
possible, otherwise the audit log will grow rapidly.

Note: Please notice that the default SCOPE is all categories except
CONTEXT and may result in records being generated
rapidly. In conjunction with the mode (synchronous or
asynchronous), the selection of the categories may result in a
significant performance reduction and significantly increased
disk requirements.

v STATUS. This action specifies whether only successful or failing
events, or both successful and failing events, should be logged.

Note: Context events occur before the status of an operation is
known. Therefore, such events are logged regardless of the
value associated with this parameter.

v ERRORTYPE. This action specifies whether audit errors are
returned to the user or are ignored. The value for this parameter
can be:
– AUDIT. All errors including errors occurring within the audit

facility are managed by DB2 and all negative SQLCODEs are
reported back to the caller.

– NORMAL. Any errors generated by db2audit are ignored and
only the SQLCODEs for the errors associated with the operation
being performed are returned to the application.

describe
This parameter displays to standard output the current audit
configuration information and status.

Chapter 6. Auditing DB2 Activities 279

|
|
|
|
|

extract This parameter allows the movement of audit records from the audit
log to an indicated destination. If no optional clauses are specified,
then all of the audit records are extracted and placed in a flat report
file. If the “extract” parameter is not specified, the audit record is
placed a file called db2audit.out in the security directory. If output_file
already exists, an error message is returned.

The following are the possible options that can be used when
extracting:
v FILE. The extracted audit records are placed in a file (output_file).
v DELASC. The extracted audit records are placed in a delimited

ASCII format suitable for loading into DB2 relational tables. The
output is placed in separate files: one for each category. The
filenames are:
– audit.del
– checking.del
– objmaint.del
– secmaint.del
– sysadmin.del
– validate.del
– context.del

The DELASC choice also allows you to override the default audit
character string delimiter (“0xff”) when extracting from the audit
log. You would use DELASC DELIMITER followed by the new
delimiter that you wish to use in preparation for loading into a
table that will hold the audit records. The new load delimiter can
be either a single character (such as !) or a four-byte string
representing a hexadecimal number (such as 0xff). For more
information, refer to “Audit Facility Tips and Techniques” on
page 297.

v CATEGORY. The audit records for the specified categories of audit
events are to be extracted. If not specified, all categories are eligible
for extraction.

v DATABASE. The audit records for a specified database are to be
extracted. If not specified, all databases are eligible for extraction.

v STATUS. The audit records for the specified status are to be
extracted. If not specified, all records are eligible for extraction.

flush This parameter forces any pending audit records to be written to the
audit log. Also, the audit state is reset in the engine from “unable to
log” to a state of “ready to log” if the audit facility is in an error state.

prune This parameter allows for the deletion of audit records from the audit

280 Administration Guide: Implementation

||
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

log. If the audit facility is active and the “audit” category of events
has been specified for auditing, then an audit record will be logged
after the audit log is pruned.

The following are the possible options that can be used when
pruning:
v ALL. All of the audit records in the audit log are to be deleted.
v DATE yyyymmddhh. The user can specify that all audit records

that occurred on or before the date/time specified are to be deleted
from the audit log. The user may optionally supply a
pathname

which the audit facility will use as a temporary space when
pruning the audit log. This temporary space allows for the pruning
of the audit log when the disk it resides on is full and does not
have enough space to allow for a pruning operation.

start This parameter causes the audit facility to begin auditing events based
on the contents of the db2audit.cfg file. In a partitioned DB2 instance,
auditing will begin on all partitions when this clause is specified. If
the “audit” category of events has been specified for auditing, then an
audit record will be logged when the audit facility is started.

stop This parameter causes the audit facility to stop auditing events. In a
partitioned DB2 instance, auditing will be stopped on all partitions
when this clause is specified. If the “audit” category of events has
been specified for auditing, then an audit record will be logged when
the audit facility is stopped.

Audit Facility Messages

SQL1322N An error occurred when writing to
the audit log file.

Explanation: The DB2 audit facility encountered
an error when invoked to record an audit event
to the audit log file. There is no space on the file
system where the audit log resides.

User Response: The system administrator
should free up space on this file system or prune
the audit log to reduce its size.

When more space is available, use db2audit to
flush out any data in memory, and to reset the
auditor to a ready state. Ensure that appropriate
extracts have occurred, or a copy of the log has
been made before pruning the log, as deleted

records are not recoverable.

sqlcode: -1322

sqlstate: 50830

SQL1323N An error occurred when accessing
the audit configuration file.

Explanation: The audit configuration file
(db2audit.cfg) could not be opened, or was
invalid. Possible reasons for this error are that
the db2audit.cfg file either does not exist, or has
been damaged.

User Response: Take one of the following
actions:

Chapter 6. Auditing DB2 Activities 281

|

|

v Restore from a saved version of the file.

v Reset the audit facility configuration file by
issuing

db2audit reset

sqlcode: -1323

sqlstate: 57019

Audit Facility Record Layouts

When an audit record is extracted from the audit log using the DELASC
extract option, each record will have one of the formats shown in the
following tables. Each table will begin by showing the contents of a sample
record. The description of each item of the record is shown one row at a time
in the associated table. If the item is important, the name of the item will be
highlighted (bold). These items contain information that are of most interest
to you.

Notes:

1. Not all fields in the sample records will have values.
2. Some fields such as “Access Attempted” are stored in the delimited ASCII

format as bitmaps. In this flat report file, however, these fields will appear
as a set of strings representing the bitmap values.

Table 6. Audit Record Layout for AUDIT Events

timestamp=1998-06-24-11.54.05.151232;category=AUDIT;audit event=START;
event correlator=0;event status=0;
userid=boss;authid=BOSS;

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:
AUDIT

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: CONFIGURE, DB2AUD, EXTRACT,
FLUSH, PRUNE, START, STOP, and UPDATE_ADMIN_CFG

Event Correlator INTEGER Correlation identifier for the operation being audited. Can
be used to identify what audit records are associated with a
single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where
Successful event > = 0
Failed event < 0

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

282 Administration Guide: Implementation

|

Table 7. Audit Record Layout for CHECKING Events

timestamp=1998-06-24-08.42.11.622984;category=CHECKING;audit event=CHECKING_OBJECT;
event correlator=2;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
object name=FOO;object type=DATABASE;
access approval reason=DATABASE;access attempted=CONNECT;

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:
CHECKING

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: CHECKING_OBJECT and
CHECKING_FUNCTION

Event Correlator INTEGER Correlation identifier for the operation being audited. Can
be used to identify what audit records are associated with a
single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where
Successful event > = 0
Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated.
Blank if this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node
Number

SMALLINT Node number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Node number of the coordinator.

Application ID VARCHAR (255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR (1024) Application name in use at the time the audit event
occurred.

Package Schema VARCHAR (128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR (128) Name of package in use at the time the audit event
occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit
event occurred.

Object Schema VARCHAR (128) Schema of the object for which the audit event was
generated.

Object Name VARCHAR (128) Name of object for which the audit event was generated.

Chapter 6. Auditing DB2 Activities 283

|||
|

Table 7. Audit Record Layout for CHECKING Events (continued)

timestamp=1998-06-24-08.42.11.622984;category=CHECKING;audit event=CHECKING_OBJECT;
event correlator=2;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
object name=FOO;object type=DATABASE;
access approval reason=DATABASE;access attempted=CONNECT;

NAME FORMAT DESCRIPTION

Object Type VARCHAR (32) Type of object for which the audit event was generated.
Possible values include: TABLE, VIEW, ALIAS, FUNCTION,
INDEX, PACKAGE, DATA_TYPE, NODEGROUP, SCHEMA,
STORED_PROCEDURE, BUFFERPOOL, TABLESPACE,
EVENT_MONITOR, TRIGGER, DATABASE, INSTANCE,
FOREIGN_KEY, PRIMARY_KEY, UNIQUE_CONSTRAINT,
CHECK_CONSTRAINT, WRAPPER, SERVER, NICKNAME,
USER MAPPING, SERVER OPTION, TRANSFORM, TYPE
MAPPING, FUNCTION MAPPING, SUMMARY TABLES,
and NONE.

Access Approval
Reason

CHAR(18) Indicates the reason why access was approved for this audit
event. Possible values include: those shown in the first list
following this table.

Access Attempted CHAR(18) Indicates the type of access that was attempted. Possible
values include: those shown in the second list following this
table.

The following is the list of possible CHECKING access approval reasons:

0x0000000000000001 ACCESS DENIED
Access is not approved; rather, it was denied.

0x0000000000000002 SYSADM
Access is approved; the application/user has SYSADM authority.

0x0000000000000004 SYSCTRL
Access is approved; the application/user has SYSCTRL authority.

0x0000000000000008 SYSMAINT
Access is approved; the application/user has SYSMAINT authority.

0x0000000000000010 DBADM
Access is approved; the application/user has DBADM authority.

0x0000000000000020 DATABASE PRIVILEGE
Access is approved; the application/user has an explicit privilege on
the database.

284 Administration Guide: Implementation

|
|
||
|
|

|||
|
|

0x0000000000000040 OBJECT PRIVILEGE
Access is approved; the application/user has an explicit privilege on
the object or function.

0x0000000000000080 DEFINER
Access is approved; the application/user is the definer of the object or
function.

0x0000000000000100 OWNER
Access is approved; the application/user is the owner of the object or
function.

0x0000000000000200 CONTROL
Access is approved; the application/user has CONTROL privilege on
the object or function.

0x0000000000000400 BIND
Access is approved; the application/user has bind privilege on the
package.

The following is the list of possible CHECKING access attempted types:

0x0000000000000002 ALTER
Attempt to alter an object.

0x0000000000000004 DELETE
Attempt to delete an object.

0x0000000000000008 INDEX
Attempt to use an index.

0x0000000000000010 INSERT
Attempt to insert into an object.

0x0000000000000020 SELECT
Attempt to query a table or view.

0x0000000000000040 UPDATE
Attempt to update data in an object.

0x0000000000000080 REFERENCE
Attempt to establish referential constraints between objects.

0x0000000000000100 CREATE
Attempt to create an object.

0x0000000000000200 DROP
Attempt to drop an object.

0x0000000000000400 CREATEIN
Attempt to create an object within another schema.

Chapter 6. Auditing DB2 Activities 285

0x0000000000000800 DROPIN
Attempt to drop an object found within another schema.

0x0000000000001000 ALTERIN
Attempt to alter or modify an object found within another schema.

0x0000000000002000 EXECUTE
Attempt to execute or run an application.

0x0000000000004000 BIND
Attempt to bind or prepare an application.

0x0000000000008000 SET EVENT MONITOR
Attempt to set event monitor switches.

0x0000000000010000 SET CONSTRAINTS
Attempt to set constraints on an object.

0x0000000000020000 COMMENT ON
Attempt to create comments on an object.

0x0000000000040000 GRANT
Attempt to grant privileges on an object to another user ID.

0x0000000000080000 REVOKE
Attempt to revoke privileges on an object from a user ID.

0x0000000000100000 LOCK
Attempt to lock an object.

0x0000000000200000 RENAME
Attempt to rename an object.

0x0000000000400000 CONNECT
Attempt to connect to an object.

0x0000000000800000 Member of SYS Group
Attempt to access or use a member of the SYS group.

0x0000000001000000 Access All
Attempt to execute a statement with all required privileges on objects
held (only used for DBADM/SYSADM).

0x0000000002000000 Drop All
Attempt to drop multiple objects.

0x0000000004000000 LOAD
Attempt to load a table in a table space.

0x0000000008000000 USE
Attempt to create a table in a table space.

286 Administration Guide: Implementation

Table 8. Audit Record Layout for OBJMAINT Events

timestamp=1998-06-24-08.42.41.957524;category=OBJMAINT;audit event=CREATE_OBJECT;
event correlator=3;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
package schema=NULLID;package name=SQLC28A1;
package section=0;object schema=BOSS;object name=AUDIT;object type=TABLE;

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:
OBJMAINT

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: CREATE_OBJECT,
RENAME_OBJECT, and DROP_OBJECT

Event Correlator INTEGER Correlation identifier for the operation being audited. Can
be used to identify what audit records are associated with a
single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where
Successful event > = 0
Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated.
Blank if this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node
Number

SMALLINT Node number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR (255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR (1024) Application name in use at the time the audit event
occurred.

Package Schema VARCHAR (128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR (128) Name of package in use at the time the audit event
occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit
event occurred.

Object Schema VARCHAR (128) Schema of the object for which the audit event was
generated.

Object Name VARCHAR (128) Name of object for which the audit event was generated.

Chapter 6. Auditing DB2 Activities 287

|
|
||

|||
|

Table 8. Audit Record Layout for OBJMAINT Events (continued)

timestamp=1998-06-24-08.42.41.957524;category=OBJMAINT;audit event=CREATE_OBJECT;
event correlator=3;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
package schema=NULLID;package name=SQLC28A1;
package section=0;object schema=BOSS;object name=AUDIT;object type=TABLE;

NAME FORMAT DESCRIPTION

Object Type VARCHAR (32) Type of object for which the audit event was generated.
Possible values include: TABLE, VIEW, ALIAS, FUNCTION,
INDEX, PACKAGE, DATA_TYPE, NODEGROUP, SCHEMA,
STORED_PROCEDURE, BUFFERPOOL, TABLESPACE,
EVENT_MONITOR, TRIGGER, DATABASE, INSTANCE,
FOREIGN_KEY, PRIMARY_KEY, UNIQUE_CONSTRAINT,
CHECK_CONSTRAINT, WRAPPER, SERVER, NICKNAME,
USER MAPPING, SERVER OPTION, TRANSFORM, TYPE
MAPPING, FUNCTION MAPPING, SUMMARY TABLES,
and NONE.

Table 9. Audit Record Layout for SECMAINT Events

timestamp=1998-06-24-11.57.45.188101;category=SECMAINT;audit event=GRANT;
event correlator=4;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.boss.980624155728;application name=db2bp;
package schema=NULLID;package name=SQLC28A1;
package section=0;object schema=BOSS;object name=T1;object type=TABLE;
grantor=BOSS;grantee=WORKER;grantee type=USER;privilege=SELECT;

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:
SECMAINT

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: GRANT, REVOKE,
IMPLICIT_GRANT, IMPLICIT_REVOKE, and
UPDATE_DBM_CFG.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can
be used to identify what audit records are associated with a
single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where
Successful event > = 0
Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated.
Blank if this was an instance level audit event.

288 Administration Guide: Implementation

Table 9. Audit Record Layout for SECMAINT Events (continued)

timestamp=1998-06-24-11.57.45.188101;category=SECMAINT;audit event=GRANT;
event correlator=4;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.boss.980624155728;application name=db2bp;
package schema=NULLID;package name=SQLC28A1;
package section=0;object schema=BOSS;object name=T1;object type=TABLE;
grantor=BOSS;grantee=WORKER;grantee type=USER;privilege=SELECT;

NAME FORMAT DESCRIPTION

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node
Number

SMALLINT Node number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR (255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR (1024) Application name in use at the time the audit event
occurred.

Package Schema VARCHAR (128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR (128) Name of package in use at the time the audit event
occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit
event occurred.

Object Schema VARCHAR (128) Schema of the object for which the audit event was
generated.

Object Name VARCHAR (128) Name of object for which the audit event was generated.

Object Type VARCHAR (32) Type of object for which the audit event was generated.
Possible values include: TABLE, VIEW, ALIAS, FUNCTION,
INDEX, PACKAGE, DATA_TYPE, NODEGROUP, SCHEMA,
STORED_PROCEDURE, BUFFERPOOL, TABLESPACE,
EVENT_MONITOR, TRIGGER, DATABASE, INSTANCE,
FOREIGN_KEY, PRIMARY_KEY, UNIQUE_CONSTRAINT,
CHECK_CONSTRAINT, WRAPPER, SERVER, NICKNAME,
USER MAPPING, SERVER OPTION, TRANSFORM, TYPE
MAPPING, FUNCTION MAPPING, SUMMARY TABLES,
and NONE.

Grantor VARCHAR (128) Grantor ID.

Grantee VARCHAR (128) Grantee ID for which a privilege or authority was granted
or revoked.

Grantee Type VARCHAR (32) Type of the grantee that was granted to or revoked from.
Possible values include: USER, GROUP, or BOTH.

Chapter 6. Auditing DB2 Activities 289

|
|
||

|||
|

Table 9. Audit Record Layout for SECMAINT Events (continued)

timestamp=1998-06-24-11.57.45.188101;category=SECMAINT;audit event=GRANT;
event correlator=4;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.boss.980624155728;application name=db2bp;
package schema=NULLID;package name=SQLC28A1;
package section=0;object schema=BOSS;object name=T1;object type=TABLE;
grantor=BOSS;grantee=WORKER;grantee type=USER;privilege=SELECT;

NAME FORMAT DESCRIPTION

Privilege or
Authority

CHAR(18) Indicates the type of privilege or authority granted or
revoked. Possible values include: Those shown in the list
following this table.

The following is the list of possible SECMAINT privileges or authorities:

0x0000000000000001 Control Table
Control privilege granted or revoked on a table.

0x0000000000000002 ALTER TABLE
Privilege granted or revoked to alter a table.

0x0000000000000004 ALTER TABLE with GRANT
Privilege granted or revoked to alter a table with granting of
privileges allowed.

0x0000000000000008 DELETE TABLE
Privilege granted or revoked to drop a table.

0x0000000000000010 DELETE TABLE with GRANT
Privilege granted or revoked to drop a table with granting of
privileges allowed.

0x0000000000000020 Table Index
Privilege granted or revoked on an index.

0x0000000000000040 Table Index with GRANT
Privilege granted or revoked on an index with granting of privileges
allowed.

0x0000000000000080 Table INSERT
Privilege granted or revoked on an insert on a table.

0x0000000000000100 Table INSERT with GRANT
Privilege granted or revoked on an insert on a table with granting of
privileges allowed.

0x0000000000000200 Table SELECT
Privilege granted or revoked on a select on a table.

290 Administration Guide: Implementation

0x0000000000000400 Table SELECT with GRANT
Privilege granted or revoked on a select on a table with granting of
privileges allowed.

0x0000000000000800 Table UPDATE
Privilege granted or revoked on an update on a table.

0x0000000000001000 Table UPDATE with GRANT
Privilege granted or revoked on an update on a table with granting of
privileges allowed.

0x0000000000002000 Table REFERENCE
Privilege granted or revoked on a reference on a table.

0x0000000000004000 Table REFERENCE with GRANT
Privilege granted or revoked on a reference on a table with granting
of privileges allowed.

0x0000000000008000 Package BIND
BIND privilege granted or revoked on a package.

0x0000000000010000 Package EXECUTE
EXECUTE privilege granted or revoked on a package.

0x0000000000020000 CREATEIN Schema
CREATEIN privilege granted or revoked on a schema.

0x0000000000040000 CREATEIN Schema with GRANT
CREATEIN privilege granted or revoked on a schema with granting of
privileges allowed.

0x0000000000080000 DROPIN Schema
DROPIN privilege granted or revoked on a schema.

0x0000000000100000 DROPIN Schema with GRANT
DROPIN privilege granted or revoked on a schema with granting of
privileges allowed.

0x0000000000200000 ALTERIN Schema
ALTERIN privilege granted or revoked on a schema.

0x0000000000400000 ALTERIN Schema with GRANT
ALTERIN privilege granted or revoked on a schema with granting of
privileges allowed.

0x0000000000800000 DBADM Authority
DBADM authority granted or revoked.

0x0000000001000000 CREATETAB Authority
Createtab authority granted or revoked.

0x0000000002000000 BINDADD Authority
Bindadd authority granted or revoked.

Chapter 6. Auditing DB2 Activities 291

|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

0x0000000004000000 CONNECT Authority
CONNECT authority granted or revoked.

0x0000000008000000 Create not fenced Authority
Create not fenced authority granted or revoked.

0x0000000010000000 Implicit Schema Authority
Implicit schema authority granted or revoked.

0x0000000020000000 Server PASSTHRU
Privilege granted or revoked to use the pass-through facility with this
server (federated database data source).

0x0000000100000000 Table Space USE
Privilege granted or revoked to create a table in a table space.

0x0000000200000000 Table Space USE with GRANT
Privilege granted or revoked to create a table in a table space with
granting of privileges allowed.

0x0000000400000000 Column UPDATE
Privilege granted or revoked on an update on one or more specific
columns of a table.

0x0000000800000000 Column UPDATE with GRANT
Privilege granted or revoked on an update on one or more specific
columns of a table with granting of privileges allowed.

0x0000001000000000 Column REFERENCE
Privilege granted or revoked on a reference on one or more specific
columns of a table.

0x0000002000000000 Column REFERENCE with GRANT
Privilege granted or revoked on a reference on one or more specific
columns of a table with granting of privileges allowed.

0x0000004000000000 LOAD Authority
LOAD authority granted or revoked.

Table 10. Audit Record Layout for SYSADMIN Events

timestamp=1998-06-24-11.54.04.129923;category=SYSADMIN;audit event=DB2AUDIT;
event correlator=1;event status=0;
userid=boss;authid=BOSS;
application id=*LOCAL.boss.980624155404;application name=db2audit;

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:
SYSADMIN

292 Administration Guide: Implementation

|
|

Table 10. Audit Record Layout for SYSADMIN Events (continued)

timestamp=1998-06-24-11.54.04.129923;category=SYSADMIN;audit event=DB2AUDIT;
event correlator=1;event status=0;
userid=boss;authid=BOSS;
application id=*LOCAL.boss.980624155404;application name=db2audit;

NAME FORMAT DESCRIPTION

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: Those shown in the list following
this table.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can
be used to identify what audit records are associated with a
single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where
Successful event > = 0
Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated.
Blank if this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node
Number

SMALLINT Node number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR (255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR (1024) Application name in use at the time the audit event
occurred.

Package Schema VARCHAR (128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR (128) Name of package in use at the time the audit event
occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit
event occurred.

The following is the list of possible SYSADMIN audit events:

Chapter 6. Auditing DB2 Activities 293

|
|
||

|||
|

Table 11. SYSADMIN Audit Events

START_DB2
STOP_DB2
CREATE_DATABASE
DROP_DATABASE
UPDATE_DBM_CFG
UPDATE_DB_CFG
CREATE_TABLESPACE
DROP_TABLESPACE
ALTER_TABLESPACE
RENAME_TABLESPACE
CREATE_NODEGROUP
DROP_NODEGROUP
ALTER_NODEGROUP
CREATE_BUFFERPOOL
DROP_BUFFERPOOL
ALTER_BUFFERPOOL
CREATE_EVENT_MONITOR
DROP_EVENT_MONITOR
ENABLE_MULTIPAGE
MIGRATE_DB_DIR
DB2TRC
DB2SET
ACTIVATE_DB
ADD_NODE
BACKUP_DB
CATALOG_NODE
CATALOG_DB
CATALOG_DCS_DB
CHANGE_DB_COMMENT
DEACTIVATE_DB
DROP_NODE_VERIFY
FORCE_APPLICATION
GET_SNAPSHOT
LIST_DRDA_INDOUBT_TRANSACTIONS
MIGRATE_DB
RESET_ADMIN_CFG
RESET_DB_CFG
RESET_DBM_CFG
RESET_MONITOR
RESTORE_DB

ROLLFORWARD_DB
SET_RUNTIME_DEGREE
SET_TABLESPACE_CONTAINERS
UNCATALOG_DB
UNCATALOG_DCS_DB
UNCATALOG_NODE
UPDATE_ADMIN_CFG
UPDATE_MON_SWITCHES
LOAD_TABLE
DB2AUDIT
SET_APPL_PRIORITY
CREATE_DB_AT_NODE
KILLDBM
MIGRATE_SYSTEM_DIRECTORY
DB2REMOT
DB2AUD
MERGE_DBM_CONFIG_FILE
UPDATE_CLI_CONFIGURATION
OPEN_TABLESPACE_QUERY
SINGLE_TABLESPACE_QUERY
CLOSE_TABLESPACE_QUERY
FETCH_TABLESPACE
OPEN_CONTAINER_QUERY
FETCH_CONTAINER_QUERY
CLOSE_CONTAINER_QUERY
GET_TABLESPACE_STATISTICS
DESCRIBE_DATABASE
ESTIMATE_SNAPSHOT_SIZE
READ_ASYNC_LOG_RECORD
PRUNE_RECOVERY_HISTORY
UPDATE_RECOVERY_HISTORY
QUIESCE_TABLESPACE
UNLOAD_TABLE
UPDATE_DATABASE_VERSION
CREATE_INSTANCE
DELETE_INSTANCE
SET_EVENT_MONITOR
GRANT_DBADM
REVOKE_DBADM
GRANT_DB_AUTHORITIES
REVOKE_DB_AUTHORITIES
REDIST_NODEGROUP

294 Administration Guide: Implementation

Table 12. Audit Record Layout for VALIDATE Events

timestamp=1998-06-24-08.42.11.527490;category=VALIDATE;audit event=CHECK_GROUP_MEMBERSHIP;
event correlator=2;event status=-1092;
database=FOO;userid=boss;authid=BOSS;execution id=newton;
application id=*LOCAL.newton.980624124210;application name=testapp;
auth type=SERVER;

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:
VALIDATE

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: GET_GROUPS, GET_USERID,
AUTHENTICATE_PASSWORD, and VALIDATE_USER.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can
be used to identify what audit records are associated with a
single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where
Successful event > = 0
Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated.
Blank if this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Execution ID VARCHAR(1024) Execution ID in use at the time of the audit event.

Origin Node
Number

SMALLINT Node number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR (255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR (1024) Application name in use at the time the audit event
occurred.

Authentication
Type

VARCHAR (32) Authentication type at the time of the audit event.

Package Schema VARCHAR (128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR (128) Name of package in use at the time the audit event
occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit
event occurred.

Chapter 6. Auditing DB2 Activities 295

|
|
||

|||
|

Table 13. Audit Record Layout for CONTEXT Events

timestamp=1998-06-24-08.42.41.476840;category=CONTEXT;audit event=EXECUTE_IMMEDIATE;
event correlator=3;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
package schema=NULLID;package name=SQLC28A1;
package section=203;text=create table audit(c1 char(10), c2 integer);

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:
CONTEXT

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: Those shown in the list following
this table.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can
be used to identify what audit records are associated with a
single event.

Database Name CHAR(8) Name of the database for which the event was generated.
Blank if this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node
Number

SMALLINT Node number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR (255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR (1024) Application name in use at the time the audit event
occurred.

Package Schema VARCHAR (128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR (128) Name of package in use at the time the audit event
occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit
event occurred.

Statement Text
(statement)

CLOB (32K) Text of the SQL statement, if applicable. Null if no SQL
statement text is available.

The following is the list of possible CONTEXT audit events:

296 Administration Guide: Implementation

|
|
||

|||
|

Table 14. CONTEXT Audit Events

CONNECT
CONNECT_RESET
ATTACH
DETACH
DARI_START
DARI_STOP
BACKUP_DB
RESTORE_DB
ROLLFORWARD_DB
OPEN_TABLESPACE_QUERY
FETCH_TABLESPACE
CLOSE_TABLESPACE_QUERY
OPEN_CONTAINER_QUERY
CLOSE_CONTAINER_QUERY
FETCH_CONTAINER_QUERY
SET_TABLESPACE_CONTAINERS
GET_TABLESPACE_STATISTIC
READ_ASYNC_LOG_RECORD
QUIESCE_TABLESPACE
LOAD_TABLE
UNLOAD_TABLE
UPDATE_RECOVERY_HISTORY
PRUNE_RECOVERY_HISTORY
SINGLE_TABLESPACE_QUERY
LOAD_MSG_FILE
UNQUIESCE_TABLESPACE
ENABLE_MULTIPAGE
DESCRIBE_DATABASE
DROP_DATABASE
CREATE_DATABASE
ADD_NODE
FORCE_APPLICATION

SET_APPL_PRIORITY
RESET_DB_CFG
GET_DB_CFG
GET_DFLT_CFG
UPDATE_DBM_CFG
SET_MONITOR
GET_SNAPSHOT
ESTIMATE_SNAPSHOT_SIZE
RESET_MONITOR
OPEN_HISTORY_FILE
CLOSE_HISTORY_FILE
FETCH_HISTORY_FILE
SET_RUNTIME_DEGREE
UPDATE_AUDIT
DBM_CFG_OPERATION
DISCOVER
OPEN_CURSOR
CLOSE_CURSOR
FETCH_CURSOR
EXECUTE
EXECUTE_IMMEDIATE
PREPARE
DESCRIBE
BIND
REBIND
RUNSTATS
REORG
REDISTRIBUTE
COMMIT
ROLLBACK
REQUEST_ROLLBACK
IMPLICIT_REBIND

Audit Facility Tips and Techniques

In most cases, when working with CHECKING events, the object type field in
the audit record is the object being checked to see if the required privilege or
authority is held by the user ID attempting to access the object. For example,
if a user attempts to ALTER a table by adding a column, then the CHECKING
event audit record will indicate the access attempted was “ALTER” and the
object type being checked was “TABLE” (note: not the column since it is table
privileges that must be checked).

However, when the checking involves verifying if a database authority exists
to allow a user ID to CREATE or BIND an object, or to delete an object, then

Chapter 6. Auditing DB2 Activities 297

although there is a check against the database, the object type field will
specify the object being created, bound, or dropped (rather than the database
itself).

When creating an index on a table, the privilege to create an index is required,
therefore the CHECKING event audit record will have an access attempt type
of “index” rather than “create”.

When binding a package that already exists, then an OBJMAINT event audit
record is created for the DROP of the package and then another OBJMAINT
event audit record is created for the CREATE of the new copy of the package.

SQL Data Definition Language (DDL) may generate OBJMAINT or
SECMAINT events that are logged as successful. It is possible however that
following the logging of the event, a subsequent error may cause a
ROLLBACK to occur. This would leave the object as not created; or the
GRANT or REVOKE actions as incomplete. The use of CONTEXT events
becomes important in this case. Such CONTEXT event audit records,
especially the statement that ends the event, will indicate the nature of the
completion of the attempted operation.

When extracting audit records in a delimited ASCII format suitable for
loading into a DB2 relational table, you should be clear regarding the
delimiter used within the statement text field. This can be done when
extracting the delimited ASCII file and is done using:

db2audit extract delasc delimiter <load delimiter>

The load delimiter can be a single character (such as ") or a four-byte string
representing a hexadecimal value (such as “0xff”). Examples of valid
commands are:

db2audit extract delasc
db2audit extract delasc delimiter !
db2audit extract delasc delimiter 0xff

If you have used anything other than the default load delimiter (“″”) as the
delimiter when extracting, you should use the MODIFIED BY option on the
LOAD command. A partial example of the LOAD command with “0xff” used
as the delimiter follows:

db2 load from context.del of del modified by chardel0xff replace into ...

This will override the default load character string delimiter which is “0xff”.

298 Administration Guide: Implementation

Controlling DB2 Audit Facility Activities

As part of our discussion on the control of the audit facility activities, we will
use a simple scenario: A user, newton, runs an application called testapp that
connects and creates a table. This same application is used in each of the
examples discussed below.

We begin by presenting an extreme example: You have determined to audit all
successful and unsuccessful audit events, therefore you will configure the
audit facility in the following way:

db2audit configure scope all status both

Note: This creates audit records for every possible auditable event. As a
result, many records are written to the audit log and this reduces the
performance of your database manager. This extreme case is shown
here for demonstration purposes only; there is no recommendation that
you configure the audit facility with the command shown above.

After beginning the audit facility with this configuration (using “db2audit
start”), and then running the testapp application, the following records are
generated and placed in the audit log. By extracting the audit records from
the log, you will see the following records generated for the two actions
carried out by the application:

Action Type of Record Created

CONNECT
timestamp=1998-06-24-08.42.10.555345;category=CONTEXT;
audit event=CONNECT;event correlator=2;database=FOO;
application id=*LOCAL.newton.980624124210;
application name=testapp;

timestamp=1998-06-24-08.42.10.944374;category=VALIDATE;
audit event=AUTHENTICATION;event correlator=2;event status=0;
database=FOO;userid=boss;authid=BOSS;execution id=newton;
application id=*LOCAL.newton.980624124210;application name=testapp;
auth type=SERVER;

timestamp=1998-06-24-08.42.11.527490;category=VALIDATE;
audit event=CHECK_GROUP_MEMBERSHIP;event correlator=2;
event status=-1092;database=FOO;userid=boss;authid=BOSS;
execution id=newton;application id=*LOCAL.newton.980624124210;
application name=testapp;auth type=SERVER;

timestamp=1998-06-24-08.42.11.561187;category=VALIDATE;
audit event=CHECK_GROUP_MEMBERSHIP;event correlator=2;
event status=-1092;database=FOO;userid=boss;authid=BOSS;
execution id=newton;application id=*LOCAL.newton.980624124210;
application name=testapp;auth type=SERVER;

timestamp=1998-06-24-08.42.11.594620;category=VALIDATE;

Chapter 6. Auditing DB2 Activities 299

audit event=CHECK_GROUP_MEMBERSHIP;event correlator=2;
event status=-1092;database=FOO;userid=boss;authid=BOSS;
execution id=newton;application id=*LOCAL.newton.980624124210;
application name=testapp;auth type=SERVER;

timestamp=1998-06-24-08.42.11.622984;category=CHECKING;
audit event=CHECKING_OBJECT;event correlator=2;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
object name=FOO;object type=DATABASE;access approval reason=DATABASE;
access attempted=CONNECT;

timestamp=1998-06-24-08.42.11.801554;category=CONTEXT;
audit event=COMMIT;event correlator=2;database=FOO;userid=boss;
authid=BOSS;application id=*LOCAL.newton.980624124210;
application name=testapp;

timestamp=1998-06-24-08.42.41.450975;category=CHECKING;
audit event=CHECKING_OBJECT;event correlator=2;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
package schema=NULLID;package name=SQLC28A1;object schema=NULLID;
object name=SQLC28A1;object type=PACKAGE;
access approval reason=OBJECT;access attempted=EXECUTE;

CREATE TABLE
timestamp=1998-06-24-08.42.41.476840;category=CONTEXT;
audit event=EXECUTE_IMMEDIATE;event correlator=3;database=FOO;
userid=boss;authid=BOSS;application id=*LOCAL.newton.980624124210;
application name=testapp;package schema=NULLID;package name=SQLC28A1;
package section=203;text=create table audit(c1 char(10), c2 integer);

timestamp=1998-06-24-08.42.41.539692;category=CHECKING;
audit event=CHECKING_OBJECT;event correlator=3;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
package schema=NULLID;package name=SQLC28A1;package section=0;
object schema=BOSS;object name=AUDIT;object type=TABLE;
access approval reason=DATABASE;access attempted=CREATE;

timestamp=1998-06-24-08.42.41.570876;category=CHECKING;
audit event=CHECKING_OBJECT;event correlator=3;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
package schema=NULLID;package name=SQLC28A1;package section=0;
object name=BOSS;object type=SCHEMA;access approval reason=DATABASE;
access attempted=CREATE;

timestamp=1998-06-24-08.42.41.957524;category=OBJMAINT;
audit event=CREATE_OBJECT;event correlator=3;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
package schema=NULLID;package name=SQLC28A1;package section=0;
object schema=BOSS;object name=AUDIT;object type=TABLE;

300 Administration Guide: Implementation

timestamp=1998-06-24-08.42.42.018900;category=CONTEXT;audit event=COMMIT;
event correlator=3;database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
package schema=NULLID;package name=SQLC28A1;

As you can see, there are a significant number of audit records generated
from the audit configuration that requests the auditing of all possible audit
events and types.

In most cases, you will configure the audit facility for a more restricted or
focused view of the events you wish to audit. For example, you may want to
only audit those events that fail. In this case, the audit facility could be
configured as follows:

db2audit configure scope audit,checking,objmaint,secmaint,sysadmin,
validate status failure

Note: This configuration is the initial audit configuration or the one that
occurs when the audit configuration is reset.

After beginning the audit facility with this configuration, and then running
the testapp application, the following records are generated and placed in the
audit log. (And we assume testapp has not been run before.) By extracting the
audit records from the log, you will see the following records generated for
the two actions carried out by the application:

Action Type of Record Created

CONNECT
timestamp=1998-06-24-08.42.11.527490;category=VALIDATE;
audit event=CHECK_GROUP_MEMBERSHIP;event correlator=2;
event status=-1092;database=FOO;userid=boss;authid=BOSS;
execution id=newton;application id=*LOCAL.newton.980624124210;
application name=testapp;auth type=SERVER;

timestamp=1998-06-24-08.42.11.561187;category=VALIDATE;
audit event=CHECK_GROUP_MEMBERSHIP;event correlator=2;
event status=-1092;database=FOO;userid=boss;authid=BOSS;
execution id=newton;application id=*LOCAL.newton.980624124210;
application name=testapp;auth type=SERVER;

timestamp=1998-06-24-08.42.11.594620;category=VALIDATE;
audit event=CHECK_GROUP_MEMBERSHIP;event correlator=2;
event status=-1092;database=FOO;userid=boss;authid=BOSS;
execution id=newton;application id=*LOCAL.newton.980624124210;
application name=testapp;auth type=SERVER;

CREATE TABLE
(none)

Chapter 6. Auditing DB2 Activities 301

The are far fewer audit records generated from the audit configuration that
requests the auditing of all possible audit events (except CONTEXT) but only
when the event attempt fails. By changing the audit configuration you can
control the type and nature of the audit records that are generated.

The audit facility can allow you to create audit records when those you want
to audit have been successfully granted privileges on an object. In this case,
you could configure the audit facility as follows:

db2audit configure scope checking status success

After beginning the audit facility with this configuration, and then running
the testapp application, the following records are generated and placed in the
audit log. (And we assume testapp has not been run before.) By extracting the
audit records from the log, you will see the following records generated for
the two actions carried out by the application:

Action Type of Record Created

CONNECT
timestamp=1998-06-24-08.42.11.622984;category=CHECKING;
audit event=CHECKING_OBJECT;event correlator=2;event status=0;
database=FOO;userid=boss;authid=BOSS;

timestamp=1998-06-24-08.42.41.450975;category=CHECKING;
audit event=CHECKING_OBJECT;event correlator=2;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
package schema=NULLID;package name=SQLC28A1;object schema=NULLID;
object name=SQLC28A1;object type=PACKAGE;
access approval reason=OBJECT;access attempted=EXECUTE;

timestamp=1998-06-24-08.42.41.539692;category=CHECKING;
audit event=CHECKING_OBJECT;event correlator=3;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
package schema=NULLID;package name=SQLC28A1;package section=0;
object schema=BOSS;object name=AUDIT;object type=TABLE;
access approval reason=DATABASE;access attempted=CREATE;

timestamp=1998-06-24-08.42.41.570876;category=CHECKING;
audit event=CHECKING_OBJECT;event correlator=3;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
package schema=NULLID;package name=SQLC28A1;package section=0;
object name=BOSS;object type=SCHEMA;access approval reason=DATABASE;
access attempted=CREATE;

CREATE TABLE
(none)

302 Administration Guide: Implementation

Part 4. Moving Data

© Copyright IBM Corp. 1993, 2001 303

304 Administration Guide: Implementation

Chapter 7. Utilities for Moving Data

The LOAD utility moves data into tables, extends existing indexes, and
generates statistics. LOAD moves the data much faster than the IMPORT
utility when large amounts of data are involved. Data, unloaded using the
EXPORT utility, can be loaded with the LOAD utility.

The AutoLoader utility splits large amounts of data and loads the split data
into the different partitions of a partitioned database.

The IMPORT and EXPORT utilities move data between a table or view and
another database or spreadsheet program; between DB2 databases; and
between DB2 databases and host databases using DB2 Connect.

Data Replication (formerly DataPropagator Relational (DPROPR)) is a
component of DB2 Universal Database that allows automatic copying of table
updates to other tables in other DB2 relational databases.

Note: All of the information on these topics, and the comparable topics from
the Command Reference and the Administrative API Reference, have been
consolidated into the Data Movement Utilities Guide and Reference.

The Data Movement Utilities Guide and Reference is your primary, single
source of information for these topics.

To find out more about replication, see Replication Guide and Reference.

© Copyright IBM Corp. 1993, 2001 305

|

|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|

306 Administration Guide: Implementation

Part 5. Recovery

© Copyright IBM Corp. 1993, 2001 307

|

308 Administration Guide: Implementation

Chapter 8. Recovering a Database

You will need to be able to recover your database when things go wrong.
Problems may include power failures, application failures, as well as media
and storage failures. To ensure that you can recover when problems like this
happen, you need to have backups or copies of the entire database or of the
table spaces that make up the database. These backups can then be used
following a database problem to restore the database.

The rebuilding of a database following a problem is called recovery. Crash
recovery automatically attempts to recover the database after a failure. Crash
recovery protects a database from being left in an inconsistent or unusable
state. Transactions against the database can be left incomplete when a failure
of the database occurs. Crash recovery either rolls back incomplete
transactions or commits completed transactions. These actions make the
database consistent and usable.

There are two other types of recovery when the database has been damaged
and you are unsure about the contents of the database. The two ways to
recover a damaged database are: version recovery and roll-forward recovery.
If you are working with a read-only database or where you are not concerned
about transactions being recorded in a database, then you may only need
version recovery. If you have taken a backup of the database, then you can
apply or restore that copy of the database. This is called version recovery. If
you are working with a database that has transactions applied to the database
and you need to know that the database has all of those changes applied, then
you need to complete a roll-forward recovery. A roll-forward recovery
involves restoring a backup of the database. Then, you must apply a record of
the logs recording the transactions against the database. The application of the
logs repeats all of the activity against the database so that the database is
brought to a state just prior to the point of failure. No changes to the database
are lost using this recovery method. Logging is the key to this recovery
method.

Note: All of the information on these topics, and the comparable topics from
the Command Reference and the Administrative API Reference, have been
consolidated into the Data Recovery and High Availability Guide and
Reference.

The Data Recovery and High Availability Guide and Reference is your
primary, single source of information for these topics.

© Copyright IBM Corp. 1993, 2001 309

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

310 Administration Guide: Implementation

Part 6. Appendixes

© Copyright IBM Corp. 1993, 2001 311

312 Administration Guide: Implementation

Appendix A. Naming Rules

Go to the section that describes the naming rules that you require information
on:
v “General Naming Rules”
v “Object Naming Rules”
v “How Case-Sensitive Values Are Preserved in a Federated System” on

page 317

General Naming Rules

Unless otherwise specified, all names can include the following characters:
v A through Z. When used in most names, characters A through Z are

converted from lowercase to uppercase.
v 0 through 9
v @, #, $, and _ (underscore)

Names cannot begin with a number or with the underscore character.

Do not use SQL reserved words to name tables, views, columns, indexes, or
authorization IDs. For a list of SQL reserved words, see the SQL Reference.

There are other special characters that might work separately depending on
your operating system and where you are working with DB2. However, while
they might work, there is no guarantee that they will work. It is not
recommended that you use these other special characters when naming
objects in your database.

Object Naming Rules

All objects follow the General Naming Rules. In addition, some objects have
additional restrictions shown below.

© Copyright IBM Corp. 1993, 2001 313

|

|

|
|

|

|

|
|

|
|

|

|
|

|

|

|

|
|

|
|
|
|
|

|
|

|
|

Table 15. Database, Database Alias and Instance Naming Rules

Objects Guidelines

v Databases

v Database aliases

v Instances

v Database names must be unique within the location in which they are
cataloged. On UNIX-based implementations of DB2, this location is a
directory path, while on Windows implementations, it is a drive letter.

v Database alias names must be unique within the system database directory.
When a new database is created, the alias defaults to the database name.
As a result, you cannot create a database using a name that exists as a
database alias, even if there is no database with that name.

v Database, database alias and instance names can have up to 8 bytes.

v On Windows NT and Windows 2000 systems, no instance can have the
same name as a service name.

Note: To avoid potential problems, do not use the special characters @, #,
and $ in a database name if you intend to use the database in a
communications environment. Also, because these characters are not common
to all keyboards, do not use them if you plan to use the database in another
language.

Table 16. Database Object Naming Rules

Objects Guidelines

v Aliases

v Buffer pools

v Columns

v Event monitors

v Indexes

v Methods

v Nodegroups

v Schemas

v Stored procedures

v Tables

v Table spaces

v Triggers

v UDFs

v UDTs

v Views

Can contain up to 18 bytes except for the following:

v Table names (including view names, summary table names, alias names,
and correlation names), which can contain up to 128 bytes

v Column names, which can contain up to 30 bytes

v Schema names, which can contain up to 30 bytes

v Object names can also include:

– valid accented characters (such as ö)

– multibyte characters, except multibyte spaces (for multibyte
environments)

Additional Information about Schema Names
v Tables with schema names longer than 18 bytes cannot be replicated.
v User-defined types (UDTs) cannot have schema names longer than 8 bytes.

314 Administration Guide: Implementation

||

||

|

|

|

|
|
|

|
|
|
|

|

|
|

|
|
|
|
|
|

||

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

v The following schema names are reserved words and must not be used:
SYSCAT, SYSFUN, SYSIBM, SYSSTAT.

v To avoid potential migration problems in the future, do not use schema
names that begin with SYS. The database manager will not allow you to
create triggers, user-defined types or user-defined functions using a schema
name beginning with SYS.

v It is recommended that you not use SESSION as a schema name. Declared
temporary tables must be qualified by SESSION. It is therefore possible to
have an application declare a temporary table with a name identical to that
of a persistent table, in which case the application logic can become overly
complicated. Avoid the use of the schema SESSION, except when dealing
with declared temporary tables.

Appendix A. Naming Rules 315

|
|

|
|
|
|

|
|
|
|
|
|

Table 17. User, User ID and Group Naming Rules

Objects Guidelines

v Group names

v User names

v User IDs

v Group names can contain up to 8 bytes.

v User IDs on UNIX-based systems can contain up to 8 characters.

v User names on Windows can contain up to 30 characters. Windows NT
and Windows 2000 currently have a practical limit of 20 characters.

v When using DCE authentication, user names have a limit of 8 characters.

v When not using DCE or Client authentication, non-Windows 32-bit clients
connecting to Windows NT and Windows 2000 with user names longer
than 8 characters are supported when the user name and password are
specified explicitly.

v Names and IDs cannot:

– Be USERS, ADMINS, GUESTS, PUBLIC, LOCAL or any SQL reserved
word listed in the SQL Reference.

– Begin with IBM, SQL or SYS.

– Include accented characters.

On UNIX-based systems, groups and users can have the same name. For the
GRANT statement, you must specify whether you are referring to a group or
to a user. For the REVOKE statement, specifying user or group depends on
whether or not there are multiple rows in the authorization catalog tables for
the GRANTEE with different values of GRANTEETYPE.

On Windows NT, local groups, global groups, and users cannot have the
same name.

On OS/2, groups and users cannot have the same name.

Notes:

1. Some operating systems allow case sensitive user IDs and passwords. You
should check your operating system documentation to see if this is the
case.

2. The authorization ID returned from a successful CONNECT or ATTACH
is truncated to 8 characters. An ellipsis (...) is appended to the
authorization ID and the SQLWARN fields contain warnings to indicate
truncation. For more information, see the CONNECT statement in the
SQL Reference.

Additional Information about Passwords
You may be required to perform password maintenance tasks. Since such
tasks are required at the server, and many users are not able or comfortable
working with the server environment, performing these tasks can pose a
significant challenge. DB2 UDB provides a way to update and verify
passwords without having to be at the server. For example, DB2 for OS/390
Version 5 supports this method of changing a user’s password. If an error

316 Administration Guide: Implementation

||

||

|

|

|

|

|

|
|

|

|
|
|
|

|

|
|

|

|

|
|
|
|
|

|
|

|

|

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

message SQL1404N “Password expired” is received, use the CONNECT
statement to change the password as follows:

CONNECT TO <database> USER <userid> USING <password>
NEW <new_password> CONFIRM <new_password>

The “Password change” dialog of the DB2 Client Configuration Assistant
(CCA) can also be used to change the password. For more information about
these methods of changing the password, refer to the SQL Reference and the
CCA online help.

Table 18. Federated Database Object Naming Rules

Objects Guidelines

v Function mappings

v Index specifications

v Nicknames

v Servers

v Type mappings

v User mappings

v Wrappers

v Nicknames, mappings, index specifications, servers, and wrapper names
cannot exceed 128 bytes.

v Server and nickname options and option settings are limited to 255 bytes.

v Names for federated database objects can also include:

– Valid accented letters (such as ö)

– Multibyte characters, except multibyte spaces (for multibyte
environments)

Using Delimited Identifiers in Object Names

Keywords can be used. If a keyword is used in a context where it could also
be interpreted as an SQL keyword, it must be specified as a delimited
identifier.

Using delimited identifiers, it is possible to create an object that violates these
naming rules; however, subsequent use of the object could result in errors. For
example, if you create a column with a + or − sign included in the name and
you subsequently use that column in an index, you will experience problems
when you attempt to reorganize the table. For information about delimited
identifiers, see the ″SQL Identifiers″ section of the SQL Reference.

How Case-Sensitive Values Are Preserved in a Federated System

With distributed requests, you sometimes need to specify identifiers and
passwords that are case sensitive at the data source. To ensure that the case is
correct when they are passed to the data source, follow these guidelines:
v Specify identifiers and passwords in the required case, and enclose them in

double quotation marks.
v If you are specifying a user ID, set the fold_id server option to ″n″ (“No,

don’t change case”) for the data source. If you are specifying a password,
set the fold_pw server option to ″n″ for the data source.

Appendix A. Naming Rules 317

|
|

|
|

|
|
|
|

||

||

|

|

|

|

|

|

|

|
|

|

|

|

|
|

|

|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|

|
|
|

There is an alternative for user IDs and passwords. If a data source requires
a user ID to be in lowercase, you can specify it in any case and set the
fold_id server option to ″l″ (“Send this ID to the data source in lowercase”).
If the data source requires the ID to be in uppercase, you can specify it in
any case and set fold_id to ″u″ (“Send this ID to the data source in
uppercase”). In the same way, if a data source requires a password to be in
lowercase or uppercase, you can meet this requirement by setting the
fold_pw server option to ″l″ or ″u″.
For more information about server options, see “Using Server Options to
Help Define Data Sources and Facilitate Authentication Processing” on
page 153.

v If you enclose a case sensitive identifier or a password in double quotation
marks at an operating system command prompt, you must ensure that the
system parses the double quotation marks correctly. To do this:
– On a UNIX-based operating system, enclose the statement in single

quotation marks.
– On the Windows NT operating system, precede each quotation mark

with a backslash.

For example, many delimited identifiers in DB2 data sources are case
sensitive. Suppose you want to create a nickname, NICK1, for a DB2 for CS
view, "my_schema"."wkly_sal", that resides in a data source called NORBASE.

At the command prompt for a UNIX-based system, you would type:
db2 'create nickname nick1 for norbase."my_schema"."wkly_sal"'

At a Windows NT command prompt, you would type:
db2 create nickname nick1 for norbase.\"my_schema\".\"wkly_sal\"

If you enter the statement from a DB2 command prompt (interactive mode),
or if you specify it in an application program, you do not need the single
quotation marks or the backslashes. For example, at the DB2 command
prompt on either a UNIX-based system or Windows NT, you would type:

create nickname nick1 for norbase."my_schema"."wkly_sal"

318 Administration Guide: Implementation

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|

|

|

|

|
|
|
|

|

Appendix B. Using Distributed Computing Environment
(DCE) Directory Services

DCE provides the Cell Directory Service (CDS) and Global Directory Service
(GDS). For more information about DCE concepts and these services, refer to
the Introduction to OSF DCE manual. The DB2 function for DCE Directory
Services supports CDS only. With this support, the user does not have to
create each database, node, and DCS database on every single client. All of
this information is centralized in DCE CDS.

The following sections describe how to set up and access a database using
DCE Directory Services:
v Creating Directory Objects
v Attributes of Each Object Class
v Directory Services Security
v Configuration Parameters and Registry Variables
v CATALOG and ATTACH Commands, and the CONNECT Statement
v How a Client Connects to a Database
v How Directories Are Searched
v Temporarily Overriding DCE Directory Information
v Directory Services Tasks
v Directory Services Restrictions

DCE directory services may not be supported by all DB2 clients. If DCE
directory services is supported for a DB2 client, your Quick Beginnings manual
provides additional information.

Creating Directory Objects

There are three types of directory objects that the database administrator
needs to create:
v “Database Objects” on page 320
v “Database Locator Objects” on page 321
v “Routing Information Objects” on page 322

Each object contains attributes. Refer to “Attributes of Each Object Class” on
page 324 for a complete description of the attributes.

© Copyright IBM Corp. 1993, 2001 319

|

|
|

|

|

|

|

|

|

|

|

|

|

Before the database administrator can create the objects, the DCE
administrator needs to add database information into a CDS table and grant
create privileges to the database administrator. Refer to “DCE Administrator
Tasks” on page 340 for the details.

Database Objects
A database object is required for each target database. The object has a name
that contains the cell name concatenated to the directory name and the name
of the database, for example:

/.../cell_name/dir_name1/dir_name2/OBJ_NAME

Note: The following is recommended for the name of the database. The name
should be less than or equal to 8 characters and all the characters
should be upper case. If the name is mixed case or longer than 8
characters, you need to use the CATALOG GLOBAL DATABASE
command to assign an alias. See “CATALOG GLOBAL DATABASE
Command” on page 332 for details about the command.

The following is an example of a database object. The object stored in the
DCE directory contains other information such as a timestamp. The letter to
the left of each attribute indicates if the attribute is required - R, optional - O,
or a comment - C.

Object name: /.../CELL_TORONTO/subsys/database/AIXDB1
R DB_Object_Type: D
C DB_Product_Name: DB2_for_AIX
C DB_Product_Release: V7R1M000
R DB_Native_Database_Name: AIXDBASE
R DB_Database_Protocol: DB2RA
R DB_Authentication: CLIENT
O DB_Communication_Protocol:
O DB_Database_Locator_Name: /.../CELL_TORONTO/subsys/database/AIX_INST
C DB_Comment: Test_database_on_AIX

If the database is one of many databases associated with a database manager
instance, the database object should contain the name of a database locator
object and the communication protocol should be blank. The name of the
database locator object is the fully-qualified name of the database manager or
DB2 Connect instance.

Here is an example of the DCE commands to create the object. Before any
objects can be created, the DCE administrator needs to do the steps described
in “DCE Administrator Tasks” on page 340.

First you must type the following in a file called cdscp.inp:
create object /.:/subsys/database/AIXDB1

add object /.:/subsys/database/AIXDB1 DB_Object_Type = D
add object /.:/subsys/database/AIXDB1 DB_Product_Name = DB2_for_AIX

320 Administration Guide: Implementation

add object /.:/subsys/database/AIXDB1 DB_Product_Release = V7R1M000
add object /.:/subsys/database/AIXDB1 DB_Native_Database_Name = AIXDBASE
add object /.:/subsys/database/AIXDB1 DB_Database_Protocol = DB2RA
add object /.:/subsys/database/AIXDB1 DB_Authentication = CLIENT
add object /.:/subsys/database/AIXDB1 DB_Database_Locator_Name = /...
/CELL_TORONTO/subsys/database/AIX_INST
add object /.:/subsys/database/AIXDB1 DB_Comment = Test_database_on_AIX

Then you must run either
v dcelogin principal password (on OS/2); or,
v dce_login principal password (on UNIX, Windows operating systems).

This should be followed by
v cdscp < cdscp.inp

Use the following command to display the object:
cdscp show object /.:/subsys/database/AIXDB1

If the database is the only database associated with a database manager
instance, the database object should contain values for the Communication
Protocol attribute and the name of the database locator object should be
blank. For example:

Object name: /.../CELL_TORONTO/subsys/database/MVSDB
R DB_Object type: D
C DB_Product_Name: DB2_for_MVS
C DB_Product_Release: V7R1M00
R DB_Native_Database_Name: MVSDBASE
R DB_Database_Protocol: DRDA
R DB_Authentication: SERVER
O DB_Communication_Protocol: APPC;NET1;TARGETLU1;DB2DRDA;MODE1;PROGRAM
O DB_Database_Locator_Name:
C DB_Comment: Test_database_on_MVS

Database Locator Objects
These objects contain the details about all the communication protocols used
by a database management system instance or a DB2 Connect instance. One
database locator object is required for:
v Each instance with both a database management system and DB2 Connect
v Each database management system instance which is associated with more

than one database, but without an associated DB2 Connect
v Each DB2 Connect instance without an associated database management

system.

The object has a name that contains the cell name concatenated to the
directory name and the one-part name of the database instance, for example:

/.../cell_name/dir_name1/dir_name2/AIX_INST

Appendix B. DCE Directories 321

|

|
|
|

|

|
|

|
|

Note: If the instance is used as the target of an ATTACH, the one-part name
must be less than or equal to 8 characters and all upper case.

The following is an example of a database locator object. The object stored in
the DCE directory contains other information such as a timestamp. The letter
to the left of each attribute indicates if the attribute is required - R, optional -
O, or a comment - C.

Object name: /.../CELL_TORONTO/subsys/database/AIX_INST
R DB_Object_Type: L
C DB_Product_Name: DB2_for_AIX
C DB_Product_Release: V7R1M00
R DB_Communication_Protocol: TCPIP;HOSTNAME1;1234
R DB_Communication_Protocol: APPC;NET1;TARGETLU1;TPN1;MODE;PROGRAM
C DB_Comment: Test_instance_on_AIX

When an attribute is defined in both the database object and the database
locator object, the value in the database object is used.

Here is an example of the DCE commands to create the object. Before any
objects can be created, the DCE administrator needs to do the steps described
in “DCE Administrator Tasks” on page 340.

First you must type the following in a file called cdscp.inp:
create object /.:/subsys/database/AIX_INST

add object /.:/subsys/database/AIX_INST DB_Object_Type = L
add object /.:/subsys/database/AIX_INST DB_Product_Name = DB2_for_AIX
add object /.:/subsys/database/AIX_INST DB_Product_Release = V7R1M00
add object /.:/subsys/database/AIX_INST DB_Communication_Protocol = TCPIP;
HOSTNAME1;1234
add object /.:/subsys/database/AIX_INST DB_Communication_Protocol = APPC;NET1;
TARGETLU;TPN1;MODE;PROGRAM
add object /.:/subsys/database/AIX_INST DB_Comment = Test_instance_on_AIX

Then you must run either
v dcelogin principal password (on OS/2); or,
v dce_login principal password (on UNIX, Windows operating systems).

This should be followed by
v cdscp < cdscp.inp

Use the following command to display the object:
cdscp show object /.:/subsys/database/AIX_INST

Routing Information Objects
Routing information objects are required for host access. When a mismatch
exists in the database protocol used by a client and the database protocol used
by the target database, the routing object tells the client which DB2 Connect

322 Administration Guide: Implementation

|

instance to use. Attributes exist for each target database, which include the
database protocols that are available and the name of the database locator
object for the DB2 Connect instance. The object has a name that contains the
cell name concatenated to the directory name and a unique one-part name, for
example:

/.../cell_name/dir_name1/dir_name2/ROUTE1

The following is an example of a routing information object. The object stored
in the DCE directory contains other information such as a timestamp. The
letter to the left of each attribute indicates if the attribute, and each token
within an attribute is required - R, optional - O, or a comment - C.

Client group 1 is Client_1, Client_2, and Client_3 in Figure 8 on page 334.
Object name: /.../CELL_TORONTO/subsys/database/ROUTE1

R DB_Object_Type: R
C DB_Comment: Routing_for_client_group_1

R DB_Target_Database_Info
R Database name = /.../CELL_TORONTO/subsys/database/MVSDB
R Outbound protocol from router = DRDA
R Inbound protocol to router = DB2RA
R Authenticate at gateway = 1
O Parameter string = NOMAP,D,INTERRUPT_ENABLED
R DB_Database_Locator_Name = /.../CELL_TORONTO/subsys/database/GW_INST

R DB_Target_Database_Info
R Database name = *OTHERDBS
R Outbound protocol from router = DRDA
R Inbound protocol to router = DB2RA
R Authenticate at gateway = 0
O Parameter string =
R DB_Database_Locator_Name = /.../CELL_TORONTO/subsys/database/OTH_INST

The database name *OTHERDBS is a special value that identifies a common
router used to access any target database not explicitly defined in the routing
information object.

Here is an example of the DCE commands to create the object. The backslash
(\) character is a continuation character.

Before any objects can be created, the DCE administrator needs to do the
steps described in “DCE Administrator Tasks” on page 340.

First you must type the following in a file called cdscp.inp:
create object /.:/subsys/database/ROUTE1

add object /.:/subsys/database/ROUTE1 DB_Object_Type = R
add object /.:/subsys/database/ROUTE1 DB_Comment = Routing_for_client_group_1
add object /.:/subsys/database/ROUTE1 DB_Target_Database_Info = \

Appendix B. DCE Directories 323

/.../CELL_TORONTO/subsys/database/MVSDB;\
drda;db2ra;1;NOMAP,D,INTERRUPT_ENABLE;\
/.../CELL_TORONTO/subsys/database/GW_INST
add object /.:/subsys/database/ROUTE1 DB_Target_Database_Info = \
*OTHERDBS;drda;db2ra;0;;\
/.../CELL_TORONTO/subsys/database/OTH_INST

Then you must run either
v dcelogin principal password (on OS/2); or,
v dce_login principal password (on UNIX, Windows operating systems).

This should be followed by
v cdscp < cdscp.inp

Use the following command to display the object:
cdscp show object /.:/subsys/database/ROUTE1

For more information about the DCE commands, refer to the following OSF
DCE publications:
v OSF DCE Administration Guide

v OSF DCE Administration Reference

Attributes of Each Object Class

In the DCE environment, each object and object attribute is identified by an
object ID (OID). Each OID is obtained from a hierarchy of allocation
authorities, where the highest authority is the International Organization for
Standardization (ISO).

Table 19 shows the attributes for each object class and Table 20 on page 325
shows their attributes.

Table 19. Object Attribute Classes

Object Class Object ID (OID) Required
Attributes

Optional
Attributes

(DB) Database_Object 1.3.18.0.2.6.12 DAU, DOT,
DDP, DNN

DCO, DPN,
DRL, DLN,
DCP, DPR

(DL) Database_Locator_Object 1.3.18.0.2.6.13 DOT, DCP DCO, DPN,
DRL

(RI) Routing_Information_Object 1.3.18.0.2.6.14 DOT, DTI DCO, DPN,
DRL

324 Administration Guide: Implementation

|

|
|

|

|

Table 20. Object Class Attributes

Attribute Name OID Minimum
Length

Maximum
Length

Syntax

(DAU) DB_Authentication 1.3.18.0.2.4.39 1 1024 Char

(DCO) DB_Comment 1.3.18.0.2.4.30 1 1024 Char

(DCP) DB_Communication_Protocol 1.3.18.0.2.4.31 1 1024 Char

(DDP) DB_Database_Protocol 1.3.18.0.2.4.32 1 1024 Char

(DLN) DB_Database_Locator_Name 1.3.18.0.2.4.33 1 1024 Char

(DNN) DB_Native_Database_Name 1.3.18.0.2.4.34 1 1024 Char

(DOT) DB_Object_Type 1.3.18.0.2.4.35 1 1 Char

(DPN) DB_Product_Name 1.3.18.0.2.4.36 1 1024 Char

(DRL) DB_Product_Release 1.3.18.0.2.4.37 1 1024 Char

(DTI) DB_Target_Database_Info 1.3.18.0.2.4.38 1 1024 Char

(DPR) DB_Principal 1.3.18.0.2.4.63 1 1024 Char

Note: Multiple values are allowed for DCP, DDP, and DTI. Only one value is allowed for the other
attributes.

Details About Each Attribute
The following section describes each attribute.

Note: DCE Directory Services does not check that the entries are valid for
DB2. Ensure that you enter the attributes that are required and that you
enter the correct values.

DB_Authentication (DAU)
Authentication method required by the object. This attribute is
required for the database object of a DB2 server. The value must be
CLIENT, SERVER, or DCE.

DB_Principal (DPR)
If authentication method is “DCE”, enter the DCE principal in this
attribute.

DB_Comment (DCO)
For documentation purposes only.

DB_Communication_Protocol (DCP)
A multi-value attribute where each value consists of tokens that
describe the network protocol supported. Examples of the network
protocols are TCP/IP, APPC, IPX/SPX, and NetBIOS. Each token is
separated by a semicolon. Do not put spaces between the tokens.
v The tokens for TCP/IP are:

1. tcpip

Appendix B. DCE Directories 325

|

2. Host name of the target node
3. Port number used by the object to listen for incoming TCP/IP

connect requests
4. (Optional) Security can be either NONE or SOCKS.

For example: tcpip;HOSTNAME;1234
v The tokens for APPC are:

1. appc
2. Network ID of the target to which to object belongs.
3. LU name where the target can be found.
4. Transaction Program Name (TPN) representing the object in the

LU (For DB2 for MVS/ESA, use DB2DRDA as the TPN.)
5. Mode name
6. Type of security used by the target. The values are:

– NONE
– PROGRAM
– SAME

For example: appc;NETID;TARGETLU;TPNAME;MODE;PROGRAM

Note: For APPC, the client must use its local control point (CP) as
its LU name.

v (OS/2 and supported Windows operating systems only) The tokens
for IPX/SPX are:
1. ipxspx
2. Name of the file server
3. Name of the object

For example: ipxspx;SVR_NAME;OBJ_NAME
v (OS/2 and supported Windows operating systems only) The tokens

for NetBIOS are:
1. netbios
2. Node name of the server

For example: netbios;SVR_NNME where the client adapter number is
found in either the registry value db2clientadpt or the database
manager configuration parameter dft_client_adpt.

v (Supported Windows operating systems only) The tokens for NPIPE
are:
1. NPIPE

326 Administration Guide: Implementation

2. Computer name of the server
3. Instance name of the server

For example: npipe;computername;instance

DB_Database_Protocol (DDP)
The database protocol or protocols supported by the target database.
Examples of the values are DB2RA and DRDA. The following are the
cdscp commands to add two protocols.
add object /.:/subsys/database/AIXDB1 DB_Database_Protocol db2ra
add object /.:/subsys/database/AIXDB1 DB_Database_Protocol drda

DB_Database_Locator_Name (DLN)
The DCE name of the database locator object. In the database object,
the name is for the DBMS instance. In the routing information object,
the name is for the DB2 Connect instance.

For example, /.../CELL_TORONTO/subsys/database/AIX_INST

DB_Native_Database_Name (DNN)
The database name or alias by which the database is known within
the instance containing the database. This is the name that a local
application on the instance uses to connect to that database.

The name is up to 8 characters for a DB2 for Universal Database
database. For other databases, the length of the name may be
different. For example it can be up to 18 characters for databases on
DB2 for MVS/ESA.

DB_Object_Type (DOT)
The type of object. This attribute is required for all objects and can be
one of the following:

D Database object

L Database locator object

R Routing information object

DB_Product_Name (DPN)
The identification of the product. For documentation purposes only.

DB_Product_Release (DRL)
The product release level. For documentation purposes only.

DB_Target_Database_Info (DTI)
A multi-value attribute where each value consists of a fixed number of
tokens, separated by a semicolon. Do not put spaces between the
tokens. The tokens must be in the following order:

Appendix B. DCE Directories 327

1. Database name. The DCE name of a target database for which the
routing service is provided. The value *OTHERDBS specifies a
default gateway for any target databases not explicitly defined in
the routing information object.

2. Outbound protocol from router. The database protocol used by the
target database, or the database protocol the routing DB2 Connect
instance uses to communicate with that target database. For
example, DRDA.

3. Inbound protocol to router. The database protocol accepted by the
routing DB2 Connect instance object. For example, DB2RA.

4. Authenticate at gateway. The valid values are 0 or 1. See Table 21
on page 329 for more details.

5. Parameter string which contains information specific to the DB2
Connect gateway. The string contains tokens that must be in the
order described below. The tokens are separated by commas. For
tokens that are not specified, the default is used.
v Map-file name. The fully-qualified name of the SQLCODE

mapping file that overrides the default SQLCODE mapping. To
turn off SQLCODE mapping, specify NOMAP.

v D. The application disconnects from the DRDA server database
when specific SQLCODEs are returned. Refer to the DB2 Connect
User’s Guide for details about the SQLCODEs.

v INTERRUPT_ENABLED. DB2 Connect will drop the connection
and roll back the unit of work when a client issues an interrupt
while connected to the DRDA server.

The following are some examples:
NOMAP
/u/username/sqllib/map/dcs1new.map,D
/u/username/sqllib/map/dcs1new.map,D,INTERRUPT_ENABLED

Where defaults are used, use a comma to preserve the order of the
tokens, for example:

,D

or
,,INTERRUPT_ENABLED

Refer to the DB2 Connect User’s Guide for details about the
Parameter string.

6. The DCE name of the DB2 Connect instance that provides the
routing service.

The following is an example of the DB_Target_Database_Info:

328 Administration Guide: Implementation

/.../CELL_TORONTO/subsys/database/MVSDB;\
drda;db2ra;0;;\
/.../CELL_TORONTO/subsys/database/GW_INST

Note: In the above example, the back slash (\) is a line continuation
character.

Directory Services Security

When using DCE directory services in an environment without a DB2 Connect
gateway, authentication is the same as is used for other clients accessing
database servers. For more information, see “Selecting an Authentication
Method for Your Server” on page 225.

When using DCE directory services in an environment with a DB2 Connect
gateway, the DB2 Connect administrator determines where user names and
passwords are validated. With DCE directories, specify the following:
v The security type of the communication protocol in the database locator

object representing the DB2 Connect workstation. (If a remote client is
connected to the DB2 Connect Extended Edition gateway via an APPC
connection, specify a security type of NONE in the DCE Locator Object of
the gateway.)

v The authentication type in the database object.
v The security type of the communication protocol in the database object (or

its associated locator object).
v The authenticate at gateway token in the routing information object.

Table 21 shows the possible combinations of these values and where
validation is performed for each combination using APPC connections. The
combinations shown in this table are supported by DB2 Connect with DCE
Directory Services.

Table 21. Valid Security Scenarios with DCE using APPC Connections

Database Object of the Server Routing Object Validation

Case Authentication Security Authenticate at
Gateway

1 CLIENT SAME 0 Remote client (or DB2 Connect
workstation)

2 CLIENT SAME 1 DB2 Connect workstation

3 SERVER PROGRAM 0 DRDA server

4 SERVER PROGRAM 1 DB2 Connect workstation and
DRDA server

5 DCE NONE NOT APPLICABLE DCE

Appendix B. DCE Directories 329

Table 22 shows the possible combinations of these values and where
validation is performed for each combination using TCP/IP connections. The
combinations shown in this table are supported by DB2 Connect with DCE
Directory Services.

Table 22. Valid Security Scenarios with DCE using TCP/IP Connections

Case Authentication Authenticate at
Gateway

Validation

1 CLIENT 0 Client

2 CLIENT 1 DB2 Connect workstation

3 SERVER 0 DRDA server

4 NOT APPLICABLE NOT APPLICABLE None

5 DCE NOT APPLICABLE DCE

Each combination is applicable to both APPC and TCP/IP and is described in
more detail below:
1. The user name and password are validated only at the remote client. (For

a local client, the user name and password are validated only at the DB2
Connect workstation.)
The user is expected to be authenticated at the location he or she first
signs on to. The user ID is sent across the network, but not the password.
Use this type of security only if all client workstations have adequate
security facilities.

2. The user name and password are validated at the DB2 Connect
workstation only. The password is sent across the network from the
remote client to the DB2 Connect workstation but not to the DRDA server.

3. The user name and password are validated at the DRDA server only. The
password is sent across the network from the remote client to the DB2
Connect workstation and from the DB2 Connect workstation to the DRDA
server.

4. The user name and password are validated at both the DB2 Connect
workstation and the DRDA server. The password is sent across the
network from the remote client to the DB2 Connect workstation and from
the DB2 Connect workstation to the DRDA server.
Because validation is performed in two places, the same set of user names
and passwords must be maintained at both the DB2 Connect workstation
and the DRDA server.

5. A DCE token is obtained from the DCE Security Server.

Notes:

1. For AIX-based systems, all users using security type SAME must belong to
the AIX system group.

330 Administration Guide: Implementation

2. For AIX-based systems with remote clients, the instance of the DB2
Connect product running on the DB2 Connect workstation must belong to
the AIX system group.

3. Access to a DRDA server is controlled by its own security mechanisms or
subsystems; for example, the Virtual Telecommunications Access Method
(VTAM) and Resource Access Control Facility (RACF). Access to protected
database objects is controlled by the SQL GRANT and REVOKE
statements.

Configuration Parameters and Registry Variables

The following configuration parameters are used with DCE directories. An
example of the values is shown. Refer to “Distributed Services” within the
chapter “Configuring DB2” in Administration Guide: Performance for details.
v dir_obj_name is the database instance name which is concatenated with

dir_path_name. If the instance name is used as the target of the ATTACH
command, the name must be less than or equal to 8 characters and all
upper case, for example:

AIX_INST

v dir_type identifies whether or not to use DCE directory services. To enable
DCE directory services, this parameter must be set to:

DCE

Note that dir_type is set to NONE and cannot be updated on database
clients that do not support the use of DCE directory services.

v dir_path_name is the directory path name provided by the DCE
administrator, for example:

/.:/subsys/database/

v route_obj_name is an optional parameter that provides the DCE directory
services name of the routing information object. The name can be
fully-qualified, for example:

/.:/subsys/database/ROUTE1

or a one-part name that will be concatenated with dir_path_name, for
example:

ROUTE1

v dft_client_comm is an optional DCE parameter that specifies the
communications protocol used by the client, for example:

TCPIP

This parameter can also specify more than one protocol, for example:
TCPIP,APPC (on UNIX-based platforms)
TCPIP,APPC,IPXSPX,NETBIOS (on OS/2 platforms)
TCPIP,APPC,IPXSPX,NETBIOS,NPIPE (on supported Windows operating systems)

Appendix B. DCE Directories 331

v dft_client_adpt is an optional DCE parameter that specifies the default client
adapter number for the NetBIOS protocol on OS/2 and supported
Windows operating systems. The valid range of numbers is zero through
fifteen (0 to 15). If this parameter contains a non-numeric value, then the
value defaults to zero (0). If this parameter contains a value outside the
range allowed, then the value defaults to zero (0).

For the following parameters, registry variables can override the parameter
values.

Configuration Parameter Registry Variable

dir_path_name DB2DIRPATHNAME

route_obj_name DB2ROUTE

dft_client_comm DB2CLIENTCOMM

dft_client_adpt DB2CLIENTADPT

The rules for setting these registry variables is the same as their
corresponding configuration parameter. For example, like the dft_client_comm
parameter, the DB2CLIENTCOMM is a character string that can have multiple
values, each separated by a comma, for example:

db2set DB2CLIENTCOMM=TCPIP,APPC

CATALOG and ATTACH Commands, and the CONNECT Statement

DCE information needs to be specified in the following commands:
v CATALOG GLOBAL DATABASE Command
v CONNECT Statement
v ATTACH Command

CATALOG GLOBAL DATABASE Command
Use the CATALOG GLOBAL DATABASE command when the client and
server have a different path name, or when the database name contains more
than 8 characters or mixed case characters. The database administrator enters
the DCE name of the database and directory type DCE.

For example:
v When the path names are different, for example if dir_path_name =

/.../CELL_TORONTO/subsys/database/:
CATALOG GLOBAL DATABASE
/.../CELL_VANCOUVER/subsys/database/VMDB AS VANVMDB
USING DIRECTORY DCE WITH "comment-string"

v When the database name contains more than 8 characters, such as the name
DB_LONGNAME:

332 Administration Guide: Implementation

CATALOG GLOBAL DATABASE
/.../CELL_VANCOUVER/subsys/database/DB_LONGNAME AS VANVMDB
USING DIRECTORY DCE WITH "comment-string"

CONNECT Statement
To retrieve the appropriate DCE directory object, the client must know the
fully-qualified DCE name of the database or the DBMS instance. Some of the
methods of specifying the name in the CONNECT statement follow.
v Enter the alias, for example:

CONNECT TO VANVMDB

v Enter the one-part name, for example:
CONNECT TO VMDB

In this case, the path name specified at the client must be the same as the
path name specified at the server. (The path name is specified by the
dir_path_name configuration parameter or the corresponding registry value.)

ATTACH Command
The effective path name of the client must be the same as the path name of
the target DBMS instance.

If the dir_path_name is the same for client and server (for example,
/.../CELL_TORONTO/subsys/database/) and the dir_obj_name at the database
server is AIX_INST, the command to attach to the instance is:

ATTACH TO AIX_INST

How a Client Connects to a Database

Figure 8 on page 334 shows a sample configuration of a database network
with two DCE cells. /.../CELL_TORONTO and /.../CELL_VANCOUVER are the
names of the cells. (Each of these cells contains a directory called
/.:/subsys/database/ and while not illustrated in diagram, is used in other
examples.)

Appendix B. DCE Directories 333

To allow the clients in the TORONTO cell to access all the databases in both
cells, values must be specified in the database manager configuration
parameters and the following objects must be created:
v A database object for each database.
v A database locator object for the target databases on the two database

servers for DB2 for AIX and DB2 for OS/2.

/ . . . /CELL_TORONTO / . . . /CELL_VANCOUVER

MVSDB VMDB

AIXDB1
OS2DB

DB2 Connect DB2 Connect

DB2 for AIX DB2 for OS/2

DRDA

DRDA

LAN

Client_1

Client_2

Client_3

Client_4

AIXDB2

DBMS
Instance

MVS_INST

DBMS
Instance

VM_INST

DBMS
Instance

AIX_INST

DBMS
Instance

OS2_INST

DB2
for MVS

DB2
for VM

BOUNDARY

CELL

DB2RADB2RA

Figure 8. Configuration of A Network Database

334 Administration Guide: Implementation

|
|

v A single routing information object that is known to all clients. The
attributes specify which DB2 Connect node to use for the MVSDB and
VMDB databases.

The following provide examples of how a client connects to a database:
v Connecting to Databases in the Same Cell
v Connecting to a Database in a Different Cell.

These examples include the database manager configuration parameters that
must be specified.

Connecting to Databases in the Same Cell
This section describes several examples of how clients connect to databases in
the same cell.
1. Client_1 connects to AIXDB2. The database shares the same directory path

name as the client.
The database administrator needs to:
v Specify the directory path name value in the configuration parameter

dir_path_name (or the DB2DIRPATHNAME registry value).
v Specify the directory services type value to be DCE in the configuration

parameter dir_type.
v Specify the communication protocol in the configuration parameter

dft_client_comm (or the DB2CLIENTCOMM registry value).

The local system database directory does not contain AIXDB2, so the DCE
directory is searched using the fully-qualified name. The name is created
by concatenating the value for the configuration parameter dir_path_name
(or the DB2DIRPATHNAME registry value) with AIXDB2.

The sequence of events is:
a. Client_1 obtains the database object for AIXDB2 using the DCE name

of the database /.../CELL_TORONTO/subsys/database/AIXDB2.
b. From this object, Client_1 knows that AIXDB2 uses the DB protocol

DB2RA, which is the same protocol that Client_1 uses.
c. The DB protocols match, so Client_1 reads the database management

system locator object for AIX_INST, retrieves the communications
protocol attribute value that matches the one it uses, and uses the
information to start a conversation with that database management
system instance.

2. Client_3 connects to MVSDB. The database shares the same directory path
name as the client and uses a different database protocol from the client.
The database administrator needs to:

Appendix B. DCE Directories 335

|
|
|
|
|

v Specify the directory path name value in the configuration parameter
dir_path_name (or the DB2DIRPATHNAME registry value).

v Specify the directory services type value to be DCE in the configuration
parameter dir_type.

v Specify the communication protocol in the configuration parameter
dft_client_comm (or the DB2CLIENTCOMM registry value).

v Specify the DCE name of the default routing information object in the
configuration parameter route_obj_name (or the DB2ROUTE registry
value).

The sequence of events is:
a. Client_3 obtains the database object for MVSDB using the DCE name

of the database /.../CELL_TORONTO/subsys/database/MVSDB.
b. From this object, Client_3 finds that MVSDB only uses the DB protocol

DRDA, which is not the protocol that Client_3 uses.
c. Client_3 then obtains the routing information object using the name

defined in the route_obj_name configuration parameter or the
DB2ROUTE registry value. The client finds the target database
information for MVSDB.

d. Client_3 reads the database locator object associated with the MVSDB
target database information, retrieves the communication protocol, and
sends an SQL CONNECT request to the router.

e. The router then sets up an APPC connection with MVSDB.

Connecting to a Database in a Different Cell
This section describes an example of how a client connects to a database in a
different cell when the database protocols are different.
1. Client_3 has previously been configured to use the following:

v DCE directory services, by specifying DCE for the dir_type parameter.
v A cell other than CELL_VANCOUVER through the configuration

parameter dir_path_name, for example:
/.../CELL_TORONTO/subsys/database/

2. In order for Client_3 to connect to VMDB, the database administrator
needs to:
v Explicitly catalog VMDB in the local system database directory.

Associate the DCE name for VMDB with a locally unique database alias,
and issue the CONNECT statement with the alias value. For example:

CATALOG GLOBAL DATABASE
/.../CELL_VANCOUVER/subsys/database/VMDB AS VANVMDB
USING DIRECTORY DCE WITH "comment-string"

followed by:
CONNECT TO VANVMDB

336 Administration Guide: Implementation

v Specify the communication protocol in the configuration parameter
dft_client_comm (or the DB2CLIENTCOMM registry value).

v Specify the DCE name of the default routing information object in the
configuration parameter route_obj_name (or the DB2ROUTE registry
value).

The sequence of events is:
a. Client_3 finds the fully qualified DCE name of VANVMDB in its

system database directory.
b. Client_3 obtains the database object for VMDB using the DCE name of

the database /.../CELL_VANCOUVER/subsys/database/VMDB.
c. From this object, Client_3 finds that VMDB only uses the DB protocol

DRDA, which is not the protocol that Client_3 uses.
d. Client_3 then obtains the routing information object using the name

defined in the route_obj_name configuration parameter or the
DB2ROUTE registry value. The client finds the target database
information for VMDB.

e. Client_3 reads the database locator object associated with the VMDB
target database information and retrieves the communication protocol
and sends an SQL CONNECT request to the router.

f. The router then sets up an APPC connection with VMDB.

How Directories Are Searched

If the DCE directory is used in an environment where all the target databases
share the same directory path name, no local directories are required on the
clients.

This section describes the order in which directories are searched for the
following:
v ATTACH Command
v CONNECT Statement

ATTACH Command
Figure 9 on page 338 shows how the directories are searched when a client
attaches to a database management system instance called ABC_INST.

Appendix B. DCE Directories 337

|
|
|

CONNECT Statement
Figure 10 on page 339 shows how the directories are searched when a client
connects to a database called DBTEST.

NO

YES

YES

Attach to local ABC_INST

Attach to ABC_INST

NO

Search DCE directory
Attach to ABC_INST

Environment variable
DB2INSTANCE
= ABC_INST?

Local node
directory entry
= ABC_INST?

Figure 9. How Directories are Used to Attach a Database

338 Administration Guide: Implementation

Temporarily Overriding DCE Directory Information

You can use the local database directory to override the DCE directory
information. For example, if you CONNECT TO DBTEST where
/.:/subsys/database/DBTEST is defined in the DCE directory as residing on a
host called JAGUAR, you can temporarily change DBTEST to a different

YES
Connect to local DBTEST

YES

NO

YES

YES YES

Search DCE directory
Connect to DBTEST

Search DCE directory
Connect to DBTEST

Local node
directory entry
for DBTEST?

Connect to
remote DBTEST

1. Use node name and
as the name of database locator object

2. Search DCE directory
3. Connect to DBTEST

dir_path_nameError

NO

NO

NO NO

System database
directory entry
= DBTEST?

Directory type
= DCE?

Directory type
= indirect?

Directory type
= remote?

Figure 10. How Directories are Used to Connect a Database

Appendix B. DCE Directories 339

database residing on a host called STORM. Catalog DBTEST locally as a
remote database with a node directory entry pointing to STORM.

You can create an alias for a database whose DCE name does not follow the
directory path name of the client. See “CATALOG GLOBAL DATABASE
Command” on page 332 for details about the command.

Directory Services Tasks

The tasks that must be performed to set up and use DCE Directory Services
are listed below. The following sections describe the details of each task.
v DCE Administrator Tasks

The DCE administrator must update the DCE directory so that the new
database resource information can be added.

v Database Administrator Tasks
The database administrator must update the DCE directory and supply
information for DB2 installation and configuration.

v Database User Tasks
The database user must log in to DCE and know the target database name.

In addition, the network administrator sets up the network access for each
user node. Refer to the network documentation for the details.

DCE Administrator Tasks
The DCE administrator must do the following tasks before the directory
objects can be created or read:
v Assign the directory subtree for DB2, for example /.:/subsys/database
v Grant the privileges to the database administrator to create directory objects
v Grant the privileges to the database users to read the directory objects
v Add the information for the new DCE directory object attributes to the DCE

attribute table.
Edit the CDS attributes file (on UNIX platforms /etc/dce/cds_attributes; on
OS/2 X:\opt\dcelocal\etc\cds_attr, where ″X″ is the appropriate drive) and
append the following:
1.3.18.0.2.4.30 DB_Comment char
1.3.18.0.2.4.31 DB_Communication_Protocol char
1.3.18.0.2.4.32 DB_Database_Protocol char
1.3.18.0.2.4.33 DB_Database_Locator_Name char
1.3.18.0.2.4.34 DB_Native_Database_Name char
1.3.18.0.2.4.35 DB_Object_Type char
1.3.18.0.2.4.36 DB_Product_Name char
1.3.18.0.2.4.37 DB_Product_Release char
1.3.18.0.2.4.38 DB_Target_Database_Info char
1.3.18.0.2.4.39 DB_Authentication char
1.3.18.0.2.4.63 DB_Principal char

340 Administration Guide: Implementation

|
|

|

|
|

|

|
|

|

|

v Ensure DCE is running when users need access to the databases using DCE
Directory Services.

For more information, refer to the DCE documentation for the platform you
are using.

Database Administrator Tasks
The database administrator must do the following tasks:
v Obtain the directory subtree for the database resources from the DCE

administrator. For example, /.:/subsys/database
v During installation of the DB2 database manager, ask the DCE

administrator to add the new DCE directory object attributes required by
DB2.

v Assign a unique name for each database management system instance in
the DCE directory subtree. For example, /.:/subsys/database/AIX_INST

v For each database management system instance specify the database
manager configuration parameters for DCE.
– dir_type

– dir_obj_name

– dir_path_name

– route_obj_name

– dft_client_comm

– dft_client_adpt

Some of the configuration parameters can be temporarily overridden by
registry variables set by the client. Refer to “Configuration Parameters and
Registry Variables” on page 331 for more information.

v Assign a unique name for each database in the DCE directory subtree.
Specify the name in the dir_obj_name parameter in the database
configuration file.

v Create the objects for DCE Directory Services using the DCE cdscp
commands to create and display objects. The objects are created separately
from the database manager installation process and the database manager
instance start process.
Three types of objects exist.
– A database object is required for each target database.
– A database locator object is required for each DB2 Connect instance and

each database management system instance (without DB2 Connect)
which is associated with more than one database.

– Routing information objects are required to access a host database.
v Depending on each environment, the database administrator must

determine:

Appendix B. DCE Directories 341

|
|

|
|

|

|

|

|

|

|

|
|
|

|
|
|

– How to group the clients into logical groups considering what databases
they access, and what communications protocols they use.

– How many routing information objects are required.
– Which target databases should be recorded in each routing information

object.
– Which routing information objects should be known to which group of

clients.

Refer to “Creating Directory Objects” on page 319 for details about the
objects.

Database User Tasks
The database user must do the following tasks:
v Obtain the name of the database from the database administrator. This

name can be a simple one-part name, or a fully-qualified DCE name.
v If needed, specify the values required for DCE Directory Services in the

registry variables. Registry variables set by the client can temporarily
override the configuration parameters.
– If host database access is required, obtain the fully-qualified DCE name

of the routing information object from the database administrator. If this
name is not specified in the route_obj_name, or it is a different name,
specify this name in the DB2ROUTE registry variable before trying to
connect to the host database.

– If your preferred communication protocol is not specified in
dft_client_comm, or it is a different protocol, specify the communication
protocol for the client in the DB2CLIENTCOMM registry variable. Here
are some UNIX examples:
db2set DB2CLIENTCOMM=tcpip
db2set DB2CLIENTCOMM=appc
db2set DB2CLIENTCOMM=tcpip,appc
db2set DB2CLIENTCOMM=appc,tcpip

Some OS/2 examples are:
db2set DB2CLIENTCOMM=ipxspx
db2set DB2CLIENTCOMM=netbios
db2set DB2CLIENTCOMM=tcpip,ipxspx,netbios
db2set DB2CLIENTCOMM=netbios,tcpip,ipxspx,appc

Some Windows operating system examples are:
db2set DB2CLIENTCOMM=npipe
db2set DB2CLIENTCOMM=netbios
db2set DB2CLIENTCOMM=tcpip,ipxspx,netbios
db2set DB2CLIENTCOMM=netbios,tcpip,ipxspx,appc,npipe

342 Administration Guide: Implementation

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|

|
|
|
|

|

|
|
|
|

If more than one communication protocol exists, the first one specified is
used.

v If any of the databases has a DCE name that is not in the directory path
defined in the dir_path_name configuration parameter or the
DB2DIRPATHNAME registry variable, then explicitly catalog the database
with the CATALOG GLOBAL DATABASE command. Refer to “CATALOG
GLOBAL DATABASE Command” on page 332 for more information.

v Log in to DCE before connecting to the target database or attaching to the
database instance. Refer to the OSF DCE Administration Guide for more
information about the login command.

Directory Services Restrictions

This section describes what is not supported.
v Not all database clients may be supported. See your Quick Beginnings

manual to determine whether DCE directory services is supported from
your DB2 client. Currently, support is only provided for DB2 Clients for all
UNIX, OS/2 and supported Windows operating systems.

v A client cannot use DCE Directory Services to connect to a DB2 for OS/2
Version 1 server.

v Only supported Windows operating systems clients can use any or all of
the TCP/IP, APPC, NetBIOS, IPX/SPX, or NPIPE protocols. Only OS/2
clients can use any or all of the TCP/IP, APPC, NetBIOS, and IPX/SPX
protocols. All supported UNIX clients can only use the TCP/IP and APPC
protocols.

v LIST DATABASE (or NODE) DIRECTORY COMMANDS only provide
entries from the local directories and not entries from the DCE directory.
You can use the cdscp show object command in DCE to display the objects.

v When all of the following conditions exist, the owner of the database
manager instance must log in to DCE before starting the database manager
(using the db2start command).
– The database manager instance is configured to support DCE directory

services through the dir_type configuration parameter
– The cell directory services object can only be read by explicitly logging

into DCE
– The DCE directory must be accessed to support either of the following:

- A transaction manager database (specified by the tm_database
configuration parameter) located on another instance

- A client that cannot support DCE directory services, or is not
configured to use DCE directory services.

Note: When performing the DCE login, you should use a principal that has
a long ticket lifetime.

Appendix B. DCE Directories 343

|
|

|
|
|
|
|

|
|
|

|
|

|
|

|

|
|

|
|

|
|

v When using a DDCS Version 2.2 (or earlier) gateway to connect a client that
is using DCE directory services to a DRDA server, you must catalog the
database alias in the gateway’s local directory. This database alias must be
the same as the alias on the client and it must represent the same database.

v When using supported Windows operating systems clients, DB2DCE.DLL
will be used. This file is found in the bin subdirectory of the sqllib
subdirectory. If the DCE provider is Gradient**, by default the file
DB2DCE.GRD is equivalent to DB2DCE.DLL. If the DCE provider is IBM,
the file DB2DCE.IBM must be copied to DB2DCE.DLL.

344 Administration Guide: Implementation

|

Appendix C. User Exit for Database Recovery

Provide overview information here similar to that found for the Data
Movement chapter.

Note: All of the information on these topics, and the comparable topics from
the Command Reference and the Administrative API Reference, have been
consolidated into the Data Recovery and High Availability Guide and
Reference.

The Data Recovery and High Availability Guide and Reference is your
primary, single source of information for these topics.

© Copyright IBM Corp. 1993, 2001 345

|

|

|
|

|
|
|
|

|
|

346 Administration Guide: Implementation

Appendix D. Issuing Commands to Multiple Database
Partitions

In a partitioned database system, you may want to issue commands to be run
on machines in the instance, or on database partition servers (nodes). You can
do so using the rah command or the db2_all command. The rah command
allows you to issue commands that you want to run at machines in the
instance. If you want the commands to run at database partition servers in the
instance, you run the db2_all command. This section provides an overview of
these commands. The information that follows applies to partitioned database
systems only.

Notes:

1. On UNIX-based platforms, your login shell can be a Korn shell or any
other shell; however, there are differences in the way the different shells
handle commands containing special characters.

2. On Windows NT, to run the rah command or the db2_all command, you
must be logged on with a user account that is a member of the
Administrators group.

To determine the scope of a command, refer to the Command Reference. This
book indicates whether a command runs on a single database partition server,
or on all of them. If the command runs on one database partition server and
you want it to run on all of them, use db2_all. The exception is the db2trc
command, which runs on all the logical nodes (database partition servers) on
a machine. If you want to run db2trc on all logical nodes on all machines, use
rah.

Commands

You can run the commands sequentially at one database partition server after
another, or you can run the commands in parallel. On UNIX-based platforms,
if you run the commands in parallel, you can either choose to have the output
sent to a buffer and collected for display (the default behavior) or the output
can be displayed at the machine where the command is issued. On Windows
NT, if you run the commands in parallel, the output is displayed at the
machine where the command is issued.

To use the rah command, type:
rah command

To use the db2_all command, type:

© Copyright IBM Corp. 1993, 2001 347

|

db2_all command

To obtain help about rah syntax, type
rah "?"

The command can be almost anything which you could type at an interactive
prompt, including, for example, multiple commands to be run in sequence.
On UNIX-based platforms, you separate multiple commands using a
semicolon (;). On Windows NT, you separate multiple commands using an
ampersand (&). Do not use the separator character following the last
command.

The following example shows how to use the db2_all command to change the
database configuration on all database partitions that are specified in the node
configuration file. Because the ; character is placed inside double quotation
marks, the request will run concurrently:

db2_all ";UPDATE DB CFG FOR sample USING LOGFILSIZ=100"

Command Descriptions
You can use the following commands:

Command Description

rah Runs the command on all machines.

db2_all Runs the command on all database partition servers that you
specify.

db2_kill Abruptly stops all processes being run on multiple database
partition servers and cleans up all resources on all database
partition servers. This command renders your databases
inconsistent. Do not issue this command except under
direction from IBM service.

db2_call_stack
On UNIX-based platforms, causes all processes running on all
database partition servers to write call traceback to the syslog.

On Windows NT, causes all processes running on all database
partition servers to write call traceback to the Pxxxx.nnn file in
the instance directory, where Pxxxx is the process ID and nnn
is the node number.

On UNIX-based platforms, these commands execute rah with certain implicit
settings such as:
v Run in parallel at all machines
v Buffer command output in /tmp/$USER/db2_kill,

/tmp/$USER/db2_call_stack respectively.

348 Administration Guide: Implementation

|
|
|
|

|
|

|

On Windows NT, these commands execute rah to run in parallel at all
machines.

Specifying the Command to Run
You can specify the command:
v From the command line as the parameter
v In response to the prompt if you don’t specify any parameter.

You should use the prompt method if the command contains the following
special characters:

| & ; < > () { } [] unsubstituted $

If you specify the command as the parameter on the command line, you must
enclose it in double quotation marks if it contains any of the special characters
just listed.

Note: On UNIX-based platforms, the command will be added to your
command history just as if you typed it at the prompt.

All special characters in the command can be entered normally (without being
enclosed in quotation marks, except for \). If you need to include a \ in your
command, you must type two backslashes (\\).

Note: On UNIX-based platforms, if you are not using a Korn shell, all special
characters in the command can be entered normally (without being
enclosed in quotation marks, except for ", \, unsubstituted $, and the
single quotation mark (')). If you need to include one of these
characters in your command, you must precede them by three
backslashes (\\\). For example, if you need to include a \ in your
command, you must type four backslashes (\\\\).

If you need to include a double quotation mark (") in your command, you
must precede it by three backslashes, for example, \\\".

Notes:

1. On UNIX-based platforms, you cannot include a single quotation mark (')
in your command unless your command shell provides some way of
entering a single quotation mark inside a singly quoted string.

2. On Windows NT, you cannot include a single quotation mark (') in your
command unless your command window provides some way of entering a
single quotation mark inside a singly quoted string.

When you run any korn-shell shell-script which contains logic to read from
stdin in the background, you should explicitly redirect stdin to a source where
the process can read without getting stopped on the terminal (SIGTTIN
message). To redirect stdin, you can run a script with the following form:

Appendix D. Issuing Commands to Multiple Database Partitions 349

|
|
|
|

shell_script </dev/null &

if there is no input to be supplied.

In a similar way, you should always specify </dev/null when running db2_all
in the background. For example:

db2_all ";run_this_command" </dev/null &

By doing this you can redirect stdin and avoid getting stopped on the
terminal.

An alternative to this method, when you are not concerned about output from
the remote command, is to use the “daemonize” option in the db2_all prefix:

db2_all ";daemonize_this_command" &

Running Commands in Parallel on UNIX-Based Platforms

Note: The information in this section applies to UNIX-based platforms only.

By default, the command is run sequentially at each machine, but you can
specify to run the commands in parallel using background rshells by prefixing
the command with certain prefix sequences. If the rshell is run in the
background, then each command puts the output in a buffer file at its remote
machine. This process retrieves the output in two pieces:
1. After the remote command completes.
2. After the rshell terminates, which may be later if some processes are still

running.

The name of the buffer file is /tmp/$USER/rahout by default, but it can be
specified by the environment variables $RAHBUFDIR/$RAHBUFNAME.

When you specify that you want the commands to be run concurrently, by
default, this script prefixes an additional command to the command sent to all
hosts to check that $RAHBUFDIR and $RAHBUFNAME are usable for the
buffer file. It creates $RAHBUFDIR. To suppress this, export an environment
variable RAHCHECKBUF=no. You can do this to save time if you know the
directory exists and is usable.

Before using rah to run a command concurrently at multiple machines:
v Ensure that a directory /tmp/$USER exists for your user ID at each machine.

To create a directory if one does not already exist, run:
rah ")mkdir /tmp/$USER"

v Add the following line to your .kshrc (for Korn shell syntax) or .profile,
and also type it into your current session:

export RAHCHECKBUF=no

350 Administration Guide: Implementation

|

|

|
|

|

|
|

|
|

|

|
|
|
|
|

|

|
|

|

|
|

|

|
|

|

v Ensure that each machine ID at which you run the remote command has an
entry in its .rhosts file for the ID which runs rah; and the ID which runs
rah has an entry in its .rhosts file for each machine ID at which you run
the remote command.

Monitoring rah Processes on UNIX-Based Platforms

Note: The information in this section applies to UNIX-based platforms only.
While any remote commands are still running or buffered output is still being
accumulated, processes started by rah monitor activity to:
v Write messages to the terminal indicating which commands have not been

run
v Retrieve buffered output.

The informative messages are written at an interval controlled by the
environment variable RAHWAITTIME. Refer to the help information for
details on how specify this. All informative messages can be completely
suppressed by exporting RAHWAITTIME=0.

The primary monitoring process is a command whose command name (as
shown by the ps command) is rahwaitfor. The first informative message tells
you the pid (process id) of this process. All other monitoring processes will
appear as ksh commands running the rah script (or the name of the symbolic
link). If you want, you can stop all monitoring processes by the command:

kill <pid>

where <pid> is the process ID of the primary monitoring process. Do not
specify a signal number. Leave the default of 15. This will not affect the
remote commands at all, but will prevent the automatic display of buffered
output. Note that there may be two or more different sets of monitoring
processes executing at different times during the life of a single execution of
rah. However, if at any time you stop the current set, then no more will be
started.

If your regular login shell is not a Korn shell (for example /bin/ksh), you can
use rah, but there are some slightly different rules on how to enter commands
containing the following special characters:
" unsubstituted $ '

For more information, type rah "?". Also, in a UNIX-based environment, if
the login shell at the ID which executes the remote commands is not a Korn
shell, then the login shell at the ID which executes rah must also not be a
Korn shell. (rah makes the decision as to whether the remote ID’s shell is a
Korn shell based on the local ID). The shell must not perform any substitution
or special processing on a string enclosed in single quotation marks. It must
leave it exactly as is.

Appendix D. Issuing Commands to Multiple Database Partitions 351

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

Additional rah (Run All Hosts) Information (Solaris and AIX Only)
To enhance performance, rah has been extended to use tree_logic on large
systems. That is, rah will check how many nodes the list contains, and if that
number exceeds a threshold value, it constructs a subset of the list and sends
a recursive invocation of itself to those nodes. At those nodes, the recursively
invoked rah follows the same logic until the list is small enough to follow the
standard logic (now the ″leaf-of-tree″ logic) of sending the command to all
nodes on the list. The threshold can be specified by environment variable
RAHTREETHRESH, or defaults to 15.

In the case of a multiple-logical-node-per-physical-node system, db2_all will
favor sending the recursive invocation to distinct physical nodes, which will
then rsh to other logical nodes on the same physical node, thus also reducing
inter-physical-node traffic. (This point applies only to db2_all, not rah, since
rah always sends only to distinct physical nodes.)

Prefix Sequences

A prefix sequence is one or more special characters. Type one or more prefix
sequences immediately preceding the characters of the command without any
intervening blanks. If you want to specify more than one sequence, you can
type them in any order, but characters within any multicharacter sequence
must be typed in order. If you type any prefix sequences, you must enclose
the entire command, including the prefix sequences in double quotation
marks, as in the following examples:
v On UNIX-based platforms:

rah "};ps -F pid,ppid,etime,args -u $USER"

v On Windows NT:
rah "||db2 get db cfg for sample"

The prefix sequences are:

Sequence Purpose

| Runs the commands in sequence in the background.

|& Runs the commands in sequence in the background and
terminates the command after all remote commands have
completed, even if some processes are still running. This may
be later if, for example, child processes (on UNIX-based
platforms) or background processes (on Windows NT) are still
running. In this case, the command starts a separate
background process to retrieve any remote output generated
after command termination and writes it back to the
originating machine.

352 Administration Guide: Implementation

||
|
|
|
|
|
|
|
|

Note: On UNIX-based platforms, specifying & degrades
performance, because more rsh commands are required.

|| Runs the commands in parallel in the background.

||& Runs the commands in parallel in the background and
terminates the command after all remote commands have
completed as described for the |& case above.

Note: On UNIX-based platforms, specifying & degrades
performance, because more rsh commands are required.

; Same as ||& above. This is an alternative shorter form.

Note: On UNIX-based platforms, specifying ; degrades
performance relative to ||, because more rsh
commands are required.

] Prepends dot-execution of user’s profile before executing
command.

Note: Available on UNIX-based platforms only.

} Prepends dot-execution of file named in $RAHENV (probably
.kshrc) before executing command.

Note: Available on UNIX-based platforms only.

]} Prepends dot-execution of user’s profile followed by execution
of file named in $RAHENV (probably .kshrc) before
executing command.

Note: Available on UNIX-based platforms only.

) Suppresses execution of user’s profile and of file named in
$RAHENV.

Note: Available on UNIX-based platforms only.

' Echoes the command invocation to the machine.

< Sends to all the machines except this one.

<<−nnn< Sends to all-but-database partition server nnn (all database
partition servers in db2nodes.cfg except for node number nnn,
see the first paragraph following the last prefix sequence in
this table).

<<+nnn< Sends to only database partition server nnn (the database

Appendix D. Issuing Commands to Multiple Database Partitions 353

|
|

|

||
|
|
|

||

partition server in db2nodes.cfg whose node number is nnn,
see the first paragraph following the last prefix sequence in
this table).

(blank character)
Runs the remote command in the background with stdin,
stdout, and stderr all closed. This option is valid only when
running the command in the background, that is, only in a
prefix sequence which also includes \ or ;. It allows the
command to complete much sooner (as soon as the remote
command has been initiated). If you specify this prefix
sequence on the rah command line, then either enclose the
command in single quotation marks, or enclose the command
in double quotation marks, and precede the prefix character
by \ . For example,

rah '; mydaemon'

or
rah ";\ mydaemon"

When run as a background process, the rah command will
never wait for any output to be returned.

> Substitutes occurrences of <> with the machine name.

" Substitutes occurrences of () by the machine index, and
substitutes occurrences of ## by the node number.

Notes:

1. The machine index is a number that associated with a
machine in the database system. If you are not running
multiple logical nodes, the machine index for a machine
corresponds to the node number for that machine in the
node configuration file. To obtain the machine index for a
machine in a multiple logical node environment, do not
count duplicate entries for those machines that run
multiple logical nodes. For example, if MACH1 is running
two logical nodes and MACH2 is also running two logical
nodes, the node number for MACH3 is 5 in the node
configuration file. The machine index for MACH3,
however, would be 3.
On Windows NT, do not edit the node configuration file.
To obtain the machine index, use the db2nlist command.
Refer to the DB2 Enterprise - Extended Edition for Windows
Quick Beginnings manual for details.

354 Administration Guide: Implementation

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

|

|

|
|

2. When " is specified, duplicates are not eliminated from the
list of machines. See “Eliminating Duplicate Entries from
the List of Machines” if you want to eliminate duplicates.

When using the <<−nnn< and <<+nnn< prefix sequences, nnn is any 1-, 2- or
3-digit partition number which must match the nodenum value in the
db2nodes.cfg file.

Note: Prefix sequences are considered to be part of the command. If you
specify a prefix sequence as part of a command, you must enclose the
entire command, including the prefix sequences, in double quotation
marks.

Specifying the List of Machines

By default, the list of machines is taken from the node configuration file,
db2nodes.cfg. You can override this by:
v Specifying a pathname to the file that contains the list of machines by

exporting (on UNIX-based platforms) or setting (on Windows NT) the
environment variable RAHOSTFILE.

v Specifying the list explicitly, as a string of names separated by spaces, by
exporting (on UNIX-based platforms) or setting (on Windows NT) the
environment variable RAHOSTLIST.

Note: If both of these environment variables are specified, RAHOSTLIST
takes precedence.

Note: On Windows NT, to avoid introducing inconsistencies into the node
configuration file, do not edit it manually. To obtain the list of machines
in the instance, use the db2nlist command. Refer to the DB2 Enterprise -
Extended Edition for Windows Quick Beginnings manual for details.

Eliminating Duplicate Entries from the List of Machines
If you are running DB2 Enterprise - Extended Edition with multiple logical
nodes (database partition servers) on one machine, your db2nodes.cfg file will
contain multiple entries for that machine. In this situation, the rah command
needs to know whether you want the command to be executed once only on
each machine or once for each logical node listed in the db2nodes.cfg file. Use
the rah command to specify machines. Use the db2_all command to specify
logical nodes.

Note: On UNIX-based platforms, if you specify machines, rah will normally
eliminate duplicates from the machine list, with the following
exception: if you specify logical nodes, db2_all prepends the following
assignment to your command:

export DB2NODE=nnn (for Korn shell syntax)

Appendix D. Issuing Commands to Multiple Database Partitions 355

where nnn is the node number taken from the corresponding line in the
db2nodes.cfg file, so that the command will be routed to the desired
database partition server.

When specifying logical nodes, you can restrict the list to include all logical
nodes except one, or only specify one database partition server using the
<<−nnn< and <<+nnn< prefix sequences. You may want to do this if you want
to run a command at the catalog node first, and when that has completed, run
the same command at all other database partition servers, possibly in parallel.
This is usually required when running the db2 restart database command.
You will need to know the node number of the catalog node to do this. See
“Prefix Sequences” on page 352 for information about the prefix sequences.

If you execute db2 restart database using the rah command, duplicate entries
are eliminated from the list of machines. However if you specify the ” prefix,
then duplicates are not eliminated, because it is assumed that use of the ”
prefix implies sending to each database partition server, rather than to each
machine.

Controlling the rah Command

You can use the following environment variables to control the rah command.

Table 23.

Name Meaning Default

$RAHBUFDIR
Note: Available on
UNIX-based
platforms only.

Directory for buffer /tmp/$USER

$RAHBUFNAME
Note: Available on
UNIX-based
platforms only.

Filename for buffer rahout

$RAHOSTFILE (on
UNIX-based
platforms);
RAHOSTFILE (on
Windows NT)

File containing list of hosts db2nodes.cfg

$RAHOSTLIST (on
UNIX-based
platforms);
RAHOSTLIST (on
Windows NT)

List of hosts as a string extracted from $RAHOSTFILE

356 Administration Guide: Implementation

|
|
|
|

||

|
|
|
|

||

|
|
|
|
|

||

|
|
|
|
|

||

Table 23. (continued)

Name Meaning Default

$RAHCHECKBUF
Note: Available on
UNIX-based
platforms only.

If set to ″no″, bypass checks not set

$RAHSLEEPTIME
(on UNIX-based
platforms);
RAHSLEEPTIME
(on Windows NT)

Time in seconds this script will wait for
initial output from commands run in
parallel

86400 seconds for db2_kill, 200 seconds
for all other

$RAHWAITTIME
(on UNIX-based
platforms);
RAHWAITTIME (on
Windows NT)

On Windows NT, interval in seconds
between successive checks that remote
jobs are still running.

On UNIX-based platforms, interval in
seconds between successive checks that
remote jobs are still running and rah:
waiting for <pid> ... messages.

On all platforms, specify any positive
integer. Prefix value with a leading zero
to suppress messages, for example,
export RAHWAITTIME=045.

It is not necessary to specify a low value
as rah does not rely on these checks to
detect job completion.

45 seconds

$RAHENV
Note: Available on
UNIX-based
platforms only.

Specifies filename to be executed if
$RAHDOTFILES=E or K or PE or B

$ENV

$RAHUSER (on
UNIX-based
platforms);
RAHUSER (on
Windows NT)

On UNIX-based platforms, user ID
under which the remote command is to
be run.

On Windows NT, the logon account
associated with the DB2 Remote
Command Service

$USER

Note: On UNIX-based platforms, the value of $RAHENV where rah is run is
used, not the value (if any) set by the remote shell.

$RAHDOTFILES on UNIX-Based Platforms

Note: The information in this section applies to UNIX-based platforms only.
Following are the ·files that are run if no prefix sequence is specified:

Appendix D. Issuing Commands to Multiple Database Partitions 357

|
|
|
|

||

|
|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|

|

P .profile

E File named in $RAHENV (probably .kshrc)

K Same as E

PE .profile followed by file named in $RAHENV (probably .kshrc)

B Same as PE

N None (or Neither)

Note: If your login shell is not a Korn shell, any dot files you specify to be
executed will be executed in a Korn shell process, and so must conform
to Korn shell syntax. So, for example, if your login shell is a C shell, to
have your .cshrc environment set up for commands executed by rah,
you should either create a Korn shell INSTHOME/.profile equivalent to
your .cshrc and specify in your INSTHOME/.cshrc:

setenv RAHDOTFILES P

or you should create a Korn shell INSTHOME/.kshrc equivalent to your
.cshrc and specify in your INSTHOME/.cshrc:

setenv RAHDOTFILES E
setenv RAHENV INSTHOME/.kshrc

Also, it is essential that your .cshrc does not write to stdout if there is
no tty (as when invoked by rsh). You can ensure this by enclosing any
lines which write to stdout by, for example,

if { tty -s } then echo "executed .cshrc";
endif

Setting the Default Environment Profile on Windows NT

Note: The information in this section applies to Windows NT only.
To set the default environment profile for the rah command, use a file called
db2rah.env, which should be created in the instance directory. The file should
have the following format:

; This is a comment line
DB2INSTANCE=instancename
DB2DBDFT=database
; End of file

You can specify all the environment variables that you need to initialize the
environment for rah.

358 Administration Guide: Implementation

Determining Problems with rah on UNIX-Based Platforms

Note: The information in this section applies to UNIX-based platforms only.
Here are suggestions on how to handle some problems that you may
encounter when you are running rah:
1. rah hangs (or takes a very long time)

This problem may be caused because:
v rah has determined that it needs to buffer output, and you did not

export RAHCHECKBUF=no. Therefore, before running your command, rah
sends a command to all machines to check the existence of the buffer
directory, and to create it if it does not exist.

v One or more of the machines where you are sending your command is
not responding. The rsh command will eventually time out but the
time-out interval is quite long, usually about 60 seconds.

2. You have received messages such as:
v Login incorrect
v Permission denied

Either one of the machines does not have the ID running rah correctly
defined in its .hosts file, or the ID running rah does not have one of the
machines correctly defined in its .rhosts file.

3. When running commands in parallel using background rshells, although
the commands run and complete within the expected elapsed time at the
machines, rah takes a long time to detect this and put up the shell prompt.
The ID running rah does not have one of the machines correctly defined in
its .rhosts file.

4. Although rah runs fine when run from the shell command line, if you run
rah remotely using rsh, for example,
rsh somewher -l $USER db2_kill

rah never completes.

This is normal. rah starts background monitoring processes, which
continue to run after it has exited. Those processes will normally persist
until all processes associated with the command you ran have themselves
terminated. In the case of db2_kill, this means termination of all database
managers. You can terminate the monitoring processes by finding the
process whose command is rahwaitfor and kill <process_id>. Do not
specify a signal number. Instead, use the default (15).

5. The output from rah is not displayed correctly, or rah incorrectly reports
that $RAHBUFNAME does not exist, when multiple commands of rah
were issued under the same $RAHUSER.

Appendix D. Issuing Commands to Multiple Database Partitions 359

|
|
|
|
|
|
|

This is because multiple concurrent executions of rah are trying to use the
same buffer file (for example, $RAHBUFDIR/$RAHBUFNAME) for
buffering the outputs. To prevent this problem, use a different
$RAHBUFNAME for each concurrent rah command, for example in the
following ksh:

export RAHBUFNAME=rahout
rah ";$command_1" &
export RAHBUFNAME=rah2out
rah ";$command_2" &

or use a method that makes the shell choose a unique name automatically
such as:

RAHBUFNAME=rahout.$$ db2_all "....."

Whatever method you use, you must ensure you clean up the buffer files
at some point if disk space is limited. rah does not erase a buffer file at the
end of execution, although it will erase and then re-use an existing file the
next time you specify the same buffer file.

6. You entered
rah '"print from ()'

and received the message:
ksh: syntax error at line 1 : (' unexpected

Prerequisites for the substitution of () and ## are:
v Use db2_all, not rah.
v Ensure a RAHOSTFILE is used either by exporting RAHOSTFILE or by

defaulting to your /sqllib/db2nodes.cfg file. Without these
prerequisites, rah will leave the () and ## as is. You receive an error
because the command print from () is not valid.

For a performance tip when running commands in parallel, use | rather
than |&, and use || rather than ||& or ; unless you truly need the
function provided by &. Specifying & requires more rsh commands and
therefore degrades performance.

360 Administration Guide: Implementation

Appendix E. How DB2 for Windows NT Works with
Windows NT Security

When you install Windows NT, it allows you to create two administrator
usernames:
v One is called “Administrator”
v The other is a name of your choice. It must have administrator authority

and must comply with DB2’s naming rules. For more information on DB2’s
naming rules, see “Appendix A. Naming Rules” on page 313.

The user may log on to the local machine, or when the machine is installed in
a Windows NT Domain, the user may log on to the Domain. DB2 for
Windows NT supports both of these options. To authenticate the user, DB2
checks the local machine first, then the Domain Controller for the current
Domain, and finally any Trusted Domains known to the Domain Controller.

To illustrate how this works, suppose that the DB2 instance requires Server
authentication. The configuration is as follows:

Domain 1

Client Machine
"Ivan"

Domain 2

Logon to Domain 1

Windows NT Server
"Servr"

Trusting
Domain Controller

"DC1"

Database Request

Authentication

Database Request

Trust Relationship

Trusted
Domain Controller

"TDC2"

Logon to Domain 2

Client Machine
"Abdul"

Figure 11. Authentication Using Windows NT Domains

© Copyright IBM Corp. 1993, 2001 361

|
|
|
|
|

Each machine has a security database, Security Access Management (SAM),
unless a client machine is running Windows 9x. Windows 9x machines do not
have a SAM database. DC1 is the domain controller, in which the client
machine, Ivan, and the DB2 for Windows NT server, Servr, are enrolled. TDC2
is a trusted domain for DC1 and the client machine, Abdul, is a member of
TDC2’s domain.

A Sample Scenario with Server Authentication:

1. Abdul logs on to the TDC2 domain (that is, he is known in the TDC2
SAM database).

2. Abdul then connects to a DB2 database that is cataloged to reside on
SRV3:

db2 connect to remotedb user Abdul using fredpw

3. SRV3 determines where Abdul is known. The API that is used to find this
information first searches the local machine (SRV3) and then the domain
controller (DC1) before trying any trusted domains. Username Abdul is
found on TDC2. This search order requires a single namespace for users
and groups.

4. SRV3 then:
a. Validates the username and password with TDC2.
b. Finds out whether Abdul is an administrator by asking TDC2.
c. Enumerates all Abdul’s groups by asking TDC2.

A Sample Scenario with Client Authentication and a Windows NT Client
Machine:

1. Dale, the administrator, logs on to SRV3 and changes the authentication
for the database instance to Client:

db2 update dbm cfg using authentication client
db2stop myinst
db2start myinst

2. Ivan, at a Windows client machine, logs on to the DC1 domain (that is, he
is known in the DC1 SAM database).

3. Ivan then connects to a DB2 database that is cataloged to reside on SRV3:
DB2 CONNECT to remotedb user Ivan using johnpw

4. Ivan’s machine validates the username and password. The API used to
find this information first searches the local machine (Ivan) and then the
domain controller (DC1) before trying any trusted domains. Username
Ivan is found on DC1.

5. Ivan’s machine then validates the username and password with DC1.
6. SRV3 then:

a. Determines where Ivan is known.
b. Finds out whether Ivan is an administrator by asking DC1.

362 Administration Guide: Implementation

|
|
|
|
|
|

|
|
|

|
|

c. Enumerates all Ivan’s groups by asking DC1.

Note: Before attempting to connect to the DB2 database, ensure that DB2
Security Service has been started. The Security Service is installed by
DB2 and is set up to run as a Windows NT service; however, it is not
started automatically. To start the DB2 Security Service, enter the NET
START DB2NTSECSERVER command.

A Sample Scenario with Client Authentication and a Windows 95 Client Machine:

1. Dale, the administrator, logs on to SRV3 and changes the authentication
for the database instance to Client:

db2 update dbm cfg using authentication client
db2stop myinst
db2start myinst

2. Ivan, at a Windows 95 client machine, logs on to the DC1 domain (that is,
he is known in the DC1 SAM database).

3. Ivan then connects to a DB2 database that is cataloged to reside on SRV3:
db2 connect to remotedb user Ivan using johnpw

4. Ivan’s Windows 95 machine cannot validate the username and password.
The username and password are therefore assumed to be valid.

5. SRV3 then:
a. Determines where Ivan is known.
b. Finds out whether Ivan is an administrator by asking DC1.
c. Enumerates all Ivan’s groups by asking DC1.

Note: Because a Windows 95 client cannot validate a given username and
password, client authentication under Windows 95 is inherently
insecure. If the Windows 95 machine has access to a Windows NT
security provider, however, some measure of security can be imposed
by configuring the Windows 95 system for validated pass-through
logon. For details on how to configure your Windows 95 system in this
way, refer to the Microsoft documentation for Windows 95.

DB2 also supports global groups. In order to use global groups, you must
include global groups inside a local group that is on the security server. When
DB2 enumerates all the groups that a person is a member of, it also lists the
local groups the user is a member of indirectly (by the virtue of being in a
global group that is itself a member of one or more local groups).

Using a Backup Domain Controller with DB2

If the server you use for DB2 also acts as a backup domain controller, you can
improve DB2 performance and reduce network traffic if you configure DB2 to
use the backup domain controller.

Appendix E. How DB2 for Windows NT Works with Windows NT Security 363

|
|
|

You specify the backup domain controller to DB2 by setting the
DB2DMNBCKCTLR registry variable.

If you know the name of the domain for which DB2 server is the backup
domain controller, use:

db2dmnbckctlr=DOMAIN_NAME

where DOMAIN_NAME must be in upper case.

To have DB2 determine the domain for which the local machine is a backup
domain controller, use:

DB2DMNBCKCTLR=?

Note: DB2 does not use an existing backup domain controller by default
because a backup domain controller can get out-of-sync with the
primary domain controller, causing a security exposure. Domain
controllers get out-of-sync when the primary domain controller’s
security database is updated but the changes are not propagated to a
backup domain controller. This can happen if there are network
latencies or if the computer browser service is not operational.

User Authentication with DB2 for Windows NT

User authentication can cause problems for Windows NT users because of the
way the operating system authenticates. This section describes some
considerations for user authentication under DB2 for Windows NT:
v “User Name and Group Name Restrictions”
v “DB2 for Windows NT Security Service” on page 365
v “Installing DB2 on a Backup Domain Controller” on page 365
v “Authentication With Groups and Domain Security” on page 366

User Name and Group Name Restrictions
The following are the limitations in this environment:
v User names names are limited to 30 characters within DB2. Group names

are limited to 8 characters.
v User names under Windows NT are not case sensitive; however, passwords

are case sensitive.
v User names and group names can be a combination of upper- and

lowercase characters. However, they are usually converted to uppercase
when used within DB2. For example, if you connect to the database and
create the table schema1.table1, this table is stored as SCHEMA1.TABLE1
within the database. (If you wish to use lowercase object names, issue
commands from the command line processor, enclosing the object names in
quotation marks, or use third-party ODBC front-end tools.)

364 Administration Guide: Implementation

|
|

DB2 for Windows NT Security Service
In DB2 Universal Database we have integrated the authentication of user
names and passwords into the DB2 System Controller. The Security Service is
only required when a client is connected to a server that is configured for
authentication CLIENT.

Installing DB2 on a Backup Domain Controller
In a Windows NT environment a user can be authenticated at either a
primary or a backup controller. This feature is very important in large
distributed LANs with one central primary domain controller and one or
more backup domain controllers (BDC) at each site. Users can then be
authenticated on the backup domain controller at their site instead of
requiring a call to the primary domain controller (PDC) for authentication.

The advantage of having a backup domain controller, in this case, is that users
are authenticated faster and the LAN is not as congested as it would have
been had there been no BDC.

Authentication can occur at the BDC under the following conditions:
v The DB2 for Windows NT server is installed on the backup domain

controller.
v The DB2DMNBCKCTLR profile registry variable is set appropriately.

If the DB2DMNBCKCTLR profile registry variable is not set or is set to blank,
DB2 for Windows NT performs authentication at the primary domain
controller.

The only valid declared settings for DB2DMNBCKCTLR are “?” or a domain
name.

If the DB2DMNBCKCTLR profile registry variable is set to a question mark
(DB2DMNBCKCTLR=?) then DB2 for Windows NT will perform its
authentication on the backup domain controller under the following
conditions:
v The cachedPrimaryDomain is a registry value set to the name of the

domain to which this machine belongs. (You can find this setting under
HKEY_LOCAL_MACHINE—> Software—> Microsoft—> Windows
NT—> Current Version—> WinLogon.)

v The Server Manager shows the backup domain controller as active and
available. (That is, the icon for this machine is not greyed out.)

v The registry for the DB2 Windows NT server indicates that the system is a
backup domain controller on the specified domain.

Under normal circumstances the setting DB2DMNBCKCTLR=? will work;
however, it will not work in all environments. The information supplied about

Appendix E. How DB2 for Windows NT Works with Windows NT Security 365

|
|
|
|

the servers on the domain is dynamic, and Computer Browser must be
running to keep this information accurate and current. Large LANs may not
be running Computer Browser and therefore Server Manager’s information
may not be current. In this case, there is a second method to tell DB2 for
Windows NT to authenticate at the backup domain controller: set
DB2DMNBCKCTLR=xxx where xxx is the Windows NT domain name for the
DB2 server. With this setting, authentication will occur on the backup domain
controller based on the following conditions:
v The cachedPrimaryDomain is a registry value set to the name of the

domain to which this machine belongs. (You can find this setting under
HKEY_LOCAL_MACHINE—> Software—> Microsoft—> Windows
NT—> Current Version—> WinLogon.)

v The machine is configured as a backup domain controller for the specified
domain. (If the machine is set up as a backup domain controller for another
domain, this setting will result in an error.)

Authentication With Groups and Domain Security
DB2 for Windows NT supports the following types of groups:
v Local groups
v Global groups
v Global groups as members of local groups.

DB2 for Windows NT enumerates the local and global groups that the user
is a member of, using the security database where the user was found. DB2
Universal Database provides an override that forces group enumeration to
occur on the local Windows NT server where DB2 is installed, regardless of
where the user account was found. This override can be achieved using the
following commands:
– For global settings:

db2set -g DB2_GRP_LOOKUP=local

– For instance settings:
db2set -i DB2_GRP_LOOKUP=local

To view all DB2 profile registry variables that are set, type
db2set -all

For DB2 for Windows NT to work with domain security, you must grant
authority and privileges to a local group. User names within the local and
global groups MUST be defined on the same domain as the local or global
group in order to be authenticated correctly.

If the DB2_GRP_LOOKUP profile registry variable is set to local, then DB2
tries to find a user on the local machine only. If the user is not found on the
local machine, or is not defined as a member of a local or global group, then

366 Administration Guide: Implementation

|
|
|

|

|

|

|

|

|

|

authentication fails. DB2 does not try to find the user on another machine in
the domain or on the domain controllers.

If the DB2_GRP_LOOKUP profile registry variable is not set then:
1. DB2 first tries to find the user on the same machine.
2. If the user name is defined locally, the user is authenticated locally.
3. If the user is not found locally, DB2 attempts to find the user name on it

domain, and then on trusted domains.

The following examples illustrate how DB2 for Windows NT can support
domain security. In this first example, the connection works because the user
name and local group are on the same domain. In the second example, the
connection does not work because the user name and local or global group
are on different domains.

Example of a Successful Connection: The connection works in the following
scenario because the user name and local or global group are on the same
domain.

Note that the user name and local or global group do not need to be defined
on the domain where the database server is running, but they must be on the
same domain as each other.

Table 24. Successful Connection Using a Domain Controller

Domain1 Domain2

A trust relationship exists with Domain2. v A trust relationship exists with Domain1.

v The local or global group grp2 is defined.

v The user name id2 is defined.

v The user name id2 is part of grp2.

The DB2 server runs in this domain. The following
DB2 commands are issued from it:

REVOKE CONNECT ON db FROM public
GRANT CONNECT ON db TO GROUP grp2
CONNECT TO db USER id2

The local or global domain is scanned but id2 is
not found. Domain security is scanned.

The user name id2 is found on this domain. DB2
gets additional information about this user name
(that is, it is part of the group grp2).

The connection works because the user name and
local or global group are on the same domain.

Appendix E. How DB2 for Windows NT Works with Windows NT Security 367

Example of an Unsuccessful Connection: The connection does not work in
the following scenario because the user name is defined on a different domain
than where the local or global group is defined.

Table 25. Unsuccessful connection using a domain controller

Domain1 Domain2

A trust relationship exists with Domain2. v A trust relationship exists with Domain1.

v The local or global group grp2 is defined.

v The global group grp1 is defined.

v The user name id1 is defined.

v The user name id1 is part of grp1.

Domain1\grp1 is part of grp2.

The DB2 server runs in this domain. The following
DB2 commands are issued from it:

REVOKE CONNECT ON db FROM public
GRANT CONNECT ON db TO GROUP grp2
CONNECT TO db USER id2

The local or global is scanned and id1 is found.
DB2 gets information for this user name (that is,
the user name id1 is part of grp1 and the group
grp1 is part of Domain2\grp2).

The group grp2 exists on this domain.

The connection does not work because the local or
global group is on Domain2 and the actual user
name is defined on Domain1.

The connection would work if the following
command was issue instead: GRANT CONNECT ON db
TO GROUP grp1

368 Administration Guide: Implementation

Appendix F. Using the Windows NT Performance Monitor

There are two performance monitors available to DB2 for Windows NT users:
v DB2 Performance Monitor

The DB2 Performance Monitor provides snapshot and event data related to
DB2 and DB2 Connect only. (For more information, click on the Help push
button in the Control Center and see the Getting Started online help.)

v Windows NT Performance Monitor

The Windows NT Performance Monitor enables you to monitor both
database and system performance, retrieving information from any of the
performance data providers registered with the system. Windows NT also
provides performance information data on all aspects of machine operation
including:
– CPU usage
– Memory utilization
– Disk activity
– Network activity

Registering DB2 with the Windows NT Performance Monitor

The setup program automatically registers DB2 with the Windows NT
Performance Monitor for you.

To make DB2 and DB2 Connect performance information accessible to the
Windows NT Performance Monitor, you must register the DLL for the DB2 for
Windows NT Performance Counters. This also enables any other Windows NT
application using the Win32 performance APIs to get performance data.

To install and register the DB2 for Windows NT Performance Counters DLL
(DB2Perf.DLL) with the Windows NT Performance Monitor, type:

db2perfi -i

Registering the DLL also creates a new key in the services option of the
registry. One entry gives the name of the DLL, which provides the counter
support. Three other entries give names of functions provided within that
DLL. These functions include:
v Open

Called when the DLL is first loaded by the system in a process.
v Collect

Called to request performance information from the DLL.

© Copyright IBM Corp. 1993, 2001 369

v Close

Called when the DLL is unloaded.

Enabling Remote Access to DB2 Performance Information

If your DB2 for Windows NT workstation is networked to other Windows NT
machines, you can use the feature described in this section.

In order to see Windows NT performance objects from another DB2 for
Windows NT machine, you must register an administrator username and
password with DB2. (The default Windows NT Performance Monitor
username, SYSTEM, is a DB2 reserved word and cannot be used.) To register
the name, type:

db2perfr -r username password

Note: The username used must conform to the DB2 naming rules.

The username and password data is held in a key in the registry, with
security that allows access only by administrators and the SYSTEM account.
The data is encoded to prevent security concerns about storing an
administrator password in the registry.

Notes:

1. Once a username and password combination has been registered with
DB2, even local instances of the Performance Monitor will explicitly log on
using that username and password. This means that if the username
information registered with DB2 does not match, local sessions of the
Performance Monitor will not show DB2 performance information.

2. The username and password combination must be maintained to match
the username and password values stored in the Windows NT Security
database. If the username or password is changed in the Windows NT
Security database, the username and password combination used for
remote performance monitoring must be reset.

3. To deregister, type:
db2perfr -u <username> <password>

Displaying DB2 and DB2 Connect Performance Values

To display DB2 and DB2 Connect performance values using the Performance
Monitor, simply choose the performance counters whose values you want
displayed from the Add to box. This box displays a list of performance objects
providing performance data. Select an object to see a list of the counters it
supplies.

370 Administration Guide: Implementation

|

|

A performance object can also have multiple instances. For example, the
LogicalDisk object provides counters such as “% Disk Read Time” and “Disk
Bytes/sec”; it also has an instance for each logical drive in the machine,
including “C:” and “D:”.

Windows NT provides the following performance objects:
v DB2 Database Manager

This object provides general information for a single Windows NT instance.
The DB2 instance being monitored appears as the object instance.
For practical and performance reasons, you can only get performance
information from one DB2 instance at a time. The DB2 instance that the
Performance Monitor shows is governed by the db2instance registry
variable in the Performance Monitor process. If you have multiple DB2
instances running simultaneously and want to see performance information
from more than one, you must start a separate session of the Performance
Monitor, with db2instance set to the relevant value for each DB2 instance
to be monitored.
If you are running a partitioned database system, you can only get
performance information from one database partition server (node) at a
time. By default, the performance information for the default node (i.e. the
node that has logical port 0) is displayed. To see performance information
of another node, you must start a separate session of the Performance
Monitor with the DB2NODE environment variable set to the node number
of the node to be monitored.

v DB2 Databases

This object provides information for a particular database. Information is
available for each currently active database.

v DB2 Applications

This object provides information for a particular DB2 application.
Information is available for each currently active DB2 application.

v DB2 DCS Databases

This object provides information for a particular DCS database. Information
is available for each currently active database.

v DB2 DCS Applications

This object provides information for a particular DB2 DCS application.
Information is available for each currently active DB2 DCS application.

Which of these objects will be listed by the Windows NT Performance
Monitor depends on what is installed on your Windows NT machine and
what applications are active. For example, if DB2 UDB is installed and the
database manager has been started, the DB2 Database Manager object will be
listed. If there are also some DB2 databases and applications currently active
on that machine, the DB2 Databases and DB2 Applications objects will be

Appendix F. Using the Windows NT Performance Monitor 371

|
|
|
|

listed as well. If you are using your Windows NT system as a DB2 Connect
gateway and there are some DCS databases and applications currently active,
the DB2 DCS Databases and DB2 DCS Applications objects will be listed.

Accessing Remote DB2 Performance Information

Enabling remote access to DB2 Performance Information was discussed earlier.
In the Add to box, select another computer to monitor. This brings up a list of
all the available performance objects on that computer.

In order to be able to monitor DB2 Performance object on a remote computer,
the level of the DB2 UDB or DB2 Connect code installed on that computer
must be Version 6 or higher.

Resetting DB2 Performance Values

When an application calls the DB2 monitor APIs, the information returned is
normally the cumulative values since the DB2 server was started. However,
often it is useful to:
v Reset performance values
v Run a test
v Reset the values again
v Re-run the test.

To reset database performance values, use the db2perfc program. Type:
db2perfc

By default, this resets performance values for all active DB2 databases.
However, you can also specify a list of databases to reset. You can also use the
-d option to specify that performance values for DCS databases should be
reset. For example:

db2perfc
db2perfc dbalias1 dbalias2 ... dbaliasn

db2perfc -d
db2perfc -d dbalias1 dbalias2 ... dbaliasn

The first example resets performance values for all active DB2 databases. The
next example resets values for specific DB2 databases. The third example
resets performance values for all active DB2 DCS databases. The last example
resets values for specific DB2 DCS databases.

372 Administration Guide: Implementation

|
|
|

|
|
|
|
|
|

The db2perfc program resets the values for ALL programs currently accessing
database performance information for the relevant DB2 server instance (that
is, the one held in db2instance in the session in which you run db2perfc.

Invoking db2perfc also resets the values seen by anyone remotely accessing
DB2 performance information when the db2perfc command is executed.

Note: There is a DB2 API, sqlmrset, that allows an application to reset the
values it sees locally, not globally, for particular databases. See
Administrative API Reference for more information.

Appendix F. Using the Windows NT Performance Monitor 373

|
|
|

|
|
|

374 Administration Guide: Implementation

Appendix G. Working with Windows NT or Windows 2000
Database Partition Servers

When working to change the characteristics of your configuration in a
Windows NT or Windows 2000 environment, the tasks involved are carried
out using specific utilities. Other operating system environments use the
methods shown in the “Scaling Your Configuration Through Adding
Processors” chapter of the Administration Guide: Performance.

The utilities presented here are:
v “Listing Database Partition Servers in an Instance”
v “Adding a Database Partition Server to an Instance”
v “Changing the Database Partition” on page 377
v “Dropping a Database Partition From an Instance” on page 378

Listing Database Partition Servers in an Instance

On Windows NT or Windows 2000, use the db2nlist command to obtain a list
of database partition servers that participate in an instance.

The command is used as follows:
db2nlist

When using this command as shown, the default instance is the current
instance (set by the DB2INSTANCE environment variable). To specify a
particular instance, you can specify the instance using:

db2nlist /i:instName

where instName is the particular instance name you want.

You can also optionally request the status of each partition server by using:
db2nlist /s

The status of each database partition server may be one of: starting, running,
stopping, or stopped.

Adding a Database Partition Server to an Instance

On Windows NT or Windows 2000, use the db2ncrt command to add a
database partition server (node) to an instance.

© Copyright IBM Corp. 1993, 2001 375

Note: Do not use the db2ncrt command if the instance already contains
databases. Instead, use the db2start addnode command. This ensures
that the database is correctly added to the new database partition
server. DO NOT EDIT the db2nodes.cfg file, since changing the file
may cause inconsistencies in the partitioned database system.

The command has the following required parameters:
db2ncrt /n:node_number

/u:username,password
/p:logical_port

v /n:
The unique node number to identify the database partition server. The
number can be from 1 to 999 in ascending sequence.

v /u:
The logon account name and password of the DB2 service.

v /p:logical_port
The logical port number used for the database partition server if the logical
port is not zero (0). If not specified, the logical port number assigned is 0.

The logical port parameter is only optional when you create the first node on
a machine. If you create a logical node, you must specify this parameter and
select a logical port number that is not in use. There are several restrictions:
v On every machine there must be a database partition server with a logical

port 0.
v The port number cannot exceed the port range reserved for FCM

communications in the services file in x:\winnt\system32\drivers\etc\
directory. For example, if you reserve a range of four ports for the current
instance, then the maximum port number would be 3 (ports 1, 2, and 3;
port 0 is for the default logical node). The port range is defined when
db2icrt is used with the /r:base_port, end_port parameter.

There are also several optional parameters:
v /g:network_name

Specifies the network name for the database partition server. If you do not
specify this parameter, DB2 uses the first IP address it detects on your
system.
Use this parameter if you have multiple IP addresses on a machine and you
want to specify a specific IP address for the database partition server. You
can enter the network_name parameter using the network name or IP
address.

v /h:host_name

376 Administration Guide: Implementation

|
|
|
|

The TCP/IP host name that is used by FCM for internal communications if
the host name is not the local host name. This parameter is required if you
add the database partition server on a remote machine.

v /i:instance_name
The instance name; the default is the current instance.

v /m:machine_name
The computer name of the Windows NT workstation on which the node
resides; the default name is the computer name of the local machine.

v /o:instance_owning_machine
The computer name of the machine that is the instance-owning machine;
the default is the local machine. This parameter is required when the
db2ncrt command is invoked on any machine that is not the
instance-owning machine.

For example, if you want to add a new database partition server to the
instance TESTMPP (so that you are running multiple logical nodes) on the
instance-owning machine MYMACHIN, and you want this new node to be
known as node 2 using logical port 1, enter:

db2ncrt /n:2 /p:1 /u:my_id,my_pword /i:TESTMPP
/M:TEST /o:MYMACHIN

Changing the Database Partition

On Windows NT or Windows 2000, use the db2nchg command to do the
following:
v Move the database partition from one machine to another.
v Change the TCP/IP host name of the machine.

If you are planning to use multiple network adapters, you must use this
command to specify the TCP/IP address for the “netname” field in the
db2nodes.cfg file.

v Use a different logical port number.
v Use a different name for the database partition server (node).

The command has the following required parameter:
db2nchg /n:node_number

The parameter /n: is the node number of the database partition server’s
configuration you want to change. This parameter is required.

Optional parameters include:
v /i:instance_name

Specifies the instance that this database partition server participates in. If
you do not specify this parameter, the default is the current instance.

Appendix G. Working with Windows NT or Windows 2000 Database Partition Servers 377

|

v /u:username,password
Changes the logon account name and password for the DB2 service. If you
do not specify this parameter, the logon account and password remain the
same.

v /p:logical_port
Changes the logical port for the database partition server. This parameter
must be specified if you move the database partition server to a different
machine. If you do not specify this parameter, the logical port number
remains unchanged.

v /h:host_name
Changes the TCP/IP hostname used by FCM for internal communications.
If you do not specify this parameter, the hostname is unchanged.

v /m:machine_name
Moves the database partition server to another machine. The database
partition server can only be moved if there are no existing databases in the
instance.

v /g:network_name
Changes the network name for the database partition server.
Use this parameter if you have multiple IP addresses on a machine and you
want to use a specific IP address for the database partition server. You can
enter the network_name using the network name or the IP address.

For example, to change the logical port assigned to node 2, which participates
in the instance TESTMPP, to use the logical port 3, enter the following
command:

db2nchg /n:2 /i:TESTMPP /p:3

Dropping a Database Partition From an Instance

On Windows NT or Windows 2000, use the db2ndrop command to drop a
database partition server (node) from an instance that has no databases. If you
drop a database partition server, its node number can be reused for a new
database partition server.

Exercise caution when you drop database partition servers from an instance. If
you drop the instance-owning database partition server node zero (0) from the
instance, the instance will become unusable. If you want to drop the instance,
use the db2idrop command.

Note: Do not use the db2ndrop command if the instance contains databases.
Instead, use the db2stop drop nodenum command. This ensures that
the database is correctly removed from the database partition. DO

378 Administration Guide: Implementation

|
|
|

NOT EDIT the db2nodes.cfg file, since changing the file may cause
inconsistencies in the partitioned database system.

If you want to drop a node that is assigned the logical port 0 from a machine
that is running multiple logical nodes, you must drop all the other nodes
assigned to the other logical ports before you can drop the node assigned to
logical port 0. Each database partition server must have a node assigned to
logical port 0.

The command has the following parameters:
db2ndrop /n:node_number /i:instance_name

v /n:
The unique node number to identify the database partition server. This is a
required parameter. The number can be from zero (0) to 999 in ascending
sequence. Recall that node zero (0) represents the instance-owning machine.

v /i:instance_name
The instance name. This is an optional parameter. If not given, the default
is the current instance (set by the DB2INSTANCE registry variable).

Appendix G. Working with Windows NT or Windows 2000 Database Partition Servers 379

|
|

|

380 Administration Guide: Implementation

Appendix H. Configuring Multiple Logical Nodes

Typically, you configure DB2 Enterprise - Extended Edition to have one
database partition server assigned to each machine. There are several
situations, however, in which it would be advantageous to have several
database partition servers running on the same machine. This means that the
configuration can contain more nodes than machines. In these cases, the
machine is said to be running multiple logical nodes if they participate in the
same instance. If they participate in different instances, this machine is not
hosting multiple logical nodes.

With multiple logical node support, you can choose from three types of
configurations:
v A standard configuration, where each machine has only one database

partition server.
v A multiple logical node configuration, where a machine has more than one

database partition server.
v A configuration where several logical nodes run on each of several

machines.

Configurations that use multiple logical nodes are useful when the system
runs queries on a machine that has symmetric multiprocessor (SMP)
architecture. The ability to configure multiple logical nodes on a machine is
also useful if a machine fails. If a machine fails (causing the database partition
server or servers on it to fail), you can restart the database partition server (or
servers) on another machine using the DB2START NODENUM command.
This ensures that user data remains available.

Another benefit is that multiple logical nodes can exploit SMP hardware
configurations. In addition, because database partitions are smaller, you can
obtain better performance when performing such tasks as backing up and
restoring database partitions and table spaces, and creating indexes.

You can configure multiple logical nodes in one of two ways:
v Configure the logical nodes (database partitions) in the db2nodes.cfg file.

You can then start all the logical and remote nodes with the DB2START
command or its associated API.

Note: For Windows NT, you must use db2ncrt to add a node if there is no
database in the system; or, DB2START ADDNODE command if there
is one or more databases. Within Windows NT, the db2nodes.cfg file
should never be manually edited.

© Copyright IBM Corp. 1993, 2001 381

|
|
|
|
|
|
|
|

v Restart a logical node on another processor on which other logical database
partitions (nodes) are already running. This allows you to override the
hostname and port number specified for the logical database partition in
db2nodes.cfg.

To configure a logical database partition (node) in db2nodes.cfg, you must
make an entry in the file to allocate a logical port number for the node.
Following is the syntax you should use:

nodenumber hostname logical-port netname

Note: For Windows NT, you must use db2ncrt to add a node if there is no
database in the system; or, DB2START ADDNODE command if there is
one or more databases. Within Windows NT, the db2nodes.cfg file should
never be manually edited.

The format for the db2nodes.cfg file on Windows NT is different when
compared to the same file on Unix. On Windows NT, the column
format is:

nodenumber hostname computername logical_port netname

You must ensure that you define enough ports in the services file of
the etc directory for FCM communications.

382 Administration Guide: Implementation

|
|

Appendix I. High Speed Inter-Node Communications

When using DB2 Universal Database Enterprise - Extended Edition, you may
be working in a communication-intensive environment where overall system
throughput is vital to your business.

There are two types of networks that may be used for your partitioned
environment. One uses TCP/IP over a public LAN. The other type uses
TCP/IP or the Virtual Interface (VI) architecture over a dedicated interconnect.

The public interconnect works with existing TCP/IP. TCP/IP is available as a
communication protocol almost everywhere. This is a Local Area Network
(LAN) environment. An advantage with this environment is that you can
choose to immediately attach your cluster without requiring additional
proprietary hardware and software. A disadvantage with this environment is
that the additional cluster traffic affects the quality of the service over the
entire LAN. For example, there could be a communication “burst” effect with
database activity within the cluster that affects communication across the
LAN. Also, the communications of the rest of the LAN environment makes it
difficult to maintain consistent performance of database processing within the
cluster.

The dedicated interconnect works as a separate network. The network may be
the only network available for use within the cluster or it may be used in
addition to the LAN environment. The network is dedicated to providing
communications between the members of the cluster. This is called a System
Area Network (SAN). Performance of the database is not affected by external
communications traffic (as in a LAN environment), and the reverse is also
true. A disadvantage with this environment is that there may be separate
administration required for both networks as well as additional separate
hardware, software, and protocol costs for both the LAN and the SAN. An
example of a dedicated interconnect is the 100 Mb/Sec Ethernet.

You may wish to maintain your pre-existing public LAN environment, but
you also want the ability to bulk transfer data over the SAN (within your
cluster). Such an arrangement is convenient if you want to have
communication access beyond the cluster. Within a Windows NT operating
environment, you may need to retain the public LAN for communication
access to the NT Domain Controller. (See “Appendix E. How DB2 for
Windows NT Works with Windows NT Security” on page 361 for information
on the Domain Controller.)

© Copyright IBM Corp. 1993, 2001 383

|
|
|

The remaining sections include discussions of:
v “High Speed Interconnection Using TCP/IP”
v “High Speed Interconnection Using VI” on page 385

High Speed Interconnection Using TCP/IP

Examples of the prerequisites for the network hardware setup using TCP/IP
are:
v Standard Ethernet.

There are no unusual hardware, software, or protocol requirements.
v IBM Netfinity SP Switch.

The requirements are outlined in the next section.

Prerequisites for Using an IBM Netfinity SP Switch
To find out about Netfinity, please use the following URL:
http://www.ibm.com/pc/us/netfinity

For additional documentation and software upgrades, go to the IBM Support
Web site at: http://www.ibm.com/pc/support
1. Click Servers

2. Under family, click Clustering

3. Under Technical Information, click Downloadable files for software
upgrades or click Online publications for documentation

Locate the IBM Netfinity SP Switch topic and download the files needed.

Dedicated SAN (example: VI/Network Interface Card)

Public LAN (example: TCP/IP/Ethernet)

CPU

Memory

Database
Partition

CPU

Memory

Database
Partition

CPU

Memory

Database
Partition

CPU

Memory

Database
Partition

To other machines

Figure 12. Combine Dedicated SAN with Public LAN

384 Administration Guide: Implementation

Setup Procedure for an IBM Netfinity SP Switch
Directions for installing the IBM Netfinity SP Switch are found in the IBM
Netfinity SP Switch Installation and User’s Guide.

You should use the hardware and software guides that come with the various
hardware and software components (like the server rack enclosure, the host
adapter, and the SP switch software) to install, configure, and test those
components.

DB2, once installed and without any additional modifications, will use the
IBM Netfinity SP Switch.

High Speed Interconnection Using VI

Virtual Interface (VI) Architecture is the inter-node communication protocol
alternative to TCP/IP in a Windows NT massively parallel processing (MPP)
environment. VI is a new communication architecture that was developed
jointly by Intel, Microsoft, and Compaq to improve performance over a
System Area Network (SAN). Refer to http://www.viarch.org for more
information on the architecture.

Products exist which may be acquired separately from DB2 Universal
Database that have a VIA-enabled network interface card (NIC), switch, and
software driver implementation. Several Independent Hardware Vendors
(IHVs) have released, or plan to release, such products.

VI Architecture has low latency, high bandwidth, and lower CPU
consumption when compared to TCP/IP. In a communication-intensive
environment, using VI Architecture improves the overall system throughput.
The greater the number of nodes in the cluster, and the greater the amount of
data transferred, the greater the benefit from using VI Architecture.

DB2 Universal Database supports VI Architecture implementations that
comply with the Virtual Interface Architecture Specification, Version 1.0, the Intel
Virtual Interface (VI) Architecture Developers’ Guide, Version 1.0, and pass the
“Virtual Interface Architecture Conformance Suite”. The specification is found
at http://www.intel.com/design/servers/vi/the_spec/specification.htm on
the Web. The Developer’s Guide is found at
http://www.intel.com/design/servers/vi/developer/ia_imp_guide.htm on
the Web. Information on the conformance suite is also found at this same
URL.

IBM announced support for Virtual Interface (VI) Architecture with DB2
Universal Database EEE V5.2.

Appendix I. High Speed Inter-Node Communications 385

To find out about other products adhering to VI Architecture and supported
by DB2 Universal Database EEE, please contact the DB2 Universal Database
support organization at http://www.software.ibm.com/data or call
1-800-237-5511 (only in the U.S.A. and Canada).

The products that have been tested with DB2 Universal Database include:
v GigaNet Interconnect, see “Setup Procedure for GigaNet Interconnect” for

details.
v Compaq ServerNet Interconnect, see “Setup Procedure for ServerNet

Interconnect” on page 389 for details.
v Fujitsu Synfinity Interconnect, see “Setup Procedure for Synfinity

Interconnect” on page 392 for details.

There may be other products that work with DB2 Universal Database. Check
with the vendor of that product, and with IBM Service and Support, to ensure
that the other product is supported.

Virtual Interface (VI) Hardware Setup
Examples of the prerequisites for the network hardware setup using VI are:
v GigaNet Interconnect.

“Setup Procedure for GigaNet Interconnect” has the overview of the
hardware, software, and protocol information needed for this choice.
To find out about GigaNet products, or to contact GigaNet Service and
Support, please use the following URL: http://www.giganet.com/

v Compaq ServerNet Interconnect.
“Setup Procedure for ServerNet Interconnect” on page 389 has the overview
of the hardware, software, and protocol information needed for this choice.
To find out about ServerNet products, or to contact ServerNet Service and
Support, please use the following URL: http://www.servernet.com/

v Fujitsu Synfinity Interconnect.
“Setup Procedure for Synfinity Interconnect” on page 392 has the overview
of the hardware, software, and protocol information needed for this choice.
To find out about Synfinity products, or to contact Synfinity Service and
Support, at Fujitsu System Technologies, please use the following URL:
http://www.fujitsu.com/

You must configure DB2 to use VI. “Enabling DB2 to Run Using VI” on
page 393 has the necessary information for you to use VI.

Setup Procedure for GigaNet Interconnect
The list of the hardware and software required to set up this environment
include the following products:
v GigaNet GNN1000 Network Interface Card

386 Administration Guide: Implementation

|
|
|

|
|

v GigaNet GNX5000 Switch
v GigaNet GNCxx11 Copper Interconnect Cables
v GigaNet cLAN Software, Version 2.0.

The steps required to ensure that GigaNet Interconnect can work with DB2
Universal Database are shown below. Each step is a summary of what is
required at each step: all of the details associated with each step are not
presented here. You should also use the referenced documentation at each
step which does provide detailed instructions and direction needed.

Each GigaNet GNN1000 is packaged with a GigaNet cLAN Software
CD-ROM. The CD-ROM contains all of the necessary software to set up the
GigaNet Interconnect. In addition, the CD-ROM also contains the VI
Architecture software developer’s kit (SDK) and the Adobe Acrobat Reader.
The VI Architecture SDK will be used to develop and test VI-enabled
applications. The Adobe Acrobat Reader will be used to view documents on
the CD-ROM that explain how to develop VI-enabled applications.

Summary of steps:
1. Install Adapter Cards
2. Install Switches and Cables
3. Install Adapter Drivers
4. Install cLAN Management Console
5. Test the Interconnect

Here are the steps:
1. Install the GigaNet GNN1000 Network Interface Card. Please refer to the

GigaNet GNN1000 User Guide for installation instructions.
2. Install the GigaNet GNX5000 Switch and Cables. Please refer to the

GigaNet GNX5000 User Guide for installation instructions.
3. Install the GigaNet GNN1000 Adapter Driver software on each node

connected to the GNX5000 Switch. Please refer to the GigaNet GNN1000
User Guide for installation instructions. Here are additional details if you
are installing drivers provided by GigaNet:
a. Remove any previous version of the GNN1000 Driver already installed.

Removal requires the node to be re-booted.
b. Use Start—>Setting—>Control Panel—>Networks—>Adapters—>Add to

install the driver.
c. Click Have Disk... and specify the Driver directory on the CD-ROM.

For example, if F: is your CD-ROM drive, then you would use
F:\Driver

d. Select “GNN1000 NDIS Adapter” and then click OK.

Appendix I. High Speed Inter-Node Communications 387

|
|
|
|
|
|
|

e. Configure Network protocols to complete the installation.

GigaNet Adapter Driver software is also available on GigaNet’s web site,
http://www.giganet.com. Please refer to the download and installation
instructions found on the support page of GigaNet’s web site.

The installation of the GNN1000 Adapter Driver causes the node to
re-boot.

4. The GigaNet cLAN Management Console (GMC) can be used to test the
integrity of the GigaNet Interconnect. The GigaNet cLAN Management
Console is comprised of two parts: the Console, and the Agent. The Agent
must be installed on all nodes in the cluster. The Console can be installed
on any network node that has access to the nodes in the cluster. The most
versatile and recommended installation is that which has both the Console
and the Agent installed on each node in the cluster.
Install the GigaNet cLAN Management Console. Please refer to the
GigaNet GNN1000 User Guide for installation instructions and additional
information about the cLAN Management Console. Here are additional
details on the installation procedure:
a. Insert the cLAN Software CD into the CD-ROM drive.
b. Wait for the CD automatic installation menu to appear.
c. Click on “Install cLAN Management Console.”
d. Repeat this installation procedure on each remaining node in the

cluster.

GigaNet cLAN Management Console software is also available on
GigaNet’s web site, http://www.giganet.com. Please refer to the download
and installation instructions found on the support page of GigaNet’s web
site.

The installation of the cLAN Management Console may cause the node to
re-boot.

5. Test that the GigaNet Hardware is working. This can be done by doing the
following:
a. Open the GMC. (Programs—>GigaNet—>cLAN Management Console)
b. A dialog box is displayed showing all accessible machines in the LAN.

Press ESC.
c. Select Console—>Local from the menu bar.
d. Confirm that all the members in the cluster are shown and that they

are all “Active”.
e. Select Utilities—>VI Throughput from the menu bar. This will run a

throughput test to check that the data is actually going through the
hardware.

388 Administration Guide: Implementation

f. Enter in uppercase letters the computer names of the two nodes you
wish to use in the test. Identify the local node as the source node.

g. Click Start Measuring. You should see data being transferred at a rate
of at least 65 MB per second.

h. Click Stop Measuring to stop the connection test.
i. Repeat the test for the other nodes in the cluster by measuring

throughput between the local node (Source) and the other nodes (Sink).

If the connection test does not appear to be working, refer to the
troubleshooting sections of the GigaNet GNN1000 User Guide and the
GigaNet GNX5000 User Guide.

Refer to DB2 Enterprise - Extended Edition for Windows Quick Beginnings for
information on how to install and implement DB2 Universal Database for
Windows NT.

Setup Procedure for ServerNet Interconnect
The list of the hardware and software required to set up this environment
include the following products:
v ServerNet PCI Adapter Driver (SPAD), (product ID T0089), version 1.3.5 or

later
v ServerNet Switch 1
v ServerNet Area Network Manager (SANMan), (product ID T0087), version

1.1.3 or later.

The following are the steps required to ensure that ServerNet Interconnect can
work with DB2 Universal Database. Each step is a summary of what is
required at each step: all of the details associated with each step are not
presented here. You should also use the referenced documentation at each
step which does provide detailed instructions and direction needed.

The steps shown below also assume that you are only using up to six (6)
nodes in the cluster. Contact ServerNet if you have a requirement to use more
than six nodes.

Here are the steps:
1. Install the ServerNet Network Interface Card. Please refer to the

ServerNet-I Virtual Interface Software Release Document, (product ID N0031)
for installation instructions.

2. Install the ServerNet Switch 1. Please refer to the ServerNet-I Virtual
Interface Software Release Document, (product ID N0031) for installation
instructions.

3. Uninstall previous ServerNet drivers. (Skip this step if this is your first
time installing ServerNet.)

Appendix I. High Speed Inter-Node Communications 389

|
|

a. Open the Network control panel. (Start—>Setting—>Control
Panel—>Network)

b. Click on the Adapters Tab.
c. Remove Tandem ServerNet PCI Adapter Driver.
d. Click on the Services Tab.
e. Remove SANMan.
f. Click on the Protocols Tab.
g. Remove Tandem ServerNet-I VI Protocol.

4. Install the Tandem ServerNet PCI Adapter Driver. Here are additional
details if you are installing using the software CD provided by ServerNet:
a. Open the Network control panel. (Start—>Setting—>Control

Panel—>Network)
b. Click on the Adapters Tab. (The Adapters screen appears.)
c. Ensure the new ServerNet driver is placed in a separate drive and/or

directory. Then, from the command prompt referencing the correct
drive and/or directory, type “ernnn.exe -d” to start the self-extracting
program. (“ernnn.exe” is the name of the Engineering Release followed
by a number — ERnnn.EXE — that identifies the specific version of the
ServerNet driver to be installed.)

d. Change to the drive and/or directory where the extracted files are
located. Change to the “Spad n.n.n \ Free” subdirectory (where “n.n.n”
is the specific version of the product). (If you are working in a
troubleshooting or a development environment, then change to the
“Spad n.n.n \ Checked” subdirectory instead of the “Spad n.n.n \
Free” subdirectory.)

e. Rename the “oemsetup.multi_node” file to “oemsetup.inf”.
f. Choose Add in the Adapters Tab. (The Select Adapters screen appears.)
g. Click Have Disk.... (The Insert Disk screen appears.)
h. Enter the drive and/or directory where the oemsetup.inf file is located.
i. Ensure the dialog box shows “Tandem ServerNet PCI Adapter Driver”

and then click OK. Ensure the list of adapters now shows the ServerNet
adapter. Click Close.

j. Choose Yes to restart the computer. Or, select No and continue
installing SANMan and the VI Software Developer’s Kit (SDK).

5. Install SANMan. Here are additional details if you are installing using the
software CD provided by ServerNet:
a. Open the Network control panel. (Start—>Setting—>Control

Panel—>Network)
b. Click on the Services Tab. (The Services screen appears.)
c. Ensure the new ServerNet driver is placed in a separate drive and/or

directory. Then, from the command prompt referencing the correct

390 Administration Guide: Implementation

drive and/or directory, type “ernnn.exe -d” to start the self-extracting
program. (“ernnn.exe” is the name of the Engineering Release followed
by a number — ERnnn.EXE — that identifies the specific version of the
ServerNet driver to be installed.)

d. Choose Add in the Services Tab. (The Select Services screen appears.)
e. Change to the drive and/or directory where the extracted files are

located. Change to the “SANMan n.n.n \Free” subdirectory (where
“n.n.n” is the specific version of the product). (If you are working in a
troubleshooting or a development environment, then change to the
“SANMan n.n.n \ Checked” subdirectory instead of the “SANMan
n.n.n \ Free” subdirectory.)

f. Determine if the Switch is X or Y by looking at the light on the Switch.
One light says “X”, and the one light says “Y”.

g. If an X Switch, select X=1 and Y=0. Ensure all cables are connected to
the X port on the network cards.

h. If a Y Switch, select X=0 and Y=1. Ensure all cables are connected to
the Y port on the network cards.

i. Provide the port number of the switch to which the network card on
the current machine is connected.

j. Select “PC” for all six (6) ports.
6. Install the Virtual Interface Protocol. Here are additional details if you are

installing using the software CD provided by ServerNet:
a. Open the Network control panel. (Start—>Setting—>Control

Panel—>Network)
b. Click on the Protocols Tab. (The Network Protocols screen appears.)
c. Ensure the new ServerNet driver is placed in a separate drive and/or

directory. Then, from the command prompt referencing the correct
drive and/or directory, type “ernnn.exe -d” to start the self-extracting
program. (“ernnn.exe” is the name of the Engineering Release followed
by a number — ERnnn.EXE — that identifies the specific version of the
ServerNet driver to be installed.)

d. Choose Add in the Protocols Tab. (The Select Network Protocols screen
appears.)

e. Click Have Disk.... (The Insert Disk screen appears.)
f. Enter the drive and/or directory where the extracted files are located.

7. Test that the ServerNet Hardware is working. There are no test programs
available. Instead, simply use DB2 to test the ServerNet hardware.
If the hardware does not appear to be working, refer to the ServerNet-I
Virtual Interface Software Release Document, (product ID N0031) for additional
troubleshooting help.

Appendix I. High Speed Inter-Node Communications 391

Refer to DB2 Enterprise - Extended Edition for Windows Quick Beginnings for
information on how to install and implement DB2 Universal Database for
Windows NT.

Setup Procedure for Synfinity Interconnect
The list of the hardware and software required to set up this environment
include the following products:
v Synfinity PCI Network Interface Card
v Synfinity Six Port Switch
v Synfinity Interconnect Cables
v Synfinity Cluster Manager Software, Version 1.10.

The steps required to ensure that Synfinity Interconnect can work with DB2
Universal Database are shown below. Each step is a summary of what is
required at each step: all of the details associated with each step are not
presented here. You should also use the referenced documentation at each
step which does provide detailed instructions and the direction needed.

Each Synfinity System is packaged with a Synfinity Cluster Manager Software,
Version 1.10 CD-ROM. The CD-ROM contains all of the necessary
documentation and software to set up the Synfinity Interconnect. In addition,
the CD-ROM also contains the Synfinity Cluster Manager Software User Guide.

If you have other VI hardware, software, and protocol installed, it may be
necessary to remove all of them before installing your Synfinity interconnect.

Once installed, Synfinity interconnect is considered to be exotic hardware and
may not be viewed through the Windows NT control panel.

Summary of steps:
1. Install Adapter Cards
2. Install Synfinity Cluster Manager Software
3. Install Switches and Cables
4. Test the Interconnect

Here are the steps:
1. Install the Synfinity PCI Network Interface Card. Please refer to the

Synfinity Cluster Manager Software User Guide for installation instructions.
2. Install the Synfinity Cluster Manager Software on a node connected to the

Switch. Please refer to the Synfinity Cluster User Guide for installation
instructions.
The node you select will be the Cluster Manager. This is the only node
where you have to install the software from the CD.

392 Administration Guide: Implementation

|
|

|

|
|
|
|

Once installed, you should run the Synfinity Cluster Manager software.
The Cluster Manager will give you a cluster plan and help you through a
step-by-step guide to configuring the network, and advise the best routing
and cabling options. This step should be completed before any cables are
connected to the Synfinity switches and network cards. As part of the
planning process, the Cluster Manager will use the cluster plan to create
installable diskettes for use on the other nodes. This will include the driver
software for the cards that are on the other nodes. Refer to the Synfinity
Cluster Manager Software User Guide for complete details.

3. Install the Synfinity Switch and Cables. Please refer to the Synfinity Cluster
User Guide for installation instructions.

4. Test that the Synfinity Hardware is working. This can be done by doing
the following:
a. On any system in the cluster, open a ″Command Prompt″ window in

Windows NT.
b. Change directory to the ″utils″ subdirectory of where the Synfinity

Cluster Manager software was loaded.
c. Type ″vitest″ and note the node number that is displayed.
d. Move to any other system in the cluster, open a ″Command Prompt″

window.
e. Change directory to the ″utils″ subdirectory of where the Synfinity

Cluster Manager software was loaded on this other system.
f. Type ″vitest x″ where x is the node number from step c above.
g. A ″CONNECTION GOOD″ message should be displayed.
h. If a ″NO CONNECTION″ message is displayed, check cabling and

hardware set up, and refer to the Synfinity Cluster Manager Software
User Guide for further information troubleshooting the problem. Also
check the support web pages for ″Tech-tips″ at
http://www.fujitsu.com/

Refer to DB2 Enterprise - Extended Edition for Windows Quick Beginnings for
information on how to install and implement DB2 Universal Database for
Windows NT.

Enabling DB2 to Run Using VI
Detailed installation information is found in DB2 Enterprise - Extended Edition
for Windows Quick Beginnings.

After completing the installation of DB2 as documented in DB2 Enterprise -
Extended Edition for Windows Quick Beginnings, set the following DB2 registry
variables and carry out the following tasks on each database partition in the
instance:
1. Set DB2_VI_ENABLE=ON

Appendix I. High Speed Inter-Node Communications 393

|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|

|

|
|

|
|
|
|

|

Use the db2set command to modify the value for the registry variable. Use
the db2_all command to run the db2set command on all database
partition servers in the instance. You must be logged on with a user
account that is a member of the Administrators group to run the db2_all
command.
In the following example, the ; character is placed inside the double
quotation marks to allow the request to run concurrently on all the
database partition servers in the instance:

db2_all ";db2set DB2_VI_ENABLE=ON"

For more information about the db2_all command, see ″Issuing
Commands to Multiple Database Partition Servers″ in the Administration
Guide: Implementation.

2. Set DB2_VI_DEVICE=nic0
For example:

db2_all ";db2set DB2_VI_DEVICE=nic0"

Note: With Synfinity Interconnect, this variable should be set
DB2_VI_DEVICE=VINIC. The device name (VINIC) must be in upper
case.

3. Set DB2_VI_VIPL=vipl.dll
For example:

db2_all ";db2set DB2_VI_VIPL=vipl.dll"

Note: The value used in the example is the default for the registry
variable. For more information on the registry variables, see
Administration Guide: Performance.

4. Enter db2start on the partitioned instance.
5. Review the db2diag.log file. There should be one message for each

partition stating that “VI is enabled.”
6. Fast Communications Manager (FCM) configuration parameters may need

to be updated. Should you encounter a problem as a result of resource
constraints involving FCM, you should raise the values of the FCM
configuration parameters. If you are moving from another high speed
interconnect environment where you have increased the values for the
FCM configuration parameters, you may need to lower these values. Also,
on Windows NT, you may be required to set the DB2NTMEMSIZE registry
variable to override the DB2 defaults. Refer to Administration Guide:
Performance for more information on the registry variables.

394 Administration Guide: Implementation

|
|
|
|
|

|
|
|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|
|

|
|
|
|
|
|
|
|
|

Appendix J. Lightweight Directory Access Protocol (LDAP)
Directory Services

Lightweight Directory Access Protocol (LDAP) is an industry standard access
method to directory services. A directory service is a repository of resource
information about multiple systems and services within a distributed
environment; and it provides client and server access to these resources. Each
database server instance will publish its existence to an LDAP server and
provide database information to the LDAP directory when the databases are
created. When a client connects to a database, the catalog information for the
server can be retrieved from the LDAP directory. Each client is no longer
required to store catalog information locally on each machine. Client
applications search the LDAP directory for information required to connect to
the database.

A caching mechanism exists so that the client only searches the LDAP
directory once in its local directory catalogs. Once the information is retrieved,
it is stored or cached on the local machine. Subsequent access to the same
information is based on the values of the dir_cache database manager
configuration parameter and the DB2LDAPCACHE registry variable.
v If DB2LDAPCACHE=NO and dir_cache=NO, then always read the

information from LDAP.
v If DB2LDAPCACHE=NO and dir_cache=YES, then read the information

from LDAP once and insert it into the DB2 cache.
v If DB2LDAPCACHE=YES or is not set, and if the required information is

not found in the local cache, then the information is read from the LDAP
directory and the local cache is refreshed.

Note: The DB2LDAPCACHE registry variable is only applicable to the
database and node directories.

Supporting LDAP Client and Server Configurations

The following table summarizes the supported LDAP client and server
configurations:

Table 26. Supported LDAP Client and Server Configurations

IBM SecureWay Directory V3.1
and V3.1.1

Microsoft Active Directory

IBM LDAP Client Supported Not supported

Microsoft LDAP/ADSI Client Supported Supported

© Copyright IBM Corp. 1993, 2001 395

|

|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

||

||
|
|

|||

|||

IBM SecureWay Directory Version 3.1 is an LDAP Version 3 server available
for Windows NT, AIX, and Solaris. SecureWay directory is shipped as part of
the base operating system on AIX and AS/400, and with OS/390 Security
Server.

DB2 supports IBM LDAP client on AIX, Solaris, Windows NT, and Windows
98.

Microsoft Active Directory is an LDAP Version 3 server and is available as
part of the Windows 2000 Server operating system.

The Microsoft LDAP Client support is included in the following Microsoft
products:
v Outlook 98, Outlook 2000, or Outlook Express

Note: Outlook Express is installed as part of Microsoft Internet Explorer.
v Exchange Server
v Windows NT Server Service Pack 4
v Windows 98 Second Edition
v Windows 2000

The Microsoft LDAP Client support is also included in the Active Directory
Service Interface (ADSI) component. The latest version of ADSI can be
downloaded from

http://www.microsoft.com/windows2000/techinfo/howitworks/activedirectory/
adsilinks.asp

When running on Windows 98, Windows NT, or Windows 2000 operating
systems, DB2 supports using either the IBM LDAP client or the Microsoft
LDAP client to access the IBM SecureWay Directory Server. If the Microsoft
LDAP client is not available, DB2 attempts to use the IBM LDAP client. To
explicitly select the IBM LDAP client, use the db2set command to set the
DB2LDAP_CLIENT_PROVIDER registry variable to “IBM”.

Support for Windows 2000 Active Directory
DB2 exploits the Active Directory as follows:
1. The DB2 database servers are published in the Active Directory as the

ibm_db2Node objects. The ibm_db2Node object class is a subclass of the
ServiceConnectionPoint (SCP) object class. Each ibm_db2Node object
contains protocol configuration information to allow client applications to
connect to the DB2 database server. When a new database is created, the

396 Administration Guide: Implementation

|

|
|
|
|

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

database is published in the Active Directory as the ibm_db2Database
object under the ibm_db2Node object.

2. When connecting to a remote database, DB2 client queries the Active
Directory, via the LDAP interface, for the ibm_db2Database object. The
protocol communication to connect to the database server (binding
information) is obtained from the ibm_db2Node object which the
ibm_db2Database object is created under.

Configuring DB2 to Use Active Directory

In order to access Microsoft Active Directory, ensure that the following
conditions are met:
1. The machine that runs DB2 must belong to a Windows 2000 domain.
2. The Microsoft LDAP client is installed. Microsoft LDAP client is part of

the Windows 2000 operating system. For Windows 98, or Windows NT,
you need to verify that the wldap32.dll exists under the system directory.

3. Enable the LDAP support. For Windows 2000, the LDAP support is
enabled by the installation program. For Windows 98/NT, you must
explicitly enable LDAP by setting the DB2_ENABLE_LDAP registry
variable to “YES” using the db2set command.

4. Log on to a domain user account when running DB2 to read information
from the Active Directory.

Configuring DB2 in the IBM LDAP Environment

Before you can use DB2 in the IBM LDAP environment, you must configure
the following on each machine:
v Enable the LDAP support. For Windows 2000, the LDAP support is enabled

by the installation program. For Windows 98/NT, you must explicitly
enable LDAP by setting the DB2_ENABLE_LDAP registry variable to “YES”
using the db2set command.

v The LDAP server’s TCP/IP host name and port number. These values can
be entered during unattended installation using the DB2LDAPHOST
response keyword, or you can manually set them later by using the
DB2SET command:

db2set DB2LDAPHOST=<hostname[:port]>

where hostname is the LDAP server’s TCP/IP hostname, and [:port] is the
port number. If a port number is not specified, DB2 will use the default
LDAP port (389).

DB2 objects are located in the LDAP base distinguished name (baseDN). If
you are using IBM SecureWay LDAP directory server Version 3.1, you do
not have to configure the base distinguished name since DB2 can

Appendix J. Lightweight Directory Access Protocol (LDAP) Directory Services 397

|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|

dynamically obtain this information from the server. However, if you are
using IBM eNetwork Directory Server Version 2.1, you must configure the
LDAP base distinguished name on each machine by using the DB2SET
command:

db2set DB2LDAP_BASEDN=<baseDN>

where baseDN is the name of the LDAP suffix that is defined at the LDAP
server. This LDAP suffix is used to contain DB2 objects.

v The LDAP user’s distinguished name (DN) and password. These are
required only if you plan to use LDAP to store DB2 user-specific
information.

Creating an LDAP User
DB2 supports setting DB2 registry variables and CLI configuration at the user
level. (This is not available on the AIX and Solaris platforms.) User level
support provides user-specific settings in a multi-user environment. An
example is Windows NT Terminal Server where each logged on user can
customize his or her own environment without interfering with the system
environment or another user’s environment.

When using the IBM LDAP directory, you must define an LDAP user before
you can store user-level information in LDAP. You can create an LDAP user in
one of the following ways:
v Create an LDIF file to contain all attributes for the user object, then run the

LDIF import utility to import the object into the LDAP directory. The LDIF
utility for the IBM LDAP server is “LDIF2DB”.

v Use the Directory Management Tool (DMT), available only for the IBM
SecureWay LDAP Directory Server Version 3.1, to create the user object.

A LDIF file containing the attributes for a person object appears similar to the
following:

File name: newuser.ldif

dn: cn=Mary Burnnet, ou=DB2 UDB Development, ou=Toronto, o=ibm, c=ca
objectclass: ePerson
cn: Mary Burnnet
sn: Burnnet
uid: mburnnet
userPassword: password
telephonenumber: 1-416-123-4567
facsimiletelephonenumber: 1-416-123-4568
title: Software Developer

Following is an example of the LDIF command to import an LDIF file using
the IBM LDIF import utility:

LDIF2DB -i newuser.ldif

398 Administration Guide: Implementation

|
|
|
|

|

|
|

|
|
|
|
|
|

Notes:

1. You must run the LDIF2DB command from the LDAP server machine.
2. You must grant the required access (ACL) to the LDAP user object so that

the LDAP user can add, delete, read, and write to his own object. To grant
ACL for the user object, use the LDAP Directory Server Web
Administration tool.

Configuring the LDAP User for DB2 Applications
When working with the IBM LDAP client and before running DB2, you must
configure the LDAP user distinguished name (DN) and password for the
current logged on user. This can be done using the db2ldcfg utility:

db2ldcfg -u <userDN> -w <password> —> set the user's DN and password
-r —> clear the user's DN and password

For example:
db2ldcfg -u "cn=Mary Burnnet,ou=DB2 UDB Development,ou=Toronto,o=ibm,c=ca"

-w password

Registration of DB2 Servers After Installation

Each DB2 server instance must be registered in LDAP to publish the protocol
configuration information that is used by the client applications to connect to
the DB2 server instance. When registering an instance of the database server,
you need to specify a node name. The node name is used by client applications
when they connect or attach to the server. You can catalog another alias name
for the LDAP node by using the CATALOG LDAP NODE command.

Note: If you are working in a Windows 2000 domain environment, then
during installation the DB2 server instance is automatically registered
in the Active Directory with the following information:

nodename: TCP/IP hostname
protocol type: TCP/IP

If the TCP/IP hostname is longer than 8 characters, it will be truncated
to 8 characters.

The REGISTER command appears as follows:
db2 register db2 server in ldap

as <ldap_node_name>
protocol tcpip

The protocol clause specifies the communication protocol to use when
connecting to this database server.

Appendix J. Lightweight Directory Access Protocol (LDAP) Directory Services 399

|
|
|

|
|
|
|
|
|

When creating an instance for DB2 Universal Database EEE that includes
multiple physical machines, the REGISTER command must be invoked once
for each machine. Use the rah command to issue the REGISTER command on
all machines.

Note: The same ldap_node_name cannot be used for each machine since the
name must be unique in LDAP. You will want to substitute the
hostname of each machine for the ldap_node_name in the REGISTER
command. For example:

rah ">DB2 REGISTER DB2 SERVER IN LDAP AS <> PROTOCOL TCPIP"

The “<>” is substituted by the hostname on each machine where the
rah command is run. In the rare occurrence where there are multiple
DB2 Universal Database EEE instances, the combination of the instance
and host index may be used as the node name in the rah command.

The REGISTER command can be issued for a remote DB2 server. To do so,
you must specify the remote computer name, instance name, and the protocol
configuration parameters when registering a remote server. The command can
be used as follows:

db2 register db2 server in ldap
as <ldap_node_name>
protocol tcpip
hostname <host_name>
svcename <tcpip_service_name>
remote <remote_computer_name>
instance <instance_name>

The following convention is used for the computer name:
v If TCP/IP is configured, the computer name must be the same as the

TCP/IP hostname.
v If APPN is configured, use the partner-LU name as the computer name.

When running in a high availability or failover environment, and using
TCP/IP as the communication protocol, the cluster IP address must be used.
Using the cluster IP address allows the client to connect to the server on
either machine without having to catalog a separate TCP/IP node for each
machine. The cluster IP address is specified using the hostname clause, shown
as follows:

db2 register db2 server in ldap
as <ldap_node_name>
protocol tcpip
hostname n.nn.nn.nn

where n.nn.nn.nn is the cluster IP address.

400 Administration Guide: Implementation

|
|
|
|

|
|
|
|
|
|

Refer to the Command Reference for additional information on the REGISTER
command.

Update the Protocol Information for the DB2 Server

The DB2 server information in LDAP must be kept current. For example,
changes to the protocol configuration parameters or the server network
address require an update to LDAP.

To update the DB2 server in LDAP on the local machine, use the following
command:

db2 update ldap ...

Examples of protocol configuration parameters that can be updated include:
v A TCP/IP hostname and service name or port number parameters.
v An IPX address.
v APPC protocol information like TP name, partner LU, or mode.
v A NetBIOS workstation name.

To update a remote DB2 server protocol configuration parameters use the
UPDATE LDAP command with a node clause:

db2 update ldap
node <node_name>
hostname <host_name>
svcename <tcpip_service_name>

Refer to the Command Reference for more information on the UPDATE LDAP
command.

Catalog a Node Alias for ATTACH

A node name for the DB2 server must be specified when registering the server
in LDAP. Applications use the node name to attach to the database server. If a
different node name is required, such as when the node name is hard-coded
in an application, use the CATALOG LDAP NODE command to make the
change. The command would be similar to:

db2 catalog ldap node <ldap_node_name>
as <new_alias_name>

To uncatalog a LDAP node, use the UNCATALOG LDAP NODE
COMMAND. The command would appear similar to:

db2 uncatalog ldap node <ldap_node_name>

Appendix J. Lightweight Directory Access Protocol (LDAP) Directory Services 401

Deregistering the DB2 Server

Deregistration of an instance from LDAP also removes all the node, or alias,
objects and the database objects referring to the instance.

Deregistration of the DB2 server on either a local or a remote machine
requires the LDAP node name be specified for the server:

db2 deregister db2 server in ldap
node <node_name>

When the DB2 server is deregistered, any LDAP node entry and LDAP
database entries referring to the same instance of the DB2 server are also
uncataloged.

Registration of Databases

During the creation of a database within an instance, the database is
automatically registered in LDAP. Registration allows remote client connection
to the database without having to catalog the database and node on the client
machine. When a client attempts to connect to a database, if the database does
not exist in the database directory on the local machine then the LDAP
directory is searched.

If the name already exists in the LDAP directory, the database is still created
on the local machine but a warning message is returned stating the naming
conflict in the LDAP directory. For this reason you can manually catalog a
database in the LDAP directory. The user can register databases on a remote
server in LDAP by using the CATALOG LDAP DATABASE command. When
registering a remote database, you specify the name of the LDAP node that
represents the remote database server. You must register the remote database
server in LDAP using the REGISTER DB2 SERVER IN LDAP command
before registering the database.

To register a database manually in LDAP, use the CATALOG LDAP
DATABASE command:

db2 catalog ldap database <dbname>
at node <node_name>
with "My LDAP database"

Attaching to a Remote Server

In the LDAP environment, you can attach to a remote database server using
the LDAP node name on the ATTACH command:

db2 attach to <ldap_node_name>

402 Administration Guide: Implementation

|
|
|

|
|
|
|
|
|

When a client application attaches to a node or connects to a database for the
first time, since the node is not in the local node directory, DB2 searches the
LDAP directory for the target node entry. If the entry is found in the LDAP
directory, the protocol information of the remote server is retrieved. If you
connect to the database and if the entry is found in the LDAP directory, then
the database information is also retrieved. Using this information, DB2
automatically catalogs a database entry and a node entry on the local
machine. The next time the client application attaches to the same node or
database, the information in the local database directory is used without
having to search the LDAP directory.

In more detail: A caching mechanism exists so that the client only searches the
LDAP directory once in its local directory catalogs. Once the information is
retrieved, it is stored or cached on the local machine. Subsequent access to the
same information is based on the values of the dir_cache database manager
configuration parameter and the DB2LDAPCACHE registry variable.
v If DB2LDAPCACHE=NO and dir_cache=NO, then always read the

information from LDAP.
v If DB2LDAPCACHE=NO and dir_cache=YES, then read the information

from LDAP once and insert it into the DB2 cache.
v If DB2LDAPCACHE=YES or is not set, and if the required information is

not found in the local cache, then the information is read from the LDAP
directory and the local cache is refreshed.

Note: The caching of LDAP information is not applicable to user-level CLI or
DB2 profile registry variables. Also, there is an “in-memory” cache for
the database, node, and DCS directories. However, there is no such
cache for just the node directory.

Deregistering the Database

The database is automatically deregistered from LDAP when:
v The database is dropped.
v The owning instance is deregistered from LDAP.

The database can be manually deregistered from LDAP using:
db2 uncatalog ldap database <dbname>

Refreshing LDAP Entries in Local Database and Node Directories

LDAP information is subject to change, so it is necessary to refresh the LDAP
entries in the local and node directories. The local database and node
directories are used to cache the entries in LDAP.

Appendix J. Lightweight Directory Access Protocol (LDAP) Directory Services 403

|
|
|
|

In more detail: A caching mechanism exists so that the client only searches the
LDAP directory once in its local directory catalogs. Once the information is
retrieved, it is stored or cached on the local machine. Subsequent access to the
same information is based on the values of the dir_cache database manager
configuration parameter and the DB2LDAPCACHE registry variable.
v If DB2LDAPCACHE=NO and dir_cache=NO, then always read the

information from LDAP.
v If DB2LDAPCACHE=NO and dir_cache=YES, then read the information

from LDAP once and insert it into the DB2 cache.
v If DB2LDAPCACHE=YES or is not set, and if the required information is

not found in the local cache, then the information is read from the LDAP
directory and the local cache is refreshed.

Note: The caching of LDAP information is not applicable to user-level CLI or
DB2 profile registry variables. Also, there is an “in-memory” cache for
the database, node, and DCS directories. However, there is no such
cache for just the node directory.

To refresh the database entries that refer to LDAP resources, use the following
command:

db2 refresh ldap database directory

To refresh the node entries on the local machine that refer to LDAP resources,
use the following command:

db2 refresh ldap node directory

As part of the refresh, all the LDAP entries that are saved in the local
database and node directories are removed. The next time that the application
accesses the database or node, it will read the information directly from LDAP
and generate a new entry in the local database or node directory.

To ensure the refresh is done in a timely way, you may want to:
v Schedule a refresh that is run periodically.
v Run the REFRESH command during system bootup.
v Use an available administration package to invoke the REFRESH command

on all client machines.
v Set DB2LDAPCACHE=“NO” to avoid LDAP information being cached in

the database, node, and DCS directories.

404 Administration Guide: Implementation

|
|
|
|

Searching

DB2 searches the current LDAP directory partition, or current Active Directory
domain in the Windows 2000 environment. In an environment where there are
multiple LDAP directory partitions or domains, you can set the search scope.
For example, if the information is not found in the current partition or
domain, automatic search of all other partitions or domains can be requested.
On the other hand, the search scope can be restricted to search only the local
machine.

The search scope is controlled through the DB2 profile registry variable,
DB2LDAP_SEARCH_SCOPE. To set the search scope value at the global level
in LDAP, use the “-gl” option, which means “global in LDAP”, on the db2set
command:

db2set -gl db2ldap_search_scope=<value>

Possible values include: “local”, “domain”, or “global”. The default value is
“domain” which limits the search scope to the current directory partition.
Setting the search scope in LDAP allows the setting of the default search
scope for the entire enterprise. For example, you may want to initialize the
search scope to “global” after a new database is created. This allows any client
machine to search all other partitions or domains to find a database that is
defined in a particular partition or domain. Once the entry has been recorded
on each machine after the first connect or attach for each client, the search
scope can be changed to “local”. Once changed to “local”, each client will not
scan any partition or domain.

Note: The DB2 profile registry variable DB2LDAP_SEARCH_SCOPE is the
only registry variable that supports setting the variable at the global
level in LDAP.

Registering Host Databases

When registering host databases in LDAP, there are two possible
configurations:
v Direct connection to the host databases; or,
v Connection to the host database though a gateway.

In the first case, the user would register the host server in LDAP, then catalog
the host database in LDAP specifying the node name of the host server. In the
second case, the user would register the gateway server in LDAP, then catalog
the host database in LDAP specifying the node name of the gateway server.

As an example showing both cases, consider the following: Suppose there is a
host database called NIAGARA_FALLS. It can accept incoming connections

Appendix J. Lightweight Directory Access Protocol (LDAP) Directory Services 405

|
|

using APPN and TCP/IP. If the client can not connect directly to the host
because it does not have DB2 Connect, then it will connect using a gateway
called “goto@niagara”.

The following steps need to be done:
1. Register the host database server in LDAP for APPN connectivity. The

REMOTE and INSTANCE clauses are arbitrary. The NODETYPE clause is
set to “DCS” to indicate that this is a host database server.

db2 register ldap as nfappn appn network CAIBMOML partnerlu NFLU
mode IBMRDB remote mvssys instance msvinst nodetype dcs

2. Register the host database server in LDAP for TCP/IP connectivity. The
TCP/IP hostname of the server is “myhost” and the port number is “446”.
Similar to step 1, the NODETYPE clause is set to “DCS” to indicate that
this is a host database server.

db2 register ldap as nftcpip tcpip hostname myhost svcename 446
remote mvssys instance mvsinst nodetype dcs

3. Register a DB2 Connect gateway server in LDAP for TCP/IP connectivity.
The TCP/IP hostname for the gateway server is “niagara” and the port
number is “50000”.

db2 register ldap as whasf tcpip hostname niagara svcename 50000
remote niagara instance goto nodetype server

4. Catalog the host database in LDAP using TCP/IP connectivity. The host
database name is “NIAGARA_FALLS”, the database alias name is
“nftcpip”. The GWNODE clause is used to specify the nodename of the
DB2 Connect gateway server.

db2 catalog ldap database NIAGARA_FALLS as nftcpip at node nftcpip
gwnode whasf authentication dcs

5. Catalog the host database in LDAP using APPN connectivity.
db2 catalog ldap database NIAGARA_FALLS as nfappn at node nfappn

gwnode whasf authentication dcs

After completing the registration and cataloging shown above, if you want to
connect to the host using TCPIP, you connect to “nftcpip”. If you want to
connect to the host using APPN, you connect to “nfappn”. If you do not have
DB2 Connect on your client workstation, the connection will go through the
gateway using TCPIP and from there, depending on whether you use
“nftcpip” or “nfappn”, it will connect to host using TCP/IP or APPN
respectively.

In general then, you can manually configure host database information in
LDAP so that each client does not need to manually catalog the database and
node locally on each machine. The process follows:
1. Register the host database server in LDAP. You must specify the remote

computer name, instance name, and the node type for the host database

406 Administration Guide: Implementation

|
|
|

server in the REGISTER command using the REMOTE, INSTANCE, and
NODETYPE clauses respectively. The REMOTE clause can be set to either
the host name or the LU name of the host server machine. The INSTANCE
clause can be set to any character string that has eight characters or less.
(For example, the instance name can be set to “DB2”.) The NODE TYPE
clause must be set to “DCS” to indicate that this is a host database server.

2. Register the host database in LDAP using the CATALOG LDAP
DATABASE command. Any additional DRDA parameters can be specified
by using the PARMS clause. The database authentication type should be
set to “DCS”.

Setting DB2 Registry Variables at the User Level

Under the LDAP environment, the DB2 profile registry variables can be set at
the user level which allows a user to customize their own DB2 environment.
To set the DB2 profile registry variables at the user level, use the -ul option:

db2set -ul <variable>=<value>

Note: This is not supported on AIX or Solaris.

DB2 has a caching mechanism. The DB2 profile registry variables at the user
level are cached on the local machine. If the -ul parameter is specified, DB2
always reads from the cache for the DB2 registry variables. The cache is
refreshed when:
v You update or reset a DB2 registry variable at the user level.
v The command to refresh the LDAP profile variables at the user level is:

db2set -ur

Enabling LDAP Support After Installation is Complete

To enable LDAP support at some point following the completion of the
installation process, use the following procedure on each machine:
v Install the LDAP support binary files. Run the setup program and select the

LDAP Directory Exploitation support from Custom install. The setup
program installs the binary files and sets the DB2 profile registry variable
DB2_ENABLE_LDAP to “YES”.

Note: For Windows 98/NT and UNIX platforms, you must explicitly enable
LDAP by setting the DB2_ENABLE_LDAP registry variable to “YES”
using the db2set command.

v (On UNIX platforms only) Declare the LDAP server’s TCP/IP host name
and (optional) port number using the following command:

db2set DB2LDAPHOST=<base_domain_name>[:port_number]

Appendix J. Lightweight Directory Access Protocol (LDAP) Directory Services 407

|
|
|

where base_domain_name is the LDAP server’s TCP/IP hostname, and
[:port] is the port number. If a port number is not specified, DB2 will use
the default LDAP port (389).

DB2 objects are located in the LDAP base distinguished name (baseDN). If
you are using IBM SecureWay LDAP directory server Version 3.1, you do
not have to configure the base distinguished name since DB2 can
dynamically obtain this information from the server. However, if you are
using IBM eNetwork Directory Server Version 2.1, you must configure the
LDAP base distinguished name on each machine by using the DB2SET
command:

db2set DB2LDAP_BASEDN=<baseDN>

where baseDN is the name of the LDAP suffix that is defined at the LDAP
server. This LDAP suffix is used to contain DB2 objects.

v Register the current instance of the DB2 server in LDAP by using the
REGISTER LDAP AS command. For example:
db2 register ldap as <node-name> protocol tcpip

v Run the CATALOG LDAP DATABASE command if you have databases you
would like to register in LDAP. For example:

db2 catalog ldap database <dbname> as <alias_dbname>

v Enter the LDAP user’s distinguished name (DN) and password. These are
required only if you plan to use LDAP to store DB2 user-specific
information.

Disabling LDAP Support

To disable LDAP support, use the following procedure:
v For each instance of the DB2 server, deregister the DB2 server from LDAP:

db2 deregister db2 server in ldap node <nodename>

v Set the DB2 profile registry variable DB2_ENABLE_LDAP to “NO”.

LDAP Support and DB2 Connect

If LDAP support is available at the DB2 Connect gateway, and the database is
not found at the gateway database directory, then DB2 will look up LDAP
and attempt to keep the found information.

Security Considerations

Before accessing information in the LDAP directory, an application or user is
authenticated by the LDAP server. The authentication process is called binding
to the LDAP server.

408 Administration Guide: Implementation

|
|
|
|
|
|
|

|

|
|

|
|

|

|
|
|

It is important to apply access control on the information stored in the LDAP
directory to prevent anonymous users from adding, deleting, or modifying the
information.

Access control is inherited by default and can be applied at the container
level. When a new object is created, it inherits the same security attribute as
the parent object. An administration tool available for the LDAP server can be
used to define access control for the container object.

By default, access control is defined as follows:
v For database and node entries in LDAP, everyone (or any anonymous user)

has read access. Only the Directory Administrator and the owner or creator
of the object has read/write access.

v For user profiles, the profile owner and the Directory Administrator have
read/write access. One user cannot access the profile of another user if that
user does not have Directory Administrator authority.

Note: The authorization check is always performed by the LDAP server and
not by DB2. The LDAP authorization check is not related to DB2
authorization. An account or auth ID that has SYSADM authority may
not have access to the LDAP directory.

When running the LDAP commands or APIs, if the bind Distinguished Name
(bindDN) and password are not specified, DB2 binds to the LDAP server
using the default credentials which may not have sufficient authority to
perform the requested commands and an error will be returned.

You can explicitly specify the user’s bindDN and password using the USER
and PASSWORD clauses for the DB2 commands or APIs. Refer to the
Command Reference for more information on DB2 commands, and to the
Administrative API Reference for more information on DB2 APIs.

Security Considerations for Windows 2000 Active Directory
The DB2 database and node objects are created under the computer object of
the machine where the DB2 server is installed in the Active Directory. To
register a database server or catalog a database in the Active Directory, you
need to have sufficient access to create and/or update the objects under the
computer object.

By default, objects under the computer object are readable by any
authenticated users and updateable by administrators (users that belong to the
Administrators, Domain Administrators, and Enterprise Administrators
groups). To grant access for a specific user or a group, use the Active Directory
Users and Computer Management Console (MMC) as follows:
1. Start the Active Directory Users and Computer administration tool

Appendix J. Lightweight Directory Access Protocol (LDAP) Directory Services 409

|
|
|
|

(Start—> Program—> Administration Tools—> Active Directory Users and
Computer)

2. Under View, select Advanced Features

3. Select the Computers container
4. Right click on the computer object that represents the server machine

where DB2 is installed and select Properties

5. Select the Security tab, then add the required access to the specified user or
group

The DB2 registry variables and CLI settings at the user level are maintained in
the DB2 property object under the user object. To set the DB2 registry
variables or CLI settings at the user level, a user needs to have sufficient
access to create objects under the User object.

By default, only administrators have access to create objects under the User
object. To grant access to a user to set the DB2 registry variables or CLI
settings at the user level, use the Active Directory Users and Computer
Management Console (MMC) as follows:
1. Start the Active Directory Users and Computer administration tool

(Start—> Program—> Administration Tools—> Active Directory Users and
Computer)

2. Select the user object under the Users container
3. Right click on the user object and select Properties

4. Select the Security tab
5. Add the user name to the list by using the Add button
6. Grant “Write”, and “Create All Child Objects” access
7. Using the Advanced setting, set permissions to apply onto “This object

and all child objects”
8. Select the check box “Allow inheritable permissions from parent to

propagate to this object”

Extending the Directory Schema with DB2 Object Classes and Attributes

The LDAP Directory Schema defines object classes and attributes for the
information stored in the LDAP directory entries. An object class consists of a
set of mandatory and optional attributes. Every entry in the LDAP directory
has an object class associated with it.

Before DB2 can store the information into LDAP, the Directory Schema for the
LDAP server must include the object classes and attributes that DB2 uses. The
process of adding new object classes and attributes to the base schema is
called extending the Directory Schema.

410 Administration Guide: Implementation

|

|

|
|

Note: If you are using IBM SecureWay LDAP Directory v3.1, all the object
classes and attributes that are required by DB2 are included in the base
schema. You do not have to extend the base schema with DB2 object
classes and attributes.

Extending the Directory Schema for IBM eNetwork Directory Version 2.1
When using the IBM eNetwork Directory Version 2.1, you must extend the
base schema with the object classes and attributes that are used by DB2.

Use the following steps to extend the base schema for IBM eNetwork
Directory Version 2.1:
1. Copy the DB2 attribute definition file, db2.at, and object class definition

file, db2.oc, to the same directory that contains the system attribute and
object class definition files, slapd.at.conf and slapd.oc.conf. The DB2
attribute and object class definition files can be found in the cfg
subdirectory of the sqllib subdirectory. The system attribute and object
class definition files are located in the etc subdirectory of the %LDAPHome%
subdirectory.

2. Review the DB2 attribute and object class definition files. Comment out
any object classes and attributes that have been defined in your current
LDAP Directory Schema.

3. Add a line at the end of the slapd.oc.conf file as follows:
include db2.oc

4. Add a line at the end of the slapd.at.conf file as follows:
include db2.at

5. Restart the LDAP server.

Extending the Directory Schema for Windows 2000 Active Directory
Before DB2 can store information in the Windows 2000 Active Directory, the
directory schema needs to be extended to include the new DB2 object classes
and attributes. The process of adding new object classes and attributes to the
directory schema is called schema extension.

You must extend the schema for Active Directory by running the DB2 Schema
Installation program, db2schex before the first installation of DB2 on any
machine that is part of a Windows 2000 domain.

The db2schex program is found on the product CD-ROM. The location of this
program on the CD-ROM is under the db2 directory and the common
subdirectory. For example:
x:\db2\common

where x: is the CD-ROM drive.

The command is used as shown:

Appendix J. Lightweight Directory Access Protocol (LDAP) Directory Services 411

db2schex

There are other optional clauses associated with this command:
v –b UserDN

To specify the user Distinguished Name.
v –w Password

To specify the bind password.
v –u

To uninstall the schema.
v –k

To force uninstall to continue, ignoring errors.

Notes:

1. If no UserDN and password are specified, db2schex binds as the currently
logged user.

2. The userDN clause can be specified as a Windows NT username.
3. To update the schema, you must be a member of the Schema

Administrators group or have been delegated the rights to update the
schema.

Examples:
v To install the DB2 schema:

db2schex

v To install the DB2 schema and specify a bind DN and password:
db2schex -b "cn=A Name,dc=toronto1,dc=ibm,dc=com"

-w password

Or,
db2schex -b Administrator -w password

v To uninstall the DB2 schema:
db2schex -u

v To uninstall the DB2 schema and ignore errors:
db2schex -u -k

The DB2 Schema Installation program for Active Directory carries out the
following tasks:

Notes:

1. Detects which server is the Schema Master
2. Binds to the Domain Controller that is the Schema Master
3. Ensures that the user has sufficient rights to add classes and attributes to

the schema

412 Administration Guide: Implementation

4. Ensures that the schema master is writable (that is, the safety interlock in
the registry is removed)

5. Creates all the new attributes
6. Creates all the new object classes
7. Detects errors, and if they occur, the program will roll back any changes to

the schema.

DB2 Objects in the Windows 2000 Active Directory
DB2 creates objects in the Active Directory at two locations:
1. The DB2 database and node objects are created under the computer object

of the machine where the DB2 Server is installed. For the DB2 server
machine that does not belong to the Windows NT domain, the DB2
database and node objects are created under the “System” container.

2. The DB2 registry variables and CLI settings at the user level are stored in
the DB2 property objects under the User object. These objects contain
information that is specific to that user.

Object Classes and Attributes Used by DB2
The following tables describe the object classes that are used by DB2:

Table 27. cimManagedElement

Class cimManagedElement

Active Directory LDAP Display Name Not applicable

Active Directory Common Name (cn) Not applicable

Description Provides a base class of many of the system
management object classes in the IBM Schema

SubClassOf top

Required Attribute(s)

Optional Attribute(s) description

Type abstract

OID (Object Identifier) 1.3.18.0.2.6.132

GUID (Global Unique Identifier) b3afd63f-5c5b-11d3-b818-002035559151

Table 28. cimSetting

Class cimSetting

Active Directory LDAP Display Name Not applicable

Active Directory Common Name (cn) Not applicable

Description Provides a base class for configuration and settings
in the IBM Schema

SubClassOf cimManagedElement

Appendix J. Lightweight Directory Access Protocol (LDAP) Directory Services 413

|
|
|

Table 28. cimSetting (continued)

Class cimSetting

Required Attribute(s)

Optional Attribute(s) settingID

Type abstract

OID (object identifier) 1.3.18.0.2.6.131

GUID (Global Unique Identifier) b3afd64d-5c5b-11d3-b818-002035559151

Table 29. eProperty

Class eProperty

Active Directory LDAP Display Name ibm-eProperty

Active Directory Common Name (cn) ibm-eProperty

Description Used to specify any application specific settings
for user preference properties

SubClassOf cimSetting

Required Attribute(s)

Optional Attribute(s) propertyType

cisPropertyType

cisProperty

cesPropertyType

cesProperty

binPropertyType

binProperty

Type structural

OID (object identifier) 1.3.18.0.2.6.90

GUID (Global Unique Identifier) b3afd69c-5c5b-11d3-b818-002035559151

Table 30. DB2Node

Class DB2Node

Active Directory LDAP Display Name ibm-db2Node

Active Directory Common Name (cn) ibm-db2Node

Description Represents a DB2 Server

SubClassOf eSap / ServiceConnectionPoint

414 Administration Guide: Implementation

Table 30. DB2Node (continued)

Class DB2Node

Required Attribute(s) db2nodeName

Optional Attribute(s) db2nodeAlias

db2instanceName

db2Type

host / dNSHostName (see Note 2)

protocolInformation/ServiceBindingInformation

Type structural

OID (object identifier) 1.3.18.0.2.6.116

GUID (Global Unique Identifier) b3afd65a-5c5b-11d3-b818-002035559151

Special Notes 1. The DB2Node class is derived from eSap object
class under IBM SecureWay directory and from
ServiceConnectionPoint object class under
Microsoft Active Directory.

2. The host is used under IBM SecureWay
environment. The dNSHostName attribute is
used under Microsoft Active Directory.

3. The protocolInformation is only used under IBM
SecureWay environment. For Microsoft Active
Directory, the attribute
ServiceBindingInformation, inherited from the
ServiceConnectionPoint class, is used to contain
the protocol information.

The protocolInformation (in IBM SecureWay Directory) or
ServiceBindingInformation (in Microsoft Active Directory) attribute in the
DB2Node object contains the communication protocol information to bind the
DB2 database server. It consists of tokens that describe the network protocol
supported. Each token is separated by a semicolon. There is no space between
the tokens. An asterisk (*) may be used to specify an optional parameter.

The tokens for TCP/IP are:
v “TCPIP”
v Server hostname or IP address
v Service name (svcename) or port number (e.g. 50000)
v (Optional) security (“NONE” or “SOCKS”)

The tokens for APPN are:

Appendix J. Lightweight Directory Access Protocol (LDAP) Directory Services 415

v “APPN”
v Network ID
v Partner LU
v Transaction Program (TP) Name (Support Application TP only, does not

support Service TP – TP in HEX)
v Mode
v Security (either “NONE”, “SAME”, or “PROGRAM”)
v (Optional) LAN adapter address
v (Optional) Change password LU

Note: On a DB2 for Windows NT client (or for Windows 98), if the APPN
information is not configured on the local SNA stack; and, if the LAN
adapter address and optional change password LU are found in LDAP,
then the DB2 client tries to use this information to configure the SNA
stack if it knows how to configure the stack. This support is not
available on DB2 for AIX, or DB2 for Solaris, clients.

The tokens for IPX/SPX are:
v “IPXSPX”
v IPX address

The IPX/SPX listener is available on the DB2 server (not on the client) for AIX
and Solaris. NetBIOS and NPIPE are not supported on AIX and Solaris.

The tokens for NetBIOS are:
v “NETBIOS”
v Server NetBIOS workstation name

The tokens for Named Pipe are:
v “NPIPE”
v Computer name of the server
v Instance name of the server

Table 31. DB2Database

Class DB2Database

Active Directory LDAP Display Name ibm-db2Database

Active Directory Common Name (cn) ibm-db2Database

Description Represents a DB2 database

SubClassOf top

416 Administration Guide: Implementation

|
|
|
|
|
|

Table 31. DB2Database (continued)

Class DB2Database

Required Attribute(s) db2databaseName

db2nodePtr

Optional Attribute(s) db2databaseAlias

db2additionalParameter

db2ARLibrary

db2authenticationLocation

db2gwPtr

db2databaseRelease

DCEPrincipalName

Type structural

OID (object identifier) 1.3.18.0.2.6.117

GUID (Global Unique Identifier) b3afd659-5c5b-11d3-b818-002035559151

Table 32. db2additionalParameters

Attribute db2additionalParameters

Active Directory LDAP Display Name ibm-db2AdditionalParameters

Active Directory Common Name (cn) ibm-db2AdditionalParameters

Description Contains any additional parameters used when
connecting to the host database server

Syntax Case Ignore String

Maximum Length 1024

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.426

GUID (Global Unique Identifier) b3afd315-5c5b-11d3-b818-002035559151

Table 33. db2authenticationLocation

Attribute db2authenticationLocation

Active Directory LDAP Display Name ibm-db2AuthenticationLocation

Active Directory Common Name (cn) ibm-db2AuthenticationLocation

Description Specifies where authentication takes place

Syntax Case Ignore String

Appendix J. Lightweight Directory Access Protocol (LDAP) Directory Services 417

Table 33. db2authenticationLocation (continued)

Attribute db2authenticationLocation

Maximum Length 64

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.425

GUID (Global Unique Identifier) b3afd317-5c5b-11d3-b818-002035559151

Notes Valid values are: CLIENT, SERVER, DCS, DCE,
KERBEROS, SVRENCRYPT, or DCSENCRYPT

Table 34. db2ARLibrary

Attribute db2ARLibrary

Active Directory LDAP Display Name ibm-db2ARLibrary

Active Directory Common Name (cn) ibm-db2ARLibrary

Description Name of the Application Requestor library

Syntax Case Ignore String

Maximum Length 256

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.427

GUID (Global Unique Identifier) b3afd316-5c5b-11d3-b818-002035559151

Table 35. db2databaseAlias

Attribute db2databaseAlias

Active Directory LDAP Display Name ibm-db2DatabaseAlias

Active Directory Common Name (cn) ibm-db2DatabaseAlias

Description Database alias name(s)

Syntax Case Ignore String

Maximum Length 1024

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.422

GUID (Global Unique Identifier) b3afd318-5c5b-11d3-b818-002035559151

Table 36. db2databaseName

Attribute db2databaseName

Active Directory LDAP Display Name ibm-db2DatabaseName

Active Directory Common Name (cn) ibm-db2DatabaseName

418 Administration Guide: Implementation

Table 36. db2databaseName (continued)

Attribute db2databaseName

Description Database name

Syntax Case Ignore String

Maximum Length 1024

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.421

GUID (Global Unique Identifier) b3afd319-5c5b-11d3-b818-002035559151

Table 37. db2databaseRelease

Attribute db2databaseRelease

Active Directory LDAP Display Name ibm-db2DatabaseRelease

Active Directory Common Name (cn) ibm-db2DatabaseRelease

Description Database release number

Syntax Case Ignore String

Maximum Length 64

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.429

GUID (Global Unique Identifier) b3afd31a-5c5b-11d3-b818-002035559151

Table 38. db2nodeAlias

Attribute db2nodeAlias

Active Directory LDAP Display Name ibm-db2NodeAlias

Active Directory Common Name (cn) ibm-db2NodeAlias

Description Node alias name(s)

Syntax Case Ignore String

Maximum Length 1024

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.420

GUID (Global Unique Identifier) b3afd31d-5c5b-11d3-b818-002035559151

Table 39. db2nodeName

Attribute db2nodeName

Active Directory LDAP Display Name ibm-db2NodeName

Active Directory Common Name (cn) ibm-db2NodeName

Appendix J. Lightweight Directory Access Protocol (LDAP) Directory Services 419

Table 39. db2nodeName (continued)

Attribute db2nodeName

Description Node name

Syntax Case Ignore String

Maximum Length 64

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.419

GUID (Global Unique Identifier) b3afd31e-5c5b-11d3-b818-002035559151

Table 40. db2nodePtr

Attribute db2nodePtr

Active Directory LDAP Display Name ibm-db2NodePtr

Active Directory Common Name (cn) ibm-db2NodePtr

Description Pointer to the Node (DB2Node) object that
represents the database server which owns the
database

Syntax Distinguished Name

Maximum Length 1000

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.423

GUID (Global Unique Identifier) b3afd31f-5c5b-11d3-b818-002035559151

Special Notes This relationship allows the client to retrieve
protocol communication information to connect to
the database

Table 41. db2gwPtr

Attribute db2gwPtr

Active Directory LDAP Display Name ibm-db2GwPtr

Active Directory Common Name (cn) ibm-db2GwPtr

Description Pointer to the Node object that represents the
gateway server and from which the database can
be accessed

Syntax Distinguished Name

Maximum Length 1000

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.424

420 Administration Guide: Implementation

Table 41. db2gwPtr (continued)

Attribute db2gwPtr

GUID (Global Unique Identifier) b3afd31b-5c5b-11d3-b818-002035559151

Table 42. db2instanceName

Attribute db2instanceName

Active Directory LDAP Display Name ibm-db2InstanceName

Active Directory Common Name (cn) ibm-db2InstanceName

Description The name of the database server instance

Syntax Case Ignore String

Maximum Length 256

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.428

GUID (Global Unique Identifier) b3afd31c-5c5b-11d3-b818-002035559151

Table 43. db2Type

Attribute db2Type

Active Directory LDAP Display Name ibm-db2Type

Active Directory Common Name (cn) ibm-db2Type

Description Type of the database server

Syntax Case Ignore String

Maximum Length 64

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.418

GUID (Global Unique Identifier) b3afd320-5c5b-11d3-b818-002035559151

Notes Valid types for database server are: SERVER, MPP,
and DCS

Table 44. DCEPrincipalName

Attribute DCEPrincipalName

Active Directory LDAP Display Name ibm-DCEPrincipalName

Active Directory Common Name (cn) ibm-DCEPrincipalName

Description DCE principal name

Syntax Case Ignore String

Maximum Length 2048

Appendix J. Lightweight Directory Access Protocol (LDAP) Directory Services 421

Table 44. DCEPrincipalName (continued)

Attribute DCEPrincipalName

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.443

GUID (Global Unique Identifier) b3afd32d-5c5b-11d3-b818-002035559151

Table 45. cesProperty

Attribute cesProperty

Active Directory LDAP Display Name ibm-cesProperty

Active Directory Common Name (cn) ibm-cesProperty

Description Values of this attribute may be used to provide
application-specific preference configuration
parameters. For example, a value may contain
XML-formatted data. All values of this attribute
must be homogeneous in the cesPropertyType
attribute value.

Syntax Case Exact String

Maximum Length 32700

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.307

GUID (Global Unique Identifier) b3afd2d5-5c5b-11d3-b818-002035559151

Table 46. cesPropertyType

Attribute cesPropertyType

Active Directory LDAP Display Name ibm-cesPropertyType

Active Directory Common Name (cn) ibm-cesPropertyType

Description Values of this attribute may be used to describe
the syntax, semantics, or other characteristics of all
of the values of the cesProperty attribute. For
example, a value of “XML” might be used to
indicate that all the values of the cesProperty
attribute are encoded as XML syntax.

Syntax Case Ignore String

Maximum Length 128

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.308

GUID (Global Unique Identifier) b3afd2d6-5c5b-11d3-b818-002035559151

422 Administration Guide: Implementation

Table 47. cisProperty

Attribute cisProperty

Active Directory LDAP Display Name ibm-cisProperty

Active Directory Common Name (cn) ibm-cisProperty

Description Values of this attribute may be used to provide
application-specific preference configuration
parameters. For example, a value may contain an
INI file. All values of this attribute must be
homogeneous in their cisPropertyType attribute
value.

Syntax Case Ignore String

Maximum Length 32700

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.309

GUID (Global Unique Identifier) b3afd2e0-5c5b-11d3-b818-002035559151

Table 48. cisPropertyType

Attribute cisPropertyType

Active Directory LDAP Display Name ibm-cisPropertyType

Active Directory Common Name (cn) ibm-cisPropertyType

Description Values of this attribute may be used to describe
the syntax, semantics, or other characteristics of all
of the values of the cisProperty attribute. For
example, a value of “INI File” might be used to
indicate that all the values of the cisProperty
attribute are INI files.

Syntax Case Ignore String

Maximum Length 128

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.310

GUID (Global Unique Identifier) b3afd2e1-5c5b-11d3-b818-002035559151

Table 49. binProperty

Attribute binProperty

Active Directory LDAP Display Name ibm-binProperty

Active Directory Common Name (cn) ibm-binProperty

Appendix J. Lightweight Directory Access Protocol (LDAP) Directory Services 423

Table 49. binProperty (continued)

Attribute binProperty

Description Values of this attribute may be used to provide
application-specific preference configuration
parameters. For example, a value may contain a
set of binary-encoded Lotus 123 properties. All
values of this attribute must be homogeneous in
their binPropertyType attribute values.

Syntax binary

Maximum Length 250000

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.305

GUID (Global Unique Identifier) b3afd2ba-5c5b-11d3-b818-002035559151

Table 50. binPropertyType

Attribute binPropertyType

Active Directory LDAP Display Name ibm-binPropertyType

Active Directory Common Name (cn) ibm-binPropertyType

Description Values of this attribute may be used to describe
the syntax, semantics, or other characteristics of all
of the values of the binProperty attribute. For
example, a value of “Lotus 123” might be used to
indicate that all the values of the binProperty
attribute are binary-encoded Lotus 123 properties.

Syntax Case Ignore String

Maximum Length 128

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.306

GUID (Global Unique Identifier) b3afd2bb-5c5b-11d3-b818-002035559151

Table 51. PropertyType

Attribute PropertyType

Active Directory LDAP Display Name ibm-propertyType

Active Directory Common Name (cn) ibm-propertyType

Description Values of this attribute describe the semantic
characteristics of the eProperty object

Syntax Case Ignore String

Maximum Length 128

424 Administration Guide: Implementation

Table 51. PropertyType (continued)

Attribute PropertyType

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.320

GUID (Global Unique Identifier) b3afd4ed-5c5b-11d3-b818-002035559151

Table 52. settingID

Attribute settingID

Active Directory LDAP Display Name Not applicable

Active Directory Common Name (cn) Not applicable

Description A naming attribute that may be used to identify
the cimSetting derived object entries such as
eProperty

Syntax Case Ignore String

Maximum Length 256

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.325

GUID (Global Unique Identifier) b3afd596-5c5b-11d3-b818-002035559151

Appendix J. Lightweight Directory Access Protocol (LDAP) Directory Services 425

426 Administration Guide: Implementation

Appendix K. Extending the Control Center

In Version 7, you can extend the DB2 Universal Database Control Center by
using the new plug-in architecture to provide additional function.

The concept of the plug-in architecture is to provide the ability to add items
for a given object in the Control Center popup menu, and add new buttons to
the tool bar. A set of Java interfaces, which you must implement, is shipped
along with the tools. These interfaces are used to communicate to the Control
Center what additional actions to include.

Performance Considerations

The plug-in extensions (db2plug.zip) are loaded at the startup time of the
Control Center tools. This may increase the startup time of the tools,
depending on the size of the ZIP file; however, we expect that the plug-in ZIP
file will be small for most users and the impact should be minimal.

Packaging Considerations

You must ZIP the extension class files according to the rules of a Java archive
file. To run the Control Center tools as an application, the ZIP file
(db2plug.zip) must be in the classpath. To run the Control Center tools as an
applet, the ZIP file must be located where the <codebase> tag points to in the
Control Center html file.

The ZIP file should be built with no compression and maintain the relative
path positions of all the class files (zip -r0 db2plug.zip *.class).

Interface Descriptions

The following interfaces are shipped:
v CCExtension
v CCObject
v CCMenuAction
v CCToolbarAction.

The interfaces are described in the next sections, followed by an example.

© Copyright IBM Corp. 1993, 2001 427

|
|

CCExtension
The CCExtension interface allows you to extend the Control Center user
interface by adding new toolbar buttons, new menu items, and overriding
existing menu actions.

The external interface is defined as follows:
public interface CCExtension
{

/**
* Get an array of CCObject subclass objects which define
* a list of objects to be inserted or overridden in the
* Control Center
* @return CCObject[] CCObject subclass objects array
*/
public CCObject[] getObjects();

/**
* Get an array of CCToolbarAction subclass objects which represent
* a list of buttons to be added to the Control Center
* main toolbar.
* @return CCToolbarAction[] CCToolbarAction subclass objects array
*/
public CCToolbarAction[] getToolbarActions();

}

To use CCExtension, create a Java class which imports the
″com.ibm.db2.tools.cc.navigator″ package and implements this interface. The
new class must provide the implementation of the getObjects() and
getToolbarActions() methods.

The getObjects() method returns an array of CCObject which defines the
existing objects to which the user would like to add new menu actions or
remove a predefined set of menu actions.

The getToolbarActions() method returns an array of CCToolbarAction which
will be added to the Control Center main toolbar.

A single CCExtension subclass file or multiple CCExtension subclass files can
be used to define the Control Center extensions. For the Control Center to use
these extensions, use the following setup procedure:
1. Create a ″db2plug.zip″ file which contains all the CCExtension subclass

files. The files should not be compressed. For example, if the CCExtension
files are in the plugin package and they are located in the plugin directory,
use the following command:

zip -r0 db2plug.zip plugin*.class

This command will put all the plugin package class files into the
db2plug.zip file and preserve their relative path information.

428 Administration Guide: Implementation

|
|
|

|
|
|
|

|

|
|

2. To run the Control Center as an applet, put the db2plug.zip file in where
the <codebase> tag points to in the Control Center html file. To run the
Control Center as an application, put the db2plug.zip in a directory
pointed to by the CLASSPATH environment variable.

For browsers that support multiple archives, just add ″db2plug.zip″ to the
archive list of the Control Center html page. Otherwise, all the CCExtension,
CCObject, CCToolbarAction, and CCMenuAction subclass files will have to be
in their relative directories depending on which package they belong to.

CCObject
The CCObject interface allows you to change the behavior of the menu actions
of an existing object.

The external interface is defined as follows:
public interface CCObject
{

/**
* The following static constants defines a list of object type
* available to be added to the Control Center tree.
*/
public static final int UDB_SYSTEMS_FOLDER = 0;
public static final int UDB_SYSTEM = 1;
public static final int UDB_INSTANCES_FOLDER = 2;
public static final int UDB_INSTANCE = 3;
public static final int UDB_DATABASES_FOLDER = 4;
public static final int UDB_DATABASE = 5;
public static final int UDB_TABLES_FOLDER = 6;
public static final int UDB_TABLE = 7;
public static final int UDB_TABLESPACES_FOLDER = 8;
public static final int UDB_TABLESPACE = 9;
public static final int UDB_VIEWS_FOLDER = 10;
public static final int UDB_VIEW = 11;
public static final int UDB_ALIASES_FOLDER = 12;
public static final int UDB_ALIAS = 13;
public static final int UDB_TRIGGERS_FOLDER = 14;
public static final int UDB_TRIGGER = 15;
public static final int UDB_SCHEMAS_FOLDER = 16;
public static final int UDB_SCHEMA = 17;
public static final int UDB_INDEXES_FOLDER = 18;
public static final int UDB_INDEX = 19;
public static final int UDB_CONNECTIONS_FOLDER = 20;
public static final int UDB_CONNECTION = 21;
public static final int UDB_REPLICATION_SOURCES_FOLDER = 22;
public static final int UDB_REPLICATION_SOURCE = 23;
public static final int UDB_REPLICATION_SUBSCRIPTIONS_FOLDER = 24;
public static final int UDB_REPLICATION_SUBSCRIPTION = 25;
public static final int UDB_BUFFERPOOLS_FOLDER = 26;
public static final int UDB_BUFFERPOOL = 27;
public static final int UDB_APPLICATION_OBJECTS_FOLDER = 28;
public static final int UDB_USER_DEFINED_DISTINCT_DATATYPES_FOLDER = 29;
public static final int UDB_USER_DEFINED_DISTINCT_DATATYPE = 30;
public static final int UDB_USER_DEFINED_DISTINCT_FUNCTIONS_FOLDER = 31;

Appendix K. Extending the Control Center 429

public static final int UDB_USER_DEFINED_DISTINCT_FUNCTION = 32;
public static final int UDB_PACKAGES_FOLDER = 33;
public static final int UDB_PACKAGE = 34;
public static final int UDB_STORE_PROCEDURES_FOLDER = 35;
public static final int UDB_STORE_PROCEDURE = 36;
public static final int UDB_USER_AND_GROUP_OBJECTS_FOLDER = 37;
public static final int UDB_DB_USERS_FOLDER = 38;
public static final int UDB_DB_USER = 39;
public static final int UDB_DB_GROUPS_FOLDER = 40;
public static final int UDB_DB_GROUP = 41;
public static final int UDB_DRDA_TABLE = 42;

public static final int S390_SUBSYSTEMS_FOLDER = 43;
public static final int S390_SUBSYSTEM = 44;
public static final int S390_BUFFERPOOLS_FOLDER = 45;
public static final int S390_BUFFERPOOL = 46;
public static final int S390_VIEWS_FOLDER = 47;
public static final int S390_VIEW = 48;
public static final int S390_DATABASES_FOLDER = 49;
public static final int S390_DATABASE = 50;
public static final int S390_TABLESPACES_FOLDER = 51;
public static final int S390_TABLESPACE = 52;
public static final int S390_TABLES_FOLDER = 53;
public static final int S390_TABLE = 54;
public static final int S390_INDEXS_FOLDER = 55;
public static final int S390_INDEX = 56;
public static final int S390_STORAGE_GROUPS_FOLDER = 57;
public static final int S390_STORAGE_GROUP = 58;
public static final int S390_ALIASES_FOLDER = 59;
public static final int S390_ALIAS = 60;
public static final int S390_SYNONYMS_FOLDER = 61;
public static final int S390_SYNONYM = 62;
public static final int S390_APPLICATION_OBJECTS_FOLDER = 63;
public static final int S390_COLLECTIONS_FOLDER = 64;
public static final int S390_COLLECTION = 65;
public static final int S390_PACKAGES_FOLDER = 66;
public static final int S390_PACKAGE = 67;
public static final int S390_PLANS_FOLDER = 68;
public static final int S390_PLAN = 69;
public static final int S390_PROCEDURES_FOLDER = 70;
public static final int S390_PROCEDURE = 71;
public static final int S390_DB_USERS_FOLDER = 72;
public static final int S390_DB_USER = 73;
public static final int S390_LOCATIONS_FOLDER = 74;
public static final int S390_LOCATION = 75;
public static final int S390_DISTINCT_TYPES_FOLDER = 76;
public static final int S390_DISTINCT_TYPE = 77;
public static final int S390_USER_DEFINED_FUNCTIONS_FOLDER = 78;
public static final int S390_USER_DEFINED_FUNCTION = 79;
public static final int S390_TRIGGERS_FOLDER = 80;
public static final int S390_TRIGGER = 81;
public static final int S390_SCHEMAS_FOLDER = 82;
public static final int S390_SCHEMA = 83;
public static final int S390_CATALOG_TABLES_FOLDER = 84;
public static final int S390_CATALOG_TABLE = 85;

430 Administration Guide: Implementation

public static final int DCS_GATEWAY_CONNECTIONS_FOLDER = 86;
public static final int DCS_GATEWAY_CONNECTION = 87;

/**
* Total number of object types
*/
public static final int NUM_OBJECT_TYPES = 88;

/**
* Get the name of these object
* The function returns the name of this object. This name
* can be of three types:
* (1) Fully qualified name
* Syntax: xxxxx-yyyyy-zzzzz
* where xxxxx-yyyyy is the fully quality name of the
* parent object and zzzzz is the name of the new object.
* Note: Parent and child object name is separated by '-' character.
* If a schema name is required to identify object, the fully
* qualified name is represented by xxxxx-yyyyy-wwwww.zzzzz
* where wwwww is the schema name.
* Only the behavior of the object that matches this fully
* qualified name will be affected.
* (2) Parent fully qualified name
* Syntax: xxxxx-yyyyy
* where xxxxx-yyyyy is the fully qualified name of the
* parent object.
* When the object type is folder (ie. DATABASES_FOLDER), the
* getName() should only return the fully qualified name of the
* folder's parent.
* Only the behavior of the object that match this name
* and the specific type return by the getType() function will be
* affected.
* (3) null
* Syntax: null
* If null is return, the CCActions returns by the getActions()
* call will be applied to all objects of type returns by the
* getType() call.
* @return String object name
*/
public String getName();

/**
* Get the type of this object
* @return int return one of the static type constants defined
* in this interface
*/
public int getType();

/**
* Get the CCMenu Action array which defines the list of menu actions
* to be created for the selected object
* return CCMenuAction[] CCMenuAction array
*/
public CCMenuAction[] getMenuActions();

Appendix K. Extending the Control Center 431

/**
* Check if this object is editable.
* If not, the Alter related menu items will be removed from
* the object's popup menu return boolean If false, the Alter
* menu item will be removed from the object's popup menu
*/
public boolean isEditable();

/**
* Check if this object is configurable.
* If not, the configuration related menu items will be
* removed from the object's popup menu return boolean If
* false, the Configuration related menu item will be removed
* from the object's popup menu
*/
public boolean isConfigurable();

}

Note: At this time, the last two methods in CCObject: isEditable() and
isConfigurable() should always return true.

CCMenuAction
The CCMenuAction interface allows you to define a new action to be used by
a Control Center object.

The external interface is defined as follows:
public interface CCMenuAction
{

/**
* Get the name of this action
* @return String Name text on the menu item
*/
public String getMenuText();

/**
* Invoked when an action occurs. Use the getActionCommand()
* method of the ActionEvent to get the fully qualified name of
* the invoked Control Center object.
* @param e Action event
*/
public void actionPerformed(ActionEvent e);

}

CCToolBarAction
The CCToolbarAction interface allows you to define a new action on the
Control Center toolbar.

The external interface is defined as follows:
public interface CCToolbarAction
{

/**

432 Administration Guide: Implementation

* Get the name of this action
* @return String Name text on the menu item, or toolbar
* button hover help
*/
public String getHoverHelpText();

/**
* Get the icon for the toolbar button
* Any toolbar CCAction should implement this function and return
* a valid ImageIcon object. Otherwise, the button will have no icon.
* @return ImageIcon Icon to be displayed
*/
public ImageIcon getIcon();

/**
* Invoked when an action occurs.
* @param e Action event
*/
public void actionPerformed(ActionEvent e);

}

Usage Scenario

The code in the following example will:
1. Update the actions of the SAMPLE Database (see “MySample.java” on

page 434)
2. Update the actions of all Database objects (see “MyDatabaseActions.java”

on page 435)
3. Add a new instance object (see “MyInstance.java” on page 435)
4. Update the actions of the DB2 instance (see “MyDB2.java” on page 436)
5. Update the actions of the Databases folder (see “MyDatabases.java” on

page 437)
6. Update the actions of the SYSIBM.SYSPLAN table (see

“MySYSPLAN.java” on page 437)
7. Add a new table object (see “MyTable.java” on page 438)
8. Update the actions of the DB_User object under the Application object (see

“MyDBUser.java” on page 439)
9. Add a button to the Control Center toolbar (see “MyToolbarAction.java”

on page 439).

The main extension file is MyExtension.java. All the class files are stored in
the plugin directory and are zipped up by the command:

zip -r0 db2plug.zip plugin

The output db2plug.zip is then placed in the CLASSPATH or in the codebase
directory depending whether the Control Center is running as an application
or an applet.

Appendix K. Extending the Control Center 433

MyExtension.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyExtension implements CCExtension
{

public CCObject[] getObjects()
{

CCObject[] objs = new CCObject[10];
objs[0] = new MySample();
objs[1] = new MyDatabaseActions();
objs[2] = new MyInstance();
objs[3] = new MyDB2();
objs[4] = new MyDatabases();
objs[5] = new MySYSPLAN();
objs[6] = new MyTable();
objs[7] = new MyDBUser();
return objs;

}

public CCAction[] getActions()
{

CCAction[] actions = new CCAction[1];
actions[0] = new MyToolbarAction();
return actions;

}
}

MySample.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MySample implements CCObject
{

public String getName()
{

return "LOCAL - DB2 - SAMPLE";
}

public int getType()
{

return DATABASE;
}

public javax.swing.ImageIcon getIcon()
{

return null;
}

public boolean isNew()
{

return false;
}

434 Administration Guide: Implementation

public CCAction[] getActions()
{

CCAction[] acts = new CCAction[2];
acts[0] = new MyAlterAction();
acts[1] = new MyAction();
return acts;

}

}

MyDatabaseActions.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyDatabaseActions implements CCObject
{

public String getName()
{

return null;
}

public int getType()
{

return DATABASE;
}

public javax.swing.ImageIcon getIcon()
{

return null;
}

public boolean isNew()
{

return false;
}

public CCAction[] getActions()
{

CCAction[] acts = new CCAction[2];
acts[0] = new MyDropAction();
acts[1] = new MyAction();
return acts;

}

}

MyInstance.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyInstance implements CCObject
{

public String getName()
{

return "LOCAL - MyInstance";

Appendix K. Extending the Control Center 435

}

public int getType()
{

return INSTANCE;
}

public javax.swing.ImageIcon getIcon()
{

return null;
}

public boolean isNew()
{

return true;
}

public CCAction[] getActions()
{

CCAction[] acts = new CCAction[2];
acts[0] = new MyAlterAction();
acts[1] = new MyAction();
return null;

}

}

MyDB2.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyDB2 implements CCObject
{

public String getName()
{

return "LOCAL - DB2";
}

public int getType()
{

return INSTANCE;
}

public javax.swing.ImageIcon getIcon()
{

return null;
}

public boolean isNew()
{

return false;
}

public CCAction[] getActions()
{

436 Administration Guide: Implementation

CCAction[] acts = new CCAction[3];
acts[0] = new MyAlterAction();
acts[1] = new MyAction();
acts[2] = new MyCascadeAction();
return acts;

}
}

MyDatabases.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyDatabases implements CCObject
{

public String getName()
{

return "LOCAL - DB2 - Databases";
}

public int getType()
{

return DATABASE;
}

public javax.swing.ImageIcon getIcon()
{

return null;
}

public boolean isNew()
{

return false;
}

public CCAction[] getActions()
{

CCAction[] acts = new CCAction[1];
acts[0] = new MyCreateAction();
return acts;

}

}

MySYSPLAN.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MySYSPLAN implements CCObject
{

public String getName()
{

return "LOCAL - DB2 - SAMPLE - SYSIBM - SYSPLAN";
}

public int getType()

Appendix K. Extending the Control Center 437

{
return TABLE;

}

public javax.swing.ImageIcon getIcon()
{

return null;
}

public boolean isNew()
{

return false;
}

public CCAction[] getActions()
{

CCAction[] acts = new CCAction[2];
acts[0] = new MyAlterAction();
acts[1] = new MyAction();
return acts;

}

}

MyTable.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyTable implements CCObject
{

public String getName()
{

return "LOCAL - DB2 - SAMPLE - SYSIBM - MyTable";
}

public int getType()
{

return TABLE;
}

public javax.swing.ImageIcon getIcon()
{

return null;
}

public boolean isNew()
{

return true;
}

public CCAction[] getActions()
{

CCAction[] acts = new CCAction[2];
acts[0] = new MyAlterAction();
acts[1] = new MyAction();

438 Administration Guide: Implementation

return acts;
}

}

MyDBUser.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyDBUser implements CCObject
{

public String getName()
{

return "LOCAL - DB2 - TEST-DB Users";
}

public int getType()
{

return DB_USER;
}

public javax.swing.ImageIcon getIcon()
{

return null;
}

public boolean isNew()
{

return false;
}

public CCAction[] getActions()
{

CCAction[] acts = new CCAction[2];
acts[0] = new MyAlterAction();
acts[1] = new MyAction();
return acts;

}

}

MyToolbarAction.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;
import javax.swing.*;

public class MyToolbarAction extends CCAction
{

public MyToolbarAction()
{

super("MyToolbarAction");
}

public ImageIcon getIcon()
{

Appendix K. Extending the Control Center 439

return <Your icon>;
}

public boolean actionPerformed(String objectName)
{

System.out.println("My action performed, object name = " +
objectName);

return true;
}

}

MyAlterAction.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyAlterAction extends CCAction
{

public MyAlterAction()
{

super(0);
}

public boolean actionPerformed(String objectName)
{

System.out.println("My alter action performed, object name = " +
objectName);

return true;
}

}

MyAction.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyAction extends CCAction
{

public MyAction()
{

super("MyAction");
}

public boolean actionPerformed(String objectName)
{

System.out.println("My action performed, object name = " +
objectName);

return true;
}

}

MyDropAction.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyDropAction extends CCAction

440 Administration Guide: Implementation

{
public MyDropAction()
{

super(1);
}

public boolean actionPerformed(String objectName)
{

System.out.println("My drop action performed, object name = " +
objectName);

return true;
}

}

MyCascadeAction.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyCascadeAction extends CCAction
{

public MyCascadeAction()
{

super(11,2);
}

public boolean actionPerformed(String objectName)
{

System.out.println("My cascade action performed, object name = " +
objectName);

return true;
}

}

MyCreateAction.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyCreateAction extends CCAction
{

public MyCreateAction()
{

super(0);
}

public boolean actionPerformed(String objectName)
{

System.out.println("My create action performed, object name = " +
objectName);

return true;
}

}

Appendix K. Extending the Control Center 441

442 Administration Guide: Implementation

Appendix L. Using the DB2 Library

The DB2 Universal Database library consists of online help, books (PDF and
HTML), and sample programs in HTML format. This section describes the
information that is provided, and how you can access it.

To access product information online, you can use the Information Center. For
more information, see “Accessing Information with the Information Center”
on page 457. You can view task information, DB2 books, troubleshooting
information, sample programs, and DB2 information on the Web.

DB2 PDF Files and Printed Books

DB2 Information
The following table divides the DB2 books into four categories:

DB2 Guide and Reference Information
These books contain the common DB2 information for all platforms.

DB2 Installation and Configuration Information
These books are for DB2 on a specific platform. For example, there are
separate Quick Beginnings books for DB2 on OS/2, Windows, and
UNIX-based platforms.

Cross-platform sample programs in HTML
These samples are the HTML version of the sample programs that are
installed with the Application Development Client. The samples are
for informational purposes and do not replace the actual programs.

Release notes
These files contain late-breaking information that could not be
included in the DB2 books.

The installation manuals, release notes, and tutorials are viewable in HTML
directly from the product CD-ROM. Most books are available in HTML on the
product CD-ROM for viewing and in Adobe Acrobat (PDF) format on the DB2
publications CD-ROM for viewing and printing. You can also order a printed
copy from IBM; see “Ordering the Printed Books” on page 453. The following
table lists books that can be ordered.

On OS/2 and Windows platforms, you can install the HTML files under the
sqllib\doc\html directory. DB2 information is translated into different

© Copyright IBM Corp. 1993, 2001 443

languages; however, all the information is not translated into every language.
Whenever information is not available in a specific language, the English
information is provided

On UNIX platforms, you can install multiple language versions of the HTML
files under the doc/%L/html directories, where %L represents the locale. For
more information, refer to the appropriate Quick Beginnings book.

You can obtain DB2 books and access information in a variety of ways:
v “Viewing Information Online” on page 456
v “Searching Information Online” on page 460
v “Ordering the Printed Books” on page 453
v “Printing the PDF Books” on page 452

Table 53. DB2 Information

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Guide and Reference Information

Administration Guide Administration Guide: Planning provides
an overview of database concepts,
information about design issues (such as
logical and physical database design),
and a discussion of high availability.

Administration Guide: Implementation
provides information on implementation
issues such as implementing your
design, accessing databases, auditing,
backup and recovery.

Administration Guide: Performance
provides information on database
environment and application
performance evaluation and tuning.

You can order the three volumes of the
Administration Guide in the English
language in North America using the
form number SBOF-8934.

SC09-2946
db2d1x70

SC09-2944
db2d2x70

SC09-2945
db2d3x70

db2d0

Administrative API
Reference

Describes the DB2 application
programming interfaces (APIs) and data
structures that you can use to manage
your databases. This book also explains
how to call APIs from your applications.

SC09-2947

db2b0x70

db2b0

444 Administration Guide: Implementation

Table 53. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Application Building
Guide

Provides environment setup information
and step-by-step instructions about how
to compile, link, and run DB2
applications on Windows, OS/2, and
UNIX-based platforms.

SC09-2948

db2axx70

db2ax

APPC, CPI-C, and SNA
Sense Codes

Provides general information about
APPC, CPI-C, and SNA sense codes that
you may encounter when using DB2
Universal Database products.

Available in HTML format only.

No form number

db2apx70

db2ap

Application Development
Guide

Explains how to develop applications
that access DB2 databases using
embedded SQL or Java (JDBC and
SQLJ). Discussion topics include writing
stored procedures, writing user-defined
functions, creating user-defined types,
using triggers, and developing
applications in partitioned environments
or with federated systems.

SC09-2949

db2a0x70

db2a0

CLI Guide and Reference Explains how to develop applications
that access DB2 databases using the DB2
Call Level Interface, a callable SQL
interface that is compatible with the
Microsoft ODBC specification.

SC09-2950

db2l0x70

db2l0

Command Reference Explains how to use the Command Line
Processor and describes the DB2
commands that you can use to manage
your database.

SC09-2951

db2n0x70

db2n0

Connectivity Supplement Provides setup and reference information
on how to use DB2 for AS/400, DB2 for
OS/390, DB2 for MVS, or DB2 for VM as
DRDA application requesters with DB2
Universal Database servers. This book
also details how to use DRDA
application servers with DB2 Connect
application requesters.

Available in HTML and PDF only.

No form number

db2h1x70

db2h1

Appendix L. Using the DB2 Library 445

Table 53. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Data Movement Utilities
Guide and Reference

Explains how to use DB2 utilities, such
as import, export, load, AutoLoader, and
DPROP, that facilitate the movement of
data.

SC09-2955

db2dmx70

db2dm

Data Warehouse Center
Administration Guide

Provides information on how to build
and maintain a data warehouse using
the Data Warehouse Center.

SC26-9993

db2ddx70

db2dd

Data Warehouse Center
Application Integration
Guide

Provides information to help
programmers integrate applications with
the Data Warehouse Center and with the
Information Catalog Manager.

SC26-9994

db2adx70

db2ad

DB2 Connect User’s Guide Provides concepts, programming, and
general usage information for the DB2
Connect products.

SC09-2954

db2c0x70

db2c0

DB2 Query Patroller
Administration Guide

Provides an operational overview of the
DB2 Query Patroller system, specific
operational and administrative
information, and task information for the
administrative graphical user interface
utilities.

SC09-2958

db2dwx70

db2dw

DB2 Query Patroller
User’s Guide

Describes how to use the tools and
functions of the DB2 Query Patroller.

SC09-2960

db2wwx70

db2ww

Glossary Provides definitions for terms used in
DB2 and its components.

Available in HTML format and in the
SQL Reference.

No form number

db2t0x70

db2t0

Image, Audio, and Video
Extenders Administration
and Programming

Provides general information about DB2
extenders, and information on the
administration and configuration of the
image, audio, and video (IAV) extenders
and on programming using the IAV
extenders. It includes reference
information, diagnostic information
(with messages), and samples.

SC26-9929

dmbu7x70

dmbu7

Information Catalog
Manager Administration
Guide

Provides guidance on managing
information catalogs.

SC26-9995

db2dix70

db2di

446 Administration Guide: Implementation

Table 53. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Information Catalog
Manager Programming
Guide and Reference

Provides definitions for the architected
interfaces for the Information Catalog
Manager.

SC26-9997

db2bix70

db2bi

Information Catalog
Manager User’s Guide

Provides information on using the
Information Catalog Manager user
interface.

SC26-9996

db2aix70

db2ai

Installation and
Configuration Supplement

Guides you through the planning,
installation, and setup of
platform-specific DB2 clients. This
supplement also contains information on
binding, setting up client and server
communications, DB2 GUI tools, DRDA
AS, distributed installation, the
configuration of distributed requests,
and accessing heterogeneous data
sources.

GC09-2957

db2iyx70

db2iy

Message Reference Lists messages and codes issued by DB2,
the Information Catalog Manager, and
the Data Warehouse Center, and
describes the actions you should take.

You can order both volumes of the
Message Reference in the English
language in North America with the
form number SBOF-8932.

Volume 1
SC09-2978

db2m1x70
Volume 2
SC09-2979

db2m2x70

db2m0

OLAP Integration Server
Administration Guide

Explains how to use the Administration
Manager component of the OLAP
Integration Server.

SC27-0782

db2dpx70

n/a

OLAP Integration Server
Metaoutline User’s Guide

Explains how to create and populate
OLAP metaoutlines using the standard
OLAP Metaoutline interface (not by
using the Metaoutline Assistant).

SC27-0784

db2upx70

n/a

OLAP Integration Server
Model User’s Guide

Explains how to create OLAP models
using the standard OLAP Model
Interface (not by using the Model
Assistant).

SC27-0783

db2lpx70

n/a

OLAP Setup and User’s
Guide

Provides configuration and setup
information for the OLAP Starter Kit.

SC27-0702

db2ipx70

db2ip

OLAP Spreadsheet Add-in
User’s Guide for Excel

Describes how to use the Excel
spreadsheet program to analyze OLAP
data.

SC27-0786

db2epx70

db2ep

Appendix L. Using the DB2 Library 447

Table 53. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

OLAP Spreadsheet Add-in
User’s Guide for Lotus
1-2-3

Describes how to use the Lotus 1-2-3
spreadsheet program to analyze OLAP
data.

SC27-0785

db2tpx70

db2tp

Replication Guide and
Reference

Provides planning, configuration,
administration, and usage information
for the IBM Replication tools supplied
with DB2.

SC26-9920

db2e0x70

db2e0

Spatial Extender User’s
Guide and Reference

Provides information about installing,
configuring, administering,
programming, and troubleshooting the
Spatial Extender. Also provides
significant descriptions of spatial data
concepts and provides reference
information (messages and SQL) specific
to the Spatial Extender.

SC27-0701

db2sbx70

db2sb

SQL Getting Started Introduces SQL concepts and provides
examples for many constructs and tasks.

SC09-2973

db2y0x70

db2y0

SQL Reference, Volume 1
and Volume 2

Describes SQL syntax, semantics, and the
rules of the language. This book also
includes information about
release-to-release incompatibilities,
product limits, and catalog views.

You can order both volumes of the SQL
Reference in the English language in
North America with the form number
SBOF-8933.

Volume 1
SC09-2974

db2s1x70

Volume 2
SC09-2975

db2s2x70

db2s0

System Monitor Guide and
Reference

Describes how to collect different kinds
of information about databases and the
database manager. This book explains
how to use the information to
understand database activity, improve
performance, and determine the cause of
problems.

SC09-2956

db2f0x70

db2f0

Text Extender
Administration and
Programming

Provides general information about DB2
extenders and information on the
administration and configuring of the
text extender and on programming using
the text extenders. It includes reference
information, diagnostic information
(with messages) and samples.

SC26-9930

desu9x70

desu9

448 Administration Guide: Implementation

Table 53. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Troubleshooting Guide Helps you determine the source of
errors, recover from problems, and use
diagnostic tools in consultation with DB2
Customer Service.

GC09-2850

db2p0x70

db2p0

What’s New Describes the new features, functions,
and enhancements in DB2 Universal
Database, Version 7.

SC09-2976

db2q0x70

db2q0

DB2 Installation and Configuration Information

DB2 Connect Enterprise
Edition for OS/2 and
Windows Quick
Beginnings

Provides planning, migration,
installation, and configuration
information for DB2 Connect Enterprise
Edition on the OS/2 and Windows 32-bit
operating systems. This book also
contains installation and setup
information for many supported clients.

GC09-2953

db2c6x70

db2c6

DB2 Connect Enterprise
Edition for UNIX Quick
Beginnings

Provides planning, migration,
installation, configuration, and task
information for DB2 Connect Enterprise
Edition on UNIX-based platforms. This
book also contains installation and setup
information for many supported clients.

GC09-2952

db2cyx70

db2cy

DB2 Connect Personal
Edition Quick Beginnings

Provides planning, migration,
installation, configuration, and task
information for DB2 Connect Personal
Edition on the OS/2 and Windows 32-bit
operating systems. This book also
contains installation and setup
information for all supported clients.

GC09-2967

db2c1x70

db2c1

DB2 Connect Personal
Edition Quick Beginnings
for Linux

Provides planning, installation,
migration, and configuration information
for DB2 Connect Personal Edition on all
supported Linux distributions.

GC09-2962

db2c4x70

db2c4

DB2 Data Links Manager
Quick Beginnings

Provides planning, installation,
configuration, and task information for
DB2 Data Links Manager for AIX and
Windows 32-bit operating systems.

GC09-2966

db2z6x70

db2z6

Appendix L. Using the DB2 Library 449

Table 53. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Enterprise - Extended
Edition for UNIX Quick
Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition on
UNIX-based platforms. This book also
contains installation and setup
information for many supported clients.

GC09-2964

db2v3x70

db2v3

DB2 Enterprise - Extended
Edition for Windows Quick
Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition for
Windows 32-bit operating systems. This
book also contains installation and setup
information for many supported clients.

GC09-2963

db2v6x70

db2v6

DB2 for OS/2 Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on the OS/2
operating system. This book also
contains installation and setup
information for many supported clients.

GC09-2968

db2i2x70

db2i2

DB2 for UNIX Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on
UNIX-based platforms. This book also
contains installation and setup
information for many supported clients.

GC09-2970

db2ixx70

db2ix

DB2 for Windows Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on Windows
32-bit operating systems. This book also
contains installation and setup
information for many supported clients.

GC09-2971

db2i6x70

db2i6

DB2 Personal Edition
Quick Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database Personal
Edition on the OS/2 and Windows 32-bit
operating systems.

GC09-2969

db2i1x70

db2i1

DB2 Personal Edition
Quick Beginnings for
Linux

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database Personal
Edition on all supported Linux
distributions.

GC09-2972

db2i4x70

db2i4

450 Administration Guide: Implementation

Table 53. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Query Patroller
Installation Guide

Provides installation information about
DB2 Query Patroller.

GC09-2959

db2iwx70

db2iw

DB2 Warehouse Manager
Installation Guide

Provides installation information for
warehouse agents, warehouse
transformers, and the Information
Catalog Manager.

GC26-9998

db2idx70

db2id

Cross-Platform Sample Programs in HTML

Sample programs in
HTML

Provides the sample programs in HTML
format for the programming languages
on all platforms supported by DB2. The
sample programs are provided for
informational purposes only. Not all
samples are available in all
programming languages. The HTML
samples are only available when the DB2
Application Development Client is
installed.

For more information on the programs,
refer to the Application Building Guide.

No form number db2hs

Release Notes

DB2 Connect Release
Notes

Provides late-breaking information that
could not be included in the DB2
Connect books.

See note #2. db2cr

DB2 Installation Notes Provides late-breaking
installation-specific information that
could not be included in the DB2 books.

Available on
product
CD-ROM only.

DB2 Release Notes Provides late-breaking information about
all DB2 products and features that could
not be included in the DB2 books.

See note #2. db2ir

Notes:

1. The character x in the sixth position of the file name indicates the
language version of a book. For example, the file name db2d0e70 identifies
the English version of the Administration Guide and the file name db2d0f70
identifies the French version of the same book. The following letters are
used in the sixth position of the file name to indicate the language version:

Language Identifier
Brazilian Portuguese b

Appendix L. Using the DB2 Library 451

Bulgarian u
Czech x
Danish d
Dutch q
English e
Finnish y
French f
German g
Greek a
Hungarian h
Italian i
Japanese j
Korean k
Norwegian n
Polish p
Portuguese v
Russian r
Simp. Chinese c
Slovenian l
Spanish z
Swedish s
Trad. Chinese t
Turkish m

2. Late breaking information that could not be included in the DB2 books is
available in the Release Notes in HTML format and as an ASCII file. The
HTML version is available from the Information Center and on the
product CD-ROMs. To view the ASCII file:
v On UNIX-based platforms, see the Release.Notes file. This file is located

in the DB2DIR/Readme/%L directory, where %L represents the locale name
and DB2DIR represents:
– /usr/lpp/db2_07_01 on AIX
– /opt/IBMdb2/V7.1 on HP-UX, PTX, Solaris, and Silicon Graphics IRIX
– /usr/IBMdb2/V7.1 on Linux.

v On other platforms, see the RELEASE.TXT file. This file is located in the
directory where the product is installed. On OS/2 platforms, you can
also double-click the IBM DB2 folder and then double-click the Release
Notes icon.

Printing the PDF Books
If you prefer to have printed copies of the books, you can print the PDF files
found on the DB2 publications CD-ROM. Using the Adobe Acrobat Reader,
you can print either the entire book or a specific range of pages. For the file
name of each book in the library, see Table 53 on page 444.

452 Administration Guide: Implementation

You can obtain the latest version of the Adobe Acrobat Reader from the
Adobe Web site at http://www.adobe.com.

The PDF files are included on the DB2 publications CD-ROM with a file
extension of PDF. To access the PDF files:
1. Insert the DB2 publications CD-ROM. On UNIX-based platforms, mount

the DB2 publications CD-ROM. Refer to your Quick Beginnings book for
the mounting procedures.

2. Start the Acrobat Reader.
3. Open the desired PDF file from one of the following locations:

v On OS/2 and Windows platforms:
x:\doc\language directory, where x represents the CD-ROM drive and
language represent the two-character country code that represents your
language (for example, EN for English).

v On UNIX-based platforms:
/cdrom/doc/%L directory on the CD-ROM, where /cdrom represents the
mount point of the CD-ROM and %L represents the name of the desired
locale.

You can also copy the PDF files from the CD-ROM to a local or network drive
and read them from there.

Ordering the Printed Books

You can order the printed DB2 books either individually or as a set (in North
America only) by using a sold bill of forms (SBOF) number. To order books,
contact your IBM authorized dealer or marketing representative, or phone
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada. You can
also order the books from the Publications Web page at
http://www.elink.ibmlink.ibm.com/pbl/pbl.

Two sets of books are available. SBOF-8935 provides reference and usage
information for the DB2 Warehouse Manager. SBOF-8931 provides reference
and usage information for all other DB2 Universal Database products and
features. The contents of each SBOF are listed in the following table:

Appendix L. Using the DB2 Library 453

Table 54. Ordering the printed books

SBOF Number Books Included

SBOF-8931 v Administration Guide: Planning

v Administration Guide: Implementation

v Administration Guide: Performance

v Administrative API Reference

v Application Building Guide

v Application Development Guide

v CLI Guide and Reference

v Command Reference

v Data Movement Utilities Guide and
Reference

v Data Warehouse Center Administration
Guide

v Data Warehouse Center Application
Integration Guide

v DB2 Connect User’s Guide

v Installation and Configuration
Supplement

v Image, Audio, and Video Extenders
Administration and Programming

v Message Reference, Volumes 1 and 2

v OLAP Integration Server
Administration Guide

v OLAP Integration Server Metaoutline
User’s Guide

v OLAP Integration Server Model User’s
Guide

v OLAP Integration Server User’s Guide

v OLAP Setup and User’s Guide

v OLAP Spreadsheet Add-in User’s
Guide for Excel

v OLAP Spreadsheet Add-in User’s
Guide for Lotus 1-2-3

v Replication Guide and Reference

v Spatial Extender Administration and
Programming Guide

v SQL Getting Started

v SQL Reference, Volumes 1 and 2

v System Monitor Guide and Reference

v Text Extender Administration and
Programming

v Troubleshooting Guide

v What’s New

SBOF-8935 v Information Catalog Manager
Administration Guide

v Information Catalog Manager User’s
Guide

v Information Catalog Manager
Programming Guide and Reference

v Query Patroller Administration Guide

v Query Patroller User’s Guide

DB2 Online Documentation

Accessing Online Help
Online help is available with all DB2 components. The following table
describes the various types of help.

454 Administration Guide: Implementation

Type of Help Contents How to Access...

Command Help Explains the syntax of
commands in the command
line processor.

From the command line processor in interactive
mode, enter:

? command

where command represents a keyword or the entire
command.

For example, ? catalog displays help for all the
CATALOG commands, while ? catalog database
displays help for the CATALOG DATABASE
command.

Client Configuration
Assistant Help

Command Center Help

Control Center Help

Data Warehouse Center
Help

Event Analyzer Help

Information Catalog
Manager Help

Satellite Administration
Center Help

Script Center Help

Explains the tasks you can
perform in a window or
notebook. The help includes
overview and prerequisite
information you need to
know, and it describes how
to use the window or
notebook controls.

From a window or notebook, click the Help push
button or press the F1 key.

Message Help Describes the cause of a
message and any action you
should take.

From the command line processor in interactive
mode, enter:

? XXXnnnnn

where XXXnnnnn represents a valid message
identifier.

For example, ? SQL30081 displays help about the
SQL30081 message.

To view message help one screen at a time, enter:

? XXXnnnnn | more

To save message help in a file, enter:

? XXXnnnnn > filename.ext

where filename.ext represents the file where you
want to save the message help.

Appendix L. Using the DB2 Library 455

Type of Help Contents How to Access...

SQL Help Explains the syntax of SQL
statements.

From the command line processor in interactive
mode, enter:

help statement

where statement represents an SQL statement.

For example, help SELECT displays help about the
SELECT statement.
Note: SQL help is not available on UNIX-based
platforms.

SQLSTATE Help Explains SQL states and
class codes.

From the command line processor in interactive
mode, enter:

? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL
state and class code represents the first two digits
of the SQL state.

For example, ? 08003 displays help for the 08003
SQL state, while ? 08 displays help for the 08 class
code.

Viewing Information Online
The books included with this product are in Hypertext Markup Language
(HTML) softcopy format. Softcopy format enables you to search or browse the
information and provides hypertext links to related information. It also makes
it easier to share the library across your site.

You can view the online books or sample programs with any browser that
conforms to HTML Version 3.2 specifications.

To view online books or sample programs:
v If you are running DB2 administration tools, use the Information Center.
v From a browser, click File —>Open Page. The page you open contains

descriptions of and links to DB2 information:
– On UNIX-based platforms, open the following page:

INSTHOME/sqllib/doc/%L/html/index.htm

where %L represents the locale name.
– On other platforms, open the following page:

sqllib\doc\html\index.htm

The path is located on the drive where DB2 is installed.

456 Administration Guide: Implementation

If you have not installed the Information Center, you can open the page
by double-clicking the DB2 Information icon. Depending on the system
you are using, the icon is in the main product folder or the Windows
Start menu.

Installing the Netscape Browser
If you do not already have a Web browser installed, you can install Netscape
from the Netscape CD-ROM found in the product boxes. For detailed
instructions on how to install it, perform the following:
1. Insert the Netscape CD-ROM.
2. On UNIX-based platforms only, mount the CD-ROM. Refer to your Quick

Beginnings book for the mounting procedures.
3. For installation instructions, refer to the CDNAVnn.txt file, where nn

represents your two character language identifier. The file is located at the
root directory of the CD-ROM.

Accessing Information with the Information Center
The Information Center provides quick access to DB2 product information.
The Information Center is available on all platforms on which the DB2
administration tools are available.

You can open the Information Center by double-clicking the Information
Center icon. Depending on the system you are using, the icon is in the
Information folder in the main product folder or the Windows Start menu.

You can also access the Information Center by using the toolbar and the Help
menu on the DB2 Windows platform.

The Information Center provides six types of information. Click the
appropriate tab to look at the topics provided for that type.

Tasks Key tasks you can perform using DB2.

Reference DB2 reference information, such as keywords, commands, and
APIs.

Books DB2 books.

Troubleshooting
Categories of error messages and their recovery actions.

Sample Programs
Sample programs that come with the DB2 Application
Development Client. If you did not install the DB2
Application Development Client, this tab is not displayed.

Web DB2 information on the World Wide Web. To access this
information, you must have a connection to the Web from
your system.

Appendix L. Using the DB2 Library 457

When you select an item in one of the lists, the Information Center launches a
viewer to display the information. The viewer might be the system help
viewer, an editor, or a Web browser, depending on the kind of information
you select.

The Information Center provides a find feature, so you can look for a specific
topic without browsing the lists.

For a full text search, follow the hypertext link in the Information Center to
the Search DB2 Online Information search form.

The HTML search server is usually started automatically. If a search in the
HTML information does not work, you may have to start the search server
using one of the following methods:

On Windows
Click Start and select Programs —> IBM DB2 —> Information —>
Start HTML Search Server.

On OS/2
Double-click the DB2 for OS/2 folder, and then double-click the Start
HTML Search Server icon.

Refer to the release notes if you experience any other problems when
searching the HTML information.

Note: The Search function is not available in the Linux, PTX, and Silicon
Graphics IRIX environments.

Using DB2 Wizards
Wizards help you complete specific administration tasks by taking you
through each task one step at a time. Wizards are available through the
Control Center and the Client Configuration Assistant. The following table
lists the wizards and describes their purpose.

Note: The Create Database, Create Index, Configure Multisite Update, and
Performance Configuration wizards are available for the partitioned
database environment.

Wizard Helps You to... How to Access...

Add Database Catalog a database on a client workstation. From the Client Configuration
Assistant, click Add.

Back up Database Determine, create, and schedule a backup
plan.

From the Control Center, right-click
the database you want to back up
and select Backup —> Database
Using Wizard.

458 Administration Guide: Implementation

Wizard Helps You to... How to Access...

Configure Multisite
Update

Configure a multisite update, a distributed
transaction, or a two-phase commit.

From the Control Center, right-click
the Databases folder and select
Multisite Update.

Create Database Create a database, and perform some basic
configuration tasks.

From the Control Center, right-click
the Databases folder and select
Create —> Database Using
Wizard.

Create Table Select basic data types, and create a primary
key for the table.

From the Control Center, right-click
the Tables icon and select Create
—> Table Using Wizard.

Create Table Space Create a new table space. From the Control Center, right-click
the Table Spaces icon and select
Create —> Table Space Using
Wizard.

Create Index Advise which indexes to create and drop for
all your queries.

From the Control Center, right-click
the Index icon and select Create
—> Index Using Wizard.

Performance
Configuration

Tune the performance of a database by
updating configuration parameters to match
your business requirements.

From the Control Center, right-click
the database you want to tune and
select Configure Performance
Using Wizard.

For the partitioned database
environment, from the Database
Partitions view, right-click the first
database partition you want to
tune and select Configure
Performance Using Wizard.

Restore Database Recover a database after a failure. It helps
you understand which backup to use, and
which logs to replay.

From the Control Center, right-click
the database you want to restore
and select Restore —> Database
Using Wizard.

Setting Up a Document Server
By default, the DB2 information is installed on your local system. This means
that each person who needs access to the DB2 information must install the
same files. To have the DB2 information stored in a single location, perform
the following steps:
1. Copy all files and subdirectories from \sqllib\doc\html on your local

system to a Web server. Each book has its own subdirectory that contains
all the necessary HTML and GIF files that make up the book. Ensure that
the directory structure remains the same.

Appendix L. Using the DB2 Library 459

2. Configure the Web server to look for the files in the new location. For
information, refer to the NetQuestion Appendix in the Installation and
Configuration Supplement.

3. If you are using the Java version of the Information Center, you can
specify a base URL for all HTML files. You should use the URL for the list
of books.

4. When you are able to view the book files, you can bookmark commonly
viewed topics. You will probably want to bookmark the following pages:
v List of books
v Tables of contents of frequently used books
v Frequently referenced articles, such as the ALTER TABLE topic
v The Search form

For information about how you can serve the DB2 Universal Database online
documentation files from a central machine, refer to the NetQuestion
Appendix in the Installation and Configuration Supplement.

Searching Information Online
To find information in the HTML files, use one of the following methods:
v Click Search in the top frame. Use the search form to find a specific topic.

This function is not available in the Linux, PTX, or Silicon Graphics IRIX
environments.

v Click Index in the top frame. Use the index to find a specific topic in the
book.

v Display the table of contents or index of the help or the HTML book, and
then use the find function of the Web browser to find a specific topic in the
book.

v Use the bookmark function of the Web browser to quickly return to a
specific topic.

v Use the search function of the Information Center to find specific topics. See
“Accessing Information with the Information Center” on page 457 for
details.

460 Administration Guide: Implementation

Appendix M. Notices

IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1993, 2001 461

improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
1150 Eglinton Ave. East
North York, Ontario
M3C 1H7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

462 Administration Guide: Implementation

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source
language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using,
marketing or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

Appendix M. Notices 463

Trademarks

The following terms, which may be denoted by an asterisk(*), are trademarks
of International Business Machines Corporation in the United States, other
countries, or both.

ACF/VTAM
AISPO
AIX
AIX/6000
AIXwindows
AnyNet
APPN
AS/400
BookManager
CICS
C Set++
C/370
DATABASE 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Extenders
DB2 OLAP Server
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
eNetwork
Extended Services
FFST
First Failure Support Technology

IBM
IMS
IMS/ESA
LAN DistanceMVS
MVS/ESA
MVS/XA
Net.Data
OS/2
OS/390
OS/400
PowerPC
QBIC
QMF
RACF
RISC System/6000
RS/6000
S/370
SP
SQL/DS
SQL/400
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WebExplorer
WIN-OS/2

The following terms are trademarks or registered trademarks of other
companies:

Microsoft, Windows, and Windows NT are trademarks or registered
trademarks of Microsoft Corporation.

Java or all Java-based trademarks and logos, and Solaris are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States,
other countries, or both.

464 Administration Guide: Implementation

UNIX is a registered trademark in the United States, other countries or both
and is licensed exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a
double asterisk(**) may be trademarks or service marks of others.

Appendix M. Notices 465

466 Administration Guide: Implementation

Index

Special Characters
$RAHBUFDIR 350
$RAHBUFNAME 350
$RAHCHECKBUF 350
$RAHENV 357

A
access control 225

authentication 225
database manager 256
database objects 255
view to table 261

active directory 395
configuring 397
extending the directory

schema 411
objects 413
security 409
supporting 396

add database wizard 458, 459
adding a scope 189
adding constraint 191
adding table check constraint 193
adding unique constraint 192
administration

using GUI tools 3
administration server 14, 78
administration tools

command center 19
overview 4
script center 20

aggregating function 139
alias

authority 150
using 149

alias, creating 149
alias (DB2 for MVS/ESA) 151
ALTER COLUMN 189
ALTER NICKNAME statement,

example of 213
ALTER privilege

definition 251
ALTER SERVER statement, example

of 212
alter summary table properties 203
ALTER TABLE statement

adding check constraint
example 194

adding columns example 189

ALTER TABLE statement (continued)
adding keys example 193
adding unique constraint

example 192
dropping check constraint

example 196
dropping keys example 195
dropping unique constraint

example 194
tips for adding constraints 192

ALTER TABLESPACE statement
example of 183

ALTER VIEW statement; example
of 209

altering a column 189
altering a nickname 213
altering a server 212
altering a structured type 204
altering a table 188
altering an IDENTITY column 191
altering constraint 191
altering nodegroup 182
altering table space 182
altering view 209
ATTACH command

overview of 54
specifying distributed computing

environment (DCE)
information 332

audit activities 273
audit_buf_sz 275
audit facility

actions 274
asynchronous record

writing 276
audit events table 282
authorities/privileges 273
behavior 275
checking events table 283
CONTEXT events table 296
controlling activities 299
error handling 276
ERRORTYPE parameter 276
events 274
examples 299
messages 281
OBJMAINT events table 287
parameter descriptions 278
record layouts 282

audit facility (continued)
SECMAINT events table 288
synchronous record writing 276
syntax 277
SYSADMIN events table 292
tips and techniques 297
usage scenarios 277
VALIDATE events table 295

audit trail 273
authentication 225

DCE security services 231
definition of 225
Distributed Computing

Environment (DCE) directory
services 329

domain security 366
federated database

processing 237
groups 366
partitioned database

considerations 230
remote client 230

authentication type 225
CLIENT 226
DCE 228
DCE_SERVER_ENCRYPT 228
DCS 227
DCS_ENCRYPT 228
KERBEROS 229
KRB_SERVER_ENCRYPT 229
SERVER 225
SERVER_ENCRYPT 225

authorities
granting 38
revoking 38

authority 244
database administration

(DBADM) 247, 249
levels of 242
removing DBADM from

SYSADM 245
removing DBADM from

SYSCTRL 246
system control (SYSCTRL) 245
system maintenance

(SYSMAINT) 246
tasks and required

authorities 266

© Copyright IBM Corp. 1993, 2001 467

authorization
definition 242
system administration

(SYSADM) 244
trusted client 226

authorization names
create view for privileges

information 270
retrieving for privileges

information 268
retrieving names with DBADM

authority 268
retrieving names with table

access authority 268
retrieving privileges granted

to 269
automatic summary table 147

B
back up database wizard 458
backup database wizard 5
backup domain controller

configuring DB2 364, 365
BIND command

OWNER option 259
BIND privilege

definition of 255
BINDADD privilege

definition 248
binding

command line processor 109
database utilities 109
rebinding invalid packages 259

block-structured devices 112
books 443, 453

C
Call Level Interface (CLI)

binding to a database 109
case-sensitive names, federated

database 317
CATALOG DATABASE

example of 110
CATALOG GLOBAL DATABASE

specifying distributed computing
environment (DCE)
information 332

catalog node
description 57

cataloging database 109
CDS 319
cell directory service (CDS) 319
changing database

configuration 179

changing environment
variables 179

changing node configuration
file 179

changing partitioning key 200
changing registry variables 179
changing table attributes 201
character serial devices 112
CLIENT, authentication type 226
CLIENT level security 226
clients

administration 4
trusted 226
untrusted 226

collating_sequence server
option 155

column options
numeric string 214
varchar_no_trailing_blanks 214

column UDF 139
columns

adding 188
altering 189
defining 119

comm_rate server option 155
command center 19
command line processor

binding to a database 109
commands

CATALOG GLOBAL
DATABASE 332

running in parallel 350
communication protocols

VI architecture 385
communications

high speed 383
configuration parameter

partitioned database 58
configuration parameters

distributed computing
environment (DCE) 331

configure multisite update
wizard 5, 458

configuring LDAP 397
configuring LDAP user for

applications 399
CONNECT privilege

definition 248
CONNECT statement

specifying distributed computing
environment (DCE)
information 332

connectstring server option 156
constraint

adding 191

constraint (continued)
changing 191
defining unique 123
dropping 194

constraint name
defining foreign keys 126
defining table check

constraints 127
containers

adding (to DMS table
space) 182

adding to an SMS table
space 185

modifying (to DMS table
space) 183

control center
customized 12
displaying systems 14

control center as a java applet 46
CONTROL privilege

definition 251
implicit issuance 259
package privileges 255

controlling the rah command 356
cooked devices 112
cpu_ratio server option 156
CREATE ALIAS statement

example of 150
using 149

CREATE DATABASE command
example of 101

create database wizard 5, 459
create index 161
CREATE INDEX statement

example of 165
online reorganization 164, 167
unique index 166

CREATE NICKNAME 159
CREATE_NOT_FENCED privilege

definition 248
CREATE SERVER 152
create table space wizard 5, 459
CREATE TABLE statement

defining check constraints 127
defining referential

constraints 124
example of 120
using multiple table spaces 134

create table wizard 5, 459
CREATE TABLESPACE statement

example of 111
CREATE TRIGGER statement

example of 137
CREATE VIEW statement

changing column names 146

468 Administration Guide: Implementation

CREATE VIEW statement (continued)
example of 145

CREATE WRAPPER 151
CREATETAB privilege

definition 248
creating a function mapping 140
creating a function template 140
creating a nickname 159
creating a server 152
creating a type mapping 143
creating a wrapper 151
creating alias 149
creating an index extension 161
creating an index specification 161
creating an LDAP user 398
creating schema 116
creating table 118
creating table in multiple table

spaces 134
creating table space 111
creating trigger 136
creating typed table 133
creating typed view 147
creating user-defined distinct

type 142
creating user-defined function 138
creating user-defined structured

type 143
creating user-defined type 142
creating view 144
CURRENT SCHEMA 118
CURRENT SCHEMA special

register 55

D
data

changing distribution 182
moving 39

data definition language (DDL)
generating 8

data encryption 264
data integrity

unique index 161
data replication 305
data security

controlling database access 221
importance of 221
securing system catalog 270

data transfer
overview of 305

data types
column definition 119
multi-byte character set 119

database 51
altering nodegroup 182

database (continued)
before creating 51
cataloging 109
changing 181
changing distribution of

data 182
considerations before

changing 175
considerations for creating 60
creating 101
creating across all nodes 58
dropping 181
enabling data partitioning 57
package dependencies 216
recovery log 109

database access
controlling 221
privileges through package with

SQL 260
database administrator (DBADM)

authority
privileges 247
retrieving names with 268

database configuration
changing 179
created file 97

database locator objects
creating 321
example 322

database manager
access control 256
binding utilities 109
index 164
starting 52
stopping 59

database objects
access control 255
creating 320
example 320

database partition servers
issuing commands 347
Windows 2000 375
Windows NT 375

databases
remote, managing 36

DataPropagator Relational
(DPROPR)

overview 305
DAU (DB_Authentication) 325
DB_Authentication (DAU) 325
DB_Comment (DCO) 325
DB_Communication_Protocol

(DCP) 325
DB_Database_Locator_Name

(DLN) 327

DB_Database_Protocol (DDP) 327
DB_Native_Database_Name

(DNN) 327
DB_Object_Type (DOT) 327
DB_Principal (DPR) 325
DB_Product_Name (DPN) 327
DB_Product_Release (DRL) 327
DB_Target_Database_Info (DTI) 327
DB2

starting on Windows NT 53
DB2 Administration Server

update configuration 94
update instance lists 94
using Client Configuration

Assistant and Control
Center 93

DB2 Administration Server
(DAS) 84

communications 87
configuration 86
configuring 82
Control Center

communications 87
creating 79
enabling discovery of 90
environment 89
internode administrative

communications 87
internode administrative

communications in partitioned
database system (UNIX) 87

internode administrative
communications in partitioned
database system (Windows
NT) 89

listing 82
overview 78
ownership rules 77
registry variable

considerations 89
registry variables 89
removing 83
security 89
security considerations 82
service ports 87
setting up with partitioned

database system 84
example 85

starting and stopping 81
UNIX EEE servers 87
updating 83
Windows NT EEE servers 89

db2_all 347, 348, 349
db2_call_stack 348
DB2 Connect 305

Index 469

DB2 for OS/390
objects, managing 15
subsystems, adding 15

DB2 for Windows NT Performance
Counters 369

DB2_INDEX_2BYTEVARLEN 162
db2_kill 348
DB2 library

books 443
Information Center 457
language identifier for

books 451
late-breaking information 452
online help 454
ordering printed books 453
printing PDF books 452
searching online

information 460
setting up document server 459
structure of 443
viewing online information 456
wizards 458

db2audit 277
db2audit.log 273
db2dmnbckctlr

using 364, 365
db2gncol utility 197
db2icrt command 65
db2idrop 178
db2ilist 176
DB2INSTANCE environment

variable
defining default instance 54

db2iupdt 176
DB2LDAP_CLIENT_PROVIDER 396
db2ldcfg utility 399
db2nchg 377
db2ncrt 375
db2ndrop 378
db2nlist 375
db2nodes.cfg file 95
db2perfc 372
db2perfi 369
db2perfr 370
db2set command 70, 71
db2start command 52
db2stop command 59
dbname server option 156
DCE, authentication type 228
DCE network database

connecting 335, 336
creating 334

DCE_SERVER_ENCRYPT,
authentication type 228

DCO (DB_Comment) 325

DCP
(DB_Communication_Protocol) 325

DCS
authentication type 227
federated database

processing 237
DCS_ENCRYPT, authentication

type 228
DDP (DB_Database_Protocol) 327
DECLARE GLOBAL TEMPORARY

TABLE 129
dedicated interconnect 385, 386
default attribute specification 120
defining referential constraint 124
defining table check constraint 127
defining unique constraint 123
DELETE privilege

definition 251
deleting rows from typed

tables 204
design, implementing 51
design of database

altering 175
DETACH command

overview of 54
determining problems with rah 359
directories

local database directory 105
node directory 106
system database directory 106

directory cache
effect of cataloging

databases 110
directory objects

creating 319
object classes attributes 324

Discovery
configuration 94
hiding server instances 92
setting parameters 92

distributed computing environment
(DCE)

authentication 231
security services 231
setup DB2 server 233
setup DB2 user 231

Distributed Computing Environment
(DCE)

ATTACH command 332, 337
CATALOG GLOBAL

DATABASE 332
CDS 319
configuration parameters and

registry variables 331
CONNECT statement 332, 338

Distributed Computing Environment
(DCE) (continued)

directory services
restrictions 343

directory services tasks 340
GDS 319
how directories are

searched 337
overview of directory

services 107
restrictions 235
setup DB2 client instance 235
temporarily overriding DCE

directory information 339
using directory services 341

DLN
(DB_Database_Locator_Name) 327

DMS table space
creating 112

DNN
(DB_Native_Database_Name) 327

domain security
authentication 366

DOT (DB_Object_Type) 327
double byte character set user

data type 119
DPN (DB_Product_Name) 327
DPR (DB_Principal) 325
DPROPR 305
DRL (DB_Product_Release) 327
drop a system temporary table

space 186
drop a user temporary table

space 187
DROP DATABASE command

example of 181
DROP INDEX statement; example

of 215
DROP NICKNAME statement,

example of 213
DROP SERVER statement, example

of 212
DROP TABLE statement

example of 205
DROP TABLESPACE statement;

example of 186
DROP VIEW statement; example

of 209
dropping a nickname 213
dropping a server 212
dropping a summary table 210
dropping a wrapper 211
dropping constraint 194
dropping database 181
dropping index 214

470 Administration Guide: Implementation

dropping index extensions 214
dropping index specifications 214
dropping schema 188
dropping table 205
dropping table check constraint 196
dropping trigger 207
dropping unique constraint 194
dropping user-defined function 207
dropping user-defined tables 207
dropping user-defined type 208
dropping user table space 186
dropping view 209
DTI (DB_Target_Database_Info) 327
dynamic SQL

EXECUTE privilege for database
access 260

E
eliminating duplicate entries from

machine list 355
encryption

data 264
environment variables 70

changing 179
rah 356
RAHDOTFILES 357
setting on OS/2 73
setting on UNIX 76
setting on Windows 95 74
setting on Windows NT 74

EXECUTE privilege
database access with dynamic

SQL 260
database access with static

SQL 260
definition of 255

explicit schema use 55
expressions

NEXTVAL 132
PREVVAL 132

F
FCM communications 98
federated database

case-sensitive names 317
function mapping, creating 140
function template, creating 140
index specification, creating 161
nickname, creating 159
nickname, identifying 160
nickname, working with 160
passing IDs and passwords to

data sources 238
referencing nicknames 160
server, creating 152

federated database (continued)
type mapping, creating 143
wrapper, creating 151

federated databases
APPC setting 240
authentication 237
authentication example 240
DCS setting 237
server options, security 239
user mappings, creating 238

filters 9
fold_id server option 156
fold_pw server option 156
FOREIGN KEY clause

referential constraints 125
rules for foreign key

definitions 125
foreign keys

adding 192
composite 125
constraint name 125
DROP FOREIGN KEY clause,

ALTER TABLE statement 194
IMPORT utility, referential

integrity implications for 127
load utility, referential integrity

implications for 126
privileges required for

dropping 194
rules for foreign key

definitions 125
function invocation

selectivity 173
function mapping, creating 140
function template, creating 140
functions

DECRYPT 265
ENCRYPT 264
GETHINT 265

G
gateway connections 16
GDS 319
generated column 127, 196
global directory service (GDS) 319
global level profile registry 70
GRANT

example 256
GRANT statement

implicit issuance 259
security 331
use of 256

granting authorities and
privileges 38

GUI tools
administring using 3

H
hierarchy table 134

dropping 206
high speed communications 383
HTML

sample programs 451

I
IBM eNetwork Directory

extending the directory
schema 411

object classes and attributes 413
IBMCATGROUP nodegroup 103
IBMDEFAULTGROUP

nodegroup 103
IBMTEMPGROUP nodegroup 103
identifying nicknames 160
identity column 130

altering 201
IDENTITY columns 133
IMPLICIT_SCHEMA authority 117
IMPLICIT_SCHEMA privilege

definition 248
implicit schema use 55
IMPORT utility

binding to a database 109
LOAD 126
referential integrity implications

for 127
index

selectivity 173
user-defined extended 168

index extension 161
index key, definition 162
INDEX privilege

definition 251
index wizard 5, 459
indexes

changing 214
CREATE INDEX statement 165
CREATE UNIQUE INDEX

statement 166
creating 161
definition of 162
DROP INDEX statement 215
how used 165
non-unique 165
nonprimary 215
online reorganization 164, 167
optimizing number 162
primary 123
primary versus user-defined 162

Index 471

indexes (continued)
privileges 255
unique 166

Information Center 457
INSERT privilege

definition 251
installing

Netscape browser 457
instance

add 65
default 62
definition 61
directory 61
owner 64
removing 178
setting the current 68

instance level profile registry 70
instance owner 64
instance profile registry 71
instance user

setting the environment 62
instances

altering 175
auto-starting 69
creating 62
disadvantages 61
displaying 15
listing 68, 176
listing database partition

servers 375
overview of 53
partition servers, adding 375
partition servers, changing 377
partition servers, dropping 378
reasons for using 61
running multiple 69
starting 52
stopping 59
updating 176

inter-node communications 383
intra-partition parallelism

enabling 55
io_ratio server option 157

J
java applet 46

K
KERBEROS, authentication

type 229
Kerberos security protocol 229
KRB_SERVER_ENCRYPT,

authentication type 229

L
language identifier

books 451
Large Object (LOB)

column considerations 121
late-breaking information 452
LDAP 45, 107, 395
LDAP configurations

supporting 395
License Center 22
license information

altering 175
license management 70
lightweight directory access

protocol 107
attaching remotely 402
cataloging a node entry 401
configure host databases 405
DB2 Connect 408
deregistering databases 403
deregistering servers 402
disable 408
enable 407
extending directory schema 410
IBM eNetwork Directory 411
object classes and attributes 413
refreshing entries 403
registering databases 402
searching 405
security 408
setting registry variables 407
updating protocol

information 401
Windows 2000 active

directory 411
lightweight directory access protocol

(LDAP) 45, 395
LOAD authority 247
LOAD utility

overview 305
local database directory

overview of 105
locate objects 18
log

audit 273
logging

raw devices 114
logical nodes

multiple 381

M
messages

audit facility 281
MINPCTUSED clause 167
modifying a column 189

modifying a table 188
monitoring

rah processes 351
moving data 305
multiple instances 53

N
naming conventions

general 313
Windows NT restrictions 364

Netscape browser
installing 457

NEXTVAL 132
nickname

creating 159
nicknames

package privilege
processing 260

privileges 253
views across data sources 261

node 55
cataloging 57
changing in nodegroup 182
creating database across all 58

node configuration file
changing 179
creating 95

node level profile registry 71
node number 95
node server option 157
nodegroup

initial definition 103
nodegroups

altering 182
creating 108
IBMDEFAULTGROUP, table

created in by default 135
partitioning key, changing 200
table considerations 135

non-unique indexes
dropping 215

nonprimary indexes
dropping 215
dropping implications for

applications 215
null value

column definition 119
numeric string column option 214

O
object class attributes

DB_Authentication (DAU) 325
DB_Comment (DCO) 325
DB_Communication_Protocol 325
DB_Database_Locator_Name 327

472 Administration Guide: Implementation

object class attributes (continued)
DB_Database_Protocol 327
DB_Native_Database_Name 327
DB_Object_Type 327
DB_Principal (DPR) 325
DB_Product_Name 327
DB_Product_Release 327
DB_Target_Database_Info 327

objects
show related 7

online help 454
online information

searching 460
viewing 456

online reorganization
indexes 164

opening the Journal 22

P
package

inoperative 216
packages

access privileges with SQL 260
dependencies 215
dropping 215
invalid after adding foreign

key 192
owner 259
privileges 254
revoking privileges 258

parallelism
enabling 55

parallelism, intra-partition
enabling 55

partitioning data 57
partitioning key

changing 200
index partitioned on partitioning

key 164
table considerations 135

passing IDs and passwords to data
sources 238

password server option 157
PDF 452
performance

accessing remote
information 372

catalog information, reducing
contention for 58

displaying information 370
enable remote access to

information 370
resetting values 372
summary table 147

performance configuration
wizard 5, 459

Performance Configuration
Wizard 179

performance monitor
Windows NT 369

plan_hints server option 157
populating typed table 133
PRECOMPILE command

OWNER option 259
prefix sequences 355
PREVVAL 132
primary index

dropping 215
uniqueness for primary key 123

primary key
adding 192
DROP PRIMARY KEY clause,

ALTER TABLE statement 194
primary index 123
primary index, creating 162
privileges required for

dropping 194
when to create 123

PRIMARY KEY clause
adding primary key 192
restrictions 123

printing PDF books 452
privileges

ALTER 251
BINDADD 248
CONNECT 248
CONTROL 251
CREATE_NOT_FENCED 248
create view for information 270
CREATETAB 248
database manager 248
definition of 242
DELETE 251
GRANT statement 256
granting 38
granting and revoking

authority 248
hierarchy 243
implicit for packages 244
IMPLICIT_SCHEMA 248
INDEX 255
indirect privileges,

nicknames 260
individual 244
INSERT 251
nickname 253
ownership (CONTROL) 244
package 254
PUBLIC 249

privileges (continued)
REFERENCES 251
retrieving authorization names

with 268
retrieving for names 269
REVOKE statement 257
revoking 38
schemas 249
SELECT 251
servers 254
summary of 243
system catalog listing 267
table 251
table spaces 250
tasks and required

authorities 266
USAGE 255
view 251
views with nicknames 261

profile registry 70
PUBLIC

privileges 249
public interconnect 384
pushdown server option 158

Q
qualified object names 54
query rewrite

summary table 147

R
rah 348

controlling 356
environment variables 356
introduction 347
monitoring processes 351
RAHDOTFILES 357
RAHOSTFILE 355
RAHOSTLIST 355
RAHWAITTIME 351
running commands in

parallel 350
setting default environment

profile 358
specifying machines list 355

RAHCHECKBUF 351
RAHTREETHRESH 352
raw devices 112
raw I/O 114
raw logs 114
records

audit 273
recovering inoperative summary

table 211
recovering inoperative view 210

Index 473

recovery
allocating log during database

creation 109
overview 309, 345

recovery log 109
redistributing data

across nodes 182
REFERENCES clause

adding foreign key 192
delete rules 126
referential constraints 126
use of 126

REFERENCES privilege
definition 251

referential constraints
add to table 192
defining 124
FOREIGN KEY clause,

CREATE/ALTER TABLE
statements 124

PRIMARY KEY clause,
CREATE/ALTER TABLE
statements 124

REFERENCES clause,
CREATE/ALTER TABLE
statements 124

refreshing data in summary
table 204

registry variables 70
changing 179
distributed computing

environment (DCE) 331
release notes 452
remote administration 84
remote system 37
renaming a table space 185
renaming table 204
REORG utility

binding to a database 109
replicating data 44
replication 305

configuration 98
resource access control facility

(RACF) 331
restore database wizard 5
restore wizard 459
restrictions

Windows NT naming 364
retrieving data

index 164
REVOKE statement

example of 257
implicit issuance 259
security 331
use of 257

revoking authorities and
privileges 38

routing information objects
creating 322
example 323

rows
removing 190

S
sample programs

cross-platform 451
HTML 451

scalar UDF 138
scheduling

saved command scripts 21
schema

creating 116
dropping 188
overview of 54
SESSION 207

scope
adding 189

script center 20
using an existing script 21

Search Discovery
additional settings 91

searching
online information 458, 460

security
APPC setting for federated

systems 240
authentication, federated

database 237
CLIENT level 226
DCS processing, federated

system 237
Distributed Computing

Environment (DCE) directory
services 329

federated database ID and
password processing 238

federated server authentication
example 240

planning for 221
server options 239
services, Windows NT 365
user mappings 238

SELECT privilege
definition 251

SELECT statement
select a view 146

selectivity 173
sequences 133

altering 202
creating 131

sequences (continued)
dropping 202
privileges 255

server
creating 152

SERVER, authentication type 225
SERVER_ENCRYPT

authentication type 225
server options

collating_sequence 155
comm_rate 155
connectstring 156
cpu_ratio 156
dbname 156
fold_id 156, 240
fold_pw 156, 240
io_ratio 157
node 157
password 157, 239
plan_hints 157
pushdown 158
security details 239
varchar_no_trailing_blanks 158

servers
privileges 254

SET ENCRYPTION
PASSWORD 265

setting
default environment profile for

rah 358
setting schema 118
setting up document server 459
setting VARCHAR 189
show related objects 7
show SQL statements 7
SIGTTIN 349
size

estimating 41
SmartGuides

wizards 458
SMS table space

creating 111
SMS table spaces

adding containers 185
sparse file allocation 122
SQL statements

inoperative 216
show 7

starting DB2 52
static SQL

EXECUTE privilege for database
access 260

stdin 349
stopping DB2 59

474 Administration Guide: Implementation

storage
management 41

structured type
altering 204

summary table
altering properties 203
automatic 147
creating 147
dropping 210
refreshing data 204

summary tables
recovering inoperative 211

SWITCH ONLINE clause 185
synonym (DB2 for MVS/ESA) 151
SYSCAT views 267
SYSCATSPACE table space 103
system administration (SYSADM)

authority 244
overview 244
privileges 244

system catalog
adding new column 189
dropping a table 205
dropping view implications 210
privileges listing 267
retrieving authorization names

with privileges 268
retrieving names with DBADM

authority 268
retrieving names with table

access authority 268
retrieving privileges granted to

names 269
security 270
setting up 104

system catalog tables
stored on database catalog

node 58
system database directory

overview of 106
system temporary table space 113

T
table

altering 188
changing attributes 201
creating in partitioned

database 135
generated column 127, 196
identity column 130
renaming 204
temporary 103
volatile 199

table check constraint
adding 193

table check constraint (continued)
defining 127
dropping 196

table space
adding container 182
changing 182
creating 111
default at database creation 103
device container example 112
dropping 186
dropping a system

temporary 186
dropping a user temporary 187
extending container 183
file container example 111
file system container

example 111
in nodegroups 114
privileges 250
renaming 185
resizing container 183
separating types of data,

example 134
system temporary 113
user temporary 114

table spaces
adding capacity 43
checking available space

(DMS) 42
table UDF 139
tables

add referential constraints 192
ALTER TABLE statement 189
assigning to nodegroup 108
changing partitioning key 200
CREATE TABLE statement 118
defining check constraint 127
defining referential

constraints 124
defining unique constraint 123
dropping 205
naming 118
retrieving names with access

to 268
revoking privileges 257

tablespaces
setting to ONLINE state 185

TCP/IP 384
temporary table

user-defined 129
temporary tables

dropping user-defined 207
TEMPSPACE1 table space 103
trail

audit 273

trigger
dropping 207

triggers
benefits of 136
creating 136
dependencies 138

troubleshooting 43
trusted clients

authentication 226
CLIENT level security 226

type mapping, creating 143
typed table

creating 133
hierarchy table 134
populating 133
updating rows 204

typed tables
deleting rows 204

typed view, creating 147

U
unique constraints

adding 192
defining 123
dropping 194

untrusted clients 226
update DAS configuration 94
update instance lists 94
UPDATE privilege

definition 252
updating typed table 204
USAGE privilege 255
user authentication

Windows NT 364
user-defined distinct type,

creating 142
user-defined functions (UDF)

creating 138
dropping 207
types 138

user-defined functions (UDFs)
privilege to create

non-fenced 248
user-defined structured type,

creating 143
user-defined temporary table 129
user-defined temporary tables 207
user-defined type (UDT)

creating 142
dropping 208

user mappings
creating 238

user temporary table space 114
users

managing 38

Index 475

USERSPACE1 table space 103

V
varchar_no_trailing_blanks column

option 214
varchar_no_trailing_blanks server

option 158
VI

setting up for use with DB2 393
VI architecture 385
view

recovering inoperative 210
viewing

online information 456
views

access control to table 261
access privileges, examples

of 262
altering 209
CHECK OPTION clause,

CREATE VIEW statement 146
column access 261
creating 144
data integrity 144
data security 144
dropping 209
dropping implications for system

catalogs 209
for privileges information 270
inoperative 210
restrictions 209
row access 261

virtual interface (VI)
architecture 385, 386

virtual telecommunications access
method (VTAM) 331

W
Windows 2000 active directory

extending the directory
schema 411

objects 413
Windows NT active directory

object classes and attributes 413
Windows NT performance

monitor 369
registering DB2 369

wizard
restore database 459

Wizard
Performance Configuration 179

wizards 5
add database 458, 459
back up database 458
backup database 5

wizards (continued)
completing tasks 458
configure multisite update 5,

458
create database 5, 459
create table 5, 459
create table space 5, 459
index 5, 459
performance configuration 5,

459
restore database 5

wrapper, creating 151

476 Administration Guide: Implementation

Contacting IBM

If you have a technical problem, please review and carry out the actions
suggested by the Troubleshooting Guide before contacting DB2 Customer
Support. This guide suggests information that you can gather to help DB2
Customer Support to serve you better.

For information or to order any of the DB2 Universal Database products
contact an IBM representative at a local branch office or contact any
authorized IBM software remarketer.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-237-5511 for customer support
v 1-888-426-4343 to learn about available service options

Product Information

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) or 1-800-3IBM-OS2 (1-800-342-6672) to

order products or get general information.
v 1-800-879-2755 to order publications.

http://www.ibm.com/software/data/
The DB2 World Wide Web pages provide current DB2 information
about news, product descriptions, education schedules, and more.

http://www.ibm.com/software/data/db2/library/
The DB2 Product and Service Technical Library provides access to
frequently asked questions, fixes, books, and up-to-date DB2 technical
information.

Note: This information may be in English only.

http://www.elink.ibmlink.ibm.com/pbl/pbl/
The International Publications ordering Web site provides information
on how to order books.

http://www.ibm.com/education/certify/
The Professional Certification Program from the IBM Web site
provides certification test information for a variety of IBM products,
including DB2.

© Copyright IBM Corp. 1993, 2001 477

ftp.software.ibm.com
Log on as anonymous. In the directory /ps/products/db2, you can
find demos, fixes, information, and tools relating to DB2 and many
other products.

comp.databases.ibm-db2, bit.listserv.db2-l
These Internet newsgroups are available for users to discuss their
experiences with DB2 products.

On Compuserve: GO IBMDB2
Enter this command to access the IBM DB2 Family forums. All DB2
products are supported through these forums.

For information on how to contact IBM outside of the United States, refer to
Appendix A of the IBM Software Support Handbook. To access this document,
go to the following Web page: http://www.ibm.com/support/, and then
select the IBM Software Support Handbook link near the bottom of the page.

Note: In some countries, IBM-authorized dealers should contact their dealer
support structure instead of the IBM Support Center.

478 Administration Guide: Implementation

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-2944-01

	Contents
	About This Book
	Who Should Use This Book
	How This Book is Structured
	A Brief Overview of the Other Volumes of the Administration Guide
	Administration Guide: Planning
	Administration Guide: Performance

	Part 1. Administering Using the Control Center
	Chapter 1. Administering DB2 Using GUI Tools
	Administration Tools
	Common Tool Features
	Show SQL and Show Command
	Show Related
	Generate DDL
	Filter
	Filtering the Display
	Filtering Retrieved Data
	Defining a Filter to Retrieve a Specific Set of Data

	Help

	The Control Center
	Main Elements of the Control Center
	Using a Customized Control Center in DB2 for OS/390
	Systems That Can Be Administered
	Objects that can be Administered
	Displaying Systems in the Control Center
	Managing DB2 for OS/390 Objects
	Adding DB2 for OS/390 Subsystems
	Managing Gateway Connections
	Functions You Can Perform from the Control Center
	Creating New Objects
	Working with Existing Objects
	Locating Objects (DB2 for OS/390 only)

	The Satellite Administration Center
	The Command Center
	The Script Center
	Using an Existing Script with the Script Center
	Scheduling a Saved Command Script to Run

	The Journal
	Working with Jobs

	The License Center
	The Alert Center
	Client Configuration Assistant
	Performance Monitor
	Event Monitor
	Using the Monitor Tools
	Considerations for Monitoring and Tuning a Database

	Monitoring Performance at a Point in Time
	Predefined Monitors
	Action Required When an Object Appears in the Alert Center
	Analyzing an Event for a Period of Time
	Event Analyzer

	Analyzing SQL Statements
	Improving Performance of a Query
	Analyzing a Simple Dynamic SQL Statement

	Managing Remote Databases
	Managing Users
	Granting and Revoking Authorities and Privileges

	Moving Data
	Managing Storage
	Estimating Table and Index Size
	Checking Available Space in a Table Space
	Adding More Space to a Table Space

	Troubleshooting
	Replicating Data
	Using Lightweight Directory Access Protocol
	Using a Java Control Center
	Running the Control Center as a Java Applet

	Using Your Java Tools for Administration

	Part 2. Implementing Your Design
	Chapter 2. Before Creating a Database
	Prerequisites Before Creating a Database
	Starting DB2
	Starting DB2 UDB on Windows NT
	Using Multiple Instances of the Database Manager
	Organizing and Grouping Objects by Schema
	Enabling Parallelism
	Enabling Intra-Partition Parallelism
	Enabling Intra-Partition Query Parallelism
	Enabling Inter-Partition Query Parallelism
	Enabling Utility Parallelism

	Enabling Data Partitioning
	Backup Database / Table Space
	Restore Database / Table Space

	Stopping DB2

	Details on Creating a Database
	Designing Logical and Physical Database Characteristics
	Creating an Instance
	Setting the DB2 Environment Automatically
	Setting the DB2 Environment Manually
	Multiple Instances on a System
	Add an Instance
	Listing Instances
	Setting the Current Instance
	Auto-Starting Instances
	Running Multiple Instances Concurrently

	License Management
	Establishing the Environment Variables and the Profile Registry
	Using the db2set Command
	Setting Environment Variables on OS/2
	Setting Environment Variables on Windows NT and Windows 95
	Setting Environment Variables on UNIX Systems

	Creating a DB2 Administration Server (DAS)
	Creating the DAS
	Starting and Stopping the DAS
	Listing the DAS
	Configuring the DAS
	Security Considerations for the DAS
	Updating the DAS
	Removing the DAS
	Setting Up DAS with EEE Systems
	Setting Up the DAS to Use the Client Configuration Assistant and the Control Center
	Update the DAS Configuration

	Creating a Node Configuration File
	Creating the Database Configuration File
	Replicating Configuration Information Using Response Files
	Enabling FCM Communications

	Chapter 3. Creating a Database
	Definition of Initial Nodegroups
	Definition of Initial Table Spaces
	Definition of System Catalog Tables
	Definition of Database Directories
	Local Database Directory
	System Database Directory
	Node Directory

	DCE Directory Services
	Lightweight Directory Access Protocol (LDAP) Directory Services
	Creating Nodegroups
	Definition of Database Recovery Log
	Binding Utilities to the Database
	Cataloging a Database
	Creating a Table Space
	Creating a System Temporary Table Space
	Creating a User Temporary Table Space
	Creating Table Spaces in Nodegroups
	Raw I/O
	Using Raw I/O on Linux

	Creating a Schema
	Setting a Schema

	Creating and Populating a Table
	Large Object (LOB) Column Considerations
	Defining Constraints
	Defining a Unique Constraint
	Defining Referential Constraints
	Defining a Table Check Constraint

	Defining a Generated Column on a New Table
	Creating a User-Defined Temporary Table
	Defining an Identity Column on a New Table
	Creating a Sequence
	Comparing IDENTITY Columns and Sequences
	Creating a Typed Table
	Populating a Typed Table
	Hierarchy Table
	Creating a Table in Multiple Table Spaces
	Creating a Table in a Partitioned Database

	Creating a Trigger
	Trigger Dependencies

	Creating a User-Defined Function (UDF) or Method
	Creating a Function Mapping
	Creating a Function Template

	Creating a User-Defined Type (UDT)
	Creating a User-Defined Distinct Type
	Creating a User-Defined Structured Type
	Creating a Type Mapping

	Creating a View
	Creating a Typed View

	Creating a Summary Table
	Creating an Alias
	Creating a Wrapper
	Creating a Server
	Using Server Options to Help Define Data Sources and Facilitate Authentication Processing
	Purposes of Server Options
	SQL for Server Options
	Server Options and Their Settings
	Using Pass-Through Sessions with Servers

	Creating a Nickname
	Referencing Nickname and Data Source Objects
	Working with Nickname and Data Source Objects
	Identifying Existing Nicknames and Data Sources
	Identifying a Nickname and Its Data Source
	Identifying All Nicknames Known to DB2

	Creating an Index, Index Extension, or an Index Specification
	Using an Index
	Using the CREATE INDEX Statement

	Creating a User-Defined Extended Index Type
	Details on Index Maintenance
	Details on Index Searching
	Details on Index Exploitation
	A Scenario for Defining an Index Extension

	Chapter 4. Altering a Database
	Before Altering a Database
	Changing Logical and Physical Design Characteristics
	Changing the License Information
	Changing Instances
	Listing Instances
	Updating Instance Configuration
	Removing Instances

	Changing Environment Variables and the Profile Registry Variables
	Changing the Node Configuration File
	Changing the Database Configuration

	Altering a Database
	Dropping a Database
	Altering a Nodegroup
	Altering a Table Space
	Adding a Container to a DMS Table Space
	Modifying Containers in a DMS Table Space
	Adding a Container to an SMS Table Space on a Partition
	Renaming a Table Space
	Switching the State of a Table Space
	Dropping a User Table Space
	Dropping a System Temporary Table Space
	Dropping a User Temporary Table Space

	Dropping a Schema
	Modifying a Table in Both Structure and Content
	Adding Columns to an Existing Table
	Modifying a Column Definition
	Removing Rows From a Table or View
	Modifying an Identity Column Definition
	Altering a Constraint
	Adding a Constraint
	Dropping a Constraint
	Defining a Generated Column on an Existing Table
	Declaring a Table Volatile
	Changing Partitioning Keys
	Changing Table Attributes
	Altering an Identity Column
	Altering a Sequence
	Dropping a Sequence
	Altering Summary Table Properties
	Refreshing the Data in a Summary Table

	Altering a User-Defined Structured Type
	Deleting and Updating Rows of a Typed Table
	Renaming an Existing Table
	Dropping a Table
	Dropping a User-Defined Temporary Table
	Dropping a Trigger
	Dropping a User-Defined Function (UDF), Type Mapping, or Method
	Dropping a User-Defined Type (UDT) or Type Mapping
	Altering or Dropping a View
	Recovering Inoperative Views

	Dropping a Summary Table
	Recovering Inoperative Summary Tables

	Dropping a Wrapper
	Altering or Dropping a Server
	Altering or Dropping a Nickname
	Altering a Nickname Column and Dropping a Nickname
	Altering Nickname Column Options

	Dropping an Index, Index Extension, or an Index Specification
	Statement Dependencies When Changing Objects

	Part 3. Database Security
	Chapter 5. Controlling Database Access
	Selecting User IDs and Groups for Your Installation
	Windows NT Platform Considerations
	UNIX Platform Considerations
	General Rules

	Selecting an Authentication Method for Your Server
	Authentication Considerations for Remote Clients
	Partitioned Database Considerations
	Using DCE Security Services to Authenticate Users
	How to Set up a DB2 User for DCE
	How to Setup a DB2 Server to Use DCE
	How to Set up a DB2 Client Instance to Use DCE
	DB2 Restrictions Using DCE Security

	Federated Database Authentication Processing
	Authentication Settings
	Passing User IDs and Passwords to Data Sources
	Authentication Settings
	User Mappings
	Server Options
	APPC Security Settings

	Federated Database Authentication Example

	Privileges, Authorities, and Authorization
	System Administration Authority (SYSADM)
	System Control Authority (SYSCTRL)
	System Maintenance Authority (SYSMAINT)
	Database Administration Authority (DBADM)
	LOAD Authority
	Database Privileges
	Implicit Schema Authority (IMPLICIT_SCHEMA) Considerations

	Schema Privileges
	Table Space Privileges
	Table and View Privileges
	Nickname Privileges
	Server Privileges
	Package Privileges
	Index Privileges
	Sequence Privileges

	Controlling Access to Database Objects
	Granting Privileges
	Revoking Privileges
	Managing Implicit Authorizations by Creating and Dropping Objects
	Establishing Ownership of a Plan or a Package
	Allowing Indirect Privileges Through a Package
	Allowing Indirect Privileges Through a Package Containing Nicknames
	Controlling Access to Data with Views
	Monitoring Access to Data Using the Audit Facility
	Data Encryption

	Tasks and Required Authorizations
	Using the System Catalog
	Retrieving Authorization Names with Granted Privileges
	Retrieving All Names with DBADM Authority
	Retrieving Names Authorized to Access a Table
	Retrieving All Privileges Granted to Users
	Securing the System Catalog Views

	Chapter 6. Auditing DB2 Activities
	Audit Facility Behavior
	Audit Facility Usage Scenarios
	Audit Facility Messages
	Audit Facility Record Layouts
	Audit Facility Tips and Techniques
	Controlling DB2 Audit Facility Activities

	Part 4. Moving Data
	Chapter 7. Utilities for Moving Data
	Part 5. Recovery
	Chapter 8. Recovering a Database
	Part 6. Appendixes
	Appendix A. Naming Rules
	General Naming Rules
	Object Naming Rules
	Additional Information about Schema Names
	Additional Information about Passwords

	Using Delimited Identifiers in Object Names
	How Case-Sensitive Values Are Preserved in a Federated System

	Appendix B. Using Distributed Computing Environment (DCE) Directory Services
	Creating Directory Objects
	Database Objects
	Database Locator Objects
	Routing Information Objects

	Attributes of Each Object Class
	Details About Each Attribute

	Directory Services Security
	Configuration Parameters and Registry Variables
	CATALOG and ATTACH Commands, and the CONNECT Statement
	CATALOG GLOBAL DATABASE Command
	CONNECT Statement
	ATTACH Command

	How a Client Connects to a Database
	Connecting to Databases in the Same Cell
	Connecting to a Database in a Different Cell

	How Directories Are Searched
	ATTACH Command
	CONNECT Statement

	Temporarily Overriding DCE Directory Information
	Directory Services Tasks
	DCE Administrator Tasks
	Database Administrator Tasks
	Database User Tasks

	Directory Services Restrictions

	Appendix C. User Exit for Database Recovery
	Appendix D. Issuing Commands to Multiple Database Partitions
	Commands
	Command Descriptions
	Specifying the Command to Run
	Running Commands in Parallel on UNIX-Based Platforms
	Monitoring rah Processes on UNIX-Based Platforms
	Additional rah (Run All Hosts) Information (Solaris and AIX Only)

	Prefix Sequences
	Specifying the List of Machines
	Eliminating Duplicate Entries from the List of Machines

	Controlling the rah Command
	$RAHDOTFILES on UNIX-Based Platforms
	Setting the Default Environment Profile on Windows NT

	Determining Problems with rah on UNIX-Based Platforms

	Appendix E. How DB2 for Windows NT Works with Windows NT Security
	A Sample Scenario with Server Authentication:
	A Sample Scenario with Client Authentication and a Windows NT Client Machine:
	A Sample Scenario with Client Authentication and a Windows 95 Client Machine:
	Using a Backup Domain Controller with DB2
	User Authentication with DB2 for Windows NT
	User Name and Group Name Restrictions
	DB2 for Windows NT Security Service
	Installing DB2 on a Backup Domain Controller
	Authentication With Groups and Domain Security

	Appendix F. Using the Windows NT Performance Monitor
	Registering DB2 with the Windows NT Performance Monitor
	Enabling Remote Access to DB2 Performance Information
	Displaying DB2 and DB2 Connect Performance Values
	Accessing Remote DB2 Performance Information
	Resetting DB2 Performance Values

	Appendix G. Working with Windows NT or Windows 2000 Database Partition Servers
	Listing Database Partition Servers in an Instance
	Adding a Database Partition Server to an Instance
	Changing the Database Partition
	Dropping a Database Partition From an Instance

	Appendix H. Configuring Multiple Logical Nodes
	Appendix I. High Speed Inter-Node Communications
	High Speed Interconnection Using TCP/IP
	Prerequisites for Using an IBM Netfinity SP Switch
	Setup Procedure for an IBM Netfinity SP Switch

	High Speed Interconnection Using VI
	Virtual Interface (VI) Hardware Setup
	Setup Procedure for GigaNet Interconnect
	Setup Procedure for ServerNet Interconnect
	Setup Procedure for Synfinity Interconnect

	Enabling DB2 to Run Using VI

	Appendix J. Lightweight Directory Access Protocol (LDAP) Directory Services
	Supporting LDAP Client and Server Configurations
	Support for Windows 2000 Active Directory

	Configuring DB2 to Use Active Directory
	Configuring DB2 in the IBM LDAP Environment
	Creating an LDAP User
	Configuring the LDAP User for DB2 Applications

	Registration of DB2 Servers After Installation
	Update the Protocol Information for the DB2 Server
	Catalog a Node Alias for ATTACH
	Deregistering the DB2 Server
	Registration of Databases
	Attaching to a Remote Server
	Deregistering the Database
	Refreshing LDAP Entries in Local Database and Node Directories
	Searching
	Registering Host Databases
	Setting DB2 Registry Variables at the User Level
	Enabling LDAP Support After Installation is Complete
	Disabling LDAP Support
	LDAP Support and DB2 Connect
	Security Considerations
	Security Considerations for Windows 2000 Active Directory

	Extending the Directory Schema with DB2 Object Classes and Attributes
	Extending the Directory Schema for IBM eNetwork Directory Version 2.1
	Extending the Directory Schema for Windows 2000 Active Directory
	DB2 Objects in the Windows 2000 Active Directory
	Object Classes and Attributes Used by DB2

	Appendix K. Extending the Control Center
	Performance Considerations
	Packaging Considerations
	Interface Descriptions
	CCExtension
	CCObject
	CCMenuAction
	CCToolBarAction

	Usage Scenario
	MyExtension.java
	MySample.java
	MyDatabaseActions.java
	MyInstance.java
	MyDB2.java
	MyDatabases.java
	MySYSPLAN.java
	MyTable.java
	MyDBUser.java
	MyToolbarAction.java
	MyAlterAction.java
	MyAction.java
	MyDropAction.java
	MyCascadeAction.java
	MyCreateAction.java

	Appendix L. Using the DB2 Library
	DB2 PDF Files and Printed Books
	DB2 Information
	Printing the PDF Books
	Ordering the Printed Books

	DB2 Online Documentation
	Accessing Online Help
	Viewing Information Online
	Installing the Netscape Browser
	Accessing Information with the Information Center

	Using DB2 Wizards
	Setting Up a Document Server
	Searching Information Online

	Appendix M. Notices
	Trademarks

	Index
	Contacting IBM
	Product Information

