
IBM
®

DB2
®

Universal Database

Administration Guide: Performance

Version 7

SC09-2945-01

���

IBM
®

DB2
®

Universal Database

Administration Guide: Performance

Version 7

SC09-2945-01

���

Before using this information and the product it supports, be sure to read the general information under “Appendix F.
Notices” on page 621.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book vii
Who Should Use This Book viii
How This Book is Structured viii
A Brief Overview of the Other Volumes of the
Administration Guide ix

Administration Guide: Planning ix
Administration Guide: Implementation . . x

Part 1. Introduction to Performance 1

Chapter 1. Elements of Performance . . . 3
Tuning Guidelines 4
Disk Storage 5
Performance Improvement Process 6
How Much Can a System be Tuned? 6
A Less Formal Approach 7
Putting It All Together 8

Chapter 2. Architecture and Processes
Overview. 11
Storage Architecture 15

Database Directory 15
Table Spaces 17

Data Management 21
Record Identifiers and Pages 22
Space Management 23
Index Management. 25
Locking 26
Logging 27
What Happens When Updating 28

Process Model 29
Memory Model 36

Part 2. Tuning Application
Performance 41

Chapter 3. Application Considerations . . 43
Concurrency 43

Repeatable Read 45
Read Stability 46
Cursor Stability 47
Uncommitted Read 47
Choosing the Isolation Level 48

Specifying the Isolation Level 49
Declared Temporary Tables and
Concurrency 51

Locking 51
Attributes of Locks. 52
Locks and Application Performance . . . 54
Factors Affecting Locking 60
Declared Temporary Tables and Locking 65
LOCK TABLE Statement 65
CLOSE CURSOR WITH RELEASE . . . 66
Summary of Locking Considerations . . . 66

Adjusting the Optimization Class 67
How Do You Set the Optimization Class? 71
How Much Optimization is Necessary? . . 72

Restrictions on Result Sets to Improve
Performance 74

FOR UPDATE Clause 75
FOR READ or FETCH ONLY Clause . . . 75
OPTIMIZE FOR n ROWS Clause 76
FETCH FIRST n ROWS ONLY Clause . . 78
DECLARE CURSOR WITH HOLD
Statement 78

Row Blocking 79
Tuning Queries 80

Using a SELECT-Statement 80
Guidelines When Using a
SELECT-Statement 81

Compound SQL. 83
Dynamic Compound Statements 83
Performance Considerations and Character
Conversion 84

Code Page Conversion 84
Extended UNIX Code (EUC) Code Page
Support 85

Stored Procedures 85
Activating a Database 87
Parallel Processing of Applications 87

Chapter 4. Environmental Considerations 91
Configuration Parameters Affecting Query
Optimization. 91
Nodegroup Impact on Query Optimization . 94
Table Space Impact on Query Optimization 94
Indexing Impact on Query Optimization . . 98

Indexing versus No Indexing 98

© Copyright IBM Corp. 1993, 2001 iii

||

Using the Index Advisor 99
Using Larger Index Keys. 99
Guidelines for Indexing 100
Performance Tips for Administering
Indexes 103

Server Options Affecting Federated Database
Queries 106

Chapter 5. System Catalog Statistics . . 113
Collecting Statistics Using the RUNSTATS
Utility. 114

The Database Partition Where RUNSTATS
is Executed 115
Analyzing Statistics 116

Collecting and Using Distribution Statistics 122
Understanding Distribution Statistics . . 123
When Should You Use Distribution
Statistics? 125
How Many Statistics Should You Keep? 126
How Does the Optimizer Use
Distribution Statistics? 127

Collecting and Using Detailed Index
Statistics 132

Understanding Detailed Index Statistics 132
When Should You Use Detailed Index
Statistics? 134

User Update-Capable Catalog Statistics . . 134
Rules for Updating Catalog Statistics . . 136
Rules for Updating Table and Nickname
Statistics 136
Rules for Updating Column Statistics . . 137
Rules for Updating Distribution Statistics
for Columns 138
Rules for Updating Index Statistics . . . 139
Updating Statistics for User-Defined
Functions 140
Modeling Production Databases 142
Sub-element Statistics 144

Chapter 6. Understanding the SQL
Compiler 149
Overview of the SQL Compiler 149
Rewrite Query by the SQL Compiler . . . 153

Operation Merging 153
Operation Movement 156
Predicate Translation 159

Accounting for Column Correlation 160
Data Access Concepts and Optimization . . 162

Index Scan Concepts 163
Relation Scan versus Index Scan 172

Predicate Terminology 173
Join Concepts 175
Replicated Summary Tables 182
Join Strategies in a Partitioned Database 185
Influence of Sorting on the Optimizer . . 192

Optimization Strategies for Intra-Partition
Parallelism 194

Parallel Scan Strategies 195
Parallel Sort Strategies 195
Parallel Temporary Tables 196
Parallel Aggregation Strategies 196
Parallel Join Strategies 196

Automatic Summary Tables 197
Federated Database Query Compiler Phases 200

Pushdown Analysis 200
Remote SQL Generation and Global
Optimization 207

Chapter 7. SQL Explain Facility 213
Choosing an Explain Tool 214
Using the SQL Explain Facility 216
Introductory Concepts for Explain 218

Explain Information for Data Objects . . 219
Explain Information for Data Operators 220

How Explain Information is Organized . . 221
Explain Instance Information 221
Explain Snapshot Information. 224
Explain Table Information 224

Obtaining Explain Data 227
Capturing Explain Table Information . . 227
Capturing Explain Snapshot Information 228

Guidelines on Using Explain Output . . . 229
Visual Explain 231
SQL Advise Facility 232

Part 3. Tuning and Configuring
Your System 237

Chapter 8. Operational Performance. . . 239
How DB2 Uses Memory 239

Setting Parameters That Affect Memory
Usage 245
FCM Requirements 246

Managing the Database Buffer Pool 247
Exploiting Large Memories on Windows
Systems 248
Working With Buffer Pool Pages 249

Managing Multiple Database Buffer Pools 253
Choosing One or Many Buffer Pools . . 254

iv Administration Guide: Performance

||

||

|
||

Prefetching Data into the Buffer Pool . . . 255
Understanding Sequential Prefetching . . 256
Understanding List Prefetching 257
Prefetching and Intra-Partition Parallelism 258

Configuring I/O Servers for Prefetching and
Parallel I/O. 258

Enabling Parallel I/O 260
Allocating Multiple Pages at a Time. . . 262

Sorting 262
Different Types of Sorting 263
Tuning the Parameters that Affect Sorting 263
Looking for Indicators of Sorting
Performance Problems 263
Techniques for Managing Sorting
Performance 264

Reorganizing Catalogs and User Tables . . 265
Online Index Reorganization 268
Limiting the Need to Reorganize Tables 269

Performance Considerations for DMS
Devices 269
Managing Initialization Overhead 270
Database Agents 271
Using the Database System Monitor . . . 277
Extending Memory 279

Chapter 9. Using the Governor 281
Starting and Stopping the Governor . . . 281
The Governor Daemon 283
Creating the Governor Configuration File 284
Governor Log Files 292
Querying Governor Log Files 293
Running the Governor and Database
Manager Performance 294

Chapter 10. Scaling Your Configuration
Through Adding Processors 295
Adding Processors to a Machine 296
Adding Database Partitions to a Partitioned
Database System 297

Adding Database Partitions to a Running
System 298
Adding Database Partitions to a Stopped
System 299

Dropping a Database Partition from a
System 302
Problems When Adding Nodes to a
Partitioned Database 303

Chapter 11. Redistributing Data Across
Database Partitions 307

How to Partition Data 308
Adding and Dropping Database Partitions 308
Specifying a Target Partitioning Map . . . 309
How Data Is Redistributed Across Database
Partitions 309
How Data Is Redistributed in Tables . . . 310
Recovering From Redistribution Errors. . . 312
Data Redistribution and Other Operations 312
Following Data Redistribution 313

Chapter 12. Benchmark Testing 315
Benchmark Testing Methodology. 316
Preparing for Benchmark Testing 316
Creating a Benchmark Program 318
Executing the Benchmark Tests 324

Chapter 13. Configuring DB2 329
Tuning Configuration Parameters 330
Database Manager Parameters 331

Database Manager Configuration
Parameter Summary 332

Database Parameters 337
Database Configuration Parameter
Summary 339

Parameter Details by Function 343
Capacity Management 344

Database Shared Memory 345
Application Shared Memory 358
Agent Private Memory 359
Agent/Application Communication
Memory 371
Database Manager Instance Memory . . 378
Locks 382
I/O and Storage 386
Agents 394
Stored Procedures (DARI) 405

Logging and Recovery 409
Database Log Files 409
Database Log Activity 415
Recovery. 420
Distributed Unit of Work Recovery . . . 427

Database Management 431
Query Enabler 431
Attributes 432
DB2 Data Links Manager 435
Status 437
Compiler Settings 440

Communications 446
Communication Protocol Setup 446
Distributed Services 450

Contents v

DB2 Discovery 455
Partition Database 458

Communications 459
Parallel Processing 464

Instance Management 466
Diagnostic 466
Database System Monitor Parameters . . 469
System Management 471
Instance Administration. 478

Part 4. Appendixes 489

Appendix A. DB2 Registry and
Environment Variables 491

Appendix B. Explain Tables and
Definitions. 523
EXPLAIN_ARGUMENT Table 524
EXPLAIN_INSTANCE Table 528
EXPLAIN_OBJECT Table 530
EXPLAIN_OPERATOR Table 532
EXPLAIN_PREDICATE Table 534
EXPLAIN_STATEMENT Table 536
EXPLAIN_STREAM Table 539
ADVISE_INDEX Table 540
ADVISE_WORKLOAD Table 543
Table Definitions for Explain Tables 544

EXPLAIN_ARGUMENT Table Definition 545
EXPLAIN_INSTANCE Table Definition 546
EXPLAIN_OBJECT Table Definition. . . 547
EXPLAIN_OPERATOR Table Definition 548
EXPLAIN_PREDICATE Table Definition 549
EXPLAIN_STATEMENT Table Definition 550
EXPLAIN_STREAM Table Definition . . 551
ADVISE_INDEX Table Definition . . . 552
ADVISE_WORKLOAD Table Definition 554

Appendix C. SQL Explain Tools 555
Running db2expln and dynexpln 556
db2expln Syntax and Parameters. 556
Usage Notes for db2expln 558
dynexpln Syntax and Parameters 560
Usage Notes for dynexpln 562
Description of db2expln and dynexpln
Output 563

Table Access 564
Temporary Tables 569
Joins 572
Data Streams 574
Insert, Update, and Delete 575
Row Identifier (RID) Preparation. . . . 576
Aggregation 577
Parallel Processing 577
Federated Statement Processing 580
Miscellaneous Statements 581

Examples of db2expln and dynexpln Output 583
Example One: No Parallelism Plan . . . 583
Example Two: Single-Partition Database
Plan with Intra-Partition Parallelism . . 585
Example Three: Multipartition Database
Plan with Inter-Partition Parallelism . . 588
Example Four: Multipartition Database
Plan with Inter-Partition and
Intra-Partition Parallelism 592
Example Five: Federated Database Plan 596

Appendix D. db2exfmt - Explain Table
Format Tool 601

Appendix E. Using the DB2 Library . . . 603
DB2 PDF Files and Printed Books 603

DB2 Information 603
Printing the PDF Books 612
Ordering the Printed Books 613

DB2 Online Documentation 614
Accessing Online Help 614
Viewing Information Online 616
Using DB2 Wizards 618
Setting Up a Document Server 619
Searching Information Online 620

Appendix F. Notices 621
Trademarks 624

Index 627

Contacting IBM 643
Product Information 643

vi Administration Guide: Performance

About This Book

The Administration Guide in its three volumes provides information necessary
to use and administer the year 2000 ready, DB2* relational database
management system (RDBMS) products, and includes:
v Information about database design (found in Administration Guide: Planning)
v Information about implementing and managing databases (found in

Administration Guide: Implementation)
v Information about configuring and tuning your database environment to

improve performance (found in Administration Guide: Performance).

Many of the tasks described in this book can be performed using different
interfaces:
v The Command Line Processor, which allows you to access and manipulate

databases from a graphical interface. From this interface, you can also
execute SQL statements and DB2 utility functions. Most examples in this
book illustrate the use of this interface. For more information about using
the command line processor, see the Command Reference.

v The application programming interface, which allows you to execute DB2
utility functions within an application program. For more information about
using the application programming interface, see the Administrative API
Reference.

v The Control Center, which allows you to graphically perform
administrative tasks such as configuring the system, managing directories,
backing up and recovering the system, scheduling jobs, and managing
media. The Control Center also contains Replication Administration to
graphically set up the replication of data between systems. Further, the
Control Center allows you to execute DB2 utility functions through a
graphical user interface. There are different methods to invoke the Control
Center depending on your platform. For example, use the db2cc command
on a command line, (on OS/2) select the Control Center icon from the DB2
folder, or use start panels on Windows platforms. For introductory help,
select Getting started from the Help pull-down of the Control Center
window. The Visual Explain and Performance Monitor tools are invoked
from the Control Center.

There are other tools that you can use to perform administration tasks. They
include:
v The Script Center to store small applications called scripts. These scripts

may contain SQL statements, DB2 commands, as well as operating system
commands.

© Copyright IBM Corp. 1993, 2001 vii

v The Alert Center to monitor the messages that result from other DB2
operations.

v The Tool Settings to change the settings for the Control Center, Alert
Center, and Replication.

v The Journal to schedule jobs that are to run unattended.
v The Data Warehouse Center to manage warehouse objects.

Who Should Use This Book

This book is intended primarily for database administrators, system
administrators, security administrators and system operators who need to
design, implement and maintain a database to be accessed by local or remote
clients. It can also be used by programmers and other users who require an
understanding of the administration and operation of the DB2 relational
database management system.

How This Book is Structured

This book contains information about the following major topics:

Introduction to Performance

v Chapter 1. Elements of Performance, introduces concepts and considerations
for managing and improving DB2 UDB performance.

v Chapter 2. Architecture and Processes Overview, introduces underlying DB2
Universal Database architecture and processes.

Tuning Application Performance

v Chapter 3. Application Considerations, describes some techniques for
improving database performance when designing your applications.

v Chapter 4. Environmental Considerations, describes some techniques for
improving database performance when setting up your database
environment.

v Chapter 5. System Catalog Statistics, describes how statistics about your
data can be collected and used to ensure optimal performance.

v Chapter 6. Understanding the SQL Compiler, describes what happens to an
SQL statement when it is compiled using the SQL compiler.

v Chapter 7. SQL Explain Facility, describes the Explain facility, which allows
you to examine the choices the SQL compiler has made to access your data.

Tuning and Configuring Your System

v Chapter 8. Operational Performance, provides an overview of how the
database manager uses memory and other considerations that affect
run-time performance.

viii Administration Guide: Performance

v Chapter 9. Using the Governor, provides an introduction to the use of a
governor to control some aspects of database management.

v Chapter 10. Scaling Your Configuration Through Adding Processors,
introduces some considerations and tasks associated with increasing the
size of your database systems.

v Chapter 11. Redistributing Data Across Database Partitions, discusses the
tasks required in a partitioned database environment to redistribute data
across partitions.

v Chapter 12. Benchmark Testing, provides an overview of benchmark testing
and how to perform benchmark testing.

v Chapter 13. Configuring DB2, discusses the database manager and database
configuration files and the values for the configuration parameters.

Appendixes

v Appendix A. DB2 Registry and Environment Variables, presents profile
registry values and environment variables.

v Appendix B. Explain Tables and Definitions, provides information about the
tables used by the DB2 Explain facility and how to create those tables.

v Appendix C. SQL Explain Tools, provides information on using the DB2
explain tools: db2expln and dynexpln.

v Appendix D. db2exfmt - Explain Table Format Tool, formats the contents of
the DB2 explain tables.

v Appendix E. Using the DB2 Library, provides information about the
structure of the DB2 library, including wizards, online help, messages, and
books.

A Brief Overview of the Other Volumes of the Administration Guide

Administration Guide: Planning
The Administration Guide: Planning is concerned with database design. It
presents logical and physical design issues; distributed transaction issues; and
high availability topics. The specific chapters and appendixes in that volume
are briefly described here:

The World of DB2 Universal Database

v ″Administering DB2 Universal Database″ presents an introduction to, and
an overview of, DB2 Universal Database.

Database Concepts

v ″Basic Relational Database Concepts″ presents an overview of database
objects, including recovery objects, storage objects, and system objects.

About This Book ix

|
|

v ″Federated Systems″ discusses federated systems, which are database
management systems (DBMSs) that support applications and users
submitting SQL statements referencing two or more DBMSs or databases in
a single statement.

v ″Parallel Database Systems″ provides an introduction to the types of
parallelism available with DB2.

v ″About Data Warehousing″ provides an overview of data warehousing and
data warehousing tasks.

v ″About Spatial Extender″ introduces Spatial Extender by explaining its
purpose and discussing the data that it processes.

Database Design

v ″Logical Database Design″ discusses the concepts and guidelines for logical
database design.

v ″Physical Database Design″ discusses the guidelines for physical database
design, including considerations related to data storage.

Distributed Transaction Processing

v ″Designing Distributed Databases″ discusses how you can access multiple
databases in a single transaction.

v ″Designing for Transaction Managers″ discusses how you can use your
databases in a distributed transaction processing environment, such as
CICS.

High Availability Systems

v ″Introducing High Availability and Failover Support″ presents an overview
of the high availability failover support that is provided by DB2.

Appendixes

v ″Planning Database Migration″ describes information about migrating
databases to Version 7.

v ″Incompatibilities Between Releases″ describes the incompatibilities
introduced from release to release up to, and including, Version 7.

v ″National Language Support (NLS)″ describes DB2 National Language
Support, including information about countries, languages, and code pages.

Administration Guide: Implementation
The Administration Guide: Implementation is concerned with the implementation
of your database design. The specific chapters and appendixes in that volume
are briefly described here:

Administering Using the Control Center

x Administration Guide: Performance

|
|

|
|

|
|

v ″Administering DB2 Using GUI Tools″ describes the graphical user interface
(GUI) tools used to administer the database.

Implementing Your Design

v ″Before Creating a Database″ describes the prerequisites before you create a
database.

v ″Creating a Database″ describes those tasks associated with the creation of a
database and related database objects.

v ″Altering a Database″ discusses what must be done before altering a
database and those tasks associated with the modifying or dropping of a
database or related database objects.

Database Security

v ″Controlling Database Access″ describes how you can control access to your
database’s resources.

v ″Auditing DB2 Activities″ describes how you can detect and monitor
unwanted or unanticipated access to data.

Moving Data

v ″Utilities for Moving Data″ is a one-page introduction to the different ways
to move data and to direct you to the Data Movement Utilities Guide and
Reference book.

Recovery

v ″Recovering a Database″ is a one-page introduction to the concepts of
database backup, restore and rollforward. More extensive information can
be found in the Data Recovery and High Availability Guide and Reference.

Appendixes

v ″Using Distributed Computing Environment (DCE) Directory Services″
discusses information about how you can use DCE Directory Services.

v ″User Exit for Database Recovery″ discusses how user exit programs can be
used with database log files, and describes some sample user exit programs.

v ″Issuing Commands to Multiple Database Partition Servers″ discusses the
use of the db2_all and rah shell scripts to send commands to all partitions in
a partitioned database environment.

v ″How DB2 for Windows NT Works with Windows NT Security″ describes
how DB2 works with Windows NT security.

v ″Using the Windows NT Performance Monitor″ provides information about
registering DB2 with the Windows NT Performance Monitor, and using the
performance information.

About This Book xi

|
|

|
|

|
|

v ″Working with Windows NT or Windows 2000 Database Partition Servers″
provides information about the utilities available to work with database
partition servers on Windows NT or Windows 2000.

v ″Configuring Multiple Logical Nodes″ describes how to configure multiple
logical nodes in a partitioned database environment.

v ″High Speed Inter-node Communications″ describes how to enable Virtual
Interface Architecture for use with DB2 Universal Database.

v ″Lightweight Directory Access Protocol (LDAP) Directory Services″
provides information about how you can use LDAP Directory Services.

v ″Extending the Control Center″ provides information about how you can
extend the Control Center by adding new tool bar buttons including new
actions, adding new object definitions, and adding new action definitions.

xii Administration Guide: Performance

Part 1. Introduction to Performance

© Copyright IBM Corp. 1993, 2001 1

2 Administration Guide: Performance

Chapter 1. Elements of Performance

Performance is the way a computer system behaves given a particular work
load. Performance is measured through one or more of the system’s response
time, throughput, and availability. Performance is also affected by:
v The resources available
v How well those resources are used and shared.

In general, you should undertake performance tuning when you want to
improve the cost-benefit ratio of your system. Specific goals could include:
v Processing a larger, or more demanding, work load without increasing

processing costs. (For example, increasing the work load without buying
new hardware or using more processor time.)

v Obtaining faster system response times, or higher throughput, without
increasing processing costs.

v Reducing processing costs without negatively affecting service to your
users.

Translating performance from technical terms to economic terms is difficult.
Performance tuning certainly costs money (through people’s time and through
processor time), so before you undertake a tuning project, weigh its costs
against its possible benefits. Some of these benefits are tangible:
v More efficient use of resources
v The ability to add more users to the system.

Other benefits such as greater user satisfaction because of quicker response
time, are intangible. All of these benefits should be considered.

There are wizards integrated with DB2 that will assist you in completing
some performance-related administration tasks. These tasks are typically those
where you spend a little time and can achieve a significant performance
improvement. The wizards take you through each task one step at a time.
Wizards are available through the Control Center and the Client
Configuration Assistant.

The Performance Configuration wizard assists you to tune the performance of
a database by updating configuration parameters to match your business
requirements. This wizard, and, to a less extent the Create Database wizard,
can assist in improving the performance of a database. Other wizards are
available to assist in the improvement of performance of individual tables and
general data access. The wizards in this area include: Create Table, Index, and

© Copyright IBM Corp. 1993, 2001 3

|
|
|

Configure Multisite Update wizards. The wizards can be found from the
Control Center by clicking with the right mouse button on an object.

Tuning Guidelines

The following guidelines should help you develop an overall approach to
performance tuning.

Remember the Law of Diminishing Returns: Your greatest performance benefits
usually come from your initial efforts. Further changes generally produce
smaller and smaller benefits and require more and more effort.

Do Not Tune Just for the Sake of Tuning: Tune to relieve identified constraints. If
you tune resources that are not the primary cause of performance problems,
this has little or no effect on response time until you have relieved the major
constraints, and it can actually make subsequent tuning work more difficult. If
there is any significant improvement potential, it lies in improving the
performance of the resources that are major factors in the response time.

Consider the Whole System: You can never tune one parameter or system in
isolation. Before you make any adjustments, consider how it will affect the
system as a whole.

Change One Parameter at a Time: Do not change more than one performance
tuning parameter at a time. Even if you are sure that all the changes will be
beneficial, you will have no way of evaluating how much each change
contributed. You also cannot effectively judge the trade-off you have made by
changing more than one parameter at a time. Every time you adjust a
parameter to improve one area, you almost always affect at least one other
area that you may not have considered. By changing only one at a time, this
allows you to have a benchmark to evaluate whether the change does what
you want.

Measure and Reconfigure by Levels: For the same reasons that you should only
change one parameter at a time, tune one level of your system at a time. You
can use the following list of levels within a system as a guide:
v Hardware
v Operating System
v Application Server and Requester
v Database Manager
v SQL Statements
v Application Programs

4 Administration Guide: Performance

|
|
|
|
|
|
|
|
|

|

Check for Hardware and Software Problems: Some performance problems may be
corrected by applying service either to your hardware, or to your software, or
to both. Do not spend excessive time monitoring and tuning your system
when simply applying service may make it unnecessary.

Understand the Problem Before You Upgrade Your Hardware: Even if it seems that
additional storage or processor power could immediately improve
performance, take the time to understand where your bottlenecks are. You
may spend money on additional disk storage only to find that you do not
have the processing power or the channels to exploit it.

Put Fallback Procedures in Place Before You Start Tuning: As noted earlier, some
tuning can cause unexpected performance results. If this leads to poorer
performance, it should be reversed and alternative tuning tried. If the former
setup is saved in such a manner that it can be simply recalled, the backing out
of the incorrect information becomes much simpler.

Disk Storage

We have already mentioned that the hardware that makes up your system can
influence the performance of your system. As an example of the influence of
hardware on performance, consider some of the implications associated with
disk storage.

How you manage disk storage affects performance in four ways:
v How Storage is Divided:

How you divide a limited amount of storage between indexes and data,
among table spaces, and among buffer pools, determines to a large degree
how each will perform in different situations.

v Wasted Storage:
Wasted storage in itself may not affect the performance of the system that is
using it, but it may represent a resource that could be used to improve
performance elsewhere.

v Distributing Disk I/O:
How well you balance the demand for disk I/O across several disk storage
devices, and controllers can affect how fast the database manager can
retrieve information from disks.

v Running Out of Storage:
Reaching the limit of available storage can degrade overall performance.

Chapter 1. Elements of Performance 5

|
|
|
|

Performance Improvement Process

Use the following process to improve the performance of any system:
1. Define performance objectives.
2. Establish performance indicators.
3. Develop a performance monitoring plan.
4. Carry out the plan.
5. Analyze your measurements to determine whether you have met your

objectives. If you have, consider reducing the number of measurements
you make because performance monitoring itself uses system resources.
Otherwise, continue with the next step.

6. Determine the major constraints in the system.
7. Decide where you can afford to make trade-offs and which resources can

bear additional load. (Nearly all tuning involves trade-offs among system
resources and the various elements of performance.)

8. Adjust the configuration of your system. If you think that it is feasible to
change more than one tuning option, implement changes one at a time. If
there are no options left at any level, you have reached the limits of your
resources and need to upgrade your hardware.

9. Return to Step 4 above and continue to monitor your system.

Periodically, or after significant changes to your system or work load:
v Return to Step 1 above.
v Re-examine your objectives and indicators.
v Refine your monitoring and tuning strategy.

How Much Can a System be Tuned?

There are limits to how much you can improve the efficiency of a system.
Consider how much time and money you should spend on improving system
performance, and how much the spending of additional time and money will
help the users of the system.

Your system may perform adequately without any tuning at all, but it
probably will not perform to its potential. Each database is unique. As soon as
you develop your own database, and applications to use it, investigate the
tuning parameters available and learn how you can customize their settings to
reflect your situation. In some circumstances, there will only be a small benefit
from tuning a system; however, in most circumstances, the benefit may be
significant.

6 Administration Guide: Performance

|

|

|
|
|
|

Wizards are available from within the Control Center to assist in tuning the
database parameters. The Performance Configuration wizard can be found by
clicking the right mouse button on the database you want to tune from the
Control Center.

As your system encounters a performance bottleneck, it is more likely that
tuning will be effective. If you are close to the performance limits and you
increase the number of users on the system by about ten percent, the response
time is likely to rise by much more than ten percent. In this situation, you will
need to determine how to counterbalance this degradation in performance by
tuning your system. However, there is a point beyond which tuning cannot
help you. At this point, you should consider revising your goals and
expectations within your environment. Or, you should change your system
environment by considering: more disk storage, faster CPU, additional CPUs,
more main memory, faster communication links, or a combination of these
changes.

A Less Formal Approach

If you do not have enough time to set performance objectives and to monitor
and tune in a comprehensive manner, you can address performance by
listening to your users. Find out if they are having performance-releated
problems. You can usually locate the problem, or determine where to start
looking for the problem, by asking a few simple questions. For example, you
can ask your users:
v What do you mean by “slow response”? Is it ten percent slower than you

expect it to be, or tens of times slower?
v When did you notice the problems? Is it recent or has it always been there?
v Do you know of other users who are complaining of the same problem?

Are those complaining one or two individuals or a whole group?
v (If a whole group of users are experiencing difficulties, are they connected

to the same local area network?)
v Are the problems you are experiencing related to a specific transaction or

application program?
v Do your problems appear during regular periods such as at lunch hour, or

are they continuous?

Chapter 1. Elements of Performance 7

|
|
|
|
|
|
|
|
|
|
|

|
|

Putting It All Together

The underlying architecture of DB2 is important since an understanding of
key concepts and processes will assist you with other performance issues.
Topics such as storage architecture, data management, the processing model,
and the memory model are all initially presented in the next chapter. See
“Chapter 2. Architecture and Processes Overview” on page 11 for more
information.

Tuning application performance is concerned with those performance topics
associated with your applications and their interaction with the database.
There are topics specific to applications themselves: concurrency, locking,
optimization classes, control of results sets on queries, row blocking, use of
compound SQL. In addition, there are brief discussions of: character
conversion as it relates to application performance; stored procedures;
activation of databases; and the advantages of parallel processing. See
“Chapter 3. Application Considerations” on page 43 for more information.

There are topics specific to optimization of queries: configuration parameters
affecting query optimization, the impact of node groups and table spaces on
query optimization, and the large impact that indexes can have on query
optimization. See “Chapter 4. Environmental Considerations” on page 91 for
more information.

System catalog statistics have a significant influence on how well data is
accessed by applications. The following topics are associated with statistics:
the RUNSTATS utility, distribution statistics, index statistics, and those
statistics that can be updated by users. See “Chapter 5. System Catalog
Statistics” on page 113 for more information.

The SQL compiler takes each application and determines the best access plan
for that application. Each query within the application is evaluated and may
undergo several different operations designed to most clearly define the goal
of the query. Then different methods of access (scans and joins) are reviewed
for each query to determine the quickest way to retrieve the data requested by
the query. The effects of parallelism are also considered. See “Chapter 6.
Understanding the SQL Compiler” on page 149 for more information.

There are different tools available within the DB2 product to assist in the
understanding of what is happening with the queries of an application. These
tools are concerned with explaining what is affecting application performance.
See “Chapter 7. SQL Explain Facility” on page 213 for more information.

In addition to tuning individual applications, you should also consider the
performance of the database where those applications are running.
Performance of your database is determined in large part by how well

8 Administration Guide: Performance

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

memory is used. There are many topics surrounding memory that are
concerned with performance: buffer pools, prefetching of data, parallel I/O,
sorting capabilities, the need to reorganize the data in tables, and the concept
of database agents. See “Chapter 8. Operational Performance” on page 239 for
more information.

There is a Governor that can be set up to manage how applications are using
the database. See “Chapter 9. Using the Governor” on page 281 for more
information.

The number of processors and the number of database partitions can be
increased to improve the performance of the database. See “Chapter 10.
Scaling Your Configuration Through Adding Processors” on page 295 for more
information.

Once you have increased the number of database partitions, you will want to
ensure the data in the database is spread or redistributed correctly among the
database partitions. See “Chapter 11. Redistributing Data Across Database
Partitions” on page 307 for more information.

To determine how well your database is performing, you can conduct
benchmark testing. The methodology for benchmark testing, how to prepare
for a benchmark test, the creation of a benchmark program, and the running
of benchmark tests are all topics of importance. See “Chapter 12. Benchmark
Testing” on page 315 for more information.

The very extensive set of database manager and database configuration
parameters are presented individually within “Chapter 13. Configuring DB2”
on page 329.

There is additional information that is related to these performance topics. The
appendices include the following:
v “Appendix A. DB2 Registry and Environment Variables” on page 491
v “Appendix B. Explain Tables and Definitions” on page 523
v “Appendix C. SQL Explain Tools” on page 555
v “Appendix D. db2exfmt - Explain Table Format Tool” on page 601

Chapter 1. Elements of Performance 9

10 Administration Guide: Performance

Chapter 2. Architecture and Processes Overview

When working with the performance of the database operations for DB2, you
need some understanding of the rudimentary concepts involving the DB2
architecture and processes. This chapter presents sufficient information to
provide you with information on how DB2 Universal Database works. While
later chapters provide greater detail on some of the topics found here, what is
shown in this chapter creates the context for later understanding.

The first figure shows an overview of the architecture and processes for DB2
UDB.

© Copyright IBM Corp. 1993, 2001 11

On the client-side, there are local and/or remote applications that are linked
with the DB2 Universal Database client library.

Between the clients and the DB2 Universal Database server is a “cloud”
representing the means of communication between the local or remote clients,
and the server. Local clients communicate using shared memory and
semaphores; remote clients use a protocol such as Named Pipes (NPIPE),
TCP/IP, NetBIOS, IPX/SPX, or SNA.

Page cleaners

Shared memory and semaphores,
TCPIP, Named pipes, NetBIOS,
SNA, IPX/SPX

Logger

Log buffer

Clients

UDB server

Buffer
Pool(s)

Hard disksHard drive

Log

Hard disks

Scatter/Gather
I/Os

Write log
requests

Async I/O
prefetch
requests

Common prefetch
request queue

Coordinator
agent

Subagents Subagents

UDB Client Library

Client
application

Client
application

Parallel, page
write requests

Prefetchers

Logical
agents

Parallel,
big-block,
read requests

Hard disks

Coordinator
agent

Deadlock
detector

Victim
notifications

Figure 1. Architecture and Processes Overview

12 Administration Guide: Performance

On the server-side, activity is controlled by engine dispatchable units (EDUs).
In all figures in this chapter, EDUs are shown as circles or groups of circles.
EDUs are implemented as threads on Windows-based platforms and on OS/2
(all within a single process), and as processes on UNIX. The most common
type of EDUs are DB2 agents. These EDUs carry out the bulk of the SQL
processing on behalf of applications. Other examples of EDUs are the DB2
prefetchers and page cleaners which are responsible for various types of I/O
processing. See “Database Agents” on page 271 for more information.

Each client application is assigned a unique EDU called a “coordinator agent”
which coordinates the processing for that application and communicates with
it. There may also be a set of subagents assigned together to work on
processing the client application requests. Multiple subagents may be assigned
so that if the machine where the server resides has multiple processors, like in
a symmetric multiprocessing environment, the client application requests can
exploit those processors.

All agents and subagents are managed using a pooling algorithm which
minimizes the creation and/or destruction of EDUs.

A buffer pool is an area of storage memory where database pages of user
table data, index data, and catalog data are temporarily moved and perhaps
modified. The buffer pool is a key influencer of overall database performance
because data can be accessed much faster from memory than from a disk. If
more of the data needed by applications were present in the buffer pool then
less time would be needed to access this data compared to time taken to find
the data on disk storage. See “Managing the Database Buffer Pool” on
page 247 for more information.

The configuration of the buffer pool, along with prefetcher and page cleaner
EDUs, controls the speed of access to data and the resulting availability of the
data needed by the applications.

The prefetchers are present to retrieve data from disk and move it into the
buffer pool before applications need the data. For example, applications
needing to scan through large volumes of data would have to wait for data to
be moved from disk into the buffer pool if there were no data prefetchers.
Agents of the application send asynchronous read-ahead requests to a
common prefetch queue. As prefetchers become available, they implement
those requests by using big-block or scatter read input operations to bring the
requested pages from disk to the buffer pool. Having multiple disks for
storage of the database data means that the data can be striped across the
disks. This striping of data enables the prefetchers to use multiple disks at the
same time to retrieve data. See “Prefetching Data into the Buffer Pool” on
page 255 and “Configuring I/O Servers for Prefetching and Parallel I/O” on
page 258 for more information.

Chapter 2. Architecture and Processes Overview 13

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

Prefetchers are used to bring data into the buffer pool. Page cleaners are used
to move data from the buffer pool back out to disk.

Page cleaners are background EDUs, independent of the application agents,
that look for, and write out, pages from the buffer pool that are no longer
needed. Page cleaners can ensure that there is room in the buffer pool for the
pages being retrieved by the prefetchers.

Without the existence of the independent prefetchers and page cleaner EDUs,
the application agents would have to do all of the reading and writing of data
between the buffer pool and disk storage.

With multiple applications working with data from the database there are
opportunities for a “deadlock” to occur between two or more applications. A
deadlock is illustrated in the following figure.

A “deadlock” means that more than one application is waiting for another
application to release a lock on data. Each of the waiting applications is
holding data needed by other applications through locking. This locked data
is required by one or more other applications which are, in turn, holding data
needed by other applications. Mutual waiting for the other application to
release a lock on held data leads to a deadlock: The applications can wait
forever until the “other” application releases the lock on the held data. The
other applications do not voluntarily release locks on data that they need. A
process is required to break these deadlock situations.

x

x

Deadlock concept
Table 1

Table 2

Row 1

Row 1

Row 2

Row 2

T : update row 1 of table 11
T : update row 2 of table 2
T : deadlock

2

3

Application A
T : update row 2 of table 21
T : update row 1 of table 1
T : deadlock

2

3

Application B

...

...

...

...

...

...

Figure 2. deadlock Detector

14 Administration Guide: Performance

As its name suggests, the deadlock detector monitors the information about
agents waiting on locks. The deadlock detector arbitrarily selects one of the
applications in the deadlock to release the locks currently held by the
“volunteered” application. By releasing the locks of that application, the data
required by other waiting applications is made available for use. The formerly
waiting applications are then free to use the data required to complete actions
on data in the database.

Changes to data pages in the buffer pool are logged. A log buffer exists and is
associated with a logger EDU. Agents updating a data record in the database
update the associated page in the buffer pool and write a log record. The log
record contains the information necessary to either redo or undo the change.
The page in the buffer pool and the log record in the log buffer are not
written to disk immediately to optimize performance. The logger EDU and
the buffer pool manager cooperate to implement a write ahead logging (WAL)
protocol that ensures that the data page is not written to disk before its
associated log record is written to the log. The WAL protocol ensures that
there is always enough information in the log to recover from a crash and to
restore database consistency. If an uncommitted update on a page was written
to a disk, crash recovery uses the undo information in the associated log
record to undo the update. If a committed update did not make it to disk,
crash recovery uses the redo information in the associated log record to redo
the update.

Note: On a COMMIT, all log records in the transaction are flushed to disk, if
they were not already flushed.

Storage Architecture

Within the discussion of storage architecture, we will consider:
v “Database Directory”
v “Table Spaces” on page 17

Database Directory
When you create a database, information about the database including default
information is placed within a directory. The directory structure is created for
you at a location that is based on the information you provide in the CREATE
DATABASE command. If you do not specify the location of the path or drive
when creating the database, the default location is used.

It is recommended that you explicitly state where you would like the database
created.

At the directory you specify in the CREATE DATABASE command, a
subdirectory using the name of the instance is created. This subdirectory
ensures that databases created in different instances under the same directory

Chapter 2. Architecture and Processes Overview 15

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

do not use the same path. Following the instance name subdirectory, a
subdirectory named NODE0000 is created. This subdirectory is used to
differentiate partitions in a multiple logical partitioned database environment.
Following the node directory, a subdirectory named SQL00001 is created. This
subdirectory is named using the database token and represents the database
being created. It is also used to differentiate databases created in this instance
on the directory you specified in the CREATE DATABASE command.

The directory structure would appear like the following:
<your_directory>/<your_instance>/NODE0000/SQL00001/

The database directory will contain several files that were created as part of
the CREATE DATABASE command. Buffer pool information is contained in
the files SQLBP.1 and SQLBP.2. Table space information is contained in the
files SQLSPCS.1 and SQLSPCS.2. There are two of each of these files to allow
for backing up the information in these files.

Database configuration information is contained in SQLDBCON. The history
file DB2RHIST.ASC and its backup DB2RHIST.BAK are readable by you and
contain history information about backups, restores, loading of tables,
reorganization of tables, altering of a table space, and other changes to a
database.

The log control file, SQLOGCTL.LFH, contains information about the active
logs. Recovery processing uses information from this file to determine how far
back in the logs to begin recovery. The SQLOGDIR subdirectory contains the
actual log files.

Note: You should ensure the log subdirectory is mapped to different disks
than those used for your data. A disk problem could then be restricted
to your data or the logs but not both. As well, this can provide a
substantial peformance benefit, as the log files and database containers
are not competing for movement of the same disk heads. You can
change the location of the log subdirectory using the newlogpath
database configuration parameter.

The SQLT* subdirectories are created and contain the default System Managed
Space (SMS) table spaces required for an operational database. There are three
default table spaces created:
v SQLT0000.0 subdirectory contains the catalog table space with the system

catalog tables.
v SQLT0001.0 subdirectory contains the default temporary table space.
v SQLT0002.0 subdirectory contains the default user data table space.

16 Administration Guide: Performance

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

You will also read of “containers” when considering table spaces. For SMS
table spaces, containers are operating system directories.

Each subdirectory or container has a file created in it called SQLTAG.NAM.
This file marks the subdirectory as being in use so that subsequent table space
creation will not attempt to use these subdirectories. There are also other files
that are created under the container subdirectories with different name
extensions to distinguish between the type of data stored in the files. The
extensions are:
v SQL*.DAT (containing non-long table data)
v SQL*.LF (containing LONG VARCHAR or LONG VARGRAPHIC data)
v SQL*.LB (containing BLOB, CLOB, or DBCLOB data)
v SQL*.LBA (containing allocation and free space information about SQL*.LB

files)
v SQL*.INX (containing index table data)
v SQL*.DTR (containing temporary data for a reorganization of an SQL*.DAT

file)
v SQL*.LFR (containing temporary data for a reorganization of an SQL*.LF

file)
v SQL*.RLB (containing temporary data for a reorganization of an SQL*.LB

file)
v SQL*.RBA (containing temporary data for a reorganization of an SQL*.LBA

file)

Table Spaces
There are two types of table spaces supported: System Managed Space (SMS)
and Database Managed Space (DMS). Each has its own characteristics that
make it appropriate for different environments. Refer to Administration Guide:
Planning for more information on designing and choosing table spaces.

SMS Table Spaces
System Managed Space (SMS) table spaces store data in operating system
files. The data in the table spaces is striped by extent across all the containers
in the system. An extent is a group of consecutive pages defined to the
database. Each table in a table space is given its own file name which is used
by all containers. The file extension denotes the type of the data stored in the
file. The starting extent for each table is placed in “round robin” fashion
throughout the containers. This spreads the space requirement evenly across
all containers in the table space. This is very important when there are a large
number of small tables.

Allocation of space is done when there is a demand for additional space. By
default, space is allocated one page at a time.

Chapter 2. Architecture and Processes Overview 17

|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

DMS Table Spaces
With Database Managed Space (DMS) table spaces, the database manager
controls the storage space. A list of devices or files is selected to belong to a
table space when the DMS table space is defined. The space on those devices
or files is managed by the DB2 database manager. As with SMS table spaces
and containers, DMS table spaces and the database manager use striping by
extent to ensure an even distribution of data across all containers.

DMS table spaces differ from SMS table spaces in that for DMS table spaces,
space is allocated when the table space is created and not allocated when
needed.

Also, placement of data can differ on the two types of table spaces. For
example, consider the need for efficient table scans: It is important that the
pages in an extent are physically contiguous. With SMS, the file system of the
operating system decides where each logical file page is physically placed.
The pages may, or may not, be allocated contiguously depending on the level
of other activity on the file system and the algorithm used to determine
placement. With DMS, however, the database manager can ensure the pages
are physically contiguous because it interfaces with the disk directly.

There is one exception to this general statement regarding contiguous
placement of pages in storage. There are two container options when working
with DMS table spaces: Raw devices and files. When working with file
containers, the database manager allocates the entire container at table space
creation time. A result of this initial allocation of the entire table space is that
the physical allocation is typically, but not guaranteed to be, contiguous even
though the file system is doing the allocation. When working with raw device
containers, the database manager takes control of the entire device and always
ensures the pages in an extent are contiguous.

Unlike SMS table spaces, the containers that make up a DMS table space do
not need to be close to being equal in their capacity. However, it is
recommended that the containers are equal, or close to being equal, in their
capacity. Also, if any container is full, any available free space from other
containers can be used in a DMS table space.

When working with DMS table spaces, you should consider associating each
container with a different disk. This allows for a larger table space capacity
and the ability to take advantage of parallel I/O operations.

The CREATE TABLESPACE statement creates a new table space within a
database, assigns containers to the table space, and records the table space
definition and attributes in the catalog. One of the things defined when
creating the table space is the extent size. An extent is the unit of space
allocation within a table space. It is simply a set of contiguous pages. The

18 Administration Guide: Performance

extent size is the number of contiguous pages. Only one table (or other object,
such as an index) can use the pages in any single extent. All objects (tables,
indexes, and others) created in the table space are allocated extents in a logical
table space address map. An extent belongs to only one object at a time.
Extent allocation is managed through Space Map Pages (SMP).

The first extent in the logical table space address map is a header for the table
space containing internal control information. The second extent is the first
extent of Space Map Pages (SMP) for the table space. SMP extents are spread
at regular intervals throughout the table space. Each SMP extent is simply a
bit map of the extents from the current SMP extent to the next SMP extent.
The bit map is used to track which of the intermediate extents are in use or
not.

The next extent following the SMP is the object table for the table space. The
object table is an internal table that tracks which user objects exist in the table
space and where their first Extent Map Page (EMP) extent is located. Each
object has its own EMPs which provide a map to each page of the object that
is stored in the logical table space address map.

The next figure shows the logical address map for a DMS table space.

Chapter 2. Architecture and Processes Overview 19

|

The object table is an internal relational table that maps an object identifier to
the location of the table’s first EMP extent. This EMP extent, directly or
indirectly, maps out all extents in the object. Each EMP contains an array of
entries. Each entry maps an object-relative extent number to a table
space-relative page number where the object extent is located. Direct EMP
entries directly map object-relative addresses to table space-relative addresses.
The last EMP page in the first EMP extent contains indirect entries. Indirect
EMP entries map to EMP pages which then map to object pages. The last 16
entries in the last EMP page in the first EMP extent contain double-indirect
entries.

The extents from the logical table space address map are striped in a round
robin fashion across the containers associated with the table space.

Comparing SMS and DMS Table Spaces
When comparing SMS and DMS table spaces, SMS table spaces are an
excellent choice for general purposes. SMS table spaces provide very good
performance with very little administration cost. DMS table spaces are the
best choice when seeking top performance. Device containers provide the best
performance since double buffering can occur when moving data using file

Header0

1

2

3
16
20
32

4

5

6

7

8

31968

Object
Table EMP

T1
T2

12
24

Table space (logical) address map

Indirect Entries

Maps object-relative
extent number within
T2 to table space-relative
page number

Object ID for
the table

First
EMP

Reserved

First Extent of SMPs

First Extent of Object Table

Extent Map for T1

First Extent of T1 Data Pages

Second Extent of T1 Data Pages

Extent Map for T2

First Extent of T2 Data Pages

Third Extent of T1 Data Pages

Second Extent of SMPs

...

...

...

...

...

...

Maps object-relative
extent number within
T1 to table space-relative
page number

Double Indirect Entries

Figure 3. DMS Table Spaces

20 Administration Guide: Performance

|

|
|

containers or SMS table spaces. (Double buffering can occur when the data is
buffered first at the database manager level and then again at the file system
level.)

Data Management

Following the creation of a database, the creation of a table space, the creation
of a table, and the placing of data into the table, it is interesting to know how
the table is organized and how indexes are used to retrieve that table data.

Logically, table data is organized as a list of data pages. And these data pages
are logically grouped together based on the extent size of the table space. For
example, if the extent size is four, pages zero to three are part of the first
extent, pages four to seven are part of the second extent, and so on.

Logical table view Logical index view

Data page format

Some pages contain
internal records
(e.g., FSCR records)

User
records

Every 500th
page contains
another FSCR

More
user records

0

1

2

3

500

K RID

C
K

RID
RID

S RIDK RIDA
C

RID

RID (record ID) = Page 3, Slot 2

3,2

Page Header

3800 -1 3400

Record 2

Record 1

Figure 4. Tables, Records, and Indexes

Chapter 2. Architecture and Processes Overview 21

The number of records contained within each data page can vary based on the
size of the data page and the size of the records. A maximum of 255 records
can fit on one page. Most pages contain only user records. However, a small
number of pages include special internal records, that are used by DB2 to
manage the table. For example, there is a Free Space Control Record (FSCR)
on every 500th data page. These records map out how much free space for
new records exists on each of the following 500 data pages (until the next
FSCR). This available free space is used when inserting records into the table.

Logically, index pages are organized as a B-tree which can efficiently locate
records in the table data which have a given key value. The number of
entities on an index page is not fixed but depends on the size of the key. For
tables in DMS table spaces, record identifiers (RIDs) in the index pages use
table space-relative page numbers, not object-relative page numbers. This
allows an index scan to directly access the data pages without requiring an
Extent Map page (EMP) for mapping.

Each data page has the following format: A page header begins each data
page. After the page header there is a slot directory. Each entry in the slot
directory corresponds to a different record on the page. The entry itself is the
byte-offset into the data page where the record begins. Entries of minus one
(-1) correspond to deleted records.

Record Identifiers and Pages
Record identifiers (RIDs) are a three-byte page number followed by a one-byte
slot number. Once the index is used to identify a RID, the RID is used to get
to the correct data page and slot number on that page. The contents of the slot
is the byte-offset within the page to the beginning of the record being sought.
Once a record is assigned a RID, it does not change until a table
reorganization.

22 Administration Guide: Performance

When a table is reorganized, embedded free space that is left on the data page
following the deletion of a record is converted to usable free space. RIDs are
redefined based on movement of records on a data page to take advantage of
the usable free space.

DB2 supports different page sizes. Use larger page sizes for workloads that
tend to access rows sequentially. For example, sequential access is used for
Decision Support applications or where temporary tables are extensively used.
Use smaller page sizes for workloads that tend to be more random in their
access. For example, random access is used in OLTP-environments.

For more information on reorganizing a table, see “Reorganizing Catalogs and
User Tables” on page 265.

Space Management
You use the SQL INSERT statement to place new information into a table.
When you do this, there is an INSERT search algorithm that is followed to
complete the work. First the Free Space Control Records (FSCRs) are used to
find a page with enough space. However, even when the FSCR says a page
has enough free space, the space may not be usable because it is “reserved”
by an uncommitted DELETE from another transaction. As a result, you should
ensure that all transactions COMMIT frequently; otherwise, uncommitted
freed space will not be usable.

Not all FSCRs in a table are searched. The DB2MAXFSCRSEARCH registry
variable limits the number of FSCRs considered when attempting an INSERT.
The default value for this registry variable is five. If no space is found within
five FSCRs, then the record being inserting is appended to the end of the

Data page and RID format

Page 473
Page Header
3800 3400-1

Record 2

Record 1

473

Page #

0
1 byte3 bytes

slot #

RID

Free space
(usable without page
reorganization *)

Embedded free space
(usable after online
page reorganization*)

* Exception: Any space reserved by an uncommitted
DELETE is not usable.

Supported page sizes:
4KB, 8KB,

16KB, 32KB
Set on table space creation.
Each table space must be
assigned a buffer pool with
a matching page size.

Figure 5. Data Page and RID Format

Chapter 2. Architecture and Processes Overview 23

|
|
|
|
|
|
|
|

table. And, to optimize INSERT speed, subsequent records are also appended
to the end of the table until two extents are filled. Once the two extents are
filled, the next INSERT resumes searching at the FSCR where the last search
ended.

Note: The value of DB2MAXFSCRSEARCH is important. To optimize for
INSERT speed (at the possible expense of quicker table growth), set this
registry variable to a small value. To optimize for space reuse (at the
possible expense of INSERT speed), set this registry variable to a large
value.

Once the entire table is searched, the record to be inserted will be appended
without additional searching. Searching using the FSCRs is not done again
until space is created somewhere in the table (following a DELETE, for
example).

There are two other search algorithm options. The first is APPEND MODE. In
this mode, new rows are always appended to the end of the table. No
searching or maintenance of FSCRs takes places. This option is enabled using
the ALTER TABLE APPEND ON statement, and can increase performance for
tables that only grow, like journals. The second choice is to define a clustering
index on the table. In this case, the database manager attempts to insert
records on the same page as other records with similar index key values. If
there is no space on that page, the attempt is made to put the record into the
surrounding pages. If there is still no success, the FSCR search algorithm,
described above, is used – with one small difference: a worst-fit approach is
used rather than a first-fit approach. This worst-fit approach tends to choose
pages with more free space. This is done to establish a new clustering area for
rows with this key value.

When you define a clustering index on a table, use ALTER TABLE... PCTFREE
before either loading or reorganizing the table. The PCTFREE clause leaves
the percentage value given as free space on that table’s data page after
loading and reorganizing. This increases the likelihood that the cluster index
operation will find free space on the desired page.

24 Administration Guide: Performance

|
|
|
|

Overflow records are possible when an update request enlarges an existing
record so that it cannot fit into the current page. The enlarged record is
inserted on another page, where there is sufficient room, as an overflow
record. The original RID is converted to a pointer record which contains the
new RID of the overflow record. The indexes for the table keep the original
RID and an extra page read is required to get to the data record requested.
Many overflow records means many extra page reads and slower performance
accessing the table. Reorganization of the table eliminates overflow records.
Whenever possible, however, you should avoid update requests that enlarge
records and so avoid overflow records.

Index Management
DB2 indexes are an optimized B-tree implementation based on an efficient and
high concurrency index management method using write-ahead logging.

The optimized B-tree implementation has bi-directional pointers on the leaf
pages that allows a single index to support scans in either forward or reverse
direction (but not both at the same time). Index page splits are normally right
in half except at the high-key page where a 90/10 split is used. That is, the
high ten percent of the index keys are placed on a new page. This type of
index page split is useful for workloads where INSERT requests are often
completed with new high-keys.

Pages in the index are freed when the last index key on the page is removed.
The exception to this rule occurs when the MINPCTUSED clause is selected
when creating the index. The use of this clause indicates that the index can be
reorganized online; and that the value given with this clause is the threshold
for the minimum percentage of space used on the index leaf pages. If, after a
key is deleted from an index page, the percentage of space used on the page
is at or below the value given then an attempt is made to merge the
remaining keys with those of a neighboring page. If there is sufficient room,
the merge is performed and an index leaf page is deleted. Use of this clause

Data pages and overflow records

Page 1056
Page Header
3800 3700

Record 1

1056 1

Page 473
Page Header
3800 3400-1

Record 2

Record 1 473, 2

Figure 6. Data Page and Overflow Records

Chapter 2. Architecture and Processes Overview 25

can improve space reuse; however, if the value used is too high then the time
taken to attempt a merge increases but also becomes less likely to succeed. It
is recommended that the value for this clause always be less than fifty
percent.

The INCLUDE clause of the CREATE INDEX statement allows for the
inclusion of the specified column(s) on the index leaf pages in addition to the
key columns. This can increase the number of queries that are eligible for
index-only access. However, this can also increase the index space
requirements and, possibly, index maintenance costs if the included columns
are updated frequently. Ordering the index B-tree is only done using the key
columns and not the included columns.

Locking
The database manager provides concurrency control and prevents
uncontrolled access to resources and data by means of locks. A lock associates
an application with a database manager resource or data record. The lock
controls how other applications can access the same resource or data record.

The database manager uses record-level locking or table-level locking as
appropriate based on:
v The isolation level specified at precompile time or when an application is

bound to the database. The isolation level can be one of: Uncommitted
Read (UR), Cursor Stability (CS), Read Stability (RS), or Repeatable Read
(RR). The different isolation levels are used to control access to
uncommitted data, prevention of lost updates, allowance of non-repeatable
reads of data, and prevention of phantom reads. Use the minimum isolation
level that satisfies your application needs.

v The access plan selected by the optimizer. Table scans, index scans, and
other methods of data access each require different types of access to the
data.

v The table’s LOCKSIZE attribute. The LOCKSIZE clause on the ALTER
TABLE statement indicates the granularity of the locks used when the table
is accessed. The choices are either ROW for row locks, or TABLE for table
locks. Use ALTER TABLE... LOCKSIZE TABLE for read-only tables. This
reduces the number of locks required by database activity.

v The amount of memory devoted to locking. The amount of memory
devoted to locking is controlled by the locklist database configuration
parameter. If the lock list fills, performance can degrade due to lock
escalations and reduced concurrency on shared objects in the database.
Increase the value of locklist and/or maxlocks if you encounter frequent lock
escalations.

Ensure all transactions COMMIT frequently to free held locks.

26 Administration Guide: Performance

In general, record-level locking is used unless one of the following is the case:
v The isolation level chosen is Uncommitted Read (UR).
v The isolation level chosen is Repeatable Read (RR) and the access plan

requires a scan with no predicates.
v The table’s LOCKSIZE attribute is “TABLE”.
v The lock list fills and lock escalation occurs.
v There is an explicit table lock acquired via the LOCK TABLE statement. The

LOCK TABLE statement prevents concurrent application processes from
either changing a table or using a table.

A lock escalation is the conversion of one or more record locks to a table lock.
An exclusive lock escalation is a lock escalation where the table lock acquired
is an exclusive lock. Lock escalations reduce concurrency and should be
avoided.

The duration of record locking varies with the isolation level being used:
v Uncommitted Read (UR) scans: No record locks are held unless a record is

changing.
v Cursor Stability (CS) scans: Record locks are only held while the cursor is

positioned on the record.
v Read Stability (RS) scans: Only qualifying record locks are held for the

duration of the transaction.
v Repeatable Read (RR) scans: All record locks are held for the duration of

the transaction. If you are in an environment where this isolation level is
not needed or not wanted, use the DB2_RR_TO_RS registry variable. This
tells the database manager to avoid the extra locking required to enable RR
semantics and, as a result, increases performance.

See “Locking” on page 51 for more information on this topic.

Logging
There are two logging strategy choices:
v Circular logging where the log records fill the log files and then overwrite

the initial log records in the initial log file. The overwritten log records are
not recoverable.

v Retain log records where once a log file is filled with log records, it is
archived. New log files are made available for log records. Retaining log
files enables roll-forward recovery. Roll-forward recovery reapplies changes
to the database based on completed units of work (transactions) that are
recorded in the log. You can specify that roll-forward recovery is to the end
of the logs, or to a particular point in time before the end of the logs.

Chapter 2. Architecture and Processes Overview 27

|
|
|
|
|

No matter which choice is made, all changes to regular data and index pages
are written to the log buffer. The data in the log buffer is only forced to disk:
v Before the corresponding data pages are being forced to disk. This is called

“write-ahead logging”.
v On a COMMIT or after the value of the number of COMMITS to group

(mincommit) database configuration parameter is reached.
v When the log buffer is almost full. The logger process writes log data to

disk to prevent a “log buffer full” condition.

Note: At the time the transaction completes by using the COMMIT statement,
all changed pages are flushed to disk to ensure recoverability.

When transactions are short, the log I/O can become a “bottleneck” due to
the frequency of the flushing of the log at COMMIT time. In such
environments, setting the mincommit configuration parameter to a value
greater than one can remove the “bottleneck”. When a value greater than one
is used, the COMMITs for several transactions are held or “batched”. The first
transaction to COMMIT waits until (mincommit - 1) more transactions
COMMIT; and then the log is forced to disk and all transactions respond to
their applications. The result is only one log I/O instead of several individual
log I/O’s.

In order to avoid an excessive degradation in response time, each transaction
only waits up to one second for the (mincommit - 1) other transactions to
COMMIT. If the one second of time expires, the waiting transaction will force
the log itself and respond to its application. This allows you to set mincommit
and yet not be too concerned with performance during times of fewer
transactions being processed.

Changes to Large Objects (LOBs) and LONG VARCHARs are tracked through
shadow paging. LOB column changes are not logged unless log retain is used
and the LOB column is defined on the CREATE TABLE statement as not
using the NOT LOGGED clause. Changes to allocation pages for LONG or
LOB data types are logged like regular data pages.

What Happens When Updating
What happens to the log and to the data page when an agent updates a page?
The protocol described here minimizes the I/O required by the transaction
and also ensures recoverability.

First, the page to be updated is pinned and latched with an exclusive lock. A
log record is written to the log buffer describing how to redo and undo the
change. As part of this action, a log sequence number (LSN) is obtained and is
stored in the page header of the page being updated. The change is then
made to the page. Finally, the page is unlatched and unfixed. The page is

28 Administration Guide: Performance

|
|

|
|

considered to be “dirty” because there are changes to the page that have not
been written out to disk. The log buffer has also been updated.

Both the data in the log buffer and the “dirty” data page will need to be
forced to disk. For the sake of performance, these I/Os are delayed until a
convenient point (for example, during a lull in the system load), or until
necessary to ensure recoverability, or to limit recovery time. More specifically,
a “dirty” page is forced to disk:
v When another agent chooses it as a victim.
v When a page cleaner acts on the page as the result of:

– Another agent choosing it as a victim.
– The chngpgs_thresh database configuration parameter percentage value is

exceeded. Once exceeded, asynchronous page cleaners “wake-up” and
write changed pages to disk.

– The softmax database configuration parameter percentage value is
exceeded. Once exceeded, asynchronous page cleaners “wake-up” and
write changed pages to disk.

v When the page was updated as part of a table which has the NOT
LOGGED INITIALLY clause invoked and a COMMIT is issued. At the time
of the COMMIT all changed pages are flushed to disk to ensure
recoverability.

A log buffer is forced to disk by the logger engine dispatchable unit (EDU):
v Before the corresponding data pages are being forced to disk. This is called

“write-ahead logging”.
v On a COMMIT, or after the value of the number of COMMITS to group

(mincommit) database configuration parameter is reached.
v When the log buffer is almost full. The logger process writes log data to

disk to prevent a “log buffer full” condition.

Process Model

Local and remote application processes can work with the same database. A
remote application is one that initiates a database action from a machine that
is remote from the database machine. Local applications are directly attached
to the database at the server machine.

Each of the circles of the following figure represent engine dispatchable units
(EDUs) which are known as “processes” on UNIX platforms, and “threads”
on Windows NT and OS/2 platforms.

Chapter 2. Architecture and Processes Overview 29

|
|
|
|
|

|
|

|
|

A means of communicating between an application and the database manager
must be established before the work the application wants done at the
database can be carried out.

In the figure above at A1, a local client establishes communications first by
working with the db2ipccm engine dispatchable unit (EDU). This EDU at A2
works with a db2agent EDU that becomes the coordinator agent for the
application requests from the local client. The coordinator agent contacts the
client application at A3 and establishes shared memory and semaphores
communication between the client application and the database at A4. The
application at the local client is connected to the database.

App B

Remote client

App A

App A

App B

Local client

Server machine

EDUs per connection

db2ipccm

db2agent

db2agent

db2wdog

db2sysc

db2resyn

db2gds

db2cart

db2dart

db2agent

Unassociated idle agents

db2agntp

db2agntp

Active
subagents

Idle
subagents

db2agntp

db2agntp

logical
agents

Coordinator
agent

Coordinator
agent

db2tcpcm
B2B1

B4
B5

A1

EDUs per instance

A4
shared memory and semaphores

TCP

A3

A2

B3

Figure 7. Process Model Overview

30 Administration Guide: Performance

In the figure above at B1, a remote client establishes communications first by
working with the db2tcpcm EDU. If another communications protocol was
chosen, the appropriate EDU would be used. The db2tcpcm EDU, at B2,
works with a logical agent. This EDU at B3, works with a db2agent EDU that
becomes the coordinator agent for the application requests from the remote
client. The coordinator agent contacts the client application at B4 and
establishes TCP/IP communication between the client application and the
database at B5. The application at the remote client is connected to the
database.

Other things to notice in this figure:
v There are two classes of agent: a logical agent and a worker agent. A logical

agent represents a connected application to the database manager. A worker
agent carries out application requests but has no permanent attachment to
any particular application.

v There are four types of worker agents: active coordinator agents, subagents,
inactive agents, and idle agents.

v Each process or thread of a client application represented by a logical agent
will be linked to an active coordinator agent.

v In a partitioned database environment, and enabled intra-partition
parallelism environments, the coordinator agents distribute database
requests to subagents (db2agntp). The subagents perform the requests for
the application.

v There is an agent pool (db2agent) where idle agents wait for new work.
v There are other EDUs that manage client connections, logs, two-phase

COMMITs, backup and restore tasks, and other tasks.

Chapter 2. Architecture and Processes Overview 31

|
|
|
|

|
|

|
|
|
|

This figure shows additional engine dispatchable units (EDUs) that are part of
the server machine environment. Each active database has its own shared pool
of prefetchers (db2pfchr) and page cleaners (db2pclnr), and its own logger
(db2loggr) and deadlock detector (db2dlock).

The circles labelled “db2udfp” and “db2dari” at the botton right of the figure
represent processes run within DB2 Universal Database as fenced
User-Defined Functions (UDFs) and Stored Procedures respectively. These
processes are managed in order to minimize costs associated with their
creation and destruction. The default for the keepdari database manager
configuration parameter is “YES” which keeps the stored procedure process
available for re-use at the next stored procedure call.

Note: There are also unfenced UDFs and Stored Procedures which run
directly in an agent’s address space. By working this way, there is
better performance. However, because they have unrestricted access to
the agent’s address space, they need to be rigorously tested before
being used.

Server machine

App A

App B

EDUs per connection

db2agent

db2agent

db2agntp

db2agntp

Active
subagents

Idle
subagents

db2agntp

db2agntp

Coordinator
agent

Coordinator
agent

TEST database

PROD database

EDUs per active database EDUs per request

db2pclnr

db2bm, db2med, . . .

db2pfchr

db2pclnr

db2pfchr

db2udfp

db2dari

Fenced processes

Fenced UDF
processes

Fenced stored
procedure processes

db2loggr db2dlock

db2loggr db2dlock

Figure 8. Process Model Part 2

32 Administration Guide: Performance

|
|
|
|
|
|
|

Refer to the stored procedure chapter in the Application Development Guide for
more information.

The multiple partition processing model is a logical extension of the single
partition processing model. In fact, a single common code-base supports both
modes of operation. The following figure is used to show the similarities and
differences that exist between the single partition processing model as seen in
the previous two figures, and the multiple partition processing model.

Chapter 2. Architecture and Processes Overview 33

The majority of engine dispatchable units (EDUs) are the same between the
single partition processing model and the multiple partition processing model.

Catalog node for TEST
db2glock

App A App B 2 create database
2 connect to TEST
2 load. . .
2 select . . .

DB TEST
DB
DB
DB

DB2 create database PROD
2 connect to PROD
2 load. . .
2 select . . .

DB
DB
DB

Catalog node for PROD
db2glock

db2pdbc db2pdbcdb2fcmd db2fcmd

App A App A

PROD database PROD databaseTEST database TEST database

App B App B

Node0000 Node0001

Figure 9. Process Model and Multiple Partitions

34 Administration Guide: Performance

In a multiple partition (or node) environment, one of the partitions is the
catalog node. The catalog keeps all of the information relating to the objects in
the database.

As shown in the figure above, because Application A creates the PROD
database on Node0000, the catalog for the PROD database is created on this
node. Similarly, because Application B creates the TEST database on
Node0001, the catalog for the TEST database is created on this node. You may
wish to create your databases on different nodes because you will always
want to balance the extra activity associated with the catalogs for each
database across the nodes in your system environment.

There are additional EDUs (db2pdbc and db2fcmd) associated with the
instance and these are found on each node in a multiple partition database
environment. These EDUs are needed to coordinate requests across database
partitions and to enable the Fast Communication Manager (FCM).

There is also an additional EDU (db2glock) associated with the catalog node
for the database. This EDU controls global deadlock situations across the
nodes where the active database is located.

Each CONNECT from an application is represented by a logical agent at the
database and results in a single coordinator agent. The coordinator agent
exists on the partition to which the application connected. This partition then
becomes the “coordinator node” for that application. The coordinator node
can also be set using the SET CLIENT CONNECT_NODE command. Parts of
the database requests from the application are sent by the coordinator node to
subagents at the other partitions; and all results from the other partitions are
consolidated at the coordinator node before being sent back to the application.

The database partition where the CREATE DATABASE command was issued
is called the “catalog node” for the database. It is at this database partition
that the catalog tables are stored. Typically, all user tables are partitioned
across a set of nodes.

Note: Any number of partitions can be configured to run on the same
machine. This is known as a “multiple logical partition”, or “multiple
logical node”, configuration. Such a configuration is very useful on
large symmetric multiprocessor (SMP) machines with very large main
memory. In this environment, communications between partitions can
be optimized to use shared memory and semaphores.

Chapter 2. Architecture and Processes Overview 35

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

Memory Model

Memory is important because it has a significant impact on how work gets
done within the database. How you divide the available memory amongst
those areas within the database is a primary way to control how well your
database performs. You control this division of memory among the different
heaps through configuration parameters. These the key configuration
parameters and what part of memory they control are discussed in this
section. See “How DB2 Uses Memory” on page 239 for more information on
this topic.

All engine dispatchable units (EDUs) in a partition are attached to the
Instance Shared Memory. All EDUs doing work within a database are attached
to that database’s Database Shared Memory. All EDUs working on behalf of a
particular application are attached to an Application Shared Memory region
for that application. This type of shared memory is only allocated if intra- or
inter-partition parallelism is enabled. Finally, each EDU has its own private
memory.

Instance Shared Memory (also known as Database Manager Shared Memory)
is allocated when the database is started. From the Instance Shared Memory
all other memory is attached/allocated. If fast communication manager (FCM)
is used there are buffers taken from this memory. FCM is used for internal
communications, primarily messages, both among and within the database
servers in a particular database environment. When the first application
connects or attaches to a database, Database Shared, Application Shared, and
Agent Private memory areas are allocated.

Database Shared Memory (also known as Database Global Memory) is
allocated when a database is activated or connected to for the first time. This
memory is used across all applications that might connect to the database.
Many different memory areas are contained in database shared memory
including:
v Buffer pools
v Lock list
v Database heap – and this includes the log buffer and the catalog cache.
v Utility heap
v Package cache

The database manager configuration parameter numdb specifies the number of
local databases that can be concurrently active. In a partitioned database
environment, this parameter limits the number of active database partitions
on a database partition server. The value of the numdb parameter may impact
the total amount of memory allocated.

36 Administration Guide: Performance

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

Application Shared memory (also known as Application Global Memory) is
allocated when an application connects to a database. This allocation occurs
only in a partitioned database environment, or if the database manager
configuration parameter intra_parallel is enabled. This memory is used by
agents working on behalf of the application to share data and coordinate
activities amongst themselves.

The database configuration parameter maxappls sets an upper limit to the
number of applications that connect to a database. Since each application that
attaches to a database causes some private memory to be allocated, allowing a
larger number of concurrent applications will potentially use more memory.

To a certain extent, the maximum number of applications is also governed by
the database manager configuration parameter maxagents (or max_coordagents
for partitioned environments). The maxagents parameter sets an upper limit to
the total number of database manager agents in a partition. These database
manager agents include active coordinator agents, subagents, inactive agents,
and idle agents.

Agent Private Memory is allocated for an agent when that agent is assigned
to work for a particular application. The agent private memory is allocated for
the agent and contains memory allocations that will be used only by this
specific agent, such as the sort heap and the application heap.

There are a few special types of shared memory:
v Agent/Local Application Shared Memory. This memory is used for SQL

request and response communications between an agent and its client
application.

v UDF/Agent Shared Memory. This memory is attached to by agents running
a fenced UDF or Stored Procedure. It is used as a communications area.

v Extended Storage. A typically very large (greater than 4 GB) region of
shared memory used as an extended buffer pool. Agents/Prefetchers/Page
cleaners are not permanently attached to it, but attach to individual
segments within it as needed.

Chapter 2. Architecture and Processes Overview 37

|
|
|
|
|
|

Extended storage acts as an extended look-a-side buffer for the main buffer
pool(s). See “Extending Memory” on page 279 for more information on this
topic. It can be much larger than 4 GB and is an excellent way to exploit
machines with large amounts of main memory. The extended storage cache is
defined in terms of memory segments.

You should be aware when deciding to use some of the real addressable
memory as an extended storage cache that this memory can then no longer be
used for other purposes on the machine such as a journaled filesystem-cache
or as a process private address space. Assigning additional real addressable
memory to the extended storage cache could lead to higher system paging.

The following database configuration parameters influence the amount and
size of the memory available for extended storage:
v num_estore_segs defines the number of extended storage memory segments.
v estore_seg_sz defines the size of each extended memory segment.

Database shared memory (permanently attached)

Buffer pools

Extended
buffer pool
(individual segments
attached on demand)

estore_seg_sz

Lock list

Package
cache

Shared
sorts

Database
heap

Utility heap

Disks

I/O

num_estore_segs (can be > 4Gb)

Memory copies

Figure 10. Buffer Pools and Extended Storage

38 Administration Guide: Performance

|
|
|
|
|

Each table space is assigned a buffer pool. An extended storage cache must
always be associated with one or more specific buffer pools. The page size of
the extended storage cache must match the page size of the buffer pool it is
associated with.

See “Extending Memory” on page 279 for more information on the extended
storage cache.

Chapter 2. Architecture and Processes Overview 39

40 Administration Guide: Performance

Part 2. Tuning Application Performance

© Copyright IBM Corp. 1993, 2001 41

42 Administration Guide: Performance

Chapter 3. Application Considerations

There are a number of factors that can impact the runtime performance of
your application. This chapter describes the following topics that should be
considered when you are designing and coding your application:
v Concurrency
v Locking
v Adjusting the Optimization Class
v Restrictions on Result Sets to Improve Performance
v Row Blocking
v Tuning Queries
v Compound SQL
v Performance Considerations and Character Conversion
v Stored Procedures
v Activating a Database
v Parallel Processing of Applications.

You should also refer to the Application Development Guide and the CLI Guide
and Reference for additional information which can affect the performance of
your applications, for example:
v Writing programs using embedded static SQL
v Writing programs using embedded dynamic SQL
v Writing programs using DB2 Call Level Interface (CLI).

Concurrency

The integrity of the data in a relational database must be maintained as
multiple users access and change the data. Concurrency is the sharing of
resources by multiple interactive users or application programs at the same
time. The database manager controls this access to prevent undesirable effects,
such as:
v Lost updates. Two applications, A and B, might both read the same row from

the database and both calculate new values for one of its columns based on
the data these applications read. If A updates the row with its new value
and B then also updates the row, the update performed by A is lost.

v Access to uncommitted data. Application A might update a value in the
database, and application B might read that value before it was committed.

© Copyright IBM Corp. 1993, 2001 43

Then, if the value of A is not later committed, but backed out, the
calculations performed by B are based on uncommitted (and presumably
invalid) data.

v Nonrepeatable reads. Some applications involve the following sequence of
events: application A reads a row from the database, then goes on to
process other SQL requests. In the meantime, application B either modifies
or deletes the row and commits the change. Later, if application A attempts
to read the original row again, it receives the modified row or discovers
that the original row has been deleted.

v Phantom Read Phenomenon. The phantom read phenomenon occurs when:
1. Your application executes a query that reads a set of rows based on

some search criterion.
2. Another application inserts new data or updates existing data that

would satisfy your application’s query.
3. Your application repeats the query from step 1 (within the same unit of

work).

When the query is repeated (step 3), some additional (“phantom”) rows are
returned as part of the result set that were not returned when the query
was initially executed (step 1).

An isolation level determines how data is locked or isolated from other
processes while the data is being accessed. The isolation level will be in effect
for the duration of the unit of work. Applications that use a cursor declared
with a DECLARE CURSOR statement using the WITH HOLD clause will
keep the chosen isolation level for the duration of the unit of work in which
the OPEN CURSOR was performed. (For more information, refer to the SQL
Reference manual.) See “Specifying the Isolation Level” on page 49 for
information on how the isolation level is specified.

DB2 supports the following isolation levels:
v Repeatable Read
v Read Stability
v Cursor Stability
v Uncommitted Read.

(Note that some DRDA database servers support the no commit isolation level.
On other databases, it behaves like the uncommitted read isolation level. Refer
to the SQL Reference for information on this isolation level.)

See also:
v “Choosing the Isolation Level” on page 48
v “Specifying the Isolation Level” on page 49.

44 Administration Guide: Performance

|
|
|
|
|
|
|
|

It may be that you are working in a federated database system that supports
applications and users submitting SQL statements referencing two or more
database management systems (DBMSs) or databases in a single statement. A
DB2 federated system provides location transparency for database objects. For
example, if information about tables and views is moved, references to that
information (called nicknames) can be updated without changes to applications
that request the information. When an application accesses nicknames, DB2
relies on the concurrency control protocols of data source database managers
to ensure isolation levels. (A data source consists of a DBMS and data.) DB2
will attempt to match the requested level of isolation at the data source with a
logical equivalent; however, results may vary based on data source
capabilities. Refer to the Application Development Guide manual for information
on writing applications accessing nicknames.

Detailed explanations for each of the isolation levels follows in decreasing
order of performance impact, but in increasing order of care required when
accessing and updating data.

Repeatable Read
Repeatable read (RR) locks all the rows an application references within a unit
of work. Using repeatable read, a SELECT statement issued by an application
twice within the same unit of work in which the cursor was opened, gives the
same result each time. With repeatable read, lost updates, access to
uncommitted data, and phantom rows are not possible.

The repeatable read application can retrieve and operate on the rows as many
times as needed until the unit of work completes. However, no other
applications can update, delete, or insert a row that would affect the result
table, until the unit of work completes. Repeatable read applications cannot
see uncommitted changes of other applications.

With repeatable read, every row that is referenced is locked, not just the rows
that are retrieved. Appropriate locking is performed so that another
application cannot insert or update a row that would be added to the list of
rows referenced by your query, if the query was re-executed. This prevents
phantom rows from occurring. This means that if you scan 10 000 rows and
apply predicates to them, locks are held on all 10 000 rows, even though only
10 rows qualify.

Note: The repeatable read isolation level ensures that all returned data
remains unchanged until the time the application sees the data, even
when temporary tables or row blocking are used.

Since repeatable read may acquire and hold a considerable number of locks,
these locks may exceed the number of locks available as a result of the locklist
and maxlocks configuration parameters. (See “Maximum Percent of Lock List

Chapter 3. Application Considerations 45

|
|
|
|
|
|
|
|
|
|
|
|
|

Before Escalation (maxlocks)” on page 384 and “Maximum Storage for Lock
List (locklist)” on page 353.) In order to avoid lock escalation, the optimizer
may elect to immediately acquire a single table level lock for an index scan, if
it believes that lock escalation is very likely to occur. (See “Lock Escalation”
on page 56 for a discussion of lock escalation.) This functions as though the
database manager has issued a LOCK TABLE statement on your behalf. If you
do not want a table level lock to be obtained ensure that enough locks are
available to the transaction or use the Read Stability isolation level.

Read Stability
Read stability (RS) locks only those rows that an application retrieves within a
unit of work. It ensures that any qualifying row read during a unit of work is
not changed by other application processes until the unit of work completes,
and that any row changed by another application process is not read until the
change is committed by that process. That is, “nonrepeatable read” behavior is
not possible.

Unlike repeatable read, with read stability, if your application issues the same
query more than once, you may see additional phantom rows (the phantom read
phenomenon). Recalling the example of scanning 10 000 rows, read stability
only locks the rows that qualify. Thus, with read stability, only 10 rows are
retrieved, and a lock is held only on those ten rows. Contrast this with
repeatable read, where in this example, locks would be held on all 10 000
rows. The locks that are held can be share, next share, update, or exclusive
locks. (For more information on lock attributes, see “Attributes of Locks” on
page 52.)

Note: The read stability isolation level ensures that all returned data remains
unchanged until the time the application sees the data, even when
temporary tables or row blocking are used.

One of the objectives of the read stability isolation level is to provide both a
high degree of concurrency as well as a stable view of the data. To assist in
achieving this objective, the optimizer ensures that table level locks are not
obtained until lock escalation occurs. (See “Lock Escalation” on page 56 for
more information about lock escalation).

The read stability isolation level is best for applications that include all of the
following:
v Operate in a concurrent environment
v Require qualifying rows to remain stable for the duration of the unit of

work
v Do not issue the same query more than once within the unit of work, or do

not require that the query get the same answer when issued more than
once in the same unit of work.

46 Administration Guide: Performance

Cursor Stability
Cursor stability (CS) locks any row accessed by a transaction of an application
while the cursor is positioned on the row. This lock remains in effect until the
next row is fetched or the transaction is terminated. However, if any data on a
row is changed, the lock must be held until the change is committed to the
database.

No other applications can update or delete a row that a cursor stability
application has retrieved while any updatable cursor is positioned on the row.
Cursor stability applications cannot see uncommitted changes of other
applications.

Recalling the example of scanning 10 000 rows, if you use cursor stability, you
will only have a lock on the row under your current cursor position. The lock
is removed when you move off that row (unless you update that row).

With cursor stability, both nonrepeatable read and the phantom read
phenomenon are possible. Cursor stability is the default isolation level and
should be used when you want the maximum concurrency while seeing only
committed rows from other applications.

Uncommitted Read
Uncommitted read (UR) allows an application to access uncommitted changes
of other transactions. The application also does not lock other applications out
of the row it is reading, unless the other application attempts to drop or alter
the table. Uncommitted read works differently for read-only and updatable
cursors.

Read-only cursors can access most uncommitted changes of other transactions.
However, tables, views, and indexes that are being created or dropped by
other transactions are not available while the transaction is processing. Any
other changes by other transactions can be read before they are committed or
rolled back.

Note: Cursors that are updatable operating under the uncommitted read
isolation level will behave as if the isolation level was cursor stability.

When running an application program using isolation level UR, an application
can run using isolation level CS. This happens because the cursors used in the
application program are ambiguous. The ambiguous cursors can be escalated
to isolation level CS because of a BLOCKING option. The default for the
BLOCKING option is UNAMBIG. This means that ambiguous cursors are
treated as updatable and the escalation of the isolation level to CS occurs. To
prevent this escalation, there are two choices. The first choice is to modify the
cursors in the application program so that they are unambiguous by
modifying the SELECT statetments to include the FOR READ ONLY clause.

Chapter 3. Application Considerations 47

|
|
|
|
|
|
|
|
|

The second choice is that if the cursors are left ambiguous in the application
program, the program should be precompiled or bound with the BLOCKING
ALL option specified. This will allow any ambiguous cursors to be treated as
read-only when the program is run.

Recalling the example of scanning 10 000 rows, if you use uncommitted read,
you do not acquire any row locks.

With uncommitted read, both nonrepeatable read behavior and the phantom
read phenomenon are possible.

The uncommitted read isolation level is most commonly used for queries on
read-only tables, or if you are only executing select-statements and you do not
care whether you see uncommitted data from other applications.

Choosing the Isolation Level
Table 1 summarizes the different isolation levels in terms of the undesirable
effects described in Application Development Guide manual.

Table 1. Summary of isolation levels

Isolation Level Access to
Uncommitted
Data

Nonrepeatable
Reads

Phantom Read
Phenomenon

Repeatable Read (RR) Not Possible Not Possible Not Possible

Read Stability (RS) Not Possible Not Possible Possible

Cursor Stability (CS) Not Possible Possible Possible

Uncommitted Read (UR) Possible Possible Possible

Table 2 provides a simple heuristic that may help you choose an initial
isolation level for your applications. Consider this table as a starting point,
and refer to the previous discussions of the various levels for factors that
might make another value more appropriate for your requirements.

Table 2. Guidelines for choosing an isolation level

Application Type High data stability
required

High data stability not
required

Read-write transactions RS CS

Read-only transactions RR or RS UR

Choosing the appropriate isolation level for an application is very important
to avoid the phenomena that are intolerable for that application. The isolation
level affects not only the degree of isolation among applications but also the
performance characteristics of an individual application since the CPU and

48 Administration Guide: Performance

|
|
|
|

memory resources, required to obtain and free locks, vary with the isolation
level. The potential for deadlock situations also varies with the isolation level.

Specifying the Isolation Level
The isolation level is specified at precompile time or when an application is
bound to a database. For an application written in a supported compiled
language, use the ISOLATION option of the command line processor PREP or
BIND commands. The isolation level can also be specified by using the PREP
or BIND APIs.

If a bind file is created at precompile time, the isolation level is stored in the
bind file. If no isolation level is specified at bind time, the default is the
isolation level used during precompilation.

If no isolation level is specified, the default of cursor stability is used.

You can determine the isolation level of a package by executing the following
query:

SELECT ISOLATION FROM SYSCAT.PACKAGES
WHERE PKGNAME = 'XXXXXXXX'
AND PKGSCHEMA = 'YYYYYYYY'

where XXXXXXXX is the name of the package and YYYYYYYY is the schema name
of the package. Both of these names must be in all capital letters.

When a database is created, multiple bind files used to support the different
isolation levels for SQL in REXX are bound to the database (on those servers
that support REXX). Other command line processor packages are also bound
to the database when a database is created. Refer to the Application
Development Guide for more information about bind files.

REXX and the command line processor connect to a database using a default
isolation level of cursor stability. Changing to a different isolation level does
not change the connection state. It must be executed in the CONNECTABLE
AND UNCONNECTED state or in the IMPLICITLY CONNECTABLE state.
(Refer to the CONNECT TO statement in the SQL Reference for details about
connection states.)

The isolation level being used can be checked by a REXX application by
checking the value of the SQLISL REXX variable. The value is updated every
time the CHANGE SQLISL command is executed.

The DB2_RR_TO_RS profile registry variable can be used to minimize next
key locking and thereby increase concurrency and performance. However, by
using it you are preventing the Repeatable Read (RR) isolation level from
being used. The recommendation is to set this variable to ″Yes″ if you do not

Chapter 3. Application Considerations 49

|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|

require RR semantics in any of the applications accessing the database. Before
taking effect, you must stop and start the database manager. Following the
db2start, this change affects the entire instance. Once set, if a request to
access a user table using RR is received, the request is modified internally to
use the Read Stability (RS) isolation level instead. No warning is given when
this occurs.

In addition to setting the isolation level at the package-level when preparing
or binding an application, you can set an isolation level at the statement-level.
A statement-level isolation level is specified using the WITH-clause.

The following SQL statements support statement-level isolation:
v SELECT statement
v SELECT INTO
v Searched DELETE
v INSERT
v Searched UPDATE
v DECLARE CURSOR

There are some conditions associated with the use of statement-level isolation:
v The WITH-clause cannot be used on subqueries
v The WITH UR option only applies to read-only operations. If it is used in

other situations, the statement is automatically changed from “UR” to “CS”.
v The default isolation level for a statement is the isolation level of the

package in which the statement is bound.
v The statement-level isolation level overrides the isolation level specified for

the package in which the statement appears.

If you are using the command line processor you may change the isolation
level using the CHANGE ISOLATION LEVEL command. Refer to the
Command Reference manual for more information.

For DB2 Call Level Interface (DB2 CLI), you may change the isolation level as
part of the DB2 CLI configuration. Within CLI at runtime, you would use the
SQLSetConnectAttr function with the SQL_ATTR_TXN_ISOLATION attribute.
This will set the transaction isolation level for the current connection
referenced by the ConnectionHandle. Within the db2cli.ini file you could also
use the TXNISOLATION keyword.

Note: JDBC and SQLJ are implemented with CLI on DB2, which means the
db2cli.ini settings may affect what is written and run using JDBC and
SQLJ. Refer to the CLI Guide and Reference manual for more information.

50 Administration Guide: Performance

|
|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|

When working with JDBC or SQLJ at runtime, you can use the
setTransactionIsolation method within the java.sql interface connection to
establish the isolation level. Refer to the “Programming in Java” chapter of the
Application Development Guide manual for more information.

When working with SQLJ, if you run the db2profc SQLJ optimizer, a package
is created. The final options for this package may be specified to include the
isolation level to be used. Refer to the “Programming in Java” chapter of the
Application Development Guide manual for more information.

In addition, many commercially written applications also provide a method to
allow you to choose the isolation level. Refer to the CLI Guide and Reference
manual for more information.

Declared Temporary Tables and Concurrency
Declared temporary tables have no concurrency issues since they are only
available to the application that declared them. This type of table only exists
from the time that the application declares it until the application completes
or disconnects.

Locking

The database manager provides concurrency control and prevents
uncontrolled access by means of locks. A lock is a means of associating a
database manager resource with an application to control how other
applications can access the same resource. The application with which the
resource is associated is said to hold or own the lock.

The database manager imposes locks to prohibit applications from accessing
uncommitted data written by other applications (unless the uncommitted read
isolation level is used). This principle protects data integrity (that is, the
consistency and security of data). Locks can also prohibit the updating of
rows (such as for a repeatable read application).

To satisfy data integrity, the database manager acquires locks implicitly, under
database manager control. Except for the uncommitted read isolation level, it
is never necessary for an application to request a lock explicitly to ensure that
uncommitted data is hidden from other processes.

Because of the basic principle of locking, you do not need to take action to
control locks in most cases. Still, applications acquire locks on the basis of
certain general parameters. Knowledge of your local situation can help you
make better use of your system resources by changing those parameters. To
assist you, the following topics on locking are discussed:
v Attributes of Locks
v Locks and Application Performance

Chapter 3. Application Considerations 51

v Factors Affecting Locking
v LOCK TABLE Statement
v CLOSE CURSOR WITH RELEASE
v Summary of Locking Considerations.

Attributes of Locks
Database manager locks have the following basic attributes:

Mode The type of access allowed for the lock owner as well as the type of
access permitted for concurrent users of the locked object. It is
sometimes referred to as the state of the lock.

Object
The resource being locked. The only type of explicitly lockable object
is a table. The database manager also imposes locks on other types of
resources, such as rows, tables and table spaces. The object being
locked represents the granularity of the lock.

Duration
The length of time a lock is held. Lock durations are affected by
isolation levels which are discussed in “Concurrency” on page 43.

In the following table, modes and their effects are shown in order of
increasing control over resources:

Table 3. Lock Mode Summary

Lock Mode Applicable Object
Type

Description

IN (Intent None) Table spaces, tables The lock owner can read any data in the table, including
uncommitted data, but cannot update any of it. No row
locks are acquired by the lock owner. Other concurrent
applications can read or update the table.

IS (Intent Share) Table spaces, tables The lock owner can read data in the locked table, but not
update this data. When an application holds the IS table
lock, the application acquires an S or NS lock on each row
read. In either case, other applications can read or update
the table.

NS (Next Key
Share)

Rows The lock owner and all concurrent applications can read, but
not update, the locked row. This lock is acquired on rows of
a table, instead of an S lock, where the isolation level is
either RS or CS for the application.

S (Share) Rows, tables The lock owner and all concurrent applications can read, but
not update, the locked data. Individual rows of a table can
be S locked. If a table is S locked, no row locks are necessary.

52 Administration Guide: Performance

|
|
|
|
|

|
|
||
|
|
|

Table 3. Lock Mode Summary (continued)

Lock Mode Applicable Object
Type

Description

IX (Intent
Exclusive)

Table spaces, tables The lock owner and concurrent applications can read and
update data in the table. When the lock owner reads data, an
S, NS, X, or U lock is acquired on each row read. An X lock
is also acquired on each row that the lock owner updates.
Other concurrent applications can both read and update the
table.

SIX (Share with
Intent Exclusive)

Tables The lock owner can read and update data in the table. The
lock owner acquires X locks on the rows it updates, but
acquires no locks on rows that it reads. Other concurrent
applications can read the table.

U (Update) Rows, tables The lock owner can update data in the locked row or table.
The lock owner acquires X locks on the rows before it
updates the rows. Other units of work can read the data in
the locked row or table; but cannot attempt to update it.

NX (Next Key
Exclusive)

Rows The lock owner can read but not update the locked row. This
mode is similar to an X lock except that it is compatible with
the NS lock.

NW (Next Key
Weak Exclusive)

Rows This lock is acquired on the next row when a row is inserted
into the index of a non-catalog table. The lock owner can
read but not update the locked row. This mode is similar to
X and NX locks except that it is compatible with the W and
NS locks.

X (Exclusive) Rows, tables The lock owner can both read and update data in the locked
row or table. Tables can be Exclusive locked, meaning that
no row locks are acquired on rows in those tables. Only
uncommitted read applications can access the locked table.

W (Weak Exclusive) Rows This lock is acquired on the row when a row is inserted into
a non-catalog table. The lock owner can change the locked
row. This lock is similar to an X lock except that it is
compatible with the NW lock. Only uncommitted read
applications can access the locked row.

Z (Super Exclusive) Table spaces, tables This lock is acquired on a table in certain conditions, such as
when the table is altered or dropped, an index on the table is
created or dropped, or a table is reorganized. No other
concurrent application can read or update the table.

Note: Only tables and table spaces will obtain the “intent” lock modes. That
is, intent locks are not obtained for rows.

Chapter 3. Application Considerations 53

|||
|
|
|

Locks and Application Performance
Application programmers need to be aware of several related factors
concerning the uses of locks and their effect on the performance of
applications. These factors include the following:
v Concurrency and Granularity
v Lock Compatibility
v Lock Conversion
v Lock Escalation
v Lock Waits and Timeouts
v Deadlocks.

Concurrency and Granularity
A lock held by one application can prevent access by another application.
Therefore, for maximum concurrency, a row level lock is better than a table
lock. But locks require storage and processing time to manage. Therefore, for
minimizing storage and processing time, a single table lock is better than
many row locks.

You can define the size (granularity) of locks at row or table level through the
LOCKSIZE clause of the ALTER TABLE statement. By default, row locks are
used. With permanent table locks, as defined by ALTER TABLE, only S and X
table locks are used. Performance is improved since the application does not
need to acquire and release as many row locks. You may prefer to get a
permanent table lock using the ALTER TABLE statement rather than a single
transaction table lock using LOCK TABLE statement in the following cases:
v Your table is read-only, and you will always need S locks. A table level lock

will improve performance while allowing others to obtain S locks on the
table.

v The table will be accessed by a single user for maintenance, where the
person requires an X lock, for a limited period of time. Changing a table
level lock through ALTER TABLE on the table, will provide the person with
an X lock at a table level. Once the person is finished, they can use ALTER
TABLE to return the table to row level locking.

Use of the ALTER TABLE statement will not prevent normal lock escalation
from occurring.

In addition, note that using ALTER TABLE to push locks to the table level is a
global approach, affecting all applications and users that access that table.
Another choice is for individual applications to use the LOCK TABLE
statement. This allows you to go to table locks at an application level, not a
database level (as mentioned in the second bullet above).

Lock Compatibility
Table 4 indicates whether a lock request is granted if another process holds or
is requesting a lock on the same resource in a given state. A no indicates that

54 Administration Guide: Performance

|
|
|
|
|

the requestor must wait until all incompatible locks are released by other
processes. Note that a timeout can occur when waiting for a lock. A yes
indicates that the lock is granted (unless someone else is waiting for the
resource).

Table 4. Lock Type Compatibility

State of Held Resource

State Being
Requested

none IN IS NS S IX SIX U NX X Z NW W

none yes yes yes yes yes yes yes yes yes yes yes yes yes

IN yes yes yes yes yes yes yes yes yes yes no yes yes

IS yes yes yes yes yes yes yes yes no no no no no

NS yes yes yes yes yes no no yes yes no no yes no

S yes yes yes yes yes no no yes no no no no no

IX yes yes yes no no yes no no no no no no no

SIX yes yes yes no no no no no no no no no no

U yes yes yes yes yes no no no no no no no no

NX yes yes no yes no no no no no no no no no

X yes yes no no no no no no no no no no no

Z yes no no no no no no no no no no no no

NW yes yes no yes no no no no no no no no yes

W yes yes no no no no no no no no no yes no

Note:
I Intent
N None
NS Next Key Share
S Share
NX Next Key Exclusive
X Exclusive
U Update
Z Super Exclusive
NW Next Key Weak Exclusive
W Weak Exclusive

For details of these lock types, refer to the discussion in “Attributes of Locks” on page 52.

Note:
v yes - grant lock requested immediately
v no - wait for held lock to be released or timeout to occur

Assume that application A holds a lock on a table that application B also
wants to access. The database manager requests, on behalf of application B, a

Chapter 3. Application Considerations 55

lock of some particular mode. If the mode of the lock held by A permits the
lock requested by B, the two locks (or modes) are said to be compatible.

If the lock mode requested for application B is not compatible with the lock
held by application A, application B cannot continue. Instead, it must wait
until application A releases its lock, and all other existing incompatible locks
are released.

Lock Conversion
Lock conversion occurs when a process accesses a data object on which it
already holds a lock, and the mode of access requires a more restrictive lock
than the one already held. A process can hold only one lock on a data object
at any time, although it can (indirectly through a query) request a lock many
times on the same data object. The operation of changing the mode of the lock
already held is called a conversion.

The conversion case for rows is simple: As an example, a conversion occurs if
an X is needed and an S or U is held.

There are distinct lock modes for tables and for rows. IX (Intent Exclusive)
and S (Shared) locks are special cases with regard to lock conversion,
however. Neither S nor IX is considered to be more restrictive than the other,
so if one of these is held and the other required, the resulting conversion is to
a SIX (Share with Intent Exclusive) lock. All other conversions result in the
requested lock mode becoming the mode of the lock held, if the requested
mode is less restrictive.

A query to update a row can also produce a dual conversion. Suppose the
row had been read through an index access and was locked as S. The table
containing the row would have a covering intention lock. Suppose the lock
type is an IS rather than an IX lock. Then, if the row is subsequently changed,
the table lock is converted to an IX, and the row to an X.

As a reminder, the application of locks usually takes place implicitly during
the execution of a query. Understanding the kinds of locks obtained for
different queries and table and index combinations can assist you in designing
and tuning your application. See “Factors Affecting Locking” on page 60 for
more information on this topic.

Lock Escalation
Lock escalation is an internal mechanism to reduce the number of locks held.
Escalation is from many row locks (in a single table) to a single table lock.

Lock escalation occurs when too many locks (of any type) are currently held.

56 Administration Guide: Performance

|
|
|
|
|

Lock escalation can occur for a specific database agent if the agent exceeds its
allocation of the lock list (see “Maximum Percent of Lock List Before
Escalation (maxlocks)” on page 384).

Such escalation is handled internally; the only externally detectable result
might be a reduction in concurrent access on one or more tables. Normally, in
a properly configured database, lock escalation occurs infrequently.

Lock escalation can occur when, for example, an application designer uses an
index on a large table to increase performance and concurrency; however, the
application accesses a large percentage of records in the table. The database
manager is not able to predict (in this case) that so much of the table will be
locked, and locks each record individually rather than only locking the table
either S or X. As a solution to this case, and after consulting with the
application designer, the database designer could make a recommendation to
use a LOCK TABLE statement for this transaction.

Sometimes, the process receiving the escalation request (internally) holds few
or no record locks on any table. The reason for this escalation is that one
process (or processes) can be holding many locks (although the number of
locks is below the database configuration parameter value for locks per
process) but not quite enough to trigger the escalation request. The process
might not request another lock or access the database again except to end the
transaction. Then another process can request the lock or locks that trigger the
escalation request.

If lock escalation reduces concurrency to an unacceptable level, you can do
the following:
v Check the contents of the db2diag.log for information on escalations.

Information is recorded for each table being escalated. The type of
information recorded includes:
– The number of locks currently held.
– The number of locks needed before lock escalation is completed.
– The table identifier information and table name of each table being

escalated.
– The number of non-table locks currently held.
– The new table level lock to be acquired as part of the escalation.

Typically, this will be a “S” or Share lock, or an “X” or eXclusive lock.
– The internal return code of the result of the acquisition of the new table

lock level.

The current dynamic SQL statement may also be recorded. If it is, the
information recorded will include the current SQL statement prior to the
escalation of any table locks if the DIAGLEVEL database manager

Chapter 3. Application Considerations 57

|
|
|
|
|
|
|
|

configuration parameter is 4. If lock escalation fails, the information
recorded will include the table for which the escalation failed and the
current SQL statement (if it is available, and not previously written) if the
DIAGLEVEL is 2 or higher.

With this information you will be able to carry out an appropriate action
based on the other points mentioned below.

To start this type of information recording, you should set the database
manager configuration parameter DIAGLEVEL to 3 which is the default, or
to 4.

v Increase the number of locks allowed by increasing the value of the
maxlocks and/or the locklist parameters in the database configuration file.
(See “Maximum Percent of Lock List Before Escalation (maxlocks)” on
page 384 and “Maximum Storage for Lock List (locklist)” on page 353.) This
might be the choice if concurrent access to the table by other processes is
most important. However, the overhead of obtaining record level locks can
induce more delay to other processes than is saved by concurrent access to
a table. (When changing these parameters in a partitioned database, ensure
that the parameters are updated on all partitions).

v Locate and adjust the offending process (or processes), which may or may
not be the one escalating or rolling back, and issue LOCK TABLE
statements explicitly.

v Change the degree of isolation. Note that this may lead to decreased
concurrency.

v Increase the frequency of commits. This tends to reduce the number of
locks in existence at a given time. For more information about isolation
levels and concurrency, see “Concurrency” on page 43.

Lock Waits and Timeouts
Without lock timeout detection, in an abnormal situation, your application
may have to wait indefinitely for a lock to be released. This might occur, for
example, when a transaction is waiting for a lock held by another user’s
application, and the other user has left their workstation without performing
some interaction to allow their application to commit their transaction which
would release the lock. Obviously, this results in poorer application
performance. To avoid stalling your program in such a case, you can use the
locktimeout configuration parameter to set the maximum time that any
application waits to obtain a lock. (See “Lock Timeout (locktimeout)” on
page 385.)

Using this parameter helps avoid global deadlocks, especially in distributed
unit of work (DUOW) applications. If the lock times out, that is, if the time
that the lock request is pending is greater than the locktimeout value, your
application receives an error and your transaction is rolled back. For example,

58 Administration Guide: Performance

if program1 tries to acquire a lock which is already held by program2, program1
returns SQLCODE -911 (SQLSTATE 40001) with reason code 68 if the timeout
is expired.

If the database manager configuration parameter diaglevel is set to four, and a
lock request times out, more information can be found in the db2diag.log. The
information found there includes the object, the lock mode, and the
application holding the lock on the object. The current dynamic SQL
statement or static package name may also be found.

Deadlocks
In the database manager, contention for locks by processes using the database
can result in deadlocks. For example, Process 1 locks table A in X (exclusive)
mode and Process 2 locks table B in X mode; if Process 1 then tries to lock
table B in X mode and Process 2 tries to lock table A in X mode, the processes
will be in a deadlock. In a deadlock, both processes are suspended until their
second lock request is granted, and neither request is granted until one of the
processes performs a commit or rollback. This state remains indefinitely until
an external agent activates one of the processes and forces it to perform a
rollback.

Deadlocks in the lock system are handled in the database manager by an
asynchronous system background process called the deadlock detector. The
deadlock detector becomes active periodically as determined by the dlchktime
configuration parameter (see “Time Interval for Checking Deadlock
(dlchktime)” on page 383). When the deadlock detector becomes active, it
examines the lock system for deadlocks. If the database has been partitioned
then each partition sends lock graphs to the database partition having the
system catalog views which is where global deadlock detection takes place.

If a deadlock is found, the deadlock detector selects a deadlocked process to
roll back. The selected process is awakened, and it returns to the calling
application with SQLCODE -911 (SQLSTATE 40001), with reason code 2. The
database manager rolls back the selected process automatically. When the
rollback has completed, the locks belonging to the victim process are released,
and the other processes involved in the deadlock can eventually proceed.

Selecting the proper interval for the deadlock detector is necessary to ensure
good performance. An interval that is too short would cause unnecessary
overhead, and one that is too long would allow a deadlock to delay a process
for an unacceptable amount of time. For example, a wake up interval set to 30
minutes could allow a deadlock to exist for nearly 30 minutes. The application
designer must balance the possible delays in resolving deadlocks with the
overhead of detecting them.

Chapter 3. Application Considerations 59

|
|
|
|
|

In a partitioned database, the interval should be the same on all partitions
(the dlchktime configuration parameter must be updated to the same value on
all partitions). If the value is smaller at the catalog node than at other
partitions, phantom deadlocks may be detected. If the value is larger at the
catalog node than at other partitions, it may appear as if more than two
intervals pass before a deadlock is detected. If a large number of deadlocks
are detected in a partitioned database, you should increase the value of the
dlchktime parameter to account for lock waits and communication waits.

Another problem can occur when an application with more than one
independent process accessing the database is structured in such a way as to
make deadlocks likely. An example is an application in which several
processes access the same table for reads and then writes. If the processes do
read-only SQL queries at first and then do SQL updates on the same table, the
chances of deadlocks occurring increase because of potential contention
between the processes for the same data. For instance, if two processes read
the table, and then update the table, they get into a state where process A is
trying to get an X lock on a row, on which process B has an S lock and vice
versa. The result could be a deadlock. To avoid these deadlocks, applications
that access data with the intention of modifying it should use the FOR
UPDATE OF clause when performing a select. This clause ensures that a U
lock is imposed when process A attempts to read the data.

Note: You may want to consider defining a monitor that will record when
deadlocks occur. Use the CREATE EVENT statement described in the
SQL Reference to create the monitor.

In a federated system environment, when an application accesses nicknames,
it is possible that the data requested by the application is unavailable due to a
deadlock at a data source. When this happens, DB2 relies on the deadlock
handling facilities at the data source to resolve the lock. In the case of
deadlocks across more than one data source, DB2 relies on data source
timeout mechanisms to break the deadlock.

If the database manager configuration parameter diaglevel is set to four, and a
lock request fails because of a deadlock, more information can be found in the
db2diag.log. The information found there includes the object, the lock mode,
and the application holding the lock on the object. The current dynamic SQL
statement or static package name may also be found.

Factors Affecting Locking
The mode and granularity of database manager locks are determined by a
combination of factors: the type of processing the application performs, how it
accesses data, and several parameters that you can specify.

60 Administration Guide: Performance

Application Processing
For the purpose of determining lock attributes, processing can be classified as
one of four types:

Read-only
This type includes all select-statements which are intrinsically
read-only (refer to the SQL Reference for information about cursors),
have an explicit FOR READ ONLY clause, or are ambiguous but for
which the SQL compiler presumes to be read-only due to the value of
the BLOCKING option specified on the PREP or BIND command. It
requires only Share locks (S or IS).

Intent to change
This type includes all select-statements with the FOR UPDATE clause,
or which the SQL compiler presumes to be intended for change as a
result of the interpretation of the ambiguous statement. It uses Share
and Update locks (S, U, and X for rows, IX, U, X for tables).

Change
This type includes UPDATE, INSERT, and DELETE, but not UPDATE
WHERE CURRENT OF or DELETE WHERE CURRENT OF. It
requires Exclusive locks (X or IX).

Cursor controlled
This type includes UPDATE WHERE CURRENT OF and DELETE
WHERE CURRENT OF. It also requires Exclusive locks (X or IX).

A statement that inserts, updates or deletes against a target table, based on the
result from a sub-select statement, does two types of processing. The locks for
the tables returned in the sub-select are determined by the rules for read-only
processing; for the target table, by the rules for change processing.

Access Paths
An access path is the method selected by the optimizer for retrieving data from
a specific table reference. (See “Data Access Concepts and Optimization” on
page 162.) The access path chosen by the optimizer can have a significant
effect on the lock modes. For example, when an index scan is used to locate a
specific row, the optimizer will likely choose row-level locking (IS) for the
table. This type of access would be used to select information for a single
employee from the EMPLOYEE table, that has an index on employee number
(EMPNO), with a statement such as the following:

SELECT *
FROM EMPLOYEE
WHERE EMPNO = '000310';

Similarly, when no index is used, the entire table must be scanned in sequence
to find the selected rows, and may acquire a single table level lock (S). For

Chapter 3. Application Considerations 61

example, this type of access might be used to select all the male employees,
using a statement such as this where there is no index on the column SEX:

SELECT *
FROM EMPLOYEE
WHERE SEX = 'M';

The following tables provide an overview of which locks are obtained for
what kind of access plan. See “Application Processing” on page 61 for
definitions of the column headings. Also see “Data Access Concepts and
Optimization” on page 162 for definitions of the access method. Note that
cursor controlled type processing uses the lock mode of the underlying cursor
until the application finds a row to update or delete. For this type of
processing, no matter what the lock mode of a cursor, an exclusive lock will
always be obtained to perform the update or delete.

In the following tables, if only one lock mode is shown, it is a table level lock
mode. If two lock modes are shown, the first is the table level lock mode and
the second is the row level lock mode.

Table 5. Lock Modes for Table Scans

Isolation Level Read-only Intent to Change Change

Access Method: Table scan with no predicates

RR S U X

RS IS / NS IX / U IX / X

CS IS / NS IX / U IX / X

UR IN IX / U IX / X

Access Method: Table Scan with predicates

RR S U U

RS IS / NS IX / U IX / U

CS IS / NS IX / U IX / U

UR IN IX / U IX / U

Table 6. Lock Modes for Index Scans

Isolation Level Read-only Intent to Change Change

Access Method: Index Scan with no predicates

RR S IX / U X

RS IS / NS IX / U IX / X

CS IS / NS IX / U IX / X

UR IN IX / U IX / X

Access Method: Index Scan a single qualifying row

62 Administration Guide: Performance

Table 6. Lock Modes for Index Scans (continued)

Isolation Level Read-only Intent to Change Change

RR IS / S IX / U IX / X

RS IS / NS IX / U IX / X

CS IS / NS IX / U IX / X

UR IN IX / U IX / X

Access Method: Index Scan with start and stop predicates only

RR IS / S IX / S IX / X

RS IS / NS IX / U IX / X

CS IS / NS IX / U IX / X

UR IN IX / U IX / X

Access Method: Index Scan with predicates

RR IS / S IX / S IX / U

RS IS / NS IX / U IX / U

CS IS / NS IX / U IX / U

UR IN IX / U IX / U

Table 7 shows the lock modes for cases in which reading of the data pages is
deferred to allow the list of rows to be:
v Further qualified using multiple indexes. See “Multiple Index Access” on

page 169 for more information.
v Sorted for efficient prefetching. See “Understanding List Prefetching” on

page 257 for more information.

The deferred access of the data pages implies that access to the row occurs in
two steps and this results in more complex locking scenarios. There are two
major categories which depend on the isolation level. Since the repeatable
read isolation level keeps all locks acquired until the end of the transaction,
the locks acquired in the first step are held and there is no need to acquire
further locks in the second step. For the read stability and cursor stability
isolation levels, locks must be acquired during the second step. To maximize
concurrency, locks are not acquired during the first step and rely on the
reapplication of all predicates to ensure that only qualifying rows are
returned.

Table 7. Lock Modes for Index Scans used for Deferred Data Page Access

Isolation Level Read-only Intent to Change Change

Access Method: Index Scan with no predicates

RR IS / S IX / S X

Chapter 3. Application Considerations 63

|
|
|
|
|
|
|
|
|
|

Table 7. Lock Modes for Index Scans used for Deferred Data Page Access (continued)

Isolation Level Read-only Intent to Change Change

RS IN IN IN

CS IN IN IN

UR IN IN IN

Access Method: Deferred Data Page Access, after an index scan with no predicates

RR IN IX / S X

RS IS / NS IX / U IX / X

CS IS / NS IX / U IX / X

UR IN IX / U IX / X

Access Method: Index Scan with predicates

RR IS / S IX / S IX / S

RS IN IN IN

CS IN IN IN

UR IN IN IN

Access Method: Index Scan with start and stop predicates only

RR IS / S IX / S IX / X

RS IN IN IN

CS IN IN IN

UR IN IN IN

Access Method: Deferred Data Page Access, after an index scan with predicates

RR IN IX / S IX / S

RS IS / NS IX / U IX / U

CS IS / NS IX / U IX / U

UR IN IX / U IX / U

The access path is not controlled by the user; it is chosen by the Optimizer.

The access path used can affect the mode and granularity of a lock. For
example, in an application using the repeatable read (RR) isolation level, an
UPDATE query that uses a table scan without predicates, would use an X lock
on the table. If rows were located through an index, the database manager
might choose to lock individual rows of the table.

64 Administration Guide: Performance

Declared Temporary Tables and Locking
Declared temporary tables are not locked since they are only available to the
application that declared them. This type of table only exists from the time
that the application declares it until the application completes or disconnects.

LOCK TABLE Statement
You can override the rules for acquiring initial lock modes by using the LOCK
TABLE statement in an application.

The statement locks an entire table. Only the table specified in the LOCK
TABLE statement is locked. Parent and dependent tables of the specified table
are not locked. You must determine whether locking other tables that can be
accessed is necessary to achieve the desired result in terms of concurrency and
performance. The lock is not released until the unit of work is committed or
rolled back.

If a table is normally shared among several users, you might want to lock it
for the following reasons:

LOCK TABLE IN SHARE MODE
You want to access data that is consistent in time; that is, data current
for a table at a specific point in time. If the table experiences frequent
activity, the only way to ensure that the entire table remains stable is
to lock it. For example, your application wants to take a snapshot of a
table. However, during the time your application needs to process
some rows of a table, other applications are updating rows you have
not yet processed. This is allowed with repeatable read, but this action
is not what you want.

As an alternative, your application can issue the LOCK TABLE IN
SHARE MODE statement: no rows can be changed, regardless of
whether you have retrieved them or not. You can then retrieve as
many rows as you need, knowing that the rows you have retrieved
have not been changed just before you retrieved them.

With LOCK TABLE IN SHARE MODE, other users can retrieve data
from the table, but they cannot update, delete, or insert rows into the
table.

LOCK TABLE IN EXCLUSIVE MODE
You want to update a large part of the table. It is less expensive and
more efficient to prevent all other users from accessing the table than
it is to lock each row as it is updated, and then unlock the row later
when all changes are committed.

With LOCK TABLE IN EXCLUSIVE MODE, all other users are locked
out; no other applications can access the table unless they are
uncommitted read applications.

Chapter 3. Application Considerations 65

For more details on the LOCK TABLE statement, refer to the SQL Reference
manual.

An alternative to the use of the LOCK TABLE statement is the ALTER TABLE
statement with the LOCKSIZE parameter. The LOCKSIZE parameter allows
for the selection of either ROW locks or TABLE locks. Whatever choice is
made becomes the granularity of the locks chosen when the table is next
accessed. The selection of ROW locks is no different from selecting the default
lock size when a table is created. The selection of TABLE locks may improve
the performance of queries by limiting the number of locks that need to be
acquired. However, concurrency may be reduced since all locks are held over
the complete table. Selecting either choice does not prevent normal lock
escalation from occurring. For more details on the ALTER TABLE statement,
refer to the SQL Reference manual.

CLOSE CURSOR WITH RELEASE
When you close a cursor with the CLOSE CURSOR statement that includes
the WITH RELEASE clause, the database manager will attempt to release all
read locks (if any) that have been held for the cursor. Read locks are IS, S, and
U table locks as well as S, NS, and U row locks. For more information on lock
modes, see “Attributes of Locks” on page 52.

The WITH RELEASE clause has no effect for cursors that are operating under
the CS or UR isolation levels. When specified for cursors that are operating
under the RS or RR isolation levels, the WITH RELEASE clause ends some of
the guarantees of those isolation levels. Specifically, a RS cursor may
experience the nonrepeatable read phenomenon, and a RR cursor may
experience either the nonrepeatable read or phantom read phenomenon.

If a cursor that is originally RR or RS is reopened after being closed using the
WITH RELEASE clause, then new read locks will be acquired.

See “DECLARE CURSOR WITH HOLD Statement” on page 78 for a
comparison with the other primary clause for the CLOSE CURSOR statement.

The DB2 CLI connection attribute SQL_ATTR_CLOSE_BEHAVIOR can be
used in CLI applications to achieve the same results as CLOSE CURSOR
WITH RELEASE. Refer to the SQLSetConnectAttr() section of the CLI Guide
and Reference for more information.

Summary of Locking Considerations
The following are points to remember about locking:
v Small units of work (frequent COMMIT statements) promote concurrent

access of data by many users. Include COMMIT statements when your
application is logically at a point of consistency; that is, when the data you

66 Administration Guide: Performance

|
|
|
|

have changed is consistent. When a COMMIT is issued, locks are released
(except for table locks associated with cursors declared WITH HOLD).

v Locks are acquired even if your application merely reads rows, so it is still
important to commit read-only units of work. This is because shared locks
are acquired by repeatable read, read stability, and cursor stability isolation
levels in read-only applications. With repeatable read and read stability, all
locks are held until a COMMIT is issued, preventing other processes from
updating the locked data, unless you close your cursor using the WITH
RELEASE clause. In addition, catalog locks are acquired even in
uncommitted read applications using dynamic SQL.

v The database manager ensures that your application does not retrieve
uncommitted data (rows that have been updated by other applications but
are not yet committed) unless you are using the uncommitted read isolation
level.

v You can lock the entire table that you want to protect by issuing a LOCK
TABLE statement:
– To allow other applications to retrieve, but not update, delete, or insert

rows
– To prevent other applications (other than those with an uncommitted

read isolation level) from accessing the rows of a table.
v When you close a cursor with the CLOSE CURSOR statement that includes

the WITH RELEASE clause, the database manager will attempt to release
all read locks (if any) that have been held for the cursor.

v When changing the configuration parameters affecting locking in a
partitioned database, ensure that the changes are made to all of the
partitions in the database.

Adjusting the Optimization Class

When an SQL query is compiled, a number of optimization techniques can be
used to determine the most efficient access plan for that query. Using more
optimization techniques results in:
1. Improvements in run-time performance
2. Increased query compilation time
3. Increased system resource usage.

For this reason, you may wish to limit the number of techniques applied to
optimizing your query by setting the optimization class. This can be
particularly useful if you have:
v Very small databases or very simple dynamic queries
v Limited memory available at compile time on your database server
v A desire to reduce the query compilation (for example, PREPARE) time.

Chapter 3. Application Considerations 67

You may select from any of the query optimization classes described below,
although class 0 and class 9 should be used only in special circumstances.
Class 5 is the default. Classes 0, 1, and 2 use the Greedy join enumeration
algorithm; for complex queries this algorithm considers far fewer alternative
plans, and incurs significantly less compilation time, than classes 3 and above.
Classes 3 and above use the Dynamic Programming join enumeration
algorithm; this algorithm considers far more alternative plans, and can incur
significantly more compilation time, than classes 0, 1, and 2 as the number of
tables increases.

0 - This class directs the optimizer to use a minimal amount of
optimization to generate an access plan. For example:
v Non-uniform distribution statistics are not considered by the

optimizer.
v Only basic query rewrite rules are applied (see “Rewrite Query by

the SQL Compiler” on page 153 for information about query
rewrite).

v Greedy join enumeration occurs (see “Search Strategies for Selecting
Optimal Join” on page 180).

v Only nested loop join and index scan access methods are enabled
(see “Join Concepts” on page 175 and “Index Scan Concepts” on
page 163).

v List prefetch and index ANDing are disabled so that they are not
used in generated access methods.

v The star join strategy is not considered.

This class should only be used in special circumstances requiring the
lowest possible query compilation overhead. An application consisting
entirely of very simple dynamic SQL statements which access
well-indexed tables is a good example of where query optimization
class 0 is appropriate.

1 - This class directs the optimizer to use a degree of optimization which
is roughly comparable to DB2/6000 Version 1, plus some additional
low cost features not found in Version 1. In particular:
v Non-uniform distribution statistics are not considered by the

optimizer.
v Only a subset of the query rewrite rules are applied, including

those provided in DB2/6000 Version 1.
v Greedy join enumeration occurs(see “Search Strategies for Selecting

Optimal Join” on page 180.)
v List prefetch and index ANDing are disabled so that they are not

used in generated access methods.

Note: Index ANDing is still used when working with the semijoins
found with star joins.

68 Administration Guide: Performance

|
|

|
|

|
|

|
|

Optimization class 1 is quite similar to class 0 except that Merge Scan
joins and table scans are also available.

2 - This class directs the optimizer to use a degree of optimization which
significantly improves upon that of class 1, while keeping the
compilation cost significantly lower than classes 3 and above for
complex queries. In particular:
v All available statistics, including both frequency and quantile

non-uniform distribution statistics, are utilized.
v All of the query rewrite rules are applied including the routing of

queries to summary tables, except computationally intensive rules
which are applicable only in very rare cases.

v Greedy join enumeration is used.
v A wide range of access methods are considered, including list

prefetch and summary table routing.
v The star join strategy is considered, if applicable.

Optimization class 2 is quite similar to class 5 except that it uses
Greedy join enumeration rather than Dynamic Programming. This
class has the most optimization of all the optimization classes that use
the Greedy join enumeration algorithm, which considers fewer
alternatives for complex queries, and therefore consumes less
compilation time than classes 3 and above. It is therefore
recommended for very complex queries in a decision support or
online analytic processing (OLAP) environment. In such cases, there is
a good chance the same query is executed infrequently, so that its
access plan is unlikely to remain in the cache until the next occurrence
of the query.

3 - This class requests that a moderate amount of optimization be
performed to generate an access plan. This class comes closest to
matching the query optimization characteristics of DB2 for MVS/ESA
or OS/390. This optimization class has the following characteristics:
v Non-uniform distribution statistics, which track frequently

occurring values, are used if available.
v Most query rewrite rules, including subquery-to-join

transformations are applied.
v Dynamic programming join enumeration (see “Search Strategies for

Selecting Optimal Join” on page 180):
– Limited use of composite inner tables (see “Composite Tables” on

page 182)
– Limited use of Cartesian products for star schemas involving

“look-up” tables (see “Search Strategies for Star Join” on
page 181)

v A wide range of access methods are considered, including list
prefetch, index ANDing and star joins.

Chapter 3. Application Considerations 69

||
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

This class is suitable for a broad range of applications. Using this class
gives the optimizer a better chance of selecting an excellent access
plan for queries with four or more joins. However, the optimizer
might fail to consider a better plan which would be chosen with the
default query optimization class.

5 - This class directs the optimizer to use a significant amount of
optimization to generate an access plan. For example, class 5 has the
following characteristics:
v All available statistics including both frequency and quantile

non-uniform distribution statistics.
v All of the query rewrite rules are applied including the routing of

queries to summary tables, except for those computationally
intensive rules which are applicable only in very rare cases.

v Dynamic programming join enumeration (see “Search Strategies for
Selecting Optimal Join” on page 180):
– Limited use of composite inner tables (see “Composite Tables” on

page 182)
– Limited use of Cartesian products for star schemas involving

“look-up” tables (see “Search Strategies for Star Join” on
page 181)

v A wide range of access methods are considered, including list
prefetch, index ANDing, and summary table routing.

When the optimizer detects that the additional resources and
processing time are not warranted for complex dynamic SQL queries,
optimization is reduced. The extent or size of the reduction is
dependent on the machine size and the number of predicates.

When the query optimizer reduces the amount of query optimization
performed, it continues to apply all the query rewrite rules that would
normally be applied. However, it does use the Greedy join
enumeration method and reduces the number of access plan
combinations that are considered.

Query optimization class 5 is an excellent choice for a mixed
environment consisting of both transactions and complex queries. This
optimization class has been designed to apply the most valuable
query transformations and other query optimization techniques in an
efficient manner.

7 - This class directs the optimizer to use a significant amount of
optimization to generate an access plan. It is the same as query
optimization class 5 except that it does not reduce the amount of
query optimization for complex dynamic SQL queries.

70 Administration Guide: Performance

|
|
|
|
|

9 - This class directs the optimizer to use all available optimization
techniques. These include:
v All available statistics
v All query rewrite rules
v All possibilities for join enumerations, including Cartesian products

and unlimited composite inners
v All access methods.

This class can greatly expand the number of possible access plans that
are considered by the optimizer. This class should be used to
determine whether more comprehensive optimization can generate a
better access plan for very complex and very long-running queries
using large tables. Explain and performance measurements should be
used to verify that a better plan has been found.

How Do You Set the Optimization Class?
The way to request a specific query optimization class depends on whether
you are using static or dynamic SQL.
v Static SQL statements use the optimization class specified on the PREP and

BIND commands. The QUERYOPT column in the SYSCAT.PACKAGES
catalog table records the optimization class used to bind the package. If the
package is rebound either implicitly or using the REBIND PACKAGE
command, this same optimization class will be used for the static SQL
statements. If you want to change the optimization class used for these
static SQL statements, you must use the BIND command. If you do not
specify the optimization class, DB2 uses the default optimization as
specified by dft_queryopt database configuration parameter.

v Dynamic SQL statements use the optimization class specified by the
CURRENT QUERY OPTIMIZATION special register which is set using the
SQL SET statement. For example, the following statement sets the
optimization class to 1:

SET CURRENT QUERY OPTIMIZATION = 1

To ensure that a dynamic SQL statement always uses the same optimization
class, you may want to include this SET statement in your application
program. For more information, refer to the SQL Reference.

If the CURRENT QUERY OPTIMIZATION register has not been set,
dynamic statements will be bound using the default query optimization
class. The default value for both dynamic and static SQL is determined by
value of the configurable database parameter dft_queryopt. Class 5 is the
default query optimization class unless you have changed the default. (For
more information on this parameter, see “Default Query Optimization Class

Chapter 3. Application Considerations 71

|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|

|
|
|
|
|
|

(dft_queryopt)” on page 442.) The default values for the bind option and
the special register are taken from the dft_queryopt database configuration
parameter.

How Much Optimization is Necessary?
Most statements will be adequately optimized using a reasonable amount of
resources with the default query optimization class. The query compilation
time and resource consumption, at a given optimization class, is primarily
influenced by the complexity of the query, particularly the number of joins
and subqueries. However, compilation time and resource usage are also
affected by the amount of optimization performed for the various
optimization classes. For any optimization class, you can expect to see a
greater difference in query compilation time and resource consumption for a
very complex query than for a simple one.

The following may help you select which optimization class to use:
v Start by using the default query optimization class.
v If you wish to use a class other than the default, try class 1, 2 or 3 first.
v Use a low optimization class (0 or 1) for queries having very short

run-times, that is, queries taking less than one second. (See the following
discussion for additional criteria about when to choose a low optimization
class.)

v Use optimization class 1 or 2 if you have many tables with many of the join
predicates that are on the same column, and if compilation time is a
concern.

v Use a higher optimization class (3, 5, or 7) for long running queries, that is,
queries taking more than 30 seconds.

v Under normal circumstances, you should not use optimization class 9.
v For queries that run a long time, run the query using db2batch to

determine how much of the time is spent in compilation and how much is
spent in execution.
– If most of the time is spent in compilation then reduce the optimization

class.
– If most of the time is spent in execution then consider a higher

optimization class.

Note that query optimization classes 1, 2, 3, 5, and 7 are all suitable for
general purpose use.

Only if you require further reductions in query compilation time and you
know the kind of SQL (for example, extremely simple statements) that will be
executed should you consider class 0. This SQL will tend to have the
following characteristics:
v Access to a single or only a few tables

72 Administration Guide: Performance

|
|
|

v Fetches a single or only a few rows
v Uses fully qualified, unique indexes.

Online transaction processing (OLTP) transactions are good examples of this
kind of SQL.

Complex queries may require different amounts of optimization to select the
best access plan. You may wish to consider using higher optimization classes
for queries exhibiting the following characteristics:
v Access to large tables
v A large number of predicates
v Many subqueries
v Many joins
v Many set operators, such as UNION and INTERSECT
v Many qualifying rows
v GROUP BY and HAVING operations
v Nested table expressions
v A large number of views.

Decision support queries or month-end reporting queries against fully
normalized databases are good examples of complex queries where at least
the default query optimization class should be used.

Another reason to use higher query optimization classes is SQL which was
produced by a query generator. Many query generators create SQL which is
not efficient. Poorly written queries, including those produced by a query
generator, may require additional optimization to make it possible to select a
good access plan. Using query optimization class 2 and higher can improve
poorly written SQL queries.

The use of static or dynamic SQL, and whether the same dynamic SQL is
repeatedly executed are also important considerations. For static SQL, the
query compilation time and resources are expended just once and the
resulting plan can be used many times. In general, static SQL should always
use the default query optimization class. Dynamic statements are bound and
executed at run time; therefore, you should consider whether the overhead of
additional optimization for dynamic statements improves your overall
performance. However, if the same dynamic SQL statement is executed
repeatedly, the selected access plan will be cached. For the purposes of
selecting a query optimization class, the statement can be treated like a static
SQL statement.

(Refer to the Application Development Guide for information on when to use
static and dynamic SQL.)

Chapter 3. Application Considerations 73

If you think you have a query that could benefit from additional optimization,
but you are not sure, or you are concerned about compilation time and
resource usage, you may want to perform some benchmark testing. This
testing can help you quantify the benefits obtained from different optimization
classes. See “Chapter 12. Benchmark Testing” on page 315 for general
techniques and the specific use of the db2batch tool. When designing and
running your benchmark test, consider whether the SQL statements in your
application are static or dynamic:
v For dynamic SQL statements, your testing should compare the average run

time for the statement. You can use the following formula to help you
calculate the average run time:

compile time + sum of execution times for all iterations
--

number of iterations

where, the number of iterations represents the number of times that you
expect that the SQL statement will be executed each time it is compiled.

Note: Following the initial compilation, dynamic SQL statements are
recompiled when a change to the environment requires the statement
to be recompiled. Once cached, a SQL statement does not need to be
compiled again since subsequent PREPARE statements will re-use the
cached statement assuming the environment does not change. (See
“Catalog Cache Size (catalogcache_sz)” on page 349 and “Package
Cache Size (pckcachesz)” on page 356 for information about a cache
that can improve performance when working with dynamic SQL
statements.)

v For static SQL statements, your testing should compare the statement run
times.

Note: While you may also be interested in the compile time of static SQL,
the total (compile and run) time for the statement is difficult to use
in any meaningful context. Comparing the total time does not
recognize the fact that a static SQL statement can be run many times
for each time it is bound and that it is generally not bound during
run time.

Restrictions on Result Sets to Improve Performance

A SELECT statement defines a set of rows which satisfy the search criteria.
The DB2 optimizer assumes the application will retrieve all the qualifying
rows. This assumption is most appropriate in OLTP and batch environments.
However, in “browse” applications it is common for a query to define a very
large potential answer set but only retrieve the first few rows, typically only
as many rows as are required to fill the screen.

74 Administration Guide: Performance

The default assumption made by the optimizer to retrieve all qualifying rows
may not be the best for applications that are not updating or deleting
information from the stored data.

There are five ways of modifying the SELECT statement to limit or modify
the result table to improve performance. They are:
v FOR UPDATE clause
v FOR READ/FETCH ONLY clause
v OPTIMIZE FOR n ROWS clause
v FETCH FIRST n ROWS ONLY clause
v DECLARE CURSOR WITH HOLD Statement.

FOR UPDATE Clause
The FOR UPDATE clause identifies the columns that can be updated by a
subsequent positioned UPDATE statement. If the FOR UPDATE clause is
specified without column names, all columns that can be updated in the table
or view are included. If column names are specified, each name must be
unqualified and must identify a column of the table or view.

The FOR UPDATE clause cannot be used when either of the following are
true:
v The cursor associated with the SELECT statement cannot be deleted.
v At least one of the selected columns is a column that cannot be updated in

a catalog table and has not been excluded in the FOR UPDATE clause.

The DB2 CLI connection attribute SQL_ATTR_ACCESS_MODE can be used in
CLI applications to achieve the same results. Refer to the SQLSetConnectAttr()
section of the CLI Guide and Reference for more information.

FOR READ or FETCH ONLY Clause
The FOR READ ONLY clause ensures that the result table is read-only. The
FOR FETCH ONLY clause has the same meaning.

Some result tables are read-only by definition. For example, the result table
from a SELECT on a view defined as read-only. You can still specify FOR
READ ONLY in such a case, but the clause has no effect.

For result tables where updates and deletes are allowed, specifying FOR
READ ONLY may improve the performance of FETCH operations. This
possible improvement in performance occurs when the database manager is
able to do blocking, rather than exclusive locks, on the data. You should use
the FOR READ ONLY clause to improve performance except in cases where
queries are used in positioned UPDATE or DELETE statements.

Chapter 3. Application Considerations 75

|
|

|

|

|
|

The DB2 CLI connection attribute SQL_ATTR_ACCESS_MODE can be used in
CLI applications to achieve the same results. Refer to the SQLSetConnectAttr()
section of the CLI Guide and Reference for more information.

OPTIMIZE FOR n ROWS Clause
The OPTIMIZE FOR clause provides a mechanism for an application to
declare its intent to retrieve only a subset of the result or to give priority to
the retrieval of the first few rows. Once this intent is understood, the
optimizer can give preference to access plans that minimize the response time
for retrieving the first few rows. Also, the number of rows that are sent to the
client as a single block (see “Row Blocking” on page 79) are bounded by the
value of “n” in the OPTIMIZE FOR clause. Therefore, the OPTIMIZE FOR
clause affects both how the qualifying rows are retrieved from the database by
the server, and how the qualifying rows are returned to the client.

For example, suppose you are querying the employee table for the employees
with the highest salary on a regular basis.

SELECT LASTNAME,FIRSTNAME,EMPNO,SALARY
FROM EMPLOYEE
ORDER BY SALARY DESC

You have defined a descending index on the SALARY column. However, since
employees are ordered by employee number, the salary index is likely to be
very poorly clustered. The optimizer, in trying to avoid many random
synchronous I/Os, would likely choose to use the list prefetch access method
(see “Understanding List Prefetching” on page 257) which requires the row
identifiers of all rows that qualify to be sorted. This can cause a delay before
the first qualifying rows can be returned to the application. By adding the
OPTIMIZE FOR clause to the statement as follows:

SELECT LASTNAME,FIRSTNAME,EMPNO,SALARY
FROM EMPLOYEE
ORDER BY SALARY DESC
OPTIMIZE FOR 20 ROWS

the optimizer would likely choose to use the SALARY index directly with the
knowledge that in all likelihood only the twenty employees with the highest
salaries would be retrieved. Regardless of how many rows could be blocked, a
block of rows is returned to the client every twenty rows.

Use of the OPTIMIZE FOR clause causes the optimizer to favor access plans
that avoid bulk operations or operations that interrupt the flow of rows, such
as sorts. You are most likely to influence an access path by using OPTIMIZE
FOR 1 ROW. As a result, using this clause could have the following effects:
v Join sequences with composite inners are less likely since they require a

temporary table.

76 Administration Guide: Performance

v The join method could change. A nested loop join is the most likely choice,
because it has low overhead cost and is usually more efficient if you only
want to retrieve a few rows.

v An index that matches the ORDER BY clause is more likely to be picked.
This occurs because no sort would be needed for the ORDER BY.

v List prefetch is less likely to be picked since this access method requires a
sort.

v Sequential prefetch is less likely to be requested by DB2 because it infers
that you only want to see a small number of rows.

v In a join query, the table with the columns in the ORDER BY clause is likely
to be picked as the outer table if there is an index on that outer table that
gives the ordering needed for the ORDER BY clause.

Although the OPTIMIZE FOR clause applies to all optimization classes (see
“Adjusting the Optimization Class” on page 67), it works best for optimization
class 3 and higher. The use of the Greedy join enumeration method (see
“Search Strategies for Selecting Optimal Join” on page 180) in optimization
classes below 3 sometimes results in access plans for multi-table joins that do
not lend themselves to quickly retrieving the first few rows.

The OPTIMIZE FOR clause does not prevent you from retrieving all the
qualifying rows. However the total elapsed time to retrieve all the qualifying
rows may be significantly greater than if the optimizer had been allowed to
optimize for the entire answer set.

If you have a packaged application that uses the call level interface (DB2 CLI
or ODBC) it is possible to have DB2 CLI automatically append an OPTIMIZE
FOR clause to the end of each query statement using the
OPTIMIZEFORNROWS keyword in the db2cli.ini configuration file. For
additional information refer to the CLI Guide and Reference manual.

When selecting data from nicknames, results may vary depending on data
source support. If the data source referenced by the nickname supports the
OPTIMIZE FOR clause, and the DB2 optimizer pushes down the entire query
containing the clause to the data source, then the clause is generated in the
remote SQL sent to the data source. If the data source does not support this
clause, or if the optimizer decides to execute the clause locally (least cost
plan), the OPTIMIZE FOR clause is applied locally at DB2. In this case, the
DB2 optimizer will continue to give preference to access plans that minimize
the response time for retrieving the first few rows of a query, but the options
available to the optimizer for generating plans are slightly delimited and
performance gains from the OPTIMIZE FOR clause may be negligible.

If both the FETCH FIRST clause and the OPTIMIZE FOR clause are specified,
the lower of the two values is used to influence the communications buffer

Chapter 3. Application Considerations 77

|
|
|
|
|
|

size. The two values are considered independent of each other for
optimization purposes. See “Using a SELECT-Statement” on page 80 for more
information on the interaction between these two clauses.

FETCH FIRST n ROWS ONLY Clause
The OPTIMIZE FOR n ROWS clause does not prevent the retrieval of all
qualifying rows. (The total elapsed time to retrieve all qualifying rows may be
significantly greater than if the optimizer was allowed to optimize for the
entire answer set.)

The FETCH FIRST n ROWS ONLY clause sets the maximum number of rows
that can be retrieved from within a SELECT statement. Limiting the result
table to the first several rows can improve performance. Only n rows are
retrieved regardless of the number of rows there might be in the result table
based on a SELECT where this clause is not specified.

If both the FETCH FIRST clause and the OPTIMIZE FOR clause are specified,
the lower of the two values is used to influence the communications buffer
size. The two values are considered independent of each other for
optimization purposes. See “Using a SELECT-Statement” on page 80 for more
information on the interaction between these two clauses.

DECLARE CURSOR WITH HOLD Statement
When you declare a cursor with the DECLARE CURSOR statement that
includes the WITH HOLD clause, any open cursors remain open when the
transaction is committed. Further, all locks are released, except locks
protecting the current cursor position of open WITH HOLD cursors.

When you declare a cursor with the DECLARE CURSOR statement that
includes the WITH HOLD clause, all open cursors are closed when the
transaction ends with a ROLLBACK. Further, all locks are released and LOB
locators are freed.

See “CLOSE CURSOR WITH RELEASE” on page 66 for a comparison with the
other primary clause for the CLOSE CURSOR statement.

The DB2 CLI connection attribute SQL_ATTR_CURSOR_HOLD can be used in
CLI applications to achieve the same results. For additional information refer
to the “SQLSetStmtAttr - Set Options Related to a Statement” section in the
CLI Guide and Reference manual.

If you have a packaged application that uses the call level interface (DB2 CLI
or ODBC) it is possible to have DB2 CLI automatically assume the WITH
HOLD clause for every declared cursor by using the CURSORHOLD keyword
in the db2cli.ini configuration file. Refer to the transaction configuration
keywords section of the CLI Guide and Reference for more information.

78 Administration Guide: Performance

Row Blocking

Row blocking is a technique that reduces database manager overhead by
retrieving a block of rows in a single operation. These rows are stored in a
cache, and each FETCH request in the application gets the next row from the
cache. When all the rows in a block have been processed, another block of
rows is retrieved by the database manager.

The cache is allocated when an application issues an OPEN CURSOR request
and is deallocated when the cursor is closed. The size of the cache is
determined by a configuration parameter which is used to allocate memory
for the I/O block. The parameter used depends on whether the client is local
or remote:
v For local applications, the parameter aslheapsz is used to allocate the cache for

row blocking. (See “Application Support Layer Heap Size (aslheapsz)” on
page 372 for information about this parameter.)

v For remote applications, the parameter rqrioblk on the client workstation is
used to allocate the cache for row blocking. The cache is allocated on the
database client. (See “Client I/O Block Size (rqrioblk)” on page 375 for
information about this parameter.)

For local applications, you can use the following formula to estimate how
many rows are returned per block, where:
v aslheapsz is in pages of memory
v 4 096 is the number of bytes per page
v orl is the output row length in bytes:
Rows per block = aslheapsz * 4096 / orl

For remote applications, you can use the following formula to estimate how
many rows are returned per block, where:
v rqrioblk is in bytes of memory
v orl is the output row length in bytes:
Rows per block = rqrioblk / orl

Note that if you use the FETCH FIRST n ROWS ONLY clause or the
OPTIMIZE FOR n ROWS clause in a SELECT statement, the number of rows
per block will be the minimum of the following:
v The value calculated in the above formula
v The value of n in the FETCH FIRST clause
v The value of n in the OPTIMIZE FOR clause

Use the BLOCKING option on the PREP and BIND commands to specify one
of the following types of row blocking:

Chapter 3. Application Considerations 79

UNAMBIG
Blocking occurs for read-only cursors and cursors not specified as
“FOR UPDATE OF”. Ambiguous cursors are treated as updateable.

ALL Blocking occurs for read-only cursors and cursors not specified as
“FOR UPDATE OF”. Ambiguous cursors are treated as read-only.

NO Blocking does not occur for any cursors. Ambiguous cursors are
treated as read-only.

For details of these types of row blocking, refer to the PREP and BIND
command descriptions in the Command Reference manual.

If no option is specified on the PREP and BIND commands, the default row
blocking type is UNAMBIG. For the command line processor and call level
interface, the default row blocking type is ALL.

Refer to the SQL Reference for more information about cursors.

Tuning Queries

This section provides specific considerations and guidelines to help you
fine-tune the SQL statements in an application program. As a general rule,
these guidelines may help design a program that minimizes the use of system
resources and the amount of time needed to access data in a very large table.
Depending on the amount of optimization that takes place when the SQL
statement is compiled, you may not need to fine-tune your SQL statements.
The SQL compiler can rewrite your SQL into more efficient forms. See
“Rewrite Query by the SQL Compiler” on page 153 and “Adjusting the
Optimization Class” on page 67.

It is also important to note that the access plan chosen by the optimizer is also
affected by other factors, including environmental considerations and system
catalog statistics. If you conduct benchmark testing of the performance of
your applications, you can make adjustments that can improve the access
plan.

Using a SELECT-Statement
The SQL language is a high-level language with much flexibility. As a result,
different select-statements can be written to retrieve the same data. However,
the performance can vary for the different forms and the different classes of
optimization.

The SQL compiler (including the query rewrite and optimization phases) will
choose an access plan to produce the result set for the query you have coded.
Therefore, as noted in many of the following guidelines, you should code
your query to obtain only the data that you need.

80 Administration Guide: Performance

Guidelines When Using a SELECT-Statement
The guidelines for using a select-statement are:
v Specify only those columns that are needed in the select list. Although it

may be simpler to specify all columns with an asterisk (*), needless
processing and returning of unwanted columns can result.

v Limit the number of rows selected by using predicates to restrict the answer
set to only those rows that you require. (See “Predicate Terminology” on
page 173 for more information about the different types of predicates and
their relative impact on performance.)

v When the number of rows you want to use is significantly less than the
total number of rows that could be returned, specify the OPTIMIZE FOR
clause for the select-statement. This clause affects both the choice of access
plans as well as the number of rows that are blocked in the communication
buffer. (For more information, see “Row Blocking” on page 79.)

v When the number of rows to be retrieved is small, there is no need to
specify the OPTIMIZE FOR k ROWS clause in addition to the FETCH
FIRST n ROWS ONLY clause. However, if n is large and you want optimize
by getting the first k rows quickly with a possible delay for the subsequent
k rows, specify both. The communication buffers are sized based on the
lesser of n and k.
SELECT EMPNAME, SALARY FROM EMPLOYEE

ORDER BY SALARY DESC
FETCH FIRST 100 ROWS ONLY
OPTIMIZE FOR 20 ROWS

v Specifying the FOR READ ONLY (or FOR FETCH ONLY) clause can
improve performance by allowing your query to take advantage of row
blocking. It can also improve data concurrency since exclusive locks will
never be held on the rows retrieved by a query with this clause specified. It
also allows additional query rewrites to take place. Specifying the FOR
READ ONLY (or FOR FETCH ONLY) clause along with BLOCKING ALL
BIND can similarly improve the performance of queries against nicknames
in a federated system.

v Specifying the FOR UPDATE OF clause can also improve performance, for
cursors that will be updated, by allowing the database manager to initially
choose more appropriate locking levels, thus avoiding potential deadlocks
(see “Deadlocks” on page 59) and lock conversions (see “Lock Conversion”
on page 56).

v Avoid numeric data type conversions whenever possible. When comparing
values, it may be more efficient to use items that have the same data type.
If conversions are necessary, inaccuracies due to limited precision, and
performance costs due to run-time conversions, may result.
If possible, use the following data types:
– Character rather than varying character for short columns
– Integer rather than float or decimal

Chapter 3. Application Considerations 81

– Datetime rather than character.
– Numeric rather than character.

v SQL statements containing clauses or operations such as DISTINCT, or
ORDER BY, require data to be ordered to perform the operation. If you
want to decrease the chances that a sort operation will be used, omit the
specification of these clauses if they are not required.

v To check for existence of rows in a table, do not use:
SELECT COUNT(*) FROM TABLENAME

and check for a value of nonzero unless you know that the table will be
very small. As the table gets larger, counting all the rows will impact
performance. Instead it is suggested that you try to select a single row. This
can be done by either opening a cursor and fetching one row, or by doing a
single-row (SELECT INTO) selection. (Remember to check for the
SQLCODE -811 error if more than one row is found from the
select-statement.)

v If update activity is low and your tables are large, define indexes on
columns that are frequently used as predicates.

v Consider using an IN list if the same column appears in multiple predicate
clauses.

v For large IN lists used in conjuction with host variables, loopin an a subset
of the host variables may improve performance.

The following suggestions apply specifically to select-statements that access
several tables.
v Use join predicates when joining tables. (A join predicate is a comparison

between two columns from different tables in a join.)
v Define indexes on the columns in the join predicate to allow the join to be

processed more efficiently. This will also benefit UPDATE and DELETE
statements that contain select-statements that access several tables.

v If possible, avoid using expressions or OR clauses with join predicates. In
this case, some join techniques cannot be used by the database manager
and, as a result, the most efficient join method may not be chosen.

v If possible, ensure that the tables joined are both partitioned on the join
column in a partitioned database environment.

For more information see “Join Concepts” on page 175.

Also, refer to the Application Development Guide for more information on
coding SQL statements with joins and subqueries.

82 Administration Guide: Performance

Compound SQL

Compound SQL allows you to group several SQL statements into a single
executable block. The SQL statements contained within the block
(sub-statements) could be executed individually; however, by creating and
executing a block of statements, you reduce the database manager overhead.
For remote clients, compound SQL also reduces the number of requests that
have to be transmitted across the network.

There are two types of compound SQL:
v Atomic

The application receives a response from the database manager when all
sub-statements have completed successfully, or when one sub-statement
ends in an error. If one sub-statement ends in an error, the entire block is
considered to have ended in an error, and any changes made to the
database within the block will be rolled back.

v Not Atomic

The application receives a response from the database manager when all
sub-statements have completed. All sub-statements within a block are
executed regardless of whether or not the preceding sub-statement
completed successfully. The group of statements can only be rolled back if
the unit of work containing the NOT ATOMIC compound SQL is rolled
back.

v Atomic compound SQL is not supported with DB2 Connect
v Compound SQL is supported within stored procedures (also known as

DARI routines)
v Compound SQL is supported through:

– Embedded static SQL (refer to the SQL Reference manual)
– DB2 Call Level Interface (refer to the CLI Guide and Reference manual)
– JDBC (refer to the Application Development Guide manual).

Dynamic Compound Statements

A dynamic compound statement groups other SQL statements together into
an executable block. Within the dynamic compound statement you can declare
SQL variables, declare conditions associated with SQLSTATEs, and have one
or more SQL procedural statements. If an error occurs in the dynamic
compound statement, all prior SQL statements are rolled back and the
remaining SQL statements in the dynamic compound statement are not
processed.

The dynamic compound statement can be embedded in a trigger, SQL
function, SQL method, or issued through the use of dynamic SQL statements.
This executable statement can be dynamically prepared. No privileges are

Chapter 3. Application Considerations 83

|

|

|
|
|
|
|
|
|

|
|
|

required to invoke the statement but the authorization ID associated with the
statement must have the necessary privileges to invoke the embedded SQL
statements within the compound statement.

Variables are present in the sub-statements in the variable declaration.
Conditions are present in the sub-statements based on the SQLSTATE values
of the condition declaration. Dynamic compound statements are compiled by
DB2 as a single statement. This statement can be used effectively for short
scripts involving little control flow logic but significant data flow. For larger
constructs with nested complex control flow, you should consider using SQL
procedures.

There are several control flow logic statements that can be used within the
dynamic compound statement. These include: the FOR statement, the IF
statement, the ITERATE statement, and the WHILE statement. Details about
these statements, and the other supported statements, are found in the SQL
Reference.

Performance Considerations and Character Conversion

When your application and database are not using the same code page, a
mapping of the data from one code page to the other code page takes place, if
possible. To properly map data between application and database code pages,
some data conversion may be required.

This mapping and data conversion introduce a certain amount of overhead
into the processing time for applications that are running in a code page that
is different from the database code page. Your application’s performance can
be improved if the application and database are using the same code page or
the identity collating sequence.

Code Page Conversion
Character conversion can occur in the following situations:
v When a client or application accessing a database is running in a code page

that is different from the code page of the database.
Database conversion will occur on the database server machine: From the
application code page to the database code page; and, from the database
code page to the application code page.

v When a client or application importing (or loading) a file runs in a code
page different from the file being imported (or loaded).

v When DB2 Connect is used to access data on a DRDA server.

Character conversion will not occur for:
v File names.

84 Administration Guide: Performance

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

v Data targeted for, or coming from, a column assigned the FOR BIT DATA
attribute, or data used in an SQL operation whose result is FOR BIT or
BLOB data.

v A DB2 product or platform that does not have a supported conversion
function to, or from, EUC or UCS-2 installed. You receive an SQLCODE
-332 (SQLSTATE 57017) when running your application.

For more information about EUC code page support and National Language
Support (NLS) considerations, refer to the Administration Guide: Planning.

Depending on the operating system environment, DB2 database managers use
a conversion function and conversion tables, or DBCS conversion APIs when
converting multi-byte code pages.

Note: Character string conversions between multi-byte code pages, like DBCS
with EUC, may result in either an increase or a decrease in the length
of the string.

Code points assigned to different characters in a country’s PC DBCS, EUC,
and UCS-2 code sets may produce different results when sorting the same
characters. If sorting is required across code sets for different countries, you
should refer to the Administration Guide: Planning.

Extended UNIX Code (EUC) Code Page Support
Use of host variables that use graphic data in C or C++ applications require
special considerations including special precompiler, application performance,
and application design issues.

If applications are developed requiring EUC code sets, you should see the
Administrative API Reference manual.

Database and client application support for graphic (that is, double byte
character) data must overcome the two bytes wide restriction when dealing
with many characters found in both the Japanese and Traditional Chinese
EUC code pages. Graphic data from these EUC code pages is stored and
manipulated using the UCS-2 code set.

Stored Procedures

In a database application environment, many situations are repetitive; for
example, receiving a fixed set of data, performing the same multiple requests
against a database, or returning a fixed set of data. Stored procedures permit
one call to a remote database to execute a preprogrammed procedure. One
call may represent several accesses to the database.

Chapter 3. Application Considerations 85

|
|
|

Processing a single SQL statement for a remote database requires sending two
transmissions: one request and one receive. However, an application can
contain many SQL statements. Without stored procedures, many transmissions
are required for an application to complete its work.

When a database client uses a stored procedure, it requires only two
transmissions for the entire process, thereby reducing the number of network
transmissions. To invoke a stored procedure, the requesting application must
connect to the database containing the procedure before calling it.

Typically these stored procedures are run in processes separate from the
database agents. This separation requires that the stored procedure and agent
processes must communicate through a router. To obtain the best possible
performance for a stored procedure, it is possible to identify a stored
procedure as being “trusted”, or “not fenced”, and as a result, run the
procedure directly in the database agent process. What is meant by “trusted”
and “not fenced”?
v Not fenced refers to the fact that there is nothing separating the stored

procedure from the database control structures that are used by the
database agent.

v Trusted indicates that as an administrator, you are confident that the stored
procedure will not accidentally or maliciously damage the database control
structures. That is, you trust them to operate in a fashion which will not
jeopardize your database integrity.

Both of these terms mean the same thing, that is, if your stored procedure is
“not fenced”, then your stored procedure is “trusted”. Due to the associated
risk of damaging your database, you SHOULD ONLY use not fenced stored
procedures when you need to obtain the maximum possible performance
benefits. In addition, you should ensure that the procedure is well coded and
has been thoroughly tested before allowing it to run as a not fenced stored
procedure. If a fatal error does occur while running one of these not fenced
stored procedures, the database manager will determine whether the error
occurred in the application or database manager code, and perform the
appropriate recovery.

It is possible for a not fenced stored procedure to corrupt the database
manager beyond recovery, possibly resulting in lost data and the possibility of
a corrupt database. Extreme caution should be exercised when running
trusted stored procedures. In almost all cases, the proper performance analysis
of an application will result in the desired performance without using this
option. For example, performance may be improved through the use of
triggers.

There are two ways to create a stored procedure as being not fenced:

86 Administration Guide: Performance

|
|
|
|
|
|
|

|
|
|
|
|
|
|

v Use the CREATE PROCEDURE command and specify the NOT FENCED
clause.

v Put the procedure in a special directory, as defined in the Quick Beginnings
manual for your platform. (This method does not work for Java stored
procedures.)

To run a stored procedure, the end-user running the application that calls the
procedure must have one of the following privileges at run time:
v EXECUTE or CONTROL privilege for the package associated with the

stored procedure
v SYSADM or DBADM authority

For information on writing programs using stored procedures, refer to the
Application Development Guide manual.

Activating a Database

When a database is started, several types of data are cached. For example,
data buffers are cached in the buffer pool, and packages and dynamic SQL
statements are cached in the package cache.

If frequent, short periods occur during which no user is connected to the
database, and these periods are interspersed with other periods during which
a few users are connected to the database, the benefits provided by caching
are lost because the cache is frequently destroyed. To avoid this situation,
consider activating the database by issuing the following command:

DB2 ACTIVATE DATABASE database

This command activates the specified database and starts up all necessary
services, so that the database is available for connection and use by any
application. Databases initialized by ACTIVATE DATABASE can be shut down
by DEACTIVATE DATABASE or by db2stop. For more information about these
commands, refer to the Command Reference manual.

Parallel Processing of Applications

A type of parallel environment supported by DB2 is one which requires
symmetric multi-processor (SMP) machines. In this environment, more than
one processor shares access to the database. This allows parallel execution of
complex SQL requests which can be divided among the processors.

You can specify the degree of parallelism to implement when compiling your
application by using the CURRENT DEGREE special register, or the DEGREE
bind option. ″Degree″ simply refers to the number of concurrently executing
parts of a query. There is no strict relation between the number of processors

Chapter 3. Application Considerations 87

and the value selected for the degree of parallelism. The total number of
processors available for use in your hardware platform need not be requested
while running your applications; you can select more or less than this number.

Each degree of parallelism adds to the system memory and CPU overhead.

When exploiting parallelism, you should be aware that some configuration
parameters require modification in order to optimize performance.
Configuration parameters controlling the amount of shared memory and
prefetching should be reviewed and modified as necessary in an environment
with a high degree of parallelism. See “Partition Database” on page 458 for a
list of parameters related to parallel operations and partitioned database
environments.

There are three configuration parameters that you can use to control and
manage intra-partition parallelism. The first, the intra_parallel database
manager configuration parameter, enables or disables parallelism support. The
second, the max_querydegree database configuration parameter, sets an upper
limit for the degree of parallelism for any query in the database. This value
overides the CURRENT DEGREE special register and the DEGREE bind
option. The third configuration paremeter is the dft_degree database
configuration parameter. It sets the default value for the CURRENT DEGREE
special register and the DEGREE bind option.

For more information on the application use and implications from using
more than one degree of parallelism, refer to the Application Development Guide
manual.

If a query is run with DEGREE = ANY, the database manager chooses the
degree of intra-partition parallelism based on a number of factors including
the number of processors and the characteristics of the query. The actual
degree used at runtime may be lower than the number of processors
depending on these factors.

The degree of parallelism is determined by the SQL optimizer when the
statement is compiled and may be adjusted before query execution depending
on the database activity. The degree of parallelism may be lower than that
chosen by the SQL optimizer if the system is heavily utilized. This occurs
since intra-partition parallelism aggressively uses system resources to reduce
the elapsed time of the query which may adversely affect the performance of
other database users.

The degree of parallelism chosen by the SQL optimizer can be found by using
the SQL Explain Facility to display the access plan. The degree of parallelism
used at runtime can be found by using the database system monitor. See
“Chapter 7. SQL Explain Facility” on page 213 and “Appendix C. SQL Explain

88 Administration Guide: Performance

|
|
|
|
|
|
|
|
|

|
|
|
|

Tools” on page 555 for more information on the SQL Explain Facility and
related tools. Refer to the System Monitor Guide and Reference for additional
monitor information.

Note: The ″degree″ of parallelism can be set independent of the hardware
environment. This means that you can use a degree of parallelism
without having an SMP machine. For example, ″I/O-bound″ queries on
a uni-processor machine may benefit from declaring a degree of ″2″ or
more. In this case, the uni-processor may not have to wait for input or
output tasks to complete before working on a new query. Declaring a
degree of ″2″ or more does not directly control I/O parallelism on a
uni-processor machine. Utilities such as Load can control I/O
parallelism independent from such a declaration. The keyword ANY can
also be used when changing the dft_degree. The use of ANY means that
the optimizer determines the degree of intra-partition parallelism.

In many cases, database agents are used to coordinate parallel execution. See
“Database Agents” on page 271 for more information, and a list of the various
database manager configuration parameters that affect database agents.

Chapter 3. Application Considerations 89

|
|
|

|
|
|
|
|
|
|
|
|
|
|

90 Administration Guide: Performance

Chapter 4. Environmental Considerations

In addition to the factors you should consider when you are designing and
coding your application (described in “Chapter 3. Application Considerations”
on page 43), there are environmental factors that can influence the access plan
chosen for your application:
v Configuration Parameters Affecting Query Optimization
v Nodegroup Impact on Query Optimization
v Table Space Impact on Query Optimization
v Indexing Impact on Query Optimization
v Server Options Affecting Federated Database Queries.

Also see “Chapter 5. System Catalog Statistics” on page 113 for more
information about factors that affect the SQL optimizer.

When tuning your applications and environment, rebind your applications
after you make changes in any of the above areas. This ensures that the best
access plan is being used.

Configuration Parameters Affecting Query Optimization

Several configuration parameters affect the access plan chosen by the SQL
compiler. Many of these are appropriate to a single-partition database and
some are only appropriate to a partitioned database. When working with
configuration parameters in a partitioned database, it is recommended that the
values used for each parameter be the same on all partitions.

When working in a federated system, if the majority of your queries access
nicknames then consider the type of query you are sending before changing
your environment. For example, the buffer pool does not cache pages from
data sources; as such, increasing the buffpage parameter value does not
guarantee that the optimizer will consider additional alternatives when
creating an access plan for queries containing nicknames. (Data sources are
DBMSs and data within the federated system.) Also, the optimizer may decide
that local materialization of data source tables is the least cost route or a
necessary step for a sort operation. In that case, increasing the resources
available to DB2 Universal Database may speed performance. For additional
information, see “Server Options Affecting Federated Database Queries” on
page 106 and “Database Shared Memory” on page 345.

© Copyright IBM Corp. 1993, 2001 91

|
|
|

Following is a list of configuration parameters that affect the access plan
chosen by the SQL compiler:
v “Buffer Pool Size (buffpage)” on page 345.

When selecting the access plan, the optimizer considers the I/O cost of
fetching pages from disk to the buffer pool. In its calculations, the optimizer
will estimate the number of I/Os required to satisfy a query. This estimate
includes a prediction of buffer pool usage, since additional physical I/Os
are not required to read rows in a page that is already in the buffer pool.
The optimizer considers the value of the npages column in the
BUFFERPOOLS system catalog tables in estimating whether a page will be
found in the buffer pool.
The I/O costs of reading the tables can have an impact on :
– How two tables are joined, as described in “Outer Versus Inner

Determination” on page 178.
– Whether an unclustered index will be used to read the data (see

“Clustered Indexes” on page 170).

You can have more than one buffer pool in a database. You can also have
more than one buffer pool in a partitioned database. The new buffer pool
can be selectively added to each of the partitions in the database or across
all partitions. The npages column in the BUFFERPOOLS and
BUFFERPOOLSNODE system catalog tables are used by the optimizer for
estimating in a partitioned database.

v “Default Degree (dft_degree)” on page 442.
The dft_degree configuration parameter specifies the default value for the
CURRENT DEGREE special register and the DEGREE bind option. A value
of one (1) means no intra-partition parallelism. A value of minus one (-1)
means the optimizer determines the degree of intra-partition parallelism
based on the number of processors and the type of query.

v “Default Query Optimization Class (dft_queryopt)” on page 442.
When compiling SQL queries, you can use the query optimization class to
direct the optimizer to use different degrees of optimization. For more
information on selecting a suitable query optimization class, see “Adjusting
the Optimization Class” on page 67.

v “Average Number of Active Applications (avg_appls)” on page 396.
The avg_appls parameter is used by the SQL optimizer to help estimate how
much of the buffer pool will be available at run-time for the access plan
chosen. Higher values for this parameter can influence the optimizer to
choose an access plan for queries that will be more conservative in its
buffer pool usage. A value of 1 for this parameter will cause the optimizer
to treat the entire buffer pool as being available to the application.

v “Sort Heap Size (sortheap)” on page 360.

92 Administration Guide: Performance

|
|
|
|
|
|

A sort is considered to be “piped” if it does not require a temporary table
to store the final, sorted list of data. That is, the results of the sort can be
read in a single, sequential access. Piped sorts result in better performance
than non-piped sorts and will be used if possible. (See “Influence of Sorting
on the Optimizer” on page 192 for a definition of non-piped sorts compared
to piped sorts.)
When choosing an access plan, the optimizer estimates the cost of the sort
operations, including evaluating whether a sort can be piped, by:
– Estimating the amount of data to be sorted
– Looking at the sortheap parameter to determine if there is enough space

for the sort to be piped.
v “Maximum Storage for Lock List (locklist)” on page 353 and “Maximum

Percent of Lock List Before Escalation (maxlocks)” on page 384.
When the isolation level (see “Concurrency” on page 43) being used is
repeatable read (RR), the SQL optimizer will consider the values of the
locklist and maxlocks parameters to determine whether it is likely that row
level locks will be escalated to a table level lock. If the optimizer predicts
that lock escalation will occur for a table access, then it will choose a table
level lock for the access plan, rather than incurring the overhead of lock
escalation during the execution of the query.

v “CPU Speed (cpuspeed)” on page 472.
The CPU speed is used by the SQL optimizer to estimate the cost of
performing certain operations. The optimizer uses these CPU cost
estimations along with various I/O cost estimations to select the best access
plan for a query.
The CPU speed of a machine can have a significant influence on the access
plan chosen. This configuration parameter is automatically set to an
appropriate value when the database is installed or migrated. You should
only adjust this parameter if you are modelling a production environment
on a test system, or to assess the impact of a hardware change. Using this
parameter to model a different hardware environment allows you to
observe the access plan that will be chosen for that environment.

v “Statement Heap Size (stmtheap)” on page 362.
The size of the statement heap does not influence the optimizer in choosing
different access paths; however, it can affect the amount of optimization
that will be performed for complex SQL statements.
If the stmtheap parameter is not set large enough, you may receive an SQL
warning indicating that there is not enough memory available to process
the statement. For example, SQLCODE +437 (SQLSTATE 01602) can indicate
that the amount of optimization that has been used to compile a statement
is less than the amount that you requested when you specified the query
optimization class. (See “Adjusting the Optimization Class” on page 67 for
more information.)

Chapter 4. Environmental Considerations 93

v “Maximum Query Degree of Parallelism (max_querydegree)” on page 464.
When this parameter has a value of ″ANY″, then the optimizer chooses the
degree of parallelism to be used. If other than ″ANY″ is present, then the
user-specified value is used to determine the degree of parallelism for the
application.

v “Communications Bandwidth (comm_bandwidth)” on page 471.
Communications bandwidth is used by the optimizer to determine access
paths. The optimizer uses the value in this parameter to estimate the cost of
performing certain operations between the database partition servers of a
partitioned database.

For additional information, see “Tuning Configuration Parameters” on
page 330.

Nodegroup Impact on Query Optimization

In partitioned databases, collocation of tables is recognized by the optimizer
and used when determining the best access plan for a query. The assumption
is that tables that are frequently involved in join queries should, when
divided among partitions in a partitioned database, ideally have the rows
from each table being joined located on the same database partition. During
the join operation, the collocation of the data from both tables that are part of
the join would prevent the need to move data from one partition to another.
Placing both tables in the same nodegroup ensures that the data from the
tables is collocated.

Refer to Administration Guide: Planning for more information on collocating
tables.

Also, within a partitioned database, and depending on the size of the table,
the spreading of the data over more partitions reduces the estimated time (or
cost) to execute a query. The number of tables, the size of the tables, the
location of the data in those tables, and the type of query (whether a join is
required as noted above) all affect the cost of the query.

Table Space Impact on Query Optimization

Certain characteristics of your table spaces can affect the access plan chosen
by the SQL compiler:
v Container characteristics

Container characteristics can have a significant impact on the I/O cost
associated when executing a query. When selecting an access plan the SQL
optimizer considers these I/O costs, including any cost differences for
accessing data from different table spaces. Two columns in the

94 Administration Guide: Performance

|
|
|
|
|
|
|
|
|

|
|
|
|
|

SYSCAT.TABLESPACES system catalog are used by the optimizer to help
estimate the I/O costs of accessing data from a table space:
– OVERHEAD, which provides an estimate (in milliseconds) of the time

required by the container before any data is read into memory. This
overhead activity includes the container’s I/O controller overhead as
well as the disk latency time, which includes the disk seek time.
You may use the following formula to help you estimate the overhead
cost:

OVERHEAD = average seek time in milliseconds
+ (0.5 * rotational latency)

where:
- 0.5 represents an average overhead of one half rotation
- Rotational latency is calculated, in milliseconds for each full rotation,

as follows:
(1 / RPM) * 60 * 1000

where you:
v Divide by rotations per minute to get minutes per rotation
v Multiply by 60 seconds per minute
v Multiply by 1000 milliseconds per second.

As an example, let the rotations per minute for the disk be 7 200. This
would produce, using the rotational latency formula,

(1 / 7200) * 60 * 1000 = 8.328 milliseconds

which can then be used in the calculation of the OVERHEAD estimate
with an assumed average seek time of 11 milliseconds:

OVERHEAD = 11 + (0.5 * 8.328)
= 15.164

giving an estimated OVERHEAD value of about 15 milliseconds.
– TRANSFERRATE, which provides an estimate (in milliseconds) of the

time required to read one page of data into memory.
If each table space container is a single physical disk then you may use
the following formula to help you estimate the transfer cost in
milliseconds per page:

TRANSFERRATE = (1 / spec_rate) * 1000 / 1 024 000 * page_size

where:
- spec_rate represents the disk specification for the transfer rate, in MB

per second
- Divide by spec_rate to get seconds per MB
- Multiply by 1000 milliseconds per second

Chapter 4. Environmental Considerations 95

|

- Divide by 1 024 000 bytes per MB
- Multiply by the page size in bytes (for example, 4 096 bytes for a 4 KB

page)

As an example, suppose the specification rate for the disk is 3 MB per
second. This would produce the following calculation

TRANSFERRATE = (1 / 3) * 1000 / 1024000 * 4096
= 1.333248

giving an estimated TRANSFERRATE value of about 1.3 milliseconds per
page.

If the table space containers are not single physical disks but rather are
arrays of disks (such as RAID), then there are additional considerations
when attempting to determine the TRANSFERRATE to use. If the array
is relatively small then you can multiply the spec_rate by the number of
disks, assuming that the bottleneck is at the disk level. However, if the
number of disks in the array making up the container is large, then the
bottleneck may not be at the disk level, but rather be at one of the other
I/O subsystem components such as disk controllers, I/O busses, or the
system bus. In this case, you cannot assume that the I/O throughput
capability is the product of the spec_rate and the number of disks.
Instead, you must measure the actual I/O rate (in MBs) during a
sequential scan. For example, a sequential scan could be select count(*)
from big_table and will be MBs in size. Divide the result by the number
of containers that make up the table space in which big_table resides.
Use the result as a substitute for spec_rate in the formula given above.
For example, a measured sequential I/O rate of 100 MBs while scanning
a table in a four container table space would imply 25 MBs per container,
or a TRANSFERRATE of (1/25) * 1000 / 1024000 * 4096 = 0.16
milliseconds per page.

Each of the containers assigned to a table space may reside on different
physical disks. For best results, all physical disks used for a given table
space should have the same OVERHEAD and TRANSFERRATE
characteristics. If these characteristics are not the same, you should use the
average when setting the values for OVERHEAD and TRANSFERRATE.

You can obtain media specific values for these columns from the hardware
specifications or through experimentation. These values may be specified on
the CREATE TABLESPACE and ALTER TABLESPACE statements.

Experimentation becomes especially important in the environment
mentioned above where you have a disk array as a container. You should
create a simple query that moves data and use it in conjunction with a
platform-specific measuring utility. You can then re-run the query with

96 Administration Guide: Performance

|
|
|
|

different container configurations within your table space. You can use the
CREATE and ALTER TABLESPACE statements to change how data is
transferred in your environment.

The I/O cost information through these two values could influence the
optimizer in a number of ways, including whether or not to use an index to
access the data, and which table to select for the inner and outer tables in a
join.

v Prefetching
When considering the I/O cost of accessing data from a table space, the
optimizer will also consider the potential impact that prefetching data and
index pages from disk can have on the query performance. Prefetching data
and index pages can reduce the overhead and wait time associated with
reading the data into the buffer pool. For more information, see
“Prefetching Data into the Buffer Pool” on page 255.
The optimizer uses the information from the PREFETCHSIZE and
EXTENTSIZE columns in SYSCAT.TABLESPACES to estimate the amount of
prefetching that will occur for a table space.
– EXTENTSIZE can only be set when creating a table space (for example

using the CREATE TABLESPACE statement). The default extent size is 32
pages (of 4 KB each) and is usually sufficient.

– PREFETCHSIZE can be set when creating a table space and also using
the ALTER TABLESPACE statement. The default prefetch size is
determined by the value of the DFT_PREFETCH_SZ database configuration
parameter which varies depending on the operating system. You should
review the recommendations for sizing this parameter in the “Default
Prefetch Size (dft_prefetch_sz)” on page 391 description and make
changes as needed to improve the movement of data.

The following shows an example of the syntax to change the characteristics of
the RESOURCE table space:

ALTER TABLESPACE RESOURCE
PREFETCHSIZE 64
OVERHEAD 19.3
TRANSFERRATE 0.9

After making any changes to your table spaces you should consider rebinding
your applications and use the RUNSTATS utility to collect the latest statistics
about the indexes to ensure the best access plans are being used.

Chapter 4. Environmental Considerations 97

|
|
|

|
|
|
|

|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

Indexing Impact on Query Optimization

It is important to remember that you do not decide when an index should be
used; the optimizer makes the decision based on the available table and index
information. However, you play an important role in the process by creating
the necessary indexes that can improve performance. It is also important for
you to collect statistics about the indexes (using the RUNSTATS utility) after
you create an index, or change the prefetch size, and on an ongoing basis to
keep the statistics up to date. This means you must understand the kinds of
indexes that you can create and the ways to create them.

Indexing versus No Indexing
For each table referenced in a database query, if no index exists on the table,
then a table scan must be performed on that table. The larger the table, the
longer a table scan takes. A table scan occurs when the database manager
sequentially accesses every row of a table. This can be compared to an index
scan that occurs when the database manager accesses data using an index.
(See “Index Scan Concepts” on page 163.)

An index will be selected for use if the index columns are referenced in the
SELECT statement and if the optimizer estimates that an index scan will be
faster than a table scan. Index files generally are smaller and require less time
to read than an entire table, particularly as tables grow larger. In addition, the
entire index may not need to be scanned. The predicates applied to the index
reduce the number of rows to be read from the data pages.

Each index entry consists of a search-key value and a pointer to the row
containing that value. The values can be searched in reverse direction only if
the ALLOW REVERSE SCANS parameter was specified in the CREATE
INDEX statement. It is therefore possible to bracket the search, given the right
predicate. An index can also be used to obtain rows in an ordered sequence,
eliminating the need for the database manager to sort the rows after they are
read from the table. Specifying ALLOW REVERSE SCANS enables the index
to be used to directly obtain rows in sequence, in forward and reverse order.
Refer to the SQL Reference for additional details.

A unique index may contain include columns in addition to the search-key
value and row pointer.

Note: You cannot control whether an index is chosen by the optimizer and is
used by the database manager. For example, the result of a query
cannot be guaranteed to be produced in an ordered sequence simply by
the existence of an index on the table being queried. The database
manager may choose this index by the optimizer and use this index
during the processing of the query but is not required to. Only the
existence of an ORDER BY clause can “guarantee” the order of a result
set.

98 Administration Guide: Performance

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

Indexes can reduce access time significantly; however, indexes can also have
adverse effects on performance. Before creating indexes, consider the effects of
multiple indexes on disk space and processing time:
v Each index takes up a certain amount of storage or disk space. The exact

amount is dependent on the size of the table and the size and number of
columns included in the index.

v Each INSERT or DELETE operation performed on a table requires
additional updating of each index on that table. This is also true for each
UPDATE operation that changes an index key.

v The LOAD utility rebuilds or appends to any existing indexes.
v The indexfreespace MODIFIED BY parameter can be specified on the

LOAD command to override the index PCTFREE used when the index was
created.

v Each index potentially adds an alternative access path for a query, which
the optimizer will consider, and therefore increases the query compilation
time.

Indexes should be carefully chosen to address the needs of the application
program.

To determine whether an index is used in a specific package you may use the
SQL Explain facility, described in “Chapter 7. SQL Explain Facility” on
page 213.

Using the Index Advisor
The DB2 Index Advisor is a tool to assist you in choosing an optimal set of
indexes for your table data. There are different ways to get to this tool:
v You can access this tool through the Control Center by selecting the Indexes

folder, clicking mouse button 2, and selecting the Create —> Index using
wizard.

v You can access this tool from the command line by entering db2advis.

More information on the DB2 Index Advisor can be found in “SQL Advise
Facility” on page 232.

Using Larger Index Keys
It is possible to allow columns with a length greater than 255 bytes to be
specified as part of an index key. The DB2_INDEX_2BYTEVARLEN registry
variable allows for the use of 2 bytes instead of 1 to store the length of an
index key.

There are several SQL statements affected by changes to the registry variable.
They are:
v CREATE TABLE. Primary, foreign, and unique keys with variable key parts

can have a size greater than 255 bytes.

Chapter 4. Environmental Considerations 99

|

|
|
|
|

|
|

|
|

v CREATE INDEX. All indexes, including unique indexes and include
columns, having variable key parts can have a size greater than 255 bytes.

v ALTER TABLE. Primary, foreign, and unique keys with variable key parts
can have a size greater than 255 bytes. All indexes, including unique
indexes and include columns, having variable key parts can have a size
greater than 255 bytes.
The foreign key restriction to 255 bytes is removed no matter what the
value of the registry variable. The truth-condition for the primary key
corresponding to the foreign key enforces any restriction or limit.

To convert existing indexes to use larger index keys: drop the indexes, set the
DB2_INDEX_2BYTEVARLEN registry variable to ON, and then recreate the
indexes (using the larger columns).

For more information on the SQL statements, including syntax descriptions,
refer to the SQL Reference.

Guidelines for Indexing
Which indexes should be created depends on the data and its intended uses.
The following guidelines can help you determine which indexes would be
most useful:
v Define primary keys and unique keys, wherever they apply, by using the

CREATE UNIQUE INDEX statement. (Refer to the SQL Reference for more
information.) Unique indexes can help the optimizer avoid performing
certain operations such as sorts.

v Define unique indexes with INCLUDE columns to improve the
performance of data retrieval. Columns are good candidates for INCLUDE
columns of unique indexes if they:
– Are accessed frequently and therefore would benefit from index-only

access
– Are not required to limit the range of index scans
– Do not affect the ordering or uniqueness of the index key.

Refer to the chapter “Creating an Index or Index Specification” in
Administration Guide: Planning for more information on INCLUDE columns.

v Use indexes to optimize frequent queries to tables with more than a few
data pages, as recorded in the NPAGES column in the SYSCAT.TABLES
catalog view. You should:
– Create an index on any column you will use when joining tables.
– Create an index on any column from which you will be searching for

particular values on a regular basis.
v Decide between ascending and descending ordering of keys based on which

order will be primarily used or requested. The values can be searched in
reverse direction only if the ALLOW REVERSE SCANS parameter was

100 Administration Guide: Performance

|
|

|
|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

|

|

|
|
|
|
|

|

|
|

specified in the CREATE INDEX statement. Although indexes can be
scanned in both forward and reverse directions, a forward scan of the index
(that is, in the order specified at the time the index is created) performs
slightly better than a reverse scan of the index. Refer to the SQL Reference
for additional details.

v Avoid creating indexes that are partial keys of other index keys on the
columns. For example, if there is an index on columns a, b, and c, then a
second index on columns a and b is not generally useful.

v Use indexes on foreign keys to improve performance of delete and update
operations on the parent table.

v Use indexes on columns that will frequently be used to sort the data.
v In creating a multiple-column index, if you have more than one choice for

the first key column, choose the one most often specified with the “=”
(equijoin) predicate or specify the columns with the greatest number of
distinct values first.

v Creating indexes arbitrarily on all columns not only consumes much disk
space, but also causes prepare times to be large. This will be particularly
true for complex queries, against which an optimization class with dynamic
programming join enumeration is used. (See “Adjusting the Optimization
Class” on page 67).

v The following provides a rule-of-thumb for the typical number of indexes
you will define for a table. This number is based on the primary use of
your database:
– For online transaction processing (OLTP) environments, you should only

have one or two indexes
– For query (read-only) environments, you could have more than five

indexes
– For mixed query/OLTP environments, you could have between two and

five indexes.
v Consider defining a clustering index to help keep newly inserted rows

clustered according to that index. A clustering index should significantly
reduce the need for reorganizing the table.

Note: When a clustering index is defined, the table should be loaded with
a free space reserved on each data page to allow inserts to take place
on those pages. (Free space is reserved by using the PCTFREE
keyword on the ALTER TABLE statement; or, the pagefreespace
MODIFIED BY clause of the LOAD command.)

v Consider using the PCTFREE keyword when creating indexes. PCTFREE
reserves space on index pages for future updates to the index. This may
reduce the frequency of page splits and increase performance.

v Consider using the MINPCTUSED option when creating indexes.
MINPCTUSED specifies the threshold for the minimum amount of used
space on an index leaf page and enables online index reorganization. This
could reduce the need for offline reorganization of the data and the index.

Chapter 4. Environmental Considerations 101

|
|
|
|
|
|
|
|
|

Note: Indexes are not supported for declared temporary tables.

The following are typical circumstances in which creating an index can
improve performance:
v An index can be created on columns that are used in WHERE clauses of the

queries and transactions that are most frequently processed.
The WHERE clause:

WHERE WORKDEPT='A01' OR WORKDEPT='E21'

will generally benefit from an index on WORKDEPT, unless those values occur
frequently.

v An index can be created on a column or columns to order the rows in
collating sequence. Ordering is required not only in the ORDER BY clause,
but also by other features, such as the DISTINCT and GROUP BY clauses.
The following example uses the DISTINCT clause:

SELECT DISTINCT WORKDEPT
FROM EMPLOYEE

The database manager can use an index defined for ascending or
descending order on WORKDEPT to eliminate duplicate values. This same
index could also be used to group values in the following example with a
GROUP BY clause:

SELECT WORKDEPT, AVERAGE(SALARY)
FROM EMPLOYEE

GROUP BY WORKDEPT

v An index can be created to name each column that is referenced in a
statement. When an index is specified in this way, the resulting index-only
access means data can be retrieved more efficiently by avoiding table
access.
For example, assume the following SQL statement is issued:

SELECT LASTNAME
FROM EMPLOYEE
WHERE WORKDEPT IN ('A00','D11','D21')

If an index is defined for the WORKDEPT and LASTNAME columns of the
EMPLOYEE table, the statement might be processed more efficiently by
scanning the index than by scanning the entire table. Note that since the
predicate is on WORKDEPT, this column should be the first column of the
index.

v INCLUDE columns on an index is another way to improve the use of
indexes on tables. Using the previous example, you could define a unique
index as:

CREATE UNIQUE INDEX x ON employee (workdept) INCLUDE (lastname)

102 Administration Guide: Performance

|
|
|

|

Specifying lastname as an INCLUDE column rather than as part of the
index key means that lastname is stored only on the leaf pages of the index.

Performance Tips for Administering Indexes
The following can help you understand how performance can be impacted by
properly using and managing indexes:
1. Index Creation

When creating indexes on large tables, and having an SMP machine,
consider setting intra_parallel to YES (1) or SYSTEM (-1) to take advantage
of parallel performance improvements.
Multiple processors can be used to scan and sort data. The only time when
it is not advantageous to have multiple processors during index creation
occurs when the indexsort database configuration parameter is NO. (The
default for the parameter is YES). The parameter controls whether sorting
of index keys is done during index creation.

2. Index Table Space

Indexes may be stored in a different table space from that used to store
other table data. This can allow for more efficient use of disk storage by
reducing the movement of read/write heads. You can also create your
index table spaces so they will be stored on faster physical devices.
A table space may also be assigned a separate buffer pool which may
protect the index pages from being pushed out of the buffer by the
presence of lots of data pages.
When indexes are not placed in separate table spaces, both data and index
pages use the same extent size and prefetch quantity. If you use a different
table space for indexes, you have the option of selecting different values
for all the characteristics of a table space. Since indexes are typically
smaller than tables and are spread over fewer containers, it is common to
find smaller extent sizes such as 8 and 16. For more information see,
“Index Page Prefetch” on page 172. Use of faster devices for a table space
will be considered by the SQL optimizer, as described in “Table Space
Impact on Query Optimization” on page 94. Refer to Administration Guide:
Planning for more information about table spaces.

3. Degree of Clustering

If your SQL statement requires ordering (for example, ORDER BY, GROUP
BY, DISTINCT) and there is an appropriate index to satisfy the ordering,
there may be times that the database manager does not choose the index.
This could happen when:
v Index clustering is poor (see the CLUSTERRATIO and

CLUSTERFACTOR columns of SYSCAT.INDEXES)
v The table is small enough that it is cheaper to scan the table and sort

the answer set in memory
v There are competing indexes for accessing the table.

Chapter 4. Environmental Considerations 103

|
|

It is recommended that you perform a REORG, or a sort and LOAD, after
creating a clustering index. In general a table can only be clustered on one
index. Your tables and indexes should be built in the sequence of the
clustering index for that table. A clustering index attempts to maintain a
particular order of data, improving the CLUSTERRATIO or
CLUSTERFACTOR statistics collected by the RUNSTATS utility.

You should also consider using PCTFREE when altering a table before
loading or reorganizing that table. In order for clustering to be maintained,
each table needs to have space available on each data page for additional
inserts. When the space is available, additional inserts are able to be
clustered with the existing data. As a result, you will want to consider
loading your data into the table after leaving a percentage of free space on
each page for the clustering of additional data. You can do this by first
creating the table, then altering the table with the PCTFREE parameter. In
a similar way, before reorganizing your data, you should consider altering
the table with the PCTFREE parameter. Otherwise, the reorganization will
eliminate all extra space if PCTFREE has not been set.

Clustering is not currently maintained during updates. That is, if one
updates a record such that its key value in the clustering index is changed,
the record will not necessarily be moved to a new page to maintain the
clustering order. To maintain clustering, instead of using UPDATE, use
DELETE and then INSERT.

4. RUNSTATS Utility

After creating a new index, you should use the RUNSTATS utility to
collect index statistics. These statistics allow the optimizer to determine
whether using the index can improve access performance. See “Collecting
Statistics Using the RUNSTATS Utility” on page 114 for more information
on this topic.

5. Reorganizing an Index

To get the best performance you can from your indexes, you should
consider reorganizing your indexes periodically. Updates to your tables
may cause index page prefetch to become less effective. To keep the
effectiveness of index page prefetch you must reorganize the index.
You can reorganize the index by either dropping and re-creating the index,
or by using the REORG utility. For more information, see “Reorganizing
Catalogs and User Tables” on page 265.
To prevent having to reorganize often, you can specify PCTFREE when
creating an index. Specifying the PCTFREE parameter during index
creation results in free space being left on each index leaf page as it is
created. As a result, during future activity involving the index, records can
be inserted into the index with less likelihood of causing index page splits.
Index page splits cause index pages to not be contiguous nor sequential.

104 Administration Guide: Performance

|
|
|
|
|
|

This results in decreased ability to perform index page prefetching.
Choosing an appropriate PCTFREE for an index may eliminate or reduce
the frequency when you have to reorganize indexes.

Note: The PCTFREE specified when you create the index is used when the
index is re-created during reorganization.

Dropping and re-creating the index gets a new set of pages that are
roughly contiguous and sequential. This improves index page prefetch
when it occurs.

Although more costly to accomplish, the REORG utility also ensures
clustering of the data pages. This clustering has greater benefit for index
scans accessing a significant number of data pages.

If you work in a symmetric multi-processor (SMP) environment, the
REORG utility will use multiple processors when intra_parallel is YES or
ANY.

6. Use EXPLAIN

Periodically, run EXPLAIN on your most frequently used queries and
check that each of your indexes is used at least once. If an index is not
used in any query, consider dropping that index.
Also, use EXPLAIN to see if table scans on large tables are processed as
the inner table of nested loop joins. This would indicate that an index on
the join predicate column is either missing or thought to be ineffective at
applying the join predicate. Or, perhaps the join predicate is not present.

7. Volatile Tables

A volatile table is a table with characteristics such that the contents of the
table can vary from empty to very large at run time. Generating an access
plan for this type of table can result in the optimizer (incorrectly) favoring
the use of a table scan rather than an index scan to access the table whose
contents (cardinality) varies greatly.
Declaring a table “volatile” using the ALTER TABLE...VOLATILE
statement can allow the optimizer to use an index scan on the volatile
table. The optimizer will use an index scan (rather than a table scan)
regardless of the statistics:
v If all columns referenced are in the index; or,
v If the index is able to apply a predicate in the index scan.

If the table is a typed table, using the ALTER TABLE...VOLATILE
statement is only supported on the root table of the typed table hierarchy.
Refer to Administration Guide: Planning or the SQL Reference for additional
information on this topic.

Chapter 4. Environmental Considerations 105

|
|
|

|
|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|

|

|

|
|
|
|

Server Options Affecting Federated Database Queries

A federated system is composed of a DB2 DBMS (the federated database) and
one or more data sources. Data sources are identified to the federated
database when you issue CREATE SERVER statements. When you issue these
statements, you can also provide server options that refine and control aspects
of federated system operations involving DB2 and the specified data source.
Server options can be changed later using ALTER SERVER statements. Refer
to the SQL Reference for more information about the CREATE SERVER and
ALTER SERVER statements.

Note: You must install the distributed join installation option and set the
database manager parameter federated to YES before you can create
servers and specify server options.

Server options and their values facilitate query pushdown analysis, global
optimization and other aspects of federated database operations. For example:
in the CREATE SERVER statement, you can specify certain performance
statistics as server option values. That is, you can set the cpu_ratio option to a
value that indicates the relative speeds of the data source’s and federated
server’s CPUs. And you can set the io_ratio option to a value that indicates the
relative rates of the data source’s and federated server’s I/O devices. When
you run CREATE SERVER, this data is added to the catalog view
SYSCAT.SERVEROPTIONS, and the optimizer uses it in developing its access
plan for the data source. If a statistic changes (as might happen, for instance,
if the data source CPU is upgraded), you can use the ALTER SERVER
statement to update SYSCAT.SERVEROPTIONS with this change. The
optimizer then uses your update in developing its next access plan for the
data source.

106 Administration Guide: Performance

|
|
|

Table 8. Server Options and Their Settings

Option Valid Settings Default
Setting

collating_sequence Specifies whether the data source uses the same default
collating sequence as the federated database, based on the
code set and the country information. If a data source has a
collating sequence that differs from DB2’s collating sequence,
most operations depending on DB2’s collating sequence
cannot be remotely evaluated at a data source. An example is
executing MAX column functions against a nickname
character column at a data source with a different collating
sequence. Because results might differ if the MAX function is
evaluated at the remote data source, DB2 will perform the
aggregate operation and the MAX function locally.

If your query contains an equal sign, it is possible to
push-down that portion of the query even if the collating
sequences are different (set to ’N’). For example, the predicate
C1 = ’A’ could be pushed-down to a data source. Of course,
such queries cannot be pushed-down when the collating
sequence at the data source is case-insensitive. When a data
source is case-insensitive, the results from C1= ’A’ and C1 =
’a’ are the same, which is not acceptable in a case-sensitive
environment (DB2).

Administrators can create federated databases with a
particular collating sequence that matches the data source
collating sequence. This approach may speed performance if
all data sources use the same collating sequence or if most or
all column functions are directed against data sources that use
the same collating sequence.

’Y’ Data source’s collating sequence is the same as
federated database’s.

’N’ Data source’s collating sequence is not the same as
federated database’s.

’I’ Data source’s collating sequence is different from
federated database’s and is case-insensitive (for
example, ’TOLLESON’ and ’TolLESon’ are considered
equal).

’N’

comm_rate Specifies the communication rate between a federated server
and its associated data sources. Expressed in megabytes per
second.

Valid values are greater than 0 and less than 2147483648.
Values may be expressed as whole numbers only, for example
12.

’2’

Chapter 4. Environmental Considerations 107

|

Table 8. Server Options and Their Settings (continued)

Option Valid Settings Default
Setting

connectstring Specifies initialization properties needed to connect to an OLE
DB provider. For the complete syntax and semantics of the
connection string, see the ″Data Link API of the OLE DB Core
Components″ in the Microsoft OLE DB 2.0 Programmer’s
Reference and Data Access SDK, Microsoft Press, 1998.

None

cpu_ratio Indicates how much faster or slower a data source’s CPU runs
than the federated server’s CPU.

Valid values are greater than 0 and less than 1x1023 . Values
may be expressed in any valid double notation, for example
123E10, 123, or 1.21E4.

’1.0’

dbname Name of the data source database that you want the federated
server to access. Required for DB2 family data sources; does
not apply to Oracle** data sources because Oracle instances
contain only one database. For DB2, this value corresponds to
a specific database within an instance or, if DB2 for OS/390,
the database LOCATION value.

None.

fold_id (See notes 1 and 4
at the end of this table.)

Applies to user IDs that the federated server sends to data
sources for authentication. Valid values are:

’U’ The federated server folds the user ID to uppercase
before sending it to the data source. This is a logical
choice for DB2 family and Oracle** data sources (See
note 2 at end of this table.)

’N’ The federated server does nothing to the user ID
before sending it to the data source. (See note 2 at
end of this table.)

’L’ The federated server folds the user ID to lowercase
before sending it to the data source.

If none of these settings are used, the federated server tries to
send the user ID to the data source in uppercase. If the user
ID fails, the server tries sending it in lowercase.

None.

108 Administration Guide: Performance

|

|

Table 8. Server Options and Their Settings (continued)

Option Valid Settings Default
Setting

fold_pw (See notes 1, 3
and 4 at the end of this
table.)

Applies to passwords that the federated server sends to data
sources for authentication. Valid values are:

’U’ The federated server folds the password to uppercase
before sending it to the data source. This is a logical
choice for DB2 family and Oracle** data sources.

’N’ The federated server does nothing to the password
before sending it to the data source.

’L’ The federated server folds the password to lowercase
before sending it to the data source.

If none of these settings are used, the federated server tries to
send the password to the data source in uppercase. If the
password fails, the server tries sending it in lowercase.

None.

io_ratio Denotes how much faster or slower a data source’s I/O
system runs than the federated server’s I/O system.

Valid values are greater than 0 and less than 1x1023 . Values
may be expressed in any valid double notation, for example
123E10, 123, or 1.21E4.

’1.0’

node Name by which a data source is defined as an instance to its
RDBMS. Required for all data sources.

For a DB2 family data source, this name is the node specified
in the federated database’s DB2 node directory. To view this
directory, issue the db2 list node directory command.

For an Oracle** data source, this name is the server name
specified in the Oracle** tnsnames.ora file. To access this
name on the Windows NT platform, specify the View
Configuration Information option of the Oracle** SQL Net
Easy Configuration tool.

None.

password Specifies whether passwords are sent to a data source.

’Y’ Passwords are always sent to the data source and
validated. This is the default value.

’N’ Passwords are not sent to the data source (regardless
of any user mappings) and not validated.

’ENCRYPTION’
Passwords are always sent to the data source in
encrypted form and validated. Valid only for DB2
family data sources that support encrypted
passwords.

’Y’

Chapter 4. Environmental Considerations 109

|

Table 8. Server Options and Their Settings (continued)

Option Valid Settings Default
Setting

plan_hints Specifies whether plan hints are to be enabled. Plan hints are
statement fragments that provide extra information for data
source optimizers. This information can, for certain query
types, improve query performance. The plan hints can help
the data source optimizer decide whether to use an index,
which index to use, or which table join sequence to use.

’Y’ Plan hints are to be enabled at the data source if the
data source supports plan hints.

’N’ Plan hints are not to be enabled at the data source.

’N’

pushdown
’Y’ DB2 will consider letting the data source evaluate

operations.

’N’ DB2 will retrieve only columns from the remote data
source and will not let the data source evaluate other
operations, such as joins.

’Y’

varchar_no_trailing_blanks Specifies if this data source uses non-blank padded varchar
comparison semantics. For variable-length character strings
that contain no trailing blanks, some DBMS’s
non-blank-padded comparison semantics return the same
results as DB2’s comparison semantics. If you are certain that
all VARCHAR table/view columns at a data source contain no
trailing blanks, consider setting this server option to ’Y’ for a
data source. This option is often used with Oracle** data
sources. Ensure that you consider all objects that can
potentially have nicknames (including views).

’Y’ This data source has non-blank-padded comparison
semantics similar to DB2’s.

’N’ This data source does not have the same
non-blank-padded comparison semantics as DB2’s.

’N’

Notes on Table 8 on page 107:
1. This field is applied regardless of the value specified for authentication.
2. Because DB2 stores user IDs in uppercase, the values ‘N’ and ‘U’ are

logically equivalent to each other.
3. The setting for fold_pw has no effect when the setting for password is ‘N’.

Because no password is sent, case cannot be a factor.
4. Avoid null settings for either of these options. A null setting may seem

attractive because DB2 will make multiple attempts to resolve user IDs

110 Administration Guide: Performance

||
|
|
|
|
|
|
|
|
|

||
|

||
|

|

and passwords; however, performance might suffer (it is possible that DB2
will send a user ID and password four times before successfully passing
data source authentication).

Chapter 4. Environmental Considerations 111

112 Administration Guide: Performance

Chapter 5. System Catalog Statistics

When optimizing SQL queries, the decisions made by the SQL compiler are
heavily influenced by the optimizer’s model of the database contents. This
data model is used by the optimizer to estimate the costs of alternative access
paths that could be used to resolve a particular query.

A key element in the data model is the set of statistics gathered about the data
contained in the database and stored in the system catalog tables. This
includes statistics for tables, nicknames, indexes, columns, and user-defined
functions (UDFs). A change in the data statistics can result in a change in the
choice of access plan selected as the most efficient method of accessing the
desired data.

Examples of the statistics available which help define the data model to the
optimizer include:
v The number of pages in a table and the number of pages that are not

empty
v The degree to which rows have been moved from their original page to

other (overflow) pages.
v The number of rows in a table
v The number of distinct values in a column
v The degree of clustering of an index. That is, the extent to which the

physical sequence of rows in a table follows an index.
v The number of index levels and the number of leaf pages in each index
v The number of occurrences of frequently used column values (see

“Collecting and Using Distribution Statistics” on page 122)
v The distribution of column values across the range of values present in the

column (see “Collecting and Using Distribution Statistics” on page 122)
v Cost estimates for user-defined functions (UDFs).

Statistics for objects are updated in the system catalog tables only when
explicitly requested. Some or all of the statistics may be updated by:
v Using the RUNSTATS (run statistics) utility (see “Collecting Statistics Using

the RUNSTATS Utility” on page 114)
v Using LOAD, with statistics collection options specified
v Coding SQL UPDATE statements that operate against a set of predefined

catalog views (see “User Update-Capable Catalog Statistics” on page 134).
Note that statistics for user-defined functions must be updated using this
technique (see “Updating Statistics for User-Defined Functions” on
page 140). Except for UDFs, the catalogs should only be updated manually
for modeling a production environment on a test system or for “what-if
analysis”. Statistics should not be updated on production systems.

© Copyright IBM Corp. 1993, 2001 113

Within a federated database system, the only way to gather new statistics for
nicknames from the data source is to drop the nickname, run the equivalent of
RUNSTATS at the data source, and then re-create the nickname. Whenever a
nickname is created, statistics on the underlying table are gathered from the
data source catalog.

You must drop and then re-create nicknames if the data definition information
in the underlying table changes. For example, if a column is added to a table
definition.

In addition you should consider re-creating the nickname if query
performance degrades. Another approach is to manually update statistics in
the SYSSTAT.TABLES.

Use caution when creating a nickname for a view. The statistical information,
such as the number of rows this nickname will return, might not reflect the
real cost to evaluate this view. If the view is defined on a single base table
with no column functions applied on the SELECT list, the statistical
information available to the optimizer should be accurate. If the view is
complex, consider creating new views over nicknames for the view base tables
at the DB2 Universal Database server in the federated database system so the
optimizer can generate an efficient plan to access the data.

Additional Information:

The SYSCAT and SYSSTAT catalogs contain information on the statistics
gathered. Refer to the SQL Reference:
v For information about all the catalog views and the columns they contain.
v For information about all the update-capable catalog views and the

columns they contain. You can also refer to this section if you are only
interested in the statistical columns of the catalog table.

v For information about table statistics.
v For information about column statistics.
v For information about column distribution statistics.
v For information about index statistics.
v For information about user-defined function statistics.

Collecting Statistics Using the RUNSTATS Utility

The RUNSTATS utility updates statistics in the system catalog tables to help
with the query optimization process. Without these statistics, the database
manager could make a decision that would adversely affect the performance
of an SQL statement. The RUNSTATS utility allows you to collect statistics on
the data contained in the tables, indexes, or both tables and indexes.

114 Administration Guide: Performance

Use the RUNSTATS utility to collect statistics based on both the table and the
index data to provide accurate information to the access plan selection process
in the following situations:
v When a table has been loaded with data, and the appropriate indexes have

been created.
v When a table has been reorganized with the REORG utility.
v When there have been extensive updates, deletions, and insertions that

affect a table and its indexes. (“Extensive” in this case may mean that 10 to
20 percent of the table and index data has been affected.)

v Before binding application programs whose performance is critical
v When comparison with previous statistics is desired. Running statistics on a

periodic basis permits the discovery of performance problems at an early
stage.

v When the prefetch quantity is changed.
v When you have used the REDISTRIBUTE NODEGROUP utility.

When you are working in a partitioned database, collect the statistics related
to a table and its indexes by executing the RUNSTATS operation at a single
node. (The node at which the utility executes is determined by whether the
node at which you issue the command contains table data or not. See “The
Database Partition Where RUNSTATS is Executed” for details.) Because the
statistics stored in the catalogs are supposed to represent table-level
information, the node-level statistics collected by the database manager are
multiplied where appropriate by the number of nodes across which the table
is partitioned. This provides an approximation of the actual statistics that
would be collected by executing RUNSTATS at every node and aggregating
these statistics.

Note: The DB2 query optimizer assumes that attribute values (data) are
placed equally and evenly across the database partitions of the system.
If the placement of data is not equal, you should run this command on
a database partition that you think has a representative table
distribution.

The Database Partition Where RUNSTATS is Executed
When you invoke RUNSTATS on a table, you must be connected to the
database in which the table is stored, but the database partition from which
you issue the command does not have to contain a partition for this table:
v If you issue RUNSTATS from a database partition that contains a partition

for the table, the utility executes at this database partition.
v If you issue RUNSTATS from a database partition that does not contain a

table partition, the request is sent to the first database partition in the
nodegroup that holds a partition for the table. The utility then executes at
this database partition.

Chapter 5. System Catalog Statistics 115

|
|
|

Analyzing Statistics
Analyzing the statistics can indicate when reorganization is necessary. Some of
these indications are:
v Clustering of indexes

If cluster ratio statistics are collected, their value will be in the range from 0
to 100. If cluster factor statistics are collected, their value will be a number
between 0 and 1. Only one of these two clustering statistics will be
recorded in the SYSCAT.INDEXES catalog. In general, only one of the
indexes in a table can have a high degree of clustering. A value of -1 is
used to indicate that no statistics are available.
If you wish to compare ratio values, multiply the cluster factor by 100 to
obtain a percentage value for the amount of clustering.
Index scans that are not index-only accesses might perform better with
higher cluster ratios. A low cluster ratio leads to more I/O for this type of
scan, since after the first access of each data page, it is less likely that the
page is still in the buffer pool the next time it is accessed. Increasing the
buffer size can improve the performance of an unclustered index. (See
“Understanding List Prefetching” on page 257 for information about how
the database manager can improve index scan performance for indexes
with low cluster ratios and see “Clustered Indexes” on page 170 for
information about how the optimizer uses index statistics.)
If the table data was initially clustered with respect to a certain index, and
the above clustering information indicates that the data is now poorly
clustered for that same index, you may wish to reorganize the table to
cluster the data again with respect to that index.

v Overflow of rows
The overflow number indicates the number of rows that do not fit on their
original pages. This can occur when VARCHAR columns are updated with
longer values. In such cases, a pointer is kept at the row’s original location.
This can hurt performance, because the database manager must follow the
pointer to find the row’s contents, which increases the processing time and
may also increase the number of I/Os.
As the number of overflow rows grows higher, the potential benefit of
reorganizing your table data also increases. Reorganizing the table data will
eliminate the overflowing of rows.

v Comparison of file pages
The number of pages with rows can be compared with the total number of
pages that a table contains. Empty pages will be read for a table scan.
Empty pages can occur when entire ranges of rows are deleted.
As the number of empty pages grows higher, so does the need for a table
reorganization. Reorganizing the table can compress the amount of space
used by a table, by reclaiming these empty pages. In addition to more

116 Administration Guide: Performance

|
|
|
|

efficient use of disk space, reclaiming unused pages can also improve the
performance of a table scan, since fewer pages will be read into the buffer
pool.

v Number of leaf pages
The number of leaf pages predicts how many index page I/Os are needed
for a complete scan of an index.
Random update activity can cause page splits to occur that increase the size
of the index beyond the minimum amount of space required. When indexes
are rebuilt during the reorganization of a table, it is possible to build each
index with the minimum amount of space possible. For more information
on the minimum space requirements for an index, see “Indexing Impact on
Query Optimization” on page 98 or refer to “Creating an Index or an Index
Specification” section in the Administration Guide: Planning.

Note: A default of ten percent free space is left on each index page when
the indexes are rebuilt. You can increase the free space amount by
using the PCTFREE parameter when first creating the index. Then,
whenever you reorganize the index, the PCTFREE value is used.
Having a free space larger than ten percent may be important if you
wish to reduce the number of times you need to reorganize the
index. The free space is used to accommodate additional index
inserts.

RUNSTATS can also help you determine how performance is related to
changes in your database. The statistics show the data distribution within a
table. When used routinely, RUNSTATS provides data about tables and
indexes over a period of time, thereby allowing performance trends to be
identified for your data model as it evolves over time.

Ideally, you should rebind application programs after running statistics,
because the query optimizer may choose a different access plan given the new
statistics.

If you do not have enough time available to collect all of the statistics at one
time, you may choose to periodically run RUNSTATS to update only a portion
of the statistics that could be gathered. If inconsistencies are found as a result
of activity on the table between the periods where you run RUNSTATS with a
selective partial update, then a warning message (SQL0437W, reason code 6)
is issued. For example, you first use RUNSTATS to gather table distribution
statistics. Subsequently, you use RUNSTATS to gather index statistics. If
inconsistencies are detected as a result of activity on the table, then the table
distribution statistics are dropped and the warning message is issued. It is
recommended that you run RUNSTATS to gather table distribution statistics
when this happens.

Chapter 5. System Catalog Statistics 117

You should periodically use RUNSTATS to gather both table and index
statistics at once, to ensure that the index statistics are synchronized with the
table statistics. Index statistics retain most of the table and column statistics
collected from the last run of RUNSTATS. If the table has been modified
extensively since the last time its table statistics were gathered, gathering only
the index statistics for that table will leave the two sets of statistics out of
synchronization.

You may wish to collect statistics based only on index data in the following
situations:
v A new index has been created since the RUNSTATS utility was run and you

do not want to collect statistics again on the table data.
v There have been a lot of changes to the data that affect the first column of

an index.

The RUNSTATS utility allows you to collect varying levels of statistics. For
tables, you can collect basic level statistics or you can also collect distribution
statistics for the column values within a table (see “Collecting and Using
Distribution Statistics” on page 122). For indexes, you can collect basic level
statistics or you can also collect detailed statistics which can help the
optimizer better estimate the I/O cost of an index scan. (See “Clustered
Indexes” on page 170 for information about these “detailed” statistics).

Note: Statistics are not collected for LONG, large object (LOB), or structured
type columns. For row types, the table level statistics NPAGES,
FPAGES, and OVERFLOW are not collected for a sub-table. Statistics
are not collected for extended indexes, nor for declared temporary
tables.

The following tables show the catalog statistics that are updated by the
RUNSTATS utility:

Table 9. Table Statistics (SYSCAT.TABLES and SYSSTAT.TABLES)

Statistic Description RUNSTATS Option

Table Indexes

FPAGES number of pages being
used by a table

Yes Yes

NPAGES number of pages
containing rows

Yes Yes

OVERFLOW number of rows that
overflow

Yes No

CARD number of rows in table
(cardinality)

Yes Yes (Note 2)

118 Administration Guide: Performance

|
|

Table 9. Table Statistics (SYSCAT.TABLES and SYSSTAT.TABLES) (continued)

Statistic Description RUNSTATS Option

Table Indexes

Note:
1. For a partitioned database, the values for each statistic are estimated from the value of the count at

the database partition multiplied by the number of database partitions.
2. If the table has no indices defined and you request statistics for indexes, no new CARD statistics are

updated. The previous CARD statistics are retained.

Table 10. Column Statistics (SYSCAT.COLUMNS and SYSSTAT.COLUMNS)

Statistic Description RUNSTATS Option

Table Indexes

COLCARD column cardinality Yes (Note 1) Yes (Note 2)

AVGCOLLEN average length of
column

Yes Yes (Note 2)

HIGH2KEY second highest value in
column

Yes Yes (Note 2)

LOW2KEY second lowest value in
column

Yes Yes (Note 2)

NUMNULLS the number of NULLs in
a column

Yes Yes (Note 2)

Note:
1. COLCARD is estimated for all columns in the table. In a partitioned database, if the column is the

single-column partitioning key for the table, the value of the count is estimated as the count at the
database partition multiplied by the number of database partitions.

2. Column statistics are gathered for the first column in the index key.

Table 11. Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES)

Statistic Description RUNSTATS Option

Table Indexes

NLEAF number of index leaf
pages

No Yes (Note 3)

NLEVELS number of index levels No Yes

CLUSTERRATIO degree of clustering of
table data

No Yes (Note 2)

CLUSTERFACTOR finer degree of
clustering

No Detailed (Notes 1,2)

Chapter 5. System Catalog Statistics 119

Table 11. Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES) (continued)

Statistic Description RUNSTATS Option

Table Indexes

DENSITY Ratio (percentage) of
SEQUENTIAL_PAGES
to number of pages in
the range of pages
occupied by the index
(Note 4)

No Yes

FIRSTKEYCARD number of distinct
values in first column of
the index

No Yes (Note 3)

FIRST2KEYCARD number of distinct
values in first two
columns of the index

No Yes (Note 3)

FIRST3KEYCARD number of distinct
values in first three
columns of the index

No Yes (Note 3)

FIRST4KEYCARD number of distinct
values in first four
columns of the index

No Yes (Note 3)

FULLKEYCARD number of distinct
values in all columns of
the index

No Yes (Note 3)

PAGE_FETCH_PAIRS page fetch estimates for
different buffer sizes

No Detailed (Notes 1,2)

SEQUENTIAL_PAGES number of leaf pages
located on disk in index
key order, with few or
no large gaps between
them

No Yes

120 Administration Guide: Performance

Table 11. Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES) (continued)

Statistic Description RUNSTATS Option

Table Indexes

Note:
1. Detailed index statistics are gathered by specifying the DETAILED clause on the RUNSTATS

command, or by specifying A, Y or X for the statsopt parameter when calling the RUNSTATS API.
2. CLUSTERFACTOR and PAGE_FETCH_PAIRS are not collected with the DETAILED clause unless

the table is of a respectable size. If the table is greater than about 25 pages, then CLUSTERFACTOR
and PAGE_FETCH_PAIRS statistics are collected. In this case, CLUSTERRATIO is -1 (not collected).
If the table is a relatively small table, only CLUSTERRATIO is filled in by RUNSTATS while
CLUSTERFACTOR and PAGE_FETCH_PAIRS are not. If the DETAILED clause is not specified, only
the CLUSTERRATIO statistic is collected.

3. For a partitioned database, the value is estimated from the value of the count at the database
partition multiplied by the number of database partitions.

4. This statistic measures the percentage of pages in the file containing the index that belongs to that
table. For a table having only one index defined on it, DENSITY should normally be 100. DENSITY
is used by the optimizer to estimate how many irrelevant pages from other indexes might be read,
on average, if the index pages were prefetched.

Table 12. Column Distribution Statistics (SYSCAT.COLDIST and SYSSTAT.COLDIST)

Statistic Description RUNSTATS Option

Table Indexes

DISTCOUNT If TYPE is Q, the
number of distinct
values that are less than
or equal to COLVALUE
statistics

Distribution (Note 2) No

TYPE Indicator of whether
row provides
frequent-value or
quantile statistics

Distribution No

SEQNO Frequency ranking of a
sequence number to
help uniquely identify
the row in the table

Distribution No

COLVALUE Data value for which
frequency or quantile
statistic is collected

Distribution No

VALCOUNT Frequency with which
the data value occurs in
column, or for quantiles,
the number of values
less than or equal to the
data value (COLVALUE)

Distribution No

Chapter 5. System Catalog Statistics 121

|
|
|
|
|
|

Table 12. Column Distribution Statistics (SYSCAT.COLDIST and SYSSTAT.COLDIST) (continued)

Statistic Description RUNSTATS Option

Table Indexes

Note:
1. Column distribution statistics are gathered by specifying the WITH DISTRIBUTION clause on the

RUNSTATS command, or by specifying A, D or Y for the statsopt parameter when calling the
RUNSTATS API. Note that distribution statistics may not be gathered unless there is a sufficient
lack of uniformity in the column values.

2. DISTCOUNT is collected only for columns that are the first key column in an index.
3. In a partitioned database, VALCOUNT is the estimated value of the count at the database partition

multiplied by the number of database partitions. The exception to this is where the TYPE is ’F’ and
the column is the single-column partitioning key of the table, in which case VALCOUNT is simply
the count at the database partition.

For more information about column distribution statistics, see “Collecting and
Using Distribution Statistics”.

Statistics for user-defined functions are not collected by the RUNSTATS utility.
You must manually update the statistics for these functions. See “User
Update-Capable Catalog Statistics” on page 134 and “Updating Statistics for
User-Defined Functions” on page 140.

Collecting and Using Distribution Statistics

The database manager can collect, maintain, and use “frequent-value
statistics” and “quantiles”, two types of statistics that estimate, in a concise
way, the distribution of the data values in a column. Use of these statistics by
the optimizer can lead to significantly more accurate estimates of the number
of rows in a column that satisfy given equality or range predicates. These
more accurate estimates in turn increase the likelihood that the optimizer will
choose an optimal plan.

You may collect statistics about the distribution of these data values by using
the WITH DISTRIBUTION clause on the RUNSTATS command. While
collecting these additional statistics results in additional overhead for the
RUNSTATS utility, the SQL compiler can use this information to help ensure
the best access plan is chosen.

In some cases, the database manager will not collect distribution statistics and
no error will be returned. For example:
v The num_freqvalues and num_quantiles configuration parameters are set to

zero (0) to indicate that you do not want to collect distribution statistics.
For more information about these parameters, see:
– “How Many Statistics Should You Keep?” on page 126
– “Number of Frequent Values Retained (num_freqvalues)” on page 443

122 Administration Guide: Performance

– “Number of Quantiles for Columns (num_quantiles)” on page 444.
v The distribution of the data is known without the use of distribution

statistics. For example, a column that does not have any data value
appearing more than once, that is, each data value in the column is unique.

v The data type is one for which statistics are not collected. That is, the
column is defined using a long field or large object data type.

v In the case of quantiles, there is only one non-NULL value in the column.

Distribution statistics are exact for the first column of indexes. For each
additional column, the database manager uses hashing and sampling
techniques to estimate the distribution statistics because calculating exact
statistics would require too much time and memory to be practical. These
techniques are accepted statistical methods with accepted degrees of accuracy.

Distribution statistics can be removed by updating SYSSTAT.COLDIST and
setting all the COLVALUE and VALCOUNT values to either 0 or -1 for the
columns for which distribution statistics are no longer needed.

The following topics provide information to help you understand and use
these distribution statistics:
v Understanding Distribution Statistics.
v When Should You Use Distribution Statistics?
v How Many Statistics Should You Keep?
v How Does the Optimizer Use Distribution Statistics?
v Modeling Production Databases.
v Rules for Updating Distribution Statistics for Columns.

Understanding Distribution Statistics
For a fixed number N>=1, the N most frequent values in a column consist of the
data value having the highest frequency (that is, number of duplicates), the
data value having the second highest frequency, and so forth, down to the
data value having the Nth highest frequency. The corresponding frequent-value
statistics consist of these “N” data values, together with the frequencies of
these values in the column.

The K-quantile for a column is the smallest data value, V, such that at least “K”
rows have data values less than or equal to V. A K-quantile can be computed
by sorting the rows in the column according to increasing data values; the
K-quantile is the data value in the Kth row of the sorted column.

For example, consider the following column of data:
C1
--
B
E
Y
B

Chapter 5. System Catalog Statistics 123

F
G
E
A
J
K
E
L

This column can be sorted to obtain the following ordered values:
C1'
--
A
B
B
E
E
E
F
G
J
K
L
Y

There are nine distinct data values in column C1. For N = 2, the frequent
value statistics are:

SEQNO COLVALUE VALCOUNT
----- --------- --------

1 E 3
2 B 2

If the number of quantiles being collected is 5 (see “Number of Quantiles for
Columns (num_quantiles)” on page 444), then the K-quantiles for this column
for K = 1, 3, 6, 9, and 12 are:

SEQNO COLVALUE VALCOUNT
----- --------- --------

1 A 1
2 B 3
3 E 6
4 J 9
5 Y 12

In this example, the 6-quantile is equal to E since the sixth row in the sorted
column has a data value equal to E (and 6 rows in the original column have
data values less than or equal to E).

The same quantile value may occur more than once, if it is a common value.
A maximum of two quantiles will be stored for a given value. The first of
these two quantiles has a VALCOUNT that gives the number of rows strictly

124 Administration Guide: Performance

|
|
|

less than COLVALUE, and the second of the two quantiles gives the number
of rows less than or equal to COLVALUE.

When Should You Use Distribution Statistics?
To decide whether distribution statistics should be kept for a given table, two
factors should be considered:
1. The use of static or dynamic SQL.

Distribution statistics are most useful for dynamic SQL and static SQL that
does not use host variables. When using SQL with host variables, the
optimizer makes limited use of distribution statistics.

2. The lack of uniformity in the data distributions.
Keeping distribution statistics is advisable if at least one column in the
table has a highly “non-uniform” distribution of data and the column
appears frequently in equality or range predicates; that is, in clauses such
as the following:

WHERE C1 = KEY;
WHERE C1 IN (KEY1, KEY2, KEY3);
WHERE (C1 = KEY1) OR (C1 = KEY2) OR (C1 = KEY3);
WHERE C1 <= KEY;
WHERE C1 BETWEEN KEY1 AND KEY2;

There can be two types of non-uniformity in a data distribution, possibly
occurring together:
v One type of non-uniformity occurs when the data, instead of being

evenly spread out between the highest and lowest data value, is
clustered in some sub-interval, as in the following column, where the
data is clustered in the range (5,10):

C1

0.0
5.1
6.3
7.1
8.2
8.4
8.5
9.1
93.6
100.0

It can be useful to keep quantiles when this type of non-uniformity is
present.

The following example shows a query that can be used to help
determine whether a high degree of non-uniformity exists in a column.

Chapter 5. System Catalog Statistics 125

|
|

SELECT C1, COUNT(*) AS OCCURRENCES
FROM T1

GROUP BY C1
ORDER BY OCCURRENCES DESC;

v Another type of non-uniformity occurs when certain data values have a
much higher frequency than other data values, as in a column having
data values with the following frequencies:

Data Value Frequency
---------- ---------

20 5
30 10
40 10
50 25
60 25
70 20
80 5

It can be useful to keep both quantiles and frequent-value statistics
when this type of non-uniformity is present.

You may collect distribution statistics by using the WITH DISTRIBUTION
clause on the RUNSTATS command; or by specifying D, E, or A for the
statsopt parameter when calling the RUNSTATS API. For more information
on the application programming interface, refer to the Administrative API
Reference manual.

How Many Statistics Should You Keep?
Keeping a large number of column distribution statistics can lead to improved
selection of access plans by the optimizer, but the cost of collecting these
statistics and compiling your queries increases accordingly. The size of the
statistics heap (see “Statistics Heap Size (stat_heap_sz)” on page 364) may
place limitations on the number of statistics that can be computed and stored.

When distribution statistics are requested, the database manager stores a
default of the 10 most frequent values for a column. Keeping between 10 and
100 frequent values should suffice for most practical situations. Ideally,
enough frequent-value statistics should be retained so that the frequencies of
the remaining values are either approximately equal to each other or
negligible compared to the frequencies of the most frequent values.

To set the number of frequent values to collect, use the num_freqvalues
configuration parameter, as described in “Number of Frequent Values
Retained (num_freqvalues)” on page 443. The database manager may collect
less than this number of frequent value statistics, because these statistics will
only be collected for data values that occur more than once. If collecting only
quantile statistics, this parameter can be set to zero.

126 Administration Guide: Performance

When distribution statistics are requested, the database manager stores a
default of 20 quantiles for a column. This value guarantees a maximum
estimation error of approximately 2.5% for any simple single-sided range
predicate (>, >=, <, or <=), and a maximum error of 5% for any BETWEEN
predicate. A rough rule of thumb for determining the number of quantiles is:
v Determine the maximum error that is tolerable in estimating the number of

rows of any range query, as a percentage, P
v The number of quantiles should be approximately 100/P if the predicate is

a BETWEEN predicate, and 50/P if the predicate is any other type of range
predicate (<, <=, >, or >=).

For example, 25 quantiles should result in a maximum estimate error of 4%
for BETWEEN predicates and of 2% for ″>″ predicates. In general, at least 10
quantiles should be kept, and more than 50 quantiles should be necessary
only for extremely non-uniform data.

To set the number of quantiles, use the num_quantiles configuration parameter
as described in “Number of Quantiles for Columns (num_quantiles)” on
page 444. If collecting only frequent value statistics, this parameter can be set
to zero. Setting this parameter to “1” will also result in no quantile statistics
being gathered since the entire range of values will fit in one quantile.

How Does the Optimizer Use Distribution Statistics?
Why collect and store distribution statistics? The answer lies in the fact that
an optimizer needs to estimate the number of rows in a column that satisfy an
equality or range predicate in order to select the least expensive access plan.
The more accurate the estimate, the greater the likelihood that the optimizer
will choose the optimal access plan. For example, consider the query

SELECT C1, C2
FROM TABLE1
WHERE C1 = 'NEW YORK'
AND C2 <= 10

and suppose that there is an index on C1 and an index on C2. One possible
access plan is to use the index on C1 to retrieve all rows with C1 = 'NEW
YORK' and then check each retrieved row to see if C2 <= 10. An alternative
plan is to use the index on C2 to retrieve all rows with C2 <= 10 and then
check each retrieved row to see if C1 = 'NEW YORK'. Typically, the primary cost
in executing the above query is the cost of the retrieving the rows, and so it is
desirable to choose the plan the that requires the minimum number of
retrievals. To choose the best plan, it is necessary to estimate the number of
rows that satisfy each predicate.

When you do not request distribution statistics, the optimizer maintains only
the second-highest data value (HIGH2KEY), second-lowest data value
(LOW2KEY), number of distinct values (COLCARD), and number of rows
(CARD) for a column. The number of rows that satisfy an equality or range

Chapter 5. System Catalog Statistics 127

predicate is then estimated under the assumption that the frequencies of the
data values in a column are all equal and the data values are evenly spread
out over the interval (LOW2KEY, HIGH2KEY). Specifically, the number of
rows satisfying an equality predicate C1 = KEY is estimated as
CARD/COLCARD, and the number of rows satisfying a range predicate C1
BETWEEN KEY1 AND KEY2 is estimated as:

KEY2 - KEY1
------------------- x CARD (1)
HIGH2KEY - LOW2KEY

These estimates are accurate only when the true distribution of data values in
a column is reasonably uniform. When distribution statistics are unavailable
and either the frequencies of the data values differ widely from each other or
the data values are clustered in a few sub-intervals of the interval
(LOW_KEY,HIGH_KEY), the estimates can be off by orders of magnitude and
the optimizer may choose a less than optimal access plan.

When distribution statistics are available, the errors described above can be
greatly reduced by using frequent-value statistics to compute the number of
rows that satisfy an equality predicate and using frequent-value statistics and
quantiles to compute the number of rows that satisfy a range predicate.

Example of Impact on Equality Predicates:

Consider first a predicate of the form C1 = KEY. If KEY is one of the N most
frequent values, then the optimizer simply uses the frequency of KEY that is
stored in the catalog. If KEY is not one of the N most frequent values, the
optimizer estimates the number of rows that satisfy the predicate under the
assumption that the (COLCARD - N) non-frequent values have a uniform
distribution. That is, the number of rows is estimated as:

CARD - NUM_FREQ_ROWS
-------------------- (2)

COLCARD - N

where NUM_FREQ_ROWS is the total number of rows with a value equal to
one of the N most frequent values.

For example, consider a column (C) for which the frequency of the data values
is as follows:

Data Value Frequency
---------- ---------

1 2
2 3
3 40
4 4
5 1

128 Administration Guide: Performance

Suppose that frequent-value statistics based on only the most frequent value
(that is, N = 1) are available. For this column, CARD = 50 and COLCARD = 5.
For the predicate C = 3, exactly 40 rows satisfy it. Assuming a uniform data
distribution, the number of rows that satisfy the predicate is estimated as 50/5
= 10, an error of -75%. Using frequent-value statistics, the number of rows is
estimated as 40, with no error.

Similarly, 2 rows satisfy the predicate C = 1. Without frequent-value statistics,
the number of rows that satisfy the predicate is estimated as 10, an error of
400%. You may use the following formula to calculate the estimation error (as
a percentage):

estimated rows - actual rows
----------------------------- X 100

actual rows

Using the frequent value statistics (N = 1), the optimizer will estimate the
number of rows containing this value using the formula (2) given above, for
example:

(50 - 40)
--------- = 3
(5 - 1)

and the error is reduced by an order of magnitude as shown below:
3 - 2
------- = 50%

2

The number of rows that satisfy a range predicate can be estimated using
quantiles, as illustrated by the following examples. Consider a column (C)
given by:

C

0.0
5.1
6.3
7.1
8.2
8.4
8.5
9.1
93.6
100.0

and suppose that K-quantiles are available for K = 1, 4, 7, and 10:

Chapter 5. System Catalog Statistics 129

K K-quantile
--- ----------
1 0.0
4 7.1
7 8.5
10 100.0

First consider the predicate C <= 8.5. For the data given above, exactly 7 rows
satisfy this predicate. Assuming a uniform data distribution and using
formula (1) from above, with KEY1 replaced by LOW2KEY, the number of
rows that satisfy the predicate is estimated as:

8.5 - 5.1
---------- x 10 *= 0
93.6 - 5.1

where *= means “approximately equal to”. The error in this estimation is
approximately -100%.

Using quantiles, the number of rows that satisfy this same predicate (C <=
8.5) is estimated by locating 8.5 as one of the K-quantile values and using the
corresponding value of K, namely 7, as the estimate. In this case, the error is
reduced to 0.

Now consider the predicate C <= 10. Exactly 8 rows satisfy this predicate.
Unlike the previous example, the value 10 is not one of the stored K-quantiles.
Assuming a uniform data distribution and using formula (1), the number of
rows that satisfy the predicate is estimated as 1, an error of -87.5%.

Using quantiles, the optimizer estimates the number of rows that satisfy the
predicate as r_1 + r_2, where r_1 is the number of rows satisfying the
predicate C <= 8.5 and r_2 is the number of rows satisfying the predicate C >
8.5 AND C <= 10. As in the above example, r_1 = 7. To estimate r_2 the
optimizer uses linear interpolation:

10 - 8.5
r_2 *= ---------- x (number of rows with value > 8.5 and <= 100.0)

100 - 8.5
10 - 8.5

r_2 *= ---------- x (10 - 7)
100 - 8.5
1.5

r_2 *= ---- x (3)
91.5

r_2 *= 0

The final estimate is r_1 + r_2 *= 7, and the error is only -12.5%.

130 Administration Guide: Performance

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

The reason that the use of quantiles improves the accuracy of the estimates in
the above examples is that the real data values are ″clustered″ in the range 5 -
10, but the standard estimation formulas assume that the data values are
spread out evenly between 0 and 100.

The use of quantiles also improves accuracy when there are significant
differences in the frequencies of different data values. Consider a column
having data values with the following frequencies:

Data Value Frequency
---------- ---------

20 5
30 5
40 15
50 50
60 15
70 5
80 5

Suppose that K-quantiles are available for K = 5, 25, 75, 95, and 100:
K K-quantile
---- ----------

5 20
25 40
75 50
95 70
100 80

Also suppose that frequent value statistics are available based on the 3 most
frequent values.

Consider the predicate C BETWEEN 20 AND 30. From the distribution of the data
values, you can see that exactly 10 rows satisfy this predicate. Assuming a
uniform data distribution and using formula (1), the number of rows that
satisfy the predicate is estimated as:

30 - 20
------- x 100 = 25
70 - 30

which has an error of 150%.

Using frequent-value statistics and quantiles, the number of rows that satisfy
the predicate is estimated as r_1 + r_2, where r_1 is the number of rows that
satisfy the predicate (C = 20) and r_2 is the number of rows that satisfy the
predicate C > 20 AND C <= 30. Using formula (2), r_1 is estimated as:

100 - 80
-------- = 5

7 - 3

Chapter 5. System Catalog Statistics 131

Using linear interpolation, r_2 is estimated as:
30 - 20
------- x (# rows with value > 20 and <= 40)
40 - 20
30 - 20

= ------- x (25 - 5)
40 - 20

= 10,

yielding a final estimate of 15 and reducing the error by a factor of 3.

Collecting and Using Detailed Index Statistics

As an option, you may collect more detailed statistics on indexes that help the
optimizer better estimate the cost of accessing a table using that index. This
can be done in one of two ways: First, you can use the DETAILED clause on
the RUNSTATS command; or, second, you can specify A, Y, or X for the
statsopt parameter when calling the RUNSTATS API. The DETAILED
statistics PAGE_FETCH_PAIRS and CLUSTERFACTOR will be collected only
if the table is of a sufficient size: around 25 pages. In this case,
CLUSTERFACTOR will be a value between 0 and 1; and CLUSTERRATIO will
be -1 (not collected). For tables smaller than 25 pages, CLUSTERFACTOR will
be -1 (not collected), and CLUSTERRATIO will be a value between 0 and 100;
even if the DETAILED clause is specified for an index on that table.

Understanding Detailed Index Statistics
The DETAILED statistics attempt to capture, in a concise way, the number of
physical I/Os that will be required to access the data pages of a table when a
complete index scan is performed under different buffer sizes. As RUNSTATS
scans through the pages of the index, it models the different buffer sizes, and
gathers estimates of how often a page fault occurs. For example, with only 1
(one) buffer page available, every new page reference by the index will result
in a page fault, and, in a worse case, every row could reference a different
page, resulting in at most CARDINALITY I/Os. At the other extreme, when
the buffer is big enough to hold the entire table (subject to the maximum
buffer size), then each of the table’s NPAGES pages will be physically read
exactly once. The number of physical I/Os must therefore be a monotone,
non-increasing function of the buffer size.

RUNSTATS fits a piece-wise linear curve to these estimates, which is stored as
a string of 11 pairs in the PAGE_FETCH_PAIRS statistic. The first value in
each pair is a hypothetical buffer size, and the second value in each pair is the
estimated number of physical I/Os to fetch the data pages in a complete scan
of the index, with a buffer of that size totally available to that index scan. The
optimizer then uses the PAGE_FETCH_PAIRS statistic to estimate the number
of physical I/Os for data-page fetches in any complete or partial index scan
using that index.

132 Administration Guide: Performance

The shape of the curve stored in PAGE_FETCH_PAIRS for an index will
depend upon the clustering behavior of that index.

There are three types of curves that are possible:
1. Curve 1 (dashed-line) is a highly-unclustered index that needs a buffer

almost as large as the table before re-referenced pages are found in the
buffer. This represents a situation in which references to the same page are
widely spread throughout the index’s key values, so a medium-sized
buffer isn’t sufficient to avoid re-referencing the same page multiple times.
This is the worst scenario, as it requires the most buffer space to perform
well. The optimizer is likely to use the list prefetch access strategy for such
indexes, in an attempt to cluster the data-page accesses for the qualifying
key values of the index. If this index is used frequently, it should be a
prime candidate for reorganization.

1

1

Cardinality

Npages
Buffer Size

P
hy

si
ca

l I
/O

s

Npages

Figure 11. Three Curves for Clustered and Unclustered Indexes

Chapter 5. System Catalog Statistics 133

2. Curve 2 (solid-line) is more locally unclustered. For very small buffers, it is
as unclustered as curve 1, but once a few buffer pages are available to
contain the most recently referenced data, the data-page hit ratio improves
significantly. This represents the somewhat favorable situation in which,
although the index isn’t particularly clustered, references to the same data
pages are in a close proximity to one another among the index’s key
values.

3. Curve three (dotted-line) is somewhere between these two extremes,
improving at a uniform rate as the buffer is increased. This is usually the
more common case for unclustered indexes, and represents what the
optimizer will assume in the absence of DETAILED indexes.

When Should You Use Detailed Index Statistics?
You should use DETAILED index statistics when your queries reference
columns that are not all in the index. In addition, DETAILED index statistics
should be used when:
v There are multiple unclustered indexes with varying degrees of clustering
v The degree of clustering is non-uniform among the key values
v The values in the index are updated non-uniformly.

It may be quite hard to determine these situations without previous
knowledge, and without attempting to force an index scan under varying
buffer sizes and using the monitor to observe the physical I/Os that result.
Probably the cheapest way to determine whether any of these situations are
occurring is to collect the DETAILED statistics for an index and retain them if
the PAGE_FETCH_PAIRS that result are non-linear.

User Update-Capable Catalog Statistics

The ability to update selected system catalog statistics allows you to:
v Model query performance on a development system using production

system statistics
v Perform “what if” query performance analysis.

You should not update statistics on a production system because you may
hinder the optimizer from finding the best access plan for your query.

To update the values of these statistical columns, use the SQL UPDATE
statement against the views defined in the SYSSTAT schema. You can update
statistics for:
v Tables for which you hold explicit CONTROL privilege. You can also

update statistics for columns and indexes for these tables.
v Nicknames for which you hold explicit CONTROL privilege in a federated

database system. You can also update statistics for columns and indexes for
these nicknames. Note that the update only affects local metadata (data

134 Administration Guide: Performance

source table statistics are not changed). These updates affect only the global
access strategy generated by the DB2 optimizer.

v User-defined functions (UDFs) that you own (see “Updating Statistics for
User-Defined Functions” on page 140 for guidance).

You can also update these statistics if your user ID has explicit DBADM
authority for the database; that is, your user ID is recorded as having DBADM
authority in the SYSCAT.DBAUTH table. Belonging to a DBADM group does
not explicitly provide this authority.

Using these views, a DBADM can see statistics rows for all users. A user
without DBADM authority can only see those rows which contain statistics
for objects over which they have CONTROL privilege.

The following shows an example of updating the table statistics for the
EMPLOYEE table:

UPDATE SYSSTAT.TABLES
SET CARD = 10000,

NPAGES = 1000,
FPAGES = 1000,
OVERFLOW = 2

WHERE TABSCHEMA = 'userid'
AND TABNAME = 'EMPLOYEE'

You must be careful when updating catalog statistics. Arbitrary updates can
have a serious impact on the performance of subsequent queries. You may
wish to use any of the following methods to replace any updates you applied
to these tables:
v ROLLBACK the unit of work in which the changes have been made

(assuming the unit of work has not been committed).
v Using the RUNSTATS utility you can recalculate and refresh the catalog

statistics.
v Update the catalog statistics to indicate that statistics have not been

gathered. (For example, setting column NPAGES to -1 indicates that the
number-of-pages statistic has not been collected.)

v Replace the catalog statistics with the data they contained prior to your
update. This method would only be possible if you used the db2look tool, as
described in “Modeling Production Databases” on page 142, to capture the
statistics before you made any changes.

In a some cases, the optimizer may determine that some particular statistical
value or combination of values are not valid, it will use default values and
issue a warning. Such circumstances are rare, however, since most of the
validation is done when updating the statistics.

Additional Information: For information about updating catalog statistics,
see:

Chapter 5. System Catalog Statistics 135

v “Rules for Updating Catalog Statistics”
v “Rules for Updating Table and Nickname Statistics”
v “Rules for Updating Column Statistics” on page 137
v “Rules for Updating Distribution Statistics for Columns” on page 138
v “Rules for Updating Index Statistics” on page 139
v “Updating Statistics for User-Defined Functions” on page 140
v “Modeling Production Databases” on page 142.

Rules for Updating Catalog Statistics
When you update catalog statistics, the most important general rule is to
ensure that valid values, ranges, and formats of the various statistics are
stored in the statistic views. It is also important to preserve the consistency of
relationships between various statistics.

For example, COLCARD in SYSSTAT.COLUMNS must be less than CARD in
SYSSTAT.TABLES (the number of distinct values in a column can’t be greater
than the number of rows). Assume that you want to reduce COLCARD from
100 to 25, and CARD from 200 to 50. If you update SYSCAT.TABLES first, you
should get an error (since CARD would be less than COLCARD). The correct
order is to update COLCARD in SYSCAT.COLUMNS first, then update CARD
in SYSSTAT.TABLES. The situation occurs in reverse if you want to increase
COLCARD to 250 from 100, and CARD to 300 from 200. In this case, you
must update CARD first, then COLCARD.

When a conflict is detected between an updated statistic and another statistic,
an error is issued. However, errors may not always be issued when conflicts
arise. In some situations, the conflict is difficult to detect and report in an
error, especially if the two related statistics are in different catalogs. For this
reason, you should be careful to avoid causing such conflicts.

The most common checks you should make, before updating a catalog
statistic, are:
1. Numeric statistics must be -1 or greater than or equal to zero.
2. Numeric statistics representing percentages (for example, CLUSTERRATIO

in SYSSTAT.INDEXES) must be between 0 and 100.

Note: For row types, the table level statistics NPAGES, FPAGES, and
OVERFLOW are not updatable for a sub-table.

Rules for Updating Table and Nickname Statistics
There are only four statistic values that you can update in SYSTAT.TABLES:
CARD, FPAGES, NPAGES, and OVERFLOW. Keep in mind that:
1. CARD must be greater than all COLCARD values in SYSSTAT.COLUMNS

that correspond to that table.
2. CARD must be greater than NPAGES.

136 Administration Guide: Performance

3. FPAGES must be greater than NPAGES.
4. NPAGES must be less than or equal to any ″Fetch″ value in the

PAGE_FETCH_PAIRS column of any index (assuming this statistic is
relevant for the index).

5. CARD must not be less than or equal to any ″Fetch″ value in the
PAGE_FETCH_PAIRS column of any index (assuming this statistic is
relevant for the index).

When working within a federated database system, use caution when
manually providing/updating statistics on a nickname over a remote view.
The statistical information, such as the number of rows this nickname will
return, might not reflect the real cost to evaluate this remote view and thus
might mislead the DB2 optimizer. Situations that can benefit from statistics
updates include remote views defined on a single base table with no column
functions applied on the SELECT list. Complex views may require a complex
tuning process which might require that each query be tuned. Consider
creating local views over nicknames instead so the DB2 optimizer knows how
to derive the cost of the view more accurately.

Rules for Updating Column Statistics
When you are updating statistics in SYSSTAT.COLUMNS, follow the
guidelines below. For details on updating column distribution statistics, see
“Rules for Updating Distribution Statistics for Columns” on page 138.
1. HIGH2KEY and LOW2KEY (in SYSSTAT.COLUMNS) must adhere to the

following rules:
v The datatype of any HIGH2KEY, LOW2KEY value must correspond to

the datatype of the user column for which the statistic is attributed.
Because HIGH2KEY is a VARCHAR column, you must enclose the
value in quotation marks. For example, to set HIGH2KEY to 25 for an
INTEGER user column, your update statement would include SET
HIGH2KEY = '25'.

v The length of HIGH2KEY, LOW2KEY values must be the smaller of 33
or the maximum length of the target column’s datatype.

v HIGH2KEY must be greater than LOW2KEY whenever there are more
than 3 distinct values in the corresponding column. In the case of 3 or
less distinct values in the column, HIGH2KEY can be equal to
LOW2KEY.

2. The cardinality of a column (COLCARD statistic in SYSSTAT.COLUMNS)
cannot be greater than the cardinality of its corresponding table (CARD
statistic in SYSSTAT.TABLES).

3. The number of nulls in a column (NUMNULLS statistic in
SYSSTAT.COLUMNS) cannot be greater than the cardinality of its
corresponding table (CARD statistic in SYSSTAT.TABLES).

4. No statistics are supported for columns with datatypes: LONG
VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB.

Chapter 5. System Catalog Statistics 137

|
|
|
|

|
|
|

Rules for Updating Distribution Statistics for Columns
“User Update-Capable Catalog Statistics” on page 134 provides general
information about how to update catalog statistics. You may wish to refer to
that section before attempting to update column distribution statistics.

In order for all the statistics in the catalog to be consistent, you must exercise
care when updating the distribution statistics. Specifically, for each column,
the catalog entries for the frequent data statistics and quantiles must satisfy
the following constraints:
v Frequent value statistics (in the SYSSTAT.COLDIST catalog). These

constraints include:
– The values in column VALCOUNT must be unchanging or decreasing

for increasing values of SEQNO.
– The number of values in column COLVALUE must be less than or equal

to the number of distinct values in the column, which is stored in
column COLCARD in catalog view SYSSTAT.COLUMNS.

– The sum of the values in column VALCOUNT must be less than or equal
to the number of rows in the column, which is stored in column CARD
in catalog view SYSSTAT.TABLES.

– In most cases, the values in the column COLVALUE should lie between
the second-highest and second-lowest data values for the column, which
are stored in columns HIGH2KEY and LOW2KEY, respectively, in catalog
view SYSSTAT.COLUMNS. There may be one frequent value greater than
HIGH2KEY and one frequent value less than LOW2KEY.

v Quantiles (in the SYSSTAT.COLDIST catalog). These constraints include:
– The values in column COLVALUE must be unchanging or decreasing for

increasing values of SEQNO
– The values in column VALCOUNT must be increasing for increasing

values of SEQNO
– The largest value in column COLVALUE must have a corresponding

entry in column VALCOUNT equal to the number of rows in the column
– In most cases, the values in the column COLVALUE should lie between

the second-highest and second-lowest data values for the column, which
are stored in columns HIGH2KEY and LOW2KEY, respectively, in catalog
view SYSSTAT.COLUMNS.

Suppose that distribution statistics are available for a column C1 with “R”
rows and you wish to modify the statistics to correspond to a column with
the same relative proportions of data values, but with “(F x R)” rows. To scale
up the frequent-value statistics by a factor of F, each entry in column
VALCOUNT must be multiplied by F. Similarly, to scale up the quantiles by a
factor of F, each entry in column VALCOUNT must be multiplied by F. If
these rules are not followed, the optimizer may use the wrong filter factor
causing unpredictable performance when you run the query.

138 Administration Guide: Performance

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Rules for Updating Index Statistics
When you update the statistics in SYSSTAT.INDEXES, follow the rules
described below:
1. PAGE_FETCH_PAIRS (in SYSSTAT. INDEXES) must adhere to the

following rules:
v Individual values in the PAGE_FETCH_PAIRS statistic must be

separated by a series of blank delimiters.
v Individual values in the PAGE_FETCH_PAIRS statistic must not be

longer than 10 digits and must be less than the maximum integer value
(MAXINT = 2147483647).

v There must always be a valid PAGE_FETCH_PAIRS value if the
CLUSTERFACTOR is greater than zero.

v There must be exactly 11 pairs in a single PAGE_FETCH_PAIR statistic.
v Buffer size entries of PAGE_FETCH_PAIRS must be ascending in value.
v Any buffer size value in a PAGE_FETCH_PAIRS entry cannot be greater

than MIN(NPAGES, 524287) where NPAGES is the number of pages in
the corresponding table (in SYSSTAT.TABLES).

v “Fetches” entries of PAGE_FETCH_PAIRS must be descending in value,
with no individual “Fetches” entry being less than NPAGES. “Fetch”
size values in a PAGE_FETCH_PAIRS entry cannot be greater than the
CARD (cardinality) statistic of the corresponding table.

v If buffer size value is the same in two consecutive pairs, then page fetch
value must also be the same in both the pairs (in SYSSTAT.TABLES).

A valid PAGE_FETCH_UPDATE is:
PAGE_FETCH_PAIRS =
'100 380 120 360 140 340 160 330 180 320 200 310 220 305 240 300
260 300 280 300 300 300'

where
NPAGES = 300
CARD = 10000
CLUSTERRATIO = -1
CLUSTERFACTOR = 0.9

2. CLUSTERRATIO and CLUSTERFACTOR (in SYSSTAT.INDEXES) must
adhere to the following rules:
v Valid values for CLUSTERRATIO are -1 or between 0 and 100.
v Valid values for CLUSTERFACTOR are -1 or between 0 and 1.
v At least one of the CLUSTERRATIO and CLUSTERFACTOR values must

be -1 at all times.
v If CLUSTERFACTOR is a positive value, it must be accompanied by a

valid PAGE_FETCH_PAIR statistic.
3. The following rules apply to FIRSTKEYCARD, FIRST2KEYCARD,

FIRST3KEYCARD, FIRST4KEYCARD, and FULLKEYCARD:

Chapter 5. System Catalog Statistics 139

v FIRSTKEYCARD must be equal to FULLKEYCARD for a single-column
index.

v FIRSTKEYCARD must be equal to COLCARD (in SYSSTAT.COLUMNS)
for the corresponding column.

v If any of these index statistics are not relevant, you should set them to
-1. For example, if you have an index with only 3 columns, set
FIRST4KEYCARD to -1.

v For multiple column indexes, if all the statistics are relevant, the
relationship between them must be:
FIRSTKEYCARD <= FIRST2KEYCARD <= FIRST3KEYCARD <= FIRST4KEYCARD

<= FULLKEYCARD <= CARD

4. The following rules apply to SEQUENTIAL_PAGES and DENSITY:
v Valid values for SEQUENTIAL_PAGES are -1 or between 0 and NLEAF.
v Valid values for DENSITY are -1 or between 0 and 100.

Updating Statistics for User-Defined Functions
Using the SYSSTAT.FUNCTIONS catalog view, you may update statistics for
user-defined functions (UDFs). If these statistics are available, the optimizer
will use them when estimating costs for various access plans. If statistics are
not available the statistic column values will be -1 and the optimizer will use
default values that assume a simple UDF.

The following table provides information about the statistic columns that you
may update for UDFs:

Table 13. Function Statistics (SYSCAT.FUNCTIONS and SYSSTAT.FUNCTIONS)

Statistic Description

IOS_PER_INVOC Estimated number of read/write requests
executed each time a function is executed.

INSTS_PER_INVOC Estimated number of machine instructions
executed each time a function is executed.

IOS_PER_ARGBYTE Estimated number of read/write requests
executed per input argument byte.

INSTS_PER_ARGBYTES Estimated number of machine instructions
executed per input argument byte.

PERCENT_ARGBYTES Estimated average percent of input
argument bytes that the function will
actually process.

INITIAL_IOS Estimated number of read/write requests
executed only the first/last time the
function is invoked.

INITIAL_INSTS Estimated number of machine instructions
executed only the first/last time the
function is invoked.

140 Administration Guide: Performance

|
|

Table 13. Function Statistics (SYSCAT.FUNCTIONS and
SYSSTAT.FUNCTIONS) (continued)

Statistic Description

CARDINALITY Estimated number of rows generated by a
table function.

For example, consider a UDF (EU_SHOE) that converts an American shoe size
to the equivalent European shoe size. (These two shoe sizes could be UDTs.)
For this UDF, you should set the statistic columns as follows:
v INSTS_PER_INVOC should be set to the estimated number of machine

instructions required to:
– Invoke EU_SHOE
– Initialize the output string
– Return the result.

v INSTS_PER_ARGBYTE should be set to the estimated number of machine
instructions required to convert the input string into a European shoe size.

v PERCENT_ARGBYTES would be set to 100 indicating that the entire input
string is to be converted

v INITIAL_INSTS, IOS_PER_INVOC, IOS_PER_ARGBYTE, and INITIAL_IOS
should all be set to 0, since this UDF only performs computations.

PERCENT_ARGBYTES would be used by a function that does not always
process the entire input string. For example, consider a UDF (LOCATE) that
accepts two arguments as input and returns the starting position of the first
occurrence of the first argument within the second argument. Assume that the
length of the first argument is small enough to be insignificant relative to the
second argument and, on average, 75 percent of the second argument is
searched. Based on this information, PERCENT_ARGBYTES should be set to
75. The above estimate of the average of 75 percent is based on the following
additional assumptions:
v Half the time the first argument will not be found resulting in the entire

second argument being searched
v The first argument is equally likely to appear anywhere within the second

argument, resulting in half of the second argument being searched (on
average) when the first argument is found.

INITIAL_INSTS or INITIAL_IOS can be used to record the estimated number
of machine instructions or read/write requests performed only the first or last
time the function is invoked. This could be used, for example, to record the
cost of setting up a scratchpad area.

To obtain information about I/Os and instructions used by a user-defined
function, you can use output provided by your programming language
compiler or by monitoring tools available for your operating system.

Chapter 5. System Catalog Statistics 141

Modeling Production Databases
Sometimes you may wish to have your test system contain a subset of your
production system’s data. However, access plans selected for such a test
system are not necessarily the same as those that would be selected on the
production system, unless the catalog statistics and the configuration
parameters for the test system are updated to match those of the production
system.

A productivity tool, db2look, is provided that can be run against the
production database to generate the update statements required to make the
catalog statistics of the test database match those in production. These update
statements can be generated by using db2look in mimic mode (-m option). In
this case, db2look will generate a command processor script containing all the
statements required to mimic the catalog statistics of the production database.
This can be useful when analyzing SQL statements through Visual Explain in
a test environment.

You can recreate database data objects, including tables, views, indexes, and
other objects in a database, by extracting DDL statements with db2look -e. You
can run the command processor script created from this command against
another database to recreate the database. You can use the -e option with the
-m option.

After running the update statements produced by db2look against the test
system, the test system can be used to validate the access plans to be
generated in production. Since the optimizer uses the type and configuration
of the table spaces to estimate I/O costs, the test system must have the same
table space geometry or layout. That is, the same number of containers of the
same type: either SMS or DMS.

The db2look tool is found under the bin subdirectory.

For more information on how to use this productivity tool, type the following
on a command line:

db2look -h

You can also refer to the Command Reference manual for more information on
this tool.

The Control Center also provides an interface to the db2look utility called
“Generate SQL - Object Name”. Using the Control Center allows for the
results file from the utility to be integrated into the Script Center. You can also
schedule the db2look command from the Control Center. One difference when
using the Control Center is that only single table analysis can be done as

142 Administration Guide: Performance

opposed to a maximum of thirty tables in a single call using the db2look
command. You should also be aware that LaTex and Graphical outputs are not
supported from the Control Center.

You can also run the db2look utility against an OS/390 database. The db2look
utility extracts the DDL and UPDATE statistics statements for OS/390 objects.
This is very useful if you would like to extract OS/390 objects and re-create
them in a DB2 Universal Database (UDB) database. Refer to the Command
Reference for additional information on the db2look utility.

There are some differences between the DB2 UDB statistics and the OS/390
statistics. The db2look utility performs the appropriate conversions from DB2
for OS/390 to DB2 UDB when this is applicable and sets to a default value
(-1) the DB2 UDB statistics for which a DB2 for OS/390 counterpart does not
exist. Here is how the db2look utility maps the DB2 for OS/390 statistics to
DB2 UDB statistics. In the discussion below, “UDB_x” stands for a DB2 UDB
statistics column; and, “S390_x” stands for a DB2 for OS/390 statistics
column.
1. Table Level Statistics.

UDB_CARD = S390_CARDF
UDB_NPAGES = S390_NPAGES

There is no S390_FPAGES. However, DB2 for OS/390 has another statistics
called PCTPAGES which represents the percentage of active table space
pages that contain rows of the table. So it is possible to calculate
UDB_FPAGES based on S390_NPAGES and S390_PCTPAGES as follows:

UDB_FPAGES=(S390_NPAGES * 100)/S390_PCTPAGES

There is no S390_OVERFLOW to map to UDB_OVERFLOW. Therefore, the
db2look utility just sets this to the default value:

UDB_OVERFLOW=-1

2. Column Level Statistics.

UDB_COLCARD = S390_COLCARDF
UDB_HIGH2KEY = S390_HIGH2KEY
UDB_LOW2KEY = S390_LOW2KEY

There is no S390_AVGCOLLEN to map to UDB_AVGCOLLEN so the
db2look utility just sets this to the default value:

UDB_AVGCOLLEN=-1

3. Index Level Statistics.

UDB_NLEAF = S390_NLEAF
UDB_NLEVELS = S390_NLEVELS

Chapter 5. System Catalog Statistics 143

UDB_FIRSTKEYCARD= S390_FIRSTKEYCARD
UDB_FULLKEYCARD = S390_FULLKEYCARD
UDB_CLUSTERRATIO= S390_CLUSTERRATIO

The other statistics for which there are no OS/390 counterparts are just set
to the default. That is:

UDB_FIRST2KEYCARD = -1
UDB_FIRST3KEYCARD = -1
UDB_FIRST4KEYCARD = -1
UDB_CLUSTERFACTOR = -1
UDB_SEQUENTIAL_PAGES = -1
UDB_DENSITY = -1

4. Column Distribution Statistics.
There are two types of statistics in DB2 for OS/390
SYSIBM.SYSCOLUMNS. Type “F” for frequent values and type “C” for
cardinality. Only entries of type “F” are applicable to DB2 for UDB and
these are the ones that will be considered.

UDB_COLVALUE = S390_COLVALUE
UDB_VALCOUNT = S390_FrequencyF * S390_CARD

Also, there is no column SEQNO in DB2 for OS/390
SYSIBM.SYSCOLUMNS but this is required for DB2 for UDB. Therefore,
db2look generates one automatically.

Sub-element Statistics
An option is provided to collect and use sub-element statistics. These are
statistics about the content of data in columns when the data has a structure
in the form of a series of sub-fields or sub-elements delimited by blanks.

For example, suppose a database contains a table DOCUMENTS in which
each row describes a document, and suppose that in DOCUMENTS there is a
column called KEYWORDS containing a list of relevant keywords relating to
this document for text retrieval purposes. The values in KEYWORDS might be
as follows:

'database simulation analytical business intelligence'
'simulation model fruitfly reproduction temperature'
'forestry spruce soil erosion rainfall'
'forest temperature soil precipitation fire'

In this example, each column value consists of 5 sub-elements, each of which
is a word (the keyword), separated from the others by one blank.

For queries that specify LIKE predicates on such columns using the %
match_all character:

SELECT FROM DOCUMENTS WHERE KEYWORDS LIKE '%simulation%'

144 Administration Guide: Performance

|
|
|
|

|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|

|

it is often beneficial for the optimizer to know some basic statistics about the
sub-element structure of the column, namely:

SUB_COUNT
The average number of sub-elements.

SUB_DELIM_LENGTH
The average length of each delimiter separating each sub-element,
where a delimiter, in this context, is one or more consecutive blank
characters.

In the KEYWORDS column example, SUB_COUNT is 5, and
SUB_DELIM_LENGTH is 1, because each delimiter is a single blank character.

The system administrator controls the collection and use of these statistics by
means of an extension to the DB2_LIKE_VARCHAR registry variable. This
registry variable affects how the DB2 UDB optimizer deals with a predicate of
the form:

COLUMN LIKE '%xxxxxx'

where xxxxxx is any string of characters; that is, any LIKE predicate whose
search value starts with a % character. (It may or may not end with a %
character). These are referred to as ″wildcard LIKE predicates″ below. For all
predicates, the optimizer has to estimate how many rows match the predicate.
For wildcard LIKE predicates, the optimizer assumes that the COLUMN being
matched has a structure of a series of elements concatenated together to form
the entire column, and estimates the length of each element based on the
length of the string, excluding leading and trailing % characters. The new
syntax is:

db2set DB2_LIKE_VARCHAR=[Y|N|S|num1][,Y|N|num2]

where
- the first term (preceding the comma) means the following,

but only for columns that do not have positive
sub-element statistics
S Use the algorithm as used in DB2 Version 2.
N Use a fixed-length sub-element algorithm.
Y (default) Use a variable-length sub-element algorithm

with a default value for the algorithm parameter.
num1 Use a variable-length sub-element algorithm,

and use num1 as the algorithm parameter.

- the second term (following the comma) means:
N (default) Do not collect or use sub-element statistics.
Y Collect sub-element statistics. Use a

variable-length sub-element algorithm that
uses those statistics, together with a default
value for the algorithm parameter in the case of columns
with positive sub-element statistics.

num2 Collect sub-element statistics. Use a

Chapter 5. System Catalog Statistics 145

|
|

|
|

|
|
|
|

|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

variable-length sub-element algorithm that
uses those statistics, together with num2 as
the algorithm parameter in the case of columns with
positive sub-element statistics.

If the value of DB2_LIKE_VARCHAR contains only the first term, no
sub-element statistics are collected, and any that have previously been
collected are ignored. The value specified affects how the optimizer calculates
the selectivity of wildcard LIKE predicates in the same way as before; that is:
v If the value is S, the optimizer uses the same algorithm as was used in DB2

Version 2, which does not presume the sub-element model.
v If the value is N, the optimizer uses an algorithm that presumes the

sub-element model, and assumes that the COLUMN is of a fixed length,
even if it is defined as variable length.

v If the value is Y (the default) or a floating point constant, the optimizer uses
an algorithm that presumes the sub-element model and recognizes that the
COLUMN is of variable length, if so defined. It also infers sub-element
statistics from the query itself, rather than from the data. This algorithm
involves a parameter (the ″algorithm parameter″) that specifies how much
longer the element is than the string enclosed by the % characters.

v If the value is Y, the optimizer uses a default value of 1.9 for the algorithm
parameter.

v If the value is a floating point constant, the optimizer uses the specified
value for the algorithm parameter. This constant must lie within the range
of 0 to 6.2.

If the value of DB2_LIKE_VARCHAR contains two terms, and the second is Y
or a floating point constant, sub-element statistics on single-byte character set
string columns of type CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC are
collected during a RUNSTATS operation and used during compilation of
queries involving wildcard LIKE predicates. The optimizer uses an algorithm
that presumes the sub-element model and uses the SUB_COUNT and
SUB_DELIM_LENGTH statistics, as well as an algorithm parameter, to
calculate the selectivity of the predicate. The algorithm parameter is specified
in the same way that the inferential algorithm is specified, that is:
v If the value is Y, the optimizer uses a default value of 1.9 for the algorithm

parameter.
v If the value is a floating point constant, the optimizer uses the specified

value for the algorithm parameter. This constant must lie within the range
of 0 to 6.2.

If, during compilation, the optimizer finds that sub-element statistics have not
been collected on the column involved in the query, it will use the
″inferential″ sub-element algorithm; that is, the one used when only the first
term of DB2_LIKE_VARCHAR is specified. Thus, in order for the sub-element

146 Administration Guide: Performance

|
|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|

statistics to be used by the optimizer, the second term of
DB2_LIKE_VARCHAR must be set both during RUNSTATS and compilation.

The values of the sub-element statistics can be viewed by querying
SYSIBM.SYSCOLUMNS. For example:

select substr(NAME,1,16), SUB_COUNT, SUB_DELIM_LENGTH
from sysibm.syscolumns where tbname = 'DOCUMENTS'

The SUB_COUNT and SUB_DELIM_LENGTH columns are not present in the
SYSSTAT.COLUMNS statistics view, and therefore cannot be updated.

Note: RUNSTATS may take longer if this option is used. For example,
RUNSTATS may take between 15 and 40% longer on a table with five
character columns, if the DETAILED and DISTRIBUTION options are
not used. If either the DETAILED or the DISTRIBUTION option is
specified, the percentage overhead is less, even though the absolute
amount of overhead is the same. If you are considering using this
option, you should assess this overhead against improvements in query
performance.

Chapter 5. System Catalog Statistics 147

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|

148 Administration Guide: Performance

Chapter 6. Understanding the SQL Compiler

When an SQL query is compiled, a number of steps are performed before the
“best” access plan is either executed or stored in the system catalog.

In a partitioned database environment, all of the work done on a SQL query
by the SQL Compiler takes place at the database partition to which you
connect. Before being run, the compiled query is sent to all database partitions
in the database.

The following topics provide more information about the steps performed by
the SQL Compiler:
v Overview of the SQL Compiler
v Rewrite Query by the SQL Compiler
v Operation Merging
v Operation Movement
v Predicate Translation
v Data Access Concepts and Optimization
v Optimization Strategies for Intra-Partition Parallelism
v Automatic Summary Tables
v Federated Database Query Compiler Phases

The following sections also provide information about factors external to the
compiler which can affect the results produced by the compiler:
v “Chapter 3. Application Considerations” on page 43
v “Chapter 4. Environmental Considerations” on page 91
v “Chapter 5. System Catalog Statistics” on page 113.

“Chapter 7. SQL Explain Facility” on page 213 describes how you can examine
the access plan chosen by the SQL compiler.

Overview of the SQL Compiler

The SQL compiler performs several steps before producing an access plan that
you can execute. These steps are shown in Figure 12 on page 150.

© Copyright IBM Corp. 1993, 2001 149

|

|
|
|
|

This diagram shows that the Query Graph Model is a key component of the
SQL compiler. The query graph model is an internal, in-memory database that is
used to represent the query throughout the query compilation process as
described below:
v Parse Query

The first task of the SQL compiler is to analyze the SQL query to validate
the syntax. If any syntax errors are detected, the SQL compiler stops

SQL Query

Visual
Explain

db2exfmt
Tool

db2expln
Tool

SQL Compiler

Check
Semantics

Rewrite
Query

Optimize
Access Plan

Generate
Executable Code

Execute Plan

Query
Graph
Model

Access
Plan

Parse Query

Executable
Plan

Explain
Tables

Pushdown
Analysis

Remote SQL
Generation

Figure 12. Steps Performed by SQL Compiler

150 Administration Guide: Performance

processing and the appropriate SQL error is returned to the application
attempting to compile the SQL statement. When parsing is complete, an
internal representation of the query is created.

v Check Semantics

The second task of the compiler is to ensure there are no inconsistencies
amongst parts of the statement. A simple example of this semantic checking
is to ensure that the data type of the column specified for the YEAR scalar
function is a datetime data type. Also during this second stage, the
compiler adds the behavioral semantics to the query graph model,
including the effects of referential constraints, table check constraints,
triggers, and views.
The query graph model contains all of the semantics of queries, including
query blocks, subqueries, correlations, derived tables, expressions, data
types, data type conversions, code page conversions, and partitioning keys.

v Rewrite Query

The third phase of the SQL compiler uses the global semantics provided in
the query graph model to transform the query into a form that can be
optimized more easily. For example, the compiler might move a predicate,
altering the level at which it is applied and potentially improving query
performance. This type of operation movement is called general predicate
pushdown. See “Rewrite Query by the SQL Compiler” on page 153 for more
information.
Working in a partitioned database environment, some query operations are
more computationally intensive like those involving:
– Aggregation
– Redistribution of rows
– Correlated subqueries.

A correlated subquery is a subquery that contains a reference to a column of a table
that is outside the subquery.

In this environment, with some queries, decorrelation can occur as part of
the rewrite of the query.

The transferred query is stored in the Query Graph Model.
v Pushdown Analysis (Federated Databases)

The major task of this step is to recommend to the DB2 optimizer whether
an operation can be remotely evaluated (“pushed-down”) at a data source.
This type of pushdown activity is specific to data source queries and
represents an extension to general predicate pushdown operations.
This step is bypassed unless you are executing federated database queries.
See “Pushdown Analysis” on page 200 for more information.

v Optimize Access Plan

Chapter 6. Understanding the SQL Compiler 151

The SQL optimizer portion of the SQL compiler uses the query graph
model as input, and generates many alternative execution plans for
satisfying the user’s request. It estimates the execution cost of each
alternative plan, using the statistics for tables, indexes, columns and
functions, and chooses the plan with the smallest estimated execution cost.
The optimizer uses the query graph model to analyze the query semantics
and to obtain information about a wide variety of factors, including
indexes, base tables, derived tables, subqueries, correlations and recursion.
The optimizer portion can also consider another type of pushdown
operation: aggregation and sort, which can improve performance by pushing
the evaluation of these operations to the Data Management Services
component. See “Aggregation and Sort Pushdown Operators” on page 193
for more information.
The optimizer also considers whether there are different sized buffer pools
when determining page size selection. That the environment includes a
partitioned database is also considered as well as the ability to enhance the
chosen plan for the possibility of intra-query parallelism in a symmetric
multi-processor (SMP) environment. This information is used by the
optimizer to help select the best access plan for the query. See “Data Access
Concepts and Optimization” on page 162 for more information.
The output from this step of the SQL compiler is an “access plan”. This
access plan provides the basis for the information captured in the Explain
tables. The information used to generate the access plan can be captured
with an explain snapshot. (See “Chapter 7. SQL Explain Facility” on
page 213 for more information on Explain topics.)

v Remote SQL Generation (Federated Databases)

The final plan selected by the DB2 optimizer can consist of a set of steps
that might operate on a remote data source. For those operations that will
be performed by each data source, the remote SQL generation step creates
an efficient SQL statement based on the data source SQL dialect.
This step is bypassed unless you are executing federated database queries.
See “Remote SQL Generation and Global Optimization” on page 207 for
more information.

v Generate “Executable” Code

The final step of the SQL Compiler uses the access plan and the query graph
model to create an executable access plan, or section, for the query. This
code generation step uses information from the query graph model to avoid
repetitive execution of expressions that only need to be computed once for
a query. Examples for which this optimization is possible include code page
conversions and the use of host variables.
Information about access plans for static SQL is stored in the system catalog
tables. When the package is executed, the database manager will use the
information stored in the system catalog tables to determine how to access

152 Administration Guide: Performance

|
|
|
|
|

the data and provide results for the query. It is this information that is used
by the db2expln tool. (See “Chapter 7. SQL Explain Facility” on page 213 for
more information on Explain topics.)

It is recommended that RUNSTATS be done periodically on tables used in
queries where good performance is desired. The optimizer will then be better
equipped with relevant statistical information on the nature of the data. To
take advantage of the new statistics, you will also need to rebind your
application. If RUNSTATS is not done (or the optimizer suspects that
RUNSTATS was done on empty or near empty tables), the optimizer may
either use defaults or attempt to derive certain statistics based on the number
of file pages used to store the table on disk (FPAGES).

Rewrite Query by the SQL Compiler

The SQL compiler includes a rewrite query stage which transforms SQL
statements into forms that can be optimized more easily, and as a result, can
improve the access path chosen. Rewriting queries is particularly important
for queries which are very complex, including those queries with many
subqueries or many joins. Query generator tools often create these types of
very complex queries.

You can influence the number of query rewrite rules that are applied to an
SQL statement by changing the optimization class (see “Adjusting the
Optimization Class” on page 67).

You can see some of the results of the query rewrite through the use of the
Explain facility or Visual Explain.

There are three major categories of rewriting that the SQL compiler may
perform:
v Operation Merging
v Operation Movement
v Predicate Translation.

Operation Merging
The SQL compiler will rewrite queries to merge query operations, in an
attempt to construct the query so that it has the fewest number of operations,
especially SELECT operations. The following examples are provided to
illustrate some of the operations that can be merged by the SQL compiler:
v Example - View Merges

Using views in a SELECT statement can restrict the join order of the table
and can also introduce redundant joining of tables. By merging the views
during query rewrite, these restrictions can be lifted.

v Example - Subquery to Join Transformations

Chapter 6. Understanding the SQL Compiler 153

|
|
|
|
|
|
|
|

If the optimizer finds a subquery in a SELECT statement, it may be
restricted in its selection of order processing of the tables.

v Example - Redundant Join Elimination
During query rewrite redundant joins can be removed to further simplify
the SELECT statement that will be optimized.

v Example - Shared Aggregation
When using different functions, rewriting the query can reduce the number
of calculations that need to be done.

Example - View Merges
Suppose you have access to the following two views of the EMPLOYEE table,
one showing employees with a high level of education and the other view
showing employees earning more than $35,000:

CREATE VIEW EMP_EDUCATION (EMPNO, FIRSTNME, LASTNAME, EDLEVEL) AS
SELECT EMPNO, FIRSTNME, LASTNAME, EDLEVEL

FROM EMPLOYEE
WHERE EDLEVEL > 17
CREATE VIEW EMP_SALARIES (EMPNO, FIRSTNAME, LASTNAME, SALARY) AS
SELECT EMPNO, FIRSTNME, LASTNAME, SALARY

FROM EMPLOYEE
WHERE SALARY > 35000

Now suppose you perform the following query to list the employees who
have a high education level and who are earning more than $35,000:

SELECT E1.EMPNO, E1.FIRSTNME, E1.LASTNAME, E1.EDLEVEL, E2.SALARY
FROM EMP_EDUCATION E1,

EMP_SALARIES E2
WHERE E1.EMPNO = E2.EMPNO

During query rewrite, these two views could be merged to create the
following query:

SELECT E1.EMPNO, E1.FIRSTNME, E1.LASTNAME, E1.EDLEVEL, E2.SALARY
FROM EMPLOYEE E1,

EMPLOYEE E2
WHERE E1.EMPNO = E2.EMPNO

AND E1.EDLEVEL > 17
AND E2.SALARY > 35000

By merging the SELECT statements from the two views with the user-written
SELECT statement, the optimizer can consider more choices when selecting an
access plan. In addition, if the two views that have been merged use the same
base table, additional rewriting may be performed as described in “Example -
Redundant Join Elimination” on page 155.

Example - Subquery to Join Transformations
The SQL compiler will take a query containing a subquery, such as:

154 Administration Guide: Performance

|
|

SELECT EMPNO, FIRSTNME, LASTNAME, PHONENO
FROM EMPLOYEE
WHERE WORKDEPT IN

(SELECT DEPTNO
FROM DEPARTMENT
WHERE DEPTNAME = 'OPERATIONS')

and convert it to a join query of the form:
SELECT DISTINCT EMPNO, FIRSTNME, LASTNAME, PHONENO

FROM EMPLOYEE EMP,
DEPARTMENT DEPT

WHERE EMP.WORKDEPT = DEPT.DEPTNO
AND DEPT.DEPTNAME = 'OPERATIONS'

A join is generally much more efficient to execute than a subquery.

Example - Redundant Join Elimination
Queries can sometimes be written or generated which have unnecessary joins.
Queries such as the following could also be produced during the query
rewrite stage as described in “Example - View Merges” on page 154.

SELECT E1.EMPNO, E1.FIRSTNME, E1.LASTNAME, E1.EDLEVEL, E2.SALARY
FROM EMPLOYEE E1,

EMPLOYEE E2
WHERE E1.EMPNO = E2.EMPNO

AND E1.EDLEVEL > 17
AND E2.SALARY > 35000

In this query, the SQL compiler can eliminate the join and simplify the query
to:

SELECT EMPNO, FIRSTNME, LASTNAME, EDLEVEL, SALARY
FROM EMPLOYEE
WHERE EDLEVEL > 17

AND SALARY > 35000

Another example assumes that a referential constraint exists between the
EMPLOYEE and DEPARTMENT sample tables on the department number.
First, a view is created.

CREATE VIEW PEPLVIEW
AS SELECT FIRSTNME, LASTNAME, SALARY, DEPTNO, DEPTNAME, MGRNO

FROM EMPLOYEE E DEPARTMENT D
WHERE E.WORKDEPT = D.DEPTNO

Then a query such as the following:
SELECT LASTNAME, SALARY

FROM PEPLVIEW

becomes

Chapter 6. Understanding the SQL Compiler 155

SELECT LASTNAME, SALARY
FROM EMPLOYEE
WHERE WORKDEPT NOT NULL

Note that in this situation, even if the user knows that the query can be
re-written, they may not be able to do so because they do not have access to
the underlying tables. They may only have access to the view (shown above).
Therefore, this type of optimization has to be performed within the database
manager.

Redundancy in referential integrity joins is likely where:
v Views are defined with joins
v Queries are automatically generated.

For example, there are automated tools in query managers which prevent
users from writing optimized queries.

Example - Shared Aggregation
Using multiple functions within a query can generate several calculations
which take time. Reducing the number of calculations to be done within the
query results in an improved plan. The SQL compiler takes a query using
multiple functions such as:

SELECT SUM(SALARY+BONUS+COMM) AS OSUM,
AVG(SALARY+BONUS+COMM) AS OAVG,
COUNT(*) AS OCOUNT

FROM EMPLOYEE;

and transforms the query in the following way:
SELECT OSUM,

OSUM/OCOUNT
OCOUNT

FROM (SELECT SUM(SALARY+BONUS+COMM) AS OSUM,
COUNT(*) AS OCOUNT

FROM EMPLOYEE) AS SHARED_AGG;

This rewrite reduces the query from 2 sums and 2 counts to 1 sum and 1
count.

Operation Movement
The SQL compiler will rewrite queries to move query operations in an
attempt to construct the query with the minimum number of operations and
predicates. The following examples are provided to illustrate some of the
operations that can be moved by the SQL compiler:
v Example - DISTINCT Elimination

During query rewrite, the optimizer can move where the DISTINCT
operation is performed, to reduce the cost of this operation. In the example
provided, the DISTINCT operation is removed completely.

156 Administration Guide: Performance

v Example - General Predicate Pushdown
During query rewrite, the order of applying predicates can be changed so
that more selective predicates are applied to the query as early as possible.

v Example - Decorrelation
In a partitioned database environment, the movement of results sets
between database partitions is costly. Reducing the size of what must be
broadcast to other database partitions and/or the number of broadcasts is
one of the objectives when rewriting queries.

Example - DISTINCT Elimination
If the EMPNO column was defined as the primary key of the EMPLOYEE
table, the following query:

SELECT DISTINCT EMPNO, FIRSTNME, LASTNAME
FROM EMPLOYEE

would be rewritten by removing the DISTINCT clause:
SELECT EMPNO, FIRSTNME, LASTNAME

FROM EMPLOYEE

In the above example, since the primary key is being selected, the SQL
compiler knows that each row returned will already be unique. In this case,
the DISTINCT key word is redundant. If the query was not rewritten, the
optimizer would build a plan with the necessary processing (a sort, for
example) to ensure that the columns are distinct.

Example - General Predicate Pushdown
Altering the level at which a predicate is normally applied can result in
improved performance. For example, given the following view which
provides a list of all employees in department “D11”:

CREATE VIEW D11_EMPLOYEE
(EMPNO, FIRSTNME, LASTNAME, PHONENO, SALARY, BONUS, COMM)
AS SELECT EMPNO, FIRSTNME, LASTNAME, PHONENO, SALARY, BONUS, COMM

FROM EMPLOYEE
WHERE WORKDEPT = 'D11'

And given the following query:
SELECT FIRSTNME, PHONENO

FROM D11_EMPLOYEE
WHERE LASTNAME = 'BROWN'

The query rewrite stage of the compiler will push the predicate LASTNAME =
'BROWN' down into the view D11_EMPLOYEE. This allows the predicate to be
applied sooner and potentially more efficiently. The actual query that could be
executed in this example is:

Chapter 6. Understanding the SQL Compiler 157

|
|
|
|

SELECT FIRSTNME, PHONENO
FROM EMPLOYEE
WHERE LASTNAME = 'BROWN'

AND WORKDEPT = 'D11'

Pushdown of predicates is not limited to views. Other situations in which
predicates may be pushed down include UNIONs, GROUP BYs, and derived
tables (nested table expressions or common table expressions).

Example - Decorrelation
In a partitioned database environment, the SQL compiler can rewrite the
following query:

Find all the employees who are working on programming projects and are
underpaid.

SELECT P.PROJNO, E.EMPNO, E.LASTNAME, E.FIRSTNAME,
E.SALARY+E.BONUS+E.COMM AS COMPENSATION

FROM EMPLOYEE E, PROJECT P
WHERE P.EMPNO = E.EMPNO

AND P.PROJNAME LIKE '%PROGRAMMING%'
AND E.SALARY+E.BONUS+E.COMM <

(SELECT AVG(E1.SALARY+E1.BONUS+E1.COMM)
FROM EMPLOYEE E1, PROJECT P1
WHERE P1.PROJNAME LIKE '%PROGRAMMING%'

AND P1.PROJNO = A.PROJNO
AND E1.EMPNO = P1.EMPNO)

Since this query is correlated, and since both PROJECT and EMPLOYEE are
unlikely to be partitioned on PROJNO, the broadcast of each project to each
database partition is possible. In addition, the subquery would have to be
evaluated many times.

The SQL compiler can rewrite the query as follows:
v Determine the distinct list of employees working on programming projects

and call it DIST_PROJS. It must be distinct to ensure that aggregation is
done once only for each project:

WITH DIST_PROJS(PROJNO, EMPNO) AS
(SELECT DISTINCT PROJNO, EMPNO
FROM PROJECT P1
WHERE P1.PROJNAME LIKE '%PROGRAMMING%')

v Using the distinct list of employees working on the programming projects,
join this to the employee table, to get the average compensation per project,
AVG_PER_PROJ:

AVG_PER_PROJ(PROJNO, AVG_COMP) AS
(SELECT P2.PROJNO, AVG(E1.SALARY+E1.BONUS+E1.COMM)
FROM EMPLOYEE E1, DIST_PROJS P2
WHERE E1.EMPNO = P2.EMPNO
GROUP BY P2.PROJNO)

v Then the new query would be:

158 Administration Guide: Performance

SELECT P.PROJNO, E.EMPNO, E.LASTNAME, E.FIRSTNAME,
E.SALARY+E.BONUS+E.COMM AS COMPENSATION

FROM PROJECT P, EMPLOYEE E, AVG_PER_PROG A
WHERE P.EMPNO = E.EMPNO

AND P.PROJNAME LIKE '%PROGRAMMING%'
AND P.PROJNO = A.PROJNO
AND E.SALARY+E.BONUS+E.COMM < A.AVG_COMP

The rewritten SQL query computes the AVG_COMP per project (AVG_PRE_PROJ)
and can then broadcast the result to all database partitions containing the
EMPLOYEE table.

Predicate Translation
The SQL compiler will rewrite queries to translate existing predicates to more
optimal predicates for the specific query. The following examples are provided
to illustrate some of the predicates that could be translated by the SQL
compiler:
v Example - Addition of Implied Predicates

During query rewrite, predicates can be added to the query to allow the
optimizer to consider additional table joins when selecting the best access
plan for the query.

v Example - OR to IN Transformations
During query rewrite, an OR predicate can be translated into an IN
predicate to allow for a more efficient access plan to be chosen. The SQL
compiler can also translate an IN predicate into an OR predicate if this
transformation would allow a more efficient access plan to be chosen.

Example - Addition of Implied Predicates
The following query produces a list of the managers whose departments
report to “E01” and the projects for which those managers are responsible:

SELECT DEPT.DEPTNAME DEPT.MGRNO, EMP.LASTNAME, PROJ.PROJNAME
FROM DEPARTMENT DEPT,

EMPLOYEE EMP,
PROJECT PROJ

WHERE DEPT.ADMRDEPT = 'E01'
AND DEPT.MGRNO = EMP.EMPNO
AND EMP.EMPNO = PROJ.RESPEMP

The query rewrite will add the following implied predicate:
DEPT.MGRNO = PROJ.RESPEMP

As a result of this rewrite, the optimizer can consider additional joins when it
is trying to select the best access plan for the query.

In addition to the above predicate transitive closure, query rewrite will also
derive additional local predicates based on the transitivity implied by equality
predicates. For example, the following query lists the names of the

Chapter 6. Understanding the SQL Compiler 159

|
|
|

departments whose department number is greater than “E00” and the
employees who work in those departments.

SELECT EMPNO, LASTNAME, FIRSTNAME, DEPTNO, DEPTNAME
FROM EMPLOYEE EMP,

DEPARTMENT DEPT
WHERE EMP.WORKDEPT = DEPT.DEPTNO

AND DEPT.DEPTNO > 'E00'

For this query, the rewrite stage will add the following implied predicate:
EMP.WORKDEPT > 'E00'

As a result of this rewrite, the optimizer reduces the number of rows to be
joined.

Example - OR to IN Transformations
Suppose an OR clause connects two or more simple equality predicates on the
same column, as in the following example:

SELECT *
FROM EMPLOYEE
WHERE DEPTNO = 'D11'

OR DEPTNO = 'D21'
OR DEPTNO = 'E21'

If there is no index on the DEPTNO column, converting the OR clause to the
following IN predicate will allow the query to be processed more efficiently:

SELECT *
FROM EMPLOYEE
WHERE DEPTNO IN ('D11', 'D21', 'E21')

Note: In some cases, the database manager may convert an IN predicate to a
set of OR clauses so that index ORing may be performed. See “Multiple
Index Access” on page 169 for more information about index ORing.

Accounting for Column Correlation

You may have applications which contain queries constructed with joins that
have more than one join predicate joining two tables. While this may sound
complicated, such a situation is not unusual where you are attempting to
determine relationships between similar, related columns between tables.

For example, a manufacturer makes products from raw material of various
colors, elasticities and qualities. The finished product has the same color and
elasticity as the raw material from which it is made. The manufacturer issues
the query:

SELECT PRODUCT.NAME, RAWMATERIAL.QUALITY FROM PRODUCT, RAWMATERIAL
WHERE PRODUCT.COLOR = RAWMATERIAL.COLOR

AND PRODUCT.ELASTICITY = RAWMATERIAL.ELASTICITY

160 Administration Guide: Performance

|
|

|
|
|
|
|

|

|
|
|
|

|
|
|

This query returns the names and raw material quality of all products. There
are two join predicates:

PRODUCT.COLOR = RAWMATERIAL.COLOR
PRODUCT.ELASTICITY = RAWMATERIAL.ELASTICITY

When the DB2 UDB optimizer chooses a plan for executing this query, it
calculates how selective each of the two predicates are, and assumes that they
are independent, that is, that all variations of elasticity occur for each color,
and that conversely for each level of elasticity there is raw material of every
color. It then uses statistics on how many levels of elasticity and how many
different colors there are in each table to calculate the overall selectivity of the
pair of predicates. Based on this it may choose, for example, a nested loop
join in preference to a merge join, or vice versa.

However, it may be that these two predicates are not independent. For
example, it may be that the highly elastic materials are available in only a few
colors, and the very inelastic materials are only available in a few other colors
(different from the elastic ones). Then the combined selectivity of the
predicates is less (eliminates fewer rows) so the query will return more rows.
To see this, imagine the extreme case where there is just one level of elasticity
for each color and vice versa. Now either one of the predicates logically could
be omitted entirely since it is implied by the other. The optimizer’s choice of
plan may no longer be the best, for example it may be that the nested loop
join plan is selected but the merge join would be faster.

With other database products, database administrators have tried to solve this
performance problem by updating statistics in the catalog to try to make one
of the predicates appear to be less selective, but this approach can cause
unwanted side effects on other queries.

DB2 UDB’s optimizer attempts to detect and compensate for correlation of
join predicates if you:
1. Define unique indexes on the correlated columns, that is, on the columns

of a table which appear in the correlated predicates.
2. Do not set the registry variable DB2_CORRELATED_PREDICATES to

“NO”.

In the above example, you could define a unique index covering either:
PRODUCT.COLOR, PRODUCT.ELASTICITY

or
RAWMATERIAL.COLOR, RAWMATERIAL.ELASTICITY

or both.

Chapter 6. Understanding the SQL Compiler 161

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

In order for correlation to be detected, the non-include columns of this index
must be correlated columns, and no other columns. The index may optionally
contain include columns.

In general there may be more than two correlated columns in join predicates
so you should ensure that you define the unique index to cover all of them.

In many cases the correlated columns in one table form its primary key. A
primary key is always unique so if there’s a primary key on the correlated
columns, there’s no need to define another unique index.

After doing this, ensure that statistics on tables are up to date and that they
have not been altered away from the true values for any reason, for example
to attempt to influence the optimizer.

The optimizer will use the FIRSTnKEYCARD and FULLKEYCARD
information of the unique index statistics to detect cases of correlation, and
dynamically adjust combined selectivities of the correlated predicates, thus
obtaining a more accurate estimate of the join size and cost.

In addition to JOIN predicate correlation, the optimizer also accounts for
correlation with simple equal predicates of the type COL = “constant”. For
example, consider a table of different types of cars, each having a MAKE (that
is, a manufacturer), MODEL, STYLE (that is, sedan, station wagon, sports
utility vehicle), YEAR, and COLOR. Predicates on COLOR are likely to be
independent of those on MAKE, MODEL, STYLE, or YEAR, since almost
every manufacturer makes the same standard colors available on each of their
models and styles, year after year. However, the predicates MAKE and
MODEL certainly are not independent since only a single car maker would
make a model with a particular name. Identical model names used by two or
more car makers is very unlikely and certainly not wanted by the car makers.
If an index exists on the two columns MAKE and MODEL, the optimizer will
use the statistics from the index to determine the combined number of distinct
values and adjust the selectivity or cardinality estimation for correlation
between the two columns. For such predicates which are not join predicates,
one need not have a unique index for the optimizer to make the adjustment.

Data Access Concepts and Optimization

When compiling an SQL statement, the SQL optimizer estimates the execution
cost of different ways of satisfying your request. Based on this evaluation, the
optimizer selects what it believes to be the optimal access plan. An access plan
specifies the order of operations required to resolve an SQL statement. When
an application program is bound, a package is created. This package contains

162 Administration Guide: Performance

|
|

access plans for all of the static SQL statements in that application program.
Access plans for dynamic SQL statements are created at the time that the
application is executed.

There are two ways of accessing data in a table: by directly reading the table
(relation scan), or by first accessing an index on that table (index scan).

A relation scan occurs when the database manager sequentially accesses every
row of a table. See “Index Scan Concepts” to learn how an index scan works
and see “Relation Scan versus Index Scan” on page 172 to understand under
what conditions each type of scan is used.

The following topics describe other methods that can also be used in an access
plan to access data in a table, and to produce the results for your query:
v “Predicate Terminology” on page 173
v “Join Concepts” on page 175
v “Join Strategies in a Partitioned Database” on page 185
v “Influence of Sorting on the Optimizer” on page 192.

Other Related Topics:

v “Adjusting the Optimization Class” on page 67, provides information about
controlling the number of alternative access plans evaluated by the SQL
compiler

v “Chapter 7. SQL Explain Facility” on page 213, provides information about
how you can obtain information about the access plan chosen by the SQL
compiler.

Index Scan Concepts
An index scan occurs when the database manager accesses an index to do any
or all of the following:
v Narrow down the set of qualifying rows (by scanning the rows in a certain

range of the index) before accessing the base table. The index scan range (the
start and stop points of the scan) is determined by the values in the query
against which index columns are being compared.

v Order the output.
v Fully retrieve the requested data. If all of the requested data is in the index,

the base table will not be accessed. This is known as an index-only access.

Scans may also be performed on indexes in the direction opposite to that with
which they were defined. Refer to the ALLOW REVERSE SCANS option on
the CREATE INDEX statement in the SQL Reference for more information.

The following additional topics are provided:
v Index Structure

Chapter 6. Understanding the SQL Compiler 163

|
|

v Index Scans to Delimit a Range
v Index Scans to Order Data
v Index-Only Access
v Multiple Index Access
v Clustered Indexes
v Index Page Prefetch.

Index Structure
The database manager uses a B+ tree structure for storing its indexes. A B+
tree has one or more levels, as shown in the following diagram (where RID
means row ID):

The top level is called the root node. The bottom level consists of leaf nodes,
where the actual index key values are stored, as well as a pointer to the actual
row in the table. Levels between the root and leaf node levels are called
intermediate nodes.

In looking for a particular index key value, Index Manager searches the index
tree, starting at the root node. The root contains one key for each node at the
next level. The value of each of these keys is the largest existing key value for
the corresponding node at the next level. For example, if an index has three
levels as shown in Figure 13, then to find an index key value, Index Manager
would search the root node for the first key value greater than or equal to the

‘E ’ ‘Z ’‘N ’

‘F ’ ‘N ’‘L ’

(‘F’,rid) (‘M’,rid)
(‘N’,rid)

(‘G’,rid)
(‘I’,rid)
(‘K’,rid)

ROOT
NODE

INTERMEDIATE
NODES

LEAF
NODES

.

.

.

.

.

.

Figure 13. B+ Tree Structure

164 Administration Guide: Performance

key being looked for. This root node key would point to a specific
intermediate node. The same procedure would be followed with that
intermediate node to determine which leaf node to go to. The final index key
would be found in the leaf node. Using Figure 13 on page 164, the key being
looked for is “I”. The first key in the root node greater than or equal to “I” is
“N”. This points to the middle node at the next level. The first key in that
intermediate node that is greater than or equal to “I” is “L”. This points to a
specific leaf node where the index key for “I” along with its corresponding
row ID(s) are found (the row ID of the corresponding rows in the base table).

Note: At the leaf node level there can be previous leaf pointers. This can be of
great benefit since once finding a particular key value in the index by
traversing the tree, the Index Manager can scan through the leaf nodes
in either direction to retrieve a range of values. This ability to scan in
either direction is only possible if the index was created using the
ALLOW REVERSE SCANS parameter.

Refer to the options on the CREATE INDEX statement in the SQL Reference for
more information.

Index Scans to Delimit a Range
In determining whether an index can be used for a particular query, the
optimizer evaluates each column of the index starting with the first column to
see if it can be used to satisfy:
v Any of the EQUAL predicates in the statement’s WHERE clause
v Any other predicates in the WHERE clause.

A predicate is an element of a search condition in a WHERE clause that
expresses or implies a comparison operation. Predicates that can be used to
delimit the range of an index scan are those involving an index column in
which one of the following is true:
v The index column is being tested for equality against a constant, a host

variable, an expression that evaluates to a constant, or a keyword
v The test against the index column is “IS NULL” or “IS NOT NULL”
v The test is for equality against a basic subquery (that is, one that does not

contain ANY, ALL, or SOME), and the subquery does not have a correlated
column reference to its immediate parent query block (that is, the SELECT
for which this subquery is a subselect).

v The test is an inequality predicate meeting the conditions described below.

For example, given an index with the following definition:
INDEX IX1: NAME ASC,

DEPT ASC,
MGR DESC,
SALARY DESC,
YEARS ASC

Chapter 6. Understanding the SQL Compiler 165

the following predicates could be used in delimiting the range of the scan of
index IX1:

WHERE NAME = :hv1
AND DEPT = :hv2

or
WHERE MGR = :hv1

AND NAME = :hv2
AND DEPT = :hv3

Note that in the second example the WHERE predicates do not have to be
specified in the same order as the key columns appear in the index. And,
although host variables are used in the examples, parameter markers,
expressions, or constants would have the same effect.

A single index created using the ALLOW REVERSE SCANS parameter on the
CREATE INDEX statement can be scanned in a forward or a backward
direction. That is, such indexes support scans in the direction defined when
the index was created and scans in the opposite or reverse direction. The
statement could look something like this:

CREATE INDEX iname ON tname (cname DESC) ALLOW REVERSE SCANS

In this case, the index (iname) is formed based on DESCending values in
cname. By allowing reverse scans, although the index on the column is defined
for scans in descending order, a scan can be done in ascending order. The
actual use of the index in both directions is not controlled by you but by the
optimizer when creating and considering access plans.

In the following WHERE clause, only the predicates for NAME and DEPT
would be used in delimiting the range of the index scan, but not the
predicates for SALARY or YEARS:

WHERE NAME = :hv1
AND DEPT = :hv2
AND SALARY = :hv4
AND YEARS = :hv5

This is because there is a key column (MGR) separating these columns from
the first two index key columns, so the ordering would be off. However, once
the range is determined by the NAME = :hv1 and DEPT = :hv2 predicates, the
remaining predicates can be evaluated against the remaining index key
columns.

In addition to the equality predicates described above, certain inequality
predicates may be used to delimit the range of an index scan. The following
discusses the two types of inequality predicates: strict inequality and inclusive
inequality.

166 Administration Guide: Performance

Strict Inequality Predicates: The strict inequality operators which can be used
for range delimiting predicates are > and <.

For delimiting a range for an index scan, only one column with strict
inequality predicates will be considered. In the following example, the
predicates on the NAME and DEPT columns can be used to delimit the range,
but the predicate on the MGR column cannot be used.

WHERE NAME = :hv1
AND DEPT > :hv2
AND DEPT < :hv3
AND MGR < :hv4

Inclusive Inequality Predicates: The following are inclusive inequality
operators which can be used for range delimiting predicates:
v >= and <=
v BETWEEN
v LIKE

For delimiting a range for an index scan, multiple columns with inclusive
inequality predicates will be considered. In the following example, all of the
predicates can be used to delimit the range of the index scan:

WHERE NAME = :hv1
AND DEPT >= :hv2
AND DEPT <= :hv3
AND MGR <= :hv4

To further illustrate this example, suppose that :hv2 = 404, :hv3 = 406, and
:hv4 = 12345. The database manager will scan the index for all of
departments 404 and 405, but it will stop scanning department 406 when it
reaches the first manager that has an employee number (MGR column)
greater than 12345.

For additional information, see “Range Delimiting and Index SARGable
Predicates” on page 173.

Index Scans to Order Data
If the query involves ordering, an index can be used to order the data if the
ordering columns appear consecutively in the index, starting from the first
index key column. (Ordering or sorting can result from operations such as
ORDER BY, DISTINCT, GROUP BY, “= ANY” subquery, “> ALL” subquery,
“< ALL” subquery, INTERSECT or EXCEPT, UNION.) An exception to this is
when the index key columns are compared for equality against “constant
values” (that is, any expression that evaluates to a constant). In this case the
ordering column can be other than the first index key columns. For example,
in the query:

Chapter 6. Understanding the SQL Compiler 167

WHERE NAME = 'JONES'
AND DEPT = 'D93'

ORDER BY MGR

the index could be used to order the rows since NAME and DEPT will always
be the same values and will thus be ordered. Another way of saying this is
that the preceding WHERE and ORDER BY clauses are equivalent to:

WHERE NAME = 'JONES'
AND DEPT = 'D93'

ORDER BY NAME, DEPT, MGR

A unique index can also be used to truncate an order requirement. For
example, given the following index definition and order by clause:

UNIQUE INDEX IX0: PROJNO ASC
SELECT PROJNO, PROJNAME, DEPTNO

FROM PROJECT
ORDER BY PROJNO, PROJNAME

additional ordering on the PROJNAME column is not required since the IX0
index ensures that PROJNO is unique. This uniqueness ensures that there is
only one PROJNAME value for each PROJNO value.

Index-Only Access
In some cases, all of the required data can be retrieved from the index without
accessing the table. This is known as an index-only access.

To illustrate an index-only access, consider the following index definition:
INDEX IX1: NAME ASC,

DEPT ASC,
MGR DESC,
SALARY DESC,
YEARS ASC

and the following query can be satisfied by accessing only the index, and
without reading the base table:

SELECT NAME, DEPT, MGR, SALARY
FROM EMPLOYEE
WHERE NAME = 'SMITH'

In other cases, there may be columns that do not appear in the index. To
obtain the data for these columns, rows of the base table must be read. For
example, given the IX1 index, the following query needs to access the base
table to obtain the PHONENO and HIREDATE column data:

SELECT NAME, DEPT, MGR, SALARY, PHONENO, HIREDATE
FROM EMPLOYEE
WHERE NAME = 'SMITH'

168 Administration Guide: Performance

By creating a unique index with include columns, you can improve the
performance of data retrieval by increasing the number of access attempts
based solely on indexes.

To illustrate the use of include columns, consider the following index
definition:

CREATE UNIQUE INDEX IX1 ON EMPLOYEE
(NAME ASC)
INCLUDE (DEPT, MGR, SALARY, YEARS)

This creates a unique index which enforces uniqueness of the NAME column
yet stores and maintains data for DEPT, MGR, SALARY, and YEARS columns.

The following query can be satisfied by accessing only the index and without
reading the base table:

SELECT NAME, DEPT, MGR, SALARY
FROM EMPLOYEE
WHERE NAME='SMITH'

Multiple Index Access
In all of the above examples, a single index scan was performed to produce
the results. To satisfy the predicates of a WHERE clause, the optimizer can
choose to scan multiple indexes. For example, given the following two index
definitions:

INDEX IX2: DEPT ASC
INDEX IX3: JOB ASC,

YEARS ASC

the following predicates could be resolved using these two indexes:
WHERE DEPT = :hv1

OR (JOB = :hv2
AND YEARS >= :hv3)

In this example, scanning index IX2 will produce a list of row IDs (RIDs) that
satisfy the DEPT = :hv1 predicate. Scanning index IX3 will produce a list of
RIDs satisfying the JOB = :hv2 AND YEARS >= :hv3 predicate. These two lists
of RIDs can be combined and duplicates removed before accessing the table.
This is known as index ORing.

Index ORing may also be used for predicates using the IN expression, as in
the following example:

WHERE DEPT IN (:hv1, :hv2, :hv3)

The objective of index ORing is to eliminate duplicate RIDs; however, the
objective of index ANDing is to find common RIDs. Index ANDing may occur
with applications where there are multiple indexes on corresponding columns
within the same table and a query using multiple AND predicates is run

Chapter 6. Understanding the SQL Compiler 169

against that table. Multiple index scans against each indexed column in such a
query produce values which are hashed to create bitmaps. The second bitmap
is used to probe the first bitmap to generate the qualifying rows that are
fetched to create the final returned data set.

For example, given the following two index definitions:
INDEX IX4: SALARY ASC
INDEX IX5: COMM ASC

the following predicates could be resolved using these two indexes:
WHERE SALARY BETWEEN 20000 AND 30000

AND COMM BETWEEN 1000 AND 3000

In this example, scanning index IX4 produces a bitmap satisfying the SALARY
BETWEEN 20000 AND 30000 predicate. Scanning IX5 and probing the bitmap for
IX4 results in the list of qualifying RIDs that satisfy both predicates. This is
known as “dynamic bitmap ANDing”. It occurs only if the table has sufficient
cardinality and the columns have sufficient values in the qualifying range, or
sufficient duplication if equality predicates are used.

To realize the performance benefits of dynamic bitmaps when scanning
multiple indexes, it may be necessary to change the value of the sort heap size
(sortheap) database configuration parameter, and the sort heap threshold
(sheapthres) database manager configuration parameter.

Additional sort heap space is required when dynamic bitmaps are used in
access plans. When sheapthres is set to be relatively close to sortheap (that is,
less than a factor of two or three times per concurrent query), dynamic
bitmaps with multiple index access must work with much less memory than
the optimizer anticipated.

The solution is to increase the value of sheapthres relative to sortheap.

Note: In the accessing of any single table, DB2 does not combine index
ANDing and index ORing.

Clustered Indexes

When selecting the access plan, the optimizer considers the I/O cost of
fetching pages from disk to the buffer pool. In its calculations, the optimizer
will estimate the number of I/Os required to satisfy a query. This estimate
includes a prediction of buffer pool usage, since additional I/Os are not
required to read rows in a page that is already in the buffer pool.

170 Administration Guide: Performance

|
|
|
|

|
|
|
|
|

|

For index scans, the optimizer uses information from the system catalog tables
(SYSCAT.INDEXES) to help estimate I/O cost of reading data pages into the
buffer pool. The following columns from the SYSCAT.INDEXES table are
used:
v CLUSTERRATIO indicating the degree to which the table data in relation to

this index is clustered. A higher number means that the rows are ordered
on the data pages in index key sequence. Therefore, all of the rows on a
data page can be read while the page is in buffer. If the value of this
column is -1, the optimizer will attempt to use PAGE_FETCH_PAIRS and
CLUSTERFACTOR.
or

v PAGE_FETCH_PAIRS containing several pairs of numbers which model the
number of I/Os required to read the data pages into buffer pools of various
sizes together with CLUSTERFACTOR. When collecting statistics for an
index, this information is considered a detailed statistic.

If statistics are not available, the optimizer will use default values for the
statistics, which assume poor clustering of the data to the index. See also
“Chapter 5. System Catalog Statistics” on page 113 and “Collecting Statistics
Using the RUNSTATS Utility” on page 114.

You can specify a clustering index that will be used both to cluster the rows
during a table reorganization and to preserve this characteristic during insert
processing. (See “Reorganizing Catalogs and User Tables” on page 265 for
information about table reorganization.) Subsequent updates and inserts may
make the index less well clustered (as measured by the statistics gathered by
RUNSTATS), so you may need to periodically reorganize the table. To reduce
the frequency of reorganization on a table that has frequent changes due to
INSERTs, UPDATEs, and DELETES, use the PCTFREE parameter when
altering a table. This will allow for additional inserts to be clustered with the
existing data.

The degree to which the data is clustered with respect to the index can have a
significant impact on performance and you should try to keep one of the
indexes on the table close to 100 percent clustered.

In general, only one index can be one hundred percent clustered, except in
those cases where the keys are a superset of the keys of the clustering index;
or, where there is de facto correlation between the key columns of the two
indexes.

See “Performance Tips for Administering Indexes” on page 103 for more
information on performance reasons to use clustering indexes. Refer to the
SQL Reference, CREATE INDEX, for more information on how to create a
clustering index.

Chapter 6. Understanding the SQL Compiler 171

|
|
|
|
|
|
|
|
|
|

Clustering Page Reads Using List Prefetch: If the optimizer uses an index to
access rows, it can defer reading the data pages until all the RIDs (row
identifiers) have been obtained from the index. For example, given the
previously defined index IX1:

INDEX IX1: NAME ASC,
DEPT ASC,
MGR DESC,
SALARY DESC,
YEARS ASC

and the following search criteria:
WHERE NAME BETWEEN 'A' and 'I'

the optimizer could perform an index scan on IX1 to determine the rows (and
data pages) to retrieve. If the data was not clustered according to this index,
list prefetch will include a step to sort the list of RIDs obtained from the index
scan. See “Understanding List Prefetching” on page 257 for more information.

Index Page Prefetch
When appropriate, the database manager detects sequential access to index
pages and will generate prefetch requests. This will significantly reduce the
elapsed time for nonselective index scans, and selective index scans accessing
a significant portion of the index.

The optimizer uses index statistics such as DENSITY and
SEQUENTIAL_PAGES, the characteristics of the table spaces in which the
index resides, and the effect of any range delimiting predicates, to estimate
the amount of index page prefetch that will occur. These estimates are
factored into the overall cost estimate for using a particular index.

See “Understanding Sequential Prefetching” on page 256 for more information.

Relation Scan versus Index Scan
The optimizer will choose a relation scan when an index cannot be used for
the query, or if the optimizer determines that an index scan would be more
costly. An index scan could be more costly when:
v The table is small
v Index clustering is low
v Most of the table is accessed.

You may use the SQL Explain facilities to determine whether your access plan
uses a relation scan or an index scan. See “Chapter 7. SQL Explain Facility” on
page 213.

172 Administration Guide: Performance

Predicate Terminology
A user application requests a set of rows from the database with an SQL
statement, qualifying the specific rows desired through the use of predicates.
When the optimizer decides how to evaluate an SQL statement, each predicate
falls into one of four categories. The category is determined by how and when
that predicate is used in the evaluation process. These categories are listed
below, ordered in terms of performance from best to worst:
1. Range delimiting predicates
2. Index SARGable predicates
3. Data SARGable predicates
4. Residual predicates.

SARGable refers to something that can be used as a search argument.

“Summary of Predicate Usage” on page 174 provides a comparison of the
characteristics that affect the performance of the various predicate categories.

Range Delimiting and Index SARGable Predicates
Range delimiting predicates are those used to limit the scope of an index scan.
They provide start and/or stop key values for the index search. Index
SARGable predicates are not used to limit the scope of a search, but can be
evaluated from the index because the columns involved in the predicate are
part of the index key. For example, given the previously defined index IX1 (in
the section “Index Scan Concepts” on page 163) and the following WHERE
clause:

WHERE NAME = :hv1
AND DEPT = :hv2
AND YEARS > :hv5

the first two predicates (NAME = :hv1, DEPT = :hv2) would be range
delimiting predicates, while YEARS > :hv5 would be an index SARGable
predicate.

The database manager will make use of the index data in evaluating these
predicates rather than reading the base table. These index SARGable predicates
reduce the number of data pages accessed by reducing the set of rows that
need to be read from the table. These types of predicates do not affect the
number of index pages that are accessed.

Data SARGable Predicates
Predicates that cannot be evaluated by Index Manager, but can be evaluated
by Data Management Services are called data SARGable predicates. Typically,
these predicates require the access of individual rows from a base table. If
required, Data Management Services will retrieve the columns needed to

Chapter 6. Understanding the SQL Compiler 173

|
|
|
|
|
|
|

|
|
|

|

evaluate the predicate, as well as any others to satisfy the columns in the
SELECT list that could not be obtained from the index.

For example, given a single index defined on the PROJECT table:
INDEX IX0: PROJNO ASC

And given the following query, the DEPTNO = 'D11' predicate is considered to
be data SARGable.

SELECT PROJNO, PROJNAME, RESPEMP
FROM PROJECT
WHERE DEPTNO = 'D11'
ORDER BY PROJNO

Residual Predicates
Residual predicates, typically, are those that require I/O beyond the simple
accessing of a base table. Examples of residual predicates include those using
correlated subqueries, using quantified subqueries (subqueries with ANY,
ALL, SOME, or IN), or reading LONG VARCHAR or LOB data (stored in a
file separate from the table). These predicates are evaluated by Relational Data
Services.

Sometimes predicates, which are applied to the index only, have to be
reapplied when the data page is accessed. For example, access plans using
index ORing or index ANDing, (see “Multiple Index Access” on page 169),
always reapply the predicates as residual predicates, when the data page is
accessed.

Summary of Predicate Usage
The use of predicates in a query can help to reduce the amount of data read
to satisfy the query. Different categories of predicates have different impacts
on the performance of a query and these impacts are considered by the
optimizer. The following table shows the ranking of the different types of
predicates and how each type of predicate can influence performance.

Table 14. Summary of Predicate Type Characteristics

Characteristic Predicate Type

Range
Delimiting

Index
SARGable

Data
SARGable

Residual

Reduce index
I/O

Yes No No No

Reduce data
page I/O

Yes Yes No No

Reduce number
of rows passed
internally

Yes Yes Yes No

174 Administration Guide: Performance

Table 14. Summary of Predicate Type Characteristics (continued)

Characteristic Predicate Type

Range
Delimiting

Index
SARGable

Data
SARGable

Residual

Reduce number
of qualifying
rows

Yes Yes Yes Yes

Join Concepts
A join is where rows from one table are concatenated to rows of one or more
other tables. For example, given the following two tables:

TABLE1 TABLE2
----------------- -----------------
PROJ PROJ_ID PROJ_ID NAME
------ ------- ------- ------

A 1 1 Sam
B 2 3 Joe
C 3 4 Mary
D 4 1 Sue

2 Mike

Joining Table1 and Table2 where the ID columns are equal would be
represented by the following SQL statement:

SELECT PROJ, x.PROJ_ID, NAME
FROM TABLE1 x, TABLE2 y
WHERE x.PROJ_ID = y.PROJ_ID

and would yield the following set of result rows:
PROJ PROJ_ID NAME
------ ------- ------

A 1 Sam
A 1 Sue
B 2 Mike
C 3 Joe
D 4 Mary

When joining two tables, one table is selected as the outer table and the other
as the inner. The outer table is accessed first and is only scanned once.
Whether the inner table is scanned multiple times depends on the type of join
and which indexes are present. Whether your query joins two tables or more
than two tables, the optimizer will only join two tables at a time. If needed,
temporary, intermediary results tables will be created.

The optimizer will choose one of the two join methods (nested loop join or
merge join) depending on the existence of a join predicate (defined in “Merge
Join” on page 177), as well as various costs involved as determined by table
and index statistics.

Chapter 6. Understanding the SQL Compiler 175

Nested Loop Join
A nested loop join is performed in one of two ways:
1. By scanning through the inner table for each accessed row of the outer

table
For example, if column A in tables T1 and T2 has the following values:

Outer Table T1: column A Inner Table T2: column A
------------------------ ------------------------

2 3
3 2
3 2

3
1

The steps for doing the nested loop:
v Read the first row from T1. The value for A is “2”
v Scan T2 until a match (“2”) is found, and then join the two rows
v Scan T2 until the next match (“2”) is found, and then join the two rows
v Scan T2 to the end of the table
v Go back to T1 and read the next row (“3”)
v Scan T2, starting at the first row, until a match (“3”) is found, and then

join the two rows
v Scan T2 until the next match (“3”) is found, and then join the two rows
v Scan T2 to the end of the table
v Go back to T1 and read the next row (“3”)
v Scan T2 as before, joining all rows which match (“3”).

2. By doing an index lookup on the inner table for each accessed row of the
outer table.
This method can be used for the specified predicates if there is a predicate
of the following form:

expr(outer_table.column) relop inner_table.column

where relop is a relative operator (for example =, >, >=, <, or <=) and
expr is a valid expression on the outer table. The following are examples:

OUTER.C1 + OUTER.C2 <= INNER.C1

and
OUTER.C4 < INNER.C3

This method could be a way to significantly reduce the number of rows
accessed in the inner table for each access of the outer table (although it
depends on a number of factors, including the selectivity of the join
predicate).

176 Administration Guide: Performance

When evaluating a nested loop join, the optimizer will also determine
whether or not to sort the outer table before performing the join. By ordering
the outer table, based on the join columns, the number of read operations to
access pages from disk for the inner table may be reduced, since it is more
likely they will already be in the buffer pool. If the join uses a highly
clustered index to access the inner table, the number of index pages accessed
may be minimized if the outer table has been sorted.

In addition, the optimizer may also choose to perform the sort before the join,
if it expects that the join will make a later sort more expensive. A later sort
could be required to support a GROUP BY, DISTINCT, ORDER BY or merge
join.

Merge Join
Merge join (sometimes known as merge scan join or sort merge join) requires
a predicate of the form table1.column = table2.column. This is called an
equality join predicate. Merge join requires ordered input on the joining
columns, either through index access or by sorting. In order for a merge join
to be used, the join column cannot be a LONG field column or a large object
(LOB) column.

The joined tables are scanned simultaneously. The outer table of the merge
join is scanned just once. The inner table is also scanned once unless there are
repeated values in the outer table. If there are repeated values in the outer
table, a group of rows in the inner table may be scanned again. For example,
if column A in tables T1 and T2 has the following values:

Outer Table T1: column A Inner Table T2: column A
------------------------ ------------------------

2 1
3 2
3 2

3
3

The steps for doing the merge join are:
v Read the first row from T1. The value for A is “2”
v Scan T2 until a match is found, and then join the two rows
v Keep scanning T2 while the columns match, joining rows.
v When the “3” in T2 is read, go back to T1 and read the next row
v The next value in T1 is “3”, which matches T2, so join the rows
v Keep scanning T2 while the columns match, joining rows
v The end of T2 is reached
v Go back to T1 to get the next row — note that the next value in T1 is the

same as the previous value from T1, so T2 is scanned again starting at the
first “3” in T2 (the database manager remembers this position).

Chapter 6. Understanding the SQL Compiler 177

Hash Join
Hash join requires one or more predicates of the form table1.columnX =
table2.columnY, and for which the column types are the same. For columns of
type CHAR, the length must be the same. For columns of type DECIMAL, the
precision and scale must be the same. The column type cannot be a LONG
field column, or a large object (LOB) column.

First, one table (called the INNER table) is scanned and the rows copied into
memory buffers drawn from the sort heap allocation (see the database
configuration parameter “Sort Heap Size (sortheap)” on page 360). The
memory buffers are divided into partitions based on a “hash code” computed
from the column(s) of the join predicate(s). If the size of the first table exceeds
the available sort heap space, buffers from selected partitions are written to
temporary tables. After finishing the processing of the INNER table, the
second table (called the OUTER table) is scanned. Rows of the OUTER table
are matched to rows from the INNER table by first comparing a “hash code”
generated from the columns of the join predicate(s). Then, if the “hash code”
of the OUTER row matches the “hash code” of the INNER row, the actual join
predicate columns are compared.

OUTER table rows corresponding to partitions not written to a temporary
table are matched immediately with INNER table rows in memory. Otherwise,
if the corresponding INNER table partition was written to a temporary table,
the OUTER row is also written to a temporary table. Finally, matching pairs of
partitions from temporary tables are read and the “hash codes” of their rows
are matched and join predicates checked.

To realize the performance benefits of hash join, it may be necessary to change
the value of the sortheap database configuration parameter, and the sheapthres
database manager configuration parameter.

For decision support queries, hash join access plans use more sort heap space
than do non-hash join plans. When sheapthres is set to be relatively close to
sortheap (that is, less than a factor of two or three per concurrent query), a
hash join runs with much less memory than the optimizer anticipated. When
executing with limited memory, hash joins can be very slow. The problem
occurs in queries having multiple sorts and hash joins, in which the sorts or
hash joins acquire most of the available memory.

The solution is to configure sheapthres to be large enough (relative to sortheap).

Outer Versus Inner Determination
When joining, how are the inner and outer tables determined? The following
are general guidelines for how the optimizer decides which table will be the
inner and which will be the outer.

178 Administration Guide: Performance

|
|
|
|
|
|
|
|
|
|
|
|

In the case of a hash join, the inner table is kept in memory buffers. If there
are too few memory buffers, then the hash join is obliged to spill. The
optimizer attempts to avoid this and so will pick the smaller of the two tables
as the inner table, and the larger one as the outer table.

The order in which the tables are accessed is particularly important for a
nested loop join because the outer table is accessed once but the inner table is
accessed once for each row of the outer table. The optimizer chooses the outer
and inner tables based on cost estimates. These cost estimates are influenced
by the following factors:
v Size

The smaller table is often chosen to be the outer table to reduce the number
of times the inner table must be re-accessed. However, prefetch can cause
just the opposite to be true. Prefetching can reduce the cost of accessing a
large table substantially. However, usually prefetching is only effective for
the outer table of a join. Therefore, the larger table may be accessed first.
See “Prefetching Data into the Buffer Pool” on page 255 for more
information.

v Predicates
A table is more likely to be chosen as the outer table if selective predicates
can be applied to it because the inner table is only accessed for rows which
satisfy the predicates applied to the outer table.

v Buffering
If the entire inner table must be scanned for each row of the outer table
(that is, an index lookup cannot be performed on the inner table), the
smaller of the two tables may be chosen as the inner table to take
advantage of buffering. This will be influenced by table size and buffer pool
size. Note that since join decisions are influenced by buffer pool size, the
access plan for your applications may change, if you rebind your
applications to the database, after changing the buffer pool size.
Your ability to create more than one buffer pool, and change the size of that
buffer pool, and control the table spaces that use that buffer pool, can affect
when buffering is used within inner and outer tables.

v Indexes
If it is possible to do an index lookup on one of the tables, then that table is
a good candidate to use as the inner table. It could then be accessed with
an index key lookup using the outer table’s join key predicate as one of the
key values. If a table does not have an index, it would not be a good
candidate for the inner table since in that case the entire inner table would
have to be scanned for every row of the outer table.

v Order requirements
The table associated with a required order might be assessed first. For
example, if the output of the join between t1 and t2 was to be ordered on

Chapter 6. Understanding the SQL Compiler 179

t1.c, accessing t1 as the outer with an index on t1.c might be a good choice.
The output of the join would be ordered and no sort would be required.

SELECT * FROM t1, t2
WHERE t1.a = t2.b
ORDER BY t1.c

The order in which the tables are accessed is somewhat less important for a
merge join because both the inner and outer tables are read only once.
However, portions of the inner table which correspond to duplicate join
values in the outer are kept in an in-memory buffer. The buffer is reread if the
next outer row is the same as the previous outer row, otherwise the buffer is
reset. If the number of duplicate join values exceeds the capacity of the
in-memory buffer, not all of the duplicates are kept. This will only happen
when the duplication on any value is large and the value has a matching
value in the outer table.

With all of these considerations for duplicate values, in most cases it is the
table with fewer duplicates that will be chosen as the outer table in a join.
Ultimately, however, the optimizer chooses the outer and inner tables based
on detailed cost estimates.

Search Strategies for Selecting Optimal Join
The optimizer can determine optimal join methods using different search
strategies. The search strategy that will be used is determined by the
optimization class in use (see “Adjusting the Optimization Class” on page 67).
The search strategies and their characteristics are:
v Greedy join enumeration

– Efficient with respect to space and time
– Single direction enumeration; that is, once a join method is selected for

two tables, it will not be changed during further optimization
– May miss best access plan when joining many tables. If your query only

joins two or three tables, the access plan chosen by the greedy join
enumeration will be the same as the access plan chosen by dynamic
programming join enumeration. This is particularly true if the query has
many join predicates (either explicitly specified, or implicitly generated
through predicate transitive closure) on the same column.

v Dynamic programming join enumeration
– Space and time requirements grow exponentially larger as the number of

tables being joined increases
– Efficient and exhaustive search for best access plan
– Similar to strategy used by DB2 for OS/390.

The join enumeration algorithm is a key determinant of the number of plan
combinations that are explored by the optimizer.

180 Administration Guide: Performance

Search Strategies for Star Join
In general, the tables referenced in a query should be connected by join
predicates. If two tables are joined without the presence of a join predicate,
the Cartesian product of the two tables is formed. That is, every qualifying
row of the first table is joined with every qualifying row of the second,
creating a result table consisting of the cross product of the size of the two
tables that is typically very large. Since such a plan is unlikely to perform
very well, the optimizer avoids even determining the cost of such an access
plan. The only exception to this occurs when the optimization class is set to 9,
or the following special case for “Star Schemas”. For more information, see
“Adjusting the Optimization Class” on page 67.

The cases where access plans involving Cartesian products perform well are
usually large decision support databases designed with the Star Schema
technique. The star schema is a database design in which the bulk of the raw
data is kept in a single large table with many columns and is commonly
known as a “fact” table. Many of the columns contain encoded values that
characterize the dimensions of the particular datum stored in the fact table. In
order to allow easy analysis of some subset of the facts, dimension tables are
used to decode the encoded values. A typical query would consist of multiple
local predicates referencing decoded values in the dimension tables and
would contain join predicates connecting the dimension tables to the fact
table. For these kinds of queries it may be beneficial to perform the Cartesian
product of multiple small dimension tables before accessing the large fact
table. This technique is beneficial when multiple join predicates match a
multi-column index.

DB2 has the ability to recognize queries against databases designed with star
schemas having at least two dimension tables, and to increase the search
space to include potential plans that involve forming the Cartesian product of
dimension tables. If the plan involving the Cartesian products has the lowest
estimated cost, it will be selected by the optimizer.

The Star Schema technique discussed above assumed that primary key
indexes were used in the join. Another scenario could involve foreign key
indexes. Given that the foreign key columns in the fact table are
single-column indexes and that there is a relatively high selectivity across all
dimension tables, the following Star Join technique can be used:
1. Each dimension table is processed by:

v Performing a semi-join between the dimension table and the foreign key
index on the fact table

v Hashing the row ID (RID) values to dynamically create a bitmap.
2. Each bitmap is used with AND predicates against the previous bitmap (see

“Multiple Index Access” on page 169).
3. Determine the surviving RIDs after processing the last bitmap.

Chapter 6. Understanding the SQL Compiler 181

|
|

4. Optionally sort these RIDs.
5. Fetch a base table row.
6. Re-join the fact table with each of its dimension tables, accessing the

dimension tables’ columns that are needed for the SELECT clause.
7. Reapply the predicates (residual predicates).

Using this technique, there is no requirement to have multi-column indexes.
Explicit referential integrity constraints between the fact table and the
dimension tables are not required for this technique to be chosen, although
the relationship between the fact table and the dimension tables should have
this characteristic.

The dynamic bitmaps created and used as part of the Star Join technique uses
sort heap memory. See Chapter 13, ″Configuring DB2″ in the Administration
Guide: Performance manual for more information on the Sort Heap Size
(sortheap) database configuration parameter.

Composite Tables
Another important parameter determines the shape of the sequence of joins in
a query. The result of joining a pair of tables is a new table known as a
composite. Typically, this resulting composite table becomes the outer table of
a join with another inner table. This is known as a “composite outer”. In some
situations, particularly when using the greedy join enumeration technique, it
is useful to take the result of joining two tables and make that the inner table
of a later join. When the inner table of a join itself consists of the result of
joining two or more tables, this plan is said to contain a “composite inner”.
For example, in the following query:
SELECT COUNT(*)
FROM T1, T2, T3, T4
WHERE T1.A = T2.A AND

T3.A = T4.A AND
T2.Z = T3.Z

it may be beneficial to join table T1 and T2 (T1xT2), then join T3 to T4 (
T3xT4) and finally select the first join result as the outer and the second join
result as the inner. In the final plan ((T1xT2) x (T3xT4)) the join result
(T3xT4) is known as a composite inner. Depending on the query optimization
class, the optimizer places different constraints on the maximum number of
tables that may be the inner table of a join. Composite inners are allowed with
optimization classes 5, 7, and 9.

Replicated Summary Tables
By using replicated summary tables in a partitioned database environment,
you can improve performance by having the database manage pre-computed

182 Administration Guide: Performance

|
|

|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

values of the base table data. For example, the query below would benefit
from creating the replicated summary table below. The following assumptions
are made:
v The SALES table is in the multipartition table space REGIONTABLESPACE,

and is partitioned on the REGION column.
v The EMPLOYEE and DEPARTMENT tables are in a single-partition

nodegroup.

You then create a replicated summary table based on the information in the
EMPLOYEE table.

CREATE TABLE R_EMPLOYEE
AS (

SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT
FROM EMPLOYEE
)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE
IN REGIONTABLESPACE
REPLICATED;

Once created, the replicated summary table has its content updated by
running this statement:

REFRESH TABLE R_EMPLOYEE;

The following example calculates sales by employee, the total for the
department, and the grand total:

SELECT d.mgrno, e.empno, SUM(s.sales)
FROM department AS d, employee AS e, sales AS s
WHERE s.sales_person = e.lastname

AND e.workdept = d.deptno
GROUP BY ROLLUP(d.mgrno, e.empno)
ORDER BY d.mgrno, e.empno;

Instead of using the EMPLOYEE table, which is on only one database
partition, the database manager will use the R_EMPLOYEE table, which is
replicated on each of the database partitions that the SALES tables is on. The
performance enhancement occurs because the employee information does not
have to be moved across the network to each database partition to calculate
the join.

Replicated summary tables can be used to assist in the collocation of joins. For
example, if you had a star schema where there is a large fact table spread
across twenty nodes, then the joins between the fact table and the dimension
tables are most efficient if these tables are collocated.

By placing all of the tables in the same nodegroup, at most there would one
dimension table partitioned correctly for a collocated join. All other dimension

Chapter 6. Understanding the SQL Compiler 183

|
|
|
|

|
|

tables would not be able to be used in a collocated join because the join
column(s) on the fact table would not correspond to the fact table’s
partitioning key.

For example, you could have a table called FACT (C1, C2, C3, ...) partitioned
on C1; and a table called DIM1 (C1, dim1a, dim1b, ...) partitioned on C1; and
a table called DIM2 (C2, dim2a, dim2b, ...) partitioned on C2; and so on.

From this example, you could see that the join between FACT and DIM1 is
perfect because the predicate DIM1.C1 = FACT.C1 would be collocated. Both
of these tables are partitioned on column C1.

The join between DIM2 with the predicate WHERE DIM2.C2 = FACT.C2
cannot be collocated because FACT is partitioned on column C1 and not on
column C2.

In this case, it would be good to replicate DIM2 in the fact table’s nodegroup.
In this way we can do the join locally on each partition.

Note: The replicated summary tables discussion here has to do with
intra-database replication. Inter-database replication has to do with
subscriptions, control tables, and data located in different databases and
on different operating systems. If you are interested in inter-database
replication refer to the Replication Guide and Reference for more
information.

When creating a replicated summary table, the source table could be a
single-node nodegroup table or a multi-node nodegroup table. In most cases,
the table is small and can be placed in a single-node nodegroup. You may
place a limit on the data to be replicated by specifying only a subset of the
columns from the table, or by limiting the number of rows through the
predicates used, or by using both methods when creating the replicated
summary table.

Note: The data capture option is not required for replicated summary tables
to function.

The replicated summary table could also be created in a multi-node
nodegroup. The nodegroup is the same as the nodegroup in which you have
placed your large tables. In this case, copies of the source table are created on
all of the partitions of the nodegroup. Joins between a large fact table and the
dimension tables have a better chance of being done locally in this
environment rather than having to broadcast the source table to all partitions.

Indexes on replicated tables are not created automatically. Indexes are created
and may be different from those identified in the source table.

184 Administration Guide: Performance

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|

Note: You cannot create unique indexes (or put on any constraints) on the
replicated tables. This will prevent constraint violations that are not
present on the source tables. These constraints are disallowed even if
there is the same constraint on the source table.

After using the REFRESH statement, you should run RUNSTATS on the
replicated table as you would any other table.

The replicated tables can be referenced directly within a query. However, you
cannot use the NODENUMBER() predicate with a replicated table to see the
table data on a particular partition.

To see if a created replicated summary table was used (given a query that
referenced the source table), you can use the EXPLAIN facility. First, you
would ensure the EXPLAIN tables existed. Then, you would create an explain
plan for the SELECT statement you are interested in. Finally, you would use
db2exfmt utility to format the EXPLAIN output.

The access plan chosen by the optimizer may or may not use the replicated
summary table depending on the information that needs to be joined. Not
using the replicated summary table could occur if the optimizer determined
that it would be cheaper to broadcast the original source table to the other
partitions in the nodegroup.

Join Strategies in a Partitioned Database
The following sections describe the join strategies that are possible in a
partitioned database environment. The DB2 optimizer automatically selects
the best join strategy depending on the requirements of each application. The
join strategies are presented here to help you understand what is happening
in each strategy. A “table queue” is a mechanism for transferring rows
between database partitions, or between processors in a single partition
database.

In the descriptions that follow, a directed table queue is one whose rows are
hashed to one of the receiving database partitions. A broadcast table queue is
one whose rows are sent to all of the receiving database partitions (that is, it
is not hashed). In the diagrams for this section q1, q2, and q3 refer to table
queues in the examples. Also the tables that are referenced are divided across
two database partitions for the purpose of these scenarios. The arrows
indicate the direction in which the table queues are sent. The coordinator
node is partition 0.

One consideration for those tables involved in frequent joins in a partitioned
database is that of table collocation. Table collocation provides the means in a
partitioned database to locate data from one table with the data from another
table at the same partition based on the same partitioning key. Once

Chapter 6. Understanding the SQL Compiler 185

|
|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

collocated, data to be joined can participate in a query without having to be
moved to another database partition as part of the query activity. Only the
answer set for the join is moved to the coordinator node. Refer to “Table
Collocation” in the Administration Guide: Planning for more information on this
subject.

For information on join dependencies, refer to the SQL Reference manual.

Collocated Joins
For the optimizer to consider a collocated join, the joined tables must be
collocated, and all pairs of the corresponding partitioning key must
participate in the equality join predicates. An example is shown in Figure 14.

Note: Replicated summary tables enhance the likelihood of collocated joins.
See “Replicated Summary Tables” on page 182 for more information.

Broadcast Outer-Table Joins
This parallel join strategy can be used if there are no equality join predicates
between the joined tables. It can also be used in other situations in which it is
the most cost-effective join method. Typically, this would occur when there is
one very large table and one very small table, neither of which is partitioned

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

RESULTS

Both the LINEITEM and ORDERS tables are partitioned on the

ORDERKEY column. The join is done locally at each database partition.

In this example, the join predicate is assumed to be:

ORDERS.ORDERKEY = LINEITEM.ORDERKEY.

• Scan
ORDERS

• Apply
predicates

• Scan
LINEITEM

• Apply
predicates

• Join
• Insert into q1

• Scan
ORDERS

• Apply
predicates

• Scan
LINEITEM

• Apply
predicates

• Join
• Insert into q1

q1

q1

Figure 14. Collocated Join Example

186 Administration Guide: Performance

|
|
|

|
|
|

|
|
|
|

on the join predicate columns. Rather than partition both tables, it may be
“cheaper” to broadcast the smaller table to the larger table. An example is
shown in Figure 15.

Directed Outer-Table Joins
In this join strategy, each row of the outer table is sent to one database
partition of the inner table (based on the partitioning attributes of the inner
table). The join occurs on this database partition. An example is shown in
Figure 16 on page 188.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Write q2

• Scan
ORDERS

• Apply
predicates

• Write q2

The ORDERS table is sent to all database partitions that have the LINEITEM table.
Table queue q2 is broadcast to all database partitions of the inner table.

• Scan
LINEITEM

• Apply
predicates

• Read q2
• Join
• Insert q1

• Scan
LINEITEM

• Apply
predicates

• Read q2
• Join
• Insert q1

q2 q2

q1

q1

q2q2

Figure 15. Broadcast Outer-Table Join Example

Chapter 6. Understanding the SQL Compiler 187

|

|
|
|

|
|
|
|

Directed Inner-Table and Outer-Table Joins
With this strategy, rows of the outer and inner tables are directed to a set of
database partitions, based on the values of the joining columns. The join
occurs on these database partitions. An example is shown in Figure 17 on
page 189.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Hash
ORDERKEY

• Write q2

• Scan
ORDERS

• Apply
predicates

• Hash
ORDERKEY

• Write q2

The LINEITEM table is partitioned on the ORDERKEY column.
The ORDERS table is partitioned on a different column.
The ORDERS table is hashed and sent to the correct LINEITEM
table database partition.
In this example, the join predicate is assumed to be:

ORDERS.ORDERKEY = LINEITEM.ORDERKEY.

• Scan
LINEITEM

• Apply
predicates

• Read q2
• Join
• Insert into q1

• Scan
LINEITEM

• Apply
predicates

• Read q2
• Join
• Insert into q1

q2 q2

q1

q1

q2q2

Figure 16. Directed Outer-Table Join Example

188 Administration Guide: Performance

Broadcast Inner-Table Joins
With this strategy, the inner table is broadcast to all the database partitions of
the outer join table. An example is shown in Figure 18 on page 190.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Hash
ORDERKEY

• Write q2

• Scan
ORDERS

• Apply
predicates

• Hash
ORDERKEY

• Write q2

Neither table is partitioned on the ORDERKEY column.

Both tables are hashed and are sent to new database

partitions where they are joined.

Both table queue q2 and q3 are directed.

In this example, the join predicate is assumed to be:

ORDERS.ORDERKEY = LINEITEM.ORDERKEY

• Scan
LINEITEM

• Apply
predicates

• Hash
ORDERKEY

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

• Scan
LINEITEM

• Apply
predicates

• Hash
ORDERKEY

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

q2q2

q3 q3

q2

q3

q1

q1

q2

q3

Figure 17. Directed Inner-Table and Outer-Table Join Example

Chapter 6. Understanding the SQL Compiler 189

Directed Inner-Table Joins
With this strategy, each row of the inner table is sent to one database partition
of the outer join table (based on the partitioning attributes of the outer table).
The join occurs on this database partition. An example is shown in Figure 19
on page 191.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Write q2

• Scan
ORDERS

• Apply
predicates

• Write q2

• Scan
LINEITEM

• Apply
predicates

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

• Scan
LINEITEM

• Apply
predicates

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

q3 q3

q2

q1

q1

q2

q3

The LINEITEM table is sent to all database partitions that have the ORDERS table.
Table queue q3 is broadcast to all database partitions of the outer table.

Figure 18. Broadcast Inner-Table Join Example

190 Administration Guide: Performance

Table Queues
A table queue is used:
v To pass table data from one database partition to another when using

inter-partition parallelism
v To pass table data within a database partition when using intra-partition

parallelism
v To pass table data within a database partition when using a single partition

database.

Each table queue is used to pass the data in a single direction.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Write q2

• Scan
ORDERS

• Apply
predicates

• Write q2

The ORDERS table is partitioned on the ORDERKEY column.

The LINEITEM table is partitioned on a different column.

The LINEITEM table is hashed and sent to the correct ORDERS table database partition.

In this example, the join predicate is assumed to be:

ORDERS.ORDERKEY = LINEITEM.ORDERKEY.

• Scan
LINEITEM

• Apply
predicates

• Hash
ORDERKEY

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

• Scan
LINEITEM

• Apply
predicates

• Hash
ORDERKEY

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

q3 q3

q2

q1

q1

q2

q3

Figure 19. Directed Inner-Table Join Example

Chapter 6. Understanding the SQL Compiler 191

The compiler decides where table queues are required, and includes them in
the plan. When the plan is executed, the connections between the database
partitions initiate the table queues. The table queues close as processes end.

There are several types of table queues:
v Asynchronous table queues. These table queues are known as asynchronous

because they read rows in advance of any FETCH being issued by the
application. When the FETCH is issued, the row is retrieved from the table
queue.
Asynchronous table queues are used when you specify the FOR FETCH
ONLY clause on the SELECT statement. If you are only fetching rows, the
asynchronous table queue is faster.

v Synchronous table queues. These table queues are known as synchronous
because they read one row for each FETCH that is issued by the
application. At each database partition, the cursor is positioned on the next
row to be read from that database partition.
Synchronous table queues are used when you do not specify the FOR
FETCH ONLY clause on the SELECT statement. In a partitioned database
environment, if you are updating rows, the database manager will use the
synchronous table queues.

v Merging table queues. These table queues preserve order.
v Non-merging table queues. These table queues are also known as “regular”

table queues. They do not preserve order.
v Listener table queues. These table queues are use with correlated subqueries.

Correlation values are passed down to the subquery and the results are
passed back up to the parent query block using this type of table queue.

Influence of Sorting on the Optimizer
When the optimizer chooses an access plan, it considers the performance
impact of sorting data. Sorting occurs when no index exists to satisfy the
requested ordering of fetched rows. Sorting could also occur when the sort is
determined by the optimizer to be less expensive than an index scan. The
optimizer may carry out one of the following actions when sorting the data:
v “Piping” the results of the sort when the query is executed. See “Piped

versus Non-Piped Sorts” and “Configuration Parameters Affecting Query
Optimization” on page 91.

v Internal handling of the sort within the database manager. See
“Aggregation and Sort Pushdown Operators” on page 193.

Piped versus Non-Piped Sorts
At the completion of a sort, if the final sorted list of data can be read in a
single sequential pass, the results can be piped. Piping is quicker than the use
of other (non-piped) means of communicating the results of the sort. The
optimizer chooses to pipe the results of a sort whenever possible.

192 Administration Guide: Performance

Independent of whether a sort is piped, the time to sort will depend on a
number of factors, including the number of rows to be sorted, the key size
and the row width. If the rows to be sorted occupy more than the space
available in the sort heap, several sort passes are performed, where each pass
sorts a subset of the entire set of rows. Each sort pass is stored in a temporary
table in the buffer pool. (As part of the buffer pool management, it is possible
that pages from this temporary table may be written to disk.) Once all the sort
passes are complete, these sorted subsets must be merged into a single sorted
set of rows. If the sort is piped, as the rows are merged they are handed
directly to Relational Data Services.

For more information, see “Looking for Indicators of Sorting Performance
Problems” on page 263, or the discussion of the sortheap configuration
parameter in “Configuration Parameters Affecting Query Optimization” on
page 91.

Aggregation and Sort Pushdown Operators
In some cases, the optimizer can choose to pushdown a sort or aggregation
operation to the Data Management Services component from the Relational
Data Services component. Pushing down these operations improves
performance by allowing the Data Management Services component to pass
data directly to a sort or aggregation routine. Without this pushdown, Data
Management Services would first pass this data to Relational Data Services,
which would then interface with the sort or aggregation routines. For
example, the following query benefits from this optimization:

SELECT WORKDEPT, AVG(SALARY) AS AVG_DEPT_SALARY
FROM EMPLOYEE
GROUP BY WORKDEPT

Aggregation in Sort
When sorting is used to produce the order required for a GROUP BY
operation the optimizer has the option of performing some or all of the
GROUP BY’s aggregation while doing the sort. This is advantageous if the
number of rows in each group is large. It is even more advantageous if doing
some of the grouping during the sort reduces or eliminates the need for the
sort to spill to disk.

When aggregation in sort is used, there are up to three stages of aggregation
required to ensure proper results are calculated. The first stage of aggregation,
“partial aggregation,” calculates the aggregate values until the sort heap is
filled. Partial aggregation is the process whereby unaggregated data is taken
in and partial aggregates are produced. If the sort heap is filled, the rest of the
data is spilled to disk and includes all of the partial aggregations that have
been calculated in the current filling of the sort heap. Following the reset of
the sort heap, new aggregations are started.

Chapter 6. Understanding the SQL Compiler 193

|
|
|
|
|
|
|
|

The second stage of aggregation, “intermediate aggregation,” takes all of the
spilled sort runs, and aggregates further on the grouping keys. The
aggregation cannot be completed because the grouping key columns are a
subset of the partitioning key columns. Intermediate aggregation takes in
existing partial aggregates and produce new partial aggregates. This stage is
optional, and is used for both intra-partition parallelism, and for
inter-partition parallelism. In the last case, the grouping is finished when a
global grouping key is available. In inter-partition parallelism, this would
occur when the grouping key is a subset of the partitioning key dividing
groups across partitions, and thus requiring repartitioning to complete the
aggregation. A similar case exists in intra-partition parallelism when each
agent finishes merging it’s spilled sort runs before reducing to a single agent
to complete the aggregation.

The last stage of aggregation, “final aggregation,” takes all of the partial
aggregates and completes the aggregation. Final aggregation takes in partial
aggregates and produces final aggregates. This step always takes place in a
GROUP BY operator. Sort cannot do complete aggregation because there is no
way to guarantee that the sort will not split. Complete aggregation takes in
unaggregated data and produces final aggregates. This method of aggregation
is typically used when grouping data that is already in the correct order and
when partitioning does not prohibit the method’s use.

Optimization Strategies for Intra-Partition Parallelism

The optimizer may choose an access plan so that a query is executed in
parallel within a database partition if a degree of parallelism is specified when
the SQL statement is compiled.

At execution time, multiple database agents called “subagents” are created to
execute the query. The number of subagents is less than or equal to the degree
of parallelism determined when the SQL statement was compiled. For more
information on setting the degree of parallelism for SQL statements see
“Parallel Processing of Applications” on page 87. For more information on
agents and subagents, see “Database Agents” on page 271.

In a partitioned database, the degree of parallelism applies to each partition.
For example, the portion of the query that is executing at a given database
partition is further parallelized based on the degree of parallelism determined
at that database partition for that SQL statement.

The access plan is parallelized by dividing it into a portion that is run by each
subagent and a portion that is run by the coordinating agent. The subagents
pass data through table queues to the coordinating agent or to other
subagents. In a partitioned database, subagents may send or receive data
through table queues from subagents in other database partitions.

194 Administration Guide: Performance

|
|
|
|
|
|
|
|

This section describes parallelization strategies within a single database
partition.

Parallel Scan Strategies
Relational scans and index scans can be performed in parallel on the same
table or index. For parallel relational scans, the table is divided into ranges of
pages or rows. A range of pages or rows is assigned to a subagent. A
subagent scans its assigned range and is assigned another range when it has
completed its work on the current range.

For parallel index scans, the index is divided into ranges of records based on
index key values and the number of index entries for a key value. The parallel
index scan proceeds like the parallel table scan with subagents being assigned
a range of records. A subagent is assigned a new range when it has complete
its work on the current range.

The scan unit (either a page or a row) and the scan granularity are
determined by the optimizer.

The parallel scan provides an even distribution of work among the subagents.
The goal of the parallel scan is to balance the load among the subagents and
keep them equally busy. If the number of busy subagents equals the number
of available processors and the disks are not overworked with I/O requests,
then the machine resources are being used effectively.

Other access plan operations may cause data imbalance as the query executes.
The optimizer chooses parallel strategies so that data balance is maintained.

Parallel Sort Strategies
The optimizer may choose one of the following parallel sort strategies:

Round-Robin Sort
This is also known as a “redistribution sort”. This is an efficient shared
memory sort that attempts to redistribute the data as evenly as possible to all
subagents. It uses a round-robin algorithm to provide the even distribution. It
first creates an individual sort for each subagent. During the insert phase,
subagents insert into each of the individual sorts in a round-robin fashion.
This achieves a more even distribution of data.

Partitioned Sort
This is similar to the round-robin sort in that a sort is created for each
subagent. The subagents apply a hash function to the sort columns to
determine into which sort a row should be inserted. For example, if the inner
and outer of a merge join are a partitioned sort, a subagent can use merge join
to join the corresponding partitions. This allows the merge join to execute in
parallel.

Chapter 6. Understanding the SQL Compiler 195

|
|
|
|
|
|

Replicated Sort
This sort is used where all subagents require all the sort output. One sort is
created and subagents are synchronized during insertion into the sort. When
the sort is completed, each subagent reads the entire sort. This sort may be
used to rebalance the data stream if the number of rows is small.

Shared Sort
This sort is the same as a replicated sort, except the subagents open a parallel
scan on the sorted result. This distributes the data among the subagents in a
way similar to the round-robin sort.

Parallel Temporary Tables
Subagents can cooperate to produce a temporary table by inserting rows into
the same table. This is called a shared temporary table. The subagents can
open private scans or parallel scans on the shared temporary table depending
on whether the data stream is to be replicated or partitioned.

Parallel Aggregation Strategies
Aggregation operations can be performed in parallel by subagents. An
aggregation operation requires the data to be ordered on the grouping
columns. If a subagent can be guaranteed to receive all the rows for a set of
grouping column values, it can perform a complete aggregation. This can
happen if the stream is already partitioned on the grouping columns because
of a previous partitioned sort.

Otherwise the subagent can perform a partial aggregation and use another
strategy to complete the aggregation. Some of these strategies are:
v Send the partially aggregated data to the coordinator agent through a

merging table queue. The coordinator completes the aggregation.
v Insert the partially aggregated data into a partitioned sort. The sort is

partitioned on the grouping columns. This guarantees that all rows for a set
of grouping columns are contained in one sort partition.

v If the stream needs to be replicated for balance reasons, the partially
aggregated data can be inserted into a replicated sort. Each subagent
completes the aggregation using the replicated sort, and receives an
identical copy of the aggregation result.

Parallel Join Strategies
Join operations can be performed in parallel by subagents. Parallel join
strategies are determined by the characteristics of the data stream.

A join can be parallelized by partitioning and/or replicating the data stream
on the inner and outer tables of the join. For example, a nested loop join can
be parallelized if its outer stream is partitioned due to a parallel scan and the

196 Administration Guide: Performance

|
|
|

inner stream is re-evaluated independently by each subagent. A merged join
can be parallelized if its inner and outer streams are value-partitioned due to
partitioned sorts.

Automatic Summary Tables

Summary tables are a powerful way to improve query response time. In many
environments where some of the basic query structures can be anticipated
summary tables can be used to:
v Aggregate data over one or more dimensions
v Join and aggregate data over a group of tables
v Identify a commonly accessed subset of data (that is, a “hot” horizontal or

vertical partition)
v Repartition a table, or part of a table, in a partitioned database environment

Knowledge of summary tables is integrated into the SQL Compiler. Within the
SQL Compiler, Query Rewrite (see “Rewrite Query by the SQL Compiler” on
page 153) and the Optimizer (see “Data Access Concepts and Optimization”
on page 162) are involved in matching queries with summary tables and
determining whether to substitute a summary table for a query that accesses
the base tables. Whenever summary tables are used to answer queries the
EXPLAIN facilities (see “Chapter 7. SQL Explain Facility” on page 213) can be
used to determine which summary table was selected. Since summary tables
behave like regular tables in many ways, the same considerations for
optimizing data access using tablespace definitions, creating indexes, and
issuing RUNSTATS apply to summary tables.

To help you understand the power of summary tables, the following example
shows a multidimensional analysis query and how it takes advantage of
summary tables.

In this example, assume a scenario where a warehouse contains a set of
customers and a set of credit card accounts. The warehouse records the set of
transactions that are made with the credit cards. Each transaction contains a
set of items that are purchased together. This environment is categorized as a
multi-star because two tables, the one containing transaction items and the
other identifying the purchase transactions, are large and together are the hub
of the star.

There are three hierarchical dimensions that describe a transaction: product,
location, and time. The product hierarchy is recorded in two normalized
tables representing the product group and the product line. The location
hierarchy contains city, state, and country information and is represented in a
single de-normalized table. The time hierarchy contains day, month, and year
information and is encoded in a single date field. The date dimensions are

Chapter 6. Understanding the SQL Compiler 197

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

extracted from the date field of the transaction using built-in functions. There
are also other tables in this scenario that represent account information for
customers and customer information.

A summary table is created with the sum and count of sales for each level of:
v Product hierarchy
v Location hierarchy
v Time hierarchy, composed of year, month, day.

A wide range of queries can pick up their answers from this stored aggregate
data. The following example computes sum and count of sales along the
product group and line dimensions; along the city, state, and country
dimension; and along the time dimension. It also includes several other
columns in its GROUP BY clause.

CREATE TABLE dba.PG_SALESSUM
AS (

SELECT l.id AS prodline, pg.id AS pgroup,
loc.country, loc.state, loc.city,
l.name AS linename, pg.name AS pgname,
YEAR(pdate) AS year, MONTH(pdate) AS month,
t.status,
SUM(ti.amount) AS amount,
COUNT(*) AS count

FROM cube.transitem AS ti, cube.trans AS t,
cube.loc AS loc, cube.pgroup AS pg,
cube.prodline AS l

WHERE ti.transid = t.id
AND ti.pgid = pg.id
AND pg.lineid = l.id
AND t.locid = loc.id
AND YEAR(pdate) > 1990

GROUP BY l.id, pg.id, loc.country, loc.state, loc.city,
year(pdate), month(pdate), t.status, l.name, pg.name

)
DATA INITIALLY DEFERRED REFRESH DEFERRED;

REFRESH TABLE dba.SALESCUBE;

The summary table is typically much smaller than the base fact tables. You
can control when the summary table is refreshed by specifying the
DEFERRED option (as shown in our example).

Queries that can take advantage of such pre-computed sums would include:
v Sales by month and product group
v Total sales for years after 1990
v Sales for 1995 or 1996
v Sum of sales for a product group or product line
v Sum of sales for a specific product group or product line AND for 1995,

1996

198 Administration Guide: Performance

v Sum of sales for a specific country.

While the precise answer is not included in the summary table for any of
these queries, the cost of computing the answer using the summary table
could be significantly less than using a large base table, because a portion of
the answer is already computed. Expensive joins, sorts, and aggregation of
base data is avoided or reduced through summary tables.

The following are sample queries that would obtain significant performance
improvements because they are able to use the results in the summary table
that are already computed. The first example returns the total sales for 1995
and 1996:

SET CURRENT REFRESH AGE=ANY

SELECT YEAR(pdate) AS year, SUM(ti.amount) AS amount
FROM cube.transitem AS ti, cube.trans AS t,

cube.loc AS loc, cube.pgroup AS pg,
cube.prodline AS l

WHERE ti.transid = t.id
AND ti.pgid = pg.id
AND pg.lineid = l.id
AND t.locid = loc.id
AND YEAR(pdate) IN (1995, 1996)

GROUP BY year(pdate);

The second example returns the total sales by product group for 1995 and
1996:

SET CURRENT REFRESH AGE=ANY

SELECT pg.id AS "PRODUCT GROUP",
SUM(ti.amount) AS amount

FROM cube.transitem AS ti, cube.trans AS t,
cube.loc AS loc, cube.pgroup AS pg,
cube.prodline AS l

WHERE ti.transid = t.id
AND ti.pgid = pg.id
AND pg.lineid = l.id
AND t.locid = loc.id
AND YEAR(pdate) IN (1995, 1996)

GROUP BY pg.id;

Larger improvements in response time for such queries can be achieved with
larger databases. This happens because the summary table grows slower than
the growth of the base table. One advantage of summary tables is that DB2
Universal Database uses them to effectively eliminate overlapping work
among queries by doing the computation once when building the summary
tables and reusing their content for a very large number of queries.

Chapter 6. Understanding the SQL Compiler 199

Federated Database Query Compiler Phases

This section describes additional query processing phases in a federated
database system. It also provides recommendations for improving federated
database query performance. Major topics include:
v “Pushdown Analysis”
v “Remote SQL Generation and Global Optimization” on page 207.

Pushdown Analysis
Pushdown analysis tells the DB2 optimizer if an operation can be performed
at a remote data source. An operation can be a function, such as relational
operator, system or user functions, or an SQL operator (GROUP BY, ORDER
BY, and so on).

Functions that cannot be pushed down can significantly impact query
performance. Consider the effect of forcing a selective predicate to be
evaluated locally instead of at the data source. This approach could require
DB2 to retrieve the entire table from the remote data source and then filter it
locally against the predicate. If your network is constrained—and the table is
large—query performance could suffer.

Operators that are not pushed down can also significantly impact query
performance. For example, having a GROUP BY operator aggregate remote
data locally could, once again, require DB2 to retrieve the entire table from the
remote data source.

As an example, assume that nickname N1 references the data source table
EMPLOYEE in a DB2 for OS/390 data source. Further, assume that the table
has 10,000 rows, one of the columns contains the last names of employees,
and one of the columns contains salaries. Given the statement:

SELECT LASTNAME, COUNT(*) FROM N1
WHERE LASTNAME > 'B' AND SALARY > 50000
GROUP BY LASTNAME;

several possibilities are considered:
v If the collating sequences at DB2 and DB2 for OS/390 are the same, it is

likely that the query predicate will be pushed down to DB2 for OS/390. It
is usually more efficient to filter and group results at the data source
instead of copying the entire table to DB2 and performing the operations
locally. Pushdown analysis in federated systems determines if operations
can be performed at the data source. In this case, the predicate and the
GROUP BY operation can take place at the data source.

v If the collating sequence is not the same, pushdown analysis will determine
that the entire predicate cannot be evaluated at the data source; however,
the optimizer may decide to pushdown the SALARY > 50000 portion of the
predicate. The range comparison must still be done at DB2.

200 Administration Guide: Performance

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

v If the collating sequence is the same, and the optimizer knows that the
local DB2 server is very fast, it is possible that the optimizer will decide
that performing the GROUP BY operation locally at DB2 is the best (least cost)
approach. The predicate will be evaluated at the data source. This is an
example of pushdown analysis combined with global optimization. DB2
will consider the available paths and then choose a plan that is the most
efficient.

In general, the goal is to ensure that functions and operators can be
considered for evaluation on data sources by the optimizer. Many factors can
affect whether a function or an SQL operator is evaluated at a remote data
source. The key factors are discussed in three groups: server characteristics,
nickname characteristics, and query characteristics.

Server Characteristics Affecting Pushdown Opportunities
The following sections contain data source-specific factors that can affect
pushdown opportunities. In general, these factors exist because DB2 lets you
use a rich SQL dialect to submit queries. This dialect may offer more
functionality than the SQL dialect supported by a server accessed during a
DB2 query. DB2 can compensate for the lack of function at a data server, but
doing so may require that the operation take place at DB2.

SQL Capabilities: Each data source supports a variation of the SQL dialect
and different levels of functionality. For example, consider the GROUP BY list.
Most data sources support the GROUP BY operator; but, some have
restrictions on the number of items on the GROUP BY list or restrictions on
whether an expression is allowed on the GROUP BY list. If there is a
restriction at the remote data source, DB2 might have to perform the GROUP
BY operation locally.

SQL Restrictions: Each data source can have different SQL restrictions. For
example, some data sources require parameter markers to bind in values to
remote SQL statements. Therefore, parameter marker restrictions must be
checked to ensure that each data source can support such a bind mechanism.
If DB2 cannot determine a good method to bind in a value for a function, this
function must be evaluated locally.

SQL Limits: DB2 might allow the use of larger integers than its remote data
sources; however, limit-exceeding values cannot be embedded in statements
sent to data sources. Therefore, the function or operator that operates on this
constant must be evaluated locally.

Server Specifics: Several factors fall into this category. One example is
sorting NULL values (highest, lowest, or depending on the ordering). For
example, if the NULL value is sorted at a data source differently from DB2,
ORDER BY operations on a nullable expression cannot be remotely evaluated.

Chapter 6. Understanding the SQL Compiler 201

Collating Sequence: Configuring a federated database to use the same
collating sequence that a data source uses and then setting the
collating_sequence server option to ’Y’ allows the optimizer to consider pushing
down character range comparison predicates.

When a query from a federated server requires sorting, the place where the
sorting is processed depends on several factors. If the federated database’s
collating sequence is the same as that of the data source where the queried
data is stored, the sort may take place at the data source. If collating
sequences are the same, the optimizer can decide if a local sort or a sort at the
data source is the most efficient way to complete the query. Likewise, if a
query requires a comparison of character data, this comparison can also be
performed at the data source.

Numeric comparisons, in general can be done at either location even if the
collating sequence is different. You may get unusual results, however, if the
weighting of null characters is different between the federated database and
the data source. Likewise, for comparison statements, be careful if you are
submitting statements to a case-insensitive data source. The weights assigned
to the characters ″I″ and ″i″ in a case-insensitive data source are the same.
DB2, by default, is case sensitive and would assign different weights to the
characters.

If the collating sequences of the federated database and the data source differ,
DB2 retrieves the data to the federated database, so that it can do the sorting
and comparison locally. The reason is that users expect to see the query
results ordered according to the collating sequence defined for the federated
server; by ordering the data locally, the federated server ensures that this
expectation is fulfilled.

Retrieving data for local sorts and comparisons usually decreases
performance. Therefore, consider configuring the federated database to use
the same collating sequences that your data sources use. That way,
performance might increase, because the federated server can allow sorts and
comparisons to take place at data sources. For example, in DB2 UDB for
OS/390, sorts defined by ORDER BY clauses are implemented by a collating
sequence based on an EBCDIC code page. If you want to use the federated
server to retrieve DB2 for OS/390 data sorted in accordance with ORDER BY
clauses, it is advisable to configure the federated database so that it uses a
predefined collating sequence based on the EBCDIC code page.

If the collating sequences at the federated database and the data source differ,
and you need to see the data ordered in the data source’s sequence, you can
submit your query in pass-through mode, or define the query in a data source
view.

202 Administration Guide: Performance

|
|
|
|

See the Administration Guide: Planning for more information about collating
sequences and how to set them; see Table 8 on page 107 for more information
about the collating_sequence server option.

Server Options: Several server options can affect pushdown opportunities. In
particular, review your settings for collating_sequence, varchar_no_trailing_blanks,
and pushdown. See “Server Options Affecting Federated Database Queries” on
page 106 for information on setting these options.

DB2 Type Mapping and Function Mapping Factors: The default local data
type mappings provided by DB2 (see the Application Development Guide for
data type tables) are designed so that sufficient buffer space is given to each
data source data type (to avoid loss of data). A user can choose to customize
the type mapping for a specific data source to suit specific applications. For
example, if you are accessing an Oracle data source column with a DATE data
type (which by default is mapped to the DB2 TIMESTAMP data type), you
could change the local data type to the DB2 DATE data type.

DB2 can compensate for functions not supported by a data source. There are
three cases where function compensation will occur:
v This function simply does not exist at the remote data source.
v The function does exist; however, the characteristics of the operand violate

function restrictions. An example of this situation is the IS NULL relational
operator. Most data sources support it, but some may have restrictions,
such as only allowing a column name on the left hand side of the IS NULL
operator.

v The function, if evaluated remotely, may return a different result. An
example of this situation is the ’>’ (greater than) operator. For those data
sources with different collating sequences, the greater than operator may
return different results than if it is evaluated locally by DB2.

Nickname Characteristics Affecting Pushdown Opportunities
The following sections contain nickname-specific factors that can affect
pushdown opportunities.

Local Data Type of a Nickname Column: Ensure that the local data type of
a column does not prevent a predicate from being evaluated at the data
source. As mentioned earlier, the default data type mappings are provided to
avoid any possible overflow. However, a joining predicate between two
columns of different lengths might not be considered at the data source whose
joining column is shorter, depending on how DB2 binds in the longer column.
This situation can affect the number of possibilities in a joining sequence
evaluated by the DB2 optimizer. For example, Oracle data source columns
created using the INTEGER or INT data type are given the type
NUMBER(38). A nickname column for this Oracle data type will be given the
local data type FLOAT because the range of a DB2 integer is from 2**31 to

Chapter 6. Understanding the SQL Compiler 203

|
|
|

(-2**31)-1, which is roughly equal to NUMBER(9). In this case, joins between a
DB2 integer column and an Oracle integer column cannot take place at the
DB2 data source (shorter joining column); however, if the domain of this
Oracle integer column can be accommodated by the DB2 INTEGER data type,
change its local data type with the ALTER NICKNAME statement so that the
join can take place at the DB2 data source.

Column Options: The ALTER NICKNAME SQL statement can be used to
add or change column options for nicknames.

One of these options is ″varchar_no_trailing_blanks″. It can be used to identify
a column that contains no trailing blanks. The compiler pushdown analysis
step will then take this information into account when checking all operations
performed on columns so indicated. Based on this indication, DB2 may
generate a different but equivalent form of a predicate to be used in the
remote SQL statement sent to a data source. A user might see a different
predicate being evaluated against the data source, but the net result should be
equivalent.

Another column option is numeric_string. Use this option to indicate if the
values in that column are always numbers without trailing blanks.

See Table 15 for column option values and defaults.

Table 15. Column Options and Their Settings

Option Valid Settings Default
Setting

numeric_string
‘Y’ Yes, this column contains only strings of numeric data.

IMPORTANT: If this column contains only numeric
strings followed by trailing blanks, it is inadvisable to
specify ‘Y’.

‘N’ No, this column is not limited to strings of numeric
data.

By setting numeric_string to ‘Y’ for a column, you are
informing the optimizer that this column contains no blanks
that could interfere with sorting of the column’s data. This
option is helpful when the collating sequence of a data source is
different from DB2. Columns marked with this option will not
be excluded from local (data source) evaluation because of a
different collating sequence.

‘N’

204 Administration Guide: Performance

Table 15. Column Options and Their Settings (continued)

Option Valid Settings Default
Setting

varchar_no_trailing_blanks Specifies if this data source uses non-blank padded varchar
comparison semantics. For variable-length character strings that
contain no trailing blanks, some DBMS’s non-blank-padded
comparison semantics return the same results as DB2’s
comparison semantics. If you are certain that all VARCHAR
table/view columns at a data source contain no trailing blanks,
consider setting this server option to ’Y’ for a data source. This
option is often used with Oracle** data sources. Ensure that you
consider all objects that can potentially have nicknames
(including views).

’Y’ This data source has non-blank-padded comparison
semantics similar to DB2’s.

’N’ This data source does not have the same
non-blank-padded comparison semantics as DB2’s.

‘N‘

Query Characteristics Affecting Pushdown Opportunities
A query can reference an SQL operator that might involve nicknames from
multiple data sources. When DB2 must combine the results from two
referenced data sources using one operator, such as a set operator (e.g.
UNION), the operation must take place at DB2. The operator cannot be
evaluated at a remote data source directly.

Analyzing and Understanding Pushdown Analysis Decisions
Rewriting SQL statements can provide additional pushdown opportunities for
DB2 query processing. This section introduces tools for determining where a
query is evaluated, lists common questions (and suggested areas to
investigate) associated with query analysis, and closes with a brief section
about data source upgrades.

Analyzing Where a Query is Evaluated: There are two utilities provided
with DB2 that show where queries are evaluated:
v Visual explain. Start it with the db2cc or the db2vexp command. Use it to

view the query access plan graph. The execution location for each operator
is included in the detailed display of an operator.
If a query is completely pushed down, you should see a RETURN operator
on top of an RQUERY operator. The RETURN operator is a standard DB2
operator; the RQUERY operator is unique to federated database operations.
RQUERY sends an SQL SELECT statement to a data source to retrieve the
query result. The SELECT statement is generated using the SQL dialect
supported by the data source. It can contain any valid query for that data
source.

Chapter 6. Understanding the SQL Compiler 205

||
|
|
|
|
|
|
|
|
|

||
|

||
|

|

v SQL explain. Start it with the db2expln or the dynexpln command. Use it
to view the access plan strategy as text.

Understanding Why a Query is Evaluated at a Data Source or at DB2: This
section lists typical plan analysis questions and areas to investigate to increase
pushdown opportunities. Key questions include:
v Why isn’t this predicate being evaluated remotely?

This question arises when a predicate is very selective and thus could be
used to filter rows and reduce network traffic. Remote predicate evaluation
also affects whether a join between two tables of the same data source can
be evaluated remotely.
Areas to examine include:
– Subquery predicates. Does this predicate contain a subquery that

pertains to another data source? Does this predicate contain a subquery
involving an SQL operator that is not supported by this data source? Not
all data sources support set operators in a predicate.

– Predicate functions. Does this predicate contain a function that cannot be
evaluated by this remote data source? Relational operators are classified
as functions.

– Predicate bind requirements. Does this predicate, if remotely evaluated,
require bind-in of some value? If so, would it violate SQL restrictions at
this data source?

– Global optimization. The optimizer may have decided that local
processing is more cost effective. See “Remote SQL Generation and
Global Optimization” on page 207 for more information.

v Why isn’t the GROUP BY operator evaluated remotely?
There are several areas you can check:
– Is the input to the GROUP BY operator evaluated remotely? If the

answer is no, examine the input.
– Does the data source have any restrictions on this operator? Examples

include:
- Limited number of GROUP BY items
- Limited byte counts of combined GROUP BY items
- Column specification only on the GROUP BY list

– Does the data source support this SQL operator?
– Global optimization. The optimizer may have decided that local

processing is more cost effective. See “Remote SQL Generation and
Global Optimization” on page 207 for more information.

v Why isn’t the set operator evaluated remotely?
There are several areas you can check:

206 Administration Guide: Performance

|
|

– Are both of its operands completely evaluated at the same remote data
source? If the answer is no and it should be yes, examine each operand.

– Does the data source have any restrictions on this set operator? For
example, are large objects or long fields valid input for this specific set
operator?

v Why isn’t the ORDER BY operation evaluated remotely?
Consider:
– Is the input to the ORDER BY operation evaluated remotely? If the

answer is no, examine the input.
– Does the ORDER BY clause contain a character expression? If yes, does

the remote data source not have the same collating sequence as DB2?
– Does the data source have any restrictions on this operator? For example,

is there a limited number of ORDER BY items? Does the data source
restrict column specification to the ORDER BY list?

Data Source Upgrades and Customization: Although the DB2 SQL compiler
has much information about data source SQL support, this data may need
adjustment over time because data sources can be upgraded and/or
customized. In such cases, make enhancements known to DB2 by changing
local catalog information. Use DB2 DDL statements (such as CREATE
FUNCTION MAPPING and ALTER SERVER) to update the catalog. See the
SQL Reference for more information.

Remote SQL Generation and Global Optimization
This phase helps produce a globally optimal access strategy to evaluate a
query. For a federated database query, the access strategy may involve
breaking down the original query into a set of remote query units and then
combining the results.

Using the output of pushdown analysis as a recommendation, the optimizer
decides whether each operation will be evaluated locally at DB2 or remotely
at a data source. The decision is based on the output of its cost model, which
includes not only the cost to evaluate the operation but also the cost to
transmit the data or messages between DB2 and data sources.

The goal is to produce an optimized query; however, many factors can affect
the output from global optimization and thus affect query performance. The
key factors are discussed in two groups: server characteristics and nickname
characteristics.

Server Characteristics/Options Affecting Global Optimization
Data source server factors that can affect global optimization include the:
v Relative ratio of CPU speed

Chapter 6. Understanding the SQL Compiler 207

Use the cpu_ratio server option to indicate how much faster or slower the
data source CPU speed is compared with the DB2 CPU. A low ratio
indicates that the data source workstation CPU is faster than the DB2
workstation CPU. With low ratios, the DB2 optimizer is more likely to
consider pushing down CPU-intensive operations to the data source. See
“Server Options Affecting Federated Database Queries” on page 106 for
more information about this ratio.

v Relative ratio of I/O speed
Use the io_ratio server option to indicate how much faster or slower the
data source system I/O speed is compared with the DB2 system. A low
ratio indicates that the data source workstation I/O speed is faster than the
DB2 workstation I/O speed. For low ratios, the DB2 optimizer will consider
pushing down I/O-intensive operations to the data source. See “Server
Options Affecting Federated Database Queries” on page 106 for more
information about this ratio.

v Communication rate between DB2 and the data source
Use the comm_rate server option to indicate network capacity. Low rates
(indicating a slow network communication between DB2 and the data
source) encourage the DB2 optimizer to reduce the number of messages
sent to or from this data source. If the rate is set to 0, the optimizer
produces a query requiring minimal network traffic. See “Server Options
Affecting Federated Database Queries” on page 106 for more information
about this ratio.

v Data source collating sequence
Use the collating_sequence server option to indicate if a data source collating
sequence matches the local DB2 database collating sequence. If this option
is not set to ’Y’, the optimizer considers the data retrieved from this data
source as unordered. See “Collating Sequence” on page 202 for more
information about collating sequence performance issues.

v Remote plan hints
Use the plan_hints server option to indicate if plan hints are supported at a
data source. Plan hints are statement fragments that provide extra
information for data source optimizers. This information can, for certain
query types, improve query performance. The plan hints can help the data
source optimizer decide whether to use an index, which index to use, or
which table join sequence to use.
If plan hints are enabled, the query sent to the data source contains
additional information. For example, a statement sent to an Oracle
optimizer with plan hints could look like this:

SELECT /*+ INDEX (table1, t1index)*/
col1
FROM table1

The plan hint is the string /*+ INDEX (table1, t1index)*/.

208 Administration Guide: Performance

|
|
|
|
|
|
|

|
|
|
|
|
|
|

v Information in the DB2 optimizer knowledge base
DB2 has an optimizer knowledge base that contains data about native data
sources. The DB2 optimizer does not generate remote access plans that
cannot be generated by specific DBMSs. In other words, DB2 avoids
generating plans that optimizers at remote data sources cannot understand
or accept.

Nickname Characteristics Affecting Global Optimization
The following sections contain nickname-specific factors that can affect global
optimization.

Index Considerations: DB2 can use information about indexes at data
sources to optimize queries. For this reason, it is important that the index
information available to DB2 is current. The index information for nicknames
is initially acquired at create nickname time. Index information is not gathered
for view nicknames.

Creating Index Specifications on Nicknames: You can create an index
specification for a nickname. Index specifications build an index definition
(not an actual index) in the catalog for use by the DB2 optimizer. Use the
CREATE INDEX SPECIFICATION ONLY statement to create index
specifications. The syntax for creating an index specification on a nickname is
similar to the syntax for creating an index on a local table. See the
Administration Guide: Planning for more information.

Consider creating index specifications when:
v DB2 is unable to retrieve any index information from a data source during

nickname creation.
v You want an index for a view nickname.
v You want to encourage the DB2 optimizer to use a specific nickname as the

inner table of a nested loop join. The user can create an index on the joining
column if none exists.

Consider your needs before issuing CREATE INDEX statements against a
nickname for a view. In one case, if the view is a simple SELECT on a table
with an index, creating indexes on the nickname (locally) that match the
indexes on the table at the data source can significantly improve query
performance. However, if indexes are created locally over views that are not
simple select statements (for example, a view created by joining two tables),
query performance may suffer. For example, if an index is created over a view
that is a join of two tables, the optimizer may choose that view as the inner
element in a nested loop join. The query will have poor performance because
the join will be evaluated several times. An alternative is to create nicknames
for each of the tables referenced in the data source view and create a local
view at DB2 that references both nicknames.

Chapter 6. Understanding the SQL Compiler 209

Catalog Statistics Considerations: Catalog statistics describe the overall size
of nicknames and the range of values in associated columns. They are used by
the optimizer when calculating the least cost path for processing queries
containing nicknames. Nickname statistics are stored in the same catalog
views as table statistics. See “Chapter 5. System Catalog Statistics” on page 113
and “Rules for Updating Table and Nickname Statistics” on page 136 for more
information about statistic types and how to update them locally.

While DB2 can retrieve the statistical data held at a data source, it cannot
automatically detect updates to existing statistical data at data sources.
Furthermore, DB2 has no mechanism for handling object definition or
structural changes (adding a column) to objects at data sources. If the
statistical data or structural data for an object has changed, you have two
choices:
v Run the equivalent of RUNSTATS at the data source. Then, drop the current

nickname. Re-create the nickname. Use this approach if structural
information has changed.

v Manually update the statistics in the SYSSTAT.TABLES view. This approach
requires fewer steps but it will not work if structural information has
changed.

Analyzing and Understanding Global Optimization Decisions
This section introduces tools for analyzing query optimization and presents
common questions (and suggested areas to investigate) associated with query
optimization.

Analyzing Query Optimization: There are two utilities provided with DB2
that show global access plans:
v Visual explain. Start it with the db2cc or the db2vexp command. Use it to

view the query access plan graph. The execution location for each operator
is included in the detailed display of an operator. You can also find the
remote SQL statement generated for each data source in the RQUERY
(select operation) operator. By examining the details of each operator, you
can see the number of rows estimated by the DB2 optimizer as input to and
output from each operator. You can also see the estimated cost to execute
each operator including the communications cost. See “Appendix C. SQL
Explain Tools” on page 555 for more information.

v SQL explain. Start it with the db2expln or dynexpln command. Use it to
view the access plan strategy as text. SQL explain does not provide cost
information; however, you can get the access plan generated by the remote
optimizer for those data sources supported by the remote explain function.
See “Appendix C. SQL Explain Tools” on page 555 for more information.

210 Administration Guide: Performance

Understanding DB2 Optimization Decisions: This section lists optimization
questions and key areas to investigate to improve performance. Key questions
include:
v Why isn’t a join between two nicknames of the same data source being

evaluated remotely?
Areas to examine include:
– Join operations. Can the data source support them?
– Join predicates. Can the join predicate be evaluated at the remote data

source? If the answer is no, examine the join predicate. See
“Understanding Why a Query is Evaluated at a Data Source or at DB2”
on page 206 for more information.

– Number of rows in the join result (with visual explain). Does the join
produce a much larger set of rows than the two nicknames combined?
Do the numbers make sense? If the answer is no, consider updating the
nickname statistics manually (SYSSTAT.TABLES).

v Why isn’t the GROUP BY operator being evaluated remotely?
Areas to examine include:
– Operator syntax. Verify that the operator can be evaluated at the remote

data source. See “Understanding Why a Query is Evaluated at a Data
Source or at DB2” on page 206 for more information.

– Number of rows. Check the estimated number of rows in the GROUP BY
operator input and output using visual explain. Are these two numbers
very close? If the answer is yes, the DB2 optimizer considers it more
efficient to evaluate this GROUP BY locally. Also, do these two numbers
make sense? If the answer is no, consider updating the nickname
statistics manually (SYSSTAT.TABLES).

v Why is the statement not being completely evaluated by the remote data
source?
The DB2 Optimizer performs cost-based optimization. Even if pushdown
analysis indicates that every operator can be evaluated at the remote data
source, the optimizer still relies on its cost estimate to generate a globally
optimal plan. There are a great many factors that can contribute to that
plan. For example, even though the remote data source can process every
operation in the original query, its CPU speed is much slower than DB2’s
and thus it may turn out to be more beneficial to perform the operations at
DB2 instead. If results are not satisfactory, verify your server statistics in
SYSCAT.SERVEROPTIONS.

v Why does a plan generated by the optimizer, and completely evaluated at a
remote data source, have much worse performance than the original query
executed directly at the remote data source?
Areas to examine include:

Chapter 6. Understanding the SQL Compiler 211

– The remote SQL statement generated by the DB2 optimizer. Ensure that
it is identical to the original query. Check for predicate ordering changes.
A good query optimizer should not be sensitive to the predicate ordering
of a query; unfortunately, not all DBMS optimizers are identical, and
thus it is likely that the optimizer of the remote data source may
generate a different plan based on the input predicate ordering. If this is
true, this is a problem inherent in the remote optimizer. Consider either
modifying the predicate ordering on the input to DB2 or contacting the
service organization of the remote data source for assistance.
Also, check for predicate replacements. A good query optimizer should
not be sensitive to equivalent predicate replacements; unfortunately, not
all DBMS optimizers are identical, and thus it is possible that the
optimizer of the remote data source may generate a different plan based
on the input predicate. For example, some optimizers cannot generate
transitive closure statements for predicates.

– The number of returned rows. You can get this number from Visual
Explain. If the query returns a large number of rows, network traffic is a
potential bottleneck.

– Additional functions. Does the remote SQL statement contain additional
functions compared with the original query? Some of the extra functions
may be generated to convert data types. Ensure that they are necessary.

212 Administration Guide: Performance

Chapter 7. SQL Explain Facility

The SQL explain facility is part of the SQL Compiler that can be used to
capture information about the environment where the static or dynamic SQL
statement is compiled. The information captured allows you to understand
the structure and potential execution performance of SQL statements,
including:
v Sequence of operations to process the query
v Cost information
v Predicates and selectivity estimates
v Statistics for all objects referenced in the SQL statement at the time of the

explain.

This information can help you:
v Understand the execution plan chosen for a query
v Assist in designing application programs
v Determine when an application should be rebound
v Assist in database design.

The following topics are provided:
v “Choosing an Explain Tool” on page 214
v “Using the SQL Explain Facility” on page 216
v “Introductory Concepts for Explain” on page 218
v “How Explain Information is Organized” on page 221
v “Obtaining Explain Data” on page 227
v “Guidelines on Using Explain Output” on page 229
v “Visual Explain” on page 231
v “SQL Advise Facility” on page 232.

The explain output is stored in relational tables and, as an option, in a format
which may be graphically displayed using the Visual Explain tool. You should
consider using the explain tables to find those queries run against the explain
tables that are of interest to you. For more information on the tables used by
the explain facility and how to create those tables, see “Appendix B. Explain
Tables and Definitions” on page 523.

© Copyright IBM Corp. 1993, 2001 213

Choosing an Explain Tool

DB2 provides the most comprehensive explain facility in the industry with
detailed optimizer information on the access plan chosen for an explained
SQL statement. Several methods are provided to give you the flexibility you
need to capture and access explain information.

Detailed optimizer information that allows for in-depth analysis of an access
plan is kept in explain tables separate from the actual access plan itself. There
are three ways to get information from the explain tables:
1. Write your own queries (based on the explain table descriptions as shown

in “Appendix B. Explain Tables and Definitions” on page 523)
2. Use the db2exfmt tool
3. Use Visual Explain (to view explain snapshot information)

The explain tables are accessible on all supported platforms and contain
information for both static and dynamic SQL statements. You can access the
explain tables using SQL statements which allows for easy manipulation of
the output and for comparison among different queries, or for comparisons of
the same query over time. If you wish the information from the explain tables
to be presented in a predefined format, you can use the db2exfmt tool. For
more information about this tool, see “Appendix D. db2exfmt - Explain Table
Format Tool” on page 601. Alternatively, you can create your own statements
to access the tables.

Note: The location of this tool (and others like db2batch, dynexpln, db2vexp,
and db2_all) is in the misc subdirectory of the sqllib directory. If this tool
has been moved from this path, then the command line entry
mentioned above may not work.

Visual Explain allows for the analysis of access plan and optimizer
information from the explain tables through a graphical interface. Both static
and dynamic SQL statements can be analyzed using this tool. Visual Explain
is typically invoked from within the Control Center. The Control Center is
available from the command line by typing db2cc. Also, Visual Explain can be
invoked directly from the command line for a single SQL statement using the
db2vexp command. On some platforms, Visual Explain can be invoked using a
folder from within the DB2 Universal Database folder. Visual Explain is not
available on all supported platforms. You should refer to the Quick Beginnings
manual for your platform to see if Visual Explain is supported. Visual Explain
does allow you to view snapshots captured or taken on another platform. For
example, a Windows NT client can graph snapshots generated on a DB2 for
HP-UX server. To do this, both of the platforms must be at a Version 5 level or
later. The output from Visual Explain is not easily manipulated for further
analysis nor is the information accessible to other applications. For more
information on the db2vexp command, type db2vexp -h on the command line or

214 Administration Guide: Performance

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

refer to the Command Reference manual. For other information on Visual
Explain, you should refer to the online help in the Control Center by typing
db2cc.

Information about access plans for static SQL statements is generated and
stored in the system catalog as part of a package. To see the access plan
information available for one or more packages, the db2expln tool is available
from the command line. db2expln shows the actual implementation of the
chosen access plan. It does not show optimizer information.

The dynexpln tool, which uses db2expln within it, provides a quick way to
explain dynamic SQL statements that contain no parameter markers. This use
of db2expln from within dynexpln is done by transforming the input SQL
statement into a static statement within a pseudo-package. When this occurs,
the information may not always be completely accurate. If complete accuracy
is desired, you should use the Explain facility as described in “Using the SQL
Explain Facility” on page 216.

The db2expln tool does provide a relatively compact and English-like overview
of what operations will occur at run-time by examining the actual access plan
generated (see 152 for more information on how the code is generated).
Additional details on using db2expln and interpreting the output can be found
in “Appendix C. SQL Explain Tools” on page 555.

Table 16 summarizes the different tools available with the DB2 explain facility
and their individual characteristics. Use this table to select the tool most
suitable for your environment and needs.

Table 16. Explain Facility Tools

Desired Characteristics
Visual
Explain db2vexp

Explain
tables db2exfmt db2expln dynexpln

GUI-interface Yes Yes

Text output Yes Yes Yes

“Quick and dirty” static SQL
analysis

Yes

Static SQL supported Yes Yes Yes Yes

Dynamic SQL supported Yes Yes Yes Yes Yes*

CLI applications supported Yes Yes Yes

Available to DRDA Application
Requesters

Yes

Detailed optimizer information Yes Yes Yes Yes

Suited for analysis of multiple
statements

Yes Yes Yes Yes

Chapter 7. SQL Explain Facility 215

|
|
|

Table 16. Explain Facility Tools (continued)

Desired Characteristics
Visual
Explain db2vexp

Explain
tables db2exfmt db2expln dynexpln

Information accessible from
within an application

Yes

Note:

* Indirectly using db2expln; there are some limitations.

Using the SQL Explain Facility

The different means of capturing explain information include using:
1. EXPLAIN and EXPLSNAP BIND/PREP options
2. CURRENT EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT

special registers
3. EXPLAIN SQL statement
4. db2vexp tool (also directly calls Visual Explain to display the information)

There are three reasons you may wish to collect and use explain data:
1. To understand the steps (the access plan) that the database manager must

perform to satisfy your query. “Data Access Concepts and Optimization”
on page 162 provides information which you may need to reference if you
wish to understand the explain output.

2. To help evaluate your performance tuning initiatives. There are a number
of actions you can take to help improve the performance of your queries.
Many of these possible actions are described in subtopics of the following:
v “Chapter 3. Application Considerations” on page 43
v “Chapter 4. Environmental Considerations” on page 91
v “Chapter 5. System Catalog Statistics” on page 113.

After making a change in any of these areas, you can use the SQL explain
facility to determine the impact, if any, that the change has on the access
plan chosen. For example, if you add an index based on the
recommendations provided in “Indexing Impact on Query Optimization”
on page 98, the explain data can help you determine whether the index is,
in fact, being used as you expected.

While the explain output will provide you with information to allow you
to determine the access plan that was chosen and its relative cost, the only
way to accurately measure the performance improvement for a query is to
use benchmark testing techniques, as described in “Chapter 12. Benchmark
Testing” on page 315.

216 Administration Guide: Performance

|
|
|
|

3. To help you understand the reasons for changes in query performance,
you need to have the explain information both before and after your
change in order to analyze the impact. Therefore, when compiling a SQL
statement to the database, you should:
v Use the explain facility to capture the plan information before your

changes, and save the resulting explain tables; or, save the output from
the db2exfmt explain tool.

v Save and/or print the current catalog statistics if you do not want to, or
cannot, access Visual Explain to view this information. (The db2look
productivity tool, described in “Modeling Production Databases” on
page 142, could be used to help perform this task.)

v Save and/or print the data definition language (DDL) statements,
including those for CREATE TABLE, CREATE VIEW, CREATE INDEX,
CREATE TABLESPACE.

The above information provides you with a before picture that you can use
as a reference point for future analysis. For dynamic SQL statements, you
can also collect this information when you run your application for the
first time. For static SQL statements, you can also collect this information
at bind time.

When you wish to analyze the reason for a performance change, you can
compare the before data to information you collect about the query and
environment when you are starting your analysis (the after data).

As a simple example, your analysis could show that an index is no longer
being used as part of the access path. Using the catalog statistics
information in Visual Explain, you might notice that the number of index
levels (NLEVELS column) is now substantially higher than when the
query was first bound to the database. You might then choose to:
v Reorganize the index
v Collect new statistics for your table and indexes
v Gather explain information when rebinding your query.

Following these actions, you might notice that the index is once again
being used in the access plan and that performance of the query is no
longer a problem.

Chapter 7. SQL Explain Facility 217

Introductory Concepts for Explain

You can use explain information to analyze the access plan that the optimizer
has chosen based on the choices described in “Data Access Concepts and
Optimization” on page 162. For example, explain information may indicate
that an index scan (see “Index Scan Concepts” on page 163) was chosen by the
optimizer. In addition, it can also allow you to determine the following:
v How many index columns are used as search criteria, as described in

“Range Delimiting and Index SARGable Predicates” on page 173
v Whether index-only access is used, as described in “Index-Only Access” on

page 168
v Whether list prefetch will be used to read the pages, as described in

“Understanding List Prefetching” on page 257.

As another example, the explain information could also help you understand
how two tables are joined:
v The join method
v The order in which the tables are joined
v The occurrence and type of sorts.

Although you can use explain for SELECT, SELECT INTO, UPDATE, INSERT,
VALUES, VALUES INTO, and DELETE SQL statements, the primary use of
explain is to observe the access paths for the SELECT parts of your
statements.

To satisfy an SQL query, the database manager typically:
v Uses one or more data objects (a table, an index, or both)
v Performs one or more operations (for example, table scan, index scan, and

join)
v Returns the result set to the calling application.

For a simple SQL query, such as:
SELECT DEPTNO, DEPTNAME

FROM DEPARTMENT

the following, graphical representation of the steps performed could be
displayed by Visual Explain:

218 Administration Guide: Performance

|

|

|
|

|

The following topics discuss the type of details you can view for objects and
operators:
v “Explain Information for Data Objects”
v “Explain Information for Data Operators” on page 220

Explain Information for Data Objects
A single access plan may use one or more data objects to satisfy the SQL
statement.

Object Statistics: The explain facility records facts about the object, such as:
v The creation time
v The last time that statistics were collected for the object (see “Chapter 5.

System Catalog Statistics” on page 113)
v An indication of whether or not the data in the object is ordered (only table

or index objects)
v The number of columns in the object (only table or index objects)
v The estimated number of rows in the object (only table or index objects)
v The number of pages that the object occupies in the buffer pool
v The total estimated overhead, in milliseconds, for a single random I/O to

the specified table space where this object is stored
v The estimated transfer rate, in milliseconds, to read a 4K page from the

specified table space
v Prefetch and extent sizes, in 4K pages

RETURN

TBSCAN

DEPARTMENT

The table object called
DEPARTMENT.

The TBSCAN operator
which performs a table
scan on the DEPARTMENT
table.

The RETURN operator
which gives the query
results back to the
calling application.

Figure 20. Graphical Display of Explain Output

Chapter 7. SQL Explain Facility 219

|
|

|

|

v The degree of data clustering with the index
v The number of leaf pages used by this object’s index and the number of

levels in the tree
v The number of distinct full key values in this object’s index
v The total number of overflow records in the table.

Explain Information for Data Operators
A single access plan may perform several operations on the data to satisfy the
SQL statement and provide results back to you. The SQL compiler determines
the operations required; for example, a table scan, an index scan, a nested
loop join, or a group-by operator. Details of many of these operators are
provided in “Data Access Concepts and Optimization” on page 162.

In addition to showing the various operators used in an access plan, explain
information is also available for each operator as well as the cumulative
effects of the access plan.

Estimated Cost Information: The following estimated, cumulative costs can
be displayed for the operators. These costs are for the chosen access plan, up
to and including the operator for which the information is captured.
v The total cost (in timerons)
v The number of page I/Os
v The number of CPU instructions
v The cost (in timerons) of fetching the first row, including any initial

overhead required
v The communication cost (in frames).

Timerons are a made-up, relative unit of measure. Timerons are determined by
the optimizer based on internal values such as statistics that are changing as
the database is used. As a result, we cannot ensure that the timerons measure
for a SQL statement will be the same every time the estimated cost, in
timerons, is determined.

Operator Properties: The following information is recorded by the explain
facility to describe the properties of each operator:
v The set of tables that have been accessed
v The set of columns that have been accessed
v The columns on which the data is ordered, if the optimizer determined that

this ordering can be used by subsequent operators
v The set of predicates that have been applied
v The estimated number of rows that will be returned (cardinality).

220 Administration Guide: Performance

|
|
|
|
|

|
|
|
|
|

How Explain Information is Organized

All explain information is organized around the concept of an explain
instance. An explain instance represents one invocation of the explain facility
for one or more SQL statements. An explain instance represents the explain
information for:
v All the eligible SQL statements in one package for static SQL statements
v One particular SQL statement for incremental bind SQL statements
v One particular SQL statement for dynamic SQL statements
v Each EXPLAIN SQL statement (whether dynamic or static).

The explain information captured within one explain instance includes the
SQL compilation environment as well as the access plan chosen to satisfy the
SQL statement being compiled. Explain information is organized into 3
subsets:

Explain Instance Information Compilation environment information
captured for each explain instance.

Explain Snapshot Information
Information used by Visual Explain.

Explain Table Information Information collected when explain table
information is requested.

Explain Instance Information
Explain instance information is stored in the EXPLAIN_INSTANCE table.
Additional specific information about each SQL statement explained within an
explain instance is stored in the EXPLAIN_STATEMENT table.

Explain Instance Identification: You can uniquely identify each explain
instance and correlate the information for the SQL statements to a given
invocation of the facility with this information:
v The user who requested the explain information
v When the explain request began
v The name of the package from which the explained SQL statement came
v The schema of the package from which the explained SQL statement came.
v An indication whether a snapshot was part of the explain request.

Environmental Settings: Environmental information concerning how the SQL
compiler optimized your queries is captured. The environmental information
includes the following:
v The version and release number for the level of DB2 being used.
v The degree of parallelism used to compile the query. The CURRENT

DEGREE special register, the DEGREE bind option, the SET RUNTIME

Chapter 7. SQL Explain Facility 221

|
|
|
|

DEGREE API, and the dft_degree configuration parameter may be used to
determine the degree of parallelism to be used when compiling a particular
query.

v Whether the SQL statement was dynamic or static.
v The query optimization class used to compile the query. See “Adjusting the

Optimization Class” on page 67 for more information.
v The type of cursor blocking specified when compiling the query. For more

information about cursors, refer to the SQL Reference manual. For more
information about cursor blocking, see “Row Blocking” on page 79.

v The isolation level used when compiling the query. See “Concurrency” on
page 43 for more information.

v The values of various configuration parameters when the query was
compiled. See “Configuration Parameters Affecting Query Optimization” on
page 91 for more information about the configuration parameters that can
affect query optimization, including the following parameters that are
recorded when an explain snapshot is taken:
– “Buffer Pool Size (buffpage)” on page 345
– “Sort Heap Size (sortheap)” on page 360
– “Average Number of Active Applications (avg_appls)” on page 396
– “Database Heap (dbheap)” on page 348
– “Maximum Storage for Lock List (locklist)” on page 353
– “Maximum Percent of Lock List Before Escalation (maxlocks)” on

page 384
– “CPU Speed (cpuspeed)” on page 472
– “Communications Bandwidth (comm_bandwidth)” on page 471.

SQL Statement Identification: For each explain instance, multiple SQL
statements may have been explained. Along with information that uniquely
identifies the explain instance, the following information helps identify each
individual SQL statement.
v The type of statement: SELECT, DELETE, INSERT, UPDATE, positioned

DELETE, positioned UPDATE.
v The statement and section number of the package issuing the SQL

statement, as recorded in SYSCAT.STATEMENTS catalog view.

Within the EXPLAIN_STATEMENT table, the QUERYTAG and QUERYNO
fields contain identifiers and are set for you as part of the explain process.

For dynamic explain SQL statements submitted during a CLP or CLI session,
when EXPLAIN MODE or EXPLAIN SNAPSHOT is active, the QUERYTAG is
set to “CLP” or “CLI”. When this happens, the QUERYNO is defaulted to a
number that is incremented by one or more for each statement.

222 Administration Guide: Performance

For all other dynamic explain SQL statements (not from CLP, CLI, or using
the EXPLAIN SQL statement) the QUERYTAG is set to blanks, and the
QUERYNO will always be “1”.

Cost Estimation: For each statement explained, an estimate of the relative cost
of executing the chosen access plan is recorded. This cost is given using a
made-up, relative unit of measure called timerons. Estimates of elapsed times
are not provided, for the following reasons:
v The SQL optimizer does not estimate elapsed time but rather resource

consumption.
v The optimizer does not model all factors that can affect elapsed time; it

ignores those that do not affect the efficiency of the access plan. The
elapsed time is affected by a number of run-time factors including: the
system workload; the amount of resource contention; the amount of parallel
processing and I/O; the cost of returning rows to the user; and the
communication time between the client and server.

Statement Text: For each statement explained, two versions of the text of the
SQL statement are recorded. One version is the text as received by the SQL
Compiler. The other is a version of the statement text that has been
reverse-translated from the internal compiler representation of the query. This
translation, while looking similar to other SQL statements, does not
necessarily follow correct SQL syntax nor does it necessarily reflect the actual
content of the internal representation as a whole. This translation is provided
simply to allow an understanding of the SQL context from which the SQL
optimizer chose the access plan. Comparing the user-written statement text to
the internal representation of the SQL statement can help you to understand
how the SQL compiler has rewritten your query for better optimization. (See
“Rewrite Query by the SQL Compiler” on page 153.) It also shows you other
elements in the environment affecting your statement such as triggers and
constraints. Some keywords used by this “optimized” text are:

$Cn The name of a derived column, where n
represents an integer value.

$CONSTRAINT$ The tag used to indicate the name of a
constraint added to the original SQL statement
during compilation. Seen in conjunction with
the $WITH_CONTEXT$ prefix.

$DERIVED.Tn The name of a derived table, where n
represents an integer value.

$INTERNAL_FUNC$ The tag used to indicate the presence of a
function used by the SQL compiler for the
explained query but not available for general
use.

Chapter 7. SQL Explain Facility 223

||
|
|
|

$INTERNAL_PRED$ The tag used to indicate the presence of a
predicate added by the SQL compiler during
compilation of the explained query. Again,
such a predicate is not available for general
use. An internal predicate is used by the
compiler to satisfy additional context added to
the original SQL statement as the result of
triggers and constraints.

RID The tag used to identify the row identifier
(RID) column for a particular row.

$TRIGGER$ The tag used to indicate the name of a trigger
added to the original SQL statement during
compilation. Seen in conjunction with the
$WITH_CONTEXT$ prefix.

$WITH_CONTEXT$(...) This prefix will appear at the start of the text
when additional triggers or constraints have
been added into the original SQL statement.
Following this prefix will appear a list of the
names of any triggers or constraints affecting
the compilation and resolution of the SQL
statement.

Explain Snapshot Information
When an explain snapshot is requested, additional explain information is
recorded describing the access plan selected by the SQL optimizer. This
information is stored in the SNAPSHOT column of the
EXPLAIN_STATEMENT table in the format required by Visual Explain. This
format is not usable by other applications.

Additional information on the contents of the explain snapshot information is
available from Visual Explain itself and in:
v “Explain Information for Data Objects” on page 219
v “Explain Information for Data Operators” on page 220.

Explain Table Information
When explain table information is requested, additional information is
recorded describing the access plan selected by the SQL optimizer. This
information is stored in the following explain tables:
v EXPLAIN_ARGUMENT. This table represents the unique characteristics for

each individual operator, if any.
v EXPLAIN_INSTANCE. This table is the main control table for all Explain

information. Each row of data in the Explain tables is explicitly linked to

224 Administration Guide: Performance

||
|
|
|
|
|
|
|

||
|

one unique row in this table. Basic information about the source of the SQL
statements being explained and environment information is kept in this
table.

v EXPLAIN_OBJECT. This table identifies those data objects required by the
access plan generated to satisfy the SQL statement.

v EXPLAIN_OPERATOR. This table contains all the operators needed to
satisfy the SQL statement by the SQL compiler.

v EXPLAIN_PREDICATE. This table identifies which predicates are applied
by a specific operator.

v EXPLAIN_STATEMENT. This table contains the text of the SQL statement
as it exists for the different levels of Explain information. The original SQL
statement as entered by the user is stored in this table along with the
version used by the optimizer to choose an access plan to satisfy the SQL
statement.

v EXPLAIN_STREAM. This table represents the input and output data
streams between individual operators and data objects. The data objects
themselves are represented in the EXPLAIN_OBJECT table. The operators
involved in a data stream are represented in the EXPLAIN_OPERATOR
table.

v ADVISE_WORKLOAD. This table allows users to describe their workload
to the database. Each row in the workload represents a SQL statement, and
is described by an associated frequency. This table is used by the db2advis
tool and the Index wizard, to pick up and store work and information.

v ADVISE_INDEX. This table stores information about recommended indexes.
The table is populated by the SQL compiler, the db2advis utility, the Index
wizard, or a user. This table is used in two ways:
– To get recommended indexes.
– To evaluate indexes based on input about proposed indexes.

All of the tables above are not created by default. They can be created by
running the EXPLAIN.DDL script found in the misc subdirectory of the
sqllib subdirectory. Connect to the database where the Explain and Advise
tables are required. Then issue the command: db2 -tf EXPLAIN.DDL and the
tables will be created. The tables could also be automatically created by the
Index wizard, if necessary.

Each rectangular object node of Visual Explain corresponds to a row in the
EXPLAIN_OBJECT table. Each octagonal “operator” node of Visual Explain
corresponds to a row in the EXPLAIN_OPERATOR table. Each link between
operators or operator’s objects corresponds to a row of the
EXPLAIN_STREAM table.

Chapter 7. SQL Explain Facility 225

|
|
|
|
|

The explain table information is similar in content to that recorded for an
explain snapshot, however, this information is stored in ordinary relational
tables which can be accessed using standard SQL statements.

Like the Visual Explain access plan graph, explain tables are designed to
reflect the relationships between operators and data objects within the access
plan. The following diagram shows the relationships between these tables.

It is possible to have explain tables that are common to more than one user.
The explain tables can be defined for one user. Aliases can then be defined
using the same name for each additional user pointing to the defined tables.
Each user sharing the common explain tables must have insert permission on
those tables.

See “Appendix C. SQL Explain Tools” on page 555 for more information on
the Explain tables and how to create the tables. Additional information on the
contents of the explain table information is available in:
v “Explain Information for Data Objects” on page 219
v “Explain Information for Data Operators” on page 220.

The db2exfmt tool provided in the misc subdirectory under the sqllib
directory can be used to format the contents of the explain tables into a
legible, organized output.

Explain Predicate
Table

Explain Argument
Table

Explain Stream
Table

Explain Object
Table

Explain Operator
Table

Figure 21. Overview of Explain Table Relationships (not all tables are shown).

226 Administration Guide: Performance

Obtaining Explain Data

Before you can obtain explain data for an SQL statement, you must have a set
of explain tables defined using the same schema as the authorization ID that
invokes the explain facility. See “Table Definitions for Explain Tables” on
page 544 for information on how to create the tables.

Capturing Explain Table Information
Once these tables are defined, explain data is captured when an SQL
statement is compiled and explain data has been requested:
v For static or incremental bind SQL statements, explain table information is

captured when either EXPLAIN ALL or EXPLAIN YES options are specified
on the BIND or the PREP commands; or, a static EXPLAIN SQL statement
is used in the source program.

Note: When incremental bind SQL statements are compiled at run-time,
they are placed in the explain tables at run-time and not bind-time.
Also, the explain table qualifier and authorization ID used for the
insert to the explain tables is that of the package owner and not that
of the user running the package.

v For dynamic SQL statements, explain table information is captured for any
of the following situations:
– An EXPLAIN SQL statement. All explain information is captured and

placed in the explain tables unless the FOR SNAPSHOT clause is used.
An example of an EXPLAIN SQL statement:

EXPLAIN PLAN FOR <any valid DELETE, INSERT, SELECT, SELECT INTO,
UPDATE, VALUES, or VALUES INTO SQL statement>

– The CURRENT EXPLAIN MODE special register is set to YES. This
setting causes the SQL compiler to capture explain data and allow the
SQL statement to execute, returning the results of the query.

– The CURRENT EXPLAIN MODE special register is set to EXPLAIN. This
setting causes the SQL compiler to capture explain data, but does not
execute the SQL statement.

– The CURRENT EXPLAIN MODE special register is set to RECOMMEND
INDEXES. This setting causes the SQL compiler to capture explain data
and the recommended indexes to be placed in the ADVISE_INDEX table;
however, the SQL statement is not executed.

– The CURRENT EXPLAIN MODE special register is set to EVALUATE
INDEXES. This setting causes the SQL compiler to use indexes placed by
the user in the ADVISE_INDEX table. The user inserts a new row for
each index that should be evaluated. The required information for each
index is: index name, table name, and the columns names that make up
the index being evaluated. Once entered, the special register, CURRENT
EXPLAIN MODE should be set to EVALUATE INDEXES. Then the SQL
compiler scans the ADVISE_INDEX table where the field USE_INDEX is

Chapter 7. SQL Explain Facility 227

|
|
|
|
|

set to “Y” (these are called virtual indexes). All dynamic statements
executed in EVALUATE INDEXES mode are explained as if these virtual
indexes were available. The SQL compiler then chooses to use the virtual
indexes if they improve the performance of the statements. Otherwise,
the indexes are ignored. By reviewing the EXPLAIN results, you can see
if the indexes proposed by the user were used by the SQL compiler.
Those that were used should be considered to be implemented to
improve access.

– The EXPLAIN ALL option has been specified on the BIND or PREP
command. This setting causes the SQL compiler to capture explain data
for dynamic SQL at run-time, even if the setting of the CURRENT
EXPLAIN MODE special register is NO. The SQL statement also
executes, returning the results of the query.

Note: Explain information is only captured when the SQL statement is
compiled. Following the initial compilation, dynamic SQL statements
are only recompiled when a change to the environment requires the
statement be recompiled. If the same PREPARE statement is issued
consecutively for the same SQL statement, the SQL statement will
only be compiled, and explain data captured, the first time the
PREPARE statement is issued, assuming the environment does not
change.

For more information about using the EXPLAIN SQL statement or about
using the CURRENT EXPLAIN MODE registers, refer to the SQL Reference
manual. For more information about the BIND and PREP commands, refer to
the Command Reference manual.

Capturing Explain Snapshot Information
Explain snapshot data is captured when an SQL statement is compiled and
explain data has been requested:
v For static or incremental bind SQL statements, an explain snapshot is

captured when either EXPLSNAP ALL or EXPLSNAP YES clauses are
specified on the BIND or the PREP commands; or, a static EXPLAIN SQL
statement that uses a FOR SNAPSHOT or a WITH SNAPSHOT clause is
used in the source program.

Note: When incremental bind SQL statements are compiled at run-time,
they are placed in the explain tables at run-time and not bind-time.
Also, the explain table qualifier and authorization ID used for the
insert to the explain tables is that of the package owner and not that
of the user running the package.

v For dynamic SQL statements, an explain snapshot is captured in any of the
following situations:

228 Administration Guide: Performance

|
|
|
|
|

|
|
|
|
|

|

– An EXPLAIN SQL statement using a FOR SNAPSHOT or a WITH
SNAPSHOT clause. The FOR SNAPSHOT clause has no explain table
information captured except the information associated with explain
snapshot. The WITH SNAPSHOT clause has all explain table information
captured in addition to the information associated with explain snapshot.
An example of an explain snapshot using the EXPLAIN SQL statement:

EXPLAIN PLAN FOR SNAPSHOT FOR <any valid DELETE, INSERT, SELECT,
SELECT INTO, UPDATE, VALUES, or VALUES INTO SQL statement>

Only an explain snapshot is taken and the captured information is
placed in the EXPLAIN_INSTANCE and EXPLAIN_STATEMENT tables.

– The CURRENT EXPLAIN SNAPSHOT special register is set to YES. This
setting causes the SQL compiler to take a snapshot of explain data and
allows the SQL statement to execute, returning the results of the query.

– The CURRENT EXPLAIN SNAPSHOT special register is set to
EXPLAIN. This setting causes the SQL compiler to take a snapshot of
explain data, but does not execute the SQL statement.

– The EXPLSNAP ALL option has been specified on the BIND or PREP
command. This setting causes the SQL compiler to take a snapshot of
explain data at run-time, even if the setting of the CURRENT EXPLAIN
SNAPSHOT special register is NO. The SQL statement will also execute,
returning the results of the query.

Note: Explain information is only captured when the SQL statement is
compiled. Following the initial compilation, dynamic SQL statements
are only recompiled when a change to the environment requires the
statement be recompiled. If the same PREPARE statement is issued
consecutively for the same SQL statement, the SQL statement will
only be compiled, and explain data captured, the first time the
PREPARE statement is issued, assuming the environment does not
change.

For more information about using the EXPLAIN SQL statement and the FOR
SNAPSHOT or WITH SNAPSHOT clauses, or about using the CURRENT
EXPLAIN SNAPSHOT special register, refer to the SQL Reference manual. For
more information about the BIND and PREP commands, refer to the Command
Reference manual.

Guidelines on Using Explain Output

There are a number of ways in which analyzing the explain data can help you
to tune your queries and environment. For example:
v Are Indexes Being Used?

Chapter 7. SQL Explain Facility 229

|
|
|
|
|

As discussed in “Indexing Impact on Query Optimization” on page 98, the
proper indexes can have a significant benefit on performance. Using the
explain output, you can determine if the indexes you have created to help a
specific set of queries are being used. In the explain output, you should
look for index usage in the following areas:
– Join predicates
– Local predicates
– GROUP BY clause
– ORDER BY clause
– The select list.

You can also use the explain facility to evaluate whether a different index
can be used instead of an existing index, or no index at all. After creating a
new index, collect statistics for that index (using the RUNSTATS command)
and recompile your query. Over time you may notice through the explain
data that instead of an index scan, a table scan is now being used. This can
result from a change in the clustering of the table data. If the index that
was previously being used now has a low cluster ratio, you may want to:
– Reorganize your table to cluster the data according to that index
– Use the RUNSTATS command to update the catalog statistics for the

table and index
– Recompile your query
– Re-examine the explain output to determine whether reorganizing your

table has improved the access plan.
v Is the Type of Access Appropriate for Your Application?

You can analyze the explain output and look for types of access to the data
that, as a rule, are not optimal for the type of application you are running.
For example:
– Online Transaction Processing (OLTP) Queries

OLTP applications are prime candidates to use index scans with range
delimiting predicates, because they tend to return only a few rows that
are qualified using an equality predicate against a key column. If your
OLTP queries are using a table scan, you may want to analyze the
explain data to determine the reasons why an index scan was not used.

– Browse-Only Queries

The search criteria for a “browse” type query may be very vague,
causing a large number of rows to qualify. If the user will usually only
look at a few screens of the output data, you may want to try to ensure
that the entire answer set need not be computed before some results are
returned. In this case, the goals of the user are different from the basic

230 Administration Guide: Performance

|
|

operating principle of the optimizer, which attempts to minimize
resource consumption for the entire query, not just the first few screens
of data.
For example, if the explain output shows that both merge scan join and
sort operators were used in the access plan, then the entire answer set
will be materialized in a temporary table before any rows are returned to
the application. In this case, you can attempt to change the access plan
by using the OPTIMIZE FOR clause on the SELECT statement. (For more
information on the OPTIMIZE FOR clause, see “OPTIMIZE FOR n
ROWS Clause” on page 76.) In this way, the optimizer can attempt to
choose an access plan that does not produce the entire answer set in a
temporary table before returning the first rows to the application.

v What Type of Join Method is Being Used?

If a query joins two tables, you can check the type of join processing being
used. Joins involving more rows, such as those in decision-support queries,
usually run faster with a merge join. Joins involving only a few rows, such
as OLTP queries, typically run faster with nested loop joins. However, there
may be extenuating circumstances in either case, such as the use of local
predicates or indexes, that would change how these typical joins would
work. (See “Nested Loop Join” on page 176 and “Merge Join” on page 177
for information about how these two join methods operate.)

Visual Explain

Visual Explain can be used to study queries in more detail when compared to
the other methods, especially those that contain more complex sequences of
operations. Visual Explain is not available on all supported platforms. You
should check the Quick Beginnings for your platform to see if Visual Explain is
supported.

Visual Explain lets you view the access plan for explained SQL statements as
a graph. You can use the information available from the graph to tune your
SQL queries for better performance. Visual Explain also lets you dynamically
explain a SQL statement and view the resulting access plan graph.

The optimizer chooses an access plan and Visual Explain displays the
information as an access plan graph in which tables and indexes, and each
operation on them, are represented as nodes, and the flow of data is
represented by the links between the nodes.

To display an access plan graph, you must have created an explain snapshot.
From an access plan graph, you can view the details for:
v Tables and indexes (and their associated columns)
v Operators (such as table scans, sorts, and joins)

Chapter 7. SQL Explain Facility 231

v Table spaces and functions.

You can also use Visual Explain to:
v View the statistics that were used at the time of optimization. You can then

compare these statistics to the current catalog statistics to help you
determine whether rebinding the package might improve performance.

v Determine whether or not an index was used to access a table. If an index
was not used, Visual Explain can help you determine which columns might
benefit from being indexed.

v View the effects of performing various tuning techniques by comparing the
before and after versions of the access plan graph for a query.

v Obtain information about each operation in the access plan, including the
total estimated cost and number of rows retrieved (cardinality).

For additional detail on Visual Explain, you should refer to the online
information available through the Control Center. The Control Center can be
accessed by typing db2cc on the command line.

SQL Advise Facility

The Index Advisor is a management tool that reduces the need for you to
design and define suitable indexes for your data.

The Index Advisor is good for:
v Finding the best indexes for a problem query.
v Finding the best indexes for a set of queries (a workload), subject to

resource limits which are optionally applied.
v Testing an index on a workload without having to create the index.

There are concepts associated with the SQL Advise Facility. First, there is a
workload. A workload is a set of SQL statements which the database manager
has to process over a given period of time. The SQL statements can include:
SELECT, INSERT, UPDATE, and DELETE statements. For example, over a one
month period of time your database manager may have to process 1 000
INSERTs, 10 000 UPDATEs, 10 000 SELECTs, and 1 000 DELETEs. The
information in the workload is concerned with the type and frequency of the
SQL statements over a given period of time. The advising engine uses this
workload information in conjunction with the database information to
recommend indexes. The goal of the advising engine is to minimize the total
workload cost.

Second, there is a concept of a virtual index. Virtual indexes are indexes which
do not exist in the current database schema. These indexes could be either
recommendations that the Advise Facility has made to you, or indexes that

232 Administration Guide: Performance

you are looking to the Advise Facility to evaluate for you. These indexes
could also be those the Advise Facility considers as part of the process and
then discards because they are not going to be recommended. Virtual indexes
are passed back and forth from you to the Advise Facility using the
ADVISE_INDEX table.

The Advise Facility uses a workload and statistics from the database to
generate recommended indexes.

The Advise Facility uses two EXPLAIN tables:
v ADVISE_WORKLOAD

This table is where you describe the workload to be considered. Each row
in the table represents an SQL statement and is described by an associated
frequency. There is an identifier for each workload that is a field of the
table called WORKLOAD_NAME. All SQL statements which are part of the
same workload should have the same WORKLOAD_NAME.
The Index wizard and the db2advis tool use the table to pick up and store
workload information.

v ADVISE_INDEX
This table stores information about recommended indexes. Information is
placed into this table from the SQL compiler, the Index wizard, the
db2advis tool, or you.
The table is used in two ways:
– To get recommended indexes from the Advise Facility
– To evaluate indexes.

Note: To create these tables, run the EXPLAIN.DDL script found in the misc
subdirectory of the sqllib subdirectory. If not already created, the
Index wizard can also create these tables.

The process for using the Index Advisor involves inputs, invocation of the
advisor, outputs, and some special cases that should be considered.

There are three ways to create the input for the Index Advisor:
v Capturing a workload.

Use one of the following ways to create the SQL to be evaluated:
– Using the monitor to get dynamic SQL.
– Using the SYSSTMT catalog view to get static SQL.
– Adding statements and frequencies by cutting and pasting the values

into the ADVISE_INDEX table.
v Modifying the workload frequencies to increase or decrease the importance

of queries.

Chapter 7. SQL Explain Facility 233

|
|
|
|
|

|
|
|

|

v Determining the constraints, if any, on the data.

There are four ways to invoke the Index Advisor:
v Using the Control Center.

This is the recommended way to use the Index Advisor. From the Control
Center, expand the object tree until you find the Indexes folder. Click with
mouse button two on the Indexes folder and select Create–>Index using
wizard from the pop-up menu. The Index wizard opens. There is extensive
help with the Index wizard and it is easy to use. The wizard also contains
features to construct a workload by looking for recently executed SQL, or
looking through the recently used packages, or by manually adding SQL
statements.

v Using the command line processor.
On the command line enter db2advis. The db2advis starts by reading in a
workload from one of three locations:
– From the command line
– From the statements in a text file
– From the ADVISE_WORKLOAD table after you have inserted rows with

the proposed workload (SQL and frequency).

The tool then uses the CURRENT EXPLAIN MODE register to obtain
recommended indexes, combined with an internal optimization algorithm
for picking out the best indexes. The output goes to your terminal screen,
the ADVISE_INDEX table, and an output file, if desired.

For example, you may wish the tool to recommend indexes for a simple
query “select count(*) from sales where region = ’Quebec’”
$ db2advis -d sample \
-s "select count(*) from sales where region = 'Quebec'" \
-t 1
performing auto-bind

Bind is successful. Used bindfile: /home3/valentin/sqllib/bnd/db2advis.bnd

Calculating initial cost (without recommended indexes) [31.198040] timerons
Initial set of proposed indexes is ready.
Found maximum set of [1] recommended indexes
Cost of workload with all indexes included [2.177133] timerons
cost without index [0] is [31.198040] timerons. Derived benefit is
[29.020907]
total disk space needed for initial set [1] MB
total disk space constrained to [-1] MB

1 indexes in current solution
[31.198040] timerons (without indexes)
[2.177133] timerons (with current solution)
[%93.02] improvement

Trying variations of the solution set.

234 Administration Guide: Performance

|
|
|
|
|
|
|
|

Time elapsed.
LIST OF RECOMMENDED INDEXES
===========================
index[1], 1MB CREATE INDEX WIZ689 ON VALENTIN.SALES (REGION DESC)
===========================
Index Advisor tool is finished.

The db2advis tool can be used to recommend indexes for a workload as
well. You can create an input file called “sample.sql”:
--#SET FREQUENCY 100
select count(*) from sales where region = ?;
--#SET FREQUENCY 3
select projno, sum(comm) tot_comm from employee, emp_act
where employee.empno = emp_act.empno and

employee.job='DESIGNER'
group by projno
order by tot_comm desc;
--#SET FREQUENCY 50
select * from sales where sales_date = ?;

Then execute the following command:
$ db2advis -d sample -i sample.sql -t 0

found [3] SQL statements from the input file

Calculating initial cost (without recommmended indexes) [62.331280] timerons
Initial set of proposed indexes is ready.
Found maximum set of [2] recommended indexes
Cost of workload with all indexes included [29.795755] timerons
cost without index [0] is [58.816662] timerons. Derived benefit is
[29.020907]
cost without index [1] is [33.310373] timerons. Derived benefit is
[3.514618]
total disk space needed for initial set [2] MB
total disk space constrained to [-1] MB

2 indexes in current solution
[62.331280] timerons (without indexes)
[29.795755] timerons (with current solution)
[%52.20] improvement

Trying variations of the solution set.
Time elapsed.
LIST OF RECOMMENDED INDEXES
===========================
index[1], 1MB CREATE INDEX WIZ119 ON VALENTIN.SALES (SALES_DATE DESC,
SALES_PERSON DESC)
index[2], 1MB CREATE INDEX WIZ63 ON VALENTIN.SALES (REGION DESC)
===========================
Index Advisor tool is finished.

v Using self-directed methods involving the EXPLAIN modes and PREP
command options.

Chapter 7. SQL Explain Facility 235

|
|

For example, the CURRENT EXPLAIN MODE special register is set to
RECOMMEND INDEXES. This setting will cause the SQL compiler to
capture explain data and the recommended indexes to be placed in the
ADVISE_INDEX table; however, the SQL statement is not executed.
Or, the CURRENT EXPLAIN MODE special register is set to EVALUATE
INDEXES. This setting will cause the SQL compiler to use indexes placed
by the user in the ADVISE_INDEX table. The user inserts a new row for
each index that should be evaluated. The required information for each
index is: index name, table name, and the columns names that make up the
index being evaluated. Once entered, the special register CURRENT
EXPLAIN MODE should be set to EVALUATE INDEXES. Then the SQL
compiler scans the ADVISE_INDEX table for indexes where the field
USE_INDEX=“Y” (these are called virtual indexes). All dynamic statements
executed in EVALUATE INDEXES mode are explained as if these virtual
indexes were available. The SQL compiler then chooses to use the virtual
indexes if they improve the performance of the statements. Otherwise, the
indexes are ignored. By reviewing the EXPLAIN results, you can see if the
indexes proposed by the user were used by the SQL compiler. Those that
were used should be considered to be implemented to improve access.

v Using the Call Level Interface (CLI).
If you are using this interface to write applications, you can also use the
advisor.

There are different ways to use the results from the advisor:
v Interpreting the output from the Index Advisor.

To see what indexes were recommended by the Advise Facility, you can use
the following query:

SELECT CAST(CREATION_TEXT as CHAR(200))
FROM ADVISE_INDEX

v Applying the recommendations of the Index Advisor.
v Knowing when to drop an index.

To get better recommendations for a specific query, it is suggested that you
advise that query by itself. You can use the Index wizard to recommend
indexes for a single query by building a workload which contains only that
query.

A sample workload can be collected from Event Monitor output. The Event
Monitor can be used to collect dynamic SQL executions. Then these
statements can be fed back to the Advise Facility.

The Index wizard is a simple, straight-forward, easy to use, visual interface
providing an excellent way to access the Advise Facility.

236 Administration Guide: Performance

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Part 3. Tuning and Configuring Your System

© Copyright IBM Corp. 1993, 2001 237

238 Administration Guide: Performance

Chapter 8. Operational Performance

The following topics provide information on how you can influence
performance of an SQL query during run-time:
v How DB2 Uses Memory
v Managing the Database Buffer Pool
v Managing Multiple Database Buffer Pools
v Prefetching Data into the Buffer Pool
v Configuring I/O Servers for Prefetching and Parallel I/O
v Sorting
v Reorganizing Catalogs and User Tables
v Performance Considerations for DMS Devices
v Managing Initialization Overhead
v Database Agents
v Using the Database System Monitor
v Extending Memory.

The following chapters also provide information on how performance can be
influenced:
v “Chapter 3. Application Considerations” on page 43
v “Chapter 4. Environmental Considerations” on page 91
v “Chapter 5. System Catalog Statistics” on page 113.

You may also refer to Administration Guide: Planning physical database design
considerations.

How DB2 Uses Memory

Many of the configuration parameters available in DB2 affect memory usage
on the system. Some may affect memory on the server, some on the client,
and some on both. Furthermore, memory is allocated and de-allocated at
different times and from different areas of the system.

A system administrator should also take into consideration balancing overall
memory usage on the system. Different applications running on the operating
system may use memory in different ways. For example, some applications
may use the file system cache, while the database manager uses its own

© Copyright IBM Corp. 1993, 2001 239

|
|
|
|

buffer pool for data caching instead of the operating system facility. See
“Setting Parameters That Affect Memory Usage” on page 245 for additional
considerations.

Figure 22 shows that the database manager uses different types of memory.
There is an assumption that this figure illustrating memory use is not an
Enterprise – Extended Edition, nor a multiple logical node, environment. In an
Enterprise – Extended Edition or a multiple logical node environment, there
are multiple Database Manager Shared Memory sets (one per node).

Memory is allocated for each instance of the database manager at the
following times:
v When the database manager is started (db2start), the area marked

“Database Manager Shared Memory” is allocated, and this area remains
allocated until the database manager is stopped (db2stop). This area
contains information that is needed by the database manager to manage
activity across all database connections. When the first application connects
to a database, both global and private memory areas are allocated.

v When a database is activated or connected to for the first time, the
“Database Global Memory” is allocated. The database global memory is
used across all applications that might connect to the database and contains
memory areas such as the buffer pools, lock list, database heap and utility
heap.

v When an application connects to a database, the “Application Global
Memory” is allocated (this occurs only in a partitioned database

(maxappls)

. . .

. . .

(numdb)(1)

(1)

Database Manager
Shared Memory

Database
Global Memory

Database
Global Memory

Application
Global Memory

Application
Global Memory

Figure 22. Types of memory used by the Database Manager

240 Administration Guide: Performance

|

|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

environment, or if the intra_parallel configuration parameter is enabled).
This memory is used by agents working on behalf of the application to
share data and coordinate activities amongst themselves.

v (Not shown in the previous diagram:) When an agent is assigned to work
for a particular application (as the result of a connect request, or, in a
parallel environment, a new SQL request), “Agent Private Memory” is
allocated for that agent. The agent private memory area is allocated for the
agent and contains memory allocations that will be used only by this
specific agent, such as the sort heap and the application heap.
Once a database is already in use by one application, any subsequent
connecting applications will only have agent private memory and
application global shared memory allocated on their behalf.

Figure 22 on page 240 shows how configuration parameter settings can affect
memory. In particular, the parameters in the following list can limit the
amount of memory that is allocated for specific purposes. (In a partitioned
database environment, this memory is required on every database partition.)
v numdb defines the maximum number of concurrent active databases (in use

by different applications). Since each database has its own global memory
area, the amount of memory that can potentially be allocated grows if the
value of this parameter increases.

v maxappls defines the maximum number of applications that can
simultaneously connect to a single database. It affects the amount of
memory that can potentially be allocated for “Agent Private Memory” and
“Application Global Memory” for that database. (Note that this parameter
can be set differently for every database.)

v (Not shown in the previous diagram:) maxagents (and max_coordagents for
parallel processing) limit the number of database manager agents that can
exist simultaneously across all active databases within an instance. Along
with maxappls, these parameters limit the amount of memory allocated for
“Agent Private Memory” and “Application Global Memory”. (For
information on agents, see “Database Agents” on page 271.)

Figure 23 on page 242 summarizes how much memory is used to support
applications. The following configuration parameters allow you to control the
size of this memory, by limiting the number of ″memory segments″ (portions
of logical memory) and their size.

Chapter 8. Operational Performance 241

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

Database Manager Shared Memory
Memory space is required for the database manager to run. This space
can be very large, especially in intra-partition and inter-partition
parallelism environments. You can predict and control the size of this
space by reviewing the following sections:
v “Database Agents” on page 271. Agents running on behalf of

applications require substantial memory space, especially if the
value of maxagents is not appropriate.

Database manager shared memory
(including FCM)

Utility heap
()util_heap_sz

Backup buffer
()backbufsz

Restore buffer
()restbufsz

Package cache
()pckcachesz

Monitor heap
()mon_heap_sz

Audit buffer size
()audit_buf_sz

Database heap
()dbheap

Database global memory

Buffer pools
(buffpage)

Extended memory cache

Lock list ()locklist

()app_ctl_heap_sz

Application global memory

Application
heap

()applheapsz Statement heap
()stmtheap

Agent stack
()agent_stack_sz

DRDA heap
(drda_heap_sz)

UDF memory
()udf_mem_sz

Statistics heap
()stat_heap_sz

Sort heap
()sortheap

Client I/O block
()rqrioblk (remote)

Java heap
()java_heap_sz

Agent/Application
shared memory

Application support
layer heap (aslheapsz)

Note: Box size does not indicate relative size of memory.

Agent private memory

Client I/O block
()rqrioblk (local)

Log buffer
()logbufsz

Catalog cache
()catalogcache_sz

Query heap
()query_heap_sz

Figure 23. How Memory Is Used by the Database Manager

242 Administration Guide: Performance

v “FCM Requirements” on page 246. For partitioned database
systems, the fast communications manager (FCM) requires
substantial memory space, especially if the value of fcm_num_buffers
is not appropriate.
The FCM memory requirements are either allocated from the FCM
Buffer Pool, or from both the Database Manager Shared Memory
and the FCM Buffer Pool, depending on whether or not the
partitioned database system uses multiple logical nodes. See the
following description of the FCM Buffer Pool for details.

FCM Buffer Pool
If you have a partitioned database system that does not have multiple
logical nodes, the Database Manager Shared Memory and FCM Buffer
Pool are as shown in Figure 24.

If you have a partitioned database system that uses multiple logical
nodes, the Database Manager Shared Memory and FCM Buffer Pool
are as shown in Figure 25 on page 244.

Database Manager Shared Memory

Database Global Memory

FCM Buffers ()fcm_num_buffers FCM Control Block

Global Control Block

FCM Message Anchors ()fcm_num_anchors

FCM Connection Entries ()fcm_num_connect

FCM Request Block ()fcm_num_rqb

FCM Buffer Pool
()one for each host

Figure 24. FCM Buffer Pool when Multiple Logical Nodes Are Not Used

Chapter 8. Operational Performance 243

Database Global Memory
Database Global Memory is affected by the following configuration
parameters:
v The number of memory segments is limited by numdb (see

“Maximum Number of Concurrently Active Databases (numdb)” on
page 473).

v The maximum size of memory segments is determined by the
values of the following parameters:
– “Buffer Pool Size (buffpage)” on page 345 (if a buffer pool size is

-1), or the explicit sizes that were specified when the buffer pools
were created or altered

– “Maximum Storage for Lock List (locklist)” on page 353
– “Database Heap (dbheap)” on page 348
– “Utility Heap Size (util_heap_sz)” on page 351
– “Extended Storage Memory Segment Size (estore_seg_sz)” on

page 393
– “Number of Extended Storage Memory Segments

(num_estore_segs)” on page 393.
– “Package Cache Size (pckcachesz)” on page 356.

Application Global Memory
Application Global Memory is affected by the following configuration

Database Manager Shared Memory

FCM Buffers ()fcm_num_buffers

FCM Buffer Pool

Database Global Memory

FCM Connection Entries ()fcm_num_connect

FCM Request Block ()fcm_num_rqb
Legend

One for all logical hosts
One for each logical host

* FCM Control Block*

FCM Message Anchors ()fcm_num_anchors

*

Global Control Block

!

!

! !

Figure 25. FCM Buffer Pool when Multiple Logical Nodes Are Used

244 Administration Guide: Performance

|
|

parameter: “Application Control Heap Size (app_ctl_heap_sz)” on
page 358 . For parallel systems, space is also required for the
application control heap, which is shared between the agents that are
working on behalf of the same application at one database partition.
The heap is allocated when the first agent to receive a request from
the application requests a connection. The agent can be either a
coordinating agent or a subagent (see “Database Agents” on page 271).

Agent Private Memory

v The number of memory segments is limited by the lower of:
– The total of maxappls for all active databases (see “Maximum

Number of Active Applications (maxappls)” on page 394)
– The value of maxagents (see “Maximum Number of Agents

(maxagents)” on page 399).
v The maximum size of memory segments is determined by the

values of the following parameters:
– “Application Heap Size (applheapsz)” on page 363
– “Sort Heap Size (sortheap)” on page 360
– “Statement Heap Size (stmtheap)” on page 362
– “Statistics Heap Size (stat_heap_sz)” on page 364
– “Query Heap Size (query_heap_sz)” on page 365
– “DRDA Heap Size (drda_heap_sz)” on page 366
– “UDF Shared Memory Set Size (udf_mem_sz)” on page 367
– “Agent Stack Size (agent_stack_sz)” on page 368.

Agent/Application Shared Memory

v The total number of agent/application shared memory segments
(for local clients) is limited by the lower of:
– The total of maxappls for all active databases (see “Maximum

Number of Active Applications (maxappls)” on page 394)
– The value of maxagents (see “Maximum Number of Agents

(maxagents)” on page 399), or (for parallel systems)
max_coordagents (see “Maximum Number of Coordinating Agents
(max_coordagents)” on page 402).

v Agent/Application Shared Memory is also affected by the
following:
– “Application Support Layer Heap Size (aslheapsz)” on page 372.
– “Client I/O Block Size (rqrioblk)” on page 375.

Setting Parameters That Affect Memory Usage
Parameters that allocate memory should never be set at their highest values,
even on systems with the maximum amount of memory installed, unless such
a value has been carefully justified. Many of the parameters can allow the

Chapter 8. Operational Performance 245

|
|
|
|
|
|
|

|
|
|

database manager to very easily and quickly take up all of the available
memory on a machine. In addition, the management of a large amount of
memory can take significant additional work on the part of the database
manager and thus incur even more overhead.

Some UNIX-based operating systems allocate swap space when a process
allocates memory and not when the process itself is paged out to swap space.
In these cases, you should ensure the total shared memory size is supported
with the equivalent amount of paging space.

For most of the configuration parameters, memory is only committed as it is
required. These parameters reflect the maximum size of a particular memory
heap. The notable exceptions to this rule are the following parameters for
which memory is fully committed based on the parameter value:
v “Buffer Pool Size (buffpage)” on page 345 (if a buffer pool size is -1), or the

explicit sizes that were specified when the buffer pools were created or
altered

v “Sort Heap Threshold (sheapthres)” on page 360
v “Maximum Storage for Lock List (locklist)” on page 353
v “Application Support Layer Heap Size (aslheapsz)” on page 372
v “Number of FCM Message Anchors (fcm_num_anchors)” on page 459
v “Number of FCM Buffers (fcm_num_buffers)” on page 460
v “Number of FCM Connection Entries (fcm_num_connect)” on page 461
v “Number of FCM Request Blocks (fcm_num_rqb)” on page 462.

The appropriate values for these types of parameters can best be determined
by benchmarking, where typical and worst-case SQL statements are run
against the server and the values of the parameters are modified until the
point of diminishing return for performance is found. If performance versus
parameter values were graphed, the point where the curve begins to plateau
or decline would indicate the point at which additional allocation provides no
additional value to the application and is therefore simply wasting memory.
(See “Chapter 12. Benchmark Testing” on page 315.)

The upper limits of memory allocation for several parameters may be beyond
the memory capabilities of existing hardware and operating systems. These
limits were chosen to allow for future growth.

For valid parameter ranges, see the parameter descriptions in “Chapter 13.
Configuring DB2” on page 329.

FCM Requirements
Start with default values when configuring the following fast communications
manager (FCM) configuration parameters:

246 Administration Guide: Performance

|
|
|
|

|
|
|
|

|
|

v “Number of FCM Buffers (fcm_num_buffers)” on page 460
v “Number of FCM Request Blocks (fcm_num_rqb)” on page 462
v “Number of FCM Connection Entries (fcm_num_connect)” on page 461
v “Number of FCM Message Anchors (fcm_num_anchors)” on page 459.

To tune these parameters, use the database system monitor to monitor the low
water mark for the free buffers, free message anchors, free connection entries,
and the free request blocks. If the low water mark is less than 10 percent of
the number of the corresponding free data item, increase the value of the
corresponding parameter. For information on the database system monitor, see
“Using the Database System Monitor” on page 277.

Refer to Administration Guide: Planning for information on enabling FCM
communications.

Managing the Database Buffer Pool

A buffer pool is an area of storage into which database pages (containing table
rows or index entries) are temporarily read and changed. The purpose of the
buffer pool is to improve database system performance. Data can be accessed
much faster from memory than from a disk. Therefore, the fewer times the
database manager needs to read from or write to a disk, the better the
performance.

The configuration of one or more buffer pools is the single most important
tuning area, since it is here that most of the data manipulation takes place for
applications connected to the database (excluding large objects and long field
data).

When an application accesses a row of a table for the first time, the database
manager places the page containing that row in the buffer pool. The next time
any application requests data, the buffer pool is checked first. If the requested
data is found on pages kept in the buffer pool, the database manager does not
need to go out to disk storage to retrieve the requested data. Avoiding the
need to retrieve data from disk storage results in faster performance.

The storage associated with the buffer pool is allocated when a database is
activated or when the first application connects to the database. Applications
are the primary beneficiaries of the buffer pool; once applications are all
disconnected, the storage associated with the buffer pool is de-allocated.

Pages stay in the buffer pool until the database is shut down, or until the
space occupied by a page is required for another page. The space chosen in
the buffer pool to bring in another page is selected using criteria such as the
following:

Chapter 8. Operational Performance 247

|

|

|

|

|
|
|
|
|
|

v The last reference to a page
v The likelihood of the page being referenced again by the last agent that

looked at the page
v The type of data on the page
v Whether or not a page was changed in memory but not written out to disk.

(Changed pages are always written to disk before being overwritten.)

Note: After changed pages are written out to disk, they are not removed from
the buffer pool unless the space they occupy is needed for other pages.
Until they are overwritten, they can be accessed again if their data is
needed.

When creating a buffer pool, by default the page size is 4 KB. You can choose
to have the page size set at one of 4 KB, 8 KB, 16 KB, or 32 KB when creating
the buffer pool. If buffer pools are created using one page size, only table
spaces created using the identical page size can be associated with them. You
cannot alter the page size of the buffer pool following its creation. A new
buffer pool must be created with the page size you want.

Exploiting Large Memories on Windows Systems
When working with Windows 2000, buffer pool sizes up to 64 GB in size are
supported less the size of DB2 and the operating system. (This assumes that
DB2 is the primary product on the system.) This support is available through
Microsoft Address Windowing Extensions (AWE).

Although AWE can be used with buffer pools of any size, if you require AWE
use on larger buffer pools there are other recommended Windows products.
Windows 2000 Advanced Server provides support for up to 8 GB of memory.
Windows 2000 Data Center Server provides support for up to 64 GB of
memory.

DB2 and Windows 2000 must be configured correctly to support AWE buffer
pools. The buffer pool that will take advantage of AWE must exist in the
database.

To have a 3 GB user space allocated, use the /3GB Windows 2000 boot option.
This allows a larger AWE window size to be used. To enable access to more
than 4 GB of memory via the AWE memory interface, use the /PAE Windows
2000 boot option. To verify that you have the correct boot option selected,
under Control, select System, then select “Startup and Recovery”. From the
drop-down list you can see the available boot options. If the boot option
(/3GB or /PAE) you want is selected, then you are ready to proceed to the
next task in setting up AWE support. If the option you want is not available
for selection, you must add the option to the boot.ini file on the system drive.
The boot.ini file contains a list of actions to be done when the operating

248 Administration Guide: Performance

|

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

system is started. Add /3GB, or /PAE, or both (separated by blanks) at the
end of the list of existing parameters. Once you have saved this changed file,
you can verify and select the correct boot option as mentioned above.

Windows 2000 also has to be modified to associate the “lock pages in
memory”-right with the user under which DB2 is installed. To set the “lock
pages in memory”-right, once you have logged on to Windows 2000 as the
user who installed DB2, under the Start menu on Windows 2000 select the
“Administrative Tools” folder, and then the “Local Security Policy” program.
Under the local policies, you can select the user rights assignment for the
“lock pages in memory”-right.

DB2 requires the setting of the DB2_AWE registry variable. To set this registry
variable correctly, you will need to know the buffer pool ID of the buffer pool
you wish to allow support of AWE. The buffer pool ID is found in the
BUFFERPOOLID column in the SYSCAT.BUFFERPOOLS system catalog view.
You also need to know the number of physical pages and the address window
pages to allocate. The number of physical pages to allocate should be some
value less than the total available physical pages. The actual number chosen
will depend on your working environment. For example, if you have an
environment where only DB2 and database applications are used on your
system, then you can choose to have from one-half to one GB less than the
total size of the physical pages as the value used with the DB2_AWE variable.
If you have an environment where other non-database applications are using
the system, then you will have to increase the value you subtract from the
total to allow more physical pages for those other applications. The number
used in the DB2_AWE registry variable is the number of physical pages to be
used in support of AWE and for use by DB2. The upper limit on the address
window pages is 1.5 GB, or 2.5 GB when the /3GB Windows 2000 boot option
is in effect.

For information on setting the DB2 registry variable DB2_AWE, see the
registry variables in “Appendix A. DB2 Registry and Environment Variables”
later in this book.

Working With Buffer Pool Pages
Pages in the buffer pool can have different attributes:
v In-use pages are currently being read or updated. They can be read, but not

updated, by other agents.
v “Dirty” pages are pages where data has been changed but has not yet been

written to disk. After a page is written to disk, it is considered “clean”, and
remains in the buffer pool. The space occupied by clean pages can be used
for new pages, and is available for migration to an associated extended
storage cache (if defined).

Chapter 8. Operational Performance 249

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Pages can be written from the buffer pool to disk when the percentage of
space occupied by changed pages in the buffer pool has exceeded the value
specified by the chngpgs_thresh configuration parameter. You also may need to
configure the database to include more than one page-cleaner agent. These
agents write out changed pages to disk so that the database agents can find
usable space in the buffer pool.

Page-cleaner agents perform I/O that would otherwise have to be performed
by the database agents. As a result, your applications can run faster, because
transactions are not forced to wait while their database agents write pages to
disk. (Page-cleaner agents are sometimes referred to as asynchronous page
cleaners or asynchronous buffer writers because they can carry out their jobs at
the same time as the database agents.)

To change the number of page-cleaner agents, use the num_iocleaners
configuration parameter (the default is to create one page-cleaner agent). For
information, see “Number of Asynchronous Page Cleaners (num_iocleaners)”
on page 387. Set the value of this parameter to between one and the number
of physical disks in the database. The larger this number, the better the
performance when carrying out update-intensive workloads. This is also true
when there are a large number of data- or index-page-writes with respect to
the number of asynchronous data- or index-page-writes.

Writing pages to disk also allows for faster recovery of the database should a
system crash occur, because the database manager is able to rebuild more of
the buffer pool from disk rather than having to use the database log files. As a
result, page cleaning is requested if the size of the log that would need to be
read during recovery exceeds the following maximum:

logfilsiz * softmax

where:
v logfilsiz represents the size of the log files (see “Size of Log Files (logfilsiz)”

on page 409)
v softmax represents the percentage of log files to be recovered following a

database crash (see “Recovery Range and Soft Checkpoint Interval
(softmax)” on page 417).
For example, if the value of softmax is 250, then 2.5 log files will contain
the changes that need to be recovered if a crash occurs.

You may use the database system monitor to help you track the number of
times that page cleaning is requested to minimize log read time during
recovery. For more information refer to the pool_lsn_gap_clns (buffer pool log
space cleaners triggered) monitor element description in the System Monitor
Guide and Reference manual.

250 Administration Guide: Performance

|
|
|
|
|
|

|
|
|
|
|

|

|

|
|

|
|
|

|
|

The size of the log that would need to be read during recovery is the
difference between the location of the following in the log:
v The most recently written log record
v The log record that describes the oldest change to data in the buffer pool.

The following figure illustrates how the work of managing the buffer pool can
be shared between page-cleaner agents and database agents, compared to the
database agents performing all of the I/O.

Chapter 8. Operational Performance 251

Without Page Cleaners

With Page Cleaners

Buffer Pool

Buffer Pool

Database Agent

Database Agent

Asynchronous
Page Cleaner

Database Agent

Database Agent

Oops, there is no
room for this page

1.

There is room for
this page

Write the
pages to disk

Take out
dirty pages

Now I can
put this page in

3.

2. I have to move a
dirty page

A

A

Buffer Pool

A

AA

Figure 26. Asynchronous Page Cleaner. “Dirty” pages are written out to disk.

252 Administration Guide: Performance

Managing Multiple Database Buffer Pools

Each database requires at least one buffer pool. However, depending on your
needs you may choose to create several buffer pools, each of a different size,
for a single database. The CREATE, ALTER, and DROP BUFFERPOOL
statements allow you to create, change, or remove a buffer pool. You can
specify which data is cached in a buffer pool with the CREATE TABLESPACE
and ALTER TABLESPACE statements.

The buffpage configuration parameter specifies the size of any buffer pool, if
the buffer pool’s size is specified as -1 in the SYSCAT.BUFFERPOOLS catalog
view. (Otherwise this parameter is ignored.) A buffer pool’s size can be set
with the DDL statements ALTER BUFFERPOOL or CREATE BUFFERPOOL.

A new database has a default buffer pool called IBMDEFAULTBP with a size
determined by the platform. Once a database is created or migrated, then
other buffer pools can be created for it.

When working on your database design, you may have determined that tables
with 8 KB page sizes were best. As a result, you should create a buffer pool
with an 8 KB page size (along with one or more table spaces with the same
page size).

In a partitioned database environment, each buffer pool for a database has the
same default definition on all database partitions (unless it was otherwise
specified in the CREATE BUFFERPOOL statement, or the buffer pool’s size
was changed for a particular database partition with the ALTER
BUFFERPOOL statement).

When you create a table space with a page size of 4 KB and do not assign it
to a specific buffer pool, the table space is assigned to the default buffer pool.
If you create a table space with a page size greater than 4 KB (8 KB, 16 KB, 32
KB) you should assign it to a buffer pool that uses a page size that is the
same. If this buffer pool is currently not active, DB2 will attempt to assign the
table space to an active buffer pool that uses an identical page size (if one is
available). This assignment, if made, is temporary. When the database is
activated again, and the originally specified buffer pool is active, then DB2
assigns the table space to that buffer pool.

You cannot use the ALTER TABLESPACE statement to add the table space to
a buffer pool that uses a different page size.

When creating or altering buffer pools, the total memory that is required by
all buffer pools must be available to the database manager so that all of the
buffer pools can be allocated when the database is started. Should this
memory not be available when a database is started, the database manager

Chapter 8. Operational Performance 253

|
|
|
|

attempts to start the default buffer pool (IBMDEFAULTBP) and one of each
buffer pool defined with a different page size, but only with a minimal size of
16 pages each. The size of this minimal buffer pool can be overridden with
the registry variable DB2_OVERRIDE_BPF. See “Appendix A. DB2 Registry
and Environment Variables” on page 491 for more information on this and
other registry and environment variables. A warning message is returned with
each failed attempt to start a buffer pool; the database continues in this
operational state until its configuration is changed and the database can be
fully restarted.

The reason for allowing the database manager to start with minimal-sized
values is to allow you to connect to the database. You can then reconfigure
the buffer pool sizes, or perform other critical tasks, with the goal of restarting
the database with correct buffer pool sizes. Do not consider operating the
database for an extended time in such a state.

Note: Although the size and attributes associated with the default buffer pool
can be changed, it cannot be dropped. Also, there is a minimum size
for each buffer pool that is based on the platform being used.

There are advantages to having a large amount of memory allocated to buffer
pools. For example, larger buffer pool sizes:
v Enable often-requested data pages to be kept in the buffer pool, allowing

for quicker access. Fewer I/O operations can reduce I/O contention,
thereby providing better response time and reducing the processor resource
needed for I/O operations.

v Provide the opportunity to achieve higher transaction rates with the same
response time.

v Prevent I/O contention for frequently used disk storage devices such as
catalog tables and frequently referenced user tables and indexes. Sorts
required by queries also benefit from reduced I/O contention on the disk
storage devices containing the temporary table spaces.

Choosing One or Many Buffer Pools
If any of the following conditions apply to your system, you should use only
a single buffer pool:
v The total buffer space is less than 10 000 4 KB pages.
v People with the application knowledge to do specialized tuning are not

available.
v You are working on a test system.

If your system is not constrained by these conditions, then consider using
more than one buffer pool for the following potential performance
improvements:

254 Administration Guide: Performance

|
|
|
|
|
|
|
|
|

|
|
|
|
|

v You can put temporary table spaces into a separate buffer pool to provide
better performance for queries that require temporary storage, especially
sort-intensive queries.

v If you have data that must be accessed repeatedly and quickly by many
short update transaction applications, then you should consider moving the
table space containing the data into a separate buffer pool. If this buffer
pool is sized appropriately, its pages have a better chance of being found,
contributing to a lower response time and a lower transaction cost.

v You can isolate data into separate buffer pools to favor certain applications,
data, and indexes. For example, you might want to put tables and indexes
that are updated frequently into a buffer pool that is separate from those
tables and indexes that are frequently queried but infrequently updated.
This change will reduce the impact of the frequent updates (on the first set
of tables) on the frequent queries (on the second set of tables).

v You can use smaller buffer pools for the data accessed by applications that
are seldom used, especially in the case where an application requires very
random access into a very large table. In such a case, there is no need to
keep the data in buffer pool memory for longer than a single query. It is
better to keep a small buffer pool for this data, and free up the extra
memory for other uses (for example, for other buffer pools).

v After separating different activities and data into separate buffer pools,
good and relatively inexpensive performance diagnosis data can be
produced from statistics and accounting traces.

Prefetching Data into the Buffer Pool

Prefetching index and data pages into the buffer pool can help improve
performance by reducing the time spent waiting for I/O to complete. To
prefetch pages means that one or more pages are retrieved from disk in
anticipation of their use. There are two categories of prefetch:
v Sequential prefetch is a mechanism that reads consecutive pages into the

buffer pool before the pages are required by the application. (See
“Understanding Sequential Prefetching” on page 256.)

v List prefetch, or list sequential prefetch, is a way to access data pages
efficiently, even when the data pages needed are not consecutive. (See
“Understanding List Prefetching” on page 257.)

These two methods of reading data pages are in addition to a normal read. A
normal read is used when just one or a few consecutive pages are retrieved.
During a normal read, one page of data is transferred.

For further information on enabling prefetching, see also “Configuring I/O
Servers for Prefetching and Parallel I/O” on page 258.

Chapter 8. Operational Performance 255

Understanding Sequential Prefetching
Reading several consecutive pages into the buffer pool using a single I/O
operation can greatly reduce the overhead associated with running your
application. In addition, performing multiple I/O operations in parallel to
read into the buffer pool several ranges of pages at the same time can help
reduce the time your application needs to wait for I/O operations to
complete.

Prefetching is started when the database manager determines that sequential
I/O is appropriate and that prefetching may help to improve performance. In
cases such as table scans and table sorts, the database manager can easily
determine that sequential prefetch will improve I/O performance. In these
cases, the database manager automatically starts sequential prefetch. The
following example could require a table scan and would be a good candidate
for sequential prefetch:

SELECT NAME FROM EMPLOYEE

The number of pages that the database manager will prefetch can be defined
for each table space using the PREFETCHSIZE clause with either the CREATE
TABLESPACE or ALTER TABLESPACE statements. The value specified is
maintained in the PREFETCHSIZE column of the SYSCAT.TABLESPACES
system catalog table.

It is a good practice to explicitly set the PREFETCHSIZE value as a multiple
of the EXTENTSIZE value for your table space and the number of table space
containers. (The extent size is the number of pages that the database manager
writes to a container before using a different container; refer to “Designing
and Choosing Table Spaces” in the Administration Guide: Planning.) For
example, if the extent size is 16 pages and the table space has two containers,
you could choose to set the prefetch quantity to 32 pages.

The database manager monitors buffer pool usage to ensure that prefetching
of data does not remove pages from the buffer pool if those pages are needed
by another unit of work. To avoid problems, the database manager may
choose to limit the number of pages being prefetched to a quantity less than
you specified for the table space.

The setting of the prefetch size can have significant performance implications,
particularly for large table scans. You can use the database system monitor
and other system monitor tools to help you tune PREFETCHSIZE for your
table spaces. For example, you can gather information about whether:
v There are I/O waits for your query, using monitoring tools available for

your operating system.

256 Administration Guide: Performance

|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|

v Prefetch is occurring, by looking at the pool_async_data_reads (buffer pool
asynchronous data reads) data element provided by the database system
monitor. Refer to the System Monitor Guide and Reference for more
information.

If there are I/O waits and the query is prefetching data, you can try
increasing the value of PREFETCHSIZE. It is possible that the prefetcher is not
the cause of the I/O wait, in which case increasing the PREFETCHSIZE value
will not improve the performance of your query.

In all types of prefetch, multiple I/O operations may be performed in parallel
when the prefetch size is a multiple of the extent size for the table space and
the extents of the table space are in separate containers. For better
performance the containers should be configured to use separate physical
devices. For more information on parallel prefetching, see “Configuring I/O
Servers for Prefetching and Parallel I/O” on page 258.

Understanding Sequential Detection
There are cases for which it is not immediately obvious whether sequential
prefetch will improve performance. In these cases, the database manager can
monitor I/O and if sequential page reading is occurring the database manager
can activate prefetching. Prefetching in this case can be activated and
deactivated by the database manager when it deems it appropriate. This type
of sequential prefetch is known as sequential detection and applies to both
index and data pages. You may use the seqdetect configuration parameter (see
“Sequential Detection Flag (seqdetect)” on page 390) to control whether the
database manager should perform sequential detection. If sequential detection
is turned on, it could determine that the following SQL statement would
benefit from sequential prefetch:

SELECT NAME FROM EMPLOYEE
WHERE EMPNO BETWEEN 100 AND 3000

In this example, the optimizer may have chosen to scan the table using an
index on the EMPNO column. If the table is highly clustered with respect to
this index, then the data page reads will be almost sequential and prefetching
may improve performance. In this case, data page prefetch will occur.

Index page prefetch may also occur in this example. If a large number of
index pages have to be examined and the database manager detects that
sequential page reading of the index pages is occurring, then index page
prefetching will occur.

Understanding List Prefetching
List prefetch, or list sequential prefetch, is a way to access data pages
efficiently, even when the data pages needed are not contiguous. List prefetch
can be used in conjunction with either single or multiple index access.

Chapter 8. Operational Performance 257

|
|
|
|
|
|
|
|
|
|
|

|
|

|

Prefetching and Intra-Partition Parallelism
Prefetching is very important to the performance of intra-partition parallelism,
which uses multiple subagents when scanning an index or a table. These
parallel scans introduce larger data consumption rates, which require higher
prefetch rates.

The cost of inadequate prefetching is higher for parallel scans than serial
scans. If prefetching does not occur when executing a serial scan, the query
runs more slowly because the agent always needs to wait for I/O. If
prefetching does not occur when executing a parallel scan, all subagents may
need to wait for one subagent that is waiting for I/O.

Because of its importance, prefetching is performed more aggressively with
intra-partition parallelism. The sequential detection mechanism tolerates larger
gaps between adjacent pages so that the pages can be considered sequential.
The width of these gaps increases with the number of subagents involved in
the scan.

Configuring I/O Servers for Prefetching and Parallel I/O

To enable prefetching, the database manager starts separate threads of control,
known as I/O servers, to perform page reading. As a result, the query
processing is divided into two parallel activities: data processing (CPU) and
data page I/O. The I/O servers wait for prefetch requests from the CPU
processing activity. These prefetch requests contain a description of the I/O
needed to satisfy the anticipated data needs. The reason for prefetching
determines when and how the database manager generates the prefetch
requests. (See “Understanding Sequential Prefetching” on page 256 and
“Understanding List Prefetching” on page 257 for more information.)

The following figure illustrates how I/O servers are used to prefetch data into
a buffer pool.

258 Administration Guide: Performance

|
|
|
|
|
|
|
|
|

The following steps are illustrated in Figure 27:

�1� The user application passes the SQL request to the database agent
who has been assigned to the user application by the database
manager.

�2�, �3�
The database agent determines that prefetching should be used to
obtain the data required to satisfy the SQL request and writes a
prefetch request to the I/O server queue.

Buffer Pool

Database Agent Database Agent

Asynchronous
Prefetch

Request

Database Agent

I/O ServerI/O Server

I/O Server
Queue

5

6

4

3

2

Logical
Buffer

Read

Big
Block
Read

Create
4K pages

User
Application

User
Application

User
Application

1

Figure 27. Prefetching Data Using I/O Servers

Chapter 8. Operational Performance 259

||
|
|

�4�, �5�
The first available I/O server will read the prefetch request from the
queue and read the data from the table space into the buffer pool.
Depending on the number of prefetch requests in the queue and the
number of I/O servers configured by the num_ioservers configuration
parameter, multiple I/O servers can be fetching data from the table
space at the same time.

�6� The database agent performs the necessary actions against the data
pages in the buffer pool in order to return the result of the SQL
request back to the user application.

Configuring enough I/O servers with the num_ioservers configuration
parameter can greatly enhance the performance of queries for which
prefetching of data can be used. Having some extra I/O servers configured
will not hurt performance because extra I/O servers are not used and their
memory pages will get paged out. Each I/O server process is numbered and
the database manager will always use the lowest numbered process that is
available and, as a result, some of the upper numbered processes may never
be used.

To determine the number of I/O servers that you should configure, consider
the following:
v The amount of concurrent activity against the database. That is, the number

of database agents that could be writing prefetch requests to the I/O server
queue at any given time.

v The highest degree to which the I/O servers can work in parallel. For more
information, see “Enabling Parallel I/O”.

To maximize the opportunity for parallel I/O, set num_ioservers to at least the
number of physical disks in the database.

Enabling Parallel I/O
For situations in which multiple containers exist for a table space, the
database manager can initiate parallel I/O. Parallel I/O refers to the ability of
the database manager to use multiple I/O servers to process the I/O
requirements of a single query. Each I/O server is assigned the I/O workload
for a separate container, allowing several containers to be read in parallel.
Performing I/O in parallel can result in significant improvements to I/O
throughput.

While a separate I/O server will handle the workload for each container, the
actual number of I/O servers that can perform I/O in parallel will be limited
to the number of physical devices over which the requested data is spread.
This also means you need as many I/O servers as the number of physical
devices.

260 Administration Guide: Performance

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

How parallel I/O is initiated and used is dependent on the reason for
performing the I/O:
v Sequential prefetch

For sequential prefetch, parallel I/O is initiated when the prefetch size is a
multiple of the extent size for a table space. Each prefetch request is then
broken into multiple, smaller, requests along the extent boundaries. These
smaller requests are then assigned to different I/O servers.

v List prefetch

For list prefetch, each list of pages is divided into smaller lists according to
the container in which the data pages are stored. These smaller lists are
then assigned to different I/O servers.

v Database or table space backup and restore

For backing up or restoring data, the number of parallel I/O requests are
equal to the backup buffer size divided by the extent size up to a maximum
value equal to the number of containers.

v Database or table space restore

For restoring data, the parallel I/O requests are initiated and split in a
manner that is the same as that used for sequential prefetch. Instead of
restoring the data into the buffer pool, the data is moved directly from the
restore buffer to disk.

v Load

When loading data you can specify the level of I/O parallelism with the
LOAD command’s DISK_PARALLELISM option. (If it is not specified, a
default is used based on the cumulative number of table space containers
for all table spaces associated with the table.)

For optimal performance of parallel I/O, ensure that:
v There are enough I/O servers. You should configure the number of I/O

servers to be slightly higher than the number of containers used for all
table spaces within the database.

v The extent size and prefetch size are sensible for the table space. Prefetch
size should not be too large, to prevent over-use of the buffer pool. (An
ideal size is a multiple of the extent size and the number of table space
containers.) The extent size should be fairly small, with a good value being
in the range of 8 to 32 pages.

v The containers are configured to reside on separate physical drives.
v All containers are the same size to ensure a consistent degree of parallelism.

If one or more containers are smaller than the others, they will reduce the
potential for optimized parallel prefetch. For example:
– After a smaller container is filled up, additional data is stored in the

remaining containers, causing the containers to become unbalanced.
Unbalanced containers reduce the performance of parallel prefetching,

Chapter 8. Operational Performance 261

because the number of containers from which data can be prefetched
may be less than the total number of containers.

– If a smaller container is added at a later date and the data is rebalanced,
the smaller container will contain less data than the other containers. Its
small amount of data relative to the other containers will not optimize
parallel prefetching.

– If one container is larger and all of the other containers fill up, it will be
the only container to store additional data. The database manager will
not be able to use parallel prefetch to access this additional data.

v There is adequate I/O capacity when using intra-partition parallelism.
Intra-partition parallelism can be used on SMP machines to reduce a
query’s elapsed time by running the query on multiple processors.
Sufficient I/O capacity is required to keep each processor busy, usually
requiring additional physical drives to provide the I/O capacity.
Prefetching must occur at higher rates to use I/O capacity effectively. The
prefetch size should be higher for prefetching to occur at higher rates. The
prefetch size should be a multiple of the extent size and the number of
table space containers. Ideally, containers should be configured to reside on
separate physical drives.
The number of physical drives required could depend on the speed and
capacity of the drives and the I/O bus, and on the speed of the processors.

Allocating Multiple Pages at a Time
SMS table spaces are expanded on demand. This expansion is done a single
page at a time by default. However, in certain work loads (for example, when
doing a bulk insert) you can increase performance by using the db2empfa tool
to tell DB2 to expand the table space in groups of pages or extents. The
db2empfa tool is located in the bin subdirectory of the sqllib directory. Running
it causes the multipage_alloc database configuration parameter to be set to Yes.
For more information on this tool, refer to the Command Reference.

Another way to make the best use of your available memory is discussed in
“Extending Memory” on page 279.

Sorting

Sorting is often required for a query, and the proper configuration of the sort
heap areas can be crucial to the query’s performance. Sorting is required
when:
v No index exists to satisfy a requested ordering (for example a SELECT

statement that uses the ORDER BY clause)
v An index exists but sorting would be more efficient than using the index
v Creating an index (if the indexsort configuration parameter is set to yes).

262 Administration Guide: Performance

|
|
|
|
|
|
|

Different Types of Sorting
Sorting involves two steps:
1. A sort phase
2. Return of the results of the sort phase.

How the sort is handled within these two steps results in different categories
or types by which we can describe the sort. When considering the sort phase,
the sort can be categorized as “overflowed” or “non-overflowed”. When
considering the return of the results of the sort phase, the sort can be
categorized as “piped” or “non-piped”.

Overflowed and Non-Overflowed
If the information being sorted cannot fit entirely into the sort heap (a
block of memory that is allocated each time a sort is performed) it
overflows into temporary database tables. Sorts that do not overflow
always perform better than those that do.

Piped and Non-Piped
If sorted information can return directly without requiring a
temporary table to store a final, sorted list of data, it is referred to as a
“piped sort”. If the sorted information requires a temporary table to
be returned, it is referred to as a “non-piped sort”. A piped sort
always performs better than a non-piped sort.

Tuning the Parameters that Affect Sorting
The following situations affect the performance of sorting:
v The settings for the following configuration parameters:

“Sort Heap Size (sortheap)” on page 360
Specifies the amount of memory to be used for each sort

“Sort Heap Threshold (sheapthres)” on page 360
Controls the total amount of memory for sorting available across
the entire instance for all sorts.

v Statements that involve a large amount of sorting
v Missing indexes that could help avoid unnecessary sorting
v Application logic that does not minimize sorting
v Parallel sorting, which improves the performance of sorts but can only

occur if the statement uses intra-partition parallelism (see “Enabling Parallel
I/O” on page 260).

Looking for Indicators of Sorting Performance Problems
To tell if you have an overall problem with sorting, look at the total CPU time
spent sorting compared to the time spent on the whole application. The
database system monitor can help (see “Using the Database System Monitor”
on page 277). In particular, the Performance Monitor (which is made up of

Chapter 8. Operational Performance 263

the “Snapshot Monitor” and “Event Monitor” and is available from the
Control Center), shows total sort time by default, along with other times such
as I/O and lock wait.

If total sort time is a large proportion of the other times then look at the
following values, which are also shown by default:

Percentage of overflowed sorts
This variable (on the performance details view of the Snapshot
Monitor) shows the percentage of sorts that overflowed. If the
percentage of overflowed sorts is high, increase the sortheap and/or
sheapthres configuration parameters if there were any post-threshold
sorts. (To determine if there were any post threshold sorts, use the
Snapshot Monitor.)

Post threshold sorts
If post threshold sorts are high, increase sheapthres and/or decrease
sortheap.

In general, make the overall sort memory available across the instance
(sheapthres) as large as possible without causing excessive paging. It is possible
for a sort to be done entirely in sort memory. However, if this causes the
operating system to perform excessive page swapping to accommodate that
sort memory you can lose the advantage of a large sort heap. So, whenever
you adjust the sorting configuration parameters, use an operating system
monitor to track any changes in system paging.

Note: With the improvement in the DB2 partial key binary sorting technique
to include non-integer data type keys, some additional memory is
required when sorting long keys. If you believe long keys are being
used, increase the sortheap configuration parameter.

Also note that in a piped sort, the sort heap does not get freed until the
application closes the cursor associated with that sort. So a piped sort can use
up memory until the cursor is closed.

Techniques for Managing Sorting Performance
You can use the database system monitor and benchmarking techniques to
help set the sortheap and sheapthres configuration parameters. Do the following
for each database manager and its databases:
v Set up and run a representative workload.
v For each applicable database, collect average values for the following

performance variables over the benchmark workload period:
– Total sort heap in use
– Active sorts

264 Administration Guide: Performance

These performance variables are shown on the performance details view of
the Snapshot Monitor.

v Set sortheap to the average total sort heap in use for each database.
v Set the sheapthres by doing the following:

1. Determine which database in the instance has the largest sortheap value.
2. Determine the average size of the sort heap for this database.

If this is too difficult to determine, use 80% of the maximum sort heap
3. Set sheapthres to the average number of active sorts times the average

size of the sort heap computed above.
This is a recommended initial setting. You can then use benchmark
techniques to refine this value.

You can also identify particular applications and statements where sorting is a
significant performance problem:
v Set up event monitors at the application and statement level to help you

identify applications with the longest total sort time.
v Within each of these applications, find the statements with the longest total

sort time.
v Tune these statements using a tool such as Visual Explain.
v Ensure that appropriate indexes exist. You can use Visual Explain to

identify all the sort operations for a given statement. Then investigate
whether or not an appropriate index exists for each table accessed by the
statement.

Note: You can search through the explain tables to identify which queries
have sort operations. (See “Appendix C. SQL Explain Tools” on
page 555.)

Reorganizing Catalogs and User Tables

The performance of SQL statements that use indexes can be impaired after
many updates, deletes, or inserts have been made. Generally, newly inserted
rows cannot be placed in a physical sequence that is the same as the logical
sequence defined by the index (unless you use clustered indexes). This means
that the database manager must perform additional read operations to access
the data, because logically sequential data may be on different physical data
pages that are not sequential.

In general, reorganizing a table takes more time than running statistics.
Performance may be improved sufficiently by obtaining the current statistics
for your data and rebinding your applications, so try this first. If this does not
improve performance, the data in the tables and indexes may not be arranged

Chapter 8. Operational Performance 265

|
|
|
|
|
|
|

efficiently, so reorganization may help. The information in this section applies
not only to reorganizing your own tables, but also to the system catalog tables
which may also require reorganization.

For typed tables, the specified table name must be the name of the hierarchy’s
root table.

The REORGCHK command returns information about the physical
characteristics of a table, and whether or not it would be beneficial to
reorganize that table. This command can be used through the command line
processor. Refer to the Command Reference for more information, including
how to interpret the command output.

Note: The REORGCHK command does not show any data for extended
indexes, nor for declared temporary tables.

The REORG utility optionally rearranges data into a physical sequence
according to a specified index. REORG has an option to specify the order of
rows in a table with an index, thereby clustering the table data according to
the index and improving the CLUSTERRATIO or CLUSTERFACTOR statistics
collected by the RUNSTATS utility. As a result, SQL statements requiring rows
in the indexed order can be processed more efficiently. REORG also stores the
tables more compactly by removing unused, empty space (though if you
specified PCTFREE when you used ALTER TABLE, that space remains
unused).

Do not use the REORG or REORGCHK commands with nicknames.

The REORG utility requires that all other applications that would normally be
working against the affected table data and indexes be offline. You may have
a work environment where you wish to limit the amount of time your
applications cannot work against the data. In this environment, you might
consider using the online index reorganization utility.

The log space required for index rebuilding that takes place during a
reorganization is calculated using:

2 * (10500 + ((number of index pages / extent size) * 110) +
(number of index pages * 45) +
(number of index pages / 16000) * 64))

The various parts of the calculations are to determine the different types of
overhead associated with what is created and recorded in the logs as the
indexes are being rebuilt.

You may wish to consider the following factors to determine when to
reorganize your table data:

266 Administration Guide: Performance

|
|

|
|
|

|
|
|

v The volume of insert, update, and delete activity
v Any significant change to the performance of queries which use an index

with a high cluster ratio
v Running statistics (RUNSTATS) does not improve the performance of

queries
v The REORGCHK command indicates a need to reorganize your table
v The cost of reorganizing your table, including the CPU time, the elapsed

time, and the reduced concurrency resulting from the REORG utility
locking the table until the reorganization is complete.

To execute the REORG utility, you must have SYSADM, SYSMAINT,
SYSCTRL or DBADM authority, or CONTROL privilege on the table.

The REORG utility uses temporary tables that can be significantly larger than
the original table, if columns were added to a table, or a table has LOB
columns. If these temporary tables are larger, the resulting permanent table,
created by the REORG utility, will also be larger.

Note: You cannot use the REORG utility to reorganize declared temporary
tables.

The REORG utility allows you to specify a temporary table space, which is
used to create the temporary REORG table. If a temporary table space is not
specified, the REORG utility will create the temporary REORG tables in the
table space that contains the table being reorganized. The following guidelines
can assist you in determining whether to use a temporary table space:
v If you specify a temporary table space, it is generally recommended that

you specify an SMS temporary table space. A DMS temporary table space is
not recommended since you can only have one REORG in progress using
this type of table space.

v It is generally recommended that you specify a temporary SMS table space.
Using the same table space to reorganize tables is faster but greater logging
occurs and there must be enough space for the reorganized table. If you
specify a temporary table space, it is generally recommended that you
specify an SMS temporary table space. A DMS temporary table space is not
recommended since you can only have on REORG in progress using this
type of table space.

The REORG utility implicitly closes all open cursors.

Remember that you may be reorganizing a table within a table space that is
using greater than 4 KB pages (8 KB, 16 KB, or 32 KB) pages. During the
reorganization, the temporary table space used during the reorganization must
have the same size pages as the base table space.

Chapter 8. Operational Performance 267

|
|
|
|
|
|
|

If the REORG utility does not complete successfully, do not delete any
temporary files, tables or table spaces. These files and tables are used by the
database manager to roll back the changes made by the REORG utility, or to
complete the reorganization, depending on how far the reorganization had
progressed before the failure.

In a partitioned database, the REORG utility reorganizes data on each
partition. If the utility fails on any partition, only the failing partition is rolled
back. If you specify a directory path to store temporary tables, this path is
extended by the database manager at each database partition. Therefore, if
you specify a path that is shared by other database partitions, the temporary
files are stored in different subdirectories (identified by node name) under this
path.

Online Index Reorganization
An online reorganization is possible by providing a user-definable threshold
for the maximum amount of free space on an index leaf page. When there is a
deletion of an index key from a leaf page and the threshold is crossed, the
neighboring index leaf pages are checked to determine if two leaf pages can
be merged. If there is sufficient space on a page for a merge of two
neighboring pages to take place, the merge occurs without having to take the
database offline.

This online reorganization of the index is only possible with indexes created
in Version 6 and those following that release. Existing indexes requiring the
ability to reorganize online in this fashion will have to be dropped and then
re-created in order for the necessary internal changes to the index leaf pages.
To turn on online index reorganization for a particular index, specify a
MINPCTUSED value when the index is created. The MINPCTUSED value should be
set to less than one hundred (100). This value becomes the reorganization
threshold which is the percentage of used space on an index page that is the
minimum acceptable value before attempting to merge the index leaf page
with that of its neighbor. The recommended value for MINPCTUSED is one that
is less than 50 percent since the goal is to merge two neighboring index leaf
pages. A value of zero for MINPCTUSED, which is also the default, disables
online reorganization.

Index leaf pages that are freed for use following an online index
reorganization are available for re-use. However, the freed pages are available
only to other indexes in the same table. A full reorganization of the table will
free up pages for other objects when working with a DMS storage model; or
will free up disk space when working with a SMS storage model.

268 Administration Guide: Performance

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

Index non-leaf pages are not freed for use following an online index
reorganization. However, a full reorganization of the table will make the index
as small as possible. The leaf and non-leaf pages are reduced in number as
well as the levels of the index.

Limiting the Need to Reorganize Tables
To reduce the need for reorganizing a table, do the following after you have
created the table:
v Alter table to add PCTFREE
v Create clustering index with PCTFREE on index
v Sort the data
v Load the data.

After doing one of the above to an existing table you will have a table with a
clustering index. The clustering index, in conjunction with PCTFREE on table,
will preserve the original sorted order. With sufficient space on pages, new
data can be inserted on the correct pages thereby maintaining the clustering
characteristics of the clustering index. If, as more data is inserted, and the
pages of the table become full, records are appended to the end of the table,
and the table gradually becomes unclustered.

It is recommended that you perform a REORG or a sort and LOAD after
creating a clustering index. A clustering index attempts to maintain a
particular order of data improving the CLUSTERRATIO or CLUSTERFACTOR
statistics collected by the RUNSTATS utility.

The amount of free space to be left on each page during a REORG is
determined by the PCTFREE value of the table. If this value has not been set,
REORG will fill up the pages as the data is being reorganized.

Performance Considerations for DMS Devices

If you are using Database Managed Storage (DMS) device containers for your
table spaces, you need to understand the following so you can effectively
administer your environment:
v File system caching

File system caching is performed as follows:
– For DMS file containers (and all SMS containers), the operating system

may cache pages in the file system cache
– For DMS device container table spaces, the operating system does not

cache pages in the file system cache.

Note: When working on Windows NT, the registry variable
DB2NTNOCACHE specifies whether or not DB2 will open

Chapter 8. Operational Performance 269

|
|
|
|
|
|
|

database files with a NOCACHE option. If
DB2NTNOCACHE=ON, file system caching is eliminated. If
DB2NTNOCACHE=OFF, the operating system caches DB2 files.
This applies to all data except for files that contain LONG FIELDS
or LOBS. Eliminating system caching allows more memory to be
available to the database so that the buffer pool or sortheap can be
increased.

v Buffering of data

Table data read from disk is normally available in the database’s buffer pool
(see “Managing the Database Buffer Pool” on page 247). In some cases, a
data page can be freed from the buffer pool before the application has
actually used that page. (This can happen if the buffer pool space is
required for other data pages.) For table spaces using system managed
storage (SMS) or database managed storage (DMS) file containers, see the
description of file system caching above. This can eliminate I/O that would
otherwise have been required.
Table spaces using database managed storage (DMS) device containers do
not use the file system or its cache. As a result, you may wish to increase
the size of the database buffer pool and reduce the size of the file system
cache to offset the fact that double buffering is not being done with DMS
table spaces that use device containers.
If you notice, through the use of system-level monitoring tools, that I/O is
higher for a DMS table space using device containers compared to the
equivalent SMS table space, this difference could be due to the double
buffering discussed above.

v Using LOB or LONG data

When an application retrieves either LOB or LONG data, the database
manager does not use its buffers to cache the data. Every time an
application needs one of these pages, the database manager must retrieve it
from disk.
However, if LOB or LONG data is stored in SMS or DMS file containers,
file system caching may provide buffering and, as a result, better
performance.
Because system catalogs contain some LOB columns, it is recommended
that you keep them in SMS (or alternatively in DMS-file) table spaces.

Managing Initialization Overhead

The ACTIVATE DATABASE command starts up selected databases. Using this
command in a partitioned database results in an attempt to activate the
selected partitioned database on all partitions. By using this command, no
application time is spent on database initialization or startup.

270 Administration Guide: Performance

|
|
|
|

Databases that you have initialized using the ACTIVATE DATABASE
command must be shut down with the DEACTIVATE DATABASE command;
the last application disconnecting from the database will not shut it down. For
more information on the ACTIVATE and DEACTIVATE commands, refer to
the Command Reference manual.

If a database has not been started, and a CONNECT TO (or an implicit
connect) is encountered in an application, then the application must wait
while the database manager starts up the required database before it can do
any work with that database. This is a startup cost that is borne by the first
application to access a particular database. In a partitioned database, this
startup cost is incurred at each database partition. Once the database is
started, all other applications can connect to and use the database without a
time cost associated with the database startup.

Database Agents

DB2 servers must facilitate communication between the database manager and
client and local applications. UNIX-based environments use an architecture
based on processes. For example, the DB2 communications listeners are created
as processes. Intel operating systems such as OS/2 and Windows NT use an
architecture based on threads to maximize performance. For example, the DB2
communications listeners are created as threads within the DB2 server’s
system controller process. For each database being accessed, various
processes/threads are started to deal with the various database tasks (for
example, prefetching, communication, and logging).

One of the most crucial processes/threads are those of database agents, which
facilitate the operations of applications with databases.

A logical agent represents a connected application to the database manager.
The logical agent has all the information and control blocks required by an
application. The maximum number of logical agents is contolled by the
max_logicagents database manager configuration parameter. Since each
application will have one logical agent, this parameter controls the maximum
number of applications that can be connected to the instance.

A worker agent carries out application requests but has no permanent
attachment to any particular application. The worker agent has all the
information and control blocks required to complete actions within the
database manager that were requested by the application.

There are four types of worker agents: active coordinator agents, subagents,
inactive agents, and idle agents.

Chapter 8. Operational Performance 271

|
|
|
|
|
|
|
|

The idle agent is the simplest form of worker agent: It is not tied to a logical
agent, it does not have an outbound connection, and it does not have a local
database connection or an instance attachment.

The inactive agent is a worker agent which is not in an active transaction, is
not tied to a logical agent, does not have an outbound connection, and does
not have a local database connection or an instance attachment. An inactive
agent is free to tie to another logical agent to begin serving the application
represented by that logical agent.

Each process/thread of a client application has a single active coordinator agent
that operates on a database. Once the coordinator agent is created, it performs
all database requests on behalf of its application, and communicates to other
agents using inter-process communications (IPC) or remote communication
protocols. Each agent operates with its own private memory and shares
database manager and database global resources such as the buffer pool with
other agents. When a transaction completes, the active coordinator agent may
detach from the logical agent and thus become an inactive agent.

In partitioned database environments and environments with intra-partition
parallelism enabled, the coordinator agent distributes database requests to
subagents, and these agents perform the requests for the application. Once the
coordinator agent is created, it handles all database requests on behalf of its
application by coordinating the subagents that perform requests on the
database.

When a client disconnects from a database or detaches from an instance the
coordinating agent will be:
v An active agent. If other logical agents are waiting, the worker agent will

become an active coordinator agent.
v Freed and marked as idle, if no other logical agents are waiting and the

maximum number of pool agents has not been reached.
v Terminated and its storage freed, if no other logical agents are waiting and

the maximum number of pool agents has been reached.

Those agents not performing work on behalf of any applications and who are
waiting to be assigned, are considered to be idle agents and reside in an agent
pool. These agents are available for requests from coordinator agents operating
on behalf of client programs, or for subagents operating on behalf of existing
coordinator agents. The number of available agents is dependent on the
database manager configuration parameters maxagents and num_poolagents.

Agents from the agent pool (num_poolagents) are re-used as coordinator
agents:
v For remote TCP/IP-based applications; or

272 Administration Guide: Performance

|
|
|
|
|
|
|
|

v For local applications on UNIX-based operating systems; or
v For both local and remote applications on Windows NT and OS/2

operating systems.

Otherwise, remote applications always create a new agent.

If no idle agents exist when an agent is required, a new agent must be
dynamically created. Creating a new agent involves a certain amount of
overhead and as a result, improved CONNECT and ATTACH performance
can be noticed if there is an idle agent that can be activated for a client.

When a subagent is working on behalf of an application, it is considered to be
associated with that application. After completing the assigned work, it may be
placed in the agent pool, but it remains associated with the original
application. When the application requests additional work, the database
manager first checks the idle pool for associated agents when finding an agent
to work for the application.

The ability to separately control the number of connected applications (using
the number of logical agents defined by max_logicagents) and the number of
application requests that can be processed (using the number of active
coordinator agents defined by max_coordagents) allows for flexibility in the
workloads processed at the database. A one-to-one relationship between the
number of connected applications and the number of application requests that
can be processed is the typical way applications will work with the database.
However, it may be that your work environment is such that you require a
many-to-one relationship between the number of connected applications and
the number of application requests that can be processed.

Since the database global resource overhead is associated with the active
coordinator agents, the greater the number of these agents means there is a
greater chance that the upper limits of available database global resources will
be reached. You may want to allow more connected applications than active
coordinator agents so that the upper limits of available database global
resources are not reached. By setting the value of max_logicagents greater than
the value for max_coordagents, you are concentrating your database work.

Refer to DB2 Connect User’s Guide for more information and examples of how
to use DB2 Connect as an XA transaction support concentrator.

When working in an environment requiring the use of DB2 Connect to
connect to remote systems there is an outbound connect pool. This connection
pool reduces the connect time (following the first connection) to a host. When
a disconnection from a host is requested, DB2 Connect drops the inbound
connection but keeps the outbound connection to the host in a pool. When a

Chapter 8. Operational Performance 273

new request is made to connect to the host, DB2 Connect reuses an existing
outbound connection (if available) from the pool.

Note: When using connection pooling, DB2 Connect is restricted to inbound
TCP/IP and to outbound TCP/IP and SNA connections. When working
with SNA, the security type must be NONE for the connection to be
placed in the pool.

With connection pooling, the active agent does not close its outbound
connection following disconnection, but goes into the agent pool with an
active connection to the remote host. This type of agent is called inactive
DRDA agent. The pool of inactive DRDA agents is a synonym for the
outbound connection pool. “DRDA” stands for “Distributed Relational
Database Architecture”.

Consider the following examples based on four different usage and workload
requirements:
1. In the first example, an average of 40 concurrent users connect to remote

host databases through DB2 Connect. At times the number of concurrent
connections peaks at about 50, but never exceeds 55. The transactions are
of short duration, and users connect and disconnect frequently.
With these conditions, the system administrator should configure
max_coordagents to 55 since he knows that the maximum number of users
that will ever try to connect through DB2 Connect at the same time is 55.
num_poolagents, the size of the agent pool, should be set to 40 since, at any
one time, that is the average number of users connected or trying to
connect. This pool size guarantees enough existing remote database
connections to satisfy all inbound clients without having to establish any
new ones except when the workload peaks.

2. In this second example the workload is much higher with about 1 000
inbound clients. User connections are also of short duration. The system
administrator does not want to allow any more concurrent connections
than that. Therefore, the system administrator sets both max_coordagents
and num_poolagents to 1 000. This means that the maximum number of
inbound clients that may be concurrently connected to the remote database
is 1 000. When all clients disconnect, the pool will contain exactly 1 000
connected agents all waiting to service new inbound clients.

3. The third example involves a single application connecting through DB2
Connect to just one remote database. The application remains connected
for long periods of time. In this scenario, the best agent and connection
pool configuration is to set max_coordagents to 1 since we know that at
most only one client will connect. num_poolagents may be set to zero in this
case since there is no frequent connection and disconnection from the
remote host. Setting num_poolagents to zero effectively disables connection
pooling since no agents with active connections to the remote database are

274 Administration Guide: Performance

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

kept in the pool. For every new inbound client that connects, a new agent
is created and a new remote connection established to service it.

4. The fourth example is a variation based on all three previous workload
scenarios. In this example, the system administrator wants to restrict
concurrent access to remote databases to just 100. Therefore,
max_coordagents is set to 100 and, in order to maximize connect
performance, num_poolagents is set to 100. However, later, there may also
be a need to connect locally to monitor the workload on the system where
DB2 Connect is installed. The expectation is that no more than 5
concurrent monitor snapshots would occur at any one time so
max_coordagents is set to 105. This new configuration value allows the
maximum number of concurrent applications to grow beyond the earlier
upper limit of 100 to accommodate the occasional monitor snapshot
and/or instance attachment.

For partitioned database environments and environments with intra-partition
parallelism enabled, each partition (that is, each database server or node) has
its own pool of agents from which subagents are drawn. Because of this pool,
subagents do not have to be created and destroyed each time one is needed or
is finished its work. The subagents can remain as associated agents in the pool
and be used by the database manager for new requests from the application
they are associated with.

The following database manager configuration parameters affect the number
of database agents:
v “Maximum Number of Agents (maxagents)” on page 399. Once the number

of worker agents reaches this value, all subsequent requests that require a
new agent are denied until the number of agents falls below the value. This
value applies to the total number of agents, including coordinator agents,
subagents, inactive agents, and idle agents, that are working on all
applications.

v “Agent Pool Size (num_poolagents)” on page 403. The number of inactive
agents, idle agents, and associated subagents in the agent pool cannot
exceed this value.

v “Initial Number of Agents in Pool (num_initagents)” on page 405. When the
database manager is started, a pool of worker agents is created based on
this value. This speeds up performance for initial queries. The worker
agents all begin as idle agents.

v “Maximum Number of Logical Agents (max_logicagents)” on page 403. The
maximum number of logical agents. Since each application will have one
logical agent, this parameter controls the maximum number of applications
that can be connected to the instance.

Chapter 8. Operational Performance 275

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

v “Maximum Number of Coordinating Agents (max_coordagents)” on
page 402 . For partitioned database environments and environments with
intra-partition parallelism enabled, this value limits the number of
coordinating agents.

v “Maximum Number of Concurrent Agents (maxcagents)” on page 401. This
value controls the number of tokens permitted by the database manager. For
each database transaction (unit of work) that occurs when a client is
connected to a database, a coordinating agent must obtain permission to
process the transaction (known as a processing token) from the database
manager. Only agents with a processing token are permitted by the
database manager to execute a unit of work against a database. If a token is
not available, the agent will wait until one is available, at which time the
requested unit of work will be processed.
This parameter can be useful in an environment in which peak usage
requirements exceed system resources (memory, CPU, and disk). In such an
environment, the peak load may cause excessive performance degradation
because of, for example, paging. You can use this parameter to control the
load and avoid the performance degradation, although it can affect
concurrency and/or any wait time.

For partitioned database environments and environments with intra-partition
parallelism enabled, the impact to performance and memory costs within the
system is strongly related to how your agent pool is tuned:
v The database manager configuration parameter for agent pool size

(num_poolagents) affects the total number of subagents that can be kept
associated with applications on a partition (that is, node). If the pool size is
too small (and the pool is full), a subagent will disassociate itself from the
application it worked on and terminate. This situation leads to poor
performance, because subagents must be constantly created and
reassociated to applications.
In addition, if the value of num_poolagents is too small, one application may
fill the pool with associated subagents. Thus, when another application
requires a new subagent and has no subagents in its associated agent pool,
it will “steal” subagents from the agent pools of other applications. This
situation is rather costly, and causes poor performance.

v The above situations must be weighed against the resource costs of
allowing too many agents to be active at any given time.
For example, if the value of num_poolagents is too large, associated
subagents may sit unused in the pool for long periods of time. These
subagents use database manager resources that will not be available for
other tasks.

276 Administration Guide: Performance

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

In addition to the database agents, there are other asynchronous activities
performed by the database manager which run as their own process (or
thread), including:
v Database I/O servers (or I/O prefetchers) (see “Prefetching Data into the

Buffer Pool” on page 255)
v Database asynchronous page cleaners (see “Managing the Database Buffer

Pool” on page 247)
v Database loggers
v Database deadlock detectors
v Event monitors
v Communication and IPC listeners
v Table space container rebalancers.

For more information on identifying the various DB2 processes, refer to the
Troubleshooting Guide.

Using the Database System Monitor

The DB2 database manager maintains data about its operation, its
performance, and the applications using it. This data is maintained as the
database manager runs, and can provide important performance and
troubleshooting information. For example, you can find out:
v The number of applications connected to a database, their status, and which

SQL statements each application is executing, if any.
v Information that shows how well the database manager and database are

configured, and helps you to tune them.
v When deadlocks occurred for a specified database, which applications were

involved, and which locks were in contention.
v The list of locks held by an application or a database. If the application

cannot proceed because it is waiting for a lock, there is additional
information on the lock, including which application is holding it.

Because collecting some of this data introduces overhead on the operation of
DB2, monitor switches are available to control which information is collected.
To set monitor switches explicitly, use the UPDATE MONITOR SWITCHES
command or the sqlmon() API. (You must have SYSADM, SYSCTRL, or
SYSMAINT authority.)

There are two ways to access the data maintained by the database manager:
v Taking a snapshot

You have three ways to take a snapshot. You may use the GET SNAPSHOT
command from the command line, the Control Center on the OS/2, or

Chapter 8. Operational Performance 277

|
|
|

|
|

|
|

|

|

|

|

|

|
|

Windows-based operating systems for a graphical interface, or write your
own application, using the sqlmonss() API call.
The Control Center, available from the DB2 folder or with the db2cc
command, provides a performance monitor tool that samples monitor data
at regular intervals by taking snapshots. This graphical interface provides
either graphs or textual views of the snapshot data, in both detail and
summary form. You can also define performance variables using data
elements returned by the database monitor.
The Control Center’s Snapshot Monitor tool also allows you to define
exception conditions by specifying threshold values on performance
variables. When a threshold value is reached, you can predefine any of the
following actions to occur: notification through a window or audible alarm,
and/or execution of a script or program.
If you are taking a snapshot from the Control Center, you cannot perform
an action that either alters, changes, or deletes a database object (such as an
instance or database) while you are performing snapshot monitoring on
either that object, or on any it its child objects. (In addition, if you are
monitoring a partitioned database system, you cannot refresh the view of
partitioned database objects.) For example, you cannot monitor database A
if you want to remove its instance. If, however, you are monitoring the
instance only, you can alter database A.
To stop all monitoring for an instance (including any of its child objects),
select Stop all monitoring from the pop-up menu for the instance. You
should always stop monitoring from the instance, as this ensures that all
locks that are held by the performance monitor are released.

v Using an event monitor

An event monitor captures system monitor information after particular
events have occurred, such as the end of a transaction, the end of a
statement, or the detection of a deadlock. This information can be written to
files or to a named pipe.
To use an event monitor:
1. Create its definition with the Control Center or the SQL statement

CREATE EVENT MONITOR. This statement stores the definition in
database system catalogs.

2. Activate the event monitor through the Control Center, or with the SQL
statement:

SET EVENT MONITOR evname STATE 1

If writing to a named pipe, start the application reading from the named
pipe before activating the event monitor. You can either write your own
application to do this, or use db2evmon. Once the event monitor is
active and starts writing events to the pipe, db2evmon will read them
as they are being generated and write them to standard output.

278 Administration Guide: Performance

|
|

3. Read the trace. If using a file event monitor, you can view the binary
trace that it creates in either of the following ways:
– Use the db2evmon tool to format the trace to standard output.
– Click on the Event Analyzer icon in the Control Center (on a

Windows-based operating system, or an OS/2 system) to use a
graphical interface to view the trace, search for keywords, and filter
out unwanted data.

Note: If the database system that you are monitoring is not running
on the same machine as the Control Center, you must copy the
event monitor file to the same machine as the Control Center
before you can view the trace. An alternative method is to
place the file in a shared file system accessible to both
machines.

For information on the system database monitor and the event monitor, refer
to the System Monitor Guide and Reference.

Extending Memory

Your machine may have more real addressable memory than the maximum
amount of virtual addressable memory (for example, virtual addressable
memory is usually between 2 GB and 4 GB on most platforms). You can
configure any additional real addressable memory beyond virtual addressable
memory as an extended storage cache. Such an extended storage cache can be
used by any of the defined buffer pools and should improve the performance
of the database manager. The extended storage cache is defined in terms of
memory segments.

You should be aware when deciding to use some of the real addressable
memory as an extended storage cache that this memory can then no longer be
used for other purposes on the machine such as a JFS-cache or as process
private address space. Assigning additional real addressable memory to the
extended storage cache could lead to higher system paging.

DB2 makes use of addressable memory in your machine with buffer pools
(see “Managing the Database Buffer Pool” on page 247). The extended storage
cache is used by the buffer pools as a secondary level of caching (with the
buffer pools performing the first level of caching). Ideally buffer pools can
hold the data that is most frequently accessed, while the extended storage
cache can hold data that is accessed, but less frequently.

When allocating Windows 2000 Address Windowing Extensions (AWE) buffer
pools using the DB2_AWE registry variable, the extended storage cache
cannot be used.

Chapter 8. Operational Performance 279

|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|

|
|
|

The following database configuration parameters influence the amount and
the size of the memory available for extended storage:
v num_estore_segs defines the number of extended storage memory segments.

The default for this configuration parameter is zero, which specifies that no
extended storage cache exists. (See “Number of Extended Storage Memory
Segments (num_estore_segs)” on page 393.)

v estore_seg_sz defines the size of each extended memory segment. This size is
limited by the platform on which the extended storage cache is being used.
(See “Extended Storage Memory Segment Size (estore_seg_sz)” on
page 393.)

Because an extended storage cache is an extension to a buffer pool, it must
always be associated with one or more specific buffer pools. Therefore, you
must declare which buffer pools can take advantage of a cache once it is
created. The CREATE and ALTER BUFFERPOOL statements have the
attributes NOT EXTENDED STORAGE and EXTENDED STORAGE that
control cache usage. By default neither IBMDEFAULTBP nor any newly
created buffer pool will use extended storage.

Note: You may be using buffer pools defined with different page sizes. Some,
or all, of those buffer pools may be defined to use extended storage.
The page size used with extended storage support is the largest of
those defined.

The database manager cannot directly manipulate data that resides in the
extended storage cache. However, it can transfer data from the extended
storage cache to the buffer pool much faster than from disk storage.

When a row of data is needed from a page in an extended storage cache, the
entire page is read into the corresponding buffer pool.

A buffer pool and its associated extended storage cache, if defined, are
allocated when a database is activated or first connected to.

280 Administration Guide: Performance

|
|
|
|

|
|

Chapter 9. Using the Governor

You use the governor to monitor and change the behavior of applications that
run against a database.

The governor consists of two parts:
v A front-end utility
v A daemon

When you start the governor, you issue a start command from the governor
front-end utility, which then starts the governor daemon. By default, a
daemon is started on every partition in a partitioned database, but you can
also use the front-end utility to start a single daemon at a specific partition to
monitor the activity against the database partition found there. Or, a daemon
can monitor the activity on a single-partition database. See “Starting and
Stopping the Governor” for details.

Each governor daemon collects statistics about the applications running
against a database. It then checks these statistics against the rules that you
specified in a governor configuration file that applies to that specific database.
(See “Creating the Governor Configuration File” on page 284 for details.) The
governor then acts according to these rules. For example, a rule may indicate
that an application is using too much resource. In this situation, the governor
may change the application’s priority or force it off the database, according to
the instructions you specified in the governor configuration file.

If the action associated with a rule is to change the application’s priority, the
governor changes the priority of agents on the database partition on which
the governor detected the resource violation. If the action associated with a
rule is to force an application, the application is forced even if the governor
that detected the resource violation is running on the application’s coordinator
node or in a partitioned database environment.

The governor also logs any actions that it takes. You can query the log files to
review the actions that the governor has taken. For details, see “Governor Log
Files” on page 292 and “Querying Governor Log Files” on page 293.

Starting and Stopping the Governor

You use the db2gov governor front-end utility to start or stop the governor (on
either all database partitions or on a single database partition). You require
SYSADM or SYSCTRL authority to use the utility.

© Copyright IBM Corp. 1993, 2001 281

The syntax for db2gov is as follows:

The parameters are as follows:

start database
Starts the governor daemon to monitor the specified database. For
database, you can specify either the database name or the database
alias.

The database name you specify must be the same name as that
specified in the governor configuration file. The governor checks these
two names to ensure that you are using the correct configuration file.
If the front-end utility is started with one alias name and the governor
configuration file contains a different alias, an error is reported
because the governor cannot determine whether the names are aliases
for the same database.

If you are in a partitioned database environment, when you start the
governor on all partitions, the front-end utility first checks that the
configuration file does not contain errors. It then reads the node
configuration file and sends a command to each database partition to
start the governor front-end utility on each database partition with the
start option (which, in turn, starts the daemon at each database
partition).

Note: Because the governor monitors at the database level, one
daemon runs for each database that is being monitored. (In a
partitioned database environment, one daemon runs for each
database partition.) If the governor is running for more than
one database, there will be more than one daemon running at
that database server.

nodenum node-num
Specifies the database partition on which to start the governor
daemon. The number is the same as that specified in the node
configuration file.

When you start the governor on a single database partition, the
front-end utility creates a daemon to validate the governor
configuration file. The governor daemon ensures that another daemon
is not already running on that partition.

WW db2gov start database config-file log-file
nodenum node-num

stop database
nodenum node-num

WX

Figure 28. Syntax for db2gov

282 Administration Guide: Performance

config-file
Specifies the configuration file to use when monitoring the database.

The default location for the configuration file is the sqllib directory. If
the specified file is not there, the front-end assumes that the specified
name is the full name of the file.

log-file
Specifies the base name of the file to which the governor writes log
records. The log file is stored in the log subdirectory of the sqllib
directory. (On Windows NT, the log subdirectory is under the instance
directory.) The number of the database partition on which the
governor is running is automatically appended to the log file name
(for example, mylog.0, mylog.1, mylog.2).

stop database
Stops the governor daemon that is monitoring the specified database.

If you are in a partitioned database environment, the front-end utility
stops the governor on all database partitions by reading the node
configuration file, and then sending a command to each database
partition to call the governor front-end utility with the stop parameter.
This stops the daemon at each database partition.

nodenum node-num
Specifies the database partition on which to stop the governor
daemon. The number is the same as that specified in the node
configuration file.

When the front-end utility stops the governor daemon on a single
database partition, it communicates with the daemon on that database
partition by creating, moving, or deleting files in the tmp subdirectory
of the sqllib directory. You should not attempt to delete or modify
these files.

The Governor Daemon

When the governor daemon is started (either by the db2gov front-end utility
or by waking up), it runs in a loop. The first task it does is to check whether
its governor configuration file has changed or has not yet been read. If either
condition is true, the daemon reads the rules in the file. This allows you to
change the behavior of the governor daemon while it is running.

After this, the governor daemon issues a snapshot request to obtain statistics
for each application and agent working on the database.

Note: On some platforms, the CPU statistics are not available from the DB2
Monitor. Where this is the case, the account rule and the CPU limit will
not be available.

Chapter 9. Using the Governor 283

The governor then checks the statistics for each application against the rules
in the governor configuration file. If a rule applies to an application, the
governor can: force the application; change the application’s priority, which
indirectly changes all the agent priorities of both agents and subagents that
are working for it on that database partition; or, change the schedule for the
application which, indirectly changes the agent priorities working on the
application, depending on the action specified by the rule. The governor
writes a record of any action it takes to a log file.

Note: The governor cannot be used as an alternate means to adjust agent
priorities if the agentpri database manager configuration parameter is
anything other than the system default. (This note does not apply to
Windows NT platforms.)

When the governor finishes checking all of the applications, it sleeps for the
interval specified in the configuration file. Once this time has elapsed, the
governor wakes up and begins the execution loop again.

When the governor encounters an error or stop signal, it does cleanup
processing before ending. The cleanup processing resets all application agent
priorities (using a list of applications whose priorities have been set). It then
resets the priorities of any agents that are no longer working on an
application. This ensures that agents do not remain running with nondefault
priorities after the governor ends. If an error occurs, a message is written to
the db2diag.log file to indicate that the governor ended abnormally.

Note: The governor daemon is not a database application, and, therefore,
does not maintain a connection to the database. (It does have an
instance attachment, however.) The governor daemon can detect when
the database manager ends because it can issue snapshot requests.

Creating the Governor Configuration File

When you start the governor, you specify the name of the configuration file
that contains the rules to be used to govern applications running against the
database. The governor acts based on these rules.

If your requirements for governing the database change, you can edit the
configuration file without stopping the governor. Each governor daemon will
detect that the file has changed, and reread it.

You must create the configuration file in a directory that is mounted across all
the database partitions, because the governor daemon on each partition must
be able to read the same configuration file.

284 Administration Guide: Performance

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

The configuration file consists of rules and comments. Most entries can be
specified in uppercase, lowercase, or mixed case characters. The exception is
applname which is case sensitive.

You delimit comments within the { } braces. The rules include:
v The database to which the rules apply.
v The length of time the governor sleeps before waking up to check the

applications.
v The rules that specify how to govern the applications. These rules are made

of smaller components called rule clauses.

Each rule in the file must be followed by a semicolon (;).

The following rules specify the database being monitored, and the interval at
which the daemon wakes up after working through its loop of activities
(which are described in “The Governor Daemon” on page 283). Each of these
rules are only specified once in the file.

dbname
The name or alias of the database to be monitored.

account nnn
Account records are written containing CPU usage statistics for each
connection at the specified number of minutes.

Note: This option is not available in the Windows NT environment.

If a short connect session occurs entirely within the account interval,
no log record is written. When log records are written, they contain
CPU statistics that reflect CPU usage since the previous log record for
the connection. If the governor is stopped then restarted, CPU usage
may be reflected in two log records; these can be identified through
the application IDs in the log records. For more information about
governor log files, see “Governor Log Files” on page 292.

interval
The interval, in seconds, at which the daemon wakes up. If no interval
is specified, an interval of 120 seconds is used.

You combine the following rule clauses to form a rule (that is, the full rule is
followed by a semicolon, and not each individual clause). The clauses specify
the time during which the rule applies, the limit on resource that can be used,
and, optionally, specific users or applications and any action for the governor
to take if a limit specified in the rule is exceeded. The clauses can only be
specified once in a rule, but can be specified in more than one rule. The
clauses must be specified in the order shown. In the description that follows,
a [] indicates an optional clause.

Chapter 9. Using the Governor 285

|
|
|

|

|
|
|
|
|
|
|

[desc] Specifies a text description for the rule. The description must be
enclosed by either single or double quotation marks.

[time] Specifies the time period during which the rule is to be evaluated.

The time period must be specified in the following format time hh:mm
hh:mm, for example, time 8:00 18:00. If this clause is not specified, the
rule is valid 24 hours a day.

[authid]
Specifies one or more authorization IDs (authid) under which the
application is executing. Multiple authids must be separated by a
comma (,), for example authid gene, michael, james. If this clause
does not appear in a rule, the rule applies to all authids.

[applname]
Specifies the name of the executable (or object file) that makes the
connection to the database.

Multiple application names must be separated by a comma (,), for
example, applname db2bp, batch, geneprog. If this clause does not
appear in a rule, the rule applies to all application names.

Notes:

1. Application names are case sensitive.
2. The database manager truncates all application names to 20

characters. You should ensure that the application you want to
govern is uniquely identified by the first 20 characters of its
application name; otherwise, an unintended application may be
governed.
Application names specified in the governor configuration file are
truncated to 20 characters to match their internal representation.

setlimit
Specifies one or more limits for the governor to check. The limits can
only be -1 or greater than 0 (for example, cpu -1 locks 1000 rowssel
10000). At least one of the limits (cpu, locks, rowsread, uowtime) must
be specified, and any limit not specified by the rule is not limited by
that particular rule. The governor can check the following limits:

cpu nnn
Specifies the number of CPU seconds that can be consumed
by an application. If you specify -1, the governor does not
limit the application’s CPU usage.

Note: This option is not available in the Windows NT
environment.

286 Administration Guide: Performance

|
|
|
|
|

|
|

locks nnn
Specifies the number of locks that an application can hold. If
you specify -1, the governor does not limit the number of
locks held by the application.

rowssel nnn
Specifies the number of rows that are returned to the
application. This value will only be non-zero at the
coordinator node. If you specify -1, the governor does not
limit the number of rows that can be selected.

uowtime nnn
Specifies the number of seconds that can elapse from the time
that a unit of work (UOW) first becomes active. If you specify
-1, the elapsed time is not limited.

Note: If you used the sqlmon (Database System Monitor
Switch) API to deactivate the unit of work switch, this
will affect the ability of the governor to govern
applications based on the unit of work elapsed time.
The governor uses the monitor to collect information
about the system. If you turn off the switches in the
database manager configuration file, then it is turned
off for the entire instance, and governor will no longer
receive this information. For more information, see
“Database System Monitor Parameters” on page 469.

idle nnn
Specifies the number of idle seconds allowed for a connection
before a specified action is taken. If you specify -1, the
connection’s idle time is not limited.

rowsread nnn
Specifies the number of rows an application can select. If you
specify -1, there is no limit on the number of rows the
application can select.

Note: This limit is not the same as rowssel. The difference is
that rowsread is the count of the number of rows that
had to be read in order to return the result set. The
number of rows read includes reads of the catalog
tables by the engine and may be diminished when
indices are used.

[action]
Specifies the action to take if one or more of the specified limits is
exceeded. You can specify the following actions.

Chapter 9. Using the Governor 287

|
|
|
|
|
|
|
|
|
|

Note: If a limit is exceeded and the action clause is not specified, the
governor reduces the priority of agents working for the
application by 10.

priority nnn
Specifies a change to the priority of agents working for the
application. Valid values are from −20 to +20.

For this parameter to be effective:
v On UNIX-based platforms, the agentpri database manager

parameter must be set to the default value; otherwise, it
overrides the priority clause.

v On OS/2 and Windows NT platforms, the agentpri database
manager parameter and priority action may be used
together.

force Specifies to force the agent that is servicing the application.
(Issues a FORCE APPLICATION to terminate the coordinator
agent.)

schedule [class]
Scheduling improves the priorities of the agents working on
the applications with the goal of minimizing the average
response times while maintaining fairness across all
applications.

The governor enforces its schedule by setting priorities for the
agents working on the applications, using query cost estimates
from the DB2 internal query compiler. If the class option is
specified, all applications chosen by the rule are scheduled
among themselves only. If this option is not specified, the
governor uses one or more classes, with scheduling done
within each class.

Within each class, how an application is prioritized is based
on:
v The number of locks held by the application within the

class. (An application holding up many other applications
due to locking is given a high priority.)

v The application’s age. (An application in the system for a
long time is given a high priority.)

v The application’s estimated remaining running time. (An
application close to finishing is given a high priority.)

Applications that are not covered by any schedule run with
the highest authority.

288 Administration Guide: Performance

Note: If you used the sqlmon (Database System Monitor
Switch) API to deactivate the statement switch, this will
affect the ability of the governor to govern applications
based on the statement elapsed time. The governor uses
the monitor to collect information about the system. If
you turn off the switches in the database manager
configuration file, then it is turned off for the entire
instance, and governor will no longer receive this
information.

The schedule action can:
v Ensure that applications in different groups each get time

without all applications splitting time evenly.
For instance, if 12 applications (three short, five medium,
and six long) are running at the same time, they may all
have poor response times because they are splitting the
CPU. The database administrator can set up two groups,
medium-length applications and long-length applications.
Using priorities, the governor permits all the short
applications to run, and ensures that at most three medium
and three long applications run simultaneously. To achieve
this, the governor configuration file contains one rule for
medium-length applications, and another rule for long
applications. The following example shows a portion of a
governor configuration file that illustrates this point:
desc "Group together medium applications in 1 schedule class"
applname medq1, medq2, medq3, medq4, medq5
setlimit cpu -1
action schedule class;

desc "Group together long applications in 1 schedule class"
applname longq1, longq2, longq3, longq4, longq5, longq6
setlimit cpu -1
action schedule class;

v Ensure that each of several user groups (for example,
organizational departments) gets equal prioritization.
If one group is running a large number of applications, the
administrator can ensure that other groups are still able to
obtain reasonable response times for their applications. For
instance, in a case involving three departments (Finance,
Inventory, and Planning), all the Finance users could be put
into one group, all the Inventory users could be put into a
second, and all the Planning users could be put into a third
group. The processing power would be split more or less

Chapter 9. Using the Governor 289

evenly among the three departments. The following
example shows a portion of a governor configuration file
that illustrates this point:
desc "Group together Finance department users"
authid tom, dick, harry, mo, larry, curly
setlimit cpu -1
action schedule class;

desc "Group together Inventory department users"
authid pat, chris, jack, jill
setlimit cpu -1
action schedule class;

desc "Group together Planning department users"
authid tara, dianne, henrietta, maureen, linda, candy
setlimit cpu -1
action schedule class;

v Let the governor schedule all applications.
If the class option is not included with the action, the
governor creates its own classes based on how many
applications fall under the schedule action, and puts
applications into different classes based on the DB2 query
compiler’s cost estimate for the query the application is
running. The administrator can choose to have all
applications scheduled by not qualifying which applications
are chosen. That is, no applname or authid clauses are
supplied, and the setlimit clause causes no restrictions.

Note: If a limit is exceeded and the action clause is not specified, the
governor reduces the priority of agents working for the
application.

If more than one rule applies to an application, all of the rules are applied.
Depending on the rule and the limits being set, the action associated with the
rule limit encountered first is the action that is first to be applied. An
exception occurs if -1 is specified for a clause in a rule. In this situation, the
value specified for the clause in the subsequent rule can only override the
value previously specified for the same clause: other clauses in the previous
rule are still operative. For example, one rule indicates that the priority of an
application is to be decreased if its elapsed time is greater than 1 hour, or if it
selects more than 100 000 rows (that is, rowssel 100000 uowtime 3600). A
subsequent rule indicates that the same application can have unlimited
elapsed time (that is, uowtime -1). In this situation, if the application runs for
more than 1 hour, its priority won’t be changed (that is, uowtime -1 overrides
uowtime 3600), but if it selects more than 100 000 rows, its priority will be
lowered (as rowssel 100000 is still valid).

290 Administration Guide: Performance

|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 29 shows an example of a configuration file.

{ Wake up once a second, the database name is ibmsampl
do accounting every 30 minutes. }

interval 1; dbname ibmsampl; account 30;

desc "CPU restrictions apply 24 hours a day to everyone"
setlimit cpu 600 rowssel 1000000 rowsread 5000000;

desc "Allow no UOW to run for more than an hour"
setlimit uowtime 3600 action force;

desc 'Slow down a subset of applications'
applname jointA, jointB, jointC, quryA
setlimit cpu 3 locks 1000 rowssel 500 rowsread 5000;

desc "Have governor prioritize these 6 long apps in 1 class"
applname longq1, longq2, longq3, longq4, longq5, longq6
setlimit cpu -1
action schedule class;

desc "Schedule all applications run by the planning dept"
authid planid1, planid2, planid3, planid4, planid5
setlimit cpu -1
action schedule;

desc "Schedule all CPU hogs in one class which will control consumption"
setlimit cpu 3600
action schedule class;

desc "Slow down the use of db2 CLP by the novice user"
authid novice
applname db2bp.exe
setlimit cpu 5 locks 100 rowssel 250;

desc "During day hours do not let anyone run for more than 10 seconds"
time 8:30 17:00 setlimit cpu 10 action force;

desc "Allow users doing performance tuning to run some of
their applications during lunch hour"

time 12:00 13:00 authid ming, geoffrey, john, bill
applname tpcc1, tpcc2, tpcA, tpvG setlimit cpu 600 rowssel 120000 action force;

desc "Some people should not be limited -- database administrator
and a few others. As this is the last specification in the
file, it will override what came before."

authid gene, hershel, janet setlimit cpu -1 locks -1 rowssel -1 uowtime -1;

desc "Increase the priority of an important application so it always
completes quickly"

applname V1app setlimit cpu 1 locks 1 rowssel 1 action priority -20;

Figure 29. Example Governor Configuration File

Chapter 9. Using the Governor 291

Governor Log Files

When a governor daemon forces an application, reads the governor
configuration file, changes an application’s priority, encounters an error or
warning, starts, or ends, it writes a record to a log file. A separate log file
exists for each governor daemon. This prevents file-locking bottlenecks that
would result from many governor daemons writing to the same file at the
same time. You can use the db2govlg utility to merge the log files together
and query them. This utility is described in “Querying Governor Log Files” on
page 293.

The log files are stored in the log subdirectory of the sqllib directory. (On
Windows NT, the log subdirectory is under the instance directory.) You
provide the base name for the log file when you issue the db2gov command.
You should ensure that the log file name contains the database name, because
there will be a log file for each node of each database that is being governed.
In a partitioned database environment, the node number of the database
partition that the governor is running on is automatically appended to the log
file name to ensure that the filename is unique for each governor.

Each record in the log file has the following format:
Date Time NodeNum RecType Message

The Date and Time field is in the yyyy-mm-dd hh.mm.ss format, so that you
can merge the log files for each database partition by sorting on this field.

The NodeNum field indicates the number of the database partition on which
the governor is running.

The RecType field contains different values, depending on the type of log
record being written to the log. The values that can be recorded are:
v START to indicate that the governor was started
v FORCE to indicate that an application was forced
v PRIORITY to indicate that the priority of an application was changed
v ERROR to indicate an error
v WARNING to indicate a warning
v READCFG to indicate that the governor read the configuration file
v STOP to indicate that the governor was stopped
v ACCOUNT to indicate the application’s accounting statistics.

The fields are:
– authid

– appl_id

– written_usr_cpu

292 Administration Guide: Performance

|
|

– written_sys_cpu

– appl_con_time
v SCHEDULE to indicate that a change in agent priorities occurred.

Because standard values are written, you can query the log files for different
types of actions. The Message field provides other nonstandard information
that varies according to the value under the RecType field. For instance, a
FORCE or NICE record indicates application information in the Message field,
while an ERROR record includes an error message.

An example log file is as follows:

Querying Governor Log Files

Each governor daemon writes to its own log file. You can use db2govlg utility
to query the log file. You can list the log files for a single partition, or for all
database partitions, sorted by date and time. You can also query on the basis
of the RecType log field. The syntax for db2govlg is as follows:

The parameters are as follows:

log-file
The base name of the log file (or files) that you want to query.

nodenum node-num
The node number of the database partition on which the governor is
running.

rectype record-type
The type of record that you want to query. The record types are:
v START
v READCFG
v STOP
v FORCE
v NICE
v ERROR
v WARNING
v ACCOUNT

1995-12-11 14.54.52 0 START Database = TQTEST
1995-12-11 14.54.52 0 READCFG Config = /u/db2instance/sqllib/tqtest.cfg
1995-12-11 14.54.53 0 ERROR SQLMON Error: SQLCode = -1032
1995-12-11 14.54.54 0 ERROR SQLMONSZ Error: SQLCode = -1032

WW db2govlg log-file
nodenum node-num rectype record-type

WX

Figure 30. Syntax for db2govlg

Chapter 9. Using the Governor 293

|
|
|
|
|

There are no authorization restrictions for using this utility. This allows all
users to query whether the governor has affected their application. If you
want to restrict access to this utility, you can change the group permissions for
the db2govlg file.

Running the Governor and Database Manager Performance

The governor can affect database manager performance because it requests
snapshots of the database manager. If the governor uses too much CPU, you
can increase its wake-up interval to reduce its CPU usage.

294 Administration Guide: Performance

Chapter 10. Scaling Your Configuration Through Adding
Processors

You may find that the characteristics of your configuration are not appropriate
for your current and planned needs. As a result, you should consider actions
that would increase your configuration’s capacity, performance, or both. For
example, adding containers to your configuration increases your capacity to
store data, but also can improve performance during utility use (such as when
loading data). Other ways to improve capacity or performance include:
adding memory and adding processors in either a symmetric multiprocessor
or partitioned database environment.

The focus of this chapter is on improving performance by increasing the
number of processors in your configuration.

You should consider scaling your configuration as discussed in the remainder
of this chapter if:
v You had a single-partition configuration with a single processor that was

being used to its maximum capacity. As a result, you have decided to
change configurations and have:
– Determined a symmetric multiprocessor (SMP) configuration is your best

choice for a new environment. You perhaps made this choice because
you want to take advantage of the processing power available with more
than one processor. Each processor shares memory and storage system
resources. All of the processors are within one system, so there are no
additional considerations such as communication lines between systems,
perhaps no additional administration staff to support any new systems,
and coordination of tasks between systems is not an issue. DB2 Universal
Database supports this environment.

– Determined a partitioned database configuration is your best choice for a
new environment. You perhaps made this choice because you want to
take advantage of the processing power available with more than one
processor that is physically separate from the first. Each processor has its
own memory and storage system resources without having to share with
the other processor. While you may have the additional considerations
mentioned above (communications, staff, and coordination of tasks),
there are advantages to this choice such as the ability to balance data
and user access across more than one system. DB2 Universal Database
supports this environment.

v You currently have a SMP configuration and you are planning to add one
or more additional processors. In this case, you are already familiar with

© Copyright IBM Corp. 1993, 2001 295

those considerations associated with this type of environment. By adding
one or more additional processors, you are simply adding computing
power to your environment without adding new considerations. DB2
Universal Database supports this environment.

v You have a partitioned database configuration and you are planning to add
one or more additional database partitions. In this case, you are already
familiar with those considerations associated with this type of environment.
By adding one or more additional database partitions, you are simply
adding computing power to your environment without adding new
considerations other than making the transition to the larger number of
partitions. DB2 Universal Database supports this environment.
A variation on the partitioned database configuration is one where the
database partitions are SMP machines. DB2 Universal Database supports
this environment.

When you scale your system by changing the environment, you should be
aware of the impact that such a change can have on your database procedures
such as loading data, backing up the database, and restoring the database.

When you add a new database partition, you cannot drop or create a database
that takes advantage of the new partition until the procedure is complete, and
the new server is successfully integrated into the system.

Adding Processors to a Machine

If the existing processors are fully utilized much of the time, consider
installing one or more additional processors in your machine. To allow the
DB2 database manager to take advantage of the new processors, there are
configuration parameters that should be reviewed and perhaps updated.
(Some operating systems, like Solaris, can dynamically vary processors on-
and off-line.) The parameters that are used to determine the number of
processors used and may need to be updated include:
v “Default Degree (dft_degree)” on page 442
v “Maximum Query Degree of Parallelism (max_querydegree)” on page 464
v “Enable Intra-Partition Parallelism (intra_parallel)” on page 466

You should also consider the parameters associated with applications that
may need to be updated. See “Parallel Processing of Applications” on page 87
for more information.

When working in an environment where TCP/IP is used for communication,
you should consider the value for the DB2TCPCONNMGRS registry variable.
See “Appendix A. DB2 Registry and Environment Variables” on page 491 for
more information on this variable.

296 Administration Guide: Performance

Adding Database Partitions to a Partitioned Database System

You can add database partitions to the partitioned database system either
when it is running, or when it is stopped. The following sections describe
how to do this task. Because adding a new server can be time consuming, you
may want to do it when the database manager is already running. The
procedure is described in “Adding Database Partitions to a Running System”
on page 298.

The ADD NODE command is used to add a database partition to a system.
This command can be invoked:
v As an option on db2start

v Using:
– The command line processor ADD NODE command
– sqleaddn

– sqlepstart.

The method you use to invoke the command is dependent upon whether
your system is stopped (using db2start) or running (using any of the other
choices).

When a new database partition is added to the system using the ADD NODE
command, all existing databases in the instance are created on the new
database partition. You can also specify which containers for temporary table
spaces will be used with the databases that are created. The containers can be:
v The same as those defined for the catalog node for each database. (This is

the default.)
v The same as those defined for another database partition.
v Not created at all. The ALTER TABLESPACE statement must be used to add

temporary table space containers to each database before the database can
be used.

A database on the new partition cannot be used to contain data until one or
more nodegroups are altered to include the new database partition. See
“Adding and Dropping Database Partitions” on page 308 for more information
on how to alter a nodegroup.

Note: If there are no databases defined in the system and you are running
DB2 Enterprise - Extended Edition on a UNIX-based system, edit the
db2nodes.cfg file to add a new database partition definition; do not use
any of the following procedures, as they apply only when a database
exists. Refer to “Altering a Nodegroup” in the Administration Guide:
Planning for more information on how to update the node configuration
file.

Chapter 10. Scaling Your Configuration Through Adding Processors 297

Windows NT Considerations: If you are using DB2 Enterprise - Extended
Edition on Windows NT and have no databases in the instance, you should
use the DB2NCRT command to scale the database system. For information
about this command, refer to the Command Reference. If, on the other hand,
you already have databases, you should use the DB2START ADDNODE
command, as this ensures that a database partition is created for each existing
database when you scale the system. For information about the DB2START
command and the parameters that you must use on Windows NT, refer to the
Command Reference. On Windows NT, you should never manually edit the
node configuration file (db2nodes.cfg), as this can introduce inconsistencies
into the file.

Adding Database Partitions to a Running System
You can add new database partitions to a partitioned database system while it
is running and while applications are connected to databases. However, a
newly added server does not become available to all databases until the
database manager is shut down and restarted.

To add a database partition to a multiple server system:
1. If the database partition is to be created on a server that already exists in

the system, go to the next step. Otherwise, do the following:
v On UNIX platforms:

a. Install the new server. This includes making executables accessible
(using shared file-system mounts or local copies), synchronizing
operating system files with those on existing processors, ensuring
that the sqllib directory is accessible as a shared file system, and
ensuring that the relevant operating system parameters (such as the
maximum number of processes) are set to the appropriate values.

b. Register the host name with the name server or in the hosts file in
the etc directory on all database partitions.

v On Windows NT platforms:
a. Install the new server.
b. Run the ADD NODE command on the new server. This command

causes a database partition to be created locally for every database
that already exists in the system. The database parameters for the
new database partitions are set to the default value, and each
database partition remains empty until you move data to it. You
should update the database configuration parameter values so that
they match those found on the other database partitions.

c. Go to point three (3).
2. Run the DB2START command on any database partition, specifying the

new partition values for NODENUM, ADDNODE, HOSTNAME, PORT,
and NETNAME parameters. On the Windows NT platform, you must also

298 Administration Guide: Performance

|
|
|
|
|
|
|

|
|
|

specify the COMPUTER, USER, and PASSWORD parameters. For more
information about the DB2START command, refer to the Command
Reference.
You can also optionally specify the source for any temporary table space
container definitions that need to be created with the databases. If no table
space information is provided, the temporary table space container
definitions are retrieved from the catalog node for each database.
When the command completes, the new server is stopped. The node
configuration file is not updated with the new server information until
DB2STOP is executed. This ensures that the ADD NODE command (which
is called when the ADDNODE parameter is specified) runs on the correct
database partition. When the utility ends, the new server is stopped.

3. Stop the database manager by running the DB2STOP command.
When you stop all the database partitions in the system, the node
configuration file is updated to include the new database partition.

4. Start the database manager by running the DB2START command.
The newly added database partition is now started along with the rest of
the system.
When all the database partitions in the system are running, system-wide
activities, such as creating or dropping a database, can be done.

Note: You may have to issue the DB2START command twice for all
database partition servers to access the new db2nodes.cfg file.

5. Optionally, take a backup of all databases on the new database partition.
6. Optionally, redistribute data to the new database partition. For details, see

“Chapter 11. Redistributing Data Across Database Partitions” on page 307.

Adding Database Partitions to a Stopped System
You can add new database partitions to a partitioned database system while it
is stopped. The newly added database partition becomes available to all
databases when the database manager is started up again. You have two
options. You can either have the database manager update the node
configuration file for you, or you can do it manually. The preliminary steps
for both procedures are the same.

Note: You should not update the node configuration file manually while
working on Windows NT. Instead, you should use the database
manager to update this file (as described below).

To add a new database partition to a multiple server system:
1. Issue DB2STOP to stop all the database partitions.
2. If the server is to be created on a processor that already exists in the

system, go to the next step. Otherwise, do the following:

Chapter 10. Scaling Your Configuration Through Adding Processors 299

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

a. On UNIX platforms:
1) Install the new server. This includes making executables accessible

(using shared file-system mounts or local copies), synchronizing
operating system files with those on existing processors, ensuring
that the sqllib directory is accessible as a shared file system, and
ensuring that the relevant operating system parameters (such as the
maximum number of processes) are set to the appropriate values.

2) Register the host name with the name server or in the hosts file in
the etc directory on all database partitions.

b. On Windows NT platforms:
1) Install the new server.
2) Run the ADD NODE command on the new server. This command

causes a database partition to be created locally for every database
that already exists in the system. The database parameters for the
new database partitions are set to the default value, and each
database partition remains empty until you move data to it. You
should update the database configuration parameter values so that
they match those found on the other database partitions.

3) Run the DB2START command to start the database system. Note
that the node configuration file (db2nodes.cfg) has already been
updated to include the new server during the installation of the
new server.

4) Optionally redistribute data onto the new server. See “Chapter 11.
Redistributing Data Across Database Partitions” on page 307 for
more details on how to do this.

c. If you want the database manager to update the db2nodes.cfg file for
you, continue with the instructions in “Having the Database Manager
Update the Node Configuration File”.

Note: On Windows NT, you should not edit the db2nodes.cfg file
manually, as this can introduce inconsistencies into the file.
Instead, you should have the database manager update this file.

If you want to update the db2nodes.cfg file yourself, continue with the
instructions in “Updating the Node Configuration File Manually” on
page 301.

Having the Database Manager Update the Node Configuration File
Following your adding of one or more new database partitions to your
partitioned database system, to complete making the new partition available
you must update the db2nodes.cfg file. If you made the decision to have the
database manager update the node configuration file, then the following
information provides details on what should be done.

300 Administration Guide: Performance

|
|
|
|
|
|
|

|
|
|
|
|

Note: If you made the decision to update the node configuration file
manually, then you should ignore the remaining information in this
section.

Continue the procedure as follows:
1. Run the DB2START command on the new database partition specifying

NODENUM, ADDNODE, HOSTNAME, PORT, and NETNAME
parameters. On the Windows NT platform, you must also specify the
COMPUTER, USER, and PASSWORD parameters. For more information
about the DB2START command, refer to the Command Reference. The
values that you specify for these parameters are used to update the node
configuration file.
When the command completes, the new server is stopped. The node
configuration file is not updated with the new server information until
DB2STOP is executed. This ensures that the ADD NODE command (which
is called when the ADDNODE parameter is specified) runs on the correct
database partition. When the utility ends, the new database partition is
stopped.

2. Issue the DB2STOP command.
When you issue the DB2STOP command, the node configuration file is
updated to include the new database partition.

3. Issue the DB2START command to start the database system.

Note: You may have to issue the DB2START command twice for all
database partitions to access the new node configuration file.

4. Optionally, take a backup of all databases on the new database partition.
5. Optionally, redistribute data to the new server. For details, see “Chapter 11.

Redistributing Data Across Database Partitions” on page 307.

Updating the Node Configuration File Manually
Following your adding of one or more new database partitions to your
partitioned database system, to complete making the new partition available
you must update the db2nodes.cfg file. If you made the decision to update
the node configuration file manually, the following information provides
details on what should be done to update the node configuration file
manually. (Recall that you should not manually update the node configuration
file when working on Windows NT.)

Note: If you made the decision to have the database manager update the
node configuration file, then you should go back to “Having the
Database Manager Update the Node Configuration File” on page 300.

Continue the procedure as follows:
1. Edit the db2nodes.cfg file and add the new database partition to it.
2. Issue the following command to start the new node:

Chapter 10. Scaling Your Configuration Through Adding Processors 301

|
|
|
|
|
|

|

|
|

|
|

|
|
|
|
|
|
|

|
|
|

DB2START NODENUM nodenum

Specify the number you are assigning to the new database partition as the
value of nodenum.

3. If the new server is to be a logical database partition (that is, it is not node
0), use db2set command to update the DB2NODE registry variable,
specifying the number of the database partition you are adding.

4. Run the ADD NODE command on the new database partition.
This command also causes a database partition to be created locally for
every database that already exists in the system. The database parameters
for the new database partitions are set to the default value, and each
database partition remains empty until you move data to it. You should
update the database configuration parameter values so that they match
those found on the other database partitions.

5. When the ADD NODE command completes, issue the DB2START
command to start the other database partitions in the system.
You should not attempt to do any system-wide activities, such as creating
or dropping a database, until all database partitions are successfully
started.

6. Optionally, take a backup of all new database partitions on the new server.
7. Optionally, redistribute data to the new database partition. For details, see

“Chapter 11. Redistributing Data Across Database Partitions” on page 307.

Dropping a Database Partition from a System

You can drop a database partition by using the DB2STOP command with the
DROP NODENUM parameter, or the sqlepstp API. Before doing this, you
must first ensure that the database partition being dropped is not being used
by any database. To check, issue the DROP NODE VERIFY command.

You should ensure that all transactions for which this database partition was
the coordinator have all committed or rolled back successfully. This may
require doing crash recovery on other servers.

For example, if you drop the coordinator database partition (that is, the
coordinator node), and another database partition participating in a
transaction crashed before the coordinator node was dropped, the crashed
database partition will not be able to query the coordinator node for the
outcome of any indoubt transactions.

To drop a database partition from a partitioned database system:
1. Redistribute the data for every database that resides on this node. This

satisfies the requirement that the database partition being dropped is not

302 Administration Guide: Performance

|
|

|
|
|

|

|
|
|
|
|
|

being used by any database. For details, see “Chapter 11. Redistributing
Data Across Database Partitions” on page 307.

2. Issue the DROP NODE VERIFY command or the sqledrpn API to verify
that the server is not in use.

Depending on the message you receive, proceed with either step 3 or step 4.
3. If you receive message SQL6034W (Node not used in any database), you

can do the following:
a. Issue the DB2STOP command with the DROP NODENUM parameter

to drop the database partition. After the command completes
successfully, the system is stopped.

b. If you want to, start the database manager with the DB2START
command.

4. If you receive message SQL6035W (Node in use by database), do the
following:
a. Use the REDISTRIBUTE NODEGROUP command to redistribute the

data from the database partition you are dropping to other database
partitions from the database alias, as indicated in message SQL6035W.
You cannot drop the database partition until this is done.

b. Drop any event monitors defined on the database partition.
c. Return to step 2 and continue.

Problems When Adding Nodes to a Partitioned Database

When adding nodes to a partitioned database that has one or more system
temporary table spaces with a page size that is different from the default page
size (4 KB), you may encounter the error message: “SQL6073N Add Node
operation failed” and an SQLCODE. This occurs because only the
IBMDEFAULTBP buffer pool exists with a page size of 4 KB when the node is
created.

For example, you can use the db2start command to add a node to the current
partitioned database:

DB2START NODENUM 2 ADDNODE HOSTNAME newhost PORT 2

If the partitioned database has system temporary table spaces with the default
page size, the following message is returned:

SQL6075W The Start Database Manager operation successfully added the node.
The node is not active until all nodes are stopped and started again.

However, if the partitioned database has system temporary table spaces that
are not the default page size, the returned message is:

SQL6073N Add Node operation failed. SQLCODE = "<-902>"

Chapter 10. Scaling Your Configuration Through Adding Processors 303

In a similar example, you can use the ADD NODE command after manually
updating the db2nodes.cfg file with the new node description. After editing
the file and running the ADD NODE command with a partitioned database
that has system temporary table spaces with the default page size, the
following message is returned:

DB20000I The ADD NODE command completed successfully.

However, if the partitioned database has system temporary table spaces that
are not the default page size, the returned message is:

SQL6073N Add Node operation failed. SQLCODE = "<-902>"

One way to prevent the problems outlined above is to run:
DB2SET DB2_HIDDENBP=16

before issuing db2start or the ADD NODE command. This registry variable
enables DB2 to allocate hidden buffer pools of 16 pages each using a page size
different from the default. This enables the ADD NODE operation to complete
successfully.

Another way to prevent these problems is to specify the WITHOUT
TABLESPACES clause on the ADD NODE or the db2start command. After
doing this, you will have to create the buffer pools using the CREATE
BUFFERPOOL statement, and associate the system temporary table spaces to
the buffer pool using the ALTER TABLESPACE statement.

When adding nodes to an existing nodegroup that has one or more table
spaces with a page size that is different from the default page size (4 KB), you
may encounter the error message: “SQL0647N Bufferpool ″″ is currently not
active.”. This occurs because the non-default page size buffer pools created on
the new node have not been activated for the table spaces.

For example, you can use the ALTER NODEGROUP statement to add a node
to a nodegroup:

DB2START
CONNECT TO mpp1
ALTER NODEGROUP ng1 ADD NODE (2)

If the nodegroup has table spaces with the default page size, the following
message is returned:

SQL1759W Redistribute nodegroup is required to change data positioning for
objects in nodegroup "<ng1>" to include some added nodes or exclude
some drop nodes.

However, if the nodegroup has table spaces that are not the default page size,
the returned message is:

SQL0647N Bufferpool "" is currently not active.

304 Administration Guide: Performance

One way to prevent this problem is to create buffer pools for each page size
and then to reconnect to the database before issuing the ALTER
NODEGROUP statement:

DB2START
CONNECT TO mpp1
CREATE BUFFERPOOL bp1 SIZE 1000 PAGESIZE 8192
CONNECT RESET
CONNECT TO mpp1
ALTER NODEGROUP ng1 ADD NODE (2)

A second way to prevent the problem is to run:
DB2SET DB2_HIDDENBP=16

before issuing the db2start command, and the CONNECT and ALTER
NODEGROUP statements.

Another problem can occur when the ALTER TABLESPACE statement is used
to add a table space to a node. For example:

DB2START
CONNECT TO mpp1
ALTER NODEGROUP ng1 ADD NODE (2) WITHOUT TABLESPACES
ALTER TABLESPACE ts1 ADD ('ts1') ON NODE (2)

This series of commands and statements generates the error message
SQL0647N (not the expected message SQL1759W).

To complete this change correctly, you should reconnect to the database after
the ALTER NODEGROUP... WITHOUT TABLESPACES statement.

DB2START
CONNECT TO mpp1
ALTER NODEGROUP ng1 ADD NODE (2) WITHOUT TABLESPACES
CONNECT RESET
CONNECT TO mpp1
ALTER TABLESPACE ts1 ADD ('ts1') ON NODE (2)

Another way to prevent the problem is to run:
DB2SET DB2_HIDDENBP=16

before issuing the db2start command, and the CONNECT, ALTER
NODEGROUP, and ALTER TABLESPACE statements.

Chapter 10. Scaling Your Configuration Through Adding Processors 305

306 Administration Guide: Performance

Chapter 11. Redistributing Data Across Database Partitions

Only if you are working in a partitioned database environment do you need
to be concerned with redistribution of data. If you are in a single partition
database environment there is no need for you to use the information found
here.

You use the Data Redistribution utility to move data among the database
partitions in an existing nodegroup. You can use it to do the following:
v Balance data volumes and processing loads across database partitions.

This is useful if you have a database table in which all the data is accessed
on a regular basis.

v Introduce skew in the data distribution across database partitions.
This is useful if you have a database table in which only some of the data is
accessed on a regular basis. In this situation, you could redistribute the
table so that the infrequently accessed data is on a small number of
database partitions in the nodegroup, and the frequently accessed data is
distributed over a larger number of partitions. This would improve access
performance and throughput on the most frequently run applications.

The REDISTRIBUTE NODEGROUP command is how you invoke the Data
Redistribution utility. Refer to the Command Reference for details on the syntax
for this command.

To preserve table collocation, this operation is applied to all tables in a
nodegroup, and redistribution is done at the nodegroup level rather than at
the table level.

To achieve the data distribution that you want, the utility uses a partitioning
map to move the rows of the tables among the database partitions of the
nodegroup. Depending on the option you specify, the utility can generate a
target partitioning map or can use an existing partitioning map as input.

Notes:

1. You should specify a log file size based on the log space requirements you
think that the Data Redistribution operation will need. You should also
ensure that the log is large enough to accommodate the INSERT and
DELETE operations done at each database partition where data is being
redistributed.

2. If you want to redistribute the data in a nodegroup that contains
replicated summary tables, you must first drop these tables, redistribute

© Copyright IBM Corp. 1993, 2001 307

the nodegroup, then re-create the tables. You cannot redistribute a
nodegroup that contains replicated summary tables.

How to Partition Data

By default, the Data Redistribution utility assumes that the same number of
rows hash to each hash partition, therefore it partitions the hash partitions
uniformly across all the database partitions of the nodegroup. If the same
number of rows do not hash to each hash partition, you can use a distribution
file to specify the current distribution. This file contains a value for each of the
4 096 hash partitions. Each value is used as the weight of the corresponding
hash partition. The Data Redistribution utility generates a target partitioning
map in which all the database partitions have about the same weight. Thus,
the distribution file can be used to achieve uniform data distribution even if
the data distribution is skewed.

The AutoLoader utility can be used to create a data distribution file using the
ANALYZE option. You can use this file as input to the Data Redistribution
utility. Refer to the Data Movement Utilities Guide and Reference for more
information on the AutoLoader utility.

Alternatively, you can use the PARTITION and NODENUMBER SQL
functions to determine the current data distribution across hash partitions or
database partitions. (You use the PARTITION function to determine the
distribution across hash partitions.) You can use this information to derive
both a distribution file and a target partitioning map.

For example, to see which database partitions, if any, have an atypically large
number of rows due to non-uniform data distribution:

SELECT PARTITION(column_name), COUNT(*) FROM table_name
GROUP BY PARTITION(column_name)
ORDER BY PARTITION(column_name) DESC
FETCH FIRST 100 ROWS ONLY

You should ensure that table_name is the largest table and column_name is an
appropriate column from that table.

Adding and Dropping Database Partitions

You can use the ALTER NODEGROUP statement to add or drop database
partitions from a nodegroup. When adding database partitions, the partitions
must already be defined in the node configuration file.

Following the use of the ALTER NODEGROUP statement, a new partitioning
map is created. This new partitioning map can become the target partitioning

308 Administration Guide: Performance

map when using the Data Redistribution utility. (The other way to create the
target partitioning map is to create it yourself.)

If you use the ALTER NODEGROUP statement with the WITHOUT
TABLESPACES clause, you must add table space containers to a new database
partition (or partitions) before redistributing the data. For additional
information about the ALTER NODEGROUP statement, refer to the SQL
Reference.

Specifying a Target Partitioning Map

The Data Redistribution utility uses a partitioning map to do the data
redistribution. It can create its own target partitioning map, or you can
provide one for the utility to use. If you create one, the entry or entries
determine the type of nodegroup that results from the data redistribution:
v 1 entry for a single-partition nodegroup
v 4 096 entries for a multipartition nodegroup

If the target partitioning map has more than one database partition, all tables
in the nodegroup must have the same partitioning key defined.

The target partitioning map can only contain database partition numbers that
are defined in the SYSCAT.NODEGROUPDEF catalog table, excluding those
with an IN_USE value of ’T’. (’T’ means that the partition is not in the target
partitioning map.) All database partitions that have an IN_USE value of ’D’
(meaning to drop) and do not appear in the target partitioning map are
dropped when the redistribution operation has completed successfully.

How Data Is Redistributed Across Database Partitions

The Data Redistribution operation is done on the set of tables in the specified
nodegroup of a database. (The application must be connected to the database
at the catalog database partition before executing the operation.) The utility
uses both the source partitioning map and the target partitioning map to
identify which hash partitions have been assigned to a new location (that is, a
new database partition number). All rows that correspond to a partition that
has a new location are moved from the database partition specified in the
source partitioning map to the database partition specified in the target
partitioning map.

The Data Redistribution utility does the following:
1. Obtains a new partitioning map ID for the target partitioning map, and

inserts it into the SYSCAT.PARTITIONMAPS catalog view.

Chapter 11. Redistributing Data Across Database Partitions 309

2. Updates the REBALANCE_PMAP_ID column in the
SYSCAT.NODEGROUPS catalog view for the nodegroup with the new
partitioning map ID.

3. Adds any new database partitions to the SYSCAT.NODEGROUPDEF
catalog view.

4. Sets the IN_USE column in the SYSCAT.NODEGROUPDEF catalog view
to ’D’ for any database partition that is to be dropped.

5. Does a COMMIT for the catalog updates.
6. Creates database files for all new database partitions.
7. Redistributes the data on a table-by-table basis for every table in the

nodegroup. This is described in “How Data Is Redistributed in Tables”.
8. Deletes database files and deletes entries in the

SYSCAT.NODEGROUPDEF catalog view for database partitions that
were previously marked to be dropped.

9. Updates the nodegroup record in the SYSCAT.NODEGROUPS catalog
view to set PMAP_ID to the value of REBALANCE_PMAP_ID and
REBALANCE_PMAP_ID to NULL.

10. Deletes the old partitioning map from the SYSCAT.PARTITIONMAPS
catalog view.

11. Does a COMMIT for all changes.

How Data Is Redistributed in Tables

When doing data redistribution on a table, the utility does the following:
1. Locks the row for the table in the SYSTABLES catalog table.
2. Invalidates all packages that involve this table. The partitioning map ID

associated with the table will change because the table is being
redistributed. Because the packages are invalidated, the compiler must
obtain the new partitioning information for the table and generate
packages accordingly.

3. Locks the table in exclusive mode.
4. Redistributes the data in the table via DELETEs and INSERTs.
5. If the redistribution operation succeeds, it:

a. Issues a COMMIT for the table.
b. Continues with the next table in the nodegroup.

If the operation fails before the table is fully redistributed, the utility:
a. Issues a ROLLBACK on updates to the table.
b. Ends the entire redistribution operation and returns an error.

310 Administration Guide: Performance

Estimating the log space requirements when distributing data is important.
The log must be large enough to accommodate the INSERT and DELETE
operations at each database partition where data is being redistributed. The
heaviest logging requirements will be either on the database partition that will
lose the most data, or on the database partition that will gain the most data. If
you are moving to a larger number of database partitions, then the ratio of
current database partitions to the new number of database partitions will
assist in determining the number of INSERT and DELETE operations.

For example, if you are moving from four to five database partitions,
approximately twenty percent of the four original database partitions will
have data moved to the new database partition. This means that the four
original database partitions will each experience twenty percent DELETE
operations based on the total amount of the data at each database partition.
The new database partition will experience all of the INSERT operations (that
is, the equivalent of an equal number of the DELETE operations from all of
the four original database partitions).

The above example assumes a uniform distribution of the data. There may
also be a case where there is a non-uniform distribution of the data as in the
case where there is a large number of NULL values in the partitioning key. In
this case, all of these rows would end up on one database partition under the
old partitioning scheme and on a different database partition under the new
partitioning scheme. As a result, this can increase the amount of log space
required on those two database partitions perhaps well beyond the amount
calculated by assuming uniform distribution.

When doing the actual calculations, you must multiply the percentage of
change (like twenty percent) by the size of the largest table. You do this
because the redistribution of each table is accomplished as a single
transaction.

Note: However, the largest table may be uniformly distributed but the second
largest table (for example) may have one or more inflated database
partitions. In such a case, you should consider using the second table
and not the largest one.

Once you have calculated the maximum amount of data to be inserted and
deleted at a database partition, double that figure to determine the peak size
of the active log. If this exceeds the active log limit of 32 GB, then the data
redistribution must be done in steps. There is a utility called “makepmap”
that can be used to generate a series of target partition maps, one for each
step.

Chapter 11. Redistributing Data Across Database Partitions 311

Recovering From Redistribution Errors

After the redistribution operation begins to execute, a file is written to the
redist subdirectory of the sqllib directory. This status file lists any
operations that are done on database partitions, the names of the tables that
were redistributed, and the completion status of the operation. If a table
cannot be redistributed, its name and the applicable SQLCODE is listed in the
file. If the redistribution operation cannot begin because of an incorrect input
parameter, the file is not written and an SQLCODE is returned.

The file has the following naming convention:
databasename.nodegroupname.timestamp (for UNIX platforms)
databasename\nodegroupname\date\time (for non-UNIX platforms)

Note: On non-UNIX platforms, only the first eight (8) bytes of the
nodegroupname are used.

If the data redistribution operation fails, some tables may be redistributed,
while others are not. This occurs because data redistribution is performed a
table at a time. You have two options for recovery:
v Use the CONTINUE option to continue the operation to redistribute the

remaining tables.
v Use the ROLLBACK option to undo the redistribution and set the

redistributed tables back to their original state. The rollback operation can
take about the same amount of time as the original redistribution operation.

Before you can use either option, a previous data redistribution operation
must have failed such that the REBALANCE_PMID column in the
SYSNODEGROUPS catalog table is set to a non-NULL value.

If you happen to delete the status file by mistake, you can still attempt a
CONTINUE operation.

Data Redistribution and Other Operations

You can do the following operations on objects of the nodegroup while the
utility is running. You cannot, however, do them on the table that is being
redistributed. You can:
v Create indexes on other tables. The CREATE INDEX statement uses the

partitioning map of the affected table.
v Drop other tables. The DROP TABLE statement uses the partitioning map

of the affected table.
v Drop indexes on other tables. The DROP INDEX statement uses the

partitioning map of the affected table.
v Query other tables.

312 Administration Guide: Performance

v Update other tables.
v Create new tables in a table space defined in the nodegroup. The CREATE

TABLE statement uses the target partitioning map.
v Create table spaces in the nodegroup.

You cannot do the following operations while the utility is running:
v Another redistribution operation on the nodegroup
v An ALTER TABLE on any table in the nodegroup
v Drop the nodegroup
v Alter the nodegroup.

Following Data Redistribution

After completing the redistribution of data across a nodegroup, it is strongly
recommended that you do a RUNSTATS to update the statistics associated
with the tables that may have been redistributed.

For more information on the RUNSTATS command, refer to the Command
Reference manual.

Chapter 11. Redistributing Data Across Database Partitions 313

314 Administration Guide: Performance

Chapter 12. Benchmark Testing

Benchmarking is a normal part of the application development life cycle. It is
a team effort involving both application developers and database
administrators (DBAs), and should be performed against your application in
order to determine and improve performance. Assuming that the application
code has been written as efficiently as possible, additional performance gains
can be realized from tuning the database and database manager configuration
parameters, and even your application parameters to meet the requirements of
the application.

There are several different types of benchmarking. A transaction per second
benchmark would determine the throughput capabilities of the database
manager under certain limited laboratory conditions. An application
benchmark would test the same throughput capabilities, but under conditions
that are closer to those under which your application will run when it is
implemented. Benchmarking for the purpose of tuning configuration
parameters is based upon these “real-world” conditions, and involves
repeatedly running SQL taken from your application with varying parameter
values until your application runs as efficiently as possible.

The benchmarking methods described in this section are oriented towards the
tuning of the configuration parameters. However, the same basic technique
can be used for tuning other factors that affect performance, such as:
v SQL statements
v Indexes
v Table space configuration
v Application code
v Hardware configuration.

Benchmarking is helpful in understanding how the database manager
responds under varying conditions. You could create scenarios that test
deadlock handling, utility performance, different methods of loading data,
transaction rate characteristics as more users are added, and even the effect on
the application of using a new release of the product.

The following topics are provided:
v “Benchmark Testing Methodology” on page 316
v “Preparing for Benchmark Testing” on page 316
v “Creating a Benchmark Program” on page 318
v “Executing the Benchmark Tests” on page 324.

© Copyright IBM Corp. 1993, 2001 315

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

Benchmark Testing Methodology

This benchmarking technique is based on the scientific method. A repeatable
environment will be created in which the same test, run under the same
conditions, will yield comparable results.

Benchmarking can also begin by running the test application in a normal
environment. As a performance problem is narrowed down, specialized test
cases can be developed to limit the scope of the function that is being tested
and observed. The specialized test cases need not emulate an entire
application in order to obtain valuable information. Start with simple
measurements, and increase the complexity only when warranted.

Characteristics of good benchmarks (or measurements) include:
v Each test is repeatable.
v Each iteration of a test is started in the same system state.
v There are no functions or applications active in the system other than those

being measured (unless the scenario includes some amount of other activity
going on in the system).

Note: Applications that are started use memory even when they are
minimized or idle. This increases the likelihood that paging skews
the results of the benchmark and violates the repeatability rule.

v The hardware and software used for benchmarking matches your
production environment.

As with any benchmarking, a scenario must be devised and then run several
times. The capturing of key information following each run is of primary
importance in determining the changes that need to be made to improve both
the application’s and the database’s performance.

Preparing for Benchmark Testing

The logical design of your application’s database should be complete before
performance benchmarking is started. Tables, views, and indexes need to be
set up and populated. Tables should be normalized, application packages
bound, and tables populated with realistic data.

You should have determined the final physical design of the database. The
database manager objects should be placed in their final disk locations, log
files sized, work files and backup locations determined, and backup
procedures tested. In addition, packages should be checked to make sure that
performance options such as row blocking are enabled when possible.

You should have reached a point in the application’s programming and
testing phases that will enable you to create your benchmark programs (see

316 Administration Guide: Performance

|
|
|

|
|
|
|

“Creating a Benchmark Program” on page 318). An application’s practical
limits may be revealed during the benchmark testing; however, the purpose of
the benchmark described here is to measure performance, not to detect defects
or abends.

Your benchmarking test program will need to run in as accurate a
representation of the final production environment as possible; ideally, on the
same model of server with the same memory and disk configurations. This is
especially important when the application will ultimately involve large
numbers of users and large amounts of data. The operating system itself and
any communications or file-serving facilities used directly by the benchmark
should also have been tuned.

It is also important to benchmark with a production-size database. An
individual SQL statement should return as much data and involve as much
sorting as it will once it is implemented in production. Adhering to this rule
will ensure that the application will incur representative memory
requirements.

The type of SQL statements to be benchmarked should be either representative
or worst-case, as described below:

Representative SQL
Representative SQL includes those statements that are executed
during typical operations of the application being benchmarked. The
statements that are selected will depend on the nature of the
application. For example, a data-entry application might test an
INSERT statement, while a banking transaction might test a FETCH,
an UPDATE, and several INSERTs. The frequency of execution and
volume of data processed by the statements chosen should be
considered average. If the volumes are excessive, the statements
should be considered under the worst-case category, even if they are
typical SQL statements.

Worst-case SQL
Statements falling in this category include:
v Statements that are executed frequently.
v Statements that have high volumes of data being processed.
v Statements that are time-critical.

For example, an application that is run when a telephone call is
received from a customer and the statements must be run to
retrieve and update the customer’s information while the customer
is waiting.

v Statements with the largest number of tables being joined or with
the most complex SQL in the application.

Chapter 12. Benchmark Testing 317

For example, a banking application that produces combined
customer statements of monthly activity for all their different types
of accounts. A common table may list customer address and
account numbers; however, several other tables must be joined to
process and integrate all of the necessary account transaction
information. Multiply the work necessary for one account by the
several thousand accounts that must be processed during the same
period, and the potential time savings drives the performance
requirements.

v Statements that have a poor access path, such as one that is not
executed very often and is not supported by the indexes that have
been created for the tables involved.

v Statements that have a long elapsed time.
v A statement that is only executed at application initialization but

has disproportionate resource requirements.
For example, an application that generates a list of account work
that must be processed during the day. When the application is
started, the first major SQL statement causes a 7-way join, which
creates a very large list of all the accounts for which this application
user is responsible. The statement might only be run a few times
per day, but takes several minutes to run when it has not been
tuned properly.

Creating a Benchmark Program

There are a variety of factors to consider when designing and implementing a
benchmark program. Since the main purpose of the program is to simulate a
user application, the overall structure of the program can vary. You can use
the entire application as the benchmark and simply introduce a means for
timing the SQL statements to be analyzed. For large or complex applications,
it may be more practical to just include blocks containing the important
statements.

To test the performance of specific SQL statements, another approach would
be to include these statements alone in the benchmark program along with
the necessary CONNECT, PREPARE, OPEN, and other statements and a
timing mechanism.

Another factor to consider is the type of benchmark to use. One option is to
run a set of SQL statements repeatedly over a time interval. The ratio of the
number of statements executed and this time interval would give the
throughput for the application. Another option would be to simply determine
the time required to execute individual SQL statements.

Regardless of the type of benchmark program, an efficient timing system is
necessary to calculate the elapsed time, whether for individual SQL statements

318 Administration Guide: Performance

|
|
|

or the application as a whole. For simulating applications in which individual
SQL statements would be executed in isolation, it may be important to
consider times for CONNECT, PREPARE, and COMMIT statements. However,
for programs processing many different statements, perhaps only a single
CONNECT or COMMIT is necessary, so focusing on just the execution time
for an individual statement may be the priority.

While the elapsed time for each query is an important factor in performance
analysis, it may not necessarily reveal bottlenecks. For example, information
on CPU usage, locking, and buffer pool I/O could show that the application
is I/O bound instead of using the CPU to its full capacity. A benchmark
program should allow you to obtain this kind of data for a more detailed
analysis if needed.

Not all applications will need to send the entire set of rows retrieved from a
query to some output device. For example, some may use the whole answer
set as input for another program (that is, none of the rows from the first
application are sent as output). Formatting data for screen output usually has
high CPU cost and may not reflect user need. In order to provide an accurate
simulation, a benchmark program should reflect the row handling of the
specific application. If rows do get sent to an output device, inefficient
formatting could consume the majority of CPU processing time and
misrepresent the actual performance of the SQL statement itself.

The db2batch Benchmark Tool: A benchmark tool (db2batch) is provided in
the bin subdirectory of your instance sqllib directory. This tool takes many of
the points made above regarding the creating of a benchmark program into
consideration. This tool will read SQL statements from either a flat file or
standard input, dynamically describe and prepare the statements, and return
an answer set. It also provides the added flexibility of allowing you to control
the size of the answer set, as well as the number of rows that should be sent
from this answer set to an output device.

You can also specify the level of performance-related information supplied,
including the elapsed time, CPU and buffer pool usage, locking, and other
statistics collected from the database monitor. If you are timing a set of SQL
statements, db2batch will also summarize the performance results and provide
both arithmetic and geometric means. For more information on invocation
syntax, and options, see the Command Reference manual for more information
on db2batch. You may also type db2batch -h on a command line for available
syntax and options.

The following is an example of how db2batch could be used with an input file
db2batch.sql:

Chapter 12. Benchmark Testing 319

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

Using the following invocation of the benchmark tool:
db2batch -d sample -f db2batch.sql

Produces the following output:

-- db2batch.sql
-- ------------
--#SET PERF_DETAIL 3 ROWS_OUT 5

-- This query lists employees, the name of their department
-- and the number of activities to which they are assigned for
-- employees who are assigned to more than one activity less than
-- full-time.
--#COMMENT Query 1
select lastname, firstnme,

deptname, count(*) as num_act
from employee, department, emp_act
where employee.workdept = department.deptno and

employee.empno = emp_act.empno and
emp_act.emptime < 1

group by lastname, firstnme, deptname
having count(*) > 2;
--#SET PERF_DETAIL 1 ROWS_OUT 5
--#COMMENT Query 2
select lastname, firstnme,

deptname, count(*) as num_act
from employee, department, emp_act
where employee.workdept = department.deptno and

employee.empno = emp_act.empno and
emp_act.emptime < 1

group by lastname, firstnme, deptname
having count(*) <= 2;

Figure 31. Sample Benchmark Input File: db2batch.sql

--#SET PERF_DETAIL 3 ROWS_OUT 5
Query 1

Statement number: 1

select lastname, firstnme,
deptname, count(*) as num_act
from employee, department, emp_act
where employee.workdept = department.deptno and
employee.empno = emp_act.empno and
emp_act.emptime < 1
group by lastname, firstnme, deptname
having count(*) > 2

Figure 32. Sample Output From db2batch (Part 1)

320 Administration Guide: Performance

LASTNAME FIRSTNME DEPTNAME NUM_ACT

JEFFERSON JAMES ADMINISTRATION SYSTEMS 3
JOHNSON SYBIL ADMINISTRATION SYSTEMS 4
NICHOLLS HEATHER INFORMATION CENTER 4
PEREZ MARIA ADMINISTRATION SYSTEMS 4
SMITH DANIEL ADMINISTRATION SYSTEMS 7
Number of rows retrieved is: 5
Number of rows sent to output is: 5
Elapsed Time is: 0.074 seconds
Locks held currently = 0
Lock escalations = 0
Total sorts = 5
Total sort time (ms) = 0
Sort overflows = 0
Buffer pool data logical reads = 13
Buffer pool data physical reads = 5
Buffer pool data writes = 0
Buffer pool index logical reads = 3
Buffer pool index physical reads = 0
Buffer pool index writes = 0
Total buffer pool read time (ms) = 23
Total buffer pool write time (ms) = 0
Asynchronous pool data page reads = 0
Asynchronous pool data page writes = 0
Asynchronous pool index page reads = 0
Asynchronous pool index page writes = 0
Total elapsed asynchronous read time = 0
Total elapsed asynchronous write time = 0
Asynchronous read requests = 0
LSN Gap cleaner triggers = 0
Dirty page steal cleaner triggers = 0
Dirty page threshold cleaner triggers = 0
Direct reads = 8
Direct writes = 0
Direct read requests = 4
Direct write requests = 0
Direct read elapsed time (ms) = 0
Direct write elapsed time (ms) = 0
Rows selected = 5
Log pages read = 0
Log pages written = 0
Catalog cache lookups = 3
Catalog cache inserts = 3
Buffer pool data pages copied to ext storage = 0
Buffer pool index pages copied to ext storage = 0
Buffer pool data pages copied from ext storage = 0
Buffer pool index pages copied from ext storage = 0
Total Agent CPU Time (seconds) = 0.02
Post threshold sorts = 0
Piped sorts requested = 5
Piped sorts accepted = 5

Figure 33. Sample Output From db2batch (Part 1)

Chapter 12. Benchmark Testing 321

The above sample output includes specific data elements returned by the
database system monitor. For more information about these and other monitor
elements, see the System Monitor Guide and Reference manual.

In the next example (on UNIX), just the summary table is produced.
db2batch -d sample -f db2batch.sql -r /dev/null,

Produces just the summary table. Using the -r option, outfile1 was replaced
by /dev/null and outfile2 (which contains just the summary table) is empty,
so db2batch sends the output to the screen:

--#SET PERF_DETAIL 1 ROWS_OUT 5
Query 2
Statement number: 2
select lastname, firstnme,
deptname, count(*) as num_act
from employee, department, emp_act
where employee.workdept = department.deptno and
employee.empno = emp_act.empno and
emp_act.emptime < 1
group by lastname, firstnme, deptname
having count(*) <= 2
LASTNAME FIRSTNME DEPTNAME NUM_ACT

GEYER JOHN SUPPORT SERVICES 2
GOUNOT JASON SOFTWARE SUPPORT 2
HAAS CHRISTINE SPIFFY COMPUTER SERVICE DIV. 2
JONES WILLIAM MANUFACTURING SYSTEMS 2
KWAN SALLY INFORMATION CENTER 2
Number of rows retrieved is: 8
Number of rows sent to output is: 5
Elapsed Time is: 0.037 seconds
Summary of Results
==================

Elapsed Agent CPU Rows Rows
Statement # Time (s) Time (s) Fetched Printed
1 0.074 0.020 5 5
2 0.037 Not Collected 8 5
Arith. mean 0.055
Geom. mean 0.052

Figure 34. Sample Output from db2batch (Part 2)

322 Administration Guide: Performance

This benchmarking tool also has a CLI option. With this option, you can
specify a cache size. In the following example, db2batch is run in CLI mode
with a cache size of 30 statements:

db2batch -d sample -f db2batch.sql -cli 30

It is possible to run db2batch remotely. If you use either the
-f <filename>

or the
-o <options>

command parameters of the benchmark tool then:
v The control options

perf_detail

and
-p <perf_detail>

(specifying the level of performance information to be returned) when set to
greater than one are not supported when running remotely.

v The control options
perf_detail

and
-p <perf_detail>

(specifying the level of performance information to be returned) when set to
greater than one are not valid for DB2 Universal Database for Windows 3.x
or DOS platforms.

Other than these two items, the
perf_detail

and

Summary of Results
==================

Elapsed Agent CPU Rows Rows
Statement # Time (s) Time (s) Fetched Printed
1 0.074 0.020 5 5
2 0.037 Not Collected 8 5
Arith. mean 0.055
Geom. mean 0.052

Figure 35. Sample Output from db2batch -- Summary Table Only

Chapter 12. Benchmark Testing 323

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|
|
|

|

|

|

-p <perf_detail>

control option values are supported and are valid for all DB2 Universal
Database platforms.

Executing the Benchmark Tests

One type of database benchmark involves choosing a configuration parameter
and running the test with different values for that parameter until the
maximum benefit is achieved. A single test should include executing the
application through several iterations (for example, 20 or 30 times) with the
same parameter value to get an average timing, which will better show the
effect of parameter changes.

When running your benchmark, the first iteration (called a warm-up run)
should be considered a separate case from the subsequent iterations (called
normal runs). This is necessary because the results from the warm-up run will
include some start-up activities (such as initializing the buffer pool).
Consequently, the warm-up run will take somewhat longer than normal runs.
Although the information from the warm-up run may be realistically valid, it
will not be statistically valid. Therefore, when calculating the average timing
or CPU for a specific set of parameter values, use the results from normal
runs.

You may want to consider using the Performance Configuration wizard to
create the warm-up run of the benchmark. The questions asked as part of the
Performance Configuration wizard will provide insight into some of those
things to consider when adjusting the configuration of your environment for
the normal runs during your benchmark activity. To use the Performance
Configuration wizard, enter db2cc to access the Control Center and proceed
from there.

If you are benchmarking using individual queries, you need to ensure that
you minimize the potential effects of previous queries. This can be
accomplished by flushing the buffer pool which can be done by reading a
number of pages (irrelevant to your query) to fill the buffer pool.

After completing the iterations for a single set of parameter values, a single
parameter can be changed. However, between each iteration, the following
tasks should be performed to restore the benchmark environment to its
original state:
v Return the application data and database manager statistics to their original

state. If the catalog statistics were updated for the test, ensure the same
values for the statistics are used for every iteration. The data used in the
tests must be consistent if it is updated in the course of the tests. This can
be done by:

324 Administration Guide: Performance

|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

– Using the RESTORE utility to restore the entire database. The backup
copy of the database would be in its previous state, and ready for the
next test.

– Using the IMPORT or LOAD utility to restore an exported copy of the
data. This method allows you to restore only the data that has been
affected. REORG and RUNSTATS utilities should be run against the
tables and indexes containing this data.

v Return the application to its original state by re-binding it to the database.
The following are additional considerations when benchmarking on
OS/2:

v If paging occurs during the scenario, ensure that SWAPPER.DAT has
returned to the original size.

v Re-boot the system for repeatability, if necessary.

Output from the benchmark program should include an identifier for each
test, the iteration of the program execution, the statement number, and the
timing for the execution. A summary of benchmarking results after a series of
measurements might look like the following:

Note: The data in the above report is shown for illustration purposes only. It
does not represent measured results.

Examining this report would indicate that the CONNECT (statement 01) took
1.34 seconds, the OPEN CURSOR (statement 10) took 2 minutes and 8.15
seconds, the FETCHES (statement 15) returned seven rows with the longest
delay being .28 seconds, the CLOSE CURSOR (statement 20) took .84 seconds,
and the CONNECT RESET (statement 99) took .03 seconds.

It might be beneficial for your program to output your data in a delimited
ASCII format so that it could later be imported into a database table or a
spreadsheet for further statistical analysis.

Test Iter. Stmt Timing SQL Statement
Numbr Numbr Numbr (hh:mm:ss.ss)
002 05 01 00:00:01.34 CONNECT TO SAMPLE
002 05 10 00:02:08.15 OPEN cursor_01
002 05 15 00:00:00.24 FETCH cursor_01
002 05 15 00:00:00.23 FETCH cursor_01
002 05 15 00:00:00.28 FETCH cursor_01
002 05 15 00:00:00.21 FETCH cursor_01
002 05 15 00:00:00.20 FETCH cursor_01
002 05 15 00:00:00.22 FETCH cursor_01
002 05 15 00:00:00.22 FETCH cursor_01
002 05 20 00:00:00.84 CLOSE cursor_01
002 05 99 00:00:00.03 CONNECT RESET

Figure 36. Benchmark Sample Results

Chapter 12. Benchmark Testing 325

|

|
|

Sample output for a benchmark report might be:

Note: The data in the above report is shown for illustration purposes only. It
does not represent any measured results.

Examining the data in this example shows that changing the buffpage
parameter successively lowered the OPEN CURSOR times from 2.15 seconds
to 1.00 second. (The assumption is that there is only one buffer pool with the
size (NPAGES) set to -1. This means the size of the buffer pool is controlled
by the buffpage parameter.)

In summary, the following steps/iterations may be followed to benchmark a
database application:

Step 1 Leave the database and database manager tuning parameters at their
default values except for:
v Those parameters significant to the workload and the objectives of

the test. (You rarely have enough time to perform benchmark
testing to tune all of the parameters, so you may want to start by
using your best guess for some of the parameters and tune from
that point.)

v Log sizes, which should be determined during unit and system
testing of your application. (See “Size of Log Files (logfilsiz)” on
page 409 for more information.)

v Any parameters that must be changed to enable your application to
run (that is, the changes needed to prevent negative SQL return
codes from such events as running out of memory for the statement
heap).

PARAMETER VALUES FOR EACH BENCHMARK TEST
TEST NUMBER 001 002 003 004 005
locklist 63 63 63 63 63

>> buffpage 1000 1175 1250 1325 1400 <<
maxappls 8 8 8 8 8
applheapsz 48 48 48 48 48
dbheap 128 128 128 128 128
sortheap 256 256 256 256 256
maxlocks 22 22 22 22 22
stmtheap 1024 1024 1024 1024 1024
SQL STMT AVERAGE TIMINGS (seconds)

01 01.34 01.34 01.35 01.35 01.36
10 02.15 02.00 01.55 01.24 01.00
15 00.22 00.22 00.22 00.22 00.22
20 00.84 00.84 00.84 00.84 00.84
99 00.03 00.03 00.03 00.03 00.03

Figure 37. Benchmark Sample Timings Report

326 Administration Guide: Performance

|
|
|
|
|

Run your set of iterations for this initial case and calculate the average
timing or CPU.

Step 2 Select one and only one tuning parameter to be tested, and change its
value.

Step 3 Run another set of iterations and calculate the average timing or CPU.

Step 4 Depending on the results of the benchmark test, do one of the
following:
v If performance improves, change the value of the same parameter

and return to Step 3. Keep changing this parameter until the
maximum benefit is shown.

v If performance degrades or remains unchanged, return the
parameter to its previous value, return to Step 2, and select a new
parameter. Repeat this procedure until all parameters have been
tested.

Note: If you were to graph the performance results, you would be
looking for the point where the curve begins to plateau or
decline.

You can write a driver program to help you with your benchmark testing.
This driver program could be written using a language such as REXX or, for
UNIX-based platforms, using shell scripts.

This driver program would execute the benchmark program, pass it the
appropriate parameters, drive the test through multiple iterations, restore the
environment to a consistent state, set up the next test with new parameter
values, and collect/consolidate the test results. These driver programs can be
flexible enough that they could be used to run the entire set of benchmark
tests, analyze the results, and provide a report of the final and best parameter
values for the given test.

Chapter 12. Benchmark Testing 327

328 Administration Guide: Performance

Chapter 13. Configuring DB2

Configuration parameters are values that affect the operating characteristics of
a database or database management system.

Database manager configuration parameters exist on servers and clients;
however, only certain database manager configuration parameters can be set
on the client. These parameters are a subset of the database management
configuration parameters that can be set on the server. There are specific
issues relating to configuration parameters depending on the type of DB2
Universal Database product you are using. For example, in DB2 Extended
Enterprise Edition, one database manager configuration file is shared between
all database partition servers in the instance. And each database partition has
its own database configuration file.

DB2 has been designed with an extensive array of tuning and configuration
parameters. These parameters fall into two general categories:
v “Database Manager Parameters” on page 331
v “Database Parameters” on page 337.

In addition to descriptions of the individual parameters, the following topics
are available which are significantly affected by configuration parameters:
v “Tuning Configuration Parameters” on page 330.
v “Parameter Details by Function” on page 343 (each functional area has its

own list of configuration parameters).
v “Appendix A. DB2 Registry and Environment Variables” on page 491.

There may be performance-related environment or registry variables for
your specific platform that you should consider using in addition to the
performance-related configuration parameters.

v “Chapter 8. Operational Performance” on page 239.
v “Chapter 12. Benchmark Testing” on page 315.

You should review all of the parameter summaries in Table 17 on page 333
and Table 19 on page 339, and then focus on the descriptions and tuning of
those which will provide you with the greatest benefit in your working
environment.

© Copyright IBM Corp. 1993, 2001 329

|
|
|
|
|
|
|
|
|

Tuning Configuration Parameters

The disk space and memory allocated by the database manager on the basis
of default values of the parameters may be sufficient to meet your needs. In
some situations, however, you may not be able to achieve maximum
performance using these default values.

Since the default values are oriented towards machines with relatively small
memory and dedicated as database servers, you may need to modify them if
your environment has:
v Large databases
v Large numbers of connections
v High performance requirements for a specific application
v Unique query or transaction loads or types
v Different machine configuration or usage.

Each transaction processing environment is unique in one or more aspects.
These differences can have a profound impact on the performance of the
database manager when using the default configuration. For this reason, you
are strongly advised to tune your configuration for your environment.

Different types of applications and users have different response time
requirements and expectations. Applications could range from simple data
entry screens to strategic applications involving dozens of complex SQL
statements accessing dozens of tables per unit of work. For example, response
time requirements could vary considerably in a telephone customer service
application versus a batch report generation application.

Other related topics can be used to help you benchmark your application to
tune the configuration parameters:
v “Database Manager Parameters” on page 331
v “Database Parameters” on page 337
v “Parameter Details by Function” on page 343 (each functional area has its

own list of configuration parameters)
v “Chapter 8. Operational Performance” on page 239
v “Chapter 12. Benchmark Testing” on page 315
v Database system monitor element descriptions in the System Monitor Guide

and Reference.

330 Administration Guide: Performance

Database Manager Parameters

Database manager parameters are stored in a file named db2systm. This file is
created when the instance of the database manager is created. In UNIX-based
environments, this file can be found in the sqllib subdirectory for the
instance of the database manager. In all other environments, the default
location of this file is the instance subdirectory of the sqllib directory. If the
DB2INSTPROF variable is set, the file is in the instance subdirectory of the
directory specified by the DB2INSTPROF variable.

In a partitioned database environment, this file resides on a shared file system
so that all database partition servers have access to the same file. The
configuration of the database manager is the same on all database partition
servers.

Most of the parameters either affect the amount of system resources that will
be allocated to a single instance of the database manager, or they configure
the setup of the database manager and the different communications
subsystems based on environmental considerations. In addition, there are
other parameters that serve informative purposes only and cannot be
changed. All of these parameters have global applicability independent of any
single database stored under that instance of the database manager.

The db2systm file cannot be directly edited. It can only be changed or viewed
using a supplied API or by a tool which calls that API.

Attention: If you edit the file using a method other than those provided by
the product, you may make your system unusable. We strongly recommend
that you do not change this file using methods other than those documented
and supported by DB2.

You may use one of the following methods to reset, update, and view the
database manager configuration parameters:
v Using the DB2 Control Center. The DB2 Control Center provides the

Configure Instance notebook, which you can use to set the database
manager configuration parameters on either a client or a server. The DB2
Control Center also provides the Performance Configuration wizard to alter
the value of configuration parameters on a server. This wizard generates
values to parameters based on the responses you provide to a set of
questions, such as the workload and the type of transactions that run
against the database. See the online help available with the Control Center
for information on using these interfaces.

v Using the command line processor. Commands to change the settings can
be quickly and conveniently entered. Refer to the Command Reference for
more information about the following commands:
– GET DATABASE MANAGER CONFIGURATION (or GET DBM CFG)

Chapter 13. Configuring DB2 331

– UPDATE DATABASE MANAGER CONFIGURATION (or UPDATE DBM
CFG)

– RESET DATABASE MANAGER CONFIGURATION (or RESET DBM
CFG).

v Using the application programming interfaces (APIs). The APIs can easily
be called from an application. Refer to the Administrative API Reference for
more information.

v Using the Client Configuration Assistant. You can only use the Client
Configuration Assistant to set the database manager configuration
parameters on a client.

After changing the parameters, the database manager must be stopped
(db2stop) and then restarted (db2start) for the new parameter values to take
effect. For clients, changes in the database manager configuration parameters
take effect the next time the client connects to a server. While new parameter
values are not immediately effective, viewing the parameter settings will
always show the latest updates.

Note: You do not need to restart the database manager if you update the
value of the dft_monswitches parameter; this parameter is updated
automatically when you change its value.

Database Manager Configuration Parameter Summary
The following table lists the parameters in the database manager configuration
file for database servers. When changing the database manager configuration
parameters, consider the detailed information for each parameter. Specific
operating environment information including defaults is part of each
parameter description.

The column “Performance Impact” in the following table provides an
indication of the relative importance of each parameter as it relates to system
performance. It is impossible for this column to apply accurately to all
environments; you should view this information as a generalization.
v High — indicates the parameter can have a significant impact on

performance. You should consciously decide the values of these parameters;
which, in some cases, will mean that you accept the default provided.

v Medium — indicates the parameter can have some impact on performance.
Your specific environment and needs will determine how much tuning
effort should be focused on these parameters.

v Low — indicates that the parameter has a less general or less significant
impact on performance.

332 Administration Guide: Performance

v None — indicates that the parameter does not directly impact performance.
While you do not have to tune these parameters for performance, they can
be very important for other aspects of your system configuration, such as
enabling communication support.

Table 17. Configurable Database Manager Configuration Parameters

Parameter Performance Impact Additional Information

agentpri High “Priority of Agents (agentpri)” on page 398

agent_stack_sz Low “Agent Stack Size (agent_stack_sz)” on page 368

aslheapsz High “Application Support Layer Heap Size
(aslheapsz)” on page 372

audit_buf_sz High “Audit Buffer Size (audit_buf_sz)” on page 381

authentication Low “Authentication Type (authentication)” on
page 482

backbufsz Medium “Default Backup Buffer Size (backbufsz)” on
page 352

catalog_noauth None “Cataloging Allowed without Authority
(catalog_noauth)” on page 483

comm_bandwidth Medium “Communications Bandwidth
(comm_bandwidth)” on page 471

conn_elapse Medium “Connection Elapse Time (conn_elapse)” on
page 459

cpuspeed Low (see note) “CPU Speed (cpuspeed)” on page 472

datalinks Low “Enable Data Links Support (datalinks)” on
page 437

dft_account_str None “Default Charge-Back Account (dft_account_str)”
on page 477

dft_client_adpt None “Default Client Adapter Number
(dft_client_adpt)” on page 455

dft_client_comm None “Default Client Communication Protocol
(dft_client_comm)” on page 454

dft_monswitches

v dft_mon_bufpool

v dft_mon_lock

v dft_mon_sort

v dft_mon_stmt

v dft_mon_table

v dft_mon_uow

Medium “Default Database System Monitor Switches
(dft_monswitches)” on page 469

dftdbpath None “Default Database Path (dftdbpath)” on page 484

Chapter 13. Configuring DB2 333

Table 17. Configurable Database Manager Configuration Parameters (continued)

Parameter Performance Impact Additional Information

diaglevel Low “Diagnostic Error Capture Level (diaglevel)” on
page 467

diagpath None “Diagnostic Data Directory Path (diagpath)” on
page 467

dir_cache Medium “Directory Cache Support (dir_cache)” on
page 379

dir_obj_name None “Object Name in DCE Namespace
(dir_obj_name)” on page 452

dir_path_name None “Directory Path Name in DCE Namespace
(dir_path_name)” on page 452

dir_type None “Directory Services Type (dir_type)” on page 451

discover Medium “Discovery Mode (discover)” on page 456

discover_comm Low “Search Discovery Communications Protocols
(discover_comm)” on page 457

discover_inst Low “Discover Server Instance (discover_inst)” on
page 458

dos_rqrioblk High “DOS Requester I/O Block Size (dos_rqrioblk)” on
page 376

drda_heap_sz Low “DRDA Heap Size (drda_heap_sz)” on page 366

fcm_num_anchors High “Number of FCM Message Anchors
(fcm_num_anchors)” on page 459

fcm_num_buffers High “Number of FCM Buffers (fcm_num_buffers)” on
page 460

fcm_num_connect High “Number of FCM Connection Entries
(fcm_num_connect)” on page 461

fcm_num_rqb High “Number of FCM Request Blocks (fcm_num_rqb)”
on page 462

federated Medium “Federated Database System Support (federated)”
on page 478

fileserver None “IPX/SPX File Server Name (fileserver)” on
page 448

indexrec Medium “Index Re-creation Time (indexrec)” on page 421

initdari_jvm Medium “Initialize DARI Process with JVM (initdari_jvm)”
on page 408

intra_parallel High “Enable Intra-Partition Parallelism
(intra_parallel)” on page 466

ipx_socket None “IPX/SPX Socket Number (ipx_socket)” on
page 450

334 Administration Guide: Performance

Table 17. Configurable Database Manager Configuration Parameters (continued)

Parameter Performance Impact Additional Information

java_heap_sz High “Maximum Java Interpreter Heap Size
(java_heap_sz)” on page 382

jdk11_path None “Java Development Kit 1.1 Installation Path
(jdk11_path)” on page 477

keepdari Medium “Keep DARI Process Indicator (keepdari)” on
page 405

maxagents Medium “Maximum Number of Agents (maxagents)” on
page 399

maxcagents Medium “Maximum Number of Concurrent Agents
(maxcagents)” on page 401

max_connretries Medium “Node Connection Retries (max_connretries)” on
page 463

max_coordagents Medium “Maximum Number of Coordinating Agents
(max_coordagents)” on page 402

maxdari Medium “Maximum Number of DARI Processes
(maxdari)” on page 406

max_logicagents Medium “Maximum Number of Logical Agents
(max_logicagents)” on page 403

max_querydegree High “Maximum Query Degree of Parallelism
(max_querydegree)” on page 464

max_time_diff Medium “Maximum Time Difference Among Nodes
(max_time_diff)” on page 463

maxtotfilop Medium “Maximum Total Files Open (maxtotfilop)” on
page 397

min_priv_mem Medium “Minimum Committed Private Memory
(min_priv_mem)” on page 369

mon_heap_sz Low “Database System Monitor Heap Size
(mon_heap_sz)” on page 378

nname None “NetBIOS Workstation Name (nname)” on
page 446

notifylevel Low “Notify Level (notifylevel)” on page 468

numdb Low “Maximum Number of Concurrently Active
Databases (numdb)” on page 473

num_initagents Medium “Initial Number of Agents in Pool
(num_initagents)” on page 405

num_initdaris Medium “Initial Number of Fenced DARI Processes in
Pool (num_initdaris)” on page 408

num_poolagents High “Agent Pool Size (num_poolagents)” on page 403

Chapter 13. Configuring DB2 335

Table 17. Configurable Database Manager Configuration Parameters (continued)

Parameter Performance Impact Additional Information

objectname None “IPX/SPX DB2 Server Object Name (objectname)”
on page 449

priv_mem_thresh Medium “Private Memory Threshold (priv_mem_thresh)”
on page 370

query_heap_sz Medium “Query Heap Size (query_heap_sz)” on page 365

restbufsz Medium “Default Restore Buffer Size (restbufsz)” on
page 353

resync_interval None “Transaction Resync Interval (resync_interval)” on
page 428

route_obj_name None “Routing Information Object Name
(route_obj_name)” on page 453

rqrioblk High “Client I/O Block Size (rqrioblk)” on page 375

sheapthres High “Sort Heap Threshold (sheapthres)” on page 360

spm_log_file_sz Low “Sync Point Manager Log File Size
(spm_log_file_sz)” on page 430

spm_log_path Medium “Sync Point Manager Log File Path
(spm_log_path)” on page 429

spm_max_resync Low “Sync Point Manager Resync Agent Limit
(spm_max_resync)” on page 431

spm_name None “Sync Point Manager Name (spm_name)” on
page 429

ss_logon None “LOGON Required for DB2START/DB2STOP
(ss_logon)” on page 485

start_stop_time Low “Start and Stop Timeout (start_stop_time)” on
page 464

svcename None “TCP/IP Service Name (svcename)” on page 447

sysadm_group None “System Administration Authority Group Name
(sysadm_group)” on page 479

sysctrl_group None “System Control Authority Group Name
(sysctrl_group)” on page 480

sysmaint_group None “System Maintenance Authority Group Name
(sysmaint_group)” on page 481

tm_database None “Transaction Manager Database Name
(tm_database)” on page 427

tp_mon_name None “Transaction Processor Monitor Name
(tp_mon_name)” on page 474

tpname None “APPC Transaction Program Name (tpname)” on
page 448

336 Administration Guide: Performance

Table 17. Configurable Database Manager Configuration Parameters (continued)

Parameter Performance Impact Additional Information

trust_allclnts None “Trust All Clients (trust_allclnts)” on page 485

trust_clntauth None “Trusted Clients Authentication (trust_clntauth)”
on page 487

udf_mem_sz Low “UDF Shared Memory Set Size (udf_mem_sz)” on
page 367

Note: The cpuspeed parameter can have a significant impact on performance but you should use the
default value, except in very specific circumstances, as documented in the parameter description.

Table 18. Informational Database Manager Configuration Parameters

Parameter Additional Information

nodetype “Machine Node Type (nodetype)” on page 476

release “Configuration File Release Level (release)” on
page 432

Database Parameters

Parameters for an individual database are stored in a configuration file named
SQLDBCON. This file is stored along with other control files for the database in
the SQLnnnnn directory, where nnnnn is a number assigned when the database
was created. (For more information about the location of this directory, refer
to “Database Physical Directories” in the Administration Guide: Planning.) Each
database has its own configuration file, and most of the parameters in the file
specify the amount of resources allocated to that database. The file also
contains descriptive information, as well as flags that indicate the status of the
database.

The SQLDBCON file cannot be directly edited, and can only be changed or
viewed via a supplied API or by a tool which calls that API.

Attention: If you edit the file using a method other than those provided by
DB2, you may make the database unusable. We strongly recommend that you
do not change this file using methods other than those documented and
supported by DB2.

You may use one of the following three methods to reset, update, and view
the database configuration parameters:
v Using the Control Center. The DB2 Control Center provides both the

Configure Database notebook and the Performance Configuration wizard to
alter the value of configuration parameters. This wizard generates values to

Chapter 13. Configuring DB2 337

parameters based on the responses you provide to a set of questions, such
as the workload and the type of transactions that run against the database.
See the online help available with the Control Center for information on
using these interfaces.
In a partitioned database environment, the SQLDBCON file exists for each
database partition. The Control Center Configure Database notebook will
change the value on all partitions if you launch the notebook from the
database object in the tree view of the Control Center. If you launch the
notebook from a database partition object, then it will only change the
values for that partition. (We recommend, however, that the configuration
parameter values be the same on all partitions.)

Note: The Performance Configuration wizard is not available in the
partitioned database environment.

v Using the command line processor. Commands to change the settings can
be quickly and conveniently entered. Refer to the Command Reference for
more information about the following commands:
– GET DATABASE CONFIGURATION (or GET DB CFG)
– UPDATE DATABASE CONFIGURATION (or UPDATE DB CFG)
– RESET DATABASE CONFIGURATION (or RESET DB CFG)

v Using the application programming interfaces (APIs). The APIs can easily
be called from a host-language program. Refer to the Administrative API
Reference for more information.

Updates to most changeable parameters will not take effect while applications
are connected to the database. All applications must first disconnect from the
database. (If the database was activated, then it must be deactivated and
reactivated.) Then, at the first new connect to the database, the changes will
take effect. You should note that some parameter changes, such as newlogpath,
logfilsiz and logprimary, may take a noticeable amount of time to take effect
due to the overhead associated with allocating space. You may wish to make a
test connection to the database so the change will be made at the time of the
test connection and any overhead will not affect other users. If you are
concerned about the overhead as discussed here, consider using the
ACTIVATE DATABASE command as described in the Command Reference.

Note: You do not need to disconnect from the database if you update the
value of the mincommit parameter; this parameter is updated
automatically when you change its value.

Changing some database configuration parameters can influence the access
plan chosen by the SQL optimizer. These database parameters are discussed in
“Configuration Parameters Affecting Query Optimization” on page 91. After
changing any of the parameters discussed there, you should consider

338 Administration Guide: Performance

|
|
|
|
|
|
|

|
|
|
|

rebinding your applications to ensure the best access plan is being used for
your SQL statements. See Command Reference for more information on the
BIND command.

While new parameter values may not be immediately effective, viewing the
parameter settings will always show the latest updates.

Note: A number of database configuration parameters (for example, userexit)
are described as having acceptable values of either “Yes” or “No”, or
“On” or “Off” in the help and other DB2 books. To clarify what may be
confusing, “Yes” should be considered equivalent to “On” and “No”
should be considered equivalent to “Off”.

Database Configuration Parameter Summary
The following table lists the parameters in the database configuration file.
When changing the database configuration parameters, consider the detailed
information for the parameter.

The column “Performance Impact” in the following table provides an
indication of the relative importance of each parameter as it relates to system
performance. It is impossible for this column to apply accurately to all
environments; you should view this information as a generalization.
v High — indicates the parameter can have a significant impact on

performance. You should consciously decide the values of these parameters;
which, in some cases, will mean that you accept the default provided.

v Medium — indicates the parameter can have some impact on performance.
Your specific environment and needs will determine how much tuning
effort should be focused on these parameters.

v Low — indicates that the parameter has a less general or less significant
impact on performance.

v None — indicates that the parameter does not directly impact performance.
While you do not have to tune these parameters for performance, they can
be very important for other aspects of your system configuration, such as
enabling communication support.

Table 19. Configurable Database Configuration Parameters

Parameter Performance Impact Additional Information

app_ctl_heap_sz Medium “Application Control Heap Size
(app_ctl_heap_sz)” on page 358

applheapsz Medium “Application Heap Size (applheapsz)” on page 363

autorestart Low “Auto Restart Enable (autorestart)” on page 421

avg_appls High “Average Number of Active Applications
(avg_appls)” on page 396

Chapter 13. Configuring DB2 339

|
|
|

Table 19. Configurable Database Configuration Parameters (continued)

Parameter Performance Impact Additional Information

buffpage High (when active) “Buffer Pool Size (buffpage)” on page 345

catalogcache_sz Medium “Catalog Cache Size (catalogcache_sz)” on
page 349

chngpgs_thresh High “Changed Pages Threshold (chngpgs_thresh)” on
page 387

copyprotect None “Copy Protection Enable (copyprotect)” on
page 435

dbheap Medium “Database Heap (dbheap)” on page 348

dft_degree High “Default Degree (dft_degree)” on page 442

dft_extent_sz Medium “Default Extent Size of Table Spaces
(dft_extent_sz)” on page 392

dft_loadrec_ses Medium “Default Number of Load Recovery Sessions
(dft_loadrec_ses)” on page 423

dft_prefetch_sz Medium “Default Prefetch Size (dft_prefetch_sz)” on
page 391

dft_queryopt Medium “Default Query Optimization Class
(dft_queryopt)” on page 442

dft_refresh_age Medium “Default Refresh Age (dft_refresh_age)” on
page 443

dft_sqlmathwarn None “Continue upon Arithmetic Exceptions
(dft_sqlmathwarn)” on page 440

dir_obj_name None “Object Name in DCE Namespace
(dir_obj_name)” on page 452

discover_db Medium “Discover Database (discover_db)” on page 455

dlchktime Medium “Time Interval for Checking Deadlock
(dlchktime)” on page 383

dl_expint None “Data Links Access Token Expiry Interval
(dl_expint)” on page 435

dl_num_copies None “Data Links Number of Copies (dl_num_copies)”
on page 436

dl_time_drop None “Data Links Time After Drop (dl_time_drop)” on
page 436

dl_token Low “Data Links Token Algorithm (dl_token)” on
page 436

dl_upper None “Data Links Token in Upper Case (dl_upper)” on
page 437

dyn_query_mgmt Low “Dynamic SQL Query Management
(dyn_query_mgmt)” on page 431

340 Administration Guide: Performance

Table 19. Configurable Database Configuration Parameters (continued)

Parameter Performance Impact Additional Information

estore_seg_sz Medium “Extended Storage Memory Segment Size
(estore_seg_sz)” on page 393

indexrec Medium “Index Re-creation Time (indexrec)” on page 421

indexsort Low (see note on page
342)

“Index Sort Flag (indexsort)” on page 390

locklist High when it affects
escalation

“Maximum Storage for Lock List (locklist)” on
page 353

locktimeout Medium “Lock Timeout (locktimeout)” on page 385

logbufsz High “Log Buffer Size (logbufsz)” on page 350

logfilsiz Medium “Size of Log Files (logfilsiz)” on page 409

logprimary Medium “Number of Primary Log Files (logprimary)” on
page 411

logretain Low “Log Retain Enable (logretain)” on page 419

logsecond Medium “Number of Secondary Log Files (logsecond)” on
page 413

maxappls Medium “Maximum Number of Active Applications
(maxappls)” on page 394

maxfilop Medium “Maximum Database Files Open per Application
(maxfilop)” on page 397

maxlocks High when it affects
escalation

“Maximum Percent of Lock List Before Escalation
(maxlocks)” on page 384

mincommit High “Number of Commits to Group (mincommit)” on
page 416

min_dec_div_3 High “Decimal Division Scale to 3 (min_dec_div_3)” on
page 373

newlogpath Low “Change the Database Log Path (newlogpath)” on
page 413

num_db_backups None “Number of Database Backups
(num_db_backups)” on page 423

num_estore_segs Medium “Number of Extended Storage Memory Segments
(num_estore_segs)” on page 393

num_freqvalues Low “Number of Frequent Values Retained
(num_freqvalues)” on page 443

num_iocleaners High “Number of Asynchronous Page Cleaners
(num_iocleaners)” on page 387

num_ioservers High “Number of I/O Servers (num_ioservers)” on
page 389

Chapter 13. Configuring DB2 341

|||
|

Table 19. Configurable Database Configuration Parameters (continued)

Parameter Performance Impact Additional Information

num_quantiles Low “Number of Quantiles for Columns
(num_quantiles)” on page 444

pckcachesz High “Package Cache Size (pckcachesz)” on page 356

rec_his_retentn None “Recovery History Retention Period
(rec_his_retentn)” on page 424

seqdetect High “Sequential Detection Flag (seqdetect)” on
page 390

softmax Medium “Recovery Range and Soft Checkpoint Interval
(softmax)” on page 417

sortheap High “Sort Heap Size (sortheap)” on page 360

stat_heap_sz Low “Statistics Heap Size (stat_heap_sz)” on page 364

stmtheap Medium “Statement Heap Size (stmtheap)” on page 362

trackmod Low “Track Modified Pages Enable (trackmod)” on
page 425

tsm_mgmtclass None “Tivoli Storage Manager Management Class
(tsm_mgmtclass)” on page 425

tsm_nodename None “Tivoli Storage Manager Node Name
(tsm_nodename)” on page 426

tsm_owner None “Tivoli Storage Manager Owner Name
(tsm_owner)” on page 426

tsm_password None “Tivoli Storage Manager Password
(tsm_password)” on page 425

userexit Low “User Exit Enable (userexit)” on page 420

util_heap_sz Low “Utility Heap Size (util_heap_sz)” on page 351

Note: Changing the indexsort parameter to a value other than the default can have a negative impact
on the performance of creating indexes. You should always try to use the default for this parameter.

Table 20. Informational Database Configuration Parameters

Parameter Additional Information

backup_pending “Backup Pending Indicator (backup_pending)” on
page 438

codepage “Code Page for the Database (codepage)” on
page 434

codeset “Codeset for the Database (codeset)” on page 433

collate_info “Collating Information (collate_info)” on page 434

342 Administration Guide: Performance

|||
|

Table 20. Informational Database Configuration Parameters (continued)

Parameter Additional Information

country “Country code for the Database (country)” on
page 433

database_consistent “Database is Consistent (database_consistent)” on
page 438

database_level “Database Release Level (database_level)” on
page 433

log_retain_status “Log Retain Status Indicator (log_retain_status)”
on page 439

loghead “First Active Log File (loghead)” on page 415

logpath “Location of Log Files (logpath)” on page 415

multipage_alloc “Multipage File Allocation Enabled
(multipage_alloc)” on page 439

numsegs “Default Number of SMS Containers (numsegs)”
on page 392

release “Configuration File Release Level (release)” on
page 432

restore_pending “Restore Pending (restore_pending)” on page 439

rollfwd_pending “Roll Forward Pending Indicator
(rollfwd_pending)” on page 438

territory “Territory for the Database (territory)” on page 433

user_exit_status “User Exit Status Indicator (user_exit_status)” on
page 439

Parameter Details by Function

This following sections provide additional details to assist in understanding
and tuning the different configuration parameters. This discussion of the
individual parameters is organized based on their function or purpose:
v “Capacity Management” on page 344
v “Logging and Recovery” on page 409
v “Database Management” on page 431
v “Communications” on page 446
v “Partition Database” on page 458
v “Instance Management” on page 466.

The discussion of each parameter includes the following information:

Chapter 13. Configuring DB2 343

Configuration Type Indicates which configuration file contains the
setting for the parameter:
v Database manager (which affects an

instance of the database manager and all
databases defined within that instance)

v Database (which affects a specific database)

Parameter Type Indicates whether or not you can change the
parameter value:
v Configurable

A range of values are possible and the
parameter may need to be tuned based on
the database administrator’s knowledge of
the applications and/or from benchmarking
experience.

v Informational

These parameters are changed only by the
database manager itself and will contain
information such as the release of DB2 that
a database was created under or an
indication that a required backup is
pending.

Capacity Management

There are a number of configuration parameters at both the database and
database manager levels that can impact the throughput on your system.
These parameters are categorized in the following groups:
v “Database Shared Memory” on page 345
v “Application Shared Memory” on page 358
v “Agent Private Memory” on page 359
v “Agent/Application Communication Memory” on page 371
v “Database Manager Instance Memory” on page 378
v “Locks” on page 382
v “I/O and Storage” on page 386
v “Agents” on page 394
v “Stored Procedures (DARI)” on page 405.

For an introduction to DB2’s memory management, see “How DB2 Uses
Memory” on page 239.

344 Administration Guide: Performance

Database Shared Memory
The following parameters affect the database global memory allocated on
your system:
v “Buffer Pool Size (buffpage)”.
v “Database Heap (dbheap)” on page 348.
v “Catalog Cache Size (catalogcache_sz)” on page 349.
v “Log Buffer Size (logbufsz)” on page 350.
v “Utility Heap Size (util_heap_sz)” on page 351.
v “Default Backup Buffer Size (backbufsz)” on page 352.
v “Default Restore Buffer Size (restbufsz)” on page 353.
v “Maximum Storage for Lock List (locklist)” on page 353.
v “Package Cache Size (pckcachesz)” on page 356.

See “How DB2 Uses Memory” on page 239 for information about how
database global memory relates to the rest of the memory allocated by the
database manager.

Buffer Pool Size (buffpage)

Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 32-bit platforms
1 000 [2 — 524 288]

UNIX 64-bit platforms
1 000 [2 — 2 147 483 647]

OS/2 and Windows NT
250 [2 — 524 288]

Unit of Measure Pages

When Allocated When the first application connects to the
database

When Freed When last application disconnects from the
database

Related Parameters
v “Changed Pages Threshold

(chngpgs_thresh)” on page 387
v “Database Heap (dbheap)” on page 348
v “Number of Asynchronous Page Cleaners

(num_iocleaners)” on page 387

Chapter 13. Configuring DB2 345

|
|

|
|

|
|

||

Each database has at least one buffer pool (IBMDEFAULTBP, which is created
when the database is created), and can have more. All buffer pools reside in
global memory, which is available to all applications using the database. The
memory is allocated on the machine where the database is located. If the
buffer pools are large enough to keep the required data in memory, less disk
activity will occur. Conversely, if the buffer pools are not large enough, the
overall performance of the database can be severely curtailed and the
database manager can become I/O-bound as a result of a high amount of disk
activity (I/O) required to process the data your application requires.

The buffpage parameter controls the size of a buffer pool when the CREATE
BUFFERPOOL or ALTER BUFFERPOOL statement was run with NPAGES -1;
otherwise, the buffpage parameter is ignored and the buffer pool will be
created with the number of pages specified by the NPAGES parameter.

To determine whether the buffpage parameter is active for a buffer pool, do a:
SELECT * from SYSCAT.BUFFERPOOLS.

Each buffer pool that has an NPAGES value of -1 uses buffpage.

There is a trade-off between the buffer pool size and the memory allocations
of other system users. Memory requirements of database servers are so
important on multi-user high transaction rate servers, that database servers
and file or communication servers are often separated and reside on different
machines.

If your queries access nicknames, consider increasing the buffer pool size
when:
v The optimizer decides that most or all operations are completed locally.

When a query is processed, the optimizer will usually push down
operations to the data source where possible. As an example, a GROUP BY
operator is usually evaluated at the data source. It is possible, however, that
materializing the table at DB2 and performing an operation locally is the
least cost route. This situation could occur if the DB2 server workstation is
more powerful than the data source workstation.

v Sort operations must be completed locally. Queries containing nicknames
are sorted according to the DB2 collating sequence. If a data source does
not have the same collating sequence, all sort operations are performed
locally.

All buffer pools are allocated when the first application connects to the
database, or when the database is explicitly activated. As an application
requests data out of the database, pages containing that data are transferred to
one of the buffer pools from disk. (Note that database data is stored in pages
within the tables on the disk.) Pages are not written back to disk until the
page is changed and one of the following occurs:

346 Administration Guide: Performance

v All applications disconnect from the database
v The database is explicitly deactivated
v The database quiesces (that is, all connected applications have committed)
v Its space is required for another page that needs to be read into the buffer

pool
v A page cleaner is available (num_iocleaners) and is activated by the database

manager.

Recommendations:
v Instead of using the buffpage configuration parameter, you can use the

CREATE BUFFERPOOL and ALTER BUFFERPOOL SQL statements to
create and change buffer pools and their sizes.

v The size of the buffer pool is used by the optimizer in determining access
plans. You should consider rebinding applications (using the REBIND
PACKAGE command) after changing this parameter.

v Because the sizes of all the buffer pools can have a major impact on
performance, you should consider the following factors to ensure that
excessive page swapping does not occur:
– The amount of installed memory on your machine.
– The memory required by other applications running concurrently with

the database manager on the same machine.

Page swapping results when there is not enough memory to hold the page
that is being accessed. The result is that the page is written (“swapped”) to
temporary disk storage to make room for the other page. When the page on
the temporary disk storage is needed, it is “swapped back” into memory.

v You may wish to allocate as much as 75% of the machine’s memory to the
database buffer pools when you have the following:
– Multiple users
– A machine used only as a database server
– A large amount of repeated access to the same data and index pages
– One database on the machine.

v For every buffer pool page allocated, some space is used in the database
heap for internal control structures.
If the total size of the buffer pool (or buffer pools) is increased, you may
also need to increase dbheap.

v When working in a federated environment, if the data source collating
sequence matches the DB2 collating sequence, ensure that the server option
collating_sequence is set to indicate that they match. That is, you should
have the collating_sequence option set to “Y”. You can create federated
databases with a particular collating sequence that matches the data source
collating sequence. This approach may speed performance if all data
sources use the same collating sequence or if most or all column functions
are directed against data sources that use the same collating sequence. If a
data source has a collating sequence that differs from DB2’s collating
sequence, most operations depending on DB2’s collating sequence cannot

Chapter 13. Configuring DB2 347

|
|
|
|
|
|
|
|
|
|

be remotely evaluated at a data source. See Administration Guide:
Implementation for more information on this server option.

You may use the database system monitor to calculate the buffer pool hit
ratio, which can help you tune your buffer pools. Refer to the System Monitor
Guide and Reference.

Database Heap (dbheap)

Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 1200 [32 – 524 288]

OS/2 and Windows NT Database server with
local and remote clients

600 [32 – 524 288]

OS/2 and Windows NT Database server with
local clients 300 [32 – 524 288]

Unit of Measure Pages (4 KB)

When Allocated First connection to the database

When Freed When last application disconnects from the
database

Related Parameters
v “Catalog Cache Size (catalogcache_sz)” on

page 349
v “Log Buffer Size (logbufsz)” on page 350

There is one database heap per database, and the database manager uses it on
behalf of all applications connected to the database. It contains control block
information for tables, indexes, table spaces, and buffer pools. It also contains
space for the log buffer (logbufsz), and the catalog cache (catalogcache_sz).
Therefore, the size of the heap will be dependent on the number of control
blocks stored in the heap at a given time. The control block information is
kept in the heap until all applications disconnect from the database.

The minimum amount the database manager needs to get started is allocated
at the first connection. The data area is expanded as needed up to the
maximum specified by dbheap.

Recommendation: This value will need to be increased when an application
receives an error indicating that there is not enough storage available in the
database heap to process the statement.

348 Administration Guide: Performance

|
|

|
|
|

You may use the database system monitor to track the highest amount of
memory that was used for the database heap. See the db_heap_top (maximum
database heap allocated) monitor element description in the System Monitor Guide
and Reference for more information.

When setting this parameter, you should consider:
v The value of logbufsz, because the log buffer is allocated from the database

heap.
v The value of catalogcache_sz, because the catalog cache is allocated from the

database heap.

Catalog Cache Size (catalogcache_sz)

Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 64 [1 – 60 000]

OS/2 and Windows NT Database server with
local and remote clients

32 [1 – 60 000]

OS/2 and Windows NT Database server with
local clients 16 [1 – 60 000]

Unit of Measure Pages (4 KB)

Related Parameters
v “Database Heap (dbheap)” on page 348
v “Log Buffer Size (logbufsz)” on page 350
v “Application Control Heap Size

(app_ctl_heap_sz)” on page 358

This parameter indicates the maximum amount of space that the catalog cache
can use from the database heap (dbheap). The catalog cache is used to store
table descriptor information that is used when a table, view or alias is
referenced during the compilation of an SQL statement.

Use of this cache can help improve performance of binding SQL statements
(including dynamic SQL), if the same tables, views, or aliases have been
referenced in previous statements. Descriptor information for declared
temporary tables is not stored in the catalog cache; instead the application
control heap is used.

Running any DDL statements against a table will purge that table’s entry in
the catalog cache. Otherwise a table entry is kept in the cache until space is

Chapter 13. Configuring DB2 349

needed for a different table, but it will not be removed from the cache until
any units of work referencing that table have completed.

Recommendation: Start with the default value and tune it by using the
database system monitor.

See the System Monitor Guide and Reference for information about the following
monitor elements:
v cat_cache_lookups (catalog cache lookups)
v cat_cache_inserts (catalog cache inserts)
v cat_cache_overflows (catalog cache overflows)
v cat_cache_heap_full (catalog cache heap full)

These database system monitor elements can help you determine whether you
should adjust this configuration parameter. When tuning this parameter, you
should increase it in small increments, for example, two pages at a time.

In general, more cache space is required if a unit of work contains several
dynamic SQL statements or if you are binding packages that contain a lot of
static SQL statements.

When you set the size of the catalog cache, also consider the size of the log
files (logbufsz), because both catalogcache_sz and logbufsz are allocated from the
database heap (dbheap).

Log Buffer Size (logbufsz)

Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 32-bit platforms
8 [4 — 4 096]

UNIX 64-bit platforms
8 [4 — 65 535]

OS/2 and Windows NT
8 [4 — 4 096]

Unit of Measure Pages (4 KB)

Related Parameters
v “Catalog Cache Size (catalogcache_sz)” on

page 349
v “Database Heap (dbheap)” on page 348
v “Number of Commits to Group

(mincommit)” on page 416

350 Administration Guide: Performance

This parameter allows you to specify the amount of the database heap
(defined by the dbheap parameter) to use as a buffer for log records before
writing these records to disk. The log records are written to disk when one of
the following occurs:
v A transaction commits or a group of transactions commit, as defined by the

mincommit configuration parameter
v The log buffer is full
v As a result of some other internal database manager event.

This parameter must also be less than or equal to the dbheap parameter.
Buffering the log records will result in more efficient logging file I/O because
the log records will be written to disk less frequently and more log records
will be written at each time.

Recommendation: Increase the size of this buffer area if there is considerable
read activity on a dedicated log disk, or there is high disk utilization. When
increasing the value of this parameter, you should also consider the dbheap
parameter since the log buffer area uses space controlled by the dbheap
parameter.

You may use the database system monitor to determine how much of the log
buffer space is used for a particular transaction (or unit of work).

For more information refer to the log_space_used (unit of work log space used)
monitor element description in the System Monitor Guide and Reference.

When you set the log buffer size, also consider the size of the catalog cache
(catalogcache_sz), because both logbufsz_sz and catalogcache_sz are allocated from
the database heap (dbheap).

Utility Heap Size (util_heap_sz)

Configuration Type Database

Parameter Type Configurable

Default [Range] 5000 [16 – 524 288]

Unit of Measure Pages (4 KB)

When Allocated As required by the database manager utilities

When Freed When the utility no longer needs the memory

Related Parameters
v “Default Backup Buffer Size (backbufsz)” on

page 352
v “Default Restore Buffer Size (restbufsz)” on

page 353

Chapter 13. Configuring DB2 351

|
|

This parameter indicates the maximum amount of memory that can be used
simultaneously by the BACKUP, RESTORE, and LOAD (including load
recovery) utilities.

Recommendation: Use the default value unless your utilities run out of space,
in which case you should increase this value. If memory on your system is
constrained, you may wish to lower the value of this parameter to limit the
memory used by the database utilities. If the parameter is set too low, you
may not be able to concurrently run utilities. You need to set this parameter
large enough to accommodate all of the buffers that you want to allocate for
the concurrent utilities.

Default Backup Buffer Size (backbufsz)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] 1024 [8 — 16 384]

Unit of Measure Pages (4 KB)

When Allocated When the backup utility is called

When Freed When the backup utility completes its
processing

Related Parameters
v “Default Restore Buffer Size (restbufsz)” on

page 353
v “Utility Heap Size (util_heap_sz)” on

page 351

This parameter specifies the size of the buffer used when backing up the
database if the buffer size is not explicitly specified when calling the backup
utility. For more information about the backup utility, refer to the Command
Reference.

When backing up a database, the data is first copied to an internal buffer.
Data is then written from this buffer to the backup media when the buffer is
full.

352 Administration Guide: Performance

||

Tuning this buffer size can help improve the performance of the backup utility
as well as minimize the impact on the performance of other concurrent
database operations.

Default Restore Buffer Size (restbufsz)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] 1024 [8 — 16 384]

Unit of Measure Pages (4 KB)

When Allocated When the restore utility is called

When Freed When the restore utility completes its
processing

Related Parameters
v “Default Backup Buffer Size (backbufsz)” on

page 352
v “Utility Heap Size (util_heap_sz)” on

page 351

This parameter specifies the size of the buffer used when restoring the
database if a buffer size is not explicitly specified when calling the restore
database utility. For more information about the restore utility, refer to the
Command Reference.

When restoring a database, the data is first copied from the backup media to
an internal buffer. Data is then written from this buffer to the target database
media when the buffer is full.

Tuning this buffer size can help improve the performance of the restore
database utility as well as minimize the impact on the performance of other
concurrent database operations.

Maximum Storage for Lock List (locklist)

Configuration Type Database

Parameter Type Configurable

Chapter 13. Configuring DB2 353

||

|
|
|
|

Default [Range]

UNIX 100 [4 – 524 288]

OS/2 and NT Database server with local and
remote clients 50 [4 – 524 288]

OS/2 and NT Database server with local
clients 25 [4 – 60 000]

Unit of Measure Pages (4 KB)

When Allocated When the first application connects to the
database

When Freed When last application disconnects from the
database

Related Parameters
v “Maximum Percent of Lock List Before

Escalation (maxlocks)” on page 384
v “Maximum Number of Active Applications

(maxappls)” on page 394

This parameter indicates the amount of storage that is allocated to the lock
list. There is one lock list per database and it contains the locks held by all
applications concurrently connected to the database. Locking is the
mechanism that the database manager uses to control concurrent access to
data in the database by multiple applications. Both rows and tables can be
locked. The database manager may also acquire locks for internal use.

For more information on locking see “Locking” on page 51.

Each lock requires 36 or 72 bytes of the lock list, depending on whether other
locks are held on the object:
v 72 bytes are required to hold a lock on an object that has no other locks

held on it
v 36 bytes are required to record a lock on an object that has an existing lock

held on it.

When the percentage of the lock list used by one application reaches maxlocks,
the database manager will perform lock escalation, from row to table, for the
locks held by the application (described below). Although the escalation
process itself does not take much time, locking entire tables (versus individual
rows) decreases concurrency, and overall database performance may decrease
for subsequent accesses against the affected tables. Suggestions of how to
control the size of the lock list are:
v Perform frequent COMMITs to release locks.

354 Administration Guide: Performance

||

|
||

|
||

|

v When performing many updates, lock the entire table before updating
(using the SQL LOCK TABLE statement). This will use only one lock, keeps
others from interfering with the updates, but does reduce concurrency of
the data.
You can also use the LOCKSIZE parameter of the ALTER TABLE statement
to control how locking is done for a specific table. For details, refer to the
SQL Reference.
Use of the Repeatable Read isolation level may result in an automatic table
lock. For more information on isolation levels, see “Chapter 3. Application
Considerations” on page 43.

v Use the Cursor Stability isolation level when possible to decrease the
number of share locks held. If application integrity requirements are not
compromised use Uncommitted Read instead of Cursor Stability to further
decrease the amount of locking.

Once the lock list is full, performance can degrade since lock escalation will
generate more table locks and fewer row locks, thus reducing concurrency on
shared objects in the database. Additionally there may be more deadlocks
between applications (since they are all waiting on a limited number of table
locks), which will result in transactions being rolled back. Your application
will receive an SQLCODE of -912 when the maximum number of lock
requests has been reached for the database.

Recommendation: If lock escalations are causing performance concerns you
may need to increase the value of this parameter or the maxlocks parameter.
You may use the database system monitor to determine if lock escalations are
occurring.

For more information see the lock_escals (lock escalations) monitor element
description in the System Monitor Guide and Reference.

The following steps may help in determining the number of pages required
for your lock list:
1. Calculate a lower bound for the size of your lock list:

(512 * 36 * maxappls) / 4096

where 512 is an estimate of the average number of locks per application
and 36 is the number of bytes required for each lock against an object that
has an existing lock.

2. Calculate an upper bound for the size of your lock list:
(512 * 72 * maxappls) / 4096

where 72 is the number of bytes required for the first lock against an
object.

Chapter 13. Configuring DB2 355

3. Estimate the amount of concurrency you will have against your data and
based on your expectations, choose an initial value for locklist that falls
between the upper and lower bounds that you have calculated.

4. Using the database system monitor, as described below, tune the value of
this parameter.

You may use the database system monitor to determine the maximum
number of locks held by a given transaction.

For more information see the locks_held_top (maximum number of locks held)
monitor element description in the System Monitor Guide and Reference.

This information can help you validate or adjust the estimated number of
locks per application. In order to perform this validation, you will have to
sample several applications, noting that the monitor information is provided
at a transaction level, not an application level.

You may also want to increase locklist if maxappls is increased, or if the
applications being run perform infrequent commits.

You should consider rebinding applications (using the REBIND PACKAGE
command) after changing this parameter.

For more information on application performance and influencing query
optimization, see “Part 2. Tuning Application Performance” on page 41.

Package Cache Size (pckcachesz)

Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 32-bit platforms
-1 [-1, 32 — 128 000]

UNIX 64-bit platforms
-1 [-1, 32 — 524 288]

OS/2 and Windows NT
-1 [-1, 32 — 128 000]

Unit of Measure Pages (4 KB)

When Allocated When the database is initialized

When Freed When the database is shutdown

356 Administration Guide: Performance

|
|

|
|

This parameter is allocated out of the database global memory, and is used for
caching static and dynamic SQL statements on a database. In a partitioned
database system, there is one package cache for each database partition.

Caching packages allows the database manager to reduce its internal overhead
by eliminating the need to access the system catalogs when reloading a
package; or, in the case of dynamic SQL, eliminating the need for compilation.
Sections are kept in the package cache until one of the following occurs:
v The database is shut down
v The package or dynamic SQL statement is invalidated
v The cache runs out of space.

This caching of the section for a static or dynamic SQL statement can improve
performance especially when the same statement is used multiple times by
applications connected to a database. This is particularly important in a
transaction processing application.

By taking the default (-1), the value used to calculate the page allocation is
eight times the value specified for the maxappls configuration parameter. The
exception to this occurs if eight times maxappls is less than 32. In this
situation, the default value of -1 will set pckcachesz to 32.

Recommendation: When tuning this parameter, you should consider whether
the extra memory being reserved for the package cache might be more
effective if it was allocated for another purpose, such as the buffer pool. For
this reason, you should use benchmarking techniques when tuning this
parameter.

Tuning this parameter is particularly important when several sections are used
initially and then only a few are run repeatedly. If the cache is too large,
memory is wasted holding copies of the initial sections.

See the System Monitor Guide and Reference for information about the following
monitor elements:
v pkg_cache_lookups (package cache lookups)
v pkg_cache_inserts (package cache inserts)
v pkg_cache_size_top (largest package cache size)
v pkg_cache_num_overflows (number of package cache overflows)

These database system monitor elements can help you determine whether you
should adjust this configuration parameter.

Note: The package cache is a working cache, so you cannot set this parameter
to zero. There must be sufficient memory allocated in this cache to hold
all sections of the SQL statements currently being executed. If there is
more space allocated than currently needed, then sections are cached.

Chapter 13. Configuring DB2 357

|
|
|
|

These sections can simply be executed the next time they are needed
without having to load or compile them.

The limit specified by the pckcachesz parameter is a soft limit. This limit
may be exceeded, if required, if memory is still available in the
database shared set. You can use the pkg_cache_size_top monitor element
to determine the largest that the package cache has grown, and the
pkg_cache_num_overflows monitor element to determine how many times
the limit specified by the pckcachesz parameter has been exceeded.

Application Shared Memory
The following parameter specifies the work area that is used by all agents
(both coordinating and subagents) that work for an application:
v “Application Control Heap Size (app_ctl_heap_sz)”

Application Control Heap Size (app_ctl_heap_sz)

Configuration Type Database

Parameter Type Configurable

Default [Range]

Database server with local and remote
clients 128 [1–64 000]

Database server with local clients
64 [1–64 000] (for non-UNIX
platforms)

128 [1–64 000] (for
UNIX-based platforms)

Partitioned database server with local and
remote clients 256 [1–64 000]

Unit of Measure Pages (4 KB)

When Allocated When an application starts

When Freed When an application completes

Related Parameters
v “Catalog Cache Size (catalogcache_sz)” on

page 349
v “Application Heap Size (applheapsz)” on

page 363
v “Enable Intra-Partition Parallelism

(intra_parallel)” on page 466

For partitioned databases and non-partitioned databases with intra-parallelism
enabled (intra_parallel=ON), this is the size of the shared memory area

358 Administration Guide: Performance

|
|

allocated for the application control heap. For non-partitioned databases
where intra-parallelism is disabled (intra_parallel=OFF), this is the maximum
private memory that will be allocated for the heap. There is one application
control heap per connection per partition.

The application control heap is required primarily for sharing information
between agents working on behalf of the same request, and, in a partitioned
database environment, for storing executable sections representing SQL
statements. Usage of this heap is minimal for non-partitioned databases when
running queries with a degree of parallelism less than or equal to 1.

This heap is also used to store descriptor information for declared temporary
tables. The descriptor information for all declared temporary tables that have
not been explicitly dropped is kept in this heap’s memory and cannot be
dropped until the declared temporary table is dropped.

Recommendation: Initially, start with the default value. You may have to set
the value higher if you are running complex applications, if you have a
system that contains a large number of database partitions, or if you use
declared temporary tables. The amount of memory needed increases with the
number of concurrently active declared temporary tables. A declared
temporary table with many columns has a larger table descriptor size than a
table with few columns, so having a large number of columns in an
application’s declared temporary tables also increases the demand on the
application control heap.

Agent Private Memory
The following parameters affect the amount of memory used for each
database agent:
v “Sort Heap Size (sortheap)” on page 360.
v “Sort Heap Threshold (sheapthres)” on page 360.
v “Statement Heap Size (stmtheap)” on page 362.
v “Application Heap Size (applheapsz)” on page 363.
v “Statistics Heap Size (stat_heap_sz)” on page 364.
v “Query Heap Size (query_heap_sz)” on page 365.
v “DRDA Heap Size (drda_heap_sz)” on page 366.
v “UDF Shared Memory Set Size (udf_mem_sz)” on page 367.
v “Agent Stack Size (agent_stack_sz)” on page 368.
v “Minimum Committed Private Memory (min_priv_mem)” on page 369.
v “Private Memory Threshold (priv_mem_thresh)” on page 370.
v “Maximum Java Interpreter Heap Size (java_heap_sz)” on page 382. On

UNIX-based platforms, java_heap_sz is allocated per agent.

Chapter 13. Configuring DB2 359

|
|
|
|

|
|
|
|
|

|
|
|
|

See “How DB2 Uses Memory” on page 239 for information about how the
private agent memory relates to the rest of the memory allocated by the
database manager.

Sort Heap Size (sortheap)

Configuration Type Database

Parameter Type Configurable

Default [Range] 256 [16 – 524 288]

Unit of Measure Pages (4 KB)

When Allocated As needed to perform sorts

When Freed When sorting is complete

Related Parameters “Sort Heap Threshold (sheapthres)”

This parameter defines the maximum number of private memory pages to be
used for private sorts, or the maximum number of shared memory pages to
be used for shared sorts. If the sort is a private sort, then this parameter
affects agent private memory. If the sort is a shared sort, then this parameter
affects the database shared memory. Each sort has a separate sort heap that is
allocated as needed, by the database manager. This sort heap is the area
where data is sorted. If directed by the optimizer, a smaller sort heap than the
one specified by this parameter is allocated using information provided by the
optimizer.

Recommendation:

When working with the sort heap, you should consider the following:
v Appropriate indexes can minimize the use of the sort heap.
v Hash join buffers and dynamic bitmaps (used for index ANDing and Star

Joins) use sort heap memory. Increase the size of this parameter when these
techniques are used.

v Increase the size of this parameter when frequent large sorts are required.
v When increasing the value of this parameter, you should examine whether

the sheapthres parameter in the database manager configuration file also
needs to be adjusted.

v The sort heap size is used by the optimizer in determining access paths.
You should consider rebinding applications (using the REBIND PACKAGE
command) after changing this parameter.

Sort Heap Threshold (sheapthres)

Configuration Type Database manager

Applies to

360 Administration Guide: Performance

|

|
|
|

v Database server with local and remote
clients

v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range]

UNIX 32-bit platforms
20 000 [250 — 2 097 152]

UNIX 64-bit platforms
20 000 [250 — 2 147 483 647]

OS/2 and Windows NT
10 000 [250 — 2 097 152]

Unit of Measure Pages (4 KB)

Related Parameters “Sort Heap Size (sortheap)” on page 360

Private and shared sorts use memory from two different memory sources. The
size of the shared sort memory area is statically predetermined at the time of
the first connection to a database based on the value of sheapthres. The size of
the private sort memory area is unrestricted.

The sheapthres parameter is used differently for private and shared sorts:
v For private sorts, this parameter is an instance-wide soft limit on the total

amount of memory that can be consumed by private sorts at any given
time. When the total private-sort memory consumption for an instance
reaches this limit, the memory allocated for additional incoming
private-sort requests will be considerably reduced.

v For shared sorts, this parameter is a database-wide hard limit on the total
amount of memory consumed by shared sorts at any given time. When this
limit is reached, no further shared-sort memory requests will be allowed
(until the total shared-sort memory consumption falls below the limit
specified by sheapthres).

Examples of those operations that use the sort heap include: sorts, hash joins,
dynamic bitmaps (used for index ANDing and Star Joins), and operations
where the table is in memory.

Explicit definition of the threshold prevents the database manager from using
excessive amounts of memory for large numbers of sorts.

Chapter 13. Configuring DB2 361

|
|
|

There is no reason to increase the value of this parameter when moving from
a single-node to a multi-node environment. Once you have tuned the database
and database manager configuration parameters on a single node (in a DB2
EE) environment, the same values will in most cases work well in a
multi-node (in a DB2 EEE) environment.

The Sort Heap Threshold parameter, as a database manager configuration
parameter, applies across the entire DB2 instance. The only way to set this
parameter to different values on different nodes or partitions, is to create more
than one DB2 instance. This will require managing different DB2 databases
over different nodegroups. Such an arrangement defeats the purpose of many
of the advantages of a partitioned database environment.

Recommendation: Ideally, you should set this parameter to a reasonable
multiple of the largest sortheap parameter you have in your database manager
instance. This parameter should be at least two times the largest sortheap
defined for any database within the instance.

If you are doing private sorts and your system is not memory constrained, an
ideal value for this parameter can be calculated using the following steps:
1. Calculate the typical sort heap usage for each database:

(typical number of concurrent agents running against the database)
* (sortheap, as defined for that database)

2. Calculate the sum of the above results, which provides the total sort heap
that could be used under typical circumstances for all databases within the
instance.

For information about sorts in an SMP environment, see “Parallel Sort
Strategies” on page 195.

You should use benchmarking techniques to tune this parameter to find the
proper balance between sort performance and memory usage. See
“Chapter 12. Benchmark Testing” on page 315 for more information.

Also see “Sorting” on page 262 for more information on sorting.

You can use the database system monitor to track the sort activity.

For more information refer to the post threshold sorts (post_threshold_sorts)
monitor element description in the System Monitor Guide and Reference.

Statement Heap Size (stmtheap)

Configuration Type Database

Parameter Type Configurable

Default [Range] 2048 [128 – 60 000]

362 Administration Guide: Performance

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

Unit of Measure Pages (4 KB)

When Allocated For each statement during precompiling or
binding

When Freed When precompiling or binding of each
statement is complete

The statement heap is used as a work space for the SQL compiler during
compilation of an SQL statement. This parameter specifies the size of this
work space.

This area does not stay permanently allocated, but is allocated and released
for every SQL statement handled. Note that for dynamic SQL statements, this
work area will be used during execution of your program; whereas, for static
SQL statements, it is used during the bind process but not during program
execution.

Recommendation: In most cases the default value of this parameter will be
acceptable. If you have very large SQL statements and the database manager
issues an error (that the statement is too complex) when it attempts to
optimize a statement, you should increase the value of this parameter in
regular increments (such as 256 or 1024) until the error situation is resolved.

Application Heap Size (applheapsz)

Configuration Type Database

Parameter Type Configurable

Default [Range] 128 [16 – 60 000]

64 [16 – 60 000] (partitioned database
environment)

Unit of Measure Pages (4 KB)

When Allocated When an agent is initialized to do work for an
application

When Freed When an agent completes the work to be done
for an application

Related Parameters “Application Control Heap Size
(app_ctl_heap_sz)” on page 358

This parameter defines the number of private memory pages available to be
used by the database manager on behalf of a specific agent or subagent.

The heap is allocated when an agent or subagent is initialized for an
application. The amount allocated will be the minimum amount needed to

Chapter 13. Configuring DB2 363

||

|
|

process the request given to the agent or subagent. As the agent or subagent
requires more heap space to process larger SQL statements, the database
manager will allocate memory as needed, up to the maximum specified by
this parameter.

Note: In a partitioned database environment, the application control heap
(app_ctl_heap_sz) is used to store copies of the executing sections of SQL
statements for agents and subagents. SMP subagents, however, use
applheapsz, as do agents in all other environments.

Recommendation: Increase the value of this parameter if your applications
receive an error indicating that there is not enough storage in the application
heap.

The application heap (applheapsz) is allocated out of agent private memory.

Statistics Heap Size (stat_heap_sz)

Configuration Type Database

Parameter Type Configurable

Default [Range] 4384 [1096 – 524 288]

Unit of Measure Pages (4 KB)

When Allocated When the RUNSTATS utility is started

When Freed When the RUNSTATS utility is completed

Related Parameters
v “Number of Frequent Values Retained

(num_freqvalues)” on page 443
v “Number of Quantiles for Columns

(num_quantiles)” on page 444

This parameter indicates the maximum size of the heap used in collecting
statistics using the RUNSTATS command.

Recommendation: The default value is appropriate when no distribution
statistics are collected or when distribution statistics are only being collected
for relatively narrow tables. The minimum value is not recommended when
distribution statistics are being gathered, as only tables containing 1 or 2
columns will fit in the heap.

You should adjust this parameter based on the number of columns for which
statistics are being collected. Narrow tables, with relatively few columns,
require less memory for distribution statistics to be gathered. Wide tables,
with many columns, require significantly more memory. If you are gathering
distribution statistics for tables which are very wide and require a large

364 Administration Guide: Performance

statistics heap, you may wish to collect the statistics during a period of low
system activity so you do not interfere with the memory requirements of
other users.

Query Heap Size (query_heap_sz)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] 1000 [2 – 524 288]

Unit of Measure Pages (4 KB)

When Allocated When an application (either local or remote)
connects to the database

When Freed When the application disconnects from the
database, or detaches from the instance

Related Parameters “Application Support Layer Heap Size
(aslheapsz)” on page 372

This parameter specifies the maximum amount of memory that can be
allocated for the query heap. A query heap is used to store each query in the
agent’s private memory. The information for each query consists of the input
and output SQLDA, the statement text, the SQLCA, the package name,
creator, section number, and consistency token. This parameter is provided to
ensure that an application does not consume unnecessarily large amounts of
virtual memory within an agent.

The query heap is also used for the memory allocated for blocking cursors.
This memory consists of a cursor control block and a fully resolved output
SQLDA.

The initial query heap allocated will be the same size as the application
support layer heap, as specified by the aslheapsz parameter. The query heap
size must be greater than or equal to two (2), and must be greater than or
equal to the aslheapsz parameter. If this query heap is not large enough to
handle a given request, it will be reallocated to the size required by the

Chapter 13. Configuring DB2 365

|
|
|

request (not exceeding query_heap_sz). If this new query heap is more than 1.5
times larger than aslheapsz, the query heap will be reallocated to the size of
aslheapsz when the query ends.

Recommendation: In most cases the default value will be sufficient. As a
minimum, you should set query_heap_sz to a value at least five times larger
than aslheapsz. This will allow for queries larger than aslheapsz and provide
additional memory for three or four blocking cursors to be open at a given
time.

If you have very large LOBs, you may need to increase the value of this
parameter so the query heap will be large enough to accommodate those
LOBs.

DRDA Heap Size (drda_heap_sz)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Client
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] 128 [16 – 60 000]

Unit of Measure Pages (4 KB)

When Allocated
v The DRDA Application Server (AS) allocates

a DRDA heap each time a DRDA
Application Requester (AR) connects to a
DB2 database

v DB2 Connect allocates a DRDA heap each
time it connects to a DRDA AS.

When Freed When a DRDA AR disconnects from the
database

This parameter indicates the number of pages to allocate for the memory used
by DB2 Connect and the DRDA Application Server Support Feature. The
following items affect the amount of memory allocated out of this heap:
v The number of cursors opened by an application
v The number of input host variables
v The number of items in the select list

366 Administration Guide: Performance

v The size of input and output data
v The length of SQL statements being bound or prepared.

Recommendation: Use the default value unless you receive an error code
indicating that you do not have enough DRDA heap memory.

UDF Shared Memory Set Size (udf_mem_sz)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] 256 [128 – 60 000]

Unit of Measure Pages (4 KB)

When Allocated When a UDF starts

When Freed When a UDF completes

This parameter is common to both fenced and unfenced user defined
functions (UDFs). For a fenced UDF, it specifies the default allocation for
memory to be shared between the database process and the UDF. In a
single-partition database environment, there is only one shared memory set.
In a partitioned database environment, there is a shared memory set for each
database partition server, and all application agents and sub-agents running
on that server use the same shared memory set.

For an unfenced UDF the parameter specifies the size of the private memory
set. In a single-partition database environment, the heap is allocated from
private memory. In a partitioned database environment, the heap is allocated
from the Application Global memory for each database partition server and
all agents and subagents running on behalf of the application on that database
partition server use the same shared memory set.

For both fenced and unfenced UDFs, this memory is used to pass data to a
UDF and back to a database.

If no UDFs are used in applications, the memory is not allocated. If both
fenced and unfenced UDFs are running in the same application, two memory
allocations result: one for fenced UDFs, and one for unfenced UDFs.

Chapter 13. Configuring DB2 367

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

For more information about user-defined functions, refer to the Application
Development Guide and the SQL Reference.

Recommendation: The default setting should be adequate for all cases not
involving the passing of LOB data to a UDF. For cases which pass LOB data
to a UDF, you may need to increase the amount of memory allocated. You
should set the value of this parameter at least two pages larger than the size
of the input arguments and the result of the external function.

Note: The memory requirement for UDFs tends to be additive, so the number
of UDFs referenced in an application will affect the optimal setting for
this parameter.

Agent Stack Size (agent_stack_sz)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range]

OS/2 64 [8 – 1000]

Windows NT 16 [8 – 1000]

Unit of Measure Pages (4 KB)

When Allocated When an agent is initialized to do work for an
application

When Freed When an agent completes the work to be done
for an application

The agent stack is the virtual memory that is allocated by DB2 for each agent.
This memory is committed when it is required to process an SQL statement.
You can use this parameter to optimize memory utilization of the server for a
given set of applications. More complex queries will use more stack space,
compared to the space used for simple queries.

This parameter does not apply to UNIX-based platforms.

Recommendation: In most cases you should be able to use the default stack
size. Only if your environment includes many highly complex queries should

368 Administration Guide: Performance

|
|
|
|
|

you need to increase the value of this parameter. If the stack size is not large
enough to process your SQL statement, an error entry will be logged to the
db2diag.log file, and an SQL code will be issued. You need to increase
agent_stack_sz and restart the database instance.

You may be able to reduce the stack size in order to make more address space
available to other clients, if your environment matches the following:
v Contains only simple applications (for example light OLTP), in which there

are never complex queries
v Requires a relatively large number of concurrent clients (for example, more

than 100).

The agent stack size and the number of concurrent clients are inversely
related: a larger stack size reduces the potential number of concurrent clients
that can be running. This occurs because address space is limited on the OS/2
and Windows NT platforms. For example, on OS/2, assume that you have 400
MB of address space (though the amount depends on the config.sys file). If
you set the value for agent_stack_sz to 1 MB, you will not be able to get more
than 400 agents. (In fact, because of other requirements for address space,
such as buffer pools, you will probably get far fewer agents.) This means that
if you have set maxagents to a larger value (for example, 5000), you will never
approach this limit.

Minimum Committed Private Memory (min_priv_mem)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] 32 [32 – 112 000]

Unit of Measure Pages (4 KB)

When Allocated When the database manager is started

When Freed When the database manager is stopped

Related Parameters “Private Memory Threshold
(priv_mem_thresh)” on page 370

This parameter specifies the number of pages that the database server process
will reserve as private virtual memory, when a database manager instance is

Chapter 13. Configuring DB2 369

started (db2start). If the server requires more private memory, it will try to
obtain more from the operating system when required.

This parameter does not apply to UNIX-based systems.

Recommendation: Use the default value.

You should only change the value of this parameter if you want to commit
more memory to the database server. This action will save on allocation time.
You should be careful, however, that you do not set that value too high, as it
can impact the performance of non-DB2 applications.

Private Memory Threshold (priv_mem_thresh)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] 1296 [-1; 32 – 112 000]

32 [-1; 32 – 112 000] on Satellite database
server with local clients

Unit of Measurement Pages (4 KB)

Related Parameters “Minimum Committed Private Memory
(min_priv_mem)” on page 369

This parameter is used to determine the amount of unused agent private
memory that will be kept allocated, ready to be used by new agents that are
started. It does not apply to UNIX-based platforms.

When an agent is terminated, instead of automatically deallocating all of the
memory that was used by that agent, the database manager will only
deallocate excess memory allocations, which is determined by the following
formula:

Private memory allocated -
(private memory used + priv_mem_thresh)

If this formula produces a negative result, no action will be taken.

370 Administration Guide: Performance

The following table provides an example to illustrate when memory will be
allocated and deallocated. This example uses 100 as an arbitrary setting for
priv_mem_thresh.

Description of Action Memory
Allocated

Memory Used

A number of agents are running and have
allocated memory.

1000 1000

A new agent is started and uses 100 pages of
memory.

1100 1100

A agent using 200 pages of memory terminates.
(Notice that 100 pages of memory is freed, while
100 pages is kept allocated for future possible
use.)

1000 900

A agent using 50 pages of memory terminates.
(Notice that 50 pages of memory is freed and 100
extra pages are still allocated, compared to what
is being used by the existing agents.)

950 850

A new agent is started and requires 150 pages of
memory. (100 of the 150 pages are already
allocated and the database manager only needs
to allocate 50 additional pages for this agent.)

1000 1000

A value of “-1”, will cause this parameter to use the value of the
min_priv_mem parameter.

Recommendation: When setting this parameter, you should consider the
client connection/disconnection patterns as well as the memory requirements
of other processes on the same machine.

If there is only a brief period during which many clients are concurrently
connected to the database, a high threshold will prevent unused memory from
being decommitted and made available to other processes. This case results in
poor memory management which can affect other processes which require
memory.

If the number of concurrent clients is more uniform and there are frequent
fluctuations in this number, a high threshold will help to ensure memory is
available for the client processes and reduce the overhead to allocate and
deallocate memory.

Agent/Application Communication Memory
The following parameters affect the amount of memory that is allocated to
allow data to be passed between your application and agent processes:
v “Application Support Layer Heap Size (aslheapsz)” on page 372

Chapter 13. Configuring DB2 371

v “Decimal Division Scale to 3 (min_dec_div_3)” on page 373
v “Client I/O Block Size (rqrioblk)” on page 375
v “DOS Requester I/O Block Size (dos_rqrioblk)” on page 376

See “How DB2 Uses Memory” on page 239 for information about how this
agent/application shared memory relates to the rest of the memory allocated
by the database manager.

Application Support Layer Heap Size (aslheapsz)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] 15 [1 – 524 288]

Unit of Measure Pages (4 KB)

When Allocated When the database manager agent process is
started for the local application

When Freed When the database manager agent process is
terminated

Related Parameters “Query Heap Size (query_heap_sz)” on
page 365

The application support layer heap represents a communication buffer
between the local application and its associated agent. This buffer is allocated
as shared memory by each database manager agent that is started.

If the request to the database manager, or its associated reply, do not fit into
the buffer they will be split into two or more send-and-receive pairs. The size
of this buffer should be set to handle the majority of requests using a single
send-and-receive pair. The size of the request is based on the storage required
to hold:
v The input SQLDA
v All of the associated data in the SQLVARs
v The output SQLDA
v Other fields which do not generally exceed 250 bytes.

372 Administration Guide: Performance

In addition to this communication buffer, this parameter is also used to
determine the I/O block size when a blocking cursor is opened. This memory
for blocked cursors is allocated out of the application’s private address space,
so you should determine the optimal amount of private memory to allocate
for each application program. If the database client cannot allocate space for a
blocking cursor out of an application’s private memory, a non-blocking cursor
will be opened.

The data sent from the local application is received by the database manager
into a set of contiguous memory allocated from the query heap. The aslheapsz
parameter is used to determine the initial size of the query heap (for both
local and remote clients). The maximum size of the query heap is defined by
the query_heap_sz parameter.

Recommendation: If your application’s requests are generally small and the
application is running on a memory constrained system, you may wish to
reduce the value of this parameter. If your queries are generally very large,
requiring more than one send and receive request, and your system is not
constrained by memory, you may wish to increase the value of this parameter.

Use the following formula to calculate a minimum number of pages for
aslheapsz:

aslheapsz >= (sizeof(input SQLDA)
+ sizeof(each input SQLVAR)
+ sizeof(output SQLDA)
+ 250) / 4096

where sizeof(x) is the size of x in bytes that calculates the number of pages of
a given input or output value.

You should also consider the effect of this parameter on the number and
potential size of blocking cursors. Large row blocks may yield better
performance if the number or size of rows being transferred is large (for
example, if the amount of data is greater than 4 096 bytes). However, there is
a trade-off in that larger record blocks increase the size of the working set
memory for each connection.

Larger record blocks may also cause more fetch requests than are actually
required by the application. You can control the number of fetch requests
using the OPTIMIZE FOR clause on the SELECT statement in your
application. For more information about the OPTIMIZE FOR clause, see
“OPTIMIZE FOR n ROWS Clause” on page 76.

Decimal Division Scale to 3 (min_dec_div_3)

Configuration Type Database

Chapter 13. Configuring DB2 373

|
|

|
|
|
|

|
|

|
|
|
|
|
|

|

||

Parameter Type Configurable

Default [Range] No [Yes, No]

The addition of the min_dec_div_3 database configuration parameter is
provided as a quick way to enable a change to computation of the scale for
decimal division in SQL. min_dec_div_3 can be set to ″Yes″ or ″No″. The
default value for min_dec_div_3 is ″No″.

The min_dec_div_3 database configuration parameter changes the resulting
scale of a decimal arithmetic operation involving division. If the value is ″No″,
the scale is calculated as 31-p+s-s’. Refer to the SQL Reference, Chapter 3,
″Decimal Arithmetic in SQL″ for more information. If set to ″Yes″, the scale is
calculated as MAX(3, 31-p+s-s’). This causes the result of decimal division to
always have a scale of at least 3. Precision is always 31.

Changing this database configuration parameter may cause changes to
applications for existing databases. This can occur when the resulting scale for
decimal division would be impacted by changing this database configuration
parameter. Listed below are some possible scenarios that may impact
applications. These scenarios should be considered before changing the
min_dec_div_3 on a database server with existing databases.
v If the resulting scale of one of the view columns is changed, a view that is

defined in an environment with one setting could fail with SQLCODE -344
when referenced after the database configuration parameter is changed. The
message SQL0344N refers to recursive common table expressions, however,
if the object name (first token) is a view, then you will need to drop the
view and create it again to avoid this error.

v A static package will not change behavior until the package is rebound,
either implicitly or explicitly. For example, after changing the value from
NO to YES, the additional scale digits may not be included in the results
until rebind occurs. For any changed static packages, an explicit REBIND
command can be used to force a rebind.

v A check constraint involving decimal division may restrict some values that
were previously accepted. Such rows now violate the constraint but will not
be detected until the one of the columns involved in the check constraint
row is updated or the SET INTEGRITY statement with the IMMEDIATE
CHECKED option is processed. To force checking of such a constraint,
perform an ALTER TABLE statement in order to drop the check constraint
and then perform an ALTER TABLE statement to add the constraint again.

Note: DB2 Version 7 also has the following limitations:
1. The command GET DB CFG FOR DBNAME will not display the

min_dec_div_3 setting. The best way to determine the current setting

374 Administration Guide: Performance

||

||

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

is to observe the side-effect of a decimal division result. For
example, consider the following statement:
VALUES (DEC(1,31,0)/DEC(1,31,5))

If this statement returns sqlcode SQL0419N, then the database does
not have min_dec_div_3 support or it is set to ″No″. If the statement
returns 1.000, then min_dec_div_3 is set to ″Yes″.

2. min_dec_div_3 does not appear in the list of configuration keywords
when you run the following command: ? UPDATE DB CFG

Client I/O Block Size (rqrioblk)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Client
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] 32 767 [4 096 – 65 535]

Unit of Measure Bytes

When Allocated
v When a remote client application issues a

connection request for a server database
v When a blocking cursor is opened,

additional blocks are opened at the client

When Freed
v When the remote application disconnects

from the server database
v When the blocking cursor is closed

Related Parameters “DOS Requester I/O Block Size
(dos_rqrioblk)” on page 376

This parameter specifies the size of the communication buffer between remote
applications and their database agents on the database server. When a
database client requests a connection to a remote database, this
communication buffer is allocated on the client. On the database server, a
communication buffer of 32 767 bytes is initially allocated, until a connection

Chapter 13. Configuring DB2 375

|
|

|

|
|
|

|
|

|

|

|
|
|
|
|

is established and the server can determine the value of rqrioblk at the client.
Once the server knows this value, it will reallocate its communication buffer if
the client’s buffer is not 32 767 bytes.

In addition to this communication buffer, this parameter is also used to
determine the I/O block size at the database client when a blocking cursor is
opened. This memory for blocked cursors is allocated out of the application’s
private address space, so you should determine the optimal amount of private
memory to allocate for each application program. If the database client cannot
allocate space for a blocking cursor out of an application’s private memory, a
non-blocking cursor will be opened.

Recommendation: For non-blocking cursors, a reason for increasing the value
of this parameter would be if the data (for example, large object data) to be
transmitted by a single SQL statement is so large that the default value is
insufficient.

You should also consider the effect of this parameter on the number and
potential size of blocking cursors. Large row blocks may yield better
performance if the number or size of rows being transferred is large (for
example, if the amount of data is greater than 4 096 bytes). However, there is
a trade-off in that larger record blocks increase the size of the working set
memory for each connection.

Larger record blocks may also cause more fetch requests than are actually
required by the application. You can control the number of fetch requests
using the OPTIMIZE FOR clause on the SELECT statement in your
application. For more information on the OPTIMIZE FOR clause, see
“OPTIMIZE FOR n ROWS Clause” on page 76.

DOS Requester I/O Block Size (dos_rqrioblk)

Configuration Type Database manager

Applies to

v Database server with local and remote
clients

v Client
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] 4 096 [4 096 – 65 535]

376 Administration Guide: Performance

|
|
|

|
|
|
|
|
|

||

Unit of Measurement Bytes

When Allocated
v When a remote DOS or Windows 3.1 client

issues a connection request to a server
database

v When a blocking cursor is opened,
additional blocks are opened at the client

When Freed

v When the remote application disconnects
from the database

v When a blocking cursor is closed

Related Parameters “Client I/O Block Size (rqrioblk)” on page 375

This parameter specifies the size of the communication buffer between
DOS/Windows 3.1 applications and their database agents on the database
server. This parameter is similar to the rqrioblk parameter, except it allows you
to set a different value for blocks used with DOS/Windows 3.1 clients. In a
DB2 configuration file, you can set both the rqrioblk parameter (used for
Windows 32-bit, OS/2, and UNIX clients) and the dos_rqrioblk parameter (used
for DOS and Windows 3.1 clients).

In addition to this communication buffer, this parameter is also used to
determine the I/O block size at the database client when a blocking cursor is
opened. This memory for blocked cursors is allocated out of the application’s
private address space, so you should determine the optimal amount of private
memory to allocate for each application program. If the database client cannot
allocate space for a blocking cursor out of an application’s private memory, a
non-blocking cursor will be opened.

Recommendation: For non-blocking cursors, a reason for increasing the value
of this parameter would be if the data (for example, large object data) to be
transmitted by a single SQL statement is so large that the default value is
insufficient.

You should also consider the effect of this parameter on the number and
potential size of blocking cursors. Large row blocks may yield better
performance if the number or size of rows being transferred is large (for
example, if the amount of data is greater than 4 096 bytes). However, there is
a trade-off in that larger record blocks increase the size of the working set
memory for each connection.

Larger record blocks may also cause more fetch requests than are actually
required by the application. You can control the number of fetch requests
using the OPTIMIZE FOR clause on the SELECT statement in your

Chapter 13. Configuring DB2 377

|
|
|
|
|
|

application. For more information on the OPTIMIZE FOR clause, see
“OPTIMIZE FOR n ROWS Clause” on page 76.

Database Manager Instance Memory
The following parameters affect memory that is allocated and used at an
instance level:
v “Database System Monitor Heap Size (mon_heap_sz)”
v “Directory Cache Support (dir_cache)” on page 379
v “Audit Buffer Size (audit_buf_sz)” on page 381
v “Maximum Java Interpreter Heap Size (java_heap_sz)” on page 382

Database System Monitor Heap Size (mon_heap_sz)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range]

UNIX 56 [0 – 60 000]

OS/2 and Windows NT Database server with
local and remote clients and Satellite
database server with local clients

32 [0 – 60 000]

OS/2 and Windows NT Database server with
local clients 12 [0 – 60 000]

Unit of Measure Pages (4 KB)

When Allocated When the database manager is started with
the db2start command

When Freed When the database manager is stopped with
the db2stop command

Related Parameters “Default Database System Monitor Switches
(dft_monswitches)” on page 469

This parameter determines the amount of the memory, in pages, to allocate for
database system monitor data. Memory is allocated from the monitor heap

378 Administration Guide: Performance

|
|
|
|

when you perform database monitoring activities such as taking a snapshot,
turning on a monitor switch, resetting a monitor, or activating an event
monitor.

A value of zero prevents the database manager from collecting database
system monitor data.

Recommendation: The amount of memory required for monitoring activity
depends on the number of monitoring applications (applications taking
snapshots or event monitors), which switches are set, and the level of
database activity.

The following formula provides an approximation of the number of pages
required for the monitor heap:

(number of monitoring applications + 1) *
(number of databases *

(800 + (number of tables accessed * 20)
+ ((number of applications connected + 1) *

(200 + (number of table spaces * 100)))))
/ 4096

If the available memory in this heap runs out, one of the following will occur:
v When the first application connects to the database for which this event

monitor is defined, a level 2 error message is written to the db2alert.log
and db2diag.log files.

v If an event monitor being started dynamically using the SET EVENT
MONITOR statement fails, an error code is returned to your application.

v If a monitor command or API subroutine fails, an error code is returned to
your application.

Directory Cache Support (dir_cache)

Configuration Type Database manager

Applies to

v Database server with local and remote
clients

v Client
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] Yes [Yes; No]

Chapter 13. Configuring DB2 379

|
|
|

|
|

|
|

When Allocated
v When an application issues its first connect,

the private cache is allocated
v When a database manager instance is

started (db2start), the shared cache is
allocated.

When Freed
v When an the application process terminates,

the private cache is freed
v When a database manager instance is

stopped (db2stop), the shared cache is freed.

By setting dir_cache to Yes the database, node and DCS directory files will be
cached in memory. The use of the directory cache reduces connect costs by
eliminating directory file I/O and minimizing the directory searches required
to retrieve directory information. There are two types of directory caches:
v A private cache that is allocated and used for each application process on

the machine at which the application is running.
v A shared cache that is allocated and used for some of the internal database

manager processes.

Note: Only the private cache is applicable to supported Windows
environments.

For private caches, when an application issues its first connect, each directory
file is read and the information is cached in private memory for this
application. The cache is used by the application process on subsequent
connect requests and is maintained for the life of the application process. If a
database is not found in the private cache, the directory files are searched for
the information, but the cache is not updated. If the application modifies a
directory entry, the next connect within that application will cause the cache
for this application to be refreshed. The private cache for other applications
will not be refreshed. When the application process terminates, the cache is
freed. (To refresh the directory cache used by a command line processor
session, issue a db2 terminate command.)

For shared caches, when a database manager instance is started (db2start),
each directory file is read and the information is cached in shared memory.
This cache is used by some of the database manager processes and is
maintained until the instance is stopped (db2stop). If a directory entry is not
found in this cache, the directory files are searched for the information. This
shared cache is never refreshed during the time the instance is running.

Recommendation: Use directory caching if your directory files do not change
frequently and performance is critical.

380 Administration Guide: Performance

|
|
|
|
|
|
|
|

In addition, on remote clients, directory caching can be beneficial if your
applications issue several different connection requests. In this case, caching
reduces the number of times a single application must read the directory files.

Directory caching can also improve the performance of taking database
system monitor snapshots. In addition, you should explicitly reference the
database name on the snapshot call, instead of using database aliases.

Note: Errors may occur when performing snapshot calls if directory caching
is turned on and if databases are cataloged, uncataloged, created, or
dropped after the database manager is started.

Audit Buffer Size (audit_buf_sz)

Configuration Type Database manager

Applies To
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] 0 [0 – 65 000]

Unit of Measure Pages (4 KB)

When Allocated When DB2 is started

When Freed When DB2 is stopped

This parameter specifies the size of the buffer used when auditing the
database. For more information about the audit facility, refer to “Auditing
DB2 Activities” in Administration Guide: Implementation.

The default value for this parameter is zero (0). If the value is zero (0), the
audit buffer is not used. If the value is greater than zero (0), space is allocated
for the audit buffer where the audit records will be placed when they are
generated by the audit facility. The value times 4 KB pages is the amount of
space allocated for the audit buffer. The audit buffer cannot be allocated
dynamically; DB2 must be stopped and then restarted before the new value
for this parameter takes effect.

By changing this parameter from the default to some value larger than zero
(0), the audit facility writes records to disk asynchronously compared to the
execution of the statements generating the audit records. This improves DB2
performance over leaving the parameter value at zero (0). The value of zero

Chapter 13. Configuring DB2 381

(0) means the audit facility writes records to disk synchronously with (at the
same time as) the execution of the statements generating the audit records.
The synchronous operation during auditing decreases the performance of
applications running in DB2.

Maximum Java Interpreter Heap Size (java_heap_sz)

Configuration Type Database manager

Applies to

v Database server with local and remote
clients

v Client
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] 512 [0 - 4 096]

Unit of Measure Pages (4 KB)

When Allocated When a Java application starts

When Freed When a Java application completes

Related Parameters “Java Development Kit 1.1 Installation Path
(jdk11_path)” on page 477

This parameter determines the maximum size of the heap that is used by the
Java interpreter.

There is one heap for each DB2 process (one for each agent or subagent on
UNIX-based platforms, and one for each instance in other platforms), and
there is also one heap for each fenced UDF and fenced stored procedure
process. In all situations, only the agents or processes that run Java UDFs or
stored procedures ever allocate this memory. On partitioned database systems,
the same value is used at each partition.

Locks
The following parameters influence how locking is managed in your
environment:
v “Time Interval for Checking Deadlock (dlchktime)” on page 383
v “Maximum Percent of Lock List Before Escalation (maxlocks)” on page 384
v “Lock Timeout (locktimeout)” on page 385

382 Administration Guide: Performance

|
|
|
|
|
|

See also “Maximum Storage for Lock List (locklist)” on page 353.

“Locking” on page 51 provides a general overview of how the database
manager uses locking to maintain data integrity.

Time Interval for Checking Deadlock (dlchktime)

Configuration Type Database

Parameter Type Configurable

Default [Range] 10 000 (10 seconds) [1 000 – 600 000]

Unit of Measure Milliseconds

Related Parameters
v “Maximum Storage for Lock List (locklist)”

on page 353
v “Maximum Percent of Lock List Before

Escalation (maxlocks)” on page 384

A deadlock occurs when two or more applications connected to the same
database wait indefinitely for a resource. The waiting is never resolved
because each application is holding a resource that the other needs to
continue.

The deadlock check interval defines the frequency at which the database
manager checks for deadlocks among all the applications connected to a
database.

Notes:

1. In a partitioned database environment, this parameter applies to the
catalog node only.

2. In a partitioned database environment, a deadlock is not flagged until
after the second iteration.

Recommendation: Increasing this parameter decreases the frequency of
checking for deadlocks, thereby increasing the time that application programs
must wait for the deadlock to be resolved.

Decreasing this parameter increases the frequency of checking for deadlocks,
thereby decreasing the time that application programs must wait for the
deadlock to be resolved but increasing the time that the database manager
takes to check for deadlocks. If the deadlock interval is too small, it can
decrease run-time performance, because the database manager is frequently
performing deadlock detection. If this parameter is set lower to improve
concurrency, you should ensure that maxlocks and locklist are set appropriately
to avoid unnecessary lock escalation, which can result in more lock contention
and as a result, more deadlock situations.

Chapter 13. Configuring DB2 383

||

|
|
|
|
|
|
|
|
|

Maximum Percent of Lock List Before Escalation (maxlocks)

Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 10 [1 – 100]

OS/2 and Windows NT
22 [1 – 100]

Unit of Measure Percentage

Related Parameters
v “Maximum Storage for Lock List (locklist)”

on page 353
v “Maximum Number of Active Applications

(maxappls)” on page 394

Lock escalation is the process of replacing row locks with table locks, reducing
the number of locks in the list. This parameter defines a percentage of the
lock list held by an application that must be filled before the database
manager performs escalation. When the number of locks held by any one
application reaches this percentage of the total lock list size, lock escalation
will occur for the locks held by that application. Lock escalation also occurs if
the lock list runs out of space.

The database manager determines which locks to escalate by looking through
the lock list for the application and finding the table with the most row locks.
If after replacing these with a single table lock, the maxlocks value is no longer
exceeded, lock escalation will stop. If not, it will continue until the percentage
of the lock list held is below the value of maxlocks. The maxlocks parameter
multiplied by the maxappls parameter cannot be less than 100.

Recommendation: The following formula allows you to set maxlocks to allow
an application to hold twice the average number of locks:

maxlocks = 2 * 100 / maxappls

Where 2 is used to achieve twice the average and 100 represents the largest
percentage value allowed. If you have only a few applications that run
concurrently, you could use the following formula as an alternative to the first
formula:

maxlocks = 2 * 100 / (average number of applications running
concurrently)

384 Administration Guide: Performance

|
|
|
|
|
|
|

|
|

|

|
|
|
|

|
|

One of the considerations when setting maxlocks is to use it in conjunction
with the size of the lock list (locklist). The actual limit of the number of locks
held by an application before lock escalation occurs is:

maxlocks * locklist * 4 096 / (100 * 36)

Where 4 096 is the number of bytes in a page, 100 is the largest percentage
value allowed for maxlocks, and 36 is the number of bytes per lock. If you
know that one of your applications requires 1 000 locks, and you do not want
lock escalation to occur, then you should choose values for maxlocks and
locklist in this formula so that the result is greater than 1 000. (Using 10 for
maxlocks and 100 for locklist, this formula results in greater than the 1 000 locks
needed.)

If maxlocks is set too low, lock escalation happens when there is still enough
lock space for other concurrent applications. If maxlocks is set too high, a few
applications can consume most of the lock space, and other applications will
have to perform lock escalation. The need for lock escalation in this case
results in poor concurrency.

You may use the database system monitor to help you track and tune this
configuration parameter.

Lock Timeout (locktimeout)

Configuration Type Database

Parameter Type Configurable

Default [Range] -1 [-1; 0 – 30 000]

Unit of Measurement Seconds

Related Parameters
v “Maximum Storage for Lock List (locklist)”

on page 353
v “Maximum Percent of Lock List Before

Escalation (maxlocks)” on page 384

This parameter specifies the number of seconds that an application will wait
to obtain a lock. This helps avoid global deadlocks for applications.

If you set this parameter to 0, locks are not waited for. In this situation, if no
lock is available at the time of the request, the application immediately
receives a -911.

If you set this parameter to -1, lock timeout detection is turned off. In this
situation a lock will be waited for (if one is not available at the time of the
request) until either of the following:

Chapter 13. Configuring DB2 385

|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

v The lock is granted
v A deadlock occurs.

Recommendation: In a transaction processing (OLTP) environment, you can
use an initial starting value of 30 seconds. In a query-only environment you
could start with a higher value. In both cases, you should use benchmarking
techniques to tune this parameter.

When working with DataLinks Manager, if you see lock timeouts in the
db2diag.log of the DataLinks Manager (dlfm) instance, then you should
increase the value of locktimeout. You should also consider increasing the value
of locklist.

The value should be set to quickly detect waits that are occurring because of
an abnormal situation, such as a transaction that is stalled (possibly as a result
of a user leaving their workstation). You should set it high enough so valid
lock requests do not time-out because of peak workloads, during which time,
there is more waiting for locks.

You may use the database system monitor to help you track the number of
times an application (connection) experienced a lock timeout or that a
database detected a timeout situation for all applications that were connected.
For more information see the locks_timeouts (number of lock timeouts) monitor
element description in the System Monitor Guide and Reference.

High values of the lock_timeout monitor element can be caused by:
v Too low a value for this configuration parameter.
v An application (transaction) that is holding locks for an extended period.

You can use the database system monitor to further investigate these
applications.

v A concurrency problem, that could be caused by lock escalations (from
row-level to a table-level lock). See “Maximum Percent of Lock List Before
Escalation (maxlocks)” on page 384 and “Maximum Storage for Lock List
(locklist)” on page 353 for more information.

For more information on the use of this parameter see “Lock Waits and
Timeouts” on page 58.

I/O and Storage
The following parameters can influence I/O and storage costs related to the
operation of your database:
v “Changed Pages Threshold (chngpgs_thresh)” on page 387
v “Number of Asynchronous Page Cleaners (num_iocleaners)” on page 387
v “Number of I/O Servers (num_ioservers)” on page 389
v “Index Sort Flag (indexsort)” on page 390

386 Administration Guide: Performance

|
|
|
|
|
|
|

v “Sequential Detection Flag (seqdetect)” on page 390
v “Default Prefetch Size (dft_prefetch_sz)” on page 391
v “Default Number of SMS Containers (numsegs)” on page 392
v “Default Extent Size of Table Spaces (dft_extent_sz)” on page 392
v “Extended Storage Memory Segment Size (estore_seg_sz)” on page 393
v “Number of Extended Storage Memory Segments (num_estore_segs)” on

page 393

Changed Pages Threshold (chngpgs_thresh)

Configuration Type Database

Parameter Type Configurable

Default [Range] 60 [5 – 99]

Unit of Measure Percentage

Related Parameters “Number of Asynchronous Page Cleaners
(num_iocleaners)”

Asynchronous page cleaners will write changed pages from the buffer pool
(or the buffer pools) to disk before the space in the buffer pool is required by
a database agent. As a result, database agents should not have to wait for
changed pages to be written out so that they might use the space in the buffer
pool. This improves overall performance of the database applications.

You may use this parameter to specify the level (percentage) of changed pages
at which the asynchronous page cleaners will be started, if they are not
currently active. When the page cleaners are started, they will build a list of
the pages to write to disk. Once they have completed writing those pages to
disk, they will become inactive again and wait for the next trigger to start.

In a read-only (for example, query) environment, these page cleaners are not
used.

Recommendation: For databases with a heavy update transaction workload,
you can generally ensure that there are enough clean pages in the buffer pool
by setting the parameter value to be equal-to or less-than the default value. A
percentage larger than the default can help performance if your database has
a small number of very large tables.

Number of Asynchronous Page Cleaners (num_iocleaners)

Configuration Type Database

Parameter Type Configurable

Default [Range] 1 [0 – 255]

Chapter 13. Configuring DB2 387

|
|
|
|
|

Unit of Measure Counter

Related Parameters
v “Buffer Pool Size (buffpage)” on page 345
v “Changed Pages Threshold

(chngpgs_thresh)” on page 387

This parameter allows you to specify the number of asynchronous page
cleaners for a database. These page cleaners write changed pages from the
buffer pool to disk before the space in the buffer pool is required by a
database agent. As a result, database agents should not have to wait for
changed pages to be written out so that they might use the space in the buffer
pool. This improves overall performance of the database applications.

If you set the parameter to zero (0), no page cleaners are started and as a
result, the database agents will perform all of the page writes from the buffer
pool to disk. This parameter can have a significant performance impact on a
database stored across many physical storage devices, since in this case there
is a greater chance that one of the devices will be idle. If no page cleaners are
configured, your applications may encounter periodic log full conditions.

If the applications for a database primarily consist of transactions that update
data, an increase in the number of cleaners will speed up performance.
Increasing the page cleaners will also decrease recovery time from soft
failures, such as power outages, because the contents of the database on disk
will be more up-to-date at any given time.

Recommendation: Consider the following factors when setting the value for
this parameter:
v Application type

– If it is a query-only database that will not have updates, set this
parameter to be zero (0). The exception would be if the query work load
results in many TEMP tables being created (you can determine this by
using the explain utility).

– If transactions are run against the database, set this parameter to be
between one and the number of physical storage devices used for the
database.

v Workload
Environments with high update transaction rates may require more page
cleaners to be configured.

v Buffer pool sizes (buffpage)
Environments with large buffer pools may also require more page cleaners
to be configured.

388 Administration Guide: Performance

|
|
|
|
|
|

You may use the database system monitor to help you tune this configuration
parameter using information from the event monitor about write activity from
a buffer pool:
v The parameter can be reduced if both of the following conditions are true:

– pool_data_writes is approximately equal to pool_async_data_writes
– pool_index_writes is approximately equal to pool_async_index_writes.

v The parameter should be increased if either of the following conditions are
true:
– pool_data_writes is much greater than pool_async_data_writes
– pool_index_writes is much greater than pool_async_index_writes.

For more information see the following monitor elements descriptions in the
System Monitor Guide and Reference:
v pool_data_writes (buffer pool data writes)
v pool_index_writes (buffer pool index writes)
v pool_async_data_writes (buffer pool asynchronous data writes)
v pool_async_index_writes (buffer pool asynchronous index writes).

Number of I/O Servers (num_ioservers)

Configuration Type Database

Parameter Type Configurable

Default [Range] 3 [1 – 255]

1 [1 – 255] on Satellite database server with
local clients

Unit of Measure Counter

When Allocated When an application connects to a database

When Freed When an application disconnects from a
database

Related Parameters
v “Default Prefetch Size (dft_prefetch_sz)” on

page 391
v “Sequential Detection Flag (seqdetect)” on

page 390

I/O servers are used on behalf of the database agents to perform prefetch I/O
and asynchronous I/O by utilities such as backup and restore. This parameter
specifies the number of I/O servers for a database. No more than this number
of I/Os for prefetching and utilities can be in progress for a database at any
time. An I/O server waits while an I/O operation that it initiated is in
progress. Non-prefetch I/Os are scheduled directly from the database agents
and as a result are not constrained by num_ioservers.

Chapter 13. Configuring DB2 389

Recommendation: In order to fully exploit all the I/O devices in the system, a
good value to use is generally one or two more than the number of physical
devices on which the database resides. It is better to configure additional I/O
servers, since there is minimal overhead associated with each I/O server and
any unused I/O servers will remain idle.

For more information, see “Prefetching Data into the Buffer Pool” on page 255
and “Configuring I/O Servers for Prefetching and Parallel I/O” on page 258.

Index Sort Flag (indexsort)

Configuration Type Database

Parameter Type Configurable

Default [Range] Yes [Yes; No]

This parameter indicates whether sorting of index keys will occur during
index creation. Performance of index creation is enhanced by performing a
sort first, particularly for indexes with low cluster ratios or cluster factors.
Performance of queries can also be better if indexes are created with a sort.
The cost of this performance enhancement is the increased disk space required
for the sort, which could require twice the amount of space as creating an
index without performing an initial sort.

Recommendation: Use the default setting (Yes), unless you do not have
enough disk space. Note that the disk space required for this sort is
approximately equal to the amount of space needed to SELECT the columns
of the index from the table with an ORDER BY clause on those columns.

If you have a symmetric multiprocessor (SMP) environment and specify No
for this parameter, the multiple processing that is possible in an SMP
environment is not used during index creation.

Sequential Detection Flag (seqdetect)

Configuration Type Database

Parameter Type Configurable

Default [Range] Yes [Yes; No]

Related Parameters “Default Prefetch Size (dft_prefetch_sz)” on
page 391

The database manager can monitor I/O and if sequential page reading is
occurring the database manager can activate I/O prefetching. This type of
sequential prefetch is known as sequential detection. You may use the seqdetect
configuration parameter to control whether the database manager should
perform sequential detection.

390 Administration Guide: Performance

|
|
|
|

|
|
|

If this parameter is set to No, prefetching takes place only if the database
manager knows it will be useful, for example table sorts, table scans, or list
prefetch.

Recommendation: In most cases, you should use the default value for this
parameter. Try turning sequential detection off, only if other tuning efforts
were unable to correct serious query performance problems.

Default Prefetch Size (dft_prefetch_sz)

Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 32 [0 — 32 767]

OS/2 and Windows NT
16 [0 — 32 767]

Unit of Measure Pages

Related Parameters
v “Default Extent Size of Table Spaces

(dft_extent_sz)” on page 392
v “Number of I/O Servers (num_ioservers)”

on page 389

When a table space is created, PREFETCHSIZE n can be optionally specified,
where n is the number of pages the database manager will read if prefetching
is being performed. If you do not specify the prefetch size on the CREATE
TABLESPACE statement, the database manager uses the value given by this
parameter.

For more information, see “Prefetching Data into the Buffer Pool” on page 255.

Recommendation: Using system monitoring tools, you can determine if your
CPU is idle while the system is waiting for I/O. Increasing the value of this
parameter may help if the table spaces being used do not have a prefetch size
defined for them.

This parameter provides the default for the entire database, and it may not be
suitable for all table spaces within the database. For example, a value of 32
may be suitable for a table space with an extent size of 32 pages, but not
suitable for a table space with an extent size of 25 pages. Ideally, you should
explicitly set the prefetch size for each table space.

To help minimize I/O for table spaces defined with the default extent size
(dft_extent_sz), you should set this parameter as a factor or whole multiple of

Chapter 13. Configuring DB2 391

|
|
|

|
|

the value of the dft_extent_sz parameter. For example, if the dft_extent_sz
parameter is 32, you could set dft_prefetch_sz to 16 (a fraction of 32) or to 64 (a
whole multiple of 32). If the prefetch size is a multiple of the extent size, the
database manager may perform I/O in parallel, if the following conditions are
true:
v The extents being prefetched are on different physical devices
v Multiple I/O servers are configured (num_ioservers).

Default Number of SMS Containers (numsegs)

Configuration Type Database

Parameter Type Informational

Unit of Measure Counter

This parameter, which only applies to SMS table spaces, indicates the number
of containers that will be created within the default table spaces. This
parameter will show the information used when you created your database,
whether it was specified explicitly or implicitly on the CREATE DATABASE
command. The CREATE TABLESPACE statement does not use this parameter
in any way.

Refer to “Database Physical Directories” in the Administration Guide: Planning
for more information.

Default Extent Size of Table Spaces (dft_extent_sz)

Configuration Type Database

Parameter Type Configurable

Default [Range] 32 [2 – 256]

Unit of Measure Pages

Related Parameters “Default Prefetch Size (dft_prefetch_sz)” on
page 391

When a table space is created, EXTENTSIZE n can be optionally specified,
where n is the extent size. If you do not specify the extent size on the
CREATE TABLESPACE statement, the database manager uses the value given
by this parameter.

Refer to “Designing and Choosing Table Spaces” in the Administration Guide:
Planning for more information.

Recommendation: In many cases, you will want to explicitly specify the
extent size when you create the table space. Before choosing a value for this
parameter, you should understand how you would explicitly choose an extent

392 Administration Guide: Performance

|
|
|
|
|
|
|

size for the CREATE TABLESPACE statement. For more information see
“Table Space Impact on Query Optimization” on page 94.

Extended Storage Memory Segment Size (estore_seg_sz)

Configuration Type Database

Parameter Type Configurable

Default [Range] 16 000 [0 – 1 048 575]

Unit of Measure Pages

Related Parameters “Number of Extended Storage Memory
Segments (num_estore_segs)”

This parameter specifies the number of pages in each of the extended memory
segments in the database. This parameter is only used if your machine has
more real addressable memory than the maximum amount of virtual
addressable memory.

Recommendation: This parameter only has an effect when extended storage is
available, and is used as shown by the num_estore_segs parameter. When
specifying the number of pages to be used in each extended memory segment,
you should also consider the number of extended memory segments by
reviewing and modifying the num_estore_segs parameter. For more information
about extended storage, see “Extending Memory” on page 279.

Number of Extended Storage Memory Segments (num_estore_segs)

Configuration Type Database

Parameter Type Configurable

Default [Range] 0 [0 – 214 7483 647]

Related Parameters “Extended Storage Memory Segment Size
(estore_seg_sz)”

This parameter specifies the number of extended storage memory segments
available for use by the database.

The default is no extended storage memory segments.

Recommendation: Only use this parameter to establish the use of extended
storage memory segments if your platform environment has more memory
than the maximum address space and you wish to use this memory. When
specifying the number of segments, you should also consider the size of the
each of the segments by reviewing and modifying the estore_seg_sz parameter.

Chapter 13. Configuring DB2 393

|
|
|
|

When both the num_estore_segs and estore_seg_sz configuration parameters are
set, you should specify which buffer pools will use the extended memory
through the CREATE/ALTER BUFFERPOOL statements. For more information
about extended storage, see “Extending Memory” on page 279.

Agents
The following parameters can influence the number of applications that can
be run concurrently and achieve optimal performance:
v “Maximum Number of Active Applications (maxappls)”
v “Average Number of Active Applications (avg_appls)” on page 396
v “Maximum Database Files Open per Application (maxfilop)” on page 397
v “Maximum Total Files Open (maxtotfilop)” on page 397
v “Priority of Agents (agentpri)” on page 398
v “Maximum Number of Agents (maxagents)” on page 399
v “Maximum Number of Concurrent Agents (maxcagents)” on page 401
v “Maximum Number of Coordinating Agents (max_coordagents)” on

page 402
v “Maximum Number of Logical Agents (max_logicagents)” on page 403
v “Agent Pool Size (num_poolagents)” on page 403
v “Initial Number of Agents in Pool (num_initagents)” on page 405

Maximum Number of Active Applications (maxappls)

Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 40 [1 – 60 000]

OS/2 and Windows NT Database server with
local and remote clients

20 [1 – 60 000]

OS/2 and Windows NT Database server with
local clients 10 [1 – 60 000]

Unit of Measure Counter

Related Parameters
v “Maximum Number of Agents (maxagents)”

on page 399
v “Maximum Number of Coordinating Agents

(max_coordagents)” on page 402
v “Maximum Percent of Lock List Before

Escalation (maxlocks)” on page 384

394 Administration Guide: Performance

||

|
|
|

|
||

v “Maximum Storage for Lock List (locklist)”
on page 353

v “Average Number of Active Applications
(avg_appls)” on page 396

This parameter specifies the maximum number of concurrent applications that
can be connected (both local and remote) to a database. Since each application
that attaches to a database causes some private memory to be allocated,
allowing a larger number of concurrent applications will potentially use more
memory.

The value of this parameter must be equal to or greater than the sum of the
connected applications, plus the number of these same applications that may
be concurrently in the process of completing a two-phase commit or rollback.
Then add to this sum the anticipated number of indoubt transactions that
might exist at any one time. Refer to “Recovering from Problems During
Two-Phase Commit” in the Administration Guide: Planning for more
information on indoubt transactions.

When an application attempts to connect to a database, but maxappls has
already been reached, an error is returned to the application indicating that
the maximum number of applications have been connected to the database.

As more applications use the DataLinks Manager, the value of maxappls
should be increased. Use the following formula to compute the value you
need:

<maxappls> = 5 * (number of nodes) + (peak number of active applications
using DataLinks Manager)

The maximum supported value for DataLinks Manager is 2 000.

In a partitioned database environment, this is the maximum number of
applications that can be concurrently active against a database partition. This
parameter limits the number of active applications against the database
partition on a database partition server, regardless of whether the server is the
coordinator node for the application or not. The catalog node in a partitioned
database environment requires a higher value for maxappls than is the case for
other types of environments because, in the partitioned database environment,
every application requires a connection to the catalog node.

Recommendation: Increasing the value of this parameter without lowering
the maxlocks parameter or increasing the locklist parameter could cause you to
reach the database limit on locks (locklist) rather than the application limit and
as a result cause pervasive lock escalation problems.

Chapter 13. Configuring DB2 395

To a certain extent, the maximum number of applications is also governed by
maxagents. An application can only connect to the database, if there is an
available connection (maxappls) as well as an available agent (maxagents). In
addition, the maximum number of applications is also controlled by the
max_coordagents configuration parameter, because no new applications (that is,
coordinator agents) can be started if max_coordagents has been reached.

Average Number of Active Applications (avg_appls)

Configuration Type Database

Parameter Type Configurable

Default [Range] 1 [1 – maxappls]

Unit of Measure Counter

Related Parameters
v “Maximum Number of Active Applications

(maxappls)” on page 394

This parameter is used by the SQL optimizer to help estimate how much
buffer pool will be available at run-time for the access plan chosen.

Recommendation: When running DB2 in a multi-user environment,
particularly with complex queries and a large buffer pool, you may want the
SQL optimizer to know that multiple query users are using your system so
that the optimizer should be more conservative in assumptions of buffer pool
availability.

When setting this parameter, you should estimate the number of complex
query applications that typically use the database. This estimate should
exclude all light OLTP applications. If you have trouble estimating this
number, you can multiply the following:
v An average number of all applications running against your database. The

database system monitor can provide information about the number of
applications at any given time and using a sampling technique, you can
calculate an average over a period of time. The information from the
database system monitor includes both OLTP and non-OLTP applications.

v Your estimate of the percentage of complex query applications.

As with adjusting other configuration parameters that affect the optimizer,
you should adjust this parameter in small increments. This allows you to
minimize path selection differences.

You should consider rebinding applications (using the REBIND PACKAGE
command) after changing this parameter.

396 Administration Guide: Performance

|
|

|
|
|
|

|
|
|
|
|

|

Maximum Database Files Open per Application (maxfilop)

Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 64 [2 – 1950]

OS/2 and Windows NT
64 [2 – 32 768]

Unit of Measure Counter

Related Parameters
v “Maximum Total Files Open (maxtotfilop)”
v “Maximum Number of Active Applications

(maxappls)” on page 394

This parameter specifies the maximum number of file handles that can be
open for each database agent. If opening a file causes this value to be
exceeded, some files in use by this agent are closed. If maxfilop is too small,
the overhead of opening and closing files so as not to exceed this limit will
become excessive and may degrade performance.

Both SMS table spaces and DMS table space file containers are treated as files
in the database manager’s interaction with the operating system, and file
handles are required. More files are generally used by SMS table spaces
compared to the number of containers used for a DMS file table space.
Therefore, if you are using SMS table spaces, you will need a larger value for
this parameter compared to what you would require for DMS file table
spaces.

You can also use this parameter to ensure that the overall total of file handles
used by the database manager does not exceed the operating system limit by
limiting the number of handles per agent to a specific number; the actual
number will vary depending on the number of agents running concurrently.

Maximum Total Files Open (maxtotfilop)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Chapter 13. Configuring DB2 397

|

Parameter Type Configurable

Default [Range] 16 000 [100 – 32 768]

Unit of Measure Counter

Related Parameters “Maximum Database Files Open per
Application (maxfilop)” on page 397

This parameter defines the maximum number of files that can be opened by
all agents and other threads executing in a single database manager instance.
If opening a file causes this value to be exceeded, an error is returned to your
application.

Note: This parameter does not apply to UNIX-based platforms.

Recommendation: When setting this parameter, you should consider the
number of file handles that could be used for each database in the database
manager instance. To estimate an upper limit for this parameter:
1. Calculate the maximum number of file handles that could be opened for

each database in the instance, using the following formula:
maxappls * maxfilop

2. Calculate the sum of above results and verify that it does not exceed the
parameter maximum.

If a new database is created, you should re-evaluate the value for this
parameter.

Priority of Agents (agentpri)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range]

AIX -1 [41 - 125]

Other UNIX
-1 [41 - 128]

Windows NT
-1 [0 - 6]

398 Administration Guide: Performance

OS/2 -1 [200 - 231; 300 - 331; 400 - 431]

This parameter controls the priority given both to all agents, and to other
database manager instance processes and threads, by the operating system
scheduler. In a partitioned database environment, this also includes both
coordinating and subagents, the parallel system controllers, and the FCM
daemons. This priority determines how CPU time is given to the DB2
processes, agents, and threads relative to the other processes and threads
running on the machine. When the parameter is set to -1, no special action is
taken and the database manager is scheduled in the normal way that the
operating system schedules all processes and threads. When the parameter is
set to a value other than -1, the database manager will create its processes and
threads with a static priority set to the value of the parameter. Therefore, this
parameter allows you to control the priority with which the database manager
processes and threads will execute on your machine.

You can use this parameter to increase database manager throughput. The
values for setting this parameter are dependent on the operating system on
which the database manager is running. For example, in a UNIX-based
environment, numerically low values yield high priorities. When the
parameter is set to a value between 41 and 125, the database manager creates
its agents with a UNIX static priority set to the value of the parameter. This is
important in UNIX-based environments because numerically low values yield
high priorities for the database manager, but other processes (including
applications and users) may experience delays because they cannot obtain
enough CPU time. You should balance the setting of this parameter with the
other activity expected on the machine.

In an OS/2 environment, higher numeric values yield higher priorities.

Recommendation: The default value should be used initially. This value
provides a good compromise between response time to other
users/applications and database manager throughput.

If database performance is a concern, you can use benchmarking techniques to
determine the optimum setting for this parameter. You should take care when
increasing the priority of the database manager because performance of other
user processes can be severely degraded, especially when the CPU utilization
is very high. Increasing the priority of the database manager processes and
threads can have significant performance benefits.

Note: If you set this parameter to a non-default value on UNIX-based
platforms, you cannot use the governor to alter agent priorities.

Maximum Number of Agents (maxagents)

Configuration Type Database manager

Chapter 13. Configuring DB2 399

|
|
|
|
|
|
|
|
|
|
|
|
|

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] 200 [1 – 64 000]

400 [1 – 64 000] on Partitioned database
server with local and remote clients

10 [1 – 64 000] on Satellite database server
with local clients

Unit of Measure Counter

Related Parameters
v “Maximum Number of Active Applications

(maxappls)” on page 394
v “Maximum Number of Concurrent Agents

(maxcagents)” on page 401
v “Maximum Number of Coordinating Agents

(max_coordagents)” on page 402
v “Maximum Number of DARI Processes

(maxdari)” on page 406
v “Minimum Committed Private Memory

(min_priv_mem)” on page 369
v “Agent Pool Size (num_poolagents)” on

page 403

This parameter indicates the maximum number of database manager agents,
whether coordinator agents or subagents, available at any given time to accept
application requests. If you want to limit the number of coordinating agents,
use the max_coordagents parameter.

This parameter can be useful in memory constrained environments to limit
the total memory usage of the database manager, because each additional
agent requires additional memory.

Recommendation: The value of maxagents should be at least the sum of the
values for maxappls in each database allowed to be accessed concurrently. If
the number of databases is greater than the numdb parameter, then the safest
course is to use the product of numdb with the largest value for maxappls.

400 Administration Guide: Performance

|
|
|
|

Each additional agent requires some resource overhead that is allocated at the
time the database manager is started.

Maximum Number of Concurrent Agents (maxcagents)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] -1 (max_coordagents) [-1; 1 – max_coordagents]

Unit of Measure Counter

Related Parameters
v “Maximum Number of Active Applications

(maxappls)” on page 394
v “Maximum Number of Agents (maxagents)”

on page 399
v “Maximum Number of Coordinating Agents

(max_coordagents)” on page 402

The maximum number of database manager agents that can be concurrently
executing a database manager transaction. This parameter is used to control
the load on the system during periods of high simultaneous application
activity. For example, you may have a system requiring a large number of
connections but with a limited amount of memory to serve those connections.
Adjusting this parameter can be useful in such an environment, where a
period of high simultaneous activity could cause excessive operating system
paging.

This parameter does not limit the number of applications that can have
connections to a database. It only limits the number of database manager
agents that can be processed concurrently by the database manager at any one
time, thereby limiting the usage of system resources during times of peak
processing.

A value of −1 indicates that the limit is max_coordagents.

Chapter 13. Configuring DB2 401

|
|
|
|
|
|
|
|

Recommendation: In most cases the default value for this parameter will be
acceptable. In cases where the high concurrency of applications is causing
problems, you can use benchmark testing to tune this parameter to optimize
the performance of the database.

Maximum Number of Coordinating Agents (max_coordagents)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] -1 (maxagents – num_initagents)

[-1, 0 – maxagents]

For partitioned database environments and
environments in which intra_parallel is set to
Yes, the default is maxagents minus
num_initagents; otherwise, the default is
maxagents. This ensures that, in
non-partitioned database environments,
max_coordagents always equals maxagents,
unless the system is configured for
intra-partition parallelism.

If you do not have a partitioned database
environment, and have not enabled the
intra_parallel parameter, max_coordagents must
equal maxagents.

Related Parameters
v “Initial Number of Agents in Pool

(num_initagents)” on page 405
v “Agent Pool Size (num_poolagents)” on

page 403
v “Maximum Number of Agents (maxagents)”

on page 399
v “Enable Intra-Partition Parallelism

(intra_parallel)” on page 466

402 Administration Guide: Performance

|
|
|
|

||

|

|
|
|
|
|
|
|
|
|

|
|
|
|

This parameter determines the maximum number of coordinating agents that
can exist at one time on a server in a partitioned or non-partitioned database
environment.

One coordinating agent is acquired for each local or remote application that
connects to a database or attaches to an instance. Requests that require an
instance attachment include CREATE DATABASE, DROP DATABASE, and
Database System Monitor commands.

Maximum Number of Logical Agents (max_logicagents)

Configuration Type Database manager

Parameter Type Configurable

Default [Range] -1 (max_coordagents) [-1; max_coordagents —
64 000]

This parameter controls the maximum number of applications that can be
connected to the instance. Typically, each application is assigned a coordinator
agent. An agent facilitates the operations between the application and the
database. When the default value for this parameter is used, the concentrator
feature is not activated. As a result, each agent operates with its own private
memory and shares database manager and database global resources such as
the buffer pool with other agents. When the parameter is set to a value
greater than the default, the concentrator feature is activated. The intent of the
concentrator is to reduce the server resources per client application to a point
where a DB2 Connect gateway can handle greater than 10 000 client
connections.

Refer to the DB2 Connect User’s Guide for more information and examples of
how to use DB2 Connect as an XA transaction support concentrator.

A value or -1 indicates that the limit is max_coordagents.

Agent Pool Size (num_poolagents)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] -1 [-1, 0 — maxagents]

Chapter 13. Configuring DB2 403

|

||

||

||
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|

Using the default, the value for a server with
a non-partitioned database and local clients is
the larger of maxagents/50 or max_querydegree.

Using the default, the value for a server with
a non-partitioned database and local and
remote clients is the larger of maxagents/50 x
max_querydegree or maxagents -
max_coordagents.

Using the default, the value for a database
partition server is the larger of maxagents/10 x
max_querydegree or maxagents -
max_coordagents.

Related Parameters
v “Initial Number of Agents in Pool

(num_initagents)” on page 405
v “Maximum Number of Agents (maxagents)”

on page 399
v “Maximum Query Degree of Parallelism

(max_querydegree)” on page 464
v “Maximum Number of Coordinating Agents

(max_coordagents)” on page 402

This parameter is a guideline for how large you want the agent pool to grow
(and replaces the max_idleagents parameter that was used in DB2 Version 2).

The agent pool contains subagents and idle agents. Idle agents can be used as
parallel subagents or as coordinator agents. If more agents are created than is
indicated by the value of this parameter, they will be terminated when they
finish executing their current request, rather than be returned to the pool.

If the value for this parameter is 0, agents will be created as needed, and may
be terminated when they finish executing their current request. If the value is
maxagents, and the pool is full of associated subagents, the server cannot be
used as a coordinator node, because no new coordinator agents can be
created.

Recommendation: If you run a decision-support environment in which few
applications connect concurrently, set num_poolagents to a small value to avoid
having an agent pool that is full of idle agents.

If you run a transaction-processing environment in which many applications
are concurrently connected, increase the value of num_poolagents to avoid the
costs associated with the frequent creation and termination of agents.

404 Administration Guide: Performance

|
|
|
|

|
|
|
|

Initial Number of Agents in Pool (num_initagents)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] 0 [0 — num_poolagents]

Related Parameters
v “Maximum Number of Agents (maxagents)”

on page 399
v “Agent Pool Size (num_poolagents)” on

page 403
v “Maximum Number of Coordinating Agents

(max_coordagents)” on page 402

This parameter determines the initial number of idle agents that are created in
the agent pool at DB2START time.

Stored Procedures (DARI)
The following parameters can affect the Database Application Remote
Interface (DARI) applications:
v “Keep DARI Process Indicator (keepdari)”
v “Maximum Number of DARI Processes (maxdari)” on page 406
v “Initialize DARI Process with JVM (initdari_jvm)” on page 408
v “Initial Number of Fenced DARI Processes in Pool (num_initdaris)” on

page 408

Note: The term DARI refers to stored procedures.

Keep DARI Process Indicator (keepdari)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Chapter 13. Configuring DB2 405

Parameter Type Configurable

Default [Range] Yes [Yes; No]

Related Parameters “Maximum Number of DARI Processes
(maxdari)”

This parameter indicates whether or not a DARI process is kept after a DARI
call is complete. DARI processes are created as separate system entities in
order to isolate user-written DARI code from the database manager agent
process. This parameter is only applicable on database servers.

If keepdari is set to no, a new DARI process is created and destroyed for each
DARI invocation. If keepdari is set to yes, a DARI process is reused for
subsequent DARI calls. When the database manager is stopped, all
outstanding DARI processes will be terminated.

Setting this parameter to yes will result in additional system resources being
consumed by the database manager for each DARI process that is activated,
up to the value contained in the maxdari parameter. This is only true when no
existing DARI process is available to process a subsequent DARI call. This
parameter is ignored if maxdari is set to 0.

Recommendation: In an environment in which the number of DARI requests
is large relative to the number of non-DARI requests, and system resources
are not constrained, then this parameter can be set to yes. This will improve
the DARI performance by avoiding the initial DARI process creation overhead
since an existing DARI process will be used to process the call.

For example, in an OLTP debit-credit banking transaction application, the
code to perform each transaction could be performed in a stored procedure
which executes in a DARI process. In this application, the main workload is
performed out of DARI processes. If this parameter is set to no, each
transaction incurs the overhead of creating a new DARI process, resulting in a
significant performance reduction. If, however, this parameter is set to yes,
each transaction would try to use an existing DARI process, which would
avoid this overhead.

Maximum Number of DARI Processes (maxdari)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients

406 Administration Guide: Performance

v Satellite database server with local clients

Parameter Type Configurable

Default [Range] -1 (max_coordagents) [-1; 0 – max_coordagents]

Unit of Measure Counter

Related Parameters
v “Maximum Number of Agents (maxagents)”

on page 399
v “Keep DARI Process Indicator (keepdari)”

on page 405
v “Initial Number of Fenced DARI Processes

in Pool (num_initdaris)” on page 408
v “Maximum Number of Coordinating Agents

(max_coordagents)” on page 402

This parameter indicates the maximum number of DARI process that may
reside at the database server. Once this limit is reached, no new DARI
requests may be invoked. This parameter is only applicable on database
servers.

There can be no more than one DARI process active per coordinating agent,
so the maximum number of DARI processes is also dictated by the maximum
number of coordinating agents (max_coordagents).

Recommendation: If your environment uses the DARI facility within the
database manager, then this parameter can be used to ensure that an
appropriate number of DARI processes are available to handle the DARI calls
made at any one time within the database manager.

If the parameter is set to −1, the maximum number of DARI processes will be
the same as the value set in the max_coordagents parameter.

If you find that the default value is not appropriate for your environment
because an inappropriate amount of system resource is being given to DARI
processes and is affecting performance of the database manager, the following
may be useful in providing a starting point for tuning this parameter:

maxdari = # of applications allowed to make DARI calls at one time

If keepdari is set to yes, then each DARI process that is created will continue to
exist and use system resources even after the DARI call has been processed
and returned to the agent.

If your environment is tightly constrained and you cannot afford the process
resources associated with DARI, you can disable DARI by setting this
parameter to zero (0).

Chapter 13. Configuring DB2 407

|
|
|
|

|
|
|
|

|
|

|
|
|
|

|

|
|
|

|
|
|

Initialize DARI Process with JVM (initdari_jvm)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] No [Yes; No]

Related Parameters
v “Maximum Number of DARI Processes

(maxdari)” on page 406
v “Initial Number of Fenced DARI Processes

in Pool (num_initdaris)”
v “Keep DARI Process Indicator (keepdari)”

on page 405

This parameter indicates whether each fenced DARI process will load the Java
Virtual Machine (JVM) when starting. This parameter will reduce the initial
startup time for fenced Java stored procedures, especially when used in
conjunction with the num_initdaris parameter. This parameter could increase
the initial load time for non-Java fenced stored procedures as they do not
require the JVM.

Initial Number of Fenced DARI Processes in Pool (num_initdaris)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] 0 [0 — maxdari]

Related Parameters
v “Maximum Number of DARI Processes

(maxdari)” on page 406

408 Administration Guide: Performance

v “Initialize DARI Process with JVM
(initdari_jvm)” on page 408

v “Keep DARI Process Indicator (keepdari)”
on page 405

This parameter indicates the initial number of idle fenced DARI processes that
are created in the DARI pool at DB2START time. Setting this parameter will
reduce the initial startup time for fenced stored procedures. This parameter is
ignored if keepdari is not specified.

Logging and Recovery

Recovering your environment can be very important to prevent the loss of
critical data. A number of parameters are available to help you manage your
environment and to ensure that you can perform adequate recovery of your
data or transactions. These parameters are grouped into the following
categories:
v “Database Log Files”
v “Database Log Activity” on page 415
v “Recovery” on page 420
v “Distributed Unit of Work Recovery” on page 427.

Database Log Files
The following parameters provide information about number, size and status
of the files used for database logging:
v “Size of Log Files (logfilsiz)”
v “Number of Primary Log Files (logprimary)” on page 411
v “Number of Secondary Log Files (logsecond)” on page 413
v “Change the Database Log Path (newlogpath)” on page 413
v “Location of Log Files (logpath)” on page 415
v “First Active Log File (loghead)” on page 415

Size of Log Files (logfilsiz)

Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 1000 [4 — 65 535]

Windows NT 250 [4 — 65 535]

OS/2 250 [4 — 65 535]

Unit of Measure Pages (4 KB)

Chapter 13. Configuring DB2 409

Related Parameters
v “Number of Primary Log Files

(logprimary)” on page 411
v “Number of Secondary Log Files

(logsecond)” on page 413
v “Recovery Range and Soft Checkpoint

Interval (softmax)” on page 417

This parameter defines the size of each primary and secondary log file. The
size of these log files limits the number of log records that can be written to
them before they become full and a new log file is required.

The use of primary and secondary log files as well as the action taken when a
log file becomes full are dependent on the type of logging that is being
performed:
v Circular logging

A primary log file can be reused when the changes recorded in it have been
committed. If the log file size is small and applications have processed a
large number of changes to the database without committing the changes, a
primary log file can quickly become full. If all primary log files become full,
the database manager will allocate secondary log files to hold the new log
records.

v Log retention logging
When a primary log file is full, the log is archived and a new primary log
file is allocated.

Recommendation: You must balance the size of the log files with the number
of primary log files:
v The value of the logfilsiz should be increased if the database has a large

number of update, delete and/or insert transactions running against it
which will cause the log file to become full very quickly.

Note: The total log file size limit is 32 GB. That is, the number of log files
(logprimary + logsecond) multiplied by the size of each log file in bytes
(logfilsiz * 4096) must be less than 32 GB.

A log file that is too small can affect system performance because of the
overhead of archiving old log files, allocating new log files, and waiting for
a usable log file.

v The value of the logfilsiz should be reduced if disk space is scarce, since
primary logs are preallocated at this size.
A log file that is too large can reduce your flexibility when managing
archived log files and copies of log files, since some media may not be able
to hold an entire log file.

410 Administration Guide: Performance

|

|
|

If you are using log retention, the current active log file is closed and
truncated when the last application disconnects from a database. When the
next connection to the database occurs, the next log file is used. Therefore, if
you understand the logging requirements of your concurrent applications you
may be able to determine a log file size which will not allocate excessive
amounts of wasted space.

Refer to “Configuration Parameters for Database Logging” in the
Administration Guide: Implementation for more information on this parameter.

Number of Primary Log Files (logprimary)

Configuration Type Database

Parameter Type Configurable

Default [Range] 3 [2 – 128]

Unit of Measure Counter

When Allocated

v The database is created
v A log is moved to a different location

(which occurs when the logpath parameter is
updated)

v Following a increase in the value of this
parameter (logprimary), during the next
database connection after all users have
disconnected

v A log file has been archived and a new log
file is allocated (the logretain or userexit
parameter must be enabled)

v If the logfilsiz parameter has been changed,
the active log files are re-sized during the
next database connection after all users
have disconnected.

When Freed Not freed unless this parameter decreases. If
decreased, unneeded log files are deleted
during the next connection to the database.

Related Parameters
v “Size of Log Files (logfilsiz)” on page 409
v “Number of Secondary Log Files

(logsecond)” on page 413
v “Log Retain Enable (logretain)” on page 419
v “User Exit Enable (userexit)” on page 420

Chapter 13. Configuring DB2 411

|
|

The primary log files establish a fixed amount of storage allocated to the
recovery log files. This parameter allows you to specify the number of
primary log files to be preallocated.

Under circular logging, the primary logs are used repeatedly in sequence.
That is, when a log is full, the next primary log in the sequence is used if it is
available. A log is considered available if all units of work with log records in
it have been committed or rolled-back. If the next primary log in sequence is
not available, then a secondary log is allocated and used. Additional
secondary logs are allocated and used until the next primary log in the
sequence becomes available or the limit imposed by the logsecond parameter is
reached. These secondary log files are dynamically deallocated as they are no
longer needed by the database manager.

The number of primary and secondary log files must comply with the
following equation:
v (logprimary + logsecond) <= 128

Recommendation: The value chosen for this parameter depends on a number
of factors, including the type of logging being used, the size of the log files,
and the type of processing environment (for example, length of transactions
and frequency of commits).

Increasing this value will increase the disk requirements for the logs because
the primary log files are preallocated during the very first connection to the
database.

If you find that secondary log files are frequently being allocated, you may be
able to improve system performance by increasing the log file size (logfilsiz) or
by increasing the number of primary log files.

For databases that are not frequently accessed, in order to save disk storage,
set the parameter to 2. For databases enabled for roll-forward recovery, set the
parameter larger to avoid the overhead of allocating new logs almost
immediately.

You may use the database system monitor to help you size the primary log
files.

For more information see the following monitor element descriptions in the
System Monitor Guide and Reference:
v sec_log_used_top (maximum secondary log space used)
v tot_log_used_top (maximum total log space used)
v sec_logs_allocated (secondary logs allocated currently)

412 Administration Guide: Performance

Observation of these monitor values over a period of time will aid in better
tuning decisions, as average values may be more representative of your
ongoing requirements.

Number of Secondary Log Files (logsecond)

Configuration Type Database

Parameter Type Configurable

Default [Range] 2 [0 – 126]

Unit of Measure Counter

When Allocated As needed when logprimary is insufficient (see
detail below)

When Freed Over time as the database manager
determines they will no longer be required.

Related Parameters
v “Size of Log Files (logfilsiz)” on page 409
v “Number of Primary Log Files

(logprimary)” on page 411
v “Log Retain Enable (logretain)” on page 419
v “User Exit Enable (userexit)” on page 420

This parameter specifies the number of secondary log files that are created
and used for recovery log files (only as needed). When the primary log files
become full, the secondary log files (of size logfilsiz) are allocated one at a
time as needed, up to a maximum number as controlled by this parameter. An
error code will be returned to the application, and the database will be shut
down, if more secondary log files are required than are allowed by this
parameter.

See “Number of Primary Log Files (logprimary)” on page 411 for more
information about how secondary logs are used.

Recommendation: Use secondary log files for databases that have periodic
needs for large amounts of log space. For example, an application that is run
once a month may require log space beyond that provided by the primary log
files. Since secondary log files do not require permanent file space they are
advantageous in this type of situation.

Change the Database Log Path (newlogpath)

Configuration Type Database

Parameter Type Configurable

Default [Range] Null [any valid path or device]

Chapter 13. Configuring DB2 413

|
|
|
|
|
|
|

Related Parameters
v “Location of Log Files (logpath)” on

page 415
v “Database is Consistent

(database_consistent)” on page 438

This parameter allows you to specify a string of up to 242 bytes to change the
location where the log files are stored. The string can point to either a path
name, or to a raw device. If the string points to a path name, it must be a
fully qualified path name, not a relative path name.

Note: In a partitioned database environment, the node number is
automatically appended to the path. This is done to maintain the
uniqueness of the path in multiple logical node configurations.

To specify a device, specify a string that the operating system identifies as a
device. For example:
v On Windows NT, \\.\d: or \\.\PhysicalDisk5

Note: You must have Windows NT Version 4.0 with Service Pack 3 or later
installed to be able to write logs to a device.

v On UNIX-based platforms, /dev/rdblog8

Note: You can only specify a device on AIX, Windows 2000, Windows NT,
Solaris, HP-UX, NUMA-Q, and Linux platforms.

The new setting does not become the value of logpath until both of the
following occur:
v The database is in a consistent state, as indicated by the database_consistent

parameter.
v All users are disconnected from the database

When the first new connection is made to the database, the database manager
will move the logs to the new location specified by logpath.

There might be log files in the old log path. These log files might not have
been archived. You might need to archive these log files manually. Also, if you
are running replication on this database, replication might still need the log
files from before the log path change. If the database is configured with the
User Exit Enable (userexit) database configuration parameter set to Yes, and if
all the log files have been archived either by DB2 automatically or by yourself
manually, then DB2 will be able to retrieve the log files to complete the
replication process. Otherwise, you can copy the files from the old log path to
the new log path.

414 Administration Guide: Performance

|

|
|

|

|
|

|
|
|
|
|
|
|
|
|

Recommendation: Ideally, the log files will be on a physical disk which does
not have high I/O. For instance, avoid putting the logs on the same disk as
the operating system or high volume databases. This will allow for efficient
logging activity with a minimum of overhead such as waiting for I/O.

You may use the database system monitor to track the number of I/O’s
related to database logging.

For more information, refer to the following monitor element descriptions in
the System Monitor Guide and Reference:
v log_reads (number of log pages read)
v log_writes (number of log pages written).

The preceding data elements return the amount of I/O activity related to
database logging. You can use an operating system monitor tool to collect
information about other disk I/O activity, then compare the two types of I/O
activity.

Location of Log Files (logpath)

Configuration Type Database

Parameter Type Informational

Related Parameters “Change the Database Log Path (newlogpath)”
on page 413

This parameter contains the current path being used for logging purposes.
You cannot change this parameter directly as it is set by the database manager
after a change to the newlogpath parameter becomes effective.

When a database is created, the recovery log file for it is created in a
subdirectory of the directory containing the database. The default is a
subdirectory named SQLOGDIR under the directory created for the database.

First Active Log File (loghead)

Configuration Type Database

Parameter Type Informational

This parameter contains the name of the log file that is currently active.

Database Log Activity
The following parameters can influence the type and performance of database
logging:
v “Number of Commits to Group (mincommit)” on page 416
v “Recovery Range and Soft Checkpoint Interval (softmax)” on page 417

Chapter 13. Configuring DB2 415

v “Log Retain Enable (logretain)” on page 419
v “User Exit Enable (userexit)” on page 420

Number of Commits to Group (mincommit)

Configuration Type Database

Parameter Type Configurable

Default [Range] 1 [1 – 25]

Unit of Measure Counter

This parameter allows you to delay the writing of log records to disk until a
minimum number of commits have been performed. This delay can help
reduce the database manager overhead associated with writing log records. As
a result, this will improve performance when you have multiple applications
running against a database and many commits are requested by the
applications within a very short time frame.

This grouping of commits will only occur when the value of this parameter is
greater than one and when the number of applications connected to the
database is greater than or equal to the value of this parameter. When commit
grouping is being performed, application commit requests are held until either
one second has elapsed or the number of commit requests equals the value of
this parameter.

Changes to the value specified for this parameter take effect immediately; you
do not have to wait until all applications disconnect from the database.

Recommendation: Increase this parameter from its default value if multiple
read/write applications typically request concurrent database commits. This
will result in more efficient logging file I/O as it will occur less frequently
and write more log records each time it does occur.

You could also sample the number of transactions per second and adjust this
parameter to accommodate the peak number of transactions per second (or
some large percentage of it). Accommodating peak activity would minimize
the overhead of writing log records during transaction intensive periods.

If you increase mincommit, you may also need to increase the logbufsz
parameter to avoid having a full log buffer force a write during these
transaction intensive periods. In this case, the logbufsz should be equal to:

mincommit * (log space used, on average, by a transaction)

You may use the database system monitor to help you tune this parameter in
the following ways:
v Calculating the peak number of transactions per second:

416 Administration Guide: Performance

|
|
|
|
|
|

|
|
|
|

|
|
|

|

|

Taking monitor samples throughout a typical day, you can determine your
transaction intensive periods. You can calculate the total transactions by
adding the following monitor elements:
– commit_sql_stmts (commit statements attempted)
– rollback_sql_stmts (rollback statements attempted)

Using this information and the available timestamps, you can calculate the
number of transactions per second.

v Calculating the log space used per transaction:
Using sampling techniques over a period of time and a number of
transactions, you can calculate an average of the log space used with the
following monitor element:
– log_space_used (unit of work log space used)

For more information about the database system monitor, see the System
Monitor Guide and Reference.

Recovery Range and Soft Checkpoint Interval (softmax)

Configuration Type Database

Parameter Type Configurable

Default [Range] 100 [1 – 100 * logprimary]

Unit of Measure Percentage of the size of one primary log file

Related Parameters
v “Size of Log Files (logfilsiz)” on page 409
v “Number of Primary Log Files

(logprimary)” on page 411

This parameter is used to:
v Influence the number of logs that need to be recovered following a crash

(such as a power failure). For example, if the default value is used, the
database manager will try to keep the number of logs that need to be
recovered to 1. If you specify 300 as the value of this parameter, the
database manager will try to keep the number of logs that need to be
recovered to 3.
To influence the number of logs required for crash recovery, the database
manager uses this parameter to trigger the page cleaners to ensure that
pages older than the specified recovery window are already written to disk.

v Determine the frequency of soft checkpoints.

At the time of a database failure resulting from an event such as a power
failure, there may have been changes to the database which:
v Have not been committed, but updated the data in the buffer pool

Chapter 13. Configuring DB2 417

|
|
|
|
|

||

v Have been committed, but have not been written from the buffer pool to
the disk

v Have been committed and written from the buffer pool to the disk.

When a database is restarted, the log files will be used to perform a crash
recovery of the database which ensures that the database is left in a consistent
state (that is, all committed transactions are applied to the database and all
uncommitted transactions are not applied to the database).

To determine which records from the log file need to be applied to the
database, the database manager uses a log control file. This log control file is
periodically written to disk, and, depending on the frequency of this event,
the database manager may be applying log records of committed transactions
or applying log records that describe changes that have already been written
from the buffer pool to disk. These log records have no impact on the
database, but applying them introduces some overhead into the database
restart process.

The log control file is always written to disk when a log file is full, and
during soft checkpoints. You can use this configuration parameter to trigger
additional soft checkpoints.

The timing of soft checkpoints is based on the difference between the “current
state” and the “recorded state”, given as a percentage of the logfilsiz. The
“recorded state” is determined by the oldest valid log record indicated in the
log control file on disk, while the “current state” is determined by the log
control information in memory. (The oldest valid log record is the first log
record that the recovery process would read.) The soft checkpoint will be
taken if the value calculated by the following formula is greater than or equal
to the value of this parameter:
((space between recorded and current states) / logfilsiz) * 100

Recommendation: You may want to increase or reduce the value of this
parameter, depending on whether your acceptable recovery window is greater
than or less than one log file. Lowering the value of this parameter will cause
the database manager both to trigger the page cleaners more often and to take
more frequent soft checkpoints. These actions can reduce both the number of
log records that need to be processed and the number of redundant log
records that are processed during crash recovery.

Note however, that more page cleaner triggers and more frequent soft
checkpoints increase the overhead associated with database logging, which
can impact the performance of the database manager. Also, more frequent soft
checkpoints may not reduce the time required to restart a database, if you
have:
v Very long transactions with few commit points.

418 Administration Guide: Performance

|

v A very large buffer pool and the pages containing the committed
transactions are not written back to disk very frequently. (Note that the use
of asynchronous page cleaners can help avoid this situation. See “Number
of Asynchronous Page Cleaners (num_iocleaners)” on page 387.)

In both of these cases, the log control information kept in memory does not
change frequently and there is no advantage in writing the log control
information to disk, unless it has changed.

Log Retain Enable (logretain)

Configuration Type Database

Parameter Type Configurable

Default [Range] No [Recovery; Capture; No]

Related Parameters
v “User Exit Enable (userexit)” on page 420
v “Log Retain Status Indicator

(log_retain_status)” on page 439
v “Backup Pending Indicator

(backup_pending)” on page 438

The values are as follows:
v No, to indicate that logs are not retained.
v Recovery, to indicate that the logs are retained, and can be used for forward

recovery. In addition, if you are using data replication, the Capture program
can write the updates recorded in the logs to the change table.

v Capture, to indicate that the logs are only retained so that the Capture
program can write the updates to the change table. These logs may be used
for forward recovery if they have not been pruned following their use by
the data replication Capture program.

If logretain is set to Recovery or userexit is set to Yes, the active log files will be
retained and become online archive log files for use in roll-forward recovery.
This is called log retention logging.

After logretain is set to Recovery or userexit is set to Yes (or both), you must
make a full backup of the database. This state is indicated by the
backup_pending flag parameter.

If logretain is set to No and userexit is set to No, roll-forward recovery is not
available for the database.

Chapter 13. Configuring DB2 419

|
|
|
|

|
|
|

|
|
|

|
|

When logretain is set to Capture, once the data replication Capture program
completes its use of the log files, it calls the PRUNE LOGFILE command to
delete log files. You should not set logretain to Capture if you want to perform
roll-forward recovery on the database.

If logretain is set to No and userexit is set to No, logs are not retained. In this
situation, the database manager deletes all log files in the logpath directory
(including online archive log files), allocates new active log files, and reverts
to circular logging.

User Exit Enable (userexit)

Configuration Type Database

Parameter Type Configurable

Default [Range] No [Yes; No]

Related Parameters
v “Log Retain Enable (logretain)” on page 419
v “User Exit Status Indicator

(user_exit_status)” on page 439
v “Backup Pending Indicator

(backup_pending)” on page 438

If this parameter is enabled, log retention logging is performed regardless of
how the logretain parameter is set. This parameter also indicates that a user
exit program should be used to archive and retrieve the log files. Log files are
archived when the database manager closes the log file. They are retrieved
when the ROLLFORWARD utility needs to use them to restore a database.

After logretain, or userexit, or both of these parameters are enabled, you must
make a full backup of the database. This state is indicated by the
backup_pending flag parameter.

If both of these parameters are de-selected, roll-forward recovery becomes
unavailable for the database because logs will no longer be retained. In this
case, the database manager deletes all log files in the logpath directory
(including online archive log files), allocates new active log files, and reverts
to circular logging.

Refer to “User Exit for Database Recovery” in the Administration Guide:
Implementation for more information on the user exit program.

Recovery
The following parameters affect various aspects of database recovery:
v “Auto Restart Enable (autorestart)” on page 421
v “Index Re-creation Time (indexrec)” on page 421

420 Administration Guide: Performance

|
|
|
|

|
|
|
|

v “Default Number of Load Recovery Sessions (dft_loadrec_ses)” on page 423
v “Number of Database Backups (num_db_backups)” on page 423
v “Recovery History Retention Period (rec_his_retentn)” on page 424
v “Track Modified Pages Enable (trackmod)” on page 425

See also “Distributed Unit of Work Recovery” on page 427.

The following parameters are used when working with Tivoli Storage
Manager (TSM):
v “Tivoli Storage Manager Management Class (tsm_mgmtclass)” on page 425
v “Tivoli Storage Manager Password (tsm_password)” on page 425
v “Tivoli Storage Manager Node Name (tsm_nodename)” on page 426
v “Tivoli Storage Manager Owner Name (tsm_owner)” on page 426

Auto Restart Enable (autorestart)

Configuration Type Database

Parameter Type Configurable

Default [Range] On [On; Off]

When this parameter is set on, the database manager automatically calls the
restart database utility, if needed, when an application connects to a database.
Crash recovery is the operation performed by the restart database utility. It is
performed if the database terminated abnormally while applications were
connected to it. An abnormal termination of the database could be caused by
a power failure or a system software failure. It applies any committed
transactions that were in the database buffer pool but were not written to disk
at the time of the failure. It also backs out any uncommitted transactions that
may have been written to disk.

If autorestart is not enabled, then an application that attempts to connect to a
database which needs to have crash recovery performed (needs to be
restarted) will receive a SQL1015N error. In this case, the application can call
the restart database utility, or you can restart the database by selecting the
restart operation of the recovery tool.

Index Re-creation Time (indexrec)

Configuration Type Database and Database Manager

Applies to
v Database server with local and remote

clients
v Database server with local clients

Chapter 13. Configuring DB2 421

|

v Partitioned database server with local and
remote clients

v Satellite database server with local clients

Parameter Type Configurable

Default [Range]

UNIX Database Manager
restart [restart; access]

OS/2 and Windows NT Database Manager
access [restart; access]

Database Use system setting [system;
restart; access]

Related Parameters “Auto Restart Enable (autorestart)” on
page 421

This parameter indicates when the database manager will attempt to rebuild
invalid indexes. There are three possible settings for this parameter:

SYSTEM use system setting which will cause invalid indexes to be
rebuilt at the time specified in the database manager
configuration file. (Note: This setting is only valid for
database configurations.)

ACCESS during index access which will cause invalid indexes to be
rebuilt when the index is first accessed.

RESTART during database restart which will cause invalid indexes to be
rebuilt when a RESTART DATABASE command is either
explicitly or implicitly issued. Note that a RESTART
DATABASE command is implicitly issued if the autorestart
parameter is enabled.

For the numeric equivalents and API constants for these values, refer to the
Administrative API Reference.

Indexes can become invalid when fatal disk problems occur. If this happens to
the data itself, the data could be lost. However, if this happens to an index,
the index can be recovered by re-creating it. If an index is rebuilt while users
are connected to the database, two problems could occur:
v An unexpected degradation in response time may occur as the index file is

re-created. Users accessing the table and using this particular index would
wait while the index was being rebuilt.

v Unexpected locks may be held after index re-creation, especially if the user
transaction that caused the index to be re-created never performed a
COMMIT or ROLLBACK.

422 Administration Guide: Performance

Recommendation: The best choice for this option on a high-user server and if
restart time is not a concern, would be to have the index rebuilt at
DATABASE RESTART time as part of the process of bringing the database
back online after a crash.

Setting this parameter to “ACCESS” will result in a degradation of the
performance of the database manager while the index is being re-created. Any
user accessing that specific index or table would have to wait until the index
is recreated.

If this parameter is set to “RESTART”, the time taken to restart the database
will be longer due to index re-creation, but normal processing would not be
impacted once the database has been brought back online.

Default Number of Load Recovery Sessions (dft_loadrec_ses)

Configuration Type Database

Parameter Type Configurable

Default [Range] 1 [1 – 30 000]

Unit of Measurement Counter

This parameter specifies the default number of sessions that will be used
during the recovery of a table load. The value should be set to an optimal
number of I/O sessions to be used to retrieve a load copy. The retrieval of a
load copy is an operation similar to restore. You can override this parameter
through entries in the copy location file specified by the environment variable
DB2LOADREC.

The default number of buffers used for load retrieval is two more than the
value of this parameter. You can also override the number of buffers in the
copy location file.

This parameter is applicable only if roll forward recovery is enabled.

Refer to Data Movement Utilities Guide and Reference for more information
about load recovery.

Number of Database Backups (num_db_backups)

Configuration Type Database

Parameter Type Configurable

Default [Range] 12 [1 — 32 768]

Related Parameters “Recovery History Retention Period
(rec_his_retentn)” on page 424

Chapter 13. Configuring DB2 423

|
|
|
|

||

This parameter specifies the number of database backups to retain for a
database. After the specified number of backups is reached, old backups are
marked as expired in the recovery history file. Recovery history file entries for
the table space backups and load copy backups that are related to the expired
database backup are also marked as expired. When a backup is marked as
expired, the physical backups can be removed from where they are stored (for
example, disk, tape, ADSM). The next database backup will prune the expired
entries from the recovery history file.

When a database backup is marked as expired in the history file, any
corresponding file backups linked through a DB2 Data Links Manager will be
removed from its archive server.

The rec_his_retentn configuration parameter should be set to a value
compatible with the value of num_db_backups. For example, if num_db_backup
is set to a large value, the value for rec_his_retentn should be large enough to
support that number of backups.

Recovery History Retention Period (rec_his_retentn)

Configuration Type Database

Parameter Type Configurable

Default [Range] 366 [-1; 0 — 30 000]

Unit of Measure Days

Related Parameters “Number of Database Backups
(num_db_backups)” on page 423

This parameter is used to specify the number of days that historical
information on backups should be retained. If the recovery history file is not
needed to keep track of backups, restores, and loads, this parameter can be set
to a small number.

If value of this parameter is -1, the recovery history file can only be pruned
explicitly using the available commands or APIs. If the value is not -1, the
recovery history file is pruned after every full database backup.

The value of this parameter will override the value of the num_db_backups
parameter, but rec_his_retentn and num_db_backups must work together. If the
value for num_db_backups is large, the value for rec_his_retentn should be large
enough to support that number of backups.

No matter how small the retention period, the most recent full database
backup plus its restore set will always be kept, unless you use the PRUNE
utility with the FORCE option. For more information about this utility, refer to
the Command Reference.

424 Administration Guide: Performance

Track Modified Pages Enable (trackmod)

Configuration Type Database

Parameter Type Configurable

Default [Range] No [Yes, No]

When this parameter is set to ″Yes″, the database manager tracks database
modifications so that the backup utility can detect which subsets of the
database pages must be examined by an incremental backup and potentially
included in the backup image. After setting this parameter to ″Yes″, you must
take a full database backup in order to have a baseline against which
incremental backups can be taken. Also, if this parameter is enabled and if a
table space is created, then a backup must be taken which contains that table
space. This backup could be either a database backup or a table space backup.
Following the backup, incremental backups will be permitted to contain this
table space.

Tivoli Storage Manager Management Class (tsm_mgmtclass)

Configuration Type Database

Parameter Type Configurable

Default [Range] Null [any string]

The Tivoli Storage Manager management class tells how the TSM server
should manage the backup versions of the objects being backed up.

The default is that there is no TSM management class.

The management class is assigned from the Tivoli Storage Manager
administrator. Once assigned, you should set this parameter to the
management class name. When performing any TSM backup, the database
manager uses this parameter to pass the management class to TSM.

Refer to “Tivoli Storage Manager” in the Data Recovery and High Availability
Guide and Reference for more information on Tivoli Storage Manager.

Tivoli Storage Manager Password (tsm_password)

Configuration Type Database

Parameter Type Configurable

Default [Range] Null [any string]

Chapter 13. Configuring DB2 425

|

||

||

||

|
|
|
|
|
|
|
|
|
|

|
|

This parameter is used to override the default setting for the password
associated with the Tivoli Storage Manager (TSM) product. The password is
needed to allow you to restore a database that was backed up to TSM from
another node.

Note: If the tsm_nodename is overridden during a backup done with DB2 (for
example, with the BACKUP DATABASE command), the tsm_password
may also have to be set.

The default is that you can only restore a database from TSM on the same
node from which you did the backup. It is possible for the tsm_nodename to be
overridden during a backup done with DB2.

Refer to “Tivoli Storage Manager” in the Data Recovery and High Availability
Guide and Reference for more information on Tivoli Storage Manager.

Tivoli Storage Manager Node Name (tsm_nodename)

Configuration Type Database

Parameter Type Configurable

Default [Range] Null [any string]

This parameter is used to override the default setting for the node name
associated with the Tivoli Storage Manager (TSM) product. The node name is
needed to allow you to restore a database that was backed up to TSM from
another node.

The default is that you can only restore a database from TSM on the same
node from which you did the backup. It is possible for the tsm_nodename to be
overridden during a backup done through DB2 (for example, with the
BACKUP DATABASE command).

Refer to “Tivoli Storage Manager” in the Data Recovery and High Availability
Guide and Reference for more information on Tivoli Storage Manager.

Tivoli Storage Manager Owner Name (tsm_owner)

Configuration Type Database

Parameter Type Configurable

Default [Range] Null [any string]

This parameter is used to override the default setting for the owner associated
with the Tivoli Storage Manager (TSM) product. The owner name is needed to
allow you to restore a database that was backed up to ADSM from another

426 Administration Guide: Performance

|
|

|
|

node. It is possible for the tsm_owner to be overridden during a backup done
through DB2 (for example, with the BACKUP DATABASE command).

Note: The owner name is case sensitive.

The default is that you can only restore a database from TSM on the same
node from which you did the backup.

Refer to “Tivoli Storage Manager” in the Data Recovery and High Availability
Guide and Reference for more information on Tivoli Storage Manager.

Distributed Unit of Work Recovery
The following parameters affect the recovery of distributed unit of work
(DUOW) transactions:
v “Transaction Manager Database Name (tm_database)”
v “Transaction Resync Interval (resync_interval)” on page 428
v “Sync Point Manager Log File Path (spm_log_path)” on page 429
v “Sync Point Manager Name (spm_name)” on page 429
v “Sync Point Manager Log File Size (spm_log_file_sz)” on page 430
v “Sync Point Manager Resync Agent Limit (spm_max_resync)” on page 431

Transaction Manager Database Name (tm_database)

Configuration Type Database manager

Applies to

v Database server with local and remote
clients

v Client
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] 1ST_CONN [any valid database name]

This parameter identifies the name of the transaction manager (TM) database
for each DB2 instance. A TM database can be:
v A local DB2 Universal Database database
v A remote DB2 Universal Database database that does not reside on a host

or AS/400 system
v A DB2 for OS/390 Version 5 database if accessed via TCP/IP and the sync

point manager (SPM) is not used.

Chapter 13. Configuring DB2 427

|
|

|
|

|

|

|

|

|

|

|
|

|
|

The TM database is a database that is used as a logger and coordinator, and is
used to perform recovery for indoubt transactions.

You may set this parameter to 1ST_CONN which will set the TM database to
be the first database to which a user connects.

Refer to “Distributed Databases” in the Administration Guide: Planning for
more information on distributed unit of work.

Recommendation: For simplified administration and operation you may wish
to create a few databases over a number of instances and use these databases
exclusively as TM databases.

Transaction Resync Interval (resync_interval)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] 180 [1 – 60 000]

Unit of Measurement Seconds

This parameter specifies the time interval in seconds for which a transaction
manager (TM), resource manager (RM) or sync point manager (SPM) should
retry the recovery of any outstanding indoubt transactions found in the TM,
the RM, or the SPM. This parameter is applicable when you have transactions
running in a distributed unit of work (DUOW) environment.

Refer to “Distributed Databases” in the Administration Guide: Planning for
more information on distributed unit of work.

Recommendation: If, in your environment, indoubt transactions will not
interfere with other transactions against your database, you may wish to
increase the value of this parameter. If you are using a DB2 Connect gateway
to access DRDA2 application servers, you should consider the effect indoubt
transactions may have at the application servers even though there will be no
interference with local data access. If there are no indoubt transactions, the
performance impact will be minimal.

428 Administration Guide: Performance

|
|
|
|
|

|
|
|
|
|
|
|

Sync Point Manager Log File Path (spm_log_path)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default sqllib/spmlog [any valid path or device]

This parameter specifies the directory where the sync point manager (SPM)
logs are written. By default, the logs are written to the sqllib/spmlog
directory, which, in a high-volume transaction environment, can cause an I/O
bottleneck. Use this parameter to have the SPM log files placed on a faster
disk than the current sqllib/spmlog directory. This allows for better
concurrency among the SPM agents.

For more information on the sync point manager, refer to the Installation and
Configuration Supplement.

Refer to “Recovery of Indoubt Transactions on the Host” in the Administration
Guide: Planning for more information on recovery of indoubt DRDA
transactions.

Sync Point Manager Name (spm_name)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default Derived from the TCP/IP hostname

This parameter identifies the name of the sync point manager (SPM) instance
to the database manager.

Chapter 13. Configuring DB2 429

|
|
|
|
|
|

|
|

|
|

For more information on the sync point manager, refer to the Installation and
Configuration Supplement.

Refer to “Recovery of Indoubt Transactions on the Host” in the Administration
Guide: Planning for more information on recovery of indoubt DRDA
transactions.

Sync Point Manager Log File Size (spm_log_file_sz)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] 256 [4 — 1 000]

Unit of Measure Pages

This parameter identifies the sync point manager (SPM) log file size in 4 KB
pages. The log file is contained in the spmlog sub-directory under sqllib and
is created the first time SPM is started.

For more information on the sync point manager, refer to the Installation and
Configuration Supplement.

Refer to “Recovery of Indoubt Transactions on the Host” in the Administration
Guide: Planning for more information on recovery of indoubt DRDA
transactions.

Recommendation: The sync point manager log file size should be large
enough to maintain performance, but small enough to prevent wasted space.
The size required depends on the number of transactions using protected
conversations, and how often COMMIT or ROLLBACK is issued.

To change the size of the SPM log file:
1. Determine that there are no indoubt transactions by using the LIST DRDA

INDOUBT TRANSACTIONS command.
2. If there are none, stop the database manager.
3. Update the database manager configuration with a new SPM log file size.
4. Go to the $HOME/sqllib directory and issue rm -fr spmlog to delete the

current SPM log. (Note: This shows the AIX command. Other systems may
require a different remove or delete command.)

430 Administration Guide: Performance

|
|

|
|
|

|
|

|
|
|
|

|

5. Start the database manager. A new SPM log of the specified size is created
during the startup of the database manager.

Sync Point Manager Resync Agent Limit (spm_max_resync)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] 20 [10 — 256]

This parameter identifies the number of agents that can simultaneously
perform resync operations.

Refer to “Recovery of Indoubt Transactions on the Host” in the Administration
Guide: Planning for more information on recovery of indoubt DRDA
transactions.

For more information on the Sync Point Manager, refer to the Installation and
Configuration Supplement.

Database Management

A number of parameters are available which provide information about your
database or influence the management of your database. These are grouped as
follows:
v “Query Enabler”
v “Attributes” on page 432
v “DB2 Data Links Manager” on page 435
v “Status” on page 437
v “Compiler Settings” on page 440.

Query Enabler
The following parameters provide information for the control of Query
Enabler:
v “Dynamic SQL Query Management (dyn_query_mgmt)”

Dynamic SQL Query Management (dyn_query_mgmt)

Configuration Type Database

Chapter 13. Configuring DB2 431

Parameter Type Configurable

Default [Range] 0 (DISABLE) [1(ENABLE), 0 (DISABLE)]

This parameter is relevant where DB2 Query Patroller is installed. If the
database configuration parameter dyn_query_mgmt is set to “ENABLE” and
the cost of the dynamic query exceeds the trap_threshold for the user or
group (as specified in the DB2 Query Patroller user profile table), then this
query will be caught by DB2 Query Patroller. The trap_threshold is a
cost-based trigger for query catching established in DB2 Query Patroller by
the user. When a dynamic query is caught, a dialog will be presented for the
user to specify runtime parameters.

If dyn_query_mgmt is set to “DISABLE”, then no queries will be caught.

Attributes
The following parameters provide general information about the database:
v “Configuration File Release Level (release)”
v “Database Release Level (database_level)” on page 433
v “Territory for the Database (territory)” on page 433
v “Country code for the Database (country)” on page 433
v “Codeset for the Database (codeset)” on page 433
v “Code Page for the Database (codepage)” on page 434
v “Collating Information (collate_info)” on page 434
v “Copy Protection Enable (copyprotect)” on page 435

With the exception of copyprotect, these parameters are provided for
informational purposes only.

Configuration File Release Level (release)

Configuration Type Database manager, Database

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Informational

Related Parameters “Database Release Level (database_level)” on
page 433

This parameter specifies the release level of the configuration file.

432 Administration Guide: Performance

Database Release Level (database_level)

Configuration Type Database

Parameter Type Informational

Related Parameters “Configuration File Release Level (release)” on
page 432

This parameter indicates the release level of the database manager which can
use the database. In the case of an incomplete or failed migration, this
parameter will reflect the release level of the unmigrated database and may
differ from the release parameter (the release level of the database
configuration file). Otherwise the value of database_level will be identical to
value of the release parameter.

Territory for the Database (territory)

Configuration Type Database

Parameter Type Informational

Related Parameters “Country code for the Database (country)”

This parameter shows the territory used to create the database. Territory is
used by the database manager to determine country parameter values. For
more information about how the database manager uses the territory, see the
National Language Support appendix in the Administration Guide: Planning.

Country code for the Database (country)

Configuration Type Database

Parameter Type Informational

Related Parameters “Territory for the Database (territory)”

This parameter shows the country code used to create the database. The
country parameter is derived based on the territory parameter. For more
information about how the database manager uses the country code, see the
National Language Support appendix in the Administration Guide: Planning.

Codeset for the Database (codeset)

Configuration Type Database

Parameter Type Informational

Related Parameters “Code Page for the Database (codepage)” on
page 434

Chapter 13. Configuring DB2 433

|
|
|
|

|
|
|
|

This parameter shows the codeset that was used to create the database.
Codeset is used by the database manager to determine codepage parameter
values. For more information about how the database manager uses the
codeset, see the National Language Support appendix in the Administration
Guide: Planning.

Code Page for the Database (codepage)

Configuration Type Database

Parameter Type Informational

Related Parameters “Codeset for the Database (codeset)” on
page 433

This parameter shows the code page that was used to create the database. The
codepage parameter is derived based on the codeset parameter. For more
information about how the database manager uses the code page, see the
National Language Support appendix in the Administration Guide: Planning.

Collating Information (collate_info)
This parameter can only be displayed using the GET DATABASE
CONFIGURATION API. It cannot be displayed through the command line
processor or the Control Center.

Configuration Type Database

Parameter Type Informational

This parameter provides 260 bytes of database collating information. The first
256 bytes specify the database collating sequence, where byte “n” contains the
sort weight of the code point whose underlying decimal representation is “n”
in the code page of the database.

The last 4 bytes contain internal information about the type of the collating
sequence. You can treat it as an integer applicable to the platform of the
database. There are three values:
v 0 – The sequence contains non-unique weights
v 1 – The sequence contains all unique weights
v 2 – The sequence is the identity sequence, for which strings are compared

byte for byte.

If you use this internal type information, you need to consider byte reversal
when retrieving information for a database on a different platform.

You can specify the collating sequence at database creation time.

434 Administration Guide: Performance

|
|
|
|
|

|
|
|
|

Copy Protection Enable (copyprotect)

Configuration Type Database

Parameter Type Configurable

Default [Range] No [Yes; No]

This parameter enables the copy-protect attribute and is disabled by default.
Prior to Version 2 of the database manager, the default was to enable the
copy-protect attribute.

This parameter does not apply to UNIX-based environments.

The backup database and restore database utilities are not affected by the
copyprotect parameter. It is possible to back up a copy-protected database,
restore it to a different workstation, and then catalog and access the database.

Attention: Remove copy-protection from all databases before reinstalling
either the database manager or the operating system. If you do not remove
copy-protection, you will receive an error when you attempt to access the
database. After you have reinstalled, you can enable copy-protection.

DB2 Data Links Manager
The following parameters relate to DB2 Data Links Manager:
v “Data Links Access Token Expiry Interval (dl_expint)”
v “Data Links Number of Copies (dl_num_copies)” on page 436
v “Data Links Time After Drop (dl_time_drop)” on page 436
v “Data Links Token Algorithm (dl_token)” on page 436
v “Data Links Token in Upper Case (dl_upper)” on page 437
v “Enable Data Links Support (datalinks)” on page 437

Data Links Access Token Expiry Interval (dl_expint)

Configuration Type Database

Parameter Type Configurable

Default [Range] 60 [-1, 1 — 31 536 000]

Unit of Measure Seconds

This parameter specifies the interval of time (in seconds) for which the
generated file access control token is valid. The number of seconds the token
is valid begins from the time it is generated. The Data Links Filesystem Filter
checks the validity of the token against this expiry time.

For information about file access control tokens, refer to the DB2 Data Links
Manager Quick Beginnings book.

Chapter 13. Configuring DB2 435

The default value for this parameter is sixty (60) seconds. If this parameter is
set to ″-1″, the access control token expires. The workaround for this is to set
this parameter to its maximum value, 31536000 (seconds). This corresponds to
an expiration time of one year, which should be adequate for all applications.

This parameter applies to the DATALINK columns that specify “READ
PERMISSION DB”.

Data Links Number of Copies (dl_num_copies)

Configuration Type Database

Parameter Type Configurable

Default [Range] 0 [0 – 15]

This parameter specifies the number of additional copies of a file to be made
in the archive server (such as a TSM server) when a file is linked to the
database.

The default value for this parameter is zero (0).

This parameter applies to the DATALINK columns that specify
“Recovery=Yes”.

Data Links Time After Drop (dl_time_drop)

Configuration Type Database

Parameter Type Configurable

Default [Range] 1 [0 — 365]

Unit of Measure Days

This parameter specifies the interval of time (in days) files would be retained
on an archive server (such as a TSM server) after a DROP DATABASE is
issued.

The default value for this parameter is one (1) day. A value of zero (0) means
that the files are deleted immediately from the archive server when the DROP
command is issued. (The actual file is not deleted unless the ON UNLINK
DELETE parameter was specified for the DATALINK column.)

This parameter applies to the DATALINK columns that specify
“Recovery=Yes”.

Data Links Token Algorithm (dl_token)

Configuration Type Database

436 Administration Guide: Performance

|
|
|
|

|
|
|

|
|
|

|
|
|
|

Parameter Type Configurable

Default [Range] MAC0 [MAC0; MAC1]

This parameter specifies the algorithm used in the generation of DATALINK
file access control tokens. The value of MAC1 (message authentication code)
generates a more secure message authentication code than MAC0, but also has
more performance overhead.

For information about file access control tokens, refer to the DB2 Data Links
Manager Quick Beginnings book.

This parameter applies to the DATALINK columns that specify “READ
PERMISSION DB”.

Data Links Token in Upper Case (dl_upper)

Configuration Type Database

Parameter Type Configurable

Default [Range] NO [YES; NO]

The parameter indicates whether the file access control tokens use upper case
letters. A value of “YES” specifies that all letters in an access control token are
upper case. A value of “NO” specifies that the token can contain both upper
case and lower case letters.

For information about file access control tokens, refer to the DB2 Data Links
Manager Quick Beginnings book.

This parameter applies to the DATALINK columns that specify “READ
PERMISSION DB”.

Enable Data Links Support (datalinks)

Configuration Type Database manager

Parameter Type Configurable

Default [Range] NO [YES; NO]

This parameter specifies whether Data Links support is enabled. A value of
“YES” specifies that Data Links support is enabled for Data Links Manager
linking files stored in native filesystems (for example, JFS on AIX). A value of
“NO” specifies that Data Links support is not enabled.

Status
The following parameters provide information about the state of the database:
v “Backup Pending Indicator (backup_pending)” on page 438

Chapter 13. Configuring DB2 437

v “Database is Consistent (database_consistent)”
v “Roll Forward Pending Indicator (rollfwd_pending)”
v “Log Retain Status Indicator (log_retain_status)” on page 439
v “User Exit Status Indicator (user_exit_status)” on page 439
v “Restore Pending (restore_pending)” on page 439
v “Multipage File Allocation Enabled (multipage_alloc)” on page 439

Backup Pending Indicator (backup_pending)

Configuration Type Database

Parameter Type Informational

If set on, this parameter indicates that you must do a full backup of the
database before accessing it. This parameter is only on if the database
configuration is changed so that the database moves from being
nonrecoverable to recoverable (that is, initially both the logretain and userexit
parameters were set to NO, then either one or both of these parameters is set
to YES, and the update to the database configuration is accepted).

Database is Consistent (database_consistent)

Configuration Type Database

Parameter Type Informational

This parameter indicates whether the database is in a consistent state.

YES indicates that all transactions have been committed or rolled back so that
the data is consistent. If the system “crashes” while the database is consistent,
you do not need to take any special action to make the database usable.

NO indicates that a transaction is pending or some other task is pending on
the database and the data is not consistent at this point. If the system
“crashes” while the database is not consistent, you will need to restart the
database using the RESTART DATABASE command to make the database
usable. For more information about the RESTART DATABASE command, see
the Command Reference.

Roll Forward Pending Indicator (rollfwd_pending)

Configuration Type Database

Parameter Type Informational

This parameter can indicate one of the following states:
v DATABASE, meaning that a roll-forward recovery procedure is required for

this database

438 Administration Guide: Performance

v TABLESPACE, meaning that one or more table spaces need to be rolled
forward

v NO, meaning that the database is usable and no roll-forward recovery is
required.

The recovery (using ROLLFORWARD DATABASE) must complete before you
can access the database or table space. For more information about
ROLLFORWARD DATABASE, see the Command Reference.

Log Retain Status Indicator (log_retain_status)

Configuration Type Database

Parameter Type Informational

Related Parameters “Log Retain Enable (logretain)” on page 419

If set, this parameter indicates that log files are being retained for use in
roll-forward recovery.

This parameter is set when the logretain parameter setting is equal to
Recovery.

User Exit Status Indicator (user_exit_status)

Configuration Type Database

Parameter Type Informational

Related Parameters “User Exit Enable (userexit)” on page 420

If set to Yes, this indicates that the database manager is enabled for
roll-forward recovery and that the user exit program will be used to archive
and retrieve log files when called by the database manager.

Restore Pending (restore_pending)

Configuration Type Database

Parameter Type Informational

This parameter states whether a RESTORE PENDING status exists in the
database.

Multipage File Allocation Enabled (multipage_alloc)

Configuration Type Database

Parameter Type Informational

Chapter 13. Configuring DB2 439

|
|

|
|

|
|
|

Multipage file allocation is used to improve insert performance. It applies to
SMS table spaces only. If enabled, all SMS table spaces are affected: there is no
selection possible for individual SMS table spaces.

The default for the parameter is No: multipage file allocation is not enabled.

Following database creation, the parameter may be set to Yes which indicates
that multipage file allocation is enabled. This is done using the db2empfa tool.
Once set to Yes, the parameter cannot be changed back to No.

See the Command Reference for more information on this tool.

Compiler Settings
The following parameters provide information to influence the compiler:
v “Continue upon Arithmetic Exceptions (dft_sqlmathwarn)”
v “Default Degree (dft_degree)” on page 442
v “Default Query Optimization Class (dft_queryopt)” on page 442
v “Default Refresh Age (dft_refresh_age)” on page 443
v “Number of Frequent Values Retained (num_freqvalues)” on page 443
v “Number of Quantiles for Columns (num_quantiles)” on page 444

Continue upon Arithmetic Exceptions (dft_sqlmathwarn)

Configuration Type Database

Parameter Type Configurable

Default [Range] No [No, Yes]

This parameter sets the default value that determines the handling of
arithmetic errors and retrieval conversion errors as errors or warnings during
SQL statement compilation. For static SQL statements, the value of this
parameter is associated with the package at bind time. For dynamic SQL DML
statements, the value of this parameter is used when the statement is
prepared.

Attention: If you change the dft_sqlmathwarn value for a database, the
behavior of check constraints, triggers, and views that include arithmetic
expressions may change. This may in turn have an impact on the data
integrity of the database. You should only change the setting of
dft_sqlmathwarn for a database after carefully evaluating how the new
arithmetic exception handling behavior may impact check constraints, triggers,
and views. Once changed, subsequent changes require the same careful
evaluation.

440 Administration Guide: Performance

|

|
|
|

|

As an example, consider the following check constraint, which includes a
division arithmetic operation:
A/B > 0

When dft_sqlmathwarn is “No” and an INSERT with B=0 is attempted, the
division by zero is processed as an arithmetic error. The insert operation fails
because DB2 cannot check the constraint. If dft_sqlmathwarn is changed to
“Yes”, the division by zero is processed as an arithmetic warning with a
NULL result. The NULL result causes the “>” predicate to evaluate to
UNKNOWN and the insert operation succeeds. If dft_sqlmathwarn is changed
back to “No”, an attempt to insert the same row will fail, because the division
by zero error prevents DB2 from evaluating the constraint. The row inserted
with B=0 when dft_sqlmathwarn was “Yes” remains in the table and can be
selected. Updates to the row that cause the constraint to be evaluated will fail,
while updates to the row that do not require constraint re-evaluation will
succeed.

Before changing dft_sqlmathwarn from “No” to “Yes”, you should consider
rewriting the constraint to explicitly handle nulls from arithmetic expressions.
For example:
(A/B > 0) AND (CASE

WHEN A IS NULL THEN 1
WHEN B IS NULL THEN 1
WHEN A/B IS NULL THEN 0
ELSE 1
END

= 1)

can be used if both A and B are nullable. And, if A or B is not-nullable, the
corresponding IS NULL WHEN-clause can be removed.

Before changing dft_sqlmathwarn from “Yes” to “No”, you should first check
for data that may become inconsistent, for example by using predicates such
as the following:

WHERE A IS NOT NULL AND B IS NOT NULL AND A/B IS NULL

When inconsistent rows are isolated, you should take appropriate action to
correct the inconsistency before changing dft_sqlmathwarn. You can also
manually re-check constraints with arithmetic expressions after the change. To
do this, first place the affected tables in a check pending state (with the OFF
clause of the SET CONSTRAINTS statement), then request that the tables be
checked (with the IMMEDIATE CHECKED clause of the SET CONSTRAINTS
statement). Inconsistent data will be indicated by an arithmetic error, which
prevents the constraint from being evaluated.

Chapter 13. Configuring DB2 441

Recommendation: Use the default setting of no, unless you specifically
require queries to be processed that include arithmetic exceptions. Then
specify the value of yes. This situation can occur if you are processing SQL
statements that, on other database managers, provide results regardless of the
arithmetic exceptions that occur.

Default Degree (dft_degree)

Configuration Type Database

Parameter Type Configurable

Default [Range] 1 [-1, 1 – 32 767]

Related Parameters “Maximum Query Degree of Parallelism
(max_querydegree)” on page 464

This parameter specifies the default value for the CURRENT DEGREE special
register and the DEGREE bind option.

The default value is 1.

A value of 1 means no intra-partition parallelism. A value of -1 means the
optimizer determines the degree of intra-partition parallelism based on the
number of processors and the type of query.

The degree of intra-partition parallelism for an SQL statement is specified at
statement compilation time using the CURRENT DEGREE special register or
the DEGREE bind option. The maximum runtime degree of intra-partition
parallelism for an active application is specified using the SET RUNTIME
DEGREE command. The Maximum Query Degree of Parallelism
(max_querydegree) configuration parameter specifies the maximum query
degree of intra-partition parallelism for all SQL queries.

The actual runtime degree used is the lowest of:
v max_querydegree configuration parameter
v application runtime degree
v SQL statement compilation degree

Default Query Optimization Class (dft_queryopt)

Configuration Type Database

Parameter Type Configurable

Default [Range] 5 [0 — 9]

Unit of Measurement Query Optimization Class (see below)

442 Administration Guide: Performance

|
|
|
|
|
|
|

The query optimization class is used to direct the optimizer to use different
degrees of optimization when compiling SQL queries. This parameter
provides additional flexibility by setting the default query optimization class
used when neither the SET CURRENT QUERY OPTIMIZATION statement nor
the QUERYOPT bind command are used.

The query optimization classes currently defined are:
0 - minimal query optimization.
1 - roughly comparable to DB2 Version 1.
2 - slight optimization.
3 - moderate query optimization.
5 - significant query optimization with heuristics to limit the effort
expended on selecting an access plan. This is the default.
7 - significant query optimization.
9 - maximal query optimization

Recommendation: For more information and guidance for selecting a suitable
query optimization class, see “Adjusting the Optimization Class” on page 67.

For more information on how a program can retrieve and modify database
configuration parameters, see the Administrative API Reference.

Default Refresh Age (dft_refresh_age)

Configuration Type Database

Parameter Type Configurable

Default [Range] 0 [0, 99999999999999 (ANY)]

This parameter has the default value used for the REFRESH AGE if the
CURRENT REFRESH AGE special register is not specified. This parameter
specifies a time stamp duration value with a data type of DECIMAL(20,6).
This time duration represents the maximum duration since a REFRESH
TABLE statement has been processed on a specific REFRESH DEFERRED
summary table during which that summary table can be used to optimize the
processing of a query. If the CURRENT REFRESH AGE has a value of
99999999999999 (ANY), and the QUERY OPTIMIZATION class is five or more,
REFRESH DEFERRED summary tables are considered to optimize the
processing of a dynamic SQL query.

Number of Frequent Values Retained (num_freqvalues)

Configuration Type Database

Parameter Type Configurable

Default [Range] 10 [0 — 32 767]

Unit of Measure Counter

Chapter 13. Configuring DB2 443

|
|
|
|
|
|
|
|
|
|

Related Parameters
v “Number of Quantiles for Columns

(num_quantiles)”
v “Statistics Heap Size (stat_heap_sz)” on

page 364

This parameter allows you to specify the number of “most frequent values”
that will be collected when the WITH DISTRIBUTION option is specified on
the RUNSTATS command. Increasing the value of this parameter increases the
amount of statistics heap (stat_heap_sz) used when collecting statistics.

The “most frequent value” statistics help the optimizer understand the
distribution of data values within a column. A higher value results in more
information being available to the SQL optimizer but requires additional
catalog space. When 0 is specified, no frequent-value statistics are retained,
even if you request that distribution statistics be collected.

Updating this parameter can help the optimizer obtain better selectivity
estimates for some predicates (=, <, >, IS NULL, IS NOT NULL) over data
that is non-uniformly distributed. More accurate selectivity calculations may
result in the choice of more efficient access plans.

After changing the value of this parameter, you need to:
v Run the RUNSTATS command after all users have disconnected from the

database and you have reconnected to the database
v Rebind any packages containing static SQL.

For more information, see “Collecting and Using Distribution Statistics” on
page 122.

Recommendation: In order to update this parameter you should determine
the degree of non-uniformity in the most important columns (in the most
important tables) that typically have selection predicates. This can be done
using an SQL SELECT statement that provides an ordered ranking of the
number of occurrences of each value in a column. You should not consider
uniformly distributed, unique, long, or LOB columns. A reasonable practical
value for this parameter lies in the range of 10 to 100.

Note that the process of collecting frequent value statistics requires significant
CPU and memory (stat_heap_sz) resources.

Number of Quantiles for Columns (num_quantiles)

Configuration Type Database

Parameter Type Configurable

Default [Range] 20 [0 – 32 767]

444 Administration Guide: Performance

Unit of Measure Counter

Related Parameters
v “Number of Frequent Values Retained

(num_freqvalues)” on page 443
v “Statistics Heap Size (stat_heap_sz)” on

page 364

This parameter controls the number of quantiles that will be collected when
the WITH DISTRIBUTION option is specified on the RUNSTATS command.
Increasing the value of this parameter increases the amount of statistics heap
(stat_heap_sz) used when collecting statistics.

The “quantile” statistics help the optimizer understand the distribution of
data values within a column. A higher value results in more information
being available to the SQL optimizer but requires additional catalog space.
When 0 or 1 is specified, no quantile statistics are retained, even if you
request that distribution statistics be collected.

Updating this parameter can help obtain better selectivity estimates for range
predicates over data that is non-uniformly distributed. Among other optimizer
decisions, this information has a strong influence on whether an index scan or
a table scan will be chosen. (It is more efficient to use a table scan to access a
range of values that occur frequently and it is more efficient to use an index
scan for a range of values that occur infrequently.)

After changing the value of this parameter, you need to:
v Run the RUNSTATS command after all users have disconnected from the

database and you have reconnected to the database
v Rebind any packages containing static SQL.

For more information, see “Collecting and Using Distribution Statistics” on
page 122.

Recommendation: This default value for this parameter guarantees a
maximum estimation error of approximately 2.5% for any single-sided range
predicate (>, >=, <, or <=), and a maximum error of 5% for any BETWEEN
predicate. A simple way to approximate the number of quantiles is:
v Determine the maximum error that is tolerable in estimating the number of

rows of any range query, as a percentage, P
v The number of quantiles should be approximately 100/P if most of your

predicates are BETWEEN predicates, and 50/P if most of your predicates
are other types of range predicates (<, <=, >, or >=).

Chapter 13. Configuring DB2 445

|
|
|
|
|
|
|
|
|

For example, 25 quantiles should result in a maximum estimate error of 4%
for BETWEEN predicates and of 2% for ″>″ predicates. A reasonable practical
value for this parameter lies in the range of 10 to 50.

Communications

The following groups of parameters provide information about using DB2 in a
client/server environment:
v “Communication Protocol Setup”
v “Distributed Services” on page 450
v “DB2 Discovery” on page 455

Communication Protocol Setup
You can use the following parameters to configure your database clients and
database servers:
v “NetBIOS Workstation Name (nname)”
v “TCP/IP Service Name (svcename)” on page 447
v “APPC Transaction Program Name (tpname)” on page 448
v “IPX/SPX File Server Name (fileserver)” on page 448
v “IPX/SPX DB2 Server Object Name (objectname)” on page 449
v “IPX/SPX Socket Number (ipx_socket)” on page 450

NetBIOS Workstation Name (nname)

Configuration Type Database manager

Applies to

v Database server with local and remote
clients

v Client
v Database server with local clients
v Partitioned database server with local and

remote clients

Parameter Type Configurable

Default Null

This parameter allows you to assign a unique name to the database instance
on a workstation in the NetBIOS LAN environment. This nname is the basis
for the actual NetBIOS names that will be registered with NetBIOS for a
workstation.

Since the NetBIOS protocol establishes connections using these NetBIOS
names, the nname parameter must be set for both the client and server.

446 Administration Guide: Performance

Client applications must know the nname of the server that contains the
database to be accessed. The server’s nname must be cataloged in the client’s
node directory as the “server-nname” parameter using the CATALOG
NETBIOS NODE command.

If nname at the server node changes to a new name, all clients accessing
databases on that server must catalog this new name for the server.

TCP/IP Service Name (svcename)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default Null

This parameter contains the name of the TCP/IP port which a database server
will use to await communications from remote client nodes. This name must
be the first of two consecutive ports reserved for use by the database
manager; the second port is used to handle interrupt requests from
down-level clients.

In order to accept connection requests from a database client using TCP/IP,
the database server must be listening on a port designated to that server. The
system administrator for the database server must reserve a port (number n)
and define its associated TCP/IP service name in the services file at the
server. If the database server needs to support requests from down-level
clients, a second port (number n+1, for interrupt requests) needs to be defined
in the services file at the server.

The database server port (number n) and its TCP/IP service name need to be
defined in the services file on the database client. Down-level clients also
require the interrupt port (number n+1) to be defined in the client’s services
file.

The location of the services file depends on your operating environment. For
example:
v In UNIX — /etc/services
v In OS/2 — \tcpip\etc\services
v In OS/2 Warp — \mptn\etc\services.

Chapter 13. Configuring DB2 447

The svcename parameter should be set to the service name associated with the
main connection port so that when the database server is started, it can
determine on which port to listen for incoming connection requests. If you are
supporting or using a down-level client, the service name for the interrupt
port is not saved in the configuration file. The interrupt port number can be
derived based on the main connection port number (interrupt port number =
main connection port + 1).

Refer to the Installation and Configuration Supplement for more information
about setting up TCP/IP for database servers.

APPC Transaction Program Name (tpname)

Configuration Type Database manager

Applies to

v Database server with local and remote
clients

v Database server with local clients
v Partitioned database server with local and

remote clients

Parameter Type Configurable

Default Null

This parameter defines the name of the remote transaction program that the
database client must use when it issues an allocate request to the database
server when using the APPC communication protocol. This parameter must
be set in the configuration file at the database server.

This parameter must be the same as the transaction program name that is
configured in the SNA transaction program definition. Refer to the Installation
and Configuration Supplement for more information about setting up APPC for
your DB2 product.

Recommendation: The only accepted characters for use in this name are:
v Alphabetics (A through Z; or a through z)
v Numerics (0 through 9)
v Dollar sign ($), number sign (#), at sign (@), and period (.)

IPX/SPX File Server Name (fileserver)

Configuration Type Database manager

Applies to

v Database server with local and remote
clients

448 Administration Guide: Performance

|
|
|
|

v Database server with local clients
v Partitioned database server with local and

remote clients

Parameter Type Configurable

Default Null

Related Parameters
v “IPX/SPX DB2 Server Object Name

(objectname)”
v “IPX/SPX Socket Number (ipx_socket)” on

page 450

This parameter specifies the name of the NetWare** fileserver where the
internetwork address of the database manager is registered. The internetwork
address of the database manager is stored in the bindery at the NetWare file
server. If the registered fileserver name changes, all clients that access the
server instance must:
v UNCATALOG the server node
v CATALOG the server node, specifying the new fileserver name.

For more information, refer to the Installation and Configuration Supplement.

IPX/SPX DB2 Server Object Name (objectname)

Configuration Type Database manager

Applies to

v Database server with local and remote
clients

v Database server with local clients
v Partitioned database server with local and

remote clients

Parameter Type Configurable

Default Null

Related Parameters
v “IPX/SPX File Server Name (fileserver)” on

page 448
v “IPX/SPX Socket Number (ipx_socket)” on

page 450

This parameter provides the name of the database manager instance in an
IPX/SPX network. Each server instance registered to a NetWare fileserver

Chapter 13. Configuring DB2 449

must have a unique name. If this name changes at the database server, all
clients that access the server must uncatalog the server node and recatalog it
again, specifying the new object name.

Refer to the Installation and Configuration Supplement for more information
about setting up IPX/SPX for your DB2 product.

IPX/SPX Socket Number (ipx_socket)

Configuration Type Database manager

Applies to

v Database server with local and remote
clients

v Database server with local clients
v Partitioned database server with local and

remote clients

Parameter Type Configurable

Default [Range] 879E [879E – 87A2] To ensure that there are
no conflicts, five socket numbers (879E to
87A2) are uniquely registered with Novell for
use by DB2.

Related Parameters
v “IPX/SPX File Server Name (fileserver)” on

page 448
v “IPX/SPX DB2 Server Object Name

(objectname)” on page 449

This parameter specifies a “well-known” socket number and represents the
connection end point in a DB2 server’s internetwork address. The socket
number must be unique for each DB2 server instance on a given machine, and
unique among all Novell** IPX/SPX applications running on this same
machine. This is to guarantee that the DB2 server is able to listen to incoming
IPX/SPX connections using this socket number.

Refer to the Installation and Configuration Supplement for more information
about setting up IPX/SPX for your DB2 product.

Distributed Services
You can use the following parameters to configure your database clients and
database servers to make use of DCE Directory services:
v “Directory Services Type (dir_type)” on page 451
v “Directory Path Name in DCE Namespace (dir_path_name)” on page 452
v “Object Name in DCE Namespace (dir_obj_name)” on page 452

450 Administration Guide: Performance

|
|

|
|

v “Routing Information Object Name (route_obj_name)” on page 453
v “Default Client Communication Protocol (dft_client_comm)” on page 454
v “Default Client Adapter Number (dft_client_adpt)” on page 455

For information about how DB2 uses DCE directories, refer to “Using
Distributed Computing Environment (DCE) Directory Services” in
Administration Guide: Implementation.

Directory Services Type (dir_type)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v UNIX and OS/2 Client
v UNIX and OS/2 Database server with local

clients
v Partitioned database server with local and

remote clients

Parameter Type Configurable

Default [Range] NONE [NONE; DCE]

Related Parameters
v “Object Name in DCE Namespace

(dir_obj_name)” on page 452
v “Directory Path Name in DCE Namespace

(dir_path_name)” on page 452
v “Routing Information Object Name

(route_obj_name)” on page 453
v “Default Client Communication Protocol

(dft_client_comm)” on page 454
v “Default Client Adapter Number

(dft_client_adpt)” on page 455

This parameter indicates whether or not DCE directory services is used.

If this parameter is set to NONE, only local directory files will be searched for
the target of the CONNECT or ATTACH requests. However, you can still use
the dir_path_name and dir_obj_name parameters to record the name of your
database instance and databases in the DCE namespace.

If this parameter is set to DCE, then when an application running within this
database manager instance cannot find the target of its CONNECT or
ATTACH requests, the DCE directory will be searched.

Chapter 13. Configuring DB2 451

|
|
|

|
|
|
|

|
|
|

For the numeric equivalents and API constants for these values, refer to the
Administrative API Reference.

Directory Path Name in DCE Namespace (dir_path_name)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v UNIX and OS/2 Client
v UNIX and OS/2 Database server with local

clients
v Partitioned database server with local and

remote clients

Parameter Type Configurable

Default /.:/subsys/database/

Related Parameters
v “Object Name in DCE Namespace

(dir_obj_name)”
v “Directory Services Type (dir_type)” on

page 451
v “Routing Information Object Name

(route_obj_name)” on page 453

The unique name of the database manager instance in the global namespace is
made up of this value and the value in the dir_obj_name parameter.

All client applications running within this instance also use it as the default
path name for their CONNECT or ATTACH requests, unless it is overridden
by the value of the DB2DIRPATHNAME environment variable.

Recommendation: Use the name provided by your DCE administrator.

Object Name in DCE Namespace (dir_obj_name)

Configuration Type Database manager, Database

Applies to
v Database server with local and remote

clients
v UNIX and OS/2 Client
v UNIX and OS/2 Database server with local

clients
v Partitioned database server with local and

remote clients

452 Administration Guide: Performance

Parameter Type Configurable

Default Null

Related Parameters
v “Directory Services Type (dir_type)” on

page 451
v “Directory Path Name in DCE Namespace

(dir_path_name)” on page 452

The object name representing your database manager instance (or your
database) in the directory. The concatenation of this value and the
dir_path_name value yields a global name that uniquely identifies the database
manager instance or database in the namespace governed by the directory
services specified in the dir_type parameter.

This parameter is only meaningful if the dir_path_name parameter is specified.

The total length of the configuration parameters dir_path_name and
dir_obj_name must be less than 255 characters.

Refer to “Using Distributed Computing Environment (DCE) Directory
Services” in the Administration Guide: Implementation for more information.

Routing Information Object Name (route_obj_name)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Client
v Database server with local clients
v Partitioned database server with local and

remote clients

Parameter Type Configurable

Default Null

Related Parameters
v “Directory Path Name in DCE Namespace

(dir_path_name)” on page 452
v “Directory Services Type (dir_type)” on

page 451

This parameter specifies the name of the default routing information object
entry that will be used by all client applications attempting to access a DRDA
server. It applies to OS/2 and UNIX-based environments only.

Chapter 13. Configuring DB2 453

|
|

If the value of this parameter starts with /.:/ or /.../, then the value will be used
as is. Otherwise, it will be appended to the dir_path_name parameter (or
DB2DIRPATHNAME environment variable) value to form the full name of the
routing information object.

You can use the environment variable DB2ROUTE to override this default.

This parameter is only meaningful if the dir_type parameter is set to DCE.

Refer to “Using Distributed Computing Environment (DCE) Directory
Services” in the Administration Guide: Implementation for more information.

Default Client Communication Protocol (dft_client_comm)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Client
v Database server with local clients
v Partitioned database server with local and

remote clients

Parameter Type Configurable

Default [Range] Null [Null; TCPIP; APPC; IPXSPX (OS/2
only); NETBIOS (OS/2 only)]

Related Parameters “Directory Services Type (dir_type)” on
page 451

This parameter indicates the communication protocols that the client
applications on this instance can use for remote connections. Its content is a
character string, made up of one or more tokens. If you are specifying more
than one token, separate them with a comma. The order of the tokens is
significant in terms of preference.

This parameter can only be used with DCE, and applies to OS/2 and
UNIX-based environments only.

You can temporarily override the value of this parameter by setting the
DB2CLIENTCOMM environment variable.

If the value of this parameter is NULL and the environment variable has not
been set, the first protocol specified in the server’s global directory object is
used.

This parameter is ignored if dir_type is set to NONE.

454 Administration Guide: Performance

|
|

Recommendation: The protocol that is used most often should be specified
first.

Default Client Adapter Number (dft_client_adpt)

Configuration Type Database manager

Applies To
v Database server with local and remote

clients
v Client
v Database server with local clients

Parameter Type Configurable

Default [Range] 0 [0–15]

Related Parameters
v “Default Client Communication Protocol

(dft_client_comm)” on page 454.
v “Directory Services Type (dir_type)” on

page 451. (When dir_type is set to DCE.)

This parameter defines the default client adapter number for the NETBIOS
protocol whose server nname is extracted from DCE Cell Directory Services
(CDS). This parameter is applicable to the OS/2 environment only.

This parameter can only be used with DCE.

You can temporarily override the value of this parameter by setting the
DB2CLIENTADPT environment variable. If this environment variable contains
a non-numeric or out-of-range number, adapter number 0 (zero) is used.

DB2 Discovery
You can use the following parameters to establish DB2 Discovery:
v “Discover Database (discover_db)”
v “Discovery Mode (discover)” on page 456
v “Search Discovery Communications Protocols (discover_comm)” on

page 457
v “Discover Server Instance (discover_inst)” on page 458

Discover Database (discover_db)

Configuration Type Database

Parameter Type Configurable

Default [Range] Enable [Disable, Enable]

Chapter 13. Configuring DB2 455

This parameter is used to prevent information about a database from being
returned to a client when a discovery request is received at the server.

The default for this parameter is that discovery is enabled for this database.

By changing this parameter value to “Disable”, it is possible to hide databases
with sensitive data from the discovery process. This can be done in addition
to other database security controls on the database.

For the numeric equivalents and API constants for these values, refer to the
Administrative API Reference.

Discovery Mode (discover)

Configuration Type Database manager

Applies To

v Database server with local and remote
clients

v Client
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] SEARCH [DISABLE, KNOWN, Search]

Related Parameters “Search Discovery Communications Protocols
(discover_comm)” on page 457

From an administration server perspective, this configuration parameter
determines the type of discovery mode that is started when DB2ADMIN
starts.
v If discover = SEARCH when DB2ADMIN starts, then search discovery

connection managers for each of the protocols specified in discover_comm are
started. In addition, connection managers for each of the protocols specified
in the DB2COMM registry variable are started. This allows the
administration server to handle search discovery requests from clients.
SEARCH provides a superset of the functionality provided by KNOWN
discovery. When discover = SEARCH, the administration server will handle
both search and known discovery requests from clients.

v If discover = KNOWN when DB2ADMIN starts, then only the connection
managers specified in the DB2COMM registry variable are started. These
connection managers handle KNOWN discovery requests.

456 Administration Guide: Performance

||

v If discover = DISABLE when DB2ADMIN starts, then the administration
server will not handle any type of discovery request.

From a server instance perspective, if discover = DISABLE then the
information for this server instance is essentially hidden from clients. The
administration server will not package information about this instance when a
known discovery request is issued against this system by any client.

From a client perspective, one of the following will occur:
v If discover = SEARCH, the client can issue search discovery requests to find

DB2 server systems on the network. Search discovery provides a superset of
the functionality provided by KNOWN discovery. If discover = SEARCH,
both search and known discovery requests can be issued by the client.

v If discover = KNOWN, only known discovery requests can be issued from
the client. By specifying some connection information for the administration
server on a particular system, all the instance and database information on
the DB2 system is returned to the client.

v If discover = DISABLE, discovery is disabled at the client.

The default discovery mode is SEARCH.

For the numeric equivalents and API constants for these values, refer to the
Administrative API Reference.

For more information on DB2 discovery, refer to the Quick Beginnings manual
appropriate to your platform.

Search Discovery Communications Protocols (discover_comm)

Configuration Type Database manager

Applies To

v Database server with local and remote
clients

v Client
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] None [Any combination of NETBIOS and
TCPIP]

Related Parameters “Discovery Mode (discover)” on page 456

Chapter 13. Configuring DB2 457

|
|

From an administration server perspective this parameter defines the search
discovery managers that are started when DB2ADMIN starts. These managers
service search discovery requests from clients.

Note: The protocols defined in discover_comm must also be specified in the
DB2COMM registry variable.

From a client perspective, this parameter defines the protocols that clients use
to issue search discovery requests.

More than one protocol may be specified, separated by commas, or the
parameter may be left blank.

The default for this parameter is ″None″ meaning that there are no search
discovery communications protocols.

Discover Server Instance (discover_inst)

Configuration Type Database manager

Applies To
v Database server with local and remote

clients
v Client
v Database server with local clients
v Partitioned database server with local and

remote clients

Parameter Type Configurable

Default [Range] ENABLE [ENABLE, DISABLE]

This parameter specifies whether this instance can be detected by DB2
discovery. The default, enable, specifies that the instance can be detected,
while disable prevents the instance from being discovered.

For the numeric equivalents and API constants for these values, refer to the
Administrative API Reference.

For more information on DB2 discovery, refer to the Quick Beginnings manual
appropriate to your platform.

Partition Database

The following groups of parameters provide information about parallel
operations and partitioned database environments:
v “Communications” on page 459
v “Parallel Processing” on page 464.

458 Administration Guide: Performance

|
|
|

|
|

Communications
The following parameters provide information about communications in the
partitioned database environment:
v “Connection Elapse Time (conn_elapse)”
v “Number of FCM Message Anchors (fcm_num_anchors)”
v “Number of FCM Buffers (fcm_num_buffers)” on page 460
v “Number of FCM Connection Entries (fcm_num_connect)” on page 461
v “Number of FCM Request Blocks (fcm_num_rqb)” on page 462
v “Node Connection Retries (max_connretries)” on page 463
v “Maximum Time Difference Among Nodes (max_time_diff)” on page 463
v “Start and Stop Timeout (start_stop_time)” on page 464.

Connection Elapse Time (conn_elapse)

Configuration Type Database manager

Applies To Partitioned database server with local and
remote clients

Parameter Type Configurable

Default [Range] 10 [0–100]

Unit of Measure Seconds

Related Parameters “Node Connection Retries (max_connretries)”
on page 463

This parameter specifies the number of seconds within which a TCP/IP
connection is to be established between two database partition servers. If the
attempt completes within the time specified by this parameter,
communications are established. If it fails, another attempt is made to
establish communications. If the connection is attempted the number of times
specified by the max_connretries parameter and always times out, an error is
issued.

Number of FCM Message Anchors (fcm_num_anchors)

Configuration Type Database manager

Applies To

v Database server with local and remote
clients

v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Chapter 13. Configuring DB2 459

|
|

|

|

|

|

|

|

|

|

Parameter Type Configurable

Default [Range] -1 [-1, 128–fcm_num_rqb]

On non-partitioned database systems, the
intra_parallel parameter must be active before
this parameter can be used.

Related Parameters

v “Number of FCM Request Blocks
(fcm_num_rqb)” on page 462

v “Enable Intra-Partition Parallelism
(intra_parallel)” on page 466

This parameter specifies the number of FCM message anchors. Agents use the
message anchors to send messages among themselves. The default (-1)
indicates 75 percent of the value specified for fcm_num_rqb.

Number of FCM Buffers (fcm_num_buffers)

Configuration Type Database manager

Applies To

v Database server with local and remote
clients

v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] 512, 1 024, or 4 096 [128 — fcm_num_rqb]
v Database server with local and remote

clients: the default is 1 024
v Database server with local clients: the

default is 512
v Partitioned database server with local and

remote clients: the default is 4 096

On single-partition database systems, the
intra_parallel parameter must be active before
this parameter can be used.

This parameter specifies the number of 4 KB buffers that are used for internal
communications (messages) both among and within database servers.

460 Administration Guide: Performance

|
|
|

|
|

Refer to “Enable FCM Communications” in the Administration Guide:
Implementation for more information on FCM.

If you have multiple logical nodes on a processor, you may find it necessary
to increase the value of this parameter. You may also find it necessary to
increase the value of this parameter if you run out of message buffers because
of the number of users on the system, the number of database partition
servers on the system, or the complexity of the applications.

If you are using multiple logical nodes, on non-AIX systems, one pool of
fcm_num_buffers buffers is shared by all the multiple logical nodes on the same
machine, while on AIX:
v If there is enough room in the general memory that is used by the database

manager, the FCM buffer heap will be allocated from there. In this
situation, each database partition server will have fcm_num_buffers buffers
of its own; the database partition servers will not share a pool of FCM
buffers (this was new in DB2 Version 5).

v If there is not enough room in the general memory that is used by the
database manager, the FCM buffer heap will be allocated from a separate
memory area (AIX shared memory set), that is shared by all the multiple
logical nodes on the same machine. One pool of fcm_num_buffers will be
shared by all the multiple logical nodes on the same machine. This is the
same as non-AIX systems and is also the same as DB2 Parallel Edition
Version 1.2 on AIX.

Recommendation for existing Parallel Edition customers on AIX: If you are
using multiple logical nodes, the value of fcm_num_buffers you used in Parallel
Edition Version 1.2 may now result in significantly more storage being used
per machine. For example, a four-node multiple logical node configuration
may end up with four times as many FCM buffers as before.

Re-examine the value you are using; consider how many FCM buffers in total
will be allocated on the machine (or machines) where the multiple logical
nodes reside. You may want to change fcm_num_buffers to account for the
behavior described above.

Number of FCM Connection Entries (fcm_num_connect)

Configuration Type Database manager

Applies To

v Database server with local and remote
clients

v Database server with local clients
v Partitioned database server with local and

remote clients

Chapter 13. Configuring DB2 461

v Satellite database server with local clients

Parameter Type Configurable

Default [Range] -1 [-1, 128 — fcm_num_rqb]

On non-partitioned database systems, the
intra_parallel parameter must be active before
this parameter can be used.

Related Parameters “Number of FCM Request Blocks
(fcm_num_rqb)”

This parameter specifies the number of FCM connection entries. Agents use
connection entries to pass data among themselves. The default (-1) indicates
75 percent of the value specified for fcm_num_rqb.

Number of FCM Request Blocks (fcm_num_rqb)

Configuration Type Database manager

Applies To

v Database server with local and remote
clients

v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range]

UNIX 32-bit platforms
256, 512, 2 048 [128 — 120 000]

UNIX 64-bit platforms
256, 512, 2 048 [128 — 524 288]

OS/2 and Windows NT
10 000 [250 — 2 097 152]

v Database server with local and remote
clients: the default is 512

v Database server with local clients: the
default is 256

v Partitioned database server with local and
remote clients: the default is 2 048

462 Administration Guide: Performance

On non-partitioned database systems, the
intra_parallel parameter must be active before
this parameter can be used.

This parameter specifies the number of FCM request blocks. Request blocks are
the media through which information is passed between the FCM daemon
and an agent, or between agents.

The requirement for request blocks will vary according to the number of users
on the system, the number of database partition servers in the system, and the
complexity of queries that are run. Initially, start with the default number, and
use the results from the Database System Monitor when fine tuning this
parameter.

Node Connection Retries (max_connretries)

Configuration Type Database manager

Applies To Partitioned database server with local and
remote clients

Parameter Type Configurable

Default [Range] 5 [0–100]

Related Parameters “Connection Elapse Time (conn_elapse)” on
page 459

If the attempt to establish communication between two database partition
servers fails (for example, the value specified by the conn_elapse parameter is
reached), max_connretries specifies the number of connection retries that can be
made to a database partition server. If the value specified for this parameter is
exceeded, an error is returned.

Maximum Time Difference Among Nodes (max_time_diff)

Configuration Type Database manager

Applies To Partitioned database server with local and
remote clients

Parameter Type Configurable

Default [Range] 60 [1–1 440]

Unit of Measure Minutes

Each database partition server has its own system clock. This parameter
specifies the maximum time difference, in minutes, that is permitted among
the database partition servers listed in the node configuration file.

Chapter 13. Configuring DB2 463

If two or more database partition servers are associated with a transaction and
their clocks are not synchronized to within the time specified by this
parameter, the transaction is rejected and a warning or an error message is
logged in the db2diag.log file. (The transaction is rejected only if data
modification is associated with it.)

DB2 Universal Database Enterprise - Extended Edition uses Coordinated
Universal Time, (UTC) so different time zones are not a consideration when
you set this parameter. The Coordinated Universal Time is the same as
Greenwich Mean Time.

Start and Stop Timeout (start_stop_time)

Configuration Type Database manager

Applies To Partitioned database server with local and
remote clients

Parameter Type Configurable

Default [Range] 10 [1 — 1 440]

Unit of Measure Minutes

This parameter is applicable in a partitioned database environment only. It
specifies the time, in minutes, within which all database partition servers
must respond to a DB2START or a DB2STOP command. It is also used as the
timeout value during an ADDNODE operation.

Database partition servers that do not respond to a DB2START command
within the specified time send a message to the db2start error log in the log
subdirectory of the sqllib subdirectory of the home directory for the instance.
You should issue a DB2STOP on these nodes before restarting them.

Database partition servers that do not respond to a DB2STOP command
within the specified time send a message to the db2stop error log in the log
subdirectory of the sqllib subdirectory of the home directory for the instance.
You can either issue DB2STOP for each database partition server that does not
respond, or for all of them. (Those that are already stopped will return stating
that they are stopped.)

Parallel Processing
The following parameters provide information about parallel processing:
v “Maximum Query Degree of Parallelism (max_querydegree)”
v “Enable Intra-Partition Parallelism (intra_parallel)” on page 466.

Maximum Query Degree of Parallelism (max_querydegree)

Configuration Type Database manager

464 Administration Guide: Performance

Applies To

v Database server with local and remote
clients

v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] -1 (ANY) [ANY, 1 — 32 767] (ANY means
system determined)

Related Parameters
v “Default Degree (dft_degree)” on page 442
v “Enable Intra-Partition Parallelism

(intra_parallel)” on page 466

This parameter specifies the maximum degree of intra-partition parallelism
that is used for any SQL statement executing on this instance of the database
manager. An SQL statement will not use more than this number of parallel
operations within a partition when the statement is executed. The intra_parallel
configuration parameter must be set to “YES” to enable the database partition
to use intra-partition parallelism.

The default value for this configuration parameter is -1. This value means that
the system uses the degree of parallelism determined by the optimizer;
otherwise, the user-specified value is used.

Note: The degree of parallelism for an SQL statement can be specified at
statement compilation time using the CURRENT DEGREE special
register or the DEGREE bind option.

The maximum query degree of parallelism for an active application can be
modified using the SET RUNTIME DEGREE command. The actual runtime
degree used is the lower of:
v max_querydegree configuration parameter
v Application runtime degree
v SQL statement compilation degree

An exception regarding the determination of the actual query degree of
parallelism occurs when creating an index. In this case, if intra_parallel is
“YES” and the table is large enough to benefit from the use of multiple
processors, then creating an index uses the number of online processors (to a
maximum of 6) plus one. There is no effect from the other parameter, bind
option, or special register mentioned above.

Chapter 13. Configuring DB2 465

Enable Intra-Partition Parallelism (intra_parallel)

Configuration Type Database manager

Applies To

v Database server with local and remote
clients

v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] NO (0) [SYSTEM (-1), NO (0), YES (1)]

A value of -1 causes the parameter value to be
set to “YES” or “NO” based on the hardware
on which the database manager is running.

Related Parameters “Maximum Query Degree of Parallelism
(max_querydegree)” on page 464

This parameter specifies whether the database manager can use intra-partition
parallelism.

Some of the operations that can take advantage of parallel performance
improvements when this parameter is ″YES″ include database queries and
index creation.

Note: If you change this parameter value, packages may be rebound to the
database. If this occurs, a performance degradation may occur during
the rebinding.

Instance Management

A number of parameters can help you manage your database manager
instances. These are grouped into the following categories:
v “Diagnostic”
v “Database System Monitor Parameters” on page 469
v “System Management” on page 471
v “Instance Administration” on page 478

Diagnostic
The following parameters allow you to control diagnostic information
available from the database manager:
v “Diagnostic Error Capture Level (diaglevel)” on page 467

466 Administration Guide: Performance

|
|

|

|

|

|

v “Diagnostic Data Directory Path (diagpath)”
v “Notify Level (notifylevel)” on page 468.

Diagnostic Error Capture Level (diaglevel)

Configuration Type Database manager

Applies to

v Database server with local and remote
clients

v Client
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] 3 [0 — 4]

Related Parameters “Diagnostic Data Directory Path (diagpath)”

The type of diagnostic errors recorded in the db2diag.log file is determined by
this parameter. Valid values are:

0 – No diagnostic data captured
1 – Severe errors only
2 – All errors
3 – All errors and warnings
4 – All errors, warnings and informational messages

It is the diagpath configuration parameter that is used to specify the directory
that will contain the error file, event log file (on Windows NT only), alert log
file, and any dump files that may be generated based on the value of the
diaglevel parameter.

Recommendation: You may wish to increase the value of this parameter to
gather additional problem determination data to help resolve a problem.

Diagnostic Data Directory Path (diagpath)

Configuration Type Database manager

Applies to

v Database server with local and remote
clients

v Client

Chapter 13. Configuring DB2 467

v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] Null [any valid path name]

Related Parameters “Diagnostic Error Capture Level (diaglevel)”
on page 467

This parameter allows you to specify the fully qualified path for DB2
diagnostic information. This directory could possibly contain dump files, trap
files, an error log and an alert log file, depending on your platform.

If this parameter is null, the diagnostic information will be written to files in
one of the following directories or folders:
v For OS/2 and supported Windows environments:

– If the DB2INSTPROF environment variable or keyword is not set,
information will be written to x:\SQLLIB\DB2INSTANCE, where x:\SQLLIB
is the drive reference and directory specified in the DB2PATH registry
variable or environment variable, and DB2INSTANCE is the name of the
instance owner.

Note: The directory does not have to be named SQLLIB.
– If the DB2INSTPROF environment variable or keyword is set,

information will be written to x:\DB2INSTPROF\DB2INSTANCE, where
DB2INSTPROF is the name of the instance profile directory and
DB2INSTANCE is the name of the instance owner.

v For UNIX-based environments: INSTHOME/sqllib/db2dump, where INSTHOME
is the home directory of the instance owner.

v For Macintosh environments: DB2 folder.

Recommendation: Use the default or have a centralized location for the
diagpath of multiple instances.

In a partitioned database environment, the path you specify must reside on a
shared file system.

Notify Level (notifylevel)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients on Windows NT
v Client on Windows NT

468 Administration Guide: Performance

|
|

v Database server with local clients on
Windows NT

v Partitioned database server with local and
remote clients on Windows NT

v Satellite database server with local clients
on Windows 95, Windows 98, and Windows
NT

Parameter Type Configurable

Default [Range] 2 [0 — 4]

This parameter specifies the type of administration notification error messages
that are written to a file. For a server of the satellite node type, errors are
written to the notification file called instance.nfy . For all other node types,
this parameter is only available on the Windows NT platform, and errors are
written to the Windows NT event log. The errors can be written by DB2, the
Capture and Apply programs, and user applications.

Valid values for this parameter are:
0 — No diagnostic data captured
1 — Severe errors only
2 — All errors
3 — All errors and warnings
4 — All errors, warnings, and informational messages

For a user application to be able to write to the notification file or Windows
NT event log, it must call the db2AdminMsgWrite API. For more information
about this API, refer to the Administrative API Reference.

Recommendation: You may wish to increase the value of this parameter to
gather additional problem determination data to help resolve a problem.

Database System Monitor Parameters
The following parameter allows you to control various aspects of the database
system monitor:
v “Default Database System Monitor Switches (dft_monswitches)”

Default Database System Monitor Switches (dft_monswitches)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients

Chapter 13. Configuring DB2 469

v Partitioned database server with local and
remote clients

v Satellite database server with local clients

Parameter Type Configurable

Default All switches turned off

This parameter is unique in that it allows you to set a number of switches
which are each internally represented by a bit of the parameter. Depending on
the interface you are using to update the database manager configuration, you
may be able to update this parameter directly. You may also update each of
these switches independently by setting the following parameters:

dft_mon_uow Default value of the snapshot monitor’s unit
of work (UOW) switch

dft_mon_stmt Default value of the snapshot monitor’s
statement switch

dft_mon_table Default value of the snapshot monitor’s table
switch

dft_mon_bufpool Default value of the snapshot monitor’s buffer
pool switch

dft_mon_lock Default value of the snapshot monitor’s lock
switch

dft_mon_sort Default value of the snapshot monitor’s sort
switch

Changes to any of these database system monitor switches take effect
immediately; that is, you do not have to stop and restart the database
manager.

Note: An existing monitoring application will not automatically use the new
default value for a switch. To use the new value (or values), the
application must terminate and re-attach to the instance.

For more information about the snapshot monitor and how it uses monitor
switches, see the System Monitor Guide and Reference.

Recommendation: Any switch that is turned ON instructs the database
manager to collect monitor data related to that switch. Collecting additional
monitor data increases database manager overhead which can impact system
performance.

All monitoring applications inherit these default switch settings when the
application issues its first monitoring request (for example, setting a switch,

470 Administration Guide: Performance

activating the event monitor, taking a snapshot). You should turn on a switch
in the configuration file only if you want to collect data starting from the
moment the database manager is started. (Otherwise, each monitoring
application can set its own switches and the data it collects becomes relative
to the time its switches are set.)

System Management
The following parameters relate to system management:
v “Communications Bandwidth (comm_bandwidth)”
v “CPU Speed (cpuspeed)” on page 472
v “Maximum Number of Concurrently Active Databases (numdb)” on

page 473
v “Transaction Processor Monitor Name (tp_mon_name)” on page 474
v “Machine Node Type (nodetype)” on page 476
v “Default Charge-Back Account (dft_account_str)” on page 477
v “Java Development Kit 1.1 Installation Path (jdk11_path)” on page 477
v “Federated Database System Support (federated)” on page 478.

Communications Bandwidth (comm_bandwidth)

Configuration Type Database manager

Applies to Partitioned database server with local and
remote clients

Parameter Type Configurable

Default [Range] -1 [.1 – 100 000]

A value of -1 causes the parameter value to be
reset to the default. The default value is
calculated based on whether a high speed
switch is being used.

Unit of Measure Megabytes per second

The value calculated for the communications bandwidth, in megabytes per
second, is used by the SQL optimizer to estimate the cost of performing
certain operations between the database partition servers of a partitioned
database system. The optimizer does not model the cost of communications
between a client and a server, so this parameter should reflect only the
nominal bandwidth between the database partition servers, if any.

You can explicitly set this value to model a production environment on your
test system or to assess the impact of upgrading hardware.

Chapter 13. Configuring DB2 471

Recommendation: You should only adjust this parameter if you want to
model a different environment.

The communications bandwidth is used by the optimizer in determining
access paths. You should consider rebinding applications (using the REBIND
PACKAGE command) after changing this parameter.

CPU Speed (cpuspeed)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] -1 [1-10 — 1] A value of -1 will cause the
parameter value to be reset based on the
running of the measurement program.

Unit of Measure Seconds

The CPU speed, in milliseconds per instruction, is used by the SQL optimizer
to estimate the cost of performing certain operations. The value of this
parameter is set automatically when you install the database manager based
on the output from a program designed to measure CPU speed. This program
is executed, if benchmark results are not available for any of the following
reasons:
v The platform does not have support for the db2spec.dat file
v The db2spec.dat file is not found
v The data for the IBM RISC System/6000 model 530H is not found in the file
v The data for your machine is not found in the file.

You can explicitly set this value to model a production environment on your
test system or to assess the impact of upgrading hardware. By setting it to -1,
cpuspeed will be re-computed.

Recommendation: You should only adjust this parameter if you want to
model a different environment.

The CPU speed is used by the optimizer in determining access paths. You
should consider rebinding applications (using the REBIND PACKAGE
command) after changing this parameter.

472 Administration Guide: Performance

||

Maximum Number of Concurrently Active Databases (numdb)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range]

UNIX 8 [1 — 256]

OS/2 and Windows NT Database server with
local and remote clients

8 [1 — 256]

OS/2 and Windows NT Database server with
local clients and Satellite database server
with local clients

3 [1 — 256]

Unit of Measure Counter

This parameter specifies the number of local databases that can be
concurrently active (that is, have applications connected to them). In a
partitioned database environment, it limits the number of active database
partitions on a database partition server, whether that server is the
coordinator node for the application or not.

Since each database takes up storage and an active database uses a new
shared memory segment, you can reduce system resource usage by limiting
the number of separate databases on your machine. However, arbitrarily
reducing the number of databases is not the answer. That is, putting all data,
no matter how unrelated, in one database will reduce disk space, but may not
be a good idea. It is generally a good practice to only keep functionally
related information in the same database.

Recommendation: It is generally best to set this value to the actual number of
databases that are already defined to the database manager and to add a
reasonable increment to account for future growth in the number of databases
over the short term (for example, 6 months to 1 year). The actual increment
should not be excessively large, but it should allow you to add new databases
without having to frequently update this parameter.

Chapter 13. Configuring DB2 473

Changing the numdb parameter may impact the total amount of memory
allocated. As a result, frequent updates to this parameter are not
recommended. When updating this parameter, you should consider the other
configuration parameters that can allocate memory for a database or an
application connected to that database, including:
v “Buffer Pool Size (buffpage)” on page 345
v “Maximum Storage for Lock List (locklist)” on page 353
v “Application Heap Size (applheapsz)” on page 363
v “Application Control Heap Size (app_ctl_heap_sz)” on page 358
v “Sort Heap Size (sortheap)” on page 360
v “Statement Heap Size (stmtheap)” on page 362
v “Application Support Layer Heap Size (aslheapsz)” on page 372
v “Database Heap (dbheap)” on page 348
v “Database System Monitor Heap Size (mon_heap_sz)” on page 378
v “Statistics Heap Size (stat_heap_sz)” on page 364

Transaction Processor Monitor Name (tp_mon_name)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Client
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default No default

Valid Values

v CICS
v MQ
v ENCINA
v CB
v SF
v TUXEDO
v TOPEND
v blank or some other value (for UNIX, OS/2,

and Windows NT; no other possible values
for Solaris or SINIX)

This parameter identifies the name of the transaction processing (TP) monitor
product being used.

474 Administration Guide: Performance

v If applications are run in a WebSphere Enterprise Edition CICS
environment, this parameter should be set to “CICS”

v If applications are run in a WebSphere Enterprise Edition Encina
environment, this parameter should be set to “ENCINA”

v If applications are run in a WebSphere Enterprise Edition Component
Broker environment, this parameter should be set to “CB”

v If applications are run in an IBM MQSeries environment, this parameter
should be set to “MQ”

v If applications are run in a BEA Tuxedo environment, this parameter should
be set to “TUXEDO”

v If applications are run in an IBM San Francisco environment, this parameter
should be set to “SF”.

IBM WebSphere EJB and Microsoft Transaction Server users do not need to
configure any value for this parameter.

If none of the above products are being used, this parameter should not be
configured but left blank.

In previous versions of DB2 Universal Database in the OS/2 and Windows
NT environments, this parameter contained the path and name of the DLL
which contained the XA Transaction Manager’s functions ax_reg and ax_unreg.
This format is still supported. If the value of this parameter does not match
any of the above TP Monitor names, it will be assumed that the value is a
library name which contains the ax_reg and ax_unreg functions. This is true for
UNIX, OS/2, and Windows NT environments.

TXSeries CICS and Encina Users: In previous versions of this product on
OS/2 and Windows NT it was required to configure this parameter as
“libEncServer:C” or “libEncServer:E”. While this is still supported, it is no
longer required. Configuring the parameter as “CICS” or “ENCINA” is
sufficient.

MQSeries Users: In previous versions of this product on OS/2 and Windows
NT it was required to configure this parameter as “mqmax”. While this is still
supported, it is no longer required. Configuring the parameter as “MQ” is
sufficient.

Component Broker Users: In previous versions of this product on OS/2 and
Windows NT it was required to configure this parameter as “somtrx1i”. While
this is still supported, it is no longer required. Configuring the parameter as
“CB” is sufficient.

Chapter 13. Configuring DB2 475

San Francisco Users: In previous versions of this product on OS/2 and
Windows NT it was required to configure this parameter as “ibmsfDB2”.
While this is still supported, it is no longer required. Configuring the
parameter as “SF” is sufficient.

The maximum length of the string that can be specified for this parameter is
19 characters.

It is also possible to configure this information in DB2 Universal Database’s
XA OPEN string. If multiple Transaction Processing Monitors are using a
single DB2 instance, then it will be required to use this capability. Refer to the
Administration Guide: Planning for additional information on using the XA
OPEN string.

Machine Node Type (nodetype)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Client
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Informational

This parameter provides information about the DB2 products which you have
installed on your machine and, as a result, information about the type of
database manager configuration. The following are the possible values
returned by this parameter and the products associated with that node type:
v Database server with local and remote clients – a DB2 server product,

supporting local and remote database clients, and capable of accessing other
remote database servers.

v Client – a database client capable of accessing remote database servers.
v Database server with local clients – a DB2 relational database management

system, supporting local database clients and capable of accessing other,
remote database servers.

v Partitioned database server with local and remote clients – a DB2 server
product, supporting local and remote database clients, and capable of
accessing other remote database servers, and capable of partition
parallelism.

v Satellite database server with local clients a DB2 relational database
management system, supporting local database clients and capable of
accessing other, remote database servers.

476 Administration Guide: Performance

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

For the numeric equivalents and API constants for these values, refer to the
Administrative API Reference.

Default Charge-Back Account (dft_account_str)

Configuration Type Database manager

Applies to

v Database server with local and remote
clients

v Client
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] Null [any valid string]

With each application connect request, an accounting identifier consisting of a
DB2 Connect-generated prefix and the user supplied suffix is sent from the
application requester to a DRDA application server. This accounting
information provides a mechanism for system administrators to associate
resource usage with each user access.

Note: This parameter is only applicable to DB2 Connect.

The suffix is supplied by the application program calling the sqlesact() API
or the user setting the environment variable DB2ACCOUNT. If a suffix is not
supplied by either the API or environment variable, DB2 Connect uses the
value of this parameter as the default suffix value. This parameter is
particularly useful for down-level database clients (anything prior to version
2) that do not have the capability to forward an accounting string to DB2
Connect.

Recommendation: Set this accounting string using the following:
v Alphabetics (A through Z)
v Numerics (0 through 9)
v Underscore (_).

Java Development Kit 1.1 Installation Path (jdk11_path)

Configuration Type Database manager

Applies To

v Database server with local and remote
clients

Chapter 13. Configuring DB2 477

v Client
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] Null [Valid path]

Related Parameters

v “Maximum Java Interpreter Heap Size
(java_heap_sz)” on page 382

This parameter specifies the directory under which the Java Development Kit
1.1 is installed. The CLASSPATH and other environment variables used by the
Java interpreter are computed from the value of this parameter.

Because there is no default for this parameter, you should specify a value for
this parameter when you install the Java Development Kit.

Federated Database System Support (federated)

Configuration Type Database manager

Applies To

v Database server with local and remote
clients

v Database server with local clients
v Partitioned database server with local and

remote clients

Parameter Type Configurable

Default [Range] No [Yes; No]

This parameter enables or disables support for applications submitting
distributed requests for data managed by data sources (such as the DB2
Family and Oracle).

Instance Administration
The following parameters relate to security and administration of your
database manager instance:
v “System Administration Authority Group Name (sysadm_group)” on

page 479
v “System Control Authority Group Name (sysctrl_group)” on page 480

478 Administration Guide: Performance

||

v “System Maintenance Authority Group Name (sysmaint_group)” on
page 481

v “Authentication Type (authentication)” on page 482
v “Cataloging Allowed without Authority (catalog_noauth)” on page 483
v “Default Database Path (dftdbpath)” on page 484
v “LOGON Required for DB2START/DB2STOP (ss_logon)” on page 485
v “Trust All Clients (trust_allclnts)” on page 485
v “Trusted Clients Authentication (trust_clntauth)” on page 487

System Administration Authority Group Name (sysadm_group)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Client
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default Null

Related Parameters
v “System Control Authority Group Name

(sysctrl_group)” on page 480
v “System Maintenance Authority Group

Name (sysmaint_group)” on page 481

System administration (SYSADM) authority is the highest level of authority
within the database manager and controls all database objects. This parameter
defines the group name with SYSADM authority for the database manager
instance.

SYSADM authority is determined by the security facilities used in a specific
operating environment.
v In the Windows 95 or Windows 98 operating system the SYSADM group

must be NULL.
This parameter must be “NULL” for Windows 95 or Windows 98 clients
when system security is used because the Windows 95 or Windows 98
operating system does not store group information, thereby providing no
way of determining if a user is a member of a designated SYSADM group.
When a group name is specified, no user can be a member of it.

Chapter 13. Configuring DB2 479

v For the Windows NT and Windows 2000 operating system, this parameter
can be set to any local group that has a name of 8 characters or fewer, and
is defined in the Windows NT and Windows 2000 security database. If
“NULL” is specified for this parameter, all members of the Administrators
group have SYSADM authority.

v For UNIX-based systems, if “NULL” is specified as the value of this
parameter, the SYSADM group defaults to the primary group of the
instance owner.
If the value is not “NULL”, the SYSADM group can be any valid UNIX
group name.

v In OS/2, if the value specified for this parameter is “NULL”, users defined
as administrators in User Profile Management (UPM) have SYSADM
authority.
If a group name is specified for this parameter, only users who belong to
the group have SYSADM authority. The group specified can be any of the
User Profile Management (UPM) groups.

If DCE security is used and sysadm_group is “NULL”, the default DCE group
name DB2ADMIN is used. A valid DCE principal whose authid mapping is
DB2ADMIN must already exist. You can specify a different group name.

To restore the parameter to its default (NULL) value, use UPDATE DBM CFG
USING SYSADM_GROUP NULL. You must specify the keyword “NULL” in
uppercase. You can also use the Configure Instance notebook in the DB2
Control Center.

System Control Authority Group Name (sysctrl_group)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Client
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default Null

Related Parameters
v “System Administration Authority Group

Name (sysadm_group)” on page 479
v “System Maintenance Authority Group

Name (sysmaint_group)” on page 481

480 Administration Guide: Performance

This parameter defines the group name with system control (SYSCTRL)
authority. SYSCTRL has privileges allowing operations affecting system
resources, but does not allow direct access to data.

Attention: This parameter must be NULL for Windows 95 and Windows 98
clients when system security is used (that is, authentication is CLIENT,
SERVER, DCS, or any other valid authentication). This is because the
Windows 95 and Windows 98 operating systems do not store group
information, thereby providing no way of determining if a user is a member
of a designated SYSCTRL group. When a group name is specified, no user can
be a member of it. This is not true when DCE authentication is used. In this
situation, group names can be specified.

To restore the parameter to its default (NULL) value, use UPDATE DBM CFG
USING SYSCTRL_GROUP NULL. You must specify the keyword “NULL” in
uppercase. You can also use the Configure Instance notebook in the DB2
Control Center.

System Maintenance Authority Group Name (sysmaint_group)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Client
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default Null

Related Parameters
v “System Administration Authority Group

Name (sysadm_group)” on page 479
v “System Control Authority Group Name

(sysctrl_group)” on page 480

This parameter defines the group name with system maintenance
(SYSMAINT) authority. SYSMAINT has privileges to perform maintenance
operations on all databases associated with an instance without having direct
access to data.

Attention: This parameter must be NULL for Windows 95 and Windows 98
clients when system security is used (that is, authentication is CLIENT,
SERVER, DCS, or any other valid authentication). This is because the

Chapter 13. Configuring DB2 481

Windows 95 and Windows 98 operating systems do not store group
information, thereby providing no way of determining if a user is a member
of a designated SYSMAINT group. When a group name is specified, no user
can be a member of it. This is not true when DCE authentication is used. In
this situation, group names can be specified.

To restore the parameter to its default (NULL) value, use UPDATE DBM CFG
USING SYSMAINT_GROUP NULL. You must specify the keyword “NULL”
in uppercase. You can also use the Configure Instance notebook in the DB2
Control Center.

Authentication Type (authentication)

Configuration Type Database manager

Applies to

v Database server with local and remote
clients

v Client
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range] SERVER [CLIENT; SERVER;
SERVER_ENCRYPT; DCS; DCS_ENCRYPT;
DCE; DCE_SERVER_ENCRYPT; KERBEROS;
KRB_SERVER_ENCRYPT]

This parameter determines how and where authentication of a user takes
place.

If authentication is SERVER, then the user ID and password are sent from the
client to the server so authentication can take place on the server. The value
SERVER_ENCRYPT provides the same behavior as SERVER, except that any
passwords sent over the network are encrypted.

A value of CLIENT indicates that all authentication takes place at the client,
so no authentication needs to be performed at the server.

A value of DCS indicates that authentication takes place at the host or AS/400
system. The value DCS_ENCRYPT provides the same behavior as DCS, except
that any passwords sent over the network are encrypted. If you are using
APPC and a communications product that does not expose the client’s
password to the DB2 server, you can specify DCS to obtain:

482 Administration Guide: Performance

v SERVER-type authentication for non-DRDA clients
v CLIENT-type authentication for DRDA clients

A value of DCE means that authentication is performed at the DCE server
using DCE Security Services. The value DCE_SERVER_ENCRYPT provides the
same behavior as DCE, except any passwords sent over the network are
encrypted. The DCE_SERVER_ENCRYPT value is for use on a server only.
This value indicates that the server can accept either DCE authentication or
SERVER_ENCRYPT authentication.

A value of KERBEROS means that authentication is performed at a Kerberos
server using the Kerberos security protocol for authentication. With an
authentication type of KRB_SERVER_ENCRYPT at the server and clients that
support the Kerberos security system, then the effective system authentication
type is KERBEROS. If the clients do not support the Kerberos security system,
then the effective system authentication type is equivalent to
SERVER_ENCRYPT.

Note: The Kerberos authentication types are only supported on servers
running Windows 2000.

Authentication values that support password encryption include:
SERVER_ENCRYPT, DCS_ENCRYPT, DCE_SERVER_ENCRYPT, and
KRB_SERVER_ENCRYPT. These values provide the same function as SERVER,
DCS, DCE, and KERBEROS respectively in terms of authentication location,
except that any passwords that flow are encrypted at the source and require
decryption at the target, as specified by the authentication type cataloged at
the source. Encrypted and non-encrypted values with matching authentication
locations can then be used to choose different encryption combinations
between the client and gateway or the gateway and server, without affecting
where authentication occurs.

For the numeric equivalents and API constants for these values, refer to the
Administrative API Reference.

For more information on when and why to use DCE or DCS, and
authentication issues related to federated databases, refer to the “Controlling
Database Access” chapter in Administration Guide: Implementation.

Recommendation: Typically, the default (SERVER) is adequate. If you have
incoming requests that are handled by Kerberos, DB2 Connect, or DCE, refer
to the “Controlling Database Access” chapter in Administration Guide:
Implementation.

Cataloging Allowed without Authority (catalog_noauth)

Configuration Type Database manager

Chapter 13. Configuring DB2 483

Applies to
v Database server with local and remote

clients
v Client
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range]

Database server with local and remote
clients; Database server with local and
remote clients

NO [NO (0) — YES (1)]

Client; Database server with local clients;
Satellite database server with local clients

YES [NO (0) — YES (1)]

This parameter specifies whether users are able to catalog and uncatalog
databases and nodes, or DCS and ODBC directories, without SYSADM
authority. The default value (0) for this parameter indicates that SYSADM
authority is required. When this parameter is set to 1 (yes), SYSADM
authority is not required.

Default Database Path (dftdbpath)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients
v Satellite database server with local clients

Parameter Type Configurable

Default [Range]

UNIX Home directory of instance
owner [any existing path]

OS/2 and Windows NT
Drive on which DB2 is
installed [any existing path]

484 Administration Guide: Performance

This parameter contains the default file path used to create databases under
the database manager. If no path is specified when a database is created, the
database is created under the path specified by the dftdbpath parameter.

In a partitioned database environment, you should ensure that the path on
which the database is being created is not an NFS-mounted path (on
UNIX-based platforms), or a network drive (in the Windows NT
environment). The specified path must physically exist on each database
partition server. To avoid confusion, it is best to specify a path that is locally
mounted on each database partition server. The maximum length of the path
is 205 characters. The system appends the node name to the end of the path.

Given that databases can grow to a large size and that many users could be
creating databases (depending on your environment and intentions), it is often
convenient to be able to have all databases created and stored in a specified
location. It is also good to be able to isolate databases from other applications
and data both for integrity reasons and for ease of backup and recovery.

For UNIX-based environments, the length of the dftdbpath name cannot exceed
215 characters and must be a valid, absolute, path name. For OS/2 and
Windows NT, the dftdbpath can be a drive letter, optionally followed by a
colon.

Recommendation: If possible, put high volume databases on a different disk
than other frequently accessed data, such as the operating system files and the
database logs.

LOGON Required for DB2START/DB2STOP (ss_logon)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients

Parameter Type Configurable

Default [Range] YES [NO (0), YES (1)]

This parameter is applicable to the OS/2 environment only. By accepting the
default for this parameter, a LOGON user ID and password is required before
issuing a DB2START or DB2STOP.

Trust All Clients (trust_allclnts)

Configuration Type Database manager

Applies to

Chapter 13. Configuring DB2 485

v Database server with local and remote
clients

v Database server with local clients
v Partitioned database server with local and

remote clients

Parameter Type Configurable

Default [Range] YES [NO, YES, DRDAONLY]

Related Parameters
v “Authentication Type (authentication)” on

page 482
v “Trusted Clients Authentication

(trust_clntauth)” on page 487

This parameter is only active when the authentication parameter is set to
CLIENT.

This parameter and trust_clntauth are used to determine where users are
validated to the database environment.

By accepting the default of “YES” for this parameter, all clients are treated as
trusted clients. This means that the server assumes that a level of security is
available at the client and the possibility that users can be validated at the
client.

This parameter can only be changed to “NO” if the authentication parameter is
set to CLIENT. If this parameter is set to “NO”, the untrusted clients must
provide a userid and password combination when they connect to the server.
Untrusted clients are operating system platforms that do not have a security
subsystem for authenticating users.

Setting this parameter to “DRDAONLY” protects against all clients except
DRDA clients from DB2 for MVS and OS/390, DB2 for VM and VSE, and DB2
for OS/400. Only these clients can be trusted to perform client-side
authentication. All other clients must provide a user ID and password to be
authenticated by the server.

When trust_allclnts is set to “DRDAONLY”, the trust_clntauth parameter is
used to determine where the clients are authenticated. If trust_clntauth is set to
“CLIENT”, authentication occurs at the client. If trust_clntauth is set to
“SERVER”, authentication occurs at the client if no password is provided, and
at the server if a password is provided.

Refer to “Selecting an Authentication Method for Your Server” in the
Administration Guide: Implementation for more information on trusted clients.

486 Administration Guide: Performance

Trusted Clients Authentication (trust_clntauth)

Configuration Type Database manager

Applies to
v Database server with local and remote

clients
v Database server with local clients
v Partitioned database server with local and

remote clients

Parameter Type Configurable

Default [Range] CLIENT [CLIENT, SERVER]

Related Parameters
v “Authentication Type (authentication)” on

page 482
v “Trust All Clients (trust_allclnts)” on

page 485

This parameter specifies whether a trusted client is authenticated at the server
or the client when the client provides a userid and password combination for
a connection. This parameter (and trust_allclnts) is only active if the
authentication parameter is set to CLIENT. If a user ID and password are not
provided, the client is assumed to have validated the user, and no further
validation is performed at the server.

If this parameter is set to CLIENT (the default), the trusted client can connect
without providing a user ID and password combination, and the assumption
is that the operating system has already authenticated the user. If it is set to
SERVER, the user ID and password will be validated at the server.

The numeric value for CLIENT is 0. The numeric value for SERVER is 1.

Refer to “Selecting an Authentication Method for Your Server” in the
Administration Guide: Implementation for more information on trusted clients.

Chapter 13. Configuring DB2 487

|
|
|
|

488 Administration Guide: Performance

Part 4. Appendixes

© Copyright IBM Corp. 1993, 2001 489

490 Administration Guide: Performance

Appendix A. DB2 Registry and Environment Variables

The following is a list of DB2 registry variables and environment variables
that you may need to know about to get up and running. Each has a brief
description; some may not apply to your environment.

You can view a list of all supported registry variables by using:
db2set -lr

You can change the value for a variable in the current or default instance by
using:

db2set registry_variable_name=new_value

To update environment variables, the set command must be used and then
the system rebooted.

The values for the changed registry variables must be set before the
DB2START command is issued. Refer to Administration Guide: Implementation
for more information on changing and using registry variables.

The values used in the descriptions of the binary registry variables have
equivalent values. The values YES, 1, and ON are all equivalent. Similarly, the
values NO, 0, and OFF are all equivalent. The equivalent values are
interchangeable when used.

Table 21. General Registry Variables

Variable Name Operating System Values

Description

DB2ACCOUNT All Default=null

The accounting string that is sent to the remote host. Refer to the DB2 Connect User’s Guide for details.

DB2BIDI All Default=NO

Values: YES or NO

This variable enables bidirectional support and the DB2CODEPAGE variable is used to declare the code
page to be used. Refer to the Administration Guide: Planning in the National Language Support
appendix for additional information on bidirectional support.

DB2_BLOCK_ON_LOG_DISK_FULL ALL Default=No

Values: Yes or No

© Copyright IBM Corp. 1993, 2001 491

|
|

|
|
|

|
|
|
|

|
|
|

|||

|

Table 21. General Registry Variables (continued)

Variable Name Operating System Values

Description

This DB2 registry variable can be set to prevent ″disk full″ errors from being generated when DB2
cannot create a new log file in the active log path.

Instead, DB2 attempts to create the log file every 5 minutes until it succeeds. After each attempt, DB2
writes a message to the db2diag.log file. The only way that you can confirm that your application is
hanging because of a log disk full condition is to monitor the db2diag.log file.

Until the log file is successfully created, any user application that attempts to update table data will not
be able to commit transactions. Read-only queries may not be directly affected; however, if a query
needs to access data that is locked by an update request, or a data page that is fixed in the buffer pool
by the updating application, read-only queries will also appear to hang.

DB2CODEPAGE All Default: derived from the language ID,
as specified by the operating system.

Specifies the code page of the data presented to DB2 for database client application. The user should
not set DB2CODEPAGE unless explicitly stated in DB2 documents, or asked to do so by DB2 service.
Setting DB2CODEPAGE to a value not supported by the operating system can produce unexpected
results. Normally, you do not need to set DB2CODEPAGE because DB2 automatically derives the code
page information from the operating system.

DB2COUNTRY All Default: derived from the language ID,
as specified by the operating system.

Specifies the country, region, or territory code of the client application, which influences date and time
formats.

DB2DBDFT All Default=null

Specifies the database alias name of the database to be used for implicit connects. If an application has
no database connection but SQL statements are issued, an implicit connect will be made provided the
DB2DBDFT environment variable has been defined with a default database.

DB2DBMSADDR Windows 32-bit
operating systems

Default= 0x20000000 for Windows NT,
0x90000000 for Windows 95

Value: 0x20000000 to 0xB0000000 in
increments of 0x10000

Specifies the default database manager shared memory address in hexadecimal format. If db2start fails
due to a shared memory address collision, this registry variable can be modified to force the database
manager instance to allocate its shared memory at a different address.

DB2_DISABLE_FLUSH_LOG All Default= OFF

Value: ON or OFF

492 Administration Guide: Performance

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|

Table 21. General Registry Variables (continued)

Variable Name Operating System Values

Description

Specifies if you wish to disable closing the active log file at the time the on-line backup is completed.

When an on-line backup completes, the last active log file is truncated, closed, and made available to
be archived. This ensures that your online backup has a complete set of archived logs available for
recovery.

You may wish to disable closing the last active log file if you are concerned that you are wasting
portions of the Log Sequence Number (LSN) space. Each time an active log file is truncated, the LSN is
incremented by an amount proportional to the space truncated. If you perform a very large number of
on-line backups each day, you may wish to disable closing the last active log file.

You may also wish to disable closing the last active log file if you find you are receiving log full
messages a short time after the completion of the on-line backup. When a log file is truncated, the
reserved active log space is incremented by the amount proportional to the size of the truncated log.
The active log space is freed once the truncated log file is reclaimed. The reclamation occurs a short
time after the log file becomes inactive. It is during the short interval in-between that you may receive
log full messages.

DB2DISCOVERYTIME OS/2 and Windows
32-bit operating
systems

Default=40 seconds,

Minimum=20 seconds

Specifies the amount of time that SEARCH discovery will search for DB2 systems.

DB2INCLUDE All Default=current directory

Specifies a path to be used during the processing of the SQL INCLUDE text-file statement during DB2
PREP processing. It provides a list of directories where the INCLUDE file might be found. Refer to the
Application Development Guide for descriptions of how DB2INCLUDE is used in the different
precompiled languages.

DB2INSTDEF OS/2 and Windows
32-bit operating
systems

Default=DB2

Sets the value to be used if DB2INSTANCE is not defined.

DB2INSTOWNER Windows NT Default=null

The registry variable created in the DB2 profile registry when the instance is first created. This variable
is set to the name of the instance-owning machine.

DB2_LIC_STAT_SIZE All Default=null

Range: 0 to 32 767

The registry variable is used to determine the maximum size (in MBs) of the file containing the license
statistics for the system. A value of zero turns the license statistic gathering off. If the variable is not
recognized or not defined, the variable defaults to unlimited. The statistics are displayed using the
License Center.

Appendix A. DB2 Registry and Environment Variables 493

|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|

|||

|

|
|
|
|

Table 21. General Registry Variables (continued)

Variable Name Operating System Values

Description

DB2NBDISCOVERRCVBUFS All Default=16 buffers,

Minimum=16 buffers

This variable is used for NetBIOS search discovery. The variable specifies the number of concurrent
discovery responses that can be received by a client. If the client receives more concurrent responses
than are specified by this variable, then the excess responses are discarded by the NetBIOS layer. The
default is sixteen (16) NetBIOS receive buffers. If a number less than the default value is chosen, then
the default is used.

DB2OPTIONS All except Windows
3.1 and Macintosh

Default=null

Sets command line processor options.

DB2SLOGON Windows 3.x Default=null,

Values: YES or NO

Enables a secure logon in DB2 for Windows 3.x. If DB2SLOGON=YES DB2 does not write user IDs and
passwords to a file, but instead uses a segment of memory to maintain them. When DB2SLOGON is
enabled, the user must log on each time Windows 3.x is started.

DB2TIMEOUT Windows 3.x and
Macintosh

Default=(not set)

Used to control the timeout period for Windows 3.x and Macintosh clients during long SQL queries.
After the timeout period has expired a dialog box pops up asking if the query should be interrupted or
allowed to continue. The minimum value for this variable is 30 seconds. If DB2TIMEOUT is set to a
value between 1 and 30, the default minimum value will be used. If DB2TIMEOUT is set to a value of
0, or a negative value, the timeout feature is disabled. This feature is disabled by default.

DB2TRACENAME Windows 3.x and
Macintosh

Default= DB2WIN.TRC (on Windows
3.x), DB2MAC.TRC (on Macintosh)

On Windows 3.x and Macintosh, specifies the name of the file where trace information is stored. The
default for each system is saved in your current instance directory (for example, \sqllib\db2). We
strongly recommend that you specify the full path name when naming the trace file.

DB2TRACEON Windows 3.x and
Macintosh

Default=NO

Values: YES or NO

On Windows 3.x and Macintosh, turns trace on to provide information to IBM in case of a problem. (It
is not recommended that you turn trace on unless you encounter a problem you cannot resolve.) Refer
to the Troubleshooting Guide for information on using the trace facility with clients.

DB2TRCFLUSH Windows 3.x and
Macintosh

Default=NO

Values: YES or NO

494 Administration Guide: Performance

|
|
|

||
|
|

|
|
|
|
|

Table 21. General Registry Variables (continued)

Variable Name Operating System Values

Description

On Windows 3.x and Macintosh, DB2TRACEFLUSH can be used in conjunction with
DB2TRACEON=YES. Setting DB2TRACEFLUSH=YES will cause each trace record to be written
immediately into the trace file. This will slow down your DB2 system considerably, so the default
setting is DB2TRACEFLUSH=NO. This setting is useful in cases where an application hangs the system
and requires the system to be rebooted. Setting this keyword guarantees that the trace file and trace
entries are not lost by the reboot.

DB2TRCSYSERR Windows 3.x and
Macintosh

Default=1

Values: 1-32 767

Specifies the number of system errors to trace before the client turns off tracing. The default value
traces one system error, after which, trace is turned off.

DB2YIELD Windows 3.x Default=NO

Values: YES or NO

Specifies the behavior of the Windows 3.x client while communicating with a remote server. When set
to NO, the client will not yield the CPU to other Windows 3.x applications, and the Windows
environment is halted while the client application is communicating with the remote server. You must
wait for the communications operation to complete before you can resume any other tasks. When set to
YES, your system functions as normal. It is recommended that you try to run your application with
DB2YIELD=YES. If your system crashes, you will need to set DB2YIELD=NO. For application
development, ensure your application is written to accept and handle Windows messages while
waiting for a communications operation to complete.

Table 22. System Environment Variables

Variable Name Operating System Values

Description

DB2CONNECT_IN_APP_PROCESS All Default=YES

Values: YES or NO

When setting this variable to NO, local DB2 Connect clients on a DB2 Connect Enterprise Edition
machine are forced to run within an agent. Some advantages of running within an agent are that local
clients are able to be monitored and that they can use SYSPLEX support.

DB2DOMAINLIST Windows NT server
only

Default=null

Values: A list of Windows NT domain
names separated by commas (“,”).

Defines one or more Windows NT domains. Only users belonging to these domains will have their
connection or attachment requests accepted.

This registry variable should only be used under a pure Windows NT domain environment with DB2
servers and clients running DB2 Universal Database Version 7.1 (or later).

Appendix A. DB2 Registry and Environment Variables 495

|
|
|
|
|
|

||
|
|

|

|
|
|
|
|
|
|
|

|
|

|
|

Table 22. System Environment Variables (continued)

Variable Name Operating System Values

Description

DB2ENVLIST UNIX Default: null

Lists specific variable names for either stored procedures or user-defined functions. By default, the
db2start command filters out all user environment variables except those prefixed with DB2 or db2. If
specific registry variables must be passed to either stored procedures or user-defined functions, you can
list the variable names in the DB2ENVLIST registry variable. Separate each variable name by one or
more spaces. DB2 constructs its own PATH and LIBPATH, so if PATH or LIBPATH is specified in
DB2ENVLIST, the actual value of the variable name is appended to the end of the DB2-constructed
value.

DB2INSTANCE All Default=DB2INSTDEF on OS/2 and
Windows 32-bit operating systems.

The environment variable used to specify the instance that is active by default. On UNIX, users must
specify a value for DB2INSTANCE.

DB2INSTPROF OS/2, Windows 3.x,
and Windows 32-bit
operating systems

Default: null

The environment variable used to specify the location of the instance directory on OS/2, Windows 3.x,
and Windows 32-bit operating systems, if different than DB2PATH.

DB2LIBPATH UNIX Default: null

Specifies the value of LIBPATH in the DB2LIBPATH registry variable. The value of LIBPATH cannot be
inherited between parent and child processes if the user ID has changed. Since the db2start executable
is owned by root, DB2 cannot inherit the LIBPATH settings of end users. If you list the variable name,
LIBPATH, in the DB2ENVLIST registry variable, you must also specify the value of LIBPATH in the
DB2LIBPATH registry variable. The db2start executable then reads the value of DB2LIBPATH and
appends this value to the end of the DB2-constructed LIBPATH.

DB2NODE All Default: null

Values: 1 to 999

Used to specify the target logical node of a DB2 Extended Enterprise Edition database partition server
that you want to attach to or connect to. If this variable is not set, the target logical node defaults to the
logical node which is defined with port 0 on the machine.

DB2_PARALLEL_IO All Default: null

Values: * (meaning every table space) or
a comma-separated list of more than
one defined table space

While reading or writing data from and to table space containers, DB2 may use parallel I/O if the
number of containers in the database is greater than one. To force parallel I/O for a single container,
use this registry variable. After setting the registry variable, issue a DB2STOP and then enter
DB2START to allow the changes to take effect.

496 Administration Guide: Performance

|
|
|
|
|
|
|

|||
|

|
|

|
|

|
|
|
|
|
|

Table 22. System Environment Variables (continued)

Variable Name Operating System Values

Description

DB2PATH OS/2, Windows 3.x,
and Windows 32-bit
operating systems

Default: (varies by operating system)

The environment variable used to specify the directory where the product is installed on OS/2,
Windows 3.x, and Windows 32-bit operating systems.

DB2_STRIPED_CONTAINERS All Default: null

Values: ON, null

When using RAID devices for table space containers, it is suggested that the table space be created
with an extent size that is equal to, or a multiple of, the RAID stripe size. However, because of the
one-page container tag, the extents will not line up with the RAID stripes, and it may be necessary
during an I/O request to access more physical disks than would be optimal.

When using DMS table space containers this problem is avoided by allocating the tag its own (full)
extent. This avoids the problem but does require an extra extent of overhead within the container.

After setting this registry variable, issue a DB2STOP and then enter DB2START to allow the changes to
take effect.

Table 23. Communications Variables

Variable Name Operating System Values

Description

DB2CHECKCLIENTINTERVAL AIX, server only Default=0

Values: A numeric value greater than
zero.

Used to verify the status of APPC client connections. Permits early detection of client termination,
rather than waiting until after the completion of the query. When set to zero, no check will be made.
When set to a numerical value greater than zero, the value represents DB2 internal work units. For
guidance, the following check frequency values are given: Low frequency use 300; medium frequency
use 100; high frequency use 50. Checking more frequently for client status while executing a database
request lengthens the time taken to complete the queries. If the DB2 workload is heavy (that is, it
involves many internal requests), then setting DB2CHECKCLIENTINTERVAL to a low value has a
greater impact on performance than in a situation where the workload is light and most of the time
DB2 is waiting.

DB2COMM All, server only Default=null

Values: any combination of APPC,
IPXSPX, NETBIOS, NPIPE, TCPIP

Specifies the communication managers that are started when the database manager is started. If this is
not set, no DB2 communications managers are started at the server.

Appendix A. DB2 Registry and Environment Variables 497

Table 23. Communications Variables (continued)

Variable Name Operating System Values

Description

DB2_FORCE_NLS_CACHE AIX, HP_UX,
Solaris

Default=FALSE

Values: TRUE or FALSE

Used to eliminate the chance of lock contention in multi-threaded applications. When this registry
variable is “TRUE”, the code page and country code information is saved the first time a thread
accesses it. From that point, the cached information is used for any other thread that requests this
information. This eliminates lock contention and results in a performance benefit in certain situations.
This setting should not be used if the application changes locale settings between connections. It is
likely not needed in such a situation anyway, since multi-threaded applications typically do not change
their locale settings because it is not “thread-safe” to do so.

DB2NBADAPTERS OS/2 and Windows
NT

Default=0

Range: 0-15,

Multiple values should be separated by
commas

Used to specify which local adapters to use for DB2 NetBIOS LAN communications. Each local adapter
is specified using its logical adapter number.

DB2NBCHECKUPTIME OS/2 and Windows
NT, server only

Default=1 minute

Values: 1-720

Specifies the time interval between each invocation of the NetBIOS protocol checkup procedure.
Checkup time is specified in minutes.

Lower values will ensure that the NetBIOS protocol checkup runs more often, freeing up memory and
other system resources left when unexpected agent/session termination occurs.

DB2NBINTRLISTENS OS/2 and Windows
NT, server only

Default=1

Values: 1-10

Multiple values should be separated by
commas

Specifies the number of NetBIOS listen send commands (NCBs) that will be asynchronously issued in
readiness for remote client interrupts. This flexibility is provided for ″interrupt active″ environments to
ensure that interrupt calls from remote clients will be able to establish connections when servers are
busy servicing other remote interrupts.

Setting DB2NBINTRLISTENS to a lower value will conserve NetBIOS sessions and NCBs at the server.
However, in an environment where client interrupts are common, you may need to set
DB2NBINTRLISTENS to a higher value in order to be responsive to interrupting clients.
Note: Values specified are position sensitive; they relate to the corresponding value positions for
DB2NBADAPTERS.

498 Administration Guide: Performance

|
|
|
|

|
|
|
|
|

Table 23. Communications Variables (continued)

Variable Name Operating System Values

Description

DB2NBRECVBUFFSIZE OS/2 and Windows
NT, server only

Default=4096 bytes

Range: 4096-65536

Specifies the size of the DB2 NetBIOS protocol receive buffers. These buffers are assigned to the
NetBIOS receive NCBs. Lower values conserve server memory, while higher values may be required
when client data transfers are larger.

DB2NBBRECVNCBS OS/2 and Windows
NT, server only

Default=10

Range: 1-99

Specifies the number of NetBIOS ″receive_any″ commands (NCBs) that the server will issue and
maintain during operation. This value may be adjusted depending on the number of remote clients to
which your server is connected. Lower values will conserve server resources.
Note: Each adapter in use can have its own unique receive NCB value specified by
DB2NBBRECVNCBS. The values specified are position sensitive; they relate to the corresponding value
positions for DB2NBADAPTERS.

DB2NBRESOURCES OS/2 and Windows
NT server only

Default=null

Specifies the number of NetBIOS resources to allocate for DB2 use in a multi-context environment. This
variable is restricted to multi-context client operation.

DB2NBSENDNCBS OS/2 and Windows
NT, server only

Default=6

Range: 1-720

Specifies the number of send NetBIOS commands (NCBs) that the server will reserve for use. This
value may be adjusted depending on the number of remote clients your server is connected to. Setting
DB2NBSENDNCBS to a lower value will conserve server resources. However, you may need to set it to
a higher value to prevent the server from waiting to send to a remote client when all other send
commands are in use.

DB2NBSESSIONS OS/2 and Windows
NT, server only

Default=null

Range: 5-254

Specifies the number of sessions that DB2 should request to be reserved for DB2 use. The value of
DB2NBSESSIONS can be set to request a specific session for each adapter specified using
DB2NBADAPTERS.
Note: Values specified are position sensitive; they relate to the corresponding value positions for
DB2NBADAPTERS.

DB2NBXTRANCBS OS/2 and Windows
NT, server only

Default=5 per adapter

Range: 5-254

Specifies the number of ″extra″ NetBIOS commands (NCBs) the server will need to reserve when the
db2start command is issued. The value of DB2NBXTRANCBS can be set to request a specific session
for each adapter specified using DB2NBADAPTERS.

Appendix A. DB2 Registry and Environment Variables 499

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

Table 23. Communications Variables (continued)

Variable Name Operating System Values

Description

DB2NETREQ Windows 3.x Default=3

Range: 0-25

Specifies the number of NetBIOS requests that can be run concurrently on Windows 3.x clients. The
higher you set this value, the more memory below the 1MB level will be used. When the concurrent
number of requests to use NetBIOS services reaches the number you have set, subsequent incoming
requests for NetBIOS services are held in a queue and become active as the current requests complete.
If you enter 0 (zero) for DB2NETREQ, the Windows database client issues NetBIOS calls in
synchronous mode using the NetBIOS wait option. In this mode, the database client allows only the
current NetBIOS request to be active and does not process another one until the current request has
completed. This can affect other application programs. The 0 value is provided for backwards
compatibility only. It is strongly recommended that 0 not be used.

DB2RETRY OS/2 and Windows
NT

Default=0

Range: 0-20 000

The number of times DB2 attempts to restart the APPC listener. If the SNA subsystem at the
server/gateway is down, this profile variable, in conjunction with DB2RETRYTIME, can be used to
automatically restart the APPC listener without disrupting client communications using other protocols.
In such a scenario, it is no longer necessary to stop and restart DB2 to reinstate the APPC client
communications.

DB2RETRYTIME OS/2 and Windows
NT

Default=1 minute

Range: 0-7 200 minutes

In increments of one minute, the number of minutes that DB2 allows between performing successive
retries to start the APPC listener. If the SNA subsystem at the server/gateway is down, this profile
variable, in conjunction with DB2RETRY, can be used to automatically restart the APPC listener
without disrupting client communications using other protocols. In such a scenario, it is no longer
necessary to stop and restart DB2 to reinstate the APPC client communications.

DB2SERVICETPINSTANCE OS/2, Windows
NT, AIX, and Sun
Solaris

Default=null

Used to solve the problem caused by:

v More than one instance running on the same machine

v A Version 6 or Version 7 instance running on the same machine attempting to register the same TP
names.

When the db2start command is invoked, the instance specified will start the APPC listeners for the
following TP names:

v DB2DRDA

v x’07’6DB

500 Administration Guide: Performance

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

||
|
|

|

|

|

|
|

|
|

|

|

|

Table 23. Communications Variables (continued)

Variable Name Operating System Values

Description

DB2SOSNDBUF Windows 95 and
Windows NT

Default=32767

Specifies the value of TCP/IP send buffers on Windows 95 and Windows NT operating systems.

DB2SYSPLEX_SERVER OS/2, Windows
NT, and UNIX

Default=null

Specifies whether SYSPLEX exploitation when connected to DB2 for OS/390 is enabled. If this registry
variable is not set (which is the default), or is set to a non-zero value, exploitation is enabled. If this
registry variable is set to zero (0), exploitation is disabled. When set to zero, SYSPLEX exploitation is
disabled for the gateway regardless of how the DCS database catalog entry has been specified. For
more information see the Command Reference and the CATALOG DCS DATABASE command.

DB2TCPCONNMGRS All Default=1 on serial machines; square
root of the number of processors
rounded up to a maximum of eight
connection managers on symmetric
multiprocessor machines.

Values: 1 to 8

The default number of connection managers is created if the registry variable is not set. If the registry
variable is set, the value assigned here overrides the default value. The number of TCP/IP connection
managers specifed up to a maximum of 8 is created. If less than one is specified then
DB2TCPCONNMGRS is set to a value of one and a warning is logged that the value is out of range. If
greater than eight is specified then DB2TCPCONNMGRS is set to a value of eight and a warning is
logged that the value is out of range. Values between one and eight are used as given. When there is
greater than one connection manager created, connection throughput should improve when multiple
client connections are received simultaneously. There may be additional TCP/IP connection manager
processes (on UNIX) or threads (on OS/2 and Windows operating systems) if the user is running on a
SMP machine, or has modified the DB2TCPCONNMGRS registry variable. Additional processes or
threads require additional storage.
Note: Having the number of connection managers set to one causes a drop in performance on remote
connections in systems with a lot of users, frequent connects and disconnects, or both.

DB2_VI_ENABLE Windows NT Default=OFF

Values: ON or OFF

Specifies whether to use the Virtual Interface (VI) Architecture communication protocol or not. If this
registry variable is “ON”, then FCM will use VI for inter-node communication. If this registry variable
is “OFF”, then FCM will use TCP/IP for inter-node communication.
Note: The value of this registry variable must be the same across all the database partitions in the
instance.

DB2_VI_VIPL Windows NT Default= vipl.dll

Appendix A. DB2 Registry and Environment Variables 501

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

Table 23. Communications Variables (continued)

Variable Name Operating System Values

Description

Specifies the name of the Virtual Interface Provider Library (VIPL) that will be used by DB2. In order
to load the library successfully, the library name used in this registry variable must be in the PATH
user environment variable. The currently supported implementations all use the same library name.

DB2_VI_DEVICE Windows NT Default=null

Values: nic0 or VINIC

Specifies the symbolic name of the device or Virtual Interface Provider Instance associated with the
Network Interface Card (NIC). Independent hardware vendors (IHVs) each produce their own NIC.
Only one NIC is allowed per Windows NT machine; multiple logical nodes on the same physical
machine will share the same NIC. The symbolic device name “VINIC” must be in upper case and can
only be used with Synfinity Interconnect. All other currently supported implementations use “nic0” as
the symbolic device name.

Table 24. DCE Directory Variables

Variable Name Operating System Values

Description

DB2DIRPATHNAME OS/2, UNIX, and
Windows 32-bit
operating systems

Default=null

Specifies a temporary override of the DIR_PATH_NAME parameter value in the database manager
configuration file. If a directory server is used and the target of a CONNECT statement or ATTACH
command is not explicitly cataloged, then the target is concatenated with DB2DIRPATHNAME (if
specified) to form the fully qualified DCE name.
Note: The DB2DIRPATHNAME variable has no effect on the instance’s global name, which is always
identified by the database manager configuration parameters DIR_PATH_NAME and DIR_OBJ_NAME.

DB2CLIENTADPT OS/2 and Windows
32-bit operating
systems

Default=null

Range: 0-15

Specifies the client adapter number for NETBIOS protocol on OS/2 and Windows 32-bit operating
systems. The DB2CLIENTADPT value overrides the DFT_CLIENT_ADPT parameter value in the
database manager configuration file.

DB2CLIENTCOMM OS/2, UNIX, and
Windows 32-bit
operating systems

Default=null

Specifies a temporary override of the DFT_CLIENT_COMM parameter value in the database manager
configuration file. If both DFT_CLIENT_COMM and DB2CLIENTCOMM are not specified, then the
first protocol found in the object is used. If either one or both of them are specified, then only the first
matching protocol will be used. In either case, no retry is attempted if the first connect fails.

502 Administration Guide: Performance

|
|
|

|||

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

Table 24. DCE Directory Variables (continued)

Variable Name Operating System Values

Description

DB2ROUTE OS/2, UNIX, and
Windows 32-bit
operating systems

Default=null

Specifies the name of the Routing Information Object the client uses when it connects to a database
with a different database protocol. The DB2ROUTE value overrides the ROUTE_OBJ_NAME parameter
value in the database manager configuration file.

Table 25. Command Line Variables

Variable Name Operating System Values

Description

DB2BQTIME All Default=1 second

Maximum value: 1 second

Specifies the amount of time the command line processor front end will sleep before checking if the
back end process is active and establishing a connection to it.

DB2BQTRY All Default=60 retries

Minimum value: 0 retries

Specifies the number of times the command line processor front end process tries to determine whether
the back end process is already active. It works in conjunction with DB2BQTIME.

DB2IQTIME All Default=5 seconds

Minimum value: 1 second

Specifies the amount of time the command line processor back end process waits on the input queue
for the front end process to pass commands.

DB2RQTIME All Default=5 seconds

Minimum value: 1 second

Specifies the amount of time the command line processor back end process waits for a request from the
front end process.

Table 26. MPP Configuration Variables

Variable Name Operating System Values

DB2ATLD_PORTS DB2 UDB EEE on
AIX, Solaris, and
Windows NT

Default= 6000:6063

Value: num1:num2 where both are
between 1 and 65535, and
num1<=num2

Appendix A. DB2 Registry and Environment Variables 503

|
|
|

|
|

Table 26. MPP Configuration Variables (continued)

Variable Name Operating System Values

Specifies the range of port numbers used for the AutoLoader utility’s internal TCPIP communication. If
not set, AutoLoader uses the internal default port range 6000:6063. When you have other applications
using the AutoLoader default port range, this variable can be used to select an alternate port range.

DB2ATLD_PWFILE DB2 UDB EEE on
AIX, Solaris, and
Windows NT

Default=null

Value: a file path expression

Specifies a path to a file that contains a password used during AutoLoader authentication. If not set,
AutoLoader either extracts the password from its configuration file or prompts you interactively. Using
this variable will address password security concerns and allows the separation of AutoLoader
configuration information from authentication information.

DB2CHGPWD_EEE DB2 UDB EEE on
AIX and Windows
NT

Default=null

Values: YES or NO

Specifies whether you are allowing other users to change passwords on AIX or Windows NT EEE
systems. You must ensure that the passwords for all partitions or nodes are maintained centrally using
either a Windows NT domain controller on Windows NT, or NIS on AIX. If not maintained centrally,
passwords may not be consistent across all partitions or nodes. This could result in a password only
being changed at the database partition to which the user connects to make the change. In order to
modify this global registry variable, you must be at the root directory and on the DAS instance.

DB2_FORCE_FCM_BP AIX Default=No

Values: Yes or No

This registry variable is applicable to DB2 UDB EEE for AIX when using multiple logical partitions.
When DB2START is issued, DB2 allocates the FCM buffers from the database global memory or, if there
is not enough room there, from a separate shared memory segment which is used by all FCM daemons
(for that instance) on the same physical machine. Which it chooses is largely dependent on the number
of FCM buffers to be created (which, in turn, is determined by the FCM_NUM_BUFFERS database
manager configuration parameter). If this registry variable is set to Yes, the FCM buffers are always
created in a separate memory segment. When the FCM buffers are created in a separate memory
segment, the communication between FCM daemons of different logical partitions on the same physical
node occurs through shared memory. Otherwise, FCM daemons on the same node communicate
through UNIX Sockets. The advantage of communicating through shared memory in this way is that it
is faster. The disadvantage is that there is one fewer shared memory segments available for other uses,
most notably database buffer pools. This reduces the maximum size of database buffer pools.

DB2_NUM_FAILOVER_NODES All Default: 2

Values: 0 to the number of logical nodes

504 Administration Guide: Performance

|||

|

|
|
|
|
|
|
|
|
|
|
|
|

Table 26. MPP Configuration Variables (continued)

Variable Name Operating System Values

Specifies the number of nodes that can be used as failover nodes in a high availability environment.
With high availability, if a node fails, then the node can be restarted as a second logical node on a
different host. The number used with this variable determines how much memory is reserved for FCM
resources for failover nodes.

For example, host A has two logical nodes: 1 and 2; and host B has two logical nodes: 3 and 4. Assume
DB2_NUM_FAILOVER_NODES is set to 2. During DB2START, both host A and host B will reserve
enough memory for FCM so that up to four logical nodes could be managed. Then if one host fails, the
logical nodes for the failing host could be restarted on the other host.

DB2PORTRANGE Windows NT Values: nnnn:nnnn

This value is set to the TCP/IP port range used by FCM so that any additional partitions created on
another machine will also have the same port range.

DB2_UPDATE_PART_KEY ALL Default=Yes

Values: Yes or No

For FixPak 3 and later, the default value is ″Yes″. This registry variable specifies whether or not update
of the partitioning key is permitted.

Table 27. SQL Compiler Variables

Variable Name Operating System Values

Description

DB2_ANTIJOIN All Default=NO in a EEE environment

Default=YES in a non-EEE environment

Values: YES or NO

For DB2 Universal Database EEE environments: when ″Yes″ is specified, the optimizer will search for
opportunities to transform “NOT EXISTS” subqueries into anti-joins which can be processed more
efficiently by DB2. For non-EEE environments: when ″No″ is specified, the optimizer will limit the
opportunities to transform “NOT EXISTS” subqueries into anti-joins.

DB2_CORRELATED_PREDICATES All Default=Yes

Values: Yes or No

The default for this variable is ″Yes″. When there are unique indexes on correlated columns in a join,
and this registry variable is ″Yes″, the optimizer attempts to detect and compensate for correlation of
join predicates. When this registry variable is ″Yes″, the optimizer uses the KEYCARD information of
unique index statistics to detect cases of correlation, and dynamically adjusts the combined selectivities
of the correlated predicates, thus obtaining a more accurate estimate of the join size and cost.
Adjustment is also done for correlation of simple equality predicates like WHERE C1=5 AND C2=10 if there
is an index on C1 and C2. The index need not be unique but the equality predicate columns must
cover all the columns in the index.

Appendix A. DB2 Registry and Environment Variables 505

|||

|

|
|

|||

|

|

|
|
|
|

|||

|

|
|
|
|
|
|
|
|

Table 27. SQL Compiler Variables (continued)

Variable Name Operating System Values

Description

DB2_HASH_JOIN All Default=NO

Values: YES or NO

Specifies hash join as a possible join method when compiling an access plan.

DB2_LIKE_VARCHAR All Default=Y,N

Values: Y, N, S, or a floating point
constant between 0 and 6.2

Controls the collection and use of sub-element statistics. These are statistics about the content of data in
columns when the data has a structure in the form of a series of sub-fields or sub-elements delimited
by blanks.

This registry variable affects how the optimizer deals with a predicate of the form:

COLUMN LIKE '%xxxxxx%'

where the xxxxxx is any string of characters.

The syntax showing how this registry variable is used is:

db2set DB2_LIKE_VARCHAR=[Y|N|S|num1] [,Y|N|S|num2]

where

v The term preceding the comma, or the only term to the right of the predicate, means the following
but only for columns that do not have positive sub-element statistics:

– S – The optimizer estimates the length of each element in a series of elements concatenated
together to form a column based on the length of the string enclosed in the % characters.

– Y – The default. Use a default value of 1.9 for the algorithm parameter. Use a variable-length
sub-element algorithm with the algorithm parameter.

– N – Use a fixed-length sub-element algorithm.

– num1 – Use the value of num1 as the algorithm parameter with the variable length sub-element
algorithm.

v The term following the comma means the following:

– N – The default. Do not collect or use sub-element statistics.

– Y – Collect sub-element statistics. Use a variable-length sub-element algorithm that uses the
collected statistics together with the 1.9 default value for the algorithm parameter in the case of
columns with positive sub-element statistics.

– num2 – Collect sub-element statistics. Use a variable-length sub-element algorithm that uses the
collected statistics together with the value of num2 as the algorithm parameter in the case of
columns with positive sub-element statistics.

506 Administration Guide: Performance

|||

|
|

|
|
|

|

|

|

|

|

|

|
|

|
|

|
|

|

|
|

|

|

|
|
|

|
|
|

|

Table 27. SQL Compiler Variables (continued)

Variable Name Operating System Values

Description

DB2_SELECTIVITY ALL Default=No

Values: Yes or No

This registry variable controls where the SELECTIVITY clause can be used. See the SQL Reference,
Language Elements, Search Conditions for complete details on the SELECTIVITY clause.

When this registry variable is set to ″Yes″, the SELECTIVITY clause can be specified when the predicate
is a basic predicate where at least one expression contains host variables.

DB2_NEW_CORR_SQ_FF All Default=OFF

Values: ON or OFF

Affects the selectivity value computed by the SQL optimizer for certain subquery predicates when it is
set to “ON”. It can be used to improve the accuracy of the selectivity value of equality subquery
predicates that use the MIN or MAX aggregate function in the SELECT list of the subquery. For
example:

SELECT * FROM T WHERE
T.COL = (SELECT MIN(T.COL)
FROM T WHERE ...)

DB2_PRED_FACTORIZE All Default=NO

Value: YES or NO

Appendix A. DB2 Registry and Environment Variables 507

|||

|

|
|

|
|

|
|
|
|

|
|
|

|

Table 27. SQL Compiler Variables (continued)

Variable Name Operating System Values

Description

Specifies whether the optimizer will search for opportunities to extract additional predicates from
disjuncts. In some circumstances, the additional predicates can alter the estimated cardinality of the
intermediate and final result sets. With the following query:

SELECT n1.empno,
n1.lastname

FROM employee n1,
employee n2

WHERE
((n1.lastname='SMITH'

AND n2.lastname='JONES')
OR (n1.lastname='JONES'
AND n2.lastname='SMITH'))

the optimizer can generate the following additional predicates:

SELECT n1.empno,
n1.lastname

FROM employee n1,
employee n2

WHERE n1.lastname IN
('SMITH', 'JONES')

AND n2.lastname IN
('SMITH', 'JONES')

AND
((n1.lastname='SMITH'

AND n2.lastname='JONES')
OR (n1.lastname='JONES'
AND n2.lastname='SMITH'))

Table 28. Performance Variables

Variable Name Operating System Values

Description

DB2_AVOID_PREFETCH All Default=OFF,

Values: ON or OFF

Specifies whether or not prefetch should be used during crash recovery. If
DB2_AVOID_PREFETCH=ON, prefetch is not used.

DB2_AWE Windows 2000 Default=null

Values: <entry>[,<entry>,...] where
<entry>=<buffer pool ID>,<number of
physical pages>, <number of address
windows>

508 Administration Guide: Performance

|
|

|||

|
|
|
|

Table 28. Performance Variables (continued)

Variable Name Operating System Values

Description

Allows DB2 UDB on Windows 2000 to allocate buffer pools that use up to 64 GB of memory. Windows
2000 must be configured correctly to support Address Windowing Extensions (AWE) buffer pools. This
includes associating the “lock pages in memory”-right with the user, allocating the physical pages and
the address window pages, and setting this registry variable. In setting this variable you need to know
the buffer pool ID of the buffer pool that is to be used for AWE support. The ID of the buffer pool can
be seen in the BUFFERPOOLID column of the SYSCAT.BUFFERPOOLS system catalog view.
Note: If AWE support is enabled, extended storage cannot be used for any of the buffer pools in the
database. Also, buffer pools referenced with this registry variable must already exist in
SYSCAT.SYSBUFFERPOOLS.

DB2_BINSORT All Default=YES

Values: YES or NO

Enables a new sort algorithm that reduces the CPU time and elapsed time of sorts. This new algorithm
extends the extremely efficient integer sorting technique of DB2 UDB to all sort datatypes such as
BIGINT, CHAR, VARCHAR, FLOAT, and DECIMAL, as well as combinations of these datatypes. To
enable this new algorithm, use the following command:

db2set DB2_BINSORT = yes

DB2BPVARS Windows NT Default=path

Specifies the path to a file containing parameters used when tuning buffer pools. The currently
supported parameters are: NT_SCATTER_DMSFILE, NT_SCATTER_DMSDEVICE, and
NT_SCATTER_SMS.

For each of these parameters, the default is zero (or OFF); and the possible values include: zero (or
OFF) and 1 (or ON). Each parameter is used to turn scatter read on for the respective type of
containers. Each can only be enabled (turned ON) if DB2NTNOCACHE is set to ON in the registry. A
warning message is written to the db2diag.log if DB2NTNOCACHE is set to OFF (or not set), and
scatter read remains disabled. The parameters are recommended for systems with a large amount of
sequential prefetching against the respective type of containers and for which you have already
decided to use DB2NTNOCACHE set to ON.
Note: When setting DB2NTNOCACHE to ON, you are turning Windows NT file caching off.

An example of how to set the path to the file is shown:

db2set DB2BPVARS =
f:\BPVARSFILE

The content of the file is any of these parameters in the form:

parameter=value

Appendix A. DB2 Registry and Environment Variables 509

|
|
|
|
|
|
|
|
|

|||

|

|
|
|

|
|
|
|
|
|
|
|

|

|
|

|

|

|

Table 28. Performance Variables (continued)

Variable Name Operating System Values

Description

DB2CHKPTR All Default=OFF,

Values: ON or OFF

Specifies whether or not pointer checking for input is required.

DB2_ENABLE_BUFPD All Default=OFF,

Values: ON or OFF

Specifies whether or not DB2 uses intermediate buffering to improve query performance. The buffering
may not improve query performance in all environments. Testing should be done to determine
individual query performance improvements.

DB2_EXTENDED_OPTIMIZATION All Default=OFF

Values: ON or OFF

Specifies whether or not the query optimizer uses optimization extensions to improve query
performance. The extensions may not improve query performance in all environments. Testing should
be done to determine individual query performance improvements.

DB2MAXFSCRSEARCH All Default=5

Values: -1, 1 to 33 554

Specifies the number of free space control records to search when adding a record to a table. The
default is to search five free space control records. Modifying this value allows you to balance insert
speed with space reuse. Use large values to optimize for space reuse. Use small values to optimize for
insert speed. Setting the value to -1 forces the database manager to search all free space control records.

DB2MEMDISCLAIM AIX Default=YES

Values: YES or NO

On AIX, memory used by DB2 processes may have some associated paging space. This paging space
may remain reserved even when the associated memory has been freed. Whether or not this is so
depends on the AIX system’s (tunable) virtual memory management allocation policy. The
DB2MEMDISCLAIM registry variable controls whether DB2 agents explicitly request that AIX
disassociate the reserved paging space from the freed memory.

A DB2MEMDISCLAIM setting of YES will result in lesser paging space requirements, and possibly less
disk activity from paging. A DB2MEMDISCLAIM setting of NO will result in greater paging space
requirements, and possibly more disk activity from paging. In some situations, such as if paging space
is plentiful and real memory is so plentiful that paging never occurs, a setting of NO will provide a
minor performance improvement.

DB2MEMMAXFREE All Default= 8 388 608 bytes

Values: 0 to 2³²-1 bytes

Specifies the maximum amount of unused memory (in bytes) that is retained by DB2 processes.

510 Administration Guide: Performance

|||

|

|||

|

|
|
|
|

|||

|

|||

|

|

Table 28. Performance Variables (continued)

Variable Name Operating System Values

Description

DB2_MMAP_READ AIX Default=ON ,

Values: ON or OFF

Used in conjunction with DB2_MMAP_WRITE to allow DB2 to use mmap as an alternate method of
I/O. In most environments, mmap should be used to avoid operating system locks when multiple
processes are writing to different sections of the same file. However, perhaps you migrated from
Parallel Edition V1.2 where the default was OFF allowing caching by AIX of DB2 data read from JFS
filesystems into memory (outside the buffer pool). If you want the comparable performance with DB2
UDB, you can either increase the size of the buffer pool, or change DB2_MMAP_READ and
DB2_MMAP_WRITE to OFF.

DB2_MMAP_WRITE AIX Default=ON

Values: ON or OFF

Used in conjunction with DB2_MMAP_READ to allow DB2 to use mmap as an alternate method of
I/O. In most environments, mmap should be used to avoid operating system locks when multiple
processes are writing to different sections of the same file. However, perhaps you migrated from
Parallel Edition V1.2 where the default was OFF allowing AIX caching of DB2 data read from JFS
filesystems into memory (outside the buffer pool). If you want the comparable performance with DB2
UDB, you can either increase the size of the buffer pool, or change DB2_MMAP_READ and
DB2_MMAP_WRITE to OFF.

DB2_NO_PKG_LOCK All Default=OFF

Values: ON or OFF

Allows the Global SQL Cache to operate without the use of package locks to protect cached package
entries. (Package locks are internal system locks.) To improve performance (because acquiring and
freeing locks takes time), you can now choose to work in a “no package lock” mode. In this mode,
certain database operations are not allowed. These operations may include: operations that invalidate
packages, operations that inoperate packages, and operations that directly change a package.

DB2NTMEMSIZE Windows NT Default=(varies by memory segment)

Windows NT requires that all shared memory segments be reserved at DLL initialization time in order
to guarantee matching addresses across processes. DB2NTMEMSIZE has been introduced to permit the
user to override the DB2 defaults on Windows NT if necessary. In most situations, the default values
should be sufficient. The memory segments, default sizes, and override options are: 1) Database Kernel:
default size is 16777216 (16 MB); override option is DBMS:<number of bytes>. 2) Parallel FCM Buffers:
default size is 22020096 (21 MB); override option is FCM:<number of bytes>. 3) Database Admin GUI:
default size is 33554432 (32 MB); override option is DBAT:<number of bytes>. 4) Fenced Stored
Procedures: default size is 16777216 (16 MB); override option is APLD:<number of bytes>. More than
one segment may be overridden by separating the override options with a semi-colon (;). For example,
to limit the database kernel to approximately 256K, and the FCM buffers to approximately 64 MB, use:

db2set DB2NTMEMSIZE=DBMS:256000;FCM:64000000

Appendix A. DB2 Registry and Environment Variables 511

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|

Table 28. Performance Variables (continued)

Variable Name Operating System Values

Description

DB2NTNOCACHE Windows NT Default=OFF

Value: ON or OFF

Specifies whether or not DB2 will open database files with a NOCACHE option. If
DB2NTNOCACHE=ON, file system caching is eliminated. If DB2NTNOCACHE=OFF, the operating
system caches DB2 files. This applies to all data except for files that contain long fields or LOBS.
Eliminating system caching allows more memory to be available to the database so that the buffer pool
or sortheap can be increased.

DB2NTPRICLASS Windows NT Default=null

Value: R, H, (any other value)

Sets the priority class for the DB2 instance (program DB2SYSCS.EXE). There are three priority classes:

v NORMAL_PRIORITY_CLASS (the default priority class)

v REALTIME_PRIORITY_CLASS (set by using “R”)

v HIGH_PRIORITY_CLASS (set by using “H”)

This variable is used in conjunction with individual thread priorities (set using DB2PRIORITIES) to
determine the absolute priority of DB2 threads relative to other threads in the system.
Note: Care should be taken when using this variable. Misuse could adversely affect overall system
performance.

For more information, please refer to the SetPriorityClass() API in the Win32 documentation.

DB2NTWORKSET Windows NT Default=1,1

Used to modify the minimum and maximum working set size available to DB2. By default, when
Windows NT is not in a paging situation, a process’s working set can grow as large as needed.
However, when paging occurs, the maximum working set that a process can have is approximately 1
MB. DB2NTWORKSET allows you to override this default behavior.

Specify DB2NTWORKSET for DB2 using the syntax DB2NTWORKSET=min,max, where min and max
are expressed in megabytes.

DB2_OVERRIDE_BPF All Default=not set

Values: a positive numeric number of
pages

Specifies the size of the buffer pool, in pages, to be created at database activation, or first connection,
time. It is useful when failures occur during database activation or first connection resulting from
memory constraints. Should even a minimal buffer pool of 16 pages not be brought up by the database
manager, then the user can try again after specifying a smaller number of pages using this environment
variable. The memory constraint could arise either because of a real memory shortage (which is rare);
or, because of the attempt by the database manager to allocate large, inaccurately configured buffer
pools. This value, if set, will override the current buffer pool size.

512 Administration Guide: Performance

|
|
|
|
|

|

|

|

|

|
|
|
|

|

|
|
|
|

|
|

Table 28. Performance Variables (continued)

Variable Name Operating System Values

Description

DB2_PINNED_BP AIX, HP-UX Default=NO

Values: YES or NO

This variable is used to hold the database global memory (including buffer pools) associated with the
database in the main memory on some AIX operating systems. Keeping this database global memory in
the system main memory allows database performance to be more consistent.

If, for example, the buffer pool was swapped out of the system main memory then database
performance would deteriorate. The reduction of disk I/O by having the buffer pools in system
memory improves database performance. If you have other applications that require more of the main
memory, you will want to allow the database global memory, depending on the system main memory
requirements, to be swapped out of main memory.

When working with HP-UX in a 64-bit environment, in addition to modifying this registry variable, the
DB2 instance group must be given the MLOCK privilege. This is done by having a user with root
access rights do the following:

1. Add the DB2 instance group to the /etc/privgroup file. For example, if the DB2 instance group
belongs to db2iadm1 group then the following line must be added to the /etc/privgroup file:

db2iadm1 MLOCK

2. Issue the following command:
setprivgrp -f /etc/privgroup

DB2PRIORITIES All Values setting is platform dependent.

Controls the priorities of DB2 processes and threads.

DB2_RR_TO_RS All Default=NO

Values: YES or NO

Appendix A. DB2 Registry and Environment Variables 513

|||

|

|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|

|

|||

|

Table 28. Performance Variables (continued)

Variable Name Operating System Values

Description

Next key locking guarantees Repeatable Read (RR) isolation level by automatically locking the next key
for all INSERT and DELETE statements and the next higher key value above the result set for SELECT
statements. For UPDATE statements that alter key parts of an index, the original index key is deleted
and the new key value is inserted. Next key locking is done on both the key insertion and key deletion.
Next key locking is required to guarantee ANSI and SQL92 standard RR, and is the DB2 default.

If your application appears to stop or hang, you should examine snapshot information for your
application. If the problem appears to be with next key locking, you can set the DB2_RR_TO_RS
registry variable on based on two conditions. You can turn DB2_RR_TO_RS on if none of your
applications rely on Repeatable Read (RR) behavior and if it is acceptable for scans to skip over
uncommitted deletes. The skipping behavior affects the RR, Read Stability (RS), and Cursor Stability
(CS) isolation levels. (There is no row locking for Uncommitted Read (UR) isolation level.)

When DB2_RR_TO_RS is on, RR behavior cannot be guaranteed for scans on user tables because next
key locking is not done during index key insertion and deletion. Catalog tables are not affected by this
option.

The other change in behavior is that with DB2_RR_TO_RS on, scans will skip over rows that have been
deleted but not committed, even though the row may have qualified for the scan.

DB2_SORT_AFTER_TQ All Default=NO

Values: YES or NO

Specifies how the optimizer works with directed table queues in a partitioned database when the
receiving end requires the data to be sorted, and the number of receiving nodes is equal to the number
of sending nodes.

When DB2_SORT_AFTER_TQ= NO, the optimizer tends to sort at the sending end, and merge the rows
at the receiving end.

When DB2_SORT_AFTER_TQ= YES, the optimizer tends to transmit the rows unsorted, not merge at
the receiving end, and sort the rows at the receiving end after receiving all the rows.

DB2_STPROC_LOOKUP_FIRST All Default=OFF

Values: ON or OFF

514 Administration Guide: Performance

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|

|||

|

Table 28. Performance Variables (continued)

Variable Name Operating System Values

Description

Formerly DB2_DARI_LOOKUP_ALL, this variable specifies whether or not the UDB server will
perform a catalog lookup for ALL DARIs and stored procedures before looking in the function
subdirectory of the sqllib subdirectory; and in the unfenced subdirectory of the function subdirectory of
the sqllib subdirectory.
Note: For stored procedures of PARAMETER TYPE DB2DARI that are located in the directories
mentioned above, setting this value to “ON” will degrade performance since the catalog lookup will be
performed possibly on another node in an EEE configuration before the function directories are
searched.

When you call a stored procedure, the default behavior for DB2 is to search the function subdirectory of
the sqllib subdirectory and the unfenced subdirectory of the function subdirectory of the sqllib
subdirectory for a shared library with the same name as the stored procedure before looking up the
name of the shared library for the stored procedures in the system catalog. Only stored procedures of
PARAMETER TYPE DB2DARI can have the same name as their shared library, so only DB2DARI
stored procedures benefit from the default behavior of DB2. If you use stored procedures cataloged
with a different PARAMETER TYPE, the time that DB2 spends searching the above directories degrades
the performance of those stored procedures.

To enhance the performance of stored procedures that are not cataloged as PARAMETER TYPE
DB2DARI, set the DB2_STPROC_LOOKUP_FIRST registry variable to ON. This registry variable forces
DB2 to look up the name of the shared library for the stored procedure in the system catalog before
searching the above directories.

Table 29. Data Links Variables

Variable Name Operating System Values

Description

DLFM_BACKUP_DIR_NAME AIX, Windows NT Default: null

Values: TSM or any valid path

Specifies the backup device to use. If you change the setting of this registry variable between TSM and
a path at run-time, the archived files are not moved. Only new backups are place in the new location.
Previously archived files are not moved.

DLFM_BACKUP_LOCAL_MP AIX, Windows NT Default: null

Values: any valid path to the local
mount point in the DFS system

Specifies the fully qualified path to a mount point in the DFS system. When a path is given, it is used
instead of the path given with DLFM_BACKUP_DIR_NAME.

DLFM_BACKUP_TARGET AIX, Windows NT Default: null

Values: LOCAL, TSM, XBSA

Specifies the type of backup used.

Appendix A. DB2 Registry and Environment Variables 515

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

Table 29. Data Links Variables (continued)

Variable Name Operating System Values

Description

DLFM_BACKUP_TARGET_LIBRARY AIX, Windows NT Default: null

Values: any valid path to the DLL or
shared library name

Specifies the fully qualified path to the DLL or shared library. This library is loaded using the
libdfmxbsa.a library.

DLFM_ENABLE_STPROC AIX, Windows NT Default: NO

Values: YES or NO

Specifies whether a stored procedure is used to link groups of files.

DLFM_FS_ENVIRONMENT AIX, Windows NT Default: NATIVE

Values: NATIVE or DFS

Specifies the environment in which Data Links servers operate. NATIVE indicates that the Data Links
server is in a single machine situation where the server can take over files on its own machine. DFS
indicates that the Data Links server is in a distributed filesystem (DFS) environment where the server
can take over files throughout the filesystem. Mixing DFS filesets and native filesystems is not allowed.

DLFM_GC_MODE AIX, Windows NT Default: PASSIVE

Values: SLEEP, PASSIVE, or ACTIVE

Specifies the control of garbage file collection on the Data Links server. When set to SLEEP, no garbage
collection occurs. When set to PASSIVE, garbage collection runs only if no other transactions are
running. When set to ACTIVE, garbage collection runs even if other transactions are running.

DLFM_INSTALL_PATH AIX, Windows NT Default

On AIX: /usr/lpp/ db2_06_00 /adm

On NT: DB2PATH /bin

Range: any valid path

Specifies the path where the Data Links executables are installed.

DLFM_LOG_LEVEL AIX, Windows NT Default: LOG_INFO

Values: LOG_CRIT, LOG_DEBUG,
LOG_ERR, LOG_INFO, LOG_NOTICE,
LOG_WARNING

Specifies the level of diagnostic information to be recorded.

DLFM_PORT All except Windows
3.n

Default: 50100

Values: any valid port number

516 Administration Guide: Performance

|

Table 29. Data Links Variables (continued)

Variable Name Operating System Values

Description

Specifies the port number used to communicate with the Data Links servers running the DB2 Data
Links Manager. This environment variable is only used when a table contains a “DATALINKS” column.

DLFM_TSM_MGMTCLASS AIX, Windows NT,
Solaris

Default: the default TSM management
class

Values: any valid TSM management
class

Specifies which TSM management class to use to archive and retrieve linked files. If there is no value
set for this variable, the default TSM management class is used.

Table 30. Miscellaneous Variables

Variable Name Operating System Values

Description

DB2ADMINSERVER OS/2, Windows 95,
Windows NT, and
UNIX

Default=null

Specifies which DB2 instance is set up as the DB2 Administration Server.

DB2CLIINIPATH All Default=null

Used to override the default path of the DB2 CLI/ODBC configuration file (db2cli.ini) and specify a
different location on the client. The value specified must be a valid path on the client system.

DB2DEFPREP All Default=NO

Values: ALL, YES, or NO

Simulates the runtime behavior of the DEFERRED_PREPARE precompile option for applications that
were precompiled prior to this option becoming available. For example, if a DB2 v2.1.1 or earlier
application were run in a DB2 v2.1.2 or later environment, DB2DEFPREP could be used to indicate the
desired ’deferred prepare’ behavior.

DB2_DJ_COMM All Default=null

Values include: libdrda.a, libsqlnet.a,
libnet8.a, libdrda.dll, libsqlnet.dll,
libnet8.dll, and so on.

Specifies the wrapper libraries that are loaded when the database manager is started. Specifying this
variable reduces the run-time cost of loading frequently used wrappers. Other values for other
operating systems are supported (the .dll extension is for the Windows NT operating system; the .a
extension is for the AIX operating system). Library names vary by protocol and operating system. This
variable is not available unless the database manager parameter federated is set to YES.

Appendix A. DB2 Registry and Environment Variables 517

||
|
|
|

|
|

|
|

|
|
|
|

Table 30. Miscellaneous Variables (continued)

Variable Name Operating System Values

Description

DB2DMNBCKCTLR Windows NT Default=null

Values: ? or a domain name

If you know the name of the domain for which the DB2 server is the backup domain controller, set
DB2DMNBCKCTLR=DOMAIN_NAME. The DOMAIN_NAME must be in upper case. To have DB2
determine the domain for which the local machine is a backup domain controller, set
DB2DMNBCKCTLR=?. If the DB2DMNBCKCTLR profile variable is not set or is set to blank, DB2
performs authentication at the primary domain controller.
Note: DB2 does not use an existing backup domain controller by default because a backup domain
controller can get out of synchronization with the primary domain controller, causing a security
exposure. Getting out of synchronization can occur when the primary domain controller’s security
database is updated but the changes are not propagated to a backup domain controller. This could
occur if there are network latencies or if the computer browser service is not operational.

DB2_ENABLE_LDAP All Default=NO

Values: YES or NO

Specifies whether or not the Lightweight Directory Access Protocol (LDAP) is used. LDAP is an access
method to directory services.

DB2_FALLBACK Windows NT Default=OFF

Values: ON or OFF

This variable allows you to force all database connections off during the fallback processing. It is used
in conjunction with the failover support in the Windows NT environment with Microsoft Cluster Server
(MSCS). If DB2_FALLBACK is not set or is set to OFF, and a database connection exists during the fall
back, the DB2 resource cannot be brought offline. This will mean the fallback processing will fail.

DB2_FORCE_TRUNCATION All Default=NO

Values: YES or NO

Used during restart recovery. If set to “NO”, it will halt restart recovery if it is determined that a bad
page is stopping the restart recovery too soon (that is, all active logs have not been read). This is
usually caused by a bad page in one of the logs. The user can set this variable to “YES” to signal
restart recovery that it should continue processing as if the end of logs was reached. After setting the
variable to “YES”, logs not read during restart recovery are overwritten when the database becomes
active again. The default is “NO”, which is not to proceed if a bad page is not found. Use this variable
only under the direction from IBM Service personnel.

DB2_GRP_LOOKUP Windows NT Default=null

Values: LOCAL, DOMAIN

This variable is used to tell DB2 where to validate user accounts and perform group member lookup.
Set the variable to LOCAL to force DB2 to always enumerate groups and validate user accounts on the
DB2 server. Set the variable to DOMAIN to force DB2 to always enumerate groups and validate user
accounts on the Windows NT domain to which the user account belongs.

518 Administration Guide: Performance

|
|
|
|
|
|
|
|
|
|

|
|
|
|

Table 30. Miscellaneous Variables (continued)

Variable Name Operating System Values

Description

DB2_INDEX_2BYTEVARLEN All Default=NO

Values: YES or NO

This registry variable allows columns with a length greater than 255 bytes to be specified as part of an
index key. Indexes already created before turning this registry variable YES will continue to have the
255 key limit restriction. Indexes created after turning this registry variable to ″Yes″ will behave as a
two-byte index even when the registry variable is turned to ″No″ again.

Several SQL statements are affected by changes to this registry variable including CREATE TABLE,
CREATE INDEX, and ALTER TABLE. For more information on these statements, refer to the changes
documented for the SQL Reference.

DB2LDAP_BASEDN All Default=null

Values: Any valid base domain name.

Specifies the base domain name for the LDAP directory.

DB2LDAPCACHE All Default=YES

Values: YES or NO

Specifies that the LDAP cache is to be enabled. This cache is used to catalog the database, node, and
DCS directories on the local machine.

To ensure that you have the latest entries in the cache, do the following:

REFRESH LDAP DB DIR
REFRESH LDAP NODE DIR

These commands update and remove incorrect entries from the database directory and the node
directory.

DB2LDAP_CLIENT_PROVIDER Windows
95/98/NT/2000
only

Default=null (Microsoft, if available, is
used; otherwise IBM is used.)

Values: IBM or Microsoft

When running in a Windows environment, DB2 supports using either Microsoft LDAP clients or IBM
LDAP clients to access the LDAP directory. This registry variable is used to explicitly select the LDAP
client to be used by DB2.
Note: To display the current value of this registry variable, use the db2set command:

db2set DB2LDAP_CLIENT_PROVIDER

DB2LDAPHOST All Default=null

Values: Any valid hostname.

Specifies the hostname of the location for the LDAP directory.

Appendix A. DB2 Registry and Environment Variables 519

|||

|

|
|
|
|

|
|
|

Table 30. Miscellaneous Variables (continued)

Variable Name Operating System Values

Description

DB2LDAP_SEARCH_SCOPE All Default= DOMAIN

Values: LOCAL, DOMAIN, GLOBAL

Specifies the search scope for information found in partitions or domains in the Lightweight Directory
Access Protocol (LDAP). “LOCAL” disables searching in the LDAP directory. “DOMAIN” only searches
in LDAP for the current directory partition. “GLOBAL” searches in LDAP in all directory partitions
until the object is found.

DB2LOADREC All Default=null

Used to override the location of the load copy during roll forward. If the user has changed the physical
location of the load copy, DB2LOADREC must be set before issuing the roll forward.

DB2LOCK_TO_RB All Default=null

Values: Statement

Specifies whether lock timeouts cause the entire transaction to be rolled-back, or only the current
statement. If DB2LOCK_TO_RB is set to STATEMENT, locked timeouts cause only the current statement is
to be rolled back. Any other setting results in transaction rollback.

DB2_NEWLOGPATH2 UNIX Default=0

Values: 0 or 1

This parameter allows you to specify whether a secondary path should be used to implement dual
logging. The path used is generated by appending a “2” to the current value of the logpath database
configuration parameter.

DB2NOEXITLIST All Default=OFF

Values: ON or OFF

If defined, this variable indicates to DB2 not to install an exit list handler in applications and not to
perform a COMMIT. Normally, DB2 installs a process exit list handler in applications and the exit list
handler performs a COMMIT operation if the application ends normally.

For applications that dynamically load the DB2 library and unload it before the application terminates,
the invocation of the exit list handler fails because the handler routine is no longer loaded in the
application. If your application operates in this way, you should set the DB2NOEXITLIST variable and
ensure your application explicitly invokes all required COMMITs.

DB2REMOTEPREG Windows 95 and
Windows NT

Default=null

Value: Any valid Windows 95 or
Windows NT machine name

Specifies the remote machine name that contains the Win32 registry list of DB2 instance profiles and
DB2 instances. The value for DB2REMOTEPREG should only be set once after DB2 is installed, and
should not be modified. Use this variable with extreme caution.

520 Administration Guide: Performance

|
|

|
|
|

|||

|

|
|
|

|
|
|

|
|
|
|

Table 30. Miscellaneous Variables (continued)

Variable Name Operating System Values

Description

DB2ROUTINE_DEBUG AIX and Windows
NT

Default=OFF

Values: ON, OFF

Specifies whether to enable the debug capability for Java stored procedures. If you are not debugging
Java stored procedures, use the default, OFF. There is a performance impact to enable debugging. Refer
to Application Development Guide for more information about debugging Java stored procdures.

DB2SORCVBUF Windows 95 and
Windows NT

Default=32767

Specifies the value of TCP/IP receive buffers on Windows 95 and Windows NT operating systems.

DB2SORT All, server only Default=null

Specifies the location of a library to be loaded at runtime by the LOAD utility. The library contains the
entry point for functions used in sorting indexing data. Use DB2SORT to exploit vendor-supplied
sorting products for use with the LOAD utility in generating table indexes. The path supplied must be
relative to the database server.

DB2SYSTEM Windows NT,
Windows 95, OS/2,
and UNIX

Default=null

Specifies the name that is used by your users and database administrators to identify the DB2 server
system. If possible, this name should be unique within your network.

This name is displayed in the system level of the Control Center’s object tree to aid administrators in
the identification of server systems that can be administered from the Control Center.

When using the ’Search the Network’ function of the Client Configuration Assistant, DB2 discovery
returns this name and it is displayed at the system level in the resulting object tree. This name aids
users in identifying the system that contains the database they wish to access. A value for DB2SYSTEM
is set at installation time as follows:

v On Windows NT, or Windows 95, the setup program sets it equal to the computer name specified for
the Windows system.

v On OS/2, the user is prompted to enter the DB2SYSTEM name during the installation process.

v On UNIX systems, it is set equal to the UNIX system’s TCP/IP hostname.

DB2UPMPR OS/2 Default=ON

Values: ON or OFF

Specifies whether or not the UPM logon screen will display on the screen when the user enters the
wrong user ID or password on OS/2.

DB2_VENDOR_INI AIX, HP-UX, Sun
Solaris, and
Windows NT

Default=null

Values: Any valid path and file.

Appendix A. DB2 Registry and Environment Variables 521

|
|
|
|

|
|

|
|

|
|
|
|

|
|

|

|

|

||
|
|

|

|

Table 30. Miscellaneous Variables (continued)

Variable Name Operating System Values

Description

Points to a file containing all vendor-specific environment settings. The value is picked up when the
database manager starts.

DB2_XBSA_LIBRARY AIX, HP-UX, Sun
Solaris, and
Windows NT

Default=null

Values: Any valid path and file.

Points to the vendor-supplied XBSA library. On AIX, the setting must include the shared object if it is
not named shr.o. HP-UX, Sun Solaris, and Windows NT do not require the shared object name. For
example, to use Legato’s NetWorker Business Suite Module for DB2, the registry variable must be set
as follows:

db2set DB2_XSBA_LIBRARY="/usr/lib/libxdb2.a(bsashr10.o)"

The XBSA interface can be invoked through the BACKUP DATABASE or the RESTORE DATABASE
commands. For example:

db2 backup db sample use XBSA
db2 restore db sample use XBSA

522 Administration Guide: Performance

||
|
|

|

|

|
|
|
|

|

|
|

|
|

|

Appendix B. Explain Tables and Definitions

The Explain tables capture access plans when the Explain facility is activated.
The following Explain tables and definitions are described in this section:
v “EXPLAIN_ARGUMENT Table” on page 524
v “EXPLAIN_INSTANCE Table” on page 528
v “EXPLAIN_OBJECT Table” on page 530
v “EXPLAIN_OPERATOR Table” on page 532
v “EXPLAIN_PREDICATE Table” on page 534
v “EXPLAIN_STATEMENT Table” on page 536
v “EXPLAIN_STREAM Table” on page 539
v “ADVISE_INDEX Table” on page 540
v “ADVISE_WORKLOAD Table” on page 543

The Explain tables must be created before Explain can be invoked. To create
them, use the sample command line processor input script provided in the
EXPLAIN.DDL file located in the 'misc' subdirectory of the 'sqllib' directory.
Connect to the database where the Explain tables are required. Then issue the
command: db2 -tf EXPLAIN.DDL and the tables will be created. See “Table
Definitions for Explain Tables” on page 544 for more information.

The population of the Explain tables by the Explain facility will neither
activate any triggers nor activate any referential or check constraints. For
example, if an insert trigger were defined on the EXPLAIN_INSTANCE table
and an eligible statement were explained, the trigger would not be activated.

See “Chapter 7. SQL Explain Facility” on page 213 for more details on the
Explain facility.

Legend for the Explain Tables:

Heading Explanation
Column name Name of the column
Data Type Data type of the column
Nullable? Yes: Nulls are permitted

No: Nulls are not permitted
Key? PK: Column is part of a primary key

FK: Column is part of a foreign key
Description Description of the column

© Copyright IBM Corp. 1993, 2001 523

EXPLAIN_ARGUMENT Table

The EXPLAIN_ARGUMENT table represents the unique characteristics for
each individual operator, if there are any.

Table 31. EXPLAIN_ARGUMENT Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the
dynamic statement was explained or name of
the source file when static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain
request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row
is relevant.

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

OPERATOR_ID INTEGER No No Unique ID for this operator within this query.

ARGUMENT_TYPE CHAR(8) No No The type of argument for this operator.

ARGUMENT_VALUE VARCHAR(1024) Yes No The value of the argument for this operator.
NULL if the value is in
LONG_ARGUMENT_VALUE.

LONG_ARGUMENT_VALUE CLOB(1M) Yes No The value of the argument for this operator,
when the text will not fit in
ARGUMENT_VALUE. NULL if the value is in
ARGUMENT_VALUE.

Table 32. ARGUMENT_TYPE and ARGUMENT_VALUE Column Values

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

AGGMODE COMPLETE
PARTIAL
INTERMEDIATE
FINAL

Partial aggregation indicators.

BITFLTR TRUE
FALSE

Hash Join will use a bit filter to enhance
performance.

CSETEMP TRUE
FALSE

Temporary Table over Common
Subexpression Flag.

DIRECT TRUE Direct fetch indicator.

DUPLWARN TRUE
FALSE

Duplicates Warning flag.

Explain Tables

524 Administration Guide: Performance

Table 32. ARGUMENT_TYPE and ARGUMENT_VALUE Column Values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

EARLYOUT TRUE
FALSE

Early out indicator.

ENVVAR Each row of this type will contain:

v Environment variable name

v Environment variable value

Environment variable affecting the optimizer

FETCHMAX IGNORE
INTEGER

Override value for MAXPAGES argument on
FETCH operator.

GROUPBYC TRUE
FALSE

Whether Group By columns were provided.

GROUPBYN Integer Number of comparison columns.

GROUPBYR Each row of this type will contain:

v Ordinal value of column in group by
clause (followed by a colon and a space)

v Name of Column

Group By requirement.

INNERCOL Each row of this type will contain:

v Ordinal value of column in order (followed
by a colon and a space)

v Name of Column

v Order Value

(A) Ascending

(D) Descending

Inner order columns.

ISCANMAX IGNORE
INTEGER

Override value for MAXPAGES argument on
ISCAN operator.

JN_INPUT INNER
OUTER

Indicates if operator is the operator feeding
the inner or outer of a join.

LISTENER TRUE
FALSE

Listener Table Queue indicator.

MAXPAGES ALL
NONE
INTEGER

Maximum pages expected for Prefetch.

MAXRIDS NONE
INTEGER

Maximum Row Identifiers to be included in
each list prefetch request.

NUMROWS INTEGER Number of rows expected to be sorted.

ONEFETCH TRUE
FALSE

One Fetch indicator.

Explain Tables

Appendix B. Explain Tables and Definitions 525

Table 32. ARGUMENT_TYPE and ARGUMENT_VALUE Column Values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

OUTERCOL Each row of this type will contain:

v Ordinal value of column in order (followed
by a colon and a space)

v Name of Column

v Order Value

(A) Ascending

(D) Descending

Outer order columns.

OUTERJN LEFT
RIGHT

Outer join indicator.

PARTCOLS Name of Column Partitioning columns for operator.

PREFETCH LIST
NONE
SEQUENTIAL

Type of Prefetch Eligible.

RMTQTEXT Query text Remote Query Text

ROWLOCK EXCLUSIVE
NONE
REUSE
SHARE
SHORT (INSTANT) SHARE
UPDATE

Row Lock Intent.

ROWWIDTH INTEGER Width of row to be sorted.

SCANDIR FORWARD
REVERSE

Scan Direction.

SCANGRAN INTEGER Intra-partition parallelism, granularity of the
intra-partition parallel scan, expressed in
SCANUNITs.

SCANTYPE LOCAL PARALLEL intra-partition parallelism, Index or Table
scan.

SCANUNIT ROW
PAGE

Intra-partition parallelism, scan granularity
unit.

SERVER Remote server Remote server

SHARED TRUE Intra-partition parallelism, shared TEMP
indicator.

SLOWMAT TRUE
FALSE

Slow Materialization flag.

SNGLPROD TRUE
FALSE

Intra-partition parallelism sort or temp
produced by a single agent.

Explain Tables

526 Administration Guide: Performance

Table 32. ARGUMENT_TYPE and ARGUMENT_VALUE Column Values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

SORTKEY Each row of this type will contain:

v Ordinal value of column in key (followed
by a colon and a space)

v Name of Column

v Order Value

(A) Ascending

(D) Descending

Sort key columns.

SORTTYPE PARTITIONED
SHARED
ROUND ROBIN
REPLICATED

Intra-partition parallelism, sort type.

TABLOCK EXCLUSIVE
INTENT EXCLUSIVE
INTENT NONE
INTENT SHARE
REUSE
SHARE
SHARE INTENT EXCLUSIVE
SUPER EXCLUSIVE
UPDATE

Table Lock Intent.

TQDEGREE INTEGER intra-partition parallelism, number of
subagents accessing Table Queue.

TQMERGE TRUE
FALSE

Merging (sorted) Table Queue indicator.

TQREAD READ AHEAD
STEPPING
SUBQUERY STEPPING

Table Queue reading property.

TQSEND BROADCAST
DIRECTED
SCATTER
SUBQUERY DIRECTED

Table Queue send property.

TQTYPE LOCAL Intra-partition parallelism, Table Queue.

TRUNCSRT TRUE Truncated sort (limits number of rows
produced).

UNIQUE TRUE
FALSE

Uniqueness indicator.

UNIQKEY Each row of this type will contain:

v Ordinal value of column in key (followed
by a colon and a space)

v Name of Column

Unique key columns.

VOLATILE TRUE Volatile table

Explain Tables

Appendix B. Explain Tables and Definitions 527

EXPLAIN_INSTANCE Table

The EXPLAIN_INSTANCE table is the main control table for all Explain
information. Each row of data in the Explain tables is explicitly linked to one
unique row in this table. The EXPLAIN_INSTANCE table gives basic
information about the source of the SQL statements being explained as well as
information about the environment in which the explanation took place.

For the definition of this table, see “EXPLAIN_INSTANCE Table Definition”
on page 546.

Table 33. EXPLAIN_INSTANCE Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No PK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No PK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No PK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No PK Schema, or qualifier, of source of Explain request.

EXPLAIN_OPTION CHAR(1) No No Indicates what Explain Information was requested
for this request.

Possible values are:
P PLAN SELECTION

SNAPSHOT_TAKEN CHAR(1) No No Indicates whether an Explain Snapshot was taken
for this request.

Possible values are:
Y Yes, an Explain Snapshot(s) was taken

and stored in the
EXPLAIN_STATEMENT table. Regular
Explain information was also captured.

N No Explain Snapshot was taken.
Regular Explain information was
captured.

O Only an Explain Snapshot was taken.
Regular Explain information was not
captured.

DB2_VERSION CHAR(7) No No Product release number for DB2 Universal
Database which processed this explain request.
Format is vv.rr.m, where:
vv Version Number
rr Release Number
m Maintenance Release Number

Explain Tables

528 Administration Guide: Performance

Table 33. EXPLAIN_INSTANCE Table (continued)

Column Name Data Type Nullable? Key? Description

SQL_TYPE CHAR(1) No No Indicates whether the Explain Instance was for
static or dynamic SQL.

Possible values are:
S Static SQL
D Dynamic SQL

QUERYOPT INTEGER No No Indicates the query optimization class used by the
SQL Compiler at the time of the Explain
invocation. The value indicates what level of
query optimization was performed by the SQL
Compiler for the SQL statements being explained.

BLOCK CHAR(1) No No Indicates what type of cursor blocking was used
when compiling the SQL statements. For more
information, see the BLOCK column in
SYSCAT.PACKAGES.

Possible values are:
N No Blocking
U Block Unambiguous Cursors
B Block All Cursors

ISOLATION CHAR(2) No No Indicates what type of isolation was used when
compiling the SQL statements. For more
information, see the ISOLATION column in
SYSCAT.PACKAGES.

Possible values are:
RR Repeatable Read
RS Read Stability
CS Cursor Stability
UR Uncommitted Read

BUFFPAGE INTEGER No No Contains the value of the BUFFPAGE database
configuration setting at the time of the Explain
invocation.

AVG_APPLS INTEGER No No Contains the value of the AVG_APPLS
configuration parameter at the time of the
Explain invocation.

SORTHEAP INTEGER No No Contains the value of the SORTHEAP database
configuration setting at the time of the Explain
invocation.

LOCKLIST INTEGER No No Contains the value of the LOCKLIST database
configuration setting at the time of the Explain
invocation.

MAXLOCKS SMALLINT No No Contains the value of the MAXLOCKS database
configuration setting at the time of the Explain
invocation.

LOCKS_AVAIL INTEGER No No Contains the number of locks assumed to be
available by the optimizer for each user. (Derived
from LOCKLIST and MAXLOCKS.)

Explain Tables

Appendix B. Explain Tables and Definitions 529

Table 33. EXPLAIN_INSTANCE Table (continued)

Column Name Data Type Nullable? Key? Description

CPU_SPEED DOUBLE No No Contains the value of the CPUSPEED database
manager configuration setting at the time of the
Explain invocation.

REMARKS VARCHAR(254) Yes No User-provided comment.

DBHEAP INTEGER No No Contains the value of the DBHEAP database
configuration setting at the time of Explain
invocation.

COMM_SPEED DOUBLE No No Contains the value of the COMM_BANDWIDTH
database configuration setting at the time of
Explain invocation.

PARALLELISM CHAR(2) No No Possible values are:

v N = No parallelism

v P = Intra-partition parallelism

v IP = Inter-partition parallelism

v BP = Intra-partition parallelism and
inter-partition parallelism

DATAJOINER CHAR(1) No No Possible values are:

v N = Non-federated systems plan

v Y = Federated systems plan

EXPLAIN_OBJECT Table

The EXPLAIN_OBJECT table identifies those data objects required by the
access plan generated to satisfy the SQL statement.

Table 34. EXPLAIN_OBJECT Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is
relevant.

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

OBJECT_SCHEMA VARCHAR(128) No No Schema to which this object belongs.

OBJECT_NAME VARCHAR(128) No No Name of the object.

Explain Tables

530 Administration Guide: Performance

Table 34. EXPLAIN_OBJECT Table (continued)

Column Name Data Type Nullable? Key? Description

OBJECT_TYPE CHAR(2) No No Descriptive label for the type of object.

CREATE_TIME TIMESTAMP Yes No Time of Object’s creation; null if a table function.

STATISTICS_TIME TIMESTAMP Yes No Last time of update to statistics for this object;
null if statistics do not exist for this object.

COLUMN_COUNT SMALLINT No No Number of columns in this object.

ROW_COUNT INTEGER No No Estimated number of rows in this object.

WIDTH INTEGER No No The average width of the object in bytes. Set to -1
for an index.

PAGES INTEGER No No Estimated number of pages that the object
occupies in the buffer pool. Set to -1 for a table
function.

DISTINCT CHAR(1) No No Indicates if the rows in the object are distinct (i.e.
no duplicates)

Possible values are:

Y Yes

N No

TABLESPACE_NAME VARCHAR(128) Yes No Name of the table space in which this object is
stored; set to null if no table space is involved.

OVERHEAD DOUBLE No No Total estimated overhead, in milliseconds, for a
single random I/O to the specified table space.
Includes controller overhead, disk seek, and
latency times. Set to -1 if no table space is
involved.

TRANSFER_RATE DOUBLE No No Estimated time to read a data page, in
milliseconds, from the specified table space. Set to
-1 if no table space is involved.

PREFETCHSIZE INTEGER No No Number of data pages to be read when prefetch is
performed. Set to -1 for a table function.

EXTENTSIZE INTEGER No No Size of extent, in data pages. This many pages are
written to one container in the table space before
switching to the next container. Set to -1 for a
table function.

CLUSTER DOUBLE No No Degree of data clustering with the index. If >= 1,
this is the CLUSTERRATIO. If >= 0 and < 1, this
is the CLUSTERFACTOR. Set to -1 for a table,
table function, or if this statistic is not available.

NLEAF INTEGER No No Number of leaf pages this index object’s values
occupy. Set to -1 for a table, table function, or if
this statistic is not available.

NLEVELS INTEGER No No Number of index levels in this index object’s tree.
Set to -1 for a table, table function, or if this
statistic is not available.

Explain Tables

Appendix B. Explain Tables and Definitions 531

Table 34. EXPLAIN_OBJECT Table (continued)

Column Name Data Type Nullable? Key? Description

FULLKEYCARD BIGINT No No Number of distinct full key values contained in
this index object. Set to -1 for a table, table
function, or if this statistic is not available.

OVERFLOW INTEGER No No Total number of overflow records in the table. Set
to -1 for an index, table function, or if this statistic
is not available.

FIRSTKEYCARD BIGINT No No Number of distinct first key values. Set to −1 for a
table, table function or if this statistic is not
available.

FIRST2KEYCARD BIGINT No No Number of distinct first key values using the first
{2,3,4} columns of the index. Set to −1 for a table,
table function or if this statistic is not available.

FIRST3KEYCARD BIGINT No No

FIRST4KEYCARD BIGINT No No

SEQUENTIAL_PAGES INTEGER No No Number of leaf pages located on disk in index key
order with few or no large gaps between them.
Set to −1 for a table, table function or if this
statistic is not available.

DENSITY INTEGER No No Ratio of SEQUENTIAL_PAGES to number of
pages in the range of pages occupied by the
index, expressed as a percentage (integer between
0 and 100). Set to −1 for a table, table function or
if this statistic is not available.

Table 35. Possible OBJECT_TYPE Values

Value Description

IX Index

TA Table

TF Table Function

EXPLAIN_OPERATOR Table

The EXPLAIN_OPERATOR table contains all the operators needed to satisfy
the SQL statement by the SQL compiler.

Table 36. EXPLAIN_OPERATOR Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

Explain Tables

532 Administration Guide: Performance

Table 36. EXPLAIN_OPERATOR Table (continued)

Column Name Data Type Nullable? Key? Description

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is
relevant.

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

OPERATOR_ID INTEGER No No Unique ID for this operator within this query.

OPERATOR_TYPE CHAR(6) No No Descriptive label for the type of operator.

TOTAL_COST DOUBLE No No Estimated cumulative total cost (in timerons) of
executing the chosen access plan up to and
including this operator.

IO_COST DOUBLE No No Estimated cumulative I/O cost (in data page
I/Os) of executing the chosen access plan up to
and including this operator.

CPU_COST DOUBLE No No Estimated cumulative CPU cost (in instructions) of
executing the chosen access plan up to and
including this operator.

FIRST_ROW_COST DOUBLE No No Estimated cumulative cost (in timerons) of
fetching the first row for the access plan up to and
including this operator. This value includes any
initial overhead required.

RE_TOTAL_COST DOUBLE No No Estimated cumulative cost (in timerons) of
fetching the next row for the chosen access plan
up to and including this operator.

RE_IO_COST DOUBLE No No Estimated cumulative I/O cost (in data page
I/Os) of fetching the next row for the chosen
access plan up to and including this operator.

RE_CPU_COST DOUBLE No No Estimated cumulative CPU cost (in timerons) of
fetching the next row for the chosen access plan
up to and including this operator.

COMM_COST DOUBLE No No Estimated cumulative communication cost (in
TCP/IP frames) of executing the chosen access
plan up to and including this operator.

FIRST_COMM_COST DOUBLE No No Estimated cumulative communications cost (in
TCP/IP frames) of fetching the first row for the
chosen access plan up to and including this
operator. This value includes any initial overhead
required.

BUFFERS DOUBLE No No Estimated buffer requirements for this operator
and its inputs.

REMOTE_TOTAL_COST DOUBLE No No Estimated cumulative total cost (in timerons) of
performing operation(s) on remote database(s).

REMOTE_COMM_COST DOUBLE No No Estimated cumulative communication cost of
executing the chosen remote access plan up to and
including this operator.

Explain Tables

Appendix B. Explain Tables and Definitions 533

Table 37. OPERATOR_TYPE Values

Value Description

DELETE Delete

FETCH Fetch

FILTER Filter rows

GENROW Generate Row

GRPBY Group By

HSJOIN Hash Join

INSERT Insert

IXAND Dynamic Bitmap Index ANDing

IXSCAN Index Scan

MSJOIN Merge Scan Join

NLJOIN Nested loop Join

RETURN Result

RIDSCN Row Identifier (RID) Scan

RQUERY Remote Query

SORT Sort

TBSCAN Table Scan

TEMP Temporary Table Construction

TQ Table Queue

UNION Union

UNIQUE Duplicate Elimination

UPDATE Update

EXPLAIN_PREDICATE Table

The EXPLAIN_PREDICATE table identifies which predicates are applied by a
specific operator.

Table 38. EXPLAIN_PREDICATE Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is
relevant.

Explain Tables

534 Administration Guide: Performance

Table 38. EXPLAIN_PREDICATE Table (continued)

Column Name Data Type Nullable? Key? Description

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

OPERATOR_ID INTEGER No No Unique ID for this operator within this query.

PREDICATE_ID INTEGER No No Unique ID for this predicate for the specified
operator.

HOW_APPLIED CHAR(5) No No How predicate is being used by the specified
operator.

WHEN_EVALUATED CHAR(3) No No Indicates when the subquery used in this
predicate is evaluated.

Possible values are:

blank This predicate does not contain a
subquery.

EAA The subquery used in this predicate is
evaluated at application (EAA). That is,
it is re-evaluated for every row
processed by the specified operator, as
the predicate is being applied.

EAO The subquery used in this predicate is
evaluated at open (EAO). That is, it is
re-evaluated only once for the specified
operator, and its results are re-used in
the application of the predicate for each
row.

MUL There is more than one type of
subquery in this predicate.

RELOP_TYPE CHAR(2) No No The type of relational operator used in this
predicate.

SUBQUERY CHAR(1) No No Whether or not a data stream from a subquery is
required for this predicate. There may be multiple
subquery streams required.

Possible values are:

N No subquery stream is required

Y One or more subquery streams is
required

FILTER_FACTOR DOUBLE No No The estimated fraction of rows that will be
qualified by this predicate.

PREDICATE_TEXT CLOB(1M) Yes No The text of the predicate as recreated from the
internal representation of the SQL statement.

Null if not available.

Explain Tables

Appendix B. Explain Tables and Definitions 535

Table 39. Possible HOW_APPLIED Values

Value Description

JOIN Used to join tables

RESID Evaluated as a residual predicate

SARG Evaluated as a sargable predicate for index or data page

START Used as a start condition

STOP Used as a stop condition

Table 40. Possible RELOP_TYPE Values

Value Description

blanks Not Applicable

EQ Equals

GE Greater Than or Equal

GT Greater Than

IN In list

LE Less Than or Equal

LK Like

LT Less Than

NE Not Equal

NL Is Null

NN Is Not Null

EXPLAIN_STATEMENT Table

The EXPLAIN_STATEMENT table contains the text of the SQL statement as it
exists for the different levels of Explain information. The original SQL
statement as entered by the user is stored in this table along with the version
used (by the optimizer) to choose an access plan to satisfy the SQL statement.
The latter version may bear little resemblance to the original as it may have
been rewritten and/or enhanced with additional predicates as determined by
the SQL Compiler.

For the definition of this table, see “EXPLAIN_STATEMENT Table Definition”
on page 550.

Table 41. EXPLAIN_STATEMENT Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No PK,
FK

Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No PK,
FK

Time of initiation for Explain request.

Explain Tables

536 Administration Guide: Performance

Table 41. EXPLAIN_STATEMENT Table (continued)

Column Name Data Type Nullable? Key? Description

SOURCE_NAME VARCHAR(128) No PK,
FK

Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No PK,
FK

Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No PK Level of Explain information for which this row
is relevant.

Valid values are:
O Original Text (as entered by user)
P PLAN SELECTION

STMTNO INTEGER No PK Statement number within package to which this
explain information is related. Set to 1 for
dynamic Explain SQL statements. For static SQL
statements, this value is the same as the value
used for the SYSCAT.STATEMENTS catalog view.

SECTNO INTEGER No PK Section number within package that contains this
SQL statement. For dynamic Explain SQL
statements, this is the section number used to
hold the section for this statement at runtime. For
static SQL statements, this value is the same as
the value used for the SYSCAT.STATEMENTS
catalog view.

QUERYNO INTEGER No No Numeric identifier for explained SQL statement.
For dynamic SQL statements (excluding the
EXPLAIN SQL statement) issued through CLP or
CLI, the default value is a sequentially
incremented value. Otherwise, the default value
is the value of STMTNO for static SQL statements
and 1 for dynamic SQL statements.

QUERYTAG CHAR(20) No No Identifier tag for each explained SQL statement.
For dynamic SQL statements issued through CLP
(excluding the EXPLAIN SQL statement), the
default value is 'CLP'. For dynamic SQL
statements issued through CLI (excluding the
EXPLAIN SQL statement), the default value is
'CLI'. Otherwise, the default value used is blanks.

STATEMENT_TYPE CHAR(2) No No Descriptive label for type of query being
explained.

Possible values are:
S Select
D Delete
DC Delete where current of cursor
I Insert
U Update
UC Update where current of cursor

Explain Tables

Appendix B. Explain Tables and Definitions 537

Table 41. EXPLAIN_STATEMENT Table (continued)

Column Name Data Type Nullable? Key? Description

UPDATABLE CHAR(1) No No Indicates if this statement is considered
updatable. This is particularly relevant to SELECT
statements which may be determined to be
potentially updatable.

Possible values are:
’ ’ Not applicable (blank)
N No
Y Yes

DELETABLE CHAR(1) No No Indicates if this statement is considered deletable.
This is particularly relevant to SELECT statements
which may be determined to be potentially
deletable.

Possible values are:
’ ’ Not applicable (blank)
N No
Y Yes

TOTAL_COST DOUBLE No No Estimated total cost (in timerons) of executing the
chosen access plan for this statement; set to 0
(zero) if EXPLAIN_LEVEL is O (original text)
since no access plan has been chosen at this time.

STATEMENT_TEXT CLOB(1M) No No Text or portion of the text of the SQL statement
being explained. The text shown for the Plan
Selection level of Explain has been reconstructed
from the internal representation and is SQL-like
in nature; that is, the reconstructed statement is
not guaranteed to follow correct SQL syntax.

SNAPSHOT BLOB(10M) Yes No Snapshot of internal representation for this SQL
statement at the Explain_Level shown.

This column is intended for use with DB2 Visual
Explain. Column is set to null if
EXPLAIN_LEVEL is 0 (original statement) since
no access plan has been chosen at the time that
this specific version of the statement is captured.

QUERY_DEGREE INTEGER No No Indicates the degree of intra-partition parallelism
at the time of Explain invocation. For the original
statement, this contains the directed degree of
intra-partition parallelism. For the PLAN
SELECTION, this contains the degree of
intra-partition parallelism generated for the plan
to use.

Explain Tables

538 Administration Guide: Performance

EXPLAIN_STREAM Table

The EXPLAIN_STREAM table represents the input and output data streams
between individual operators and data objects. The data objects themselves
are represented in the EXPLAIN_OBJECT table. The operators involved in a
data stream are to be found in the EXPLAIN_OPERATOR table.

Table 42. EXPLAIN_STREAM Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is
relevant.

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

STREAM_ID INTEGER No No Unique ID for this data stream within the
specified operator.

SOURCE_TYPE CHAR(1) No No Indicates the source of this data stream:

O Operator

D Data Object

SOURCE_ID SMALLINT No No Unique ID for the operator within this query that
is the source of this data stream. Set to -1 if
SOURCE_TYPE is ’D’.

TARGET_TYPE CHAR(1) No No Indicates the target of this data stream:

O Operator

D Data Object

TARGET_ID SMALLINT No No Unique ID for the operator within this query that
is the target of this data stream. Set to -1 if
TARGET_TYPE is ’D’.

OBJECT_SCHEMA VARCHAR(128) Yes No Schema to which the affected data object belongs.
Set to null if both SOURCE_TYPE and
TARGET_TYPE are ’O’.

OBJECT_NAME VARCHAR(128) Yes No Name of the object that is the subject of data
stream. Set to null if both SOURCE_TYPE and
TARGET_TYPE are ’O’.

STREAM_COUNT DOUBLE No No Estimated cardinality of data stream.

COLUMN_COUNT SMALLINT No No Number of columns in data stream.

Explain Tables

Appendix B. Explain Tables and Definitions 539

Table 42. EXPLAIN_STREAM Table (continued)

Column Name Data Type Nullable? Key? Description

PREDICATE_ID INTEGER No No If this stream is part of a subquery for a predicate,
the predicate ID will be reflected here, otherwise
the column is set to -1.

COLUMN_NAMES CLOB(1M) Yes No This column contains the names and ordering
information of the columns involved in this
stream.

These names will be in the format of:

NAME1(A)+NAME2(D)+NAME3+NAME4

Where (A) indicates a column in ascending order,
(D) indicates a column in descending order, and
no ordering information indicates that either the
column is not ordered or ordering is not relevant.

PMID SMALLINT No No Partitioning map ID.

SINGLE_NODE CHAR(5) Yes No Indicates if this data stream is on a single or
multiple partitions:

MULT On multiple partitions

COOR On coordinator node

HASH Directed using hashing

RID Directed using the row ID

FUNC Directed using a function (PARTITION()
or NODENUMBER())

CORR Directed using a correlation value

Numberic
Directed to predetermined single node

PARTITION_COLUMNS CLOB(64K) Yes No List of columns this data stream is partitioned on.

ADVISE_INDEX Table

The ADVISE_INDEX table represents the recommended indexes.

Table 43. ADVISE_INDEX Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No No Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No No Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No No Name of the package running when the dynamic
statement was explained or name of the source
file when static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No No Schema, or qualifier, of source of Explain request.

Explain Tables

540 Administration Guide: Performance

|
|

Table 43. ADVISE_INDEX Table (continued)

Column Name Data Type Nullable? Key? Description

EXPLAIN_LEVEL CHAR(1) No No Level of Explain information for which this row is
relevant.

STMTNO INTEGER No No Statement number within package to which this
explain information is related.

SECTNO INTEGER No No Section number within package to which this
explain information is related.

QUERYNO INTEGER No No Numeric identifier for explained SQL statement.
For dynamic SQL statements (excluding the
EXPLAIN SQL statement) issued through CLP or
CLI, the default value is a sequentially
incremented value. Otherwise, the default value is
the value of STMTNO for static SQL statements
and 1 for dynamic SQL statements.

QUERYTAG CHAR(20) No No Identifier tag for each explained SQL statement.
For dynamic SQL statements issued through CLP
(excluding the EXPLAIN SQL statement), the
default value is 'CLP'. For dynamic SQL
statements issued through CLI (excluding the
EXPLAIN SQL statement), the default value is
'CLI'. Otherwise, the default value used is blanks.

NAME VARCHAR(128) No No Name of the index.

CREATOR VARCHAR(128) No No Qualifier of the index name.

TBNAME VARCHAR(128) No No Name of the table or nickname on which the
index is defined.

TBCREATOR VARCHAR(128) No No Qualifier of the table name.

COLNAMES CLOB(64K) No No List of column names.

UNIQUERULE CHAR(1) No No Unique rule:

D = Duplicates allowed

P = Primary index

U = Unique entries only allowed

COLCOUNT SMALLINT No No Number of columns in the key plus the number of
include columns if any.

IID SMALLINT No No Internal index ID.

NLEAF INTEGER No No Number of leaf pages; −1 if statistics are not
gathered.

NLEVELS SMALLINT No No Number of index levels; −1 if statistics are not
gathered.

FULLKEYCARD BIGINT No No Number of distinct full key values; −1 if statistics
are not gathered.

FIRSTKEYCARD BIGINT No No Number of distinct first key values; −1 if statistics
are not gathered.

Explain Tables

Appendix B. Explain Tables and Definitions 541

Table 43. ADVISE_INDEX Table (continued)

Column Name Data Type Nullable? Key? Description

CLUSTERRATIO SMALLINT No No Degree of data clustering with the index; −1 if
statistics are not gathered or if detailed index
statistics are gathered (in which case,
CLUSTERFACTOR will be used instead).

CLUSTERFACTOR DOUBLE No No Finer measurement of degree of clustering, or −1
if detailed index statistics have not been gathered
or if the index is defined on a nickname.

USERDEFINED SMALLINT No No Defined by the user.

SYSTEM_REQUIRED SMALLINT No No 1 if this index is required for primary key or
unique key constraint, OR if this is the index
on the object identifier (OID) column of a
typed table.

2 if this index is required for primary key or
unique key constraint, AND this is the index
on the object identifier (OID) column of a
typed table.

0 otherwise.

CREATE_TIME TIMESTAMP No No Time when the index was created.

STATS_TIME TIMESTAMP Yes No Last time when any change was made to recorded
statistics for this index. Null if no statistics
available.

PAGE_FETCH_PAIRS VARCHAR(254) No No A list of pairs of integers, represented in character
form. Each pair represents the number of pages in
a hypothetical buffer, and the number of page
fetches required to scan the table with this index
using that hypothetical buffer. (Zero-length string
if no data available.)

REMARKS VARCHAR(254) Yes No User-supplied comment, or null.

DEFINER VARCHAR(128) No No User who created the index.

CONVERTED CHAR(1) No No Reserved for future use.

SEQUENTIAL_PAGES INTEGER No No Number of leaf pages located on disk in index key
order with few or no large gaps between them.
(−1 if no statistics are available.)

DENSITY INTEGER No No Ratio of SEQUENTIAL_PAGES to number of
pages in the range of pages occupied by the
index, expressed as a percent (integer between 0
and 100, −1 if no statistics are available.)

FIRST2KEYCARD BIGINT No No Number of distinct keys using the first two
columns of the index (−1 if no statistics or
inapplicable)

FIRST3KEYCARD BIGINT No No Number of distinct keys using the first three
columns of the index (−1 if no statistics or
inapplicable)

Explain Tables

542 Administration Guide: Performance

Table 43. ADVISE_INDEX Table (continued)

Column Name Data Type Nullable? Key? Description

FIRST4KEYCARD BIGINT No No Number of distinct keys using the first four
columns of the index (−1 if no statistics or
inapplicable)

PCTFREE SMALLINT No No Percentage of each index leaf page to be reserved
during initial building of the index. This space is
available for future inserts after the index is built.

UNIQUE_COLCOUNT SMALLINT No No The number of columns required for a unique key.
Always <=COLCOUNT. < COLCOUNT only if
there a include columns. −1 if index has no
unique key (permits duplicates)

MINPCTUSED SMALLINT No No If not zero, then on-line index reorganization is
enabled and the value is the threshold of
minimum used space before merging pages.

REVERSE_SCANS CHAR(1) No No Y = Index supports reverse scans

N = Index does not support reverse scans

USE_INDEX CHAR(1) Yes No Y = index recommended or evaluated

N = index not to be recommended

CREATION_TEXT CLOB(1M) No No The SQL statement used to create the index.

PACKED_DESC BLOB(20M) Yes No Internal description of the table.

ADVISE_WORKLOAD Table

The ADVISE_WORKLOAD table represents the statement that makes up the
workload. For more details on workload refer to Administration Guide:
Performance.

Table 44. ADVISE_WORKLOAD Table

Column Name Data Type Nullable? Key? Description

WORKLOAD_NAME CHAR(128) No No Name of the collection of SQL statements
(workload) that this statments belongs to.

STATEMENT_NO INTEGER No No Statement number within the workload to which
this explain information is related.

STATEMENT_TEXT CLOB(1M) No No Content of the SQL statement.

STATEMENT_TAG VARCHAR(256) No No Identifier tag for each explained SQL statement.

FREQUENCY INTEGER No No The number of times this statement appears
within the workload.

IMPORTANCE DOUBLE No No Importance of the statement.

COST_BEFORE DOUBLE Yes No The cost (in timerons) of the query if the
recommended indexes are not created.

COST_AFTER DOUBLE Yes No The cost (in timerons) of the query if the
recommended indexes are created.

Explain Tables

Appendix B. Explain Tables and Definitions 543

Table Definitions for Explain Tables

The Explain tables must be created before Explain can be invoked. The
following definitions specify how to create the necessary Explain tables:
v “EXPLAIN_ARGUMENT Table Definition” on page 545
v “EXPLAIN_INSTANCE Table Definition” on page 546
v “EXPLAIN_OBJECT Table Definition” on page 547
v “EXPLAIN_OPERATOR Table Definition” on page 548
v “EXPLAIN_PREDICATE Table Definition” on page 549
v “EXPLAIN_STATEMENT Table Definition” on page 550
v “EXPLAIN_STREAM Table Definition” on page 551
v “ADVISE_INDEX Table Definition” on page 552
v “ADVISE_WORKLOAD Table Definition” on page 554

Alternately, create them by using the sample command line processor input
script provided in the EXPLAIN.DDL file located in the 'misc' subdirectory of
the 'sqllib' directory. Connect to the database where the Explain tables are
required. Then issue the command: db2 -tf EXPLAIN.DDL and the tables will
be created.

Explain Tables

544 Administration Guide: Performance

EXPLAIN_ARGUMENT Table Definition
CREATE TABLE EXPLAIN_ARGUMENT (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,

EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
EXPLAIN_LEVEL CHAR(1) NOT NULL,
STMTNO INTEGER NOT NULL,
SECTNO INTEGER NOT NULL,
OPERATOR_ID INTEGER NOT NULL,
ARGUMENT_TYPE CHAR(8) NOT NULL,
ARGUMENT_VALUE VARCHAR(1024) NOT NULL,
LONG_ARGUMENT_VALUE CLOB(1M) NOT LOGGED,

FOREIGN KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA,
EXPLAIN_LEVEL,
STMTNO,
SECTNO)

REFERENCES EXPLAIN_STATEMENT
ON DELETE CASCADE)

Explain Tables

Appendix B. Explain Tables and Definitions 545

EXPLAIN_INSTANCE Table Definition
CREATE TABLE EXPLAIN_INSTANCE (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,

EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
EXPLAIN_OPTION CHAR(1) NOT NULL,
SNAPSHOT_TAKEN CHAR(1) NOT NULL,
DB2_VERSION CHAR(7) NOT NULL,
SQL_TYPE CHAR(1) NOT NULL,
QUERYOPT INTEGER NOT NULL,
BLOCK CHAR(1) NOT NULL,
ISOLATION CHAR(2) NOT NULL,
BUFFPAGE INTEGER NOT NULL,
AVG_APPLS INTEGER NOT NULL,
SORTHEAP INTEGER NOT NULL,
LOCKLIST INTEGER NOT NULL,
MAXLOCKS SMALLINT NOT NULL,
LOCKS_AVAIL INTEGER NOT NULL,
CPU_SPEED DOUBLE NOT NULL,
REMARKS VARCHAR(254),
DBHEAP INTEGER NOT NULL,
COMM_SPEED DOUBLE NOT NULL,
PARALLELISM CHAR(2) NOT NULL,
DATAJOINER CHAR(1) NOT NULL,

PRIMARY KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA))

Explain Tables

546 Administration Guide: Performance

EXPLAIN_OBJECT Table Definition
CREATE TABLE EXPLAIN_OBJECT (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,

EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
EXPLAIN_LEVEL CHAR(1) NOT NULL,
STMTNO INTEGER NOT NULL,
SECTNO INTEGER NOT NULL,
OBJECT_SCHEMA VARCHAR(128) NOT NULL,
OBJECT_NAME VARCHAR(128) NOT NULL,
OBJECT_TYPE CHAR(2) NOT NULL,
CREATE_TIME TIMESTAMP,
STATISTICS_TIME TIMESTAMP,
COLUMN_COUNT SMALLINT NOT NULL,
ROW_COUNT INTEGER NOT NULL,
WIDTH INTEGER NOT NULL,
PAGES INTEGER NOT NULL,
DISTINCT CHAR(1) NOT NULL,
TABLESPACE_NAME VARCHAR(128),
OVERHEAD DOUBLE NOT NULL,
TRANSFER_RATE DOUBLE NOT NULL,
PREFETCHSIZE INTEGER NOT NULL,
EXTENTSIZE INTEGER NOT NULL,
CLUSTER DOUBLE NOT NULL,
NLEAF INTEGER NOT NULL,
NLEVELS INTEGER NOT NULL,
FULLKEYCARD BIGINT NOT NULL,
OVERFLOW INTEGER NOT NULL,
FIRSTKEYCARD BIGINT NOT NULL,
FIRST2KEYCARD BIGINT NOT NULL,
FIRST3KEYCARD BIGINT NOT NULL,
FIRST4KEYCARD BIGINT NOT NULL,
SEQUENTIAL_PAGES INTEGER NOT NULL,
DENSITY INTEGER NOT NULL,

FOREIGN KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA,
EXPLAIN_LEVEL,
STMTNO,
SECTNO)

REFERENCES EXPLAIN_STATEMENT
ON DELETE CASCADE)

Explain Tables

Appendix B. Explain Tables and Definitions 547

EXPLAIN_OPERATOR Table Definition

CREATE TABLE EXPLAIN_OPERATOR (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,
EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
EXPLAIN_LEVEL CHAR(1) NOT NULL,
STMTNO INTEGER NOT NULL,
SECTNO INTEGER NOT NULL,
OPERATOR_ID INTEGER NOT NULL,
OPERATOR_TYPE CHAR(6) NOT NULL,
TOTAL_COST DOUBLE NOT NULL,
IO_COST DOUBLE NOT NULL,
CPU_COST DOUBLE NOT NULL,
FIRST_ROW_COST DOUBLE NOT NULL,
RE_TOTAL_COST DOUBLE NOT NULL,
RE_IO_COST DOUBLE NOT NULL,
RE_CPU_COST DOUBLE NOT NULL,
COMM_COST DOUBLE NOT NULL,
FIRST_COMM_COST DOUBLE NOT NULL,
REMOTE_TOTAL_COST DOUBLE NOT NULL,
REMOTE_COMM_COST DOUBLE NOT NULL,

FOREIGN KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA,
EXPLAIN_LEVEL,
STMTNO,
SECTNO)

REFERENCES EXPLAIN_STATEMENT
ON DELETE CASCADE)

Explain Tables

548 Administration Guide: Performance

EXPLAIN_PREDICATE Table Definition
CREATE TABLE EXPLAIN_PREDICATE (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,

EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
EXPLAIN_LEVEL CHAR(1) NOT NULL,
STMTNO INTEGER NOT NULL,
SECTNO INTEGER NOT NULL,
OPERATOR_ID INTEGER NOT NULL,
PREDICATE_ID INTEGER NOT NULL,
HOW_APPLIED CHAR(5) NOT NULL,
WHEN_EVALUATED CHAR(3) NOT NULL,
RELOP_TYPE CHAR(2) NOT NULL,
SUBQUERY CHAR(1) NOT NULL,
FILTER_FACTOR DOUBLE NOT NULL,
PREDICATE_TEXT CLOB(1M) NOT LOGGED,

FOREIGN KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA,
EXPLAIN_LEVEL,
STMTNO,
SECTNO)

REFERENCES EXPLAIN_STATEMENT
ON DELETE CASCADE)

Explain Tables

Appendix B. Explain Tables and Definitions 549

EXPLAIN_STATEMENT Table Definition
CREATE TABLE EXPLAIN_STATEMENT (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,

EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
EXPLAIN_LEVEL CHAR(1) NOT NULL,
STMTNO INTEGER NOT NULL,
SECTNO INTEGER NOT NULL,
QUERYNO INTEGER NOT NULL,
QUERYTAG CHAR(20) NOT NULL,
STATEMENT_TYPE CHAR(2) NOT NULL,
UPDATABLE CHAR(1) NOT NULL,
DELETABLE CHAR(1) NOT NULL
TOTAL_COST DOUBLE NOT NULL,
STATEMENT_TEXT CLOB(1M) NOT NULL

NOT LOGGED,
SNAPSHOT BLOB(10M) NOT LOGGED,
QUERY_DEGREE INTEGER NOT NULL,

PRIMARY KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA,
EXPLAIN_LEVEL,
STMTNO,
SECTNO),

FOREIGN KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA)

REFERENCES EXPLAIN_INSTANCE
ON DELETE CASCADE)

Explain Tables

550 Administration Guide: Performance

EXPLAIN_STREAM Table Definition
CREATE TABLE EXPLAIN_STREAM (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,

EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
EXPLAIN_LEVEL CHAR(1) NOT NULL,
STMTNO INTEGER NOT NULL,
SECTNO INTEGER NOT NULL,
STREAM_ID INTEGER NOT NULL,
SOURCE_TYPE CHAR(1) NOT NULL,
SOURCE_ID SMALLINT NOT NULL,
TARGET_TYPE CHAR(1) NOT NULL,
TARGET_ID SMALLINT NOT NULL,
OBJECT_SCHEMA VARCHAR(128),
OBJECT_NAME VARCHAR(128),
STREAM_COUNT DOUBLE NOT NULL,
COLUMN_COUNT SMALLINT NOT NULL,
PREDICATE_ID INTEGER NOT NULL,
COLUMN_NAMES CLOB(1M) NOT LOGGED,
PMID SMALLINT NOT NULL,
SINGLE_NODE CHAR(5),
PARTITION_COLUMNS CLOB(64K) NOT LOGGED,

FOREIGN KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA,
EXPLAIN_LEVEL,
STMTNO,
SECTNO)

REFERENCES EXPLAIN_STATEMENT
ON DELETE CASCADE)

Explain Tables

Appendix B. Explain Tables and Definitions 551

ADVISE_INDEX Table Definition
CREATE TABLE ADVISE_INDEX (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL

WITH DEFAULT '',
EXPLAIN_TIME TIMESTAMP NOT NULL

WITH DEFAULT CURRENT TIMESTAMP,
SOURCE_NAME VARCHAR(128) NOT NULL

WITH DEFAULT '',
SOURCE_SCHEMA VARCHAR(128) NOT NULL

WITH DEFAULT '',
EXPLAIN_LEVEL CHAR(1) NOT NULL

WITH DEFAULT '',
STMTNO INTEGER NOT NULL

WITH DEFAULT 0,
SECTNO INTEGER NOT NULL

WITH DEFAULT 0,
QUERYNO INTEGER NOT NULL

WITH DEFAULT 0,
QUERYTAG CHAR(20) NOT NULL

WITH DEFAULT '',
NAME VARCHAR(128) NOT NULL,
CREATOR VARCHAR(128) NOT NULL

WITH DEFAULT '',
TBNAME VARCHAR(128) NOT NULL,
TBCREATOR VARCHAR(128) NOT NULL

WITH DEFAULT '',
COLNAMES CLOB(64K) NOT NULL,
UNIQUERULE CHAR(1) NOT NULL

WITH DEFAULT '',
COLCOUNT SMALLINT NOT NULL

WITH DEFAULT 0,
IID SMALLINT NOT NULL

WITH DEFAULT 0,
NLEAF INTEGER NOT NULL

WITH DEFAULT 0,
NLEVELS SMALLINT NOT NULL

WITH DEFAULT 0,
FIRSTKEYCARD BIGINT NOT NULL

WITH DEFAULT 0,
FULLKEYCARD BIGINT NOT NULL

WITH DEFAULT 0,
CLUSTERRATIO SMALLINT NOT NULL

WITH DEFAULT 0,
CLUSTERFACTOR DOUBLE NOT NULL

WITH DEFAULT 0,
USERDEFINED SMALLINT NOT NULL

WITH DEFAULT 0,
SYSTEM_REQUIRED SMALLINT NOT NULL

WITH DEFAULT 0,
CREATE_TIME TIMESTAMP NOT NULL

WITH DEFAULT CURRENT TIMESTAMP,
STATS_TIME TIMESTAMP

WITH DEFAULT CURRENT TIMESTAMP,
PAGE_FETCH_PAIRS VARCHAR(254) NOT NULL

WITH DEFAULT '',
REMARKS VARCHAR(254)

Explain Tables

552 Administration Guide: Performance

WITH DEFAULT '',
DEFINER VARCHAR(128) NOT NULL

WITH DEFAULT '',
CONVERTED CHAR(1) NOT NULL

WITH DEFAULT '',
SEQUENTIAL_PAGES INTEGER NOT NULL

WITH DEFAULT 0,
DENSITY INTEGER NOT NULL

WITH DEFAULT 0,
FIRST2KEYCARD BIGINT NOT NULL

WITH DEFAULT 0,
FIRST3KEYCARD BIGINT NOT NULL

WITH DEFAULT 0,
FIRST4KEYCARD BIGINT NOT NULL

WITH DEFAULT 0,
PCTFREE SMALLINT NOT NULL

WITH DEFAULT -1,
UNIQUE_COLCOUNT SMALLINT NOT NULL

WITH DEFAULT -1,
MINPCTUSED SMALLINT NOT NULL

WITH DEFAULT 0,
REVERSE_SCANS CHAR(1) NOT NULL

WITH DEFAULT 'N',
USE_INDEX CHAR(1),
CREATION_TEXT CLOB(1M) NOT NULL

NOT LOGGED WITH DEFAULT '',
PACKED_DESC BLOB(1M) NOT LOGGED)

Explain Tables

Appendix B. Explain Tables and Definitions 553

ADVISE_WORKLOAD Table Definition
CREATE TABLE ADVISE_WORKLOAD (WORKLOAD_NAME CHAR(128) NOT NULL

WITH DEFAULT 'WK0',
STATEMENT_NO INTEGER NOT NULL

WITH DEFAULT 1,
STATEMENT_TEXT CLOB(1M) NOT NULL NOT LOGGED,
STATEMENT_TAG VARCHAR(256) NOT NULL

WITH DEFAULT '',
FREQUENCY INTEGER NOT NULL

WITH DEFAULT 1,
IMPORTANCE DOUBLE NOT NULL

WITH DEFAULT 1,
COST_BEFORE DOUBLE,
COST_AFTER DOUBLE)

Explain Tables

554 Administration Guide: Performance

Appendix C. SQL Explain Tools

The db2expln tool describes the access plan selected for static SQL statements
in the packages stored in the system catalog tables. It can be used to obtain a
quick explanation of the chosen access plan for packages for which explain
data was not captured at bind time.

The dynexpln tool describes the access plan selected for dynamic statements.
It creates a static package for the statements and then uses the db2expln tool
to describe them.

You can use these Explain tools to understand the access plan chosen for a
particular SQL statement. Or, you could use the integrated Explain Facility
(“Chapter 7. SQL Explain Facility” on page 213) in conjunction with Visual
Explain to understand the access plan chosen for a particular SQL statement.
Both dynamic and static SQL statements can be explained using the Explain
Facility. One difference from the Explain tools is that with Visual Explain the
Explain information is presented in a graphical format. Otherwise the level of
detail provided in the two methods is equivalent.

To fully use the output of db2expln, and dynexpln you must understand:
v The different SQL statements supported and the terminology related to

those statements (such as predicates in a SELECT statement).
v The purpose of a package (access plan). (See “Data Access Concepts and

Optimization” on page 162 for this information.)
v The purpose and contents of the system catalog tables. (Refer to the SQL

Reference for this information.)
v Other concepts described in “Part 2. Tuning Application Performance” on

page 41.

The following topics provide information about db2expln and dynexpln:
v Running db2expln and dynexpln
v db2expln Syntax and Parameters
v Usage Notes for db2expln
v dynexpln Syntax and Parameters
v Usage Notes for dynexpln
v Description of db2expln and dynexpln Output
v Examples of db2expln and dynexpln Output.

© Copyright IBM Corp. 1993, 2001 555

Running db2expln and dynexpln

The explain tools (db2expln and dynexpln) are located in the misc subdirectory
of your instance sqllib directory. If db2expln and dynexpln are not in your
current directory, they must be in a directory that appears in your PATH
environment variable.

The db2expln program connects and binds itself to a database using the
db2expln.bnd file the first time the database is accessed. The db2expln.bnd file
is in the bnd subdirectory of your sqllib directory.

To run db2expln, you must have SELECT privilege to the system catalog
views as well as EXECUTE authority for the db2expln package. To run
dynexpln, you must have BINDADD authority for the database, the schema
you are using to connect to the database must exist or you must have the
EXPLICIT_SCHEMA authority for the database, and you must have any
privileges needed for the SQL statements being explained. (Note that if you
have SYSADM or DBADM authority, you will automatically have all these
authorization levels.)

db2expln Syntax and Parameters

Where:

-c creator
The user ID of the package creator.

If you do not specify this option, you will be prompted for it.

You may specify the creator name using the pattern matching
characters, percent sign (%) and underscore (_) that may be used in a
LIKE predicate.

-d database name
The name of the database that contains the packages to be explained.

If you do not specify this option, you will be prompted for it.

WW db2expln
-c creator -d database name -e escape character -g -h

-?

W

W
-i -l -o output file

-t
-p package name -s section number

W

W
-u userID password

WX

556 Administration Guide: Performance

|
|
|
|
|
|
|
|

-e escape character
Used to specify the character that is to be interpreted as an escape
character, rather than a pattern-matching character.

For example, the db2expln command to explain the package
TESTID.CALC% is db2expln -c TESTID -p CALC%. However, this
command would also explain any other plans that start with CALC. To
explain just the TESTID.CALC% package, you must use an escape
character. By changing the command to read: db2expln -c TESTID -e
! -p CALC!% you specify that the ! character will be used as an escape
character and !% is interpreted as the % character.

-g Show optimizer plan graphs. Each section is examined, and the
original optimizer plan graph (as presented by Visual Explain) is
constructed. Note that the generated graph may not match the
original plan.

-h or -?
Obtain help information about the input parameters. Specifying this
option overrides all other options.

-i Display operator IDs in the explained plan. The operator IDs allow
the output from db2expln to be matched to the output from the
Explain facility.

-l The package name can be either lower or mixed-case if this option is
specified. If this -l option is not specified, the package name is
converted to uppercase

-o output file
The name of the file to which db2expln will write the results.

If you specify -o without a file name, you will be prompted for a file
name. The default file name is db2expln.out.

-t The output is directed to the terminal.

If you do not specify -o or -t, you will be prompted for a file name,
with the default displaying the output at the terminal.

-p package name
The name of the package to be explained.

If you do not specify this option you will be prompted to provide it.

You may specify the package name using the pattern matching
characters, percent sign (%) and underscore (_) that can be used in a
LIKE predicate.

-s section number
The section number to explain within the package. The number zero
(0) may be specified if you wish to have all sections in the package

Appendix C. Explain Tool 557

||

|
|

explained. If the package creator (-c) or package name (-p) arguments
imply that multiple packages will be explained, and thus multiple
sections, the section value, if provided, is overridden with a zero (0).

If you do not specify this option you will be prompted to provide it.

Section numbers can be found by querying the system catalog
SYSCAT.STATEMENTS (Refer to the SQL Reference for a description of
the system catalog tables.)

-u userID password
When connecting to a database, use the provided user ID and
password.

Both the user ID and password must be valid according to DB2
naming conventions and be recognized by the database.

Some of the option flags above may have special meaning to your operating
system and, as a result, may not be interpreted correctly in the db2expln
command line. However, it may be possible to enter these characters by
preceding them with an escape character. For more information, see your
operating system user’s manual.

Help and initial status messages, produced by db2expln, are written to
standard output. All prompts and other status messages produced by the
explain tool are written to standard error. Explain text is written to standard
output or to a file depending on the output option chosen.

With the -p and -c options, multiple plans can be explained with one
invocation of explain by specifying string constants for packages and creators
with LIKE patterns. That is, the underscore (_) may be used to represent a
single character, and the percent sign (%) may be used to represent the
occurrence of zero or more characters.

For example, to explain all sections for all packages in a database named
SAMPLE, with the results being written to the file my.exp , enter

db2expln -d SAMPLE -p % -c % -s 0 -o my.exp

Usage Notes for db2expln

The following are common messages displayed by db2expln:
v No packages found for database <database>, package pattern:

<creator>.<package>.

This message will appear in the output if no packages were found in the
database that matched the specified pattern.

v Bind messages can be found in db2expln.msg

558 Administration Guide: Performance

|
|

This message will appear in the output if the bind of db2expln.bnd was not
successful. Further information on the problems encountered will be found
in the file db2expln.msg in the current directory.

v Section number overridden to 0 for potential multiple packages.

This message will appear in the output if multiple packages may be
encountered by db2expln. This action will be taken if one of the pattern
matching characters is used in the package or creator input arguments.

v No static sections qualify from package.

This message will appear in the output if the specified package only
contains dynamic SQL statements which means that there are no static
sections.

v Database <database>, package <creator>.<package> is not valid. Rebind
and then rerun db2expln.

This message will appear in the output if the package specified is currently
not valid. As directed, reissue the BIND or REBIND command for the plan
to re-create a valid package in the database, and then rerun db2expln.

v Section not processed: Produced by unsupported release.

This message will also appear in the output if the section currently being
processed was produced by a release of DB2 other than the one for which
this db2expln executable was provided. In this case, use the copy of
db2expln from the release of DB2 that produced the section.

SQL Statements Excluded: The following statements will not be explained:
v BEGIN/END DECLARE SECTION
v BEGIN/END COMPOUND
v INCLUDE
v WHENEVER
v COMMIT and ROLLBACK
v CONNECT
v OPEN cursor
v FETCH
v CLOSE cursor
v PREPARE
v EXECUTE
v EXECUTE IMMEDIATE
v DESCRIBE
v Dynamic DECLARE CURSOR
v SQL control statements

Appendix C. Explain Tool 559

Each sub-statement within a compound SQL statement may have its own
section, which can be explained by db2expln.

dynexpln Syntax and Parameters

Where:

-d database name
The name of the database that contains the packages to be explained.

If you do not specify this option, you will be prompted for it.

-f input file
The name of the file which contains the SQL statements to be
explained.

Unless you use the statement terminator (-z) option, only one SQL
statement should appear on each line of the file. SQL comments may
be entered into the file. An SQL comment starts with -- and goes to
the end of the line.

-g Show optimizer plan graphs. Each section is examined, and the
original optimizer plan graph (as presented by Visual Explain) is
constructed. Note that the generated graph may not match the
original plan.

-h or -?
Obtain help information about the input parameters. Specifying this
option overrides all other options.

-i Display operator IDs in the explained plan. The operator IDs allow
the output from db2expln to be matched to the output from the
Explain facility.

-o output file
The name of the file to which db2expln will write the results.

-t The output is directed to the terminal.

If both the output (-o) and -t options are specified, then the output is
directed to the terminal.

If you do not specify the output file (-o) or -t options, you will be
prompted for a file name, with the default displaying the output at
the terminal.

WW dynexpln
-d database name -f input file -g -h

-?
-i -o output file

-t

W

W
-q SQL statement -u userID password -z statement terminator

WX

560 Administration Guide: Performance

|
|
|

|
|
|
|

||

|
|

|
|
|

-q SQL statement
The SQL statement to be explained.

If you do not specify this option and you do not specify the input file
(-f) optional parameter, you will be prompted to provide the SQL
statement to be explained.

If you specify both this option and the input file (-f) optional
parameter, dynexpln will first describe the statements provided by the
SQL statement (-s) option and then describe the statements in the
input file (-f).

-u userID password
When connecting to a database, use the provided user ID and
password.

Both the user ID and password must be valid according to DB2
naming conventions and be recognized by the database.

-z statement terminator
The character used to indicate that the end of an SQL statement has
been reached.

The default is that there is no statement terminator. By not using this
option, each line of the file will be assumed to be a separate SQL
statement. If you use this option, dynexpln will use the specified
termination character to separate the statements.

Some of the option flags above may have special meaning to your operating
system and, as a result, may not be interpreted correctly in the dynexpln
command line. However, it may be possible to enter these characters by
preceding them with an escape character. For more information, see your
operating system user’s manual.

If you use the statement terminator (-z) option, you may enter multiple
statements using the SQL statement (-s) option. If you do this, you should
separate the statements with the termination character.

Help and initial status messages, produced by dynexpln, are written to
standard output. All prompts and other status messages produced by the
explain tool are written to standard error. Explain text is written to standard
output or to a file depending on the output option chosen.

For example, to connect to a database named SAMPLE and explain all the
statements in the file TRYIT, with the results being written to the file my.exp,
enter

dynexpln -d SAMPLE -f TRYIT -o my.exp

Appendix C. Explain Tool 561

|
|
|

|
|

|
|
|

Usage Notes for dynexpln

To explain dynamic statements, dynexpln creates a static application for the
statements and then invokes db2expln. To create the static statements,
dynexpln generates a trivial C program with the statements and then calls the
DB2 precompiler to create the package. (The generated C program is not
complete and cannot be compiled; it only contains enough information for the
precompiler to build the package.)

The following are common messages displayed by dynexpln:
v All error messages from db2expln.

Since dynexpln invokes db2expln, it is possible to see most of db2expln’s
error messages.

v Error connecting to the database.

This message will appear in the output if an error occurred connecting to
the database. A CLI error message will also be displayed indicating why the
connection could not be completed. Correct the cause of the error and run
dynexpln again.

v The file "<filename>" must be removed before dynexpln will run.

This message will appear if the given file exists at the time dynexpln is run.
Remove the file or change the value of the DYNEXPLN_PACKAGE environment
variable to change the name of the file which will be created and run
dynexpln again.

v The package "<creator>.<package>" must be dropped before dynexpln
will run.

This message will appear if the given package exists at the time dynexpln is
run. Drop the package and run or change the value of the
DYNEXPLN_PACKAGE environment variable to change the name of the
package which will be created and run dynexpln again.

v Error writing file "<filename>".

This message will appear if the given file cannot be written to. Ensure that
dynexpln can write files in the current directory and run it again.

v Error reading input file "<filename>".

This message will appear if the file given with the -f option cannot be read
from. Ensure that the file exists and that dynexpln can read it. Then run
dynexpln again.

Environment Variables: There are two different environment variables that
can be used in conjunction with dynexpln:
v DYNEXPLN_OPTIONS are the SQL precompiler options you use when

building the package for your statements. Use the same syntax variable as
you would when issuing a PREP command through CLP.
For example: DYNEXPLN_OPTIONS="OPTLEVEL 5 BLOCKING ALL"

562 Administration Guide: Performance

|
|
|
|
|
|

|
|

|
|
|
|

v DYNEXPLN_PACKAGE is the name of the package which is created in the
database. The statements to be described are placed in this package. If this
variable is not defined, the package is given a default value of DYNEXPLN.
(Only the first eight characters of the name in this environment variable are
used.)
The name is also used to create the names for the intermediate files that
dynexpln uses.

Description of db2expln and dynexpln Output

In the output, the explain information for each package is broken into two
parts:
v Package information such as date of bind and relevant bind options
v Section information such as the section number followed by the SQL

statement being explained. Beneath the section information will be the
explain output of the access plan chosen for the SQL statement shown.

The steps of an access plan, or section, will be presented in the order that the
database manager executes them. Each major step will be shown as a
left-justified heading with information about that step indented beneath it.
The explain output for the access plan has indentation bars provided in the
left margin of the output. These bars also provide the ″scope″ for the
operation; operations at a lower (that is, further to the right) level of
indentation within the same operation are processed before returning to the
previous level of indentation.

It is important to remember that the access plan chosen was based on an
augmented version of the original SQL statement (the one shown in the
output). For example, the original statement may cause any number of
triggers and constraints to be activated. As well, the SQL statement may be
rewritten to an equivalent but more efficient format by the query rewrite
component of the SQL Compiler. All of these factors are included in the
information presented to the Optimizer when it determines the most efficient
plan to satisfy the statement. Thus, the access plan shown in the explain
output may differ substantially from the access plan that one might expect for
the original SQL statement. The integrated Explain facility (see “Chapter 7.
SQL Explain Facility” on page 213) shows the actual SQL statement used for
optimization in the form of an SQL-like statement which is created by
reverse-translating the internal representation of the query.

When comparing output from db2expln or dynexpln to the output of the
Explain facility, the operator ID option (-i) can be very useful. Each time
db2expln or dynexpln starts processing a new operator from the Explain
facility, the operator ID number will be printed to the left of the explained
plan. The operator IDs can be used to match up the steps in the different

Appendix C. Explain Tool 563

|
|
|
|
|
|
|
|
|
|
|
|
|

representations of the access plan. Note that there is not always a one-to-one
correspondence between the operators in the Explain facility output and the
operations shown by db2expln and dynexpln.

The following topics describe the explain text that may be produced by
db2expln and dynexpln:

v Table Access
v Temporary Tables
v Joins
v Data Streams
v Insert, Update, and Delete
v Row Identifier (RID) Preparation
v Aggregation
v Parallel Processing
v Federated Statement Processing
v Miscellaneous Statements.

Table Access
This statement tells the name and type of table being accessed. It has two
formats that are used:
1. Regular tables of three types:

v Access Table Name:
Access Table Name = schema.name ID = ts,n

where:
– schema.name is the fully-qualified name of the table being accessed
– ID is the corresponding TABLESPACEID and TABLEID from the

SYSCAT.TABLES catalog for the table
v Access Hierarchy Table Name:

Access Hierarchy Table Name = schema.name ID = ts,n

where:
– schema.name is the fully-qualified name of the table being accessed
– ID is the corresponding TABLESPACEID and TABLEID from the

SYSCAT.TABLES catalog for the table
v Access Summary Table Name:

Access Summary Table Name = schema.name ID = ts,n

where:
– schema.name is the fully-qualified name of the table being accessed

564 Administration Guide: Performance

– ID is the corresponding TABLESPACEID and TABLEID from the
SYSCAT.TABLES catalog for the table

2. Temporary tables of two types:
v Access Temporary Table ID:

Access Temp Table ID = tn

where:
– ID is the corresponding identifier assigned by db2expln

v Access Declared Global Temporary Table ID:
Access Global Temp Table ID = ts,tn

where:
– ID is the corresponding TABLESPACEID from the SYSCAT.TABLES

catalog for the table (ts); and the corresponding identifier assigned
by db2expln (tn)

Following the table access statement, additional statements will be provided
to further describe the access. These statements will be indented under the
table access statement. The possible statements are:
v Number of Columns
v Parallel Scan
v Scan Direction
v Row Access Method
v Lock Intents
v Predicates
v Miscellaneous Table Statements.

Number of Columns
The following statement indicates the number of columns being used from
each row of the table:

#Columns = n

Parallel Scan
The following statement indicates that the database manager will use several
subagents to read from the table in parallel:

Parallel Scan

If this text is not shown, the table will only be read from by one agent (or
subagent).

Scan Direction
The following statement indicates that the database manager will read rows in
a reverse order:

Appendix C. Explain Tool 565

Scan Direction = Reverse

If this text is not shown, the scan direction is forward, which is the default.

Row Access Method
One of the following statements will be displayed, indicating how the
qualifying rows in the table are being accessed:
v The Relation Scan statement indicates that the table is being sequentially

scanned to find the qualifying rows.
– The following statement indicates that no prefetching of data will be

done:
Relation Scan
| Prefetch: None

– The following statement indicates that the optimizer has predetermined
the number of pages that will be prefetched:

Relation Scan
| Prefetch: n Pages

– The following statement indicates that data should be prefetched:
Relation Scan
| Prefetch: Eligible

– The following statement indicates that the qualifying rows are being
identified and accessed through an index:

Index Scan: Name = schema.name ID = xx
| Index Columns:

where:
- schema.name is the fully-qualified name of the index being scanned
- ID is the corresponding IID column in the SYSCAT.INDEXES catalog

view.

This will be followed by one row for each column in the index. Each
column in the index will be listed in one of the following forms:

n: column_name (Ascending)
n: column_name (Descending)
n: column_name (Include Column)

The following statements are provided to clarify the type of index scan:
- The range delimiting predicates for the index are shown by:

#Key Columns = n
| Start Key: xxxxx
| Stop Key: xxxxx

Where xxxxx is one of:

566 Administration Guide: Performance

v Start of Index

v End of Index

v Inclusive Value: or Exclusive Value:

An inclusive key value will be included in the index scan. An
exclusive key value will not be included in the scan. The value for
the key will be given by one of the following rows for each part of
the key:

n: 'string'
n: nnn
n: yyyy-mm-dd
n: hh:mm:ss
n: yyyy-mm-dd hh:mm:ss.uuuuuu
n: NULL
n: ?

If a literal string is shown, only the first 20 characters are displayed.
If the string is longer than 20 characters, this will be shown by ...
at the end of the string. Some keys cannot be determined until the
section is executed. This is shown by a ? as the value.

- Index-Only Access

If all the needed columns can be obtained from the index key, this
statement will appear and no table data will be accessed.

- The following statement indicates that no prefetching of index pages
will be done:

Index Prefetch: None

- The following statement indicates that index pages should be
prefetched:

Index Prefetch: Eligible

- The following statement indicates that no prefetching of data pages
will be done:

Data Prefetch: None

- The following statement indicates that data pages should be
prefetched:

Data Prefetch: Eligible

- If there are predicates that can be passed to the Index Manager to help
qualify index entries, the following statement is used to show the
number of predicates:

Sargable Index Predicate(s)
| #Predicates = n

– The Fetch Direct statement indicates that the qualifying rows are being
accessed by using row IDs (RIDs) that were prepared earlier in the access
plan.

Appendix C. Explain Tool 567

|
|
|
|

Lock Intents
For each table access, the type of lock that will be acquired at the table and
row levels is shown with the following statement:

Lock Intents
| Table: xxxx
| Row : xxxx

Possible values for a table lock are:
v Exclusive
v Intent Exclusive
v Intent None
v Intent Share
v Share
v Share Intent Exclusive
v Super Exclusive
v Update

Possible values for a row lock are:
v Exclusive
v Next Key Exclusive (does not appear in db2expln output)
v None
v Share
v Next Key Share
v Update
v Next Key Weak Exclusive
v Weak Exclusive

The explanation of these lock types is found in “Attributes of Locks” on
page 52.

Predicates
There are two statements that provide information about the predicates used
in an access plan:
1. The following statement indicates the number of predicates that will be

evaluated once the data has been returned:
Residual Predicate(s)
| #Predicates = n

2. The following statement indicates the number of predicates that will be
evaluated while the data is being accessed. The count of predicates does
not include push-down operations such as aggregation or sort.

Sargable Predicate(s)
| #Predicates = n

568 Administration Guide: Performance

The number of predicates shown in the above statements may not reflect the
number of predicates provided in the SQL statement because predicates can
be:
v Applied more than once within the same query
v Transformed and extended with the addition of implicit predicates during

the query optimization process
v Transformed and condensed into fewer predicates during the query

optimization process.

Miscellaneous Table Statements
v The following statement indicates that only one row will be accessed:

Single Record

v The following statement appears when the isolation level used for this table
access uses a different isolation level than the package:

Isolation Level: xxxx

A different isolation level may be used for a number of reasons, including:
– A package was bound with Repeatable Read and affects referential

integrity constraints; the access of the parent table to check referential
integrity constraints is downgraded to an isolation level of Cursor
Stability to avoid holding unnecessary locks on this table.

– A package bound with Uncommitted Read issues a DELETE or UPDATE
statement; the table access for the actual delete is upgraded to Cursor
Stability.

v The following statement indicates that some or all of the rows read from
the temporary table will be cached outside the buffer pool if sufficient
sortheap memory is available:

Keep Rows In Private Memory

v If the table has the volatile cardinality attribute set, it will be indicated by:
Volatile Cardinality

Temporary Tables
A temporary table is used by an access plan to store data during its execution
in a transient or temporary work table. This table only exists while the access
plan is being executed. Generally, temporary tables are used when subqueries
need to be evaluated early in the access plan, or when intermediate results
will not fit in the available memory.

If a temporary table needs to be created, then one of two possible statements
may appear. These statements indicate that a temporary table is to be created
and rows inserted into it. The ID is an identifier assigned by db2expln for
convenience when referring to the temporary table. This ID is prefixed with
the letter ’t’ to indicate that the table is a temporary table.

Appendix C. Explain Tool 569

v The following statement indicates an ordinary temporary table will be
created:

Insert Into Temp Table ID = tn

v The following statement indicates an ordinary temporary table will be
created by multiple subagents in parallel:

Insert Into Shared Temp Table ID = tn

v The following statement indicates a sorted temporary table will be created:
Insert Into Sorted Temp Table ID = tn

v The following statement indicates a sorted temporary table will be created
by multiple subagents in parallel:

Insert Into Sorted Shared Temp Table ID = tn

v The following statement indicates a declared global temporary table will be
created:

Insert Into Global Temp Table ID = ts,tn

v The following statement indicates a declared global temporary table will be
created by multiple subagents in parallel:

Insert Into Shared Global Temp Table ID = ts,tn

v The following statement indicates a sorted declared global temporary table
will be created:

Insert Into Sorted Global Temp Table ID = ts,tn

v The following statement indicates a sorted declared global temporary table
will be created by multiple subagents in parallel:

Insert Into Sorted Shared Global Temp Table ID = ts,tn

Each of the above statements will be followed by:
#Columns = n

which indicates how many columns are in each row being inserted into the
temporary table.

Sorted Temporary Tables
Sorted temporary tables can result from such operations as:
v ORDER BY
v DISTINCT
v GROUP BY
v Merge Join
v '= ANY' subquery
v '<> ALL' subquery
v INTERSECT or EXCEPT
v UNION (without the ALL keyword)

570 Administration Guide: Performance

A number of additional statements may follow the original creation statement
for a sorted temporary table:
v The following statement indicates the number of key columns used in the

sort:
#Sort Key Columns = n

For each column in the sort key, one of the following lines will be
displayed:

Key n: column_name (Ascending)
Key n: column_name (Descending)
Key n: (Ascending)
Key n: (Descending)

v The following statements provide estimates of the number of rows and the
row size so that the optimal sort heap can be allocated at run time.

Sortheap Allocation Parameters:
| #Rows = n
| Row Width = n

v If only the first rows of the sorted result are needed, the following is
displayed:

Sort Limited To Estimated Row Count

v For sorts in a symmetric multiprocessor (SMP) environment, the type of
sort to be performed is indicated by one of the following statements:

Use Partitioned Sort
Use Shared Sort
Use Replicated Sort
Use Round-Robin Sort

For a description of the different sorting techniques, see “Parallel Sort
Strategies” on page 195.

v The following statements indicate whether or not the result from the sort
will be left in the sort heap:

Piped

and
Not Piped

If a piped sort is indicated, the database manager will keep the sorted
output in memory, rather than placing the sorted result in another
temporary table. (For a description of piped versus non-piped sorts, see
“Influence of Sorting on the Optimizer” on page 192.)

v The following statement indicates that duplicate values will be removed
during the sort:

Duplicate Elimination

Appendix C. Explain Tool 571

v If aggregation is being performed in the sort, it will be indicated by one of
the following statements:

Partial Aggregation
Intermediate Aggregation
Buffered Partial Aggregation
Buffered Intermediate Aggregation

Temporary Table Completion
After a table access that contains a push-down operation to create a
temporary table (that is, a create temporary table that occurs within the scope
of a table access), there will be a ″completion″ statement, which handles
end-of-file by getting the temporary table ready to provide rows to
subsequent temporary table access. One of the following lines will be
displayed:

Temp Table Completion ID = tn
Shared Temp Table Completion ID = tn
Sorted Temp Table Completion ID = tn
Sorted Shared Temp Table Completion ID = tn

Table Functions
Table functions are user-defined functions (UDFs) that return data to the
statement in the form of a table. Refer to the SQL Reference for more
information about table functions. Table functions are indicated by the
statement:

Access User Defined Table Function
| Name = schema.funcname
| Language = xxxx
| Fenced Deterministic NULL Call Disallow Parallel

The language (C, OLE, or Java) that the table function is written in is given
along with the attributes of the table function.

Joins
There are three types of joins (see “Join Concepts” on page 175 for a
description of these joins):
v Hash join
v Merge join
v Nested loop join.

When the time comes in the execution of a section for a join to be performed,
one of the following statements is displayed:

Hash Join

or
Merge Join

572 Administration Guide: Performance

|
|
|
|

or
Nested Loop Join

It is possible for a left outer join to be performed. A left outer join is indicated
by one of the following statements:

Left Outer Hash Join

or
Left Outer Merge Join

or
Left Outer Nested Loop Join

For merge and nested loop joins, the outer table of the join will be the table
referenced in the previous access statement shown in the output. The inner
table of the join will be the table referenced in the access statement that is
contained within the scope of the join statement. For hash joins, the access
statements are reversed with the outer table contained within the scope of the
join and the inner table appearing before the join.

For a hash or merge join, the following additional statements may appear:
v In some circumstances, a join simply needs to determine if any row in the

inner table matches the current row in the outer. This is indicated with the
statement:
Early Out: Single Match Per Outer Row

v It is possible to apply predicates after the join has completed. The number
of predicates being applied will be indicated as follows:
Residual Predicate(s)
| #Predicates = n

For a hash join, the following additional statements may appear:
v The hash table is built from the inner table. If the hash table build was

pushed down into a predicate on the inner table access, it is indicated by
the following statement in the access of the inner table:

Process Hash Table For Join

v While accessing the outer table, a probe table can be built to improve the
performance of the join. The probe table build is indicated by the following
statement in the access of the outer table:

Process Probe Table For Hash Join

v The estimated number of bytes needed to build the hash table is
represented by:

Estimated Build Size: n

Appendix C. Explain Tool 573

|
|
|

|

|

v The estimated number of bytes needed for the probe table is represented
by:

Estimated Probe Size: n

For a nested loop join, the following additional statement may appear
immediately after the join statement:

Piped Inner

This statement indicates that the inner table of the join is the result of another
series of operations. This is also referred to as a composite inner.

If a join involves more than two tables, the explain steps should be read from
top to bottom. For example, suppose the explain output has the following
flow:

Access W
Join
| Access X
Join
| Access Y
Join
| Access Z

The steps of execution would be:
1. Take a row that qualifies from W.
2. Join row from W with (next) row from X and call the result P1 (for partial

join result number 1).
3. Join P1 with (next) row from Y to create P2 .
4. Join P2 with (next) row from Z to obtain one complete result row.
5. If there are more rows in Z, go to step 4.
6. If there are more rows in Y, go to step 3.
7. If there are more rows in X, go to step 2.
8. If there are more rows in W, go to step 1.

Data Streams
Within an access plan, there is often a need to control the creation and flow of
data from one series of operations to another. The data stream concept allows
a group of operations within an access plan to be controlled as a unit. The
start of a data stream is indicated by the following statement:

Data Stream n

where n is a unique identifier assigned by db2expln for ease of reference. The
end of a data stream is indicated by:

End of Data Stream n

574 Administration Guide: Performance

All operations between these statements are considered part of the same data
stream.

A data stream has a number of characteristics and one or more statements can
follow the initial data stream statement to describe these characteristics:
v If the operation of the data stream depends on a value generated earlier in

the access plan, the data stream is marked with:
Correlated

v Similar to a sorted temporary table, the following statements indicate
whether or not the results of the data stream will be kept in memory:

Piped

and
Not Piped

As was the case with temporary tables, a piped data stream may be written
to disk, if insufficient memory exists at execution time. The access plan will
provide for both possibilities.

v The following statement indicates that only a single record is required from
this data stream:

Single Record

When a data stream is accessed, the following statement will appear in the
output:

Access Data Stream n

Insert, Update, and Delete
The explain text for these SQL statements is self-explanatory. Possible
statement text for these SQL operations can be:
v Insert: Table Name = schema.name ID = ts,n

v Update: Table Name = schema.name ID = ts,n

v Delete: Table Name = schema.name ID = ts,n

v Insert: Hierarchy Table Name = schema.name ID = ts,n

v Update: Hierarchy Table Name = schema.name ID = ts,n

v Delete: Hierarchy Table Name = schema.name ID = ts,n

v Insert: Summary Table Name = schema.name ID = ts,n

v Update: Summary Table Name = schema.name ID = ts,n

v Delete: Summary Table Name = schema.name ID = ts,n

v Insert: Global Temporary Table ID = ts, tn

v Update: Global Temporary Table ID = ts, tn

v Delete: Global Temporary Table ID = ts, tn

Appendix C. Explain Tool 575

Row Identifier (RID) Preparation
For some access plans, it is more efficient if the qualifying row identifiers
(RIDs) are sorted and duplicates removed (in the case of index ORing) or that
a technique is used to identify RIDs appearing in all indexes being accessed
(in the case of index ANDing) before the actual table access is performed.
There are three main uses of RID preparation as indicated by the explain
statements:
v The following statement indicates that “Index ORing” is used to prepare

the list of qualifying RIDs:
Index ORing RID Preparation

Index ORing refers to the technique of making more than one index access
and combining the results to include the distinct RIDs that appear in any of
the indexes accessed. The optimizer will consider index ORing when
predicates are connected by OR keywords or there is an IN predicate. The
index accesses can be on the same index or different indexes.

v Another use of RID preparation is to prepare the input data to be used
during list prefetch, as indicated by the following:

List Prefetch RID Preparation

v Index ANDing refers to the technique of making more than one index access
and combining the results to include RIDs that appear in all of the indexes
accessed. Index ANDing processing is started with the statement:

Index ANDing

If the optimizer has estimated the size of the result set, the estimate is
shown with the following statement:

Optimizer Estimate of Set Size: n

Index ANDing filter operations process RIDs and use bit filter techniques to
determine the RIDs which appear in every index accessed. The following
statements indicate that RIDs are being processed for index ANDing:

Index ANDing Bitmap Build
Index ANDing Bitmap Probe
Index ANDing Bitmap Build and Probe

If the optimizer has estimated the size of the result set for a bitmap, the
estimate is shown with the following statement:

Optimizer Estimate of Set Size: n

For any type of RID preparation, if list prefetch can be performed it will be
indicated with the statement:

Prefetch: Enabled

576 Administration Guide: Performance

|
|

|

Aggregation
Aggregation is performed on those rows meeting the specified criteria, if any,
provided by the SQL statement predicates. If some sort of aggregate function
is to be done, one of the following statements appears:

Aggregation
Predicate Aggregation
Partial Aggregation
Partial Predicate Aggregation
Intermediate Aggregation
Intermediate Predicate Aggregation
Final Aggregation
Final Predicate Aggregation

Predicate aggregation states that the aggregation operation has been
pushed-down to be processed as a predicate when the data is actually
accessed.

Beneath either of the above aggregation statements will be a indication of the
type of aggregate function being performed:
v Group By

v Column Function(s)

v Single Record.

The specific column function can be derived from the original SQL statement.
A single record is fetched from an index to satisfy a MIN or MAX operation.

If predicate aggregation is used, then subsequent to the table access statement
in which the aggregation appeared, there will be an aggregation ″completion″,
which carries out any needed processing on completion of each group or on
end-of-file. One of the following lines is displayed:

Aggregation Completion
Partial Aggregation Completion
Intermediate Aggregation Completion
Final Aggregation Completion

Parallel Processing
Executing an SQL statement in parallel (using either intra-partition or
inter-partition parallelism) requires some special operations. The operations
for parallel plans are described below.
v When running an intra-partition parallel plan, portions of the plan will be

executed simultaneously using several subagents. The creation of the
subagents is indicated by the statement:
Process Using n Subagents

v When running an inter-partition parallel plan, the section is broken into
several subsections. Each subsection is sent to one or more nodes to be run.
An important subsection is the coordinator subsection. The coordinator

Appendix C. Explain Tool 577

|

subsection is the first subsection in every plan. It gets control first and is
responsible for distributing the other subsections and returning results to
the calling application.
The distribution of subsections is indicated by the statement:
Distribute Subsection #n

The nodes that receive a subsection can be determined in one of eight ways:
– The following indicates that the subsection will be sent to a node within

the nodegroup based on the value of the columns.
Directed by Hash
| #Columns = n
| Partition Map ID = n, Nodegroup = ngname, #Nodes = n

– The following indicates that the subsection will be sent to a
predetermined node. (This is frequently seen when the statement uses
the NODENUMBER() function.)

Directed by Node Number

– The following indicates that the subsection will be sent to the node
corresponding to a predetermined partition number in the given
nodegroup. (This is frequently seen when the statement uses the
PARTITION() function.)

Directed by Partition Number
| Partition Map ID = n, Nodegroup = ngname, #Nodes = n

– The following indicates that the subsection will be sent to the node that
provided the current row for the application’s cursor.

Directed by Position

– The following indicates that only one node, determined when the
statement was compiled, will receive the subsection.

Directed to Single Node
| Node Number = n

– The following indicates that the subsection will be executed on the
coordinator node.

Directed to Coordinator Node

– The following indicates that the subsection will be sent to all the nodes
listed.

Broadcast to Node List
| Nodes = n1, n2, n3, ...

– The following indicates that only one node, determined as the statement
is executing, will receive the subsection.

Directed to Any Node

v Table queues are used to move data between subsections in a partitioned
database environment or between subagents in a symmetric multiprocessor
(SMP) environment. Table queues are described as follows:

578 Administration Guide: Performance

– The following statements indicate that data is being inserted into a table
queue:

Insert Into Synchronous Table Queue ID = qn
Insert Into Asynchronous Table Queue ID = qn
Insert Into Synchronous Local Table Queue ID = qn
Insert Into Asynchronous Local Table Queue ID = qn

– For database partition table queues, the destination for rows inserted into
the table queue is described by one of the following:

Broadcast to Coordinator Node

All rows are sent to the coordinator node.
Broadcast to All Nodes of Subsection n

All rows are sent to every database partition that the given subsection is
running on.

Hash to Specific Node

Each row is sent to a database partition based on the values in the row.
Send to Specific Node

Each row is sent to a database partition determined while the statement
is executing.

Send to Random Node

Each row is sent to a random database partition.
– In some situations, a database partition table queue will have to

temporarily overflow some rows to a temporary table. This possibility is
identified by the statement:

Rows Can Overflow to Temporary Table

– After a table access that contains a push-down operation to insert rows
into a table queue, there will be a ″completion″ statement which handles
rows that could not be immediately sent. One of the following lines is
displayed:

Insert Into Synchronous Table Queue Completion ID = qn
Insert Into Asynchronous Table Queue Completion ID = qn
Insert Into Synchronous Local Table Queue Completion ID = qn
Insert Into Asynchronous Local Table Queue Completion ID = qn

– The following statements indicate that data is being retrieved from a
table queue:

Access Table Queue ID = qn
Access Local Table Queue ID = qn

These messages are always followed by an indication of the number of
columns being retrieved.

Appendix C. Explain Tool 579

#Columns = n

– If the table queue sorts the rows at the receiving end, the table queue
access will also have one of the following messages:

Output Sorted
Output Sorted and Unique

These messages are followed by an indication of the number of keys
used for the sort operation.

#Key Columns = n

For each column in the sort key, one of the following is displayed:
Key n: (Ascending)
Key n: (Descending)

– If predicates will be applied to rows by the receiving end of the table
queue, the following message is shown:

Residual Predicate(s)
| #Predicates = n

v Some subsections in a partitioned database environment explicitly loop
back to the start of the subsection with the statement:

Jump Back to Start of Subsection

Federated Statement Processing
Executing an SQL statement in a federated database requires the ability to
perform portions of the statement on other data sources.

The following indicates that a data source will be accessed:
Distributed Subquery #n
| #Columns = n

It is possible to apply predicates to the data returned from the distributed
subquery. The number of predicates being applied will be indicated as
follows:

Residual Predicate(s)
| #Predicates = n

The detail for each distributed subquery is provided separately. The options
for distributed subqueries are described below:
v The data source for the subquery is shown by one of the following:

Server: server_name (type, version)
Server: server_name (type)
Server: server_name

v The SQL statement for the subquery is displayed as:
Subquery SQL Statement:
statement

v The nicknames referenced in the subquery are listed as follows:

580 Administration Guide: Performance

|
|

Nickname Referenced:
Schema.nickname Base = baseschema.basetable

v If values are passed from the federated server to the data source before
executing the subquery, the number of values will be shown by:

#Input Columns: n

v If values are passed from the data source to the federated server after
executing the subquery, the number of values will be shown by:

#Output Columns: n

Miscellaneous Statements
v Sections for data definition language statements will be indicated in the

output with the following:
DDL Statement

No additional explain output is provided for DDL statements.
v Sections for SET statements for the updatable special registers such as

CURRENT EXPLAIN SNAPSHOT will be indicated in the output with the
following:

SET Statement

No additional explain output is provided for SET statements.
v If the SQL statement contains the DISTINCT clause, the following text may

appear in the output:
Distinct Filter #Columns = n

where n is the number of columns involved in obtaining distinct rows. To
retrieve distinct row values, the rows must be ordered so that duplicates
can be skipped. This statement will not appear if the database manager
does not have to explicitly eliminate duplicates, as in the following cases:
– A unique index exists and all the columns in the index key are part of

the DISTINCT operation
– Duplicates that can be eliminated during sorting.

v The following statement will appear if the next operation is dependent on a
specific record identifier:

Positioned Operation

This statement would appear for any SQL statement that uses the WHERE
CURRENT OF syntax.

v The following statement will appear if there are predicates that must be
applied to the result but that could not be applied as part of another
operation:

Residual Predicate Application
| #Predicates = n

Appendix C. Explain Tool 581

v The following statement will appear if there is a UNION operator in the
SQL statement:

UNION

v The following statement will appear if there is an operation in the access
plan, whose sole purpose is to produce row values for use by subsequent
operations:

Table Constructor
| n-Row(s)

Table constructors can be used for transforming values in a set into a series
of rows that are then passed to subsequent operations. When a table
constructor is prompted for the next row, the following statement will
appear:

Access Table Constructor

v The following statement will appear if there is an operation which is only
processed under certain conditions:

Conditional Evaluation
| Condition #n:
| | #Predicates = n
| Action #n:

Conditional evaluation is used to implement such activities as the SQL
CASE statement or internal mechanisms such as referential integrity
constraints or triggers. If no action is shown, then only data manipulation
operations are processed when the condition is true.

v One of the following statements will appear if an ALL, ANY, or EXISTS
subquery is being processed in the access plan:
– ANY/ALL Subquery

– EXISTS Subquery

– EXISTS SINGLE Subquery

v Prior to certain UPDATE and DELETE operations, it is necessary to
establish the position of a specific row within the table. This is indicated by
the following statement:

Establish Row Position

v The following statement will appear if there are rows being returned to the
application:

Return Data to Application
| #Columns = n

If the operation was pushed-down into a table access, it will require a
completion phase. This phase appears as:

Return Data Completion

582 Administration Guide: Performance

Examples of db2expln and dynexpln Output

Five examples are shown here to help understand the layout and format of
the output from db2expln and dynexpln. These examples were run against the
SAMPLE database as provided with DB2. A brief discussion is provided for
each example. Significant differences from one example to the next have been
shown in bold.

Example One: No Parallelism Plan
This example is simply requesting a list of all employee names, their jobs,
department name and location, and the project names on which they are
working. The essence of this access plan is that merge joins are used to join
the relevant data from each of the specified tables. Since no indexes are
available, the access plan does a relation scan of each table, and each table
must be sorted before it can be joined.
******************** PACKAGE ***************************************

Package Name = DOOLE.DYNEXPLN
Prep Date = 2000/01/03
Prep Time = 15:47:58

Bind Timestamp = 2000-01-03-15.47.58.607455

Isolation Level = Cursor Stability
Blocking = Block Unambiguous Cursors
Query Optimization Class = 5

Partition Parallel = No
Intra-Partition Parallel = No

Function Path = "SYSIBM", "SYSFUN", "DOOLE"

-------------------- SECTION ---------------------------------------
Section = 1

SQL Statement:

SELECT x.lastname, x.job, y.deptname, y.location, z.projname
FROM employee AS x, department AS y, project AS z
WHERE x.workdept = y.deptno AND x.workdept = z.deptno AND y.deptno

= z.deptno

Estimated Cost = 126
Estimated Cardinality = 153

Access Table Name = DOOLE.DEPARTMENT ID = 2,4
| #Columns = 3
| Relation Scan
| | Prefetch: Eligible
| Lock Intents
| | Table: Intent Share

Appendix C. Explain Tool 583

|
|
|
|
|
|

| | Row : Next Key Share
| Insert Into Sorted Temp Table ID = t1
| | #Columns = 3
| | #Sort Key Columns = 1
| | | Key 1: DEPTNO (Ascending)
| | Sortheap Allocation Parameters:
| | | #Rows = 40
| | | Row Width = 48
| | Piped
Sorted Temp Table Completion ID = t1
Access Temp Table ID = t1
| #Columns = 3
| Relation Scan
| | Prefetch: Eligible
Merge Join
| Access Table Name = DOOLE.PROJECT ID = 2,7
| | #Columns = 2
| | Relation Scan
| | | Prefetch: Eligible
| | Lock Intents
| | | Table: Intent Share
| | | Row : Next Key Share
| | Insert Into Sorted Temp Table ID = t2
| | | #Columns = 2
| | | #Sort Key Columns = 1
| | | | Key 1: DEPTNO (Ascending)
| | | Sortheap Allocation Parameters:
| | | | #Rows = 38
| | | | Row Width = 28
| | | Piped
| Sorted Temp Table Completion ID = t2
| Access Temp Table ID = t2
| | #Columns = 2
| | Relation Scan
| | | Prefetch: Eligible
Merge Join
| Access Table Name = DOOLE.EMPLOYEE ID = 2,5
| | #Columns = 3
| | Relation Scan
| | | Prefetch: Eligible
| | Lock Intents
| | | Table: Intent Share
| | | Row : Next Key Share
| | Insert Into Sorted Temp Table ID = t3
| | | #Columns = 3
| | | #Sort Key Columns = 1
| | | | Key 1: WORKDEPT (Ascending)
| | | Sortheap Allocation Parameters:
| | | | #Rows = 63
| | | | Row Width = 32
| | | Piped
| Sorted Temp Table Completion ID = t3
| Access Temp Table ID = t3
| | #Columns = 3
| | Relation Scan

584 Administration Guide: Performance

| | | Prefetch: Eligible
Return Data to Application
| #Columns = 5

End of section

Optimizer Plan:

RETURN
(1)

|
MSJOIN
(2)
/ \

MSJOIN TBSCAN
(3) (12)
/ \ |

TBSCAN TBSCAN SORT
(4) (8) (13)

| | |
SORT SORT TBSCAN
(5) (9) (14)

| | |
TBSCAN TBSCAN Table:
(6) (10) DOOLE

| | EMPLOYEE
Table: Table:
DOOLE DOOLE
DEPARTMENT PROJECT

The first part of the plan accesses the DEPARTMENT and PROJECT tables
and uses a merge join to join them. The result of this join is joined to the
EMPLOYEE table. The resulting rows are returned to the application.

Example Two: Single-Partition Database Plan with Intra-Partition
Parallelism

This example shows the same SQL statement as “Example One: No
Parallelism Plan” on page 583, but this query has been compiled for a
four-way SMP machine.
******************** PACKAGE ***************************************

Package Name = DOOLE.DYNEXPLN
Prep Date = 2000/01/03
Prep Time = 15:48:51

Bind Timestamp = 2000-01-03-15.48.51.402403

Isolation Level = Cursor Stability
Blocking = Block Unambiguous Cursors
Query Optimization Class = 5

Partition Parallel = No

Appendix C. Explain Tool 585

|
|
|

Intra-Partition Parallel = Yes (Bind Degree = 4)

Function Path = "SYSIBM", "SYSFUN", "DOOLE"

-------------------- SECTION ---------------------------------------
Section = 1

SQL Statement:

SELECT x.lastname, x.job, y.deptname, y.location, z.projname
FROM employee AS x, department AS y, project AS z
WHERE x.workdept = y.deptno AND x.workdept = z.deptno AND y.deptno

= z.deptno

Intra-Partition Parallelism Degree = 4

Estimated Cost = 142
Estimated Cardinality = 153

Process Using 4 Subagents
| Access Table Name = DOOLE.DEPARTMENT ID = 2,4
| | #Columns = 3
| | Parallel Scan
| | Relation Scan
| | | Prefetch: Eligible
| | Lock Intents
| | | Table: Intent Share
| | | Row : Next Key Share
| | Insert Into Sorted Shared Temp Table ID = t1
| | | #Columns = 3
| | | #Sort Key Columns = 1
| | | | Key 1: DEPTNO (Ascending)
| | | Use Round-Robin Sort
| | | Sortheap Allocation Parameters:
| | | | #Rows = 40
| | | | Row Width = 48
| | | Piped
| Sorted Shared Temp Table Completion ID = t1
| Access Temp Table ID = t1
| | #Columns = 3
| | Relation Scan
| | | Prefetch: Eligible
| Merge Join
| | Access Table Name = DOOLE.PROJECT ID = 2,7
| | | #Columns = 2
| | | Parallel Scan
| | | Relation Scan
| | | | Prefetch: Eligible
| | | Lock Intents
| | | | Table: Intent Share
| | | | Row : Next Key Share
| | | Insert Into Sorted Shared Temp Table ID = t2
| | | | #Columns = 2
| | | | #Sort Key Columns = 1

586 Administration Guide: Performance

| | | | | Key 1: DEPTNO (Ascending)
| | | | Use Replicated Sort
| | | | Sortheap Allocation Parameters:
| | | | | #Rows = 38
| | | | | Row Width = 28
| | | | Piped
| | Sorted Shared Temp Table Completion ID = t2
| | Access Temp Table ID = t2
| | | #Columns = 2
| | | Relation Scan
| | | | Prefetch: Eligible
| Insert Into Sorted Shared Temp Table ID = t3
| | #Columns = 5
| | #Sort Key Columns = 1
| | | Key 1: (Ascending)
| | Use Partitioned Sort
| | Sortheap Allocation Parameters:
| | | #Rows = 61
| | | Row Width = 72
| | Piped
| Access Temp Table ID = t3
| | #Columns = 5
| | Relation Scan
| | | Prefetch: Eligible
| Merge Join
| | Access Table Name = DOOLE.EMPLOYEE ID = 2,5
| | | #Columns = 3
| | | Parallel Scan
| | | Relation Scan
| | | | Prefetch: Eligible
| | | Lock Intents
| | | | Table: Intent Share
| | | | Row : Next Key Share
| | | Insert Into Sorted Shared Temp Table ID = t4
| | | | #Columns = 3
| | | | #Sort Key Columns = 1
| | | | | Key 1: WORKDEPT (Ascending)
| | | | Use Partitioned Sort
| | | | Sortheap Allocation Parameters:
| | | | | #Rows = 63
| | | | | Row Width = 32
| | | | Piped
| | Sorted Shared Temp Table Completion ID = t4
| | Access Temp Table ID = t4
| | | #Columns = 3
| | | Relation Scan
| | | | Prefetch: Eligible
| Insert Into Asynchronous Local Table Queue ID = q1
Access Local Table Queue ID = q1 #Columns = 5
Return Data to Application
| #Columns = 5

End of section

Appendix C. Explain Tool 587

Optimizer Plan:

RETURN
(1)

|
LTQ
(2)

|
MSJOIN
(3)
/ \

TBSCAN TBSCAN
(4) (15)

| |
SORT SORT
(5) (16)

| |
MSJOIN TBSCAN
(6) (17)
/ \ |

TBSCAN TBSCAN Table:
(7) (11) DOOLE

| | EMPLOYEE
SORT SORT
(8) (12)

| |
TBSCAN TBSCAN
(9) (13)

| |
Table: Table:
DOOLE DOOLE
DEPARTMENT PROJECT

This plan is almost identical to the plan in the first example. The main
differences are the creation of four subagents when the plan first starts and
the table queue at the end of the plan to gather the results of each of
subagent’s work before returning them to the application.

It is also interesting to note that an extra sort is needed before joining with
EMPLOYEE. This is necessary because the subagents processing the merge
join between DEPARTMENT and PROJECT may produce the joined rows out
of sequence.

Example Three: Multipartition Database Plan with Inter-Partition
Parallelism

This example shows the same SQL statement as “Example One: No
Parallelism Plan” on page 583, but this query has been compiled on a
partitioned database made up of three database partitions.
******************** PACKAGE ***************************************

Package Name = DOOLE.DYNEXPLN
Prep Date = 2000/01/03

588 Administration Guide: Performance

Prep Time = 15:21:29

Bind Timestamp = 2000-01-03-15.21.29.990983

Isolation Level = Cursor Stability
Blocking = Block Unambiguous Cursors
Query Optimization Class = 5

Partition Parallel = Yes
Intra-Partition Parallel = No

Function Path = "SYSIBM", "SYSFUN", "DOOLE"

-------------------- SECTION ---------------------------------------
Section = 1

SQL Statement:

SELECT x.lastname, x.job, y.deptname, y.location, z.projname
FROM employee AS x, department AS y, project AS z
WHERE x.workdept = y.deptno AND x.workdept = z.deptno AND y.deptno

= z.deptno

Estimated Cost = 118
Estimated Cardinality = 263

Coordinator Subsection:
Distribute Subsection #2
| Broadcast to Node List
| | Nodes = 13, 82, 193
Distribute Subsection #3
| Broadcast to Node List
| | Nodes = 13, 82, 193
Distribute Subsection #1
| Broadcast to Node List
| | Nodes = 13, 82, 193
Access Table Queue ID = q1 #Columns = 5
Return Data to Application
| #Columns = 5

Subsection #1:
Access Table Queue ID = q2 #Columns = 3
| Output Sorted
| | #Key Columns = 1
| | | Key 1: (Ascending)
Merge Join
| Access Table Name = DOOLE.DEPARTMENT ID = 2,4
| | #Columns = 3
| | Relation Scan
| | | Prefetch: Eligible
| | Lock Intents
| | | Table: Intent Share
| | | Row : Next Key Share

Appendix C. Explain Tool 589

| | Insert Into Sorted Temp Table ID = t1
| | | #Columns = 3
| | | #Sort Key Columns = 1
| | | | Key 1: DEPTNO (Ascending)
| | | Sortheap Allocation Parameters:
| | | | #Rows = 40
| | | | Row Width = 48
| | | Piped
| Sorted Temp Table Completion ID = t1
| Access Temp Table ID = t1
| | #Columns = 3
| | Relation Scan
| | | Prefetch: Eligible
Merge Join
| Access Table Queue ID = q3 #Columns = 2
| | Output Sorted
| | | #Key Columns = 1
| | | | Key 1: (Ascending)
Insert Into Asynchronous Table Queue ID = q1
| Broadcast to Coordinator Node
| Rows Can Overflow to Temporary Table

Subsection #2:
Access Table Name = DOOLE.EMPLOYEE ID = 2,5
| #Columns = 3
| Relation Scan
| | Prefetch: Eligible
| Lock Intents
| | Table: Intent Share
| | Row : Next Key Share
| Insert Into Sorted Temp Table ID = t2
| | #Columns = 3
| | #Sort Key Columns = 1
| | | Key 1: WORKDEPT (Ascending)
| | Sortheap Allocation Parameters:
| | | #Rows = 27
| | | Row Width = 32
| | Piped
Sorted Temp Table Completion ID = t2
Access Temp Table ID = t2
| #Columns = 3
| Relation Scan
| | Prefetch: Eligible
| Insert Into Asynchronous Table Queue ID = q2
| | Hash to Specific Node
| | Rows Can Overflow to Temporary Tables
Insert Into Asynchronous Table Queue Completion ID = q2

Subsection #3:
Access Table Name = DOOLE.PROJECT ID = 2,7
| #Columns = 2
| Relation Scan
| | Prefetch: Eligible
| Lock Intents
| | Table: Intent Share

590 Administration Guide: Performance

| | Row : Next Key Share
| Insert Into Sorted Temp Table ID = t3
| | #Columns = 2
| | #Sort Key Columns = 1
| | | Key 1: DEPTNO (Ascending)
| | Sortheap Allocation Parameters:
| | | #Rows = 38
| | | Row Width = 28
| | Piped
Sorted Temp Table Completion ID = t3
Access Temp Table ID = t3
| #Columns = 2
| Relation Scan
| | Prefetch: Eligible
| Insert Into Asynchronous Table Queue ID = q3
| | Hash to Specific Node
| | Rows Can Overflow to Temporary Tables
Insert Into Asynchronous Table Queue Completion ID = q3

End of section

Optimizer Plan:

RETURN
(1)

|
BTQ
(2)

|
MSJOIN
(3)
/ \

MSJOIN MDTQ
(4) (14)
/ \ |

MDTQ TBSCAN TBSCAN
(5) (10) (15)

| | |
TBSCAN SORT SORT
(6) (11) (16)

| | |
SORT TBSCAN TBSCAN
(7) (12) (17)

| | |
TBSCAN Table: Table:
(8) DOOLE DOOLE

| DEPARTMENT PROJECT
Table:
DOOLE
EMPLOYEE

Appendix C. Explain Tool 591

This plan has all the same pieces as the plan in the first example, but the
section has been broken into four subsections. The subsections have the
following tasks:
v Coordinator Subsection. This subsection coordinates the other subsections.

In this plan, it causes the other subsections to be distributed and then uses
a table queue to gather the results to be returned to the application.

v Subsection #1. This subsection scans table queue q2 and uses a merge join
to join it with the DEPARTMENT table. A second merge join then adds in
the data from table queue q3. The joined rows are then sent to the
coordinator subsection using table queue q1.

v Subsection #2. This subsection scans the EMPLOYEE table, sorts it, and
hashes to a specific node with the results. These results are read by
Subsection #1.

v Subsection #3. This subsection scans the PROJECT table, sorts it, and
hashes to a specific node with the results. These results are read by
Subsection #1.

Example Four: Multipartition Database Plan with Inter-Partition and
Intra-Partition Parallelism

This example shows the same SQL statement as “Example One: No
Parallelism Plan” on page 583, but this query has been compiled on a
partitioned database made up of three database partitions, each of which is on
a four-way SMP machine.
******************** PACKAGE ***************************************

Package Name = DOOLE.DYNEXPLN
Prep Date = 2000/01/03
Prep Time = 15:22:14

Bind Timestamp = 2000-01-03-15.22.14.659970

Isolation Level = Cursor Stability
Blocking = Block Unambiguous Cursors
Query Optimization Class = 5

Partition Parallel = Yes
Intra-Partition Parallel = Yes (Bind Degree = 4)

Function Path = "SYSIBM", "SYSFUN", "DOOLE"

-------------------- SECTION ---------------------------------------
Section = 1

SQL Statement:

SELECT x.lastname, x.job, y.deptname, y.location, z.projname
FROM employee AS x, department AS y, project AS z
WHERE x.workdept = y.deptno AND x.workdept = z.deptno AND y.deptno

592 Administration Guide: Performance

= z.deptno

Intra-Partition Parallelism Degree = 4

Estimated Cost = 140
Estimated Cardinality = 263

Coordinator Subsection:
Distribute Subsection #2
| Broadcast to Node List
| | Nodes = 13, 82, 193
Distribute Subsection #3
| Broadcast to Node List
| | Nodes = 13, 82, 193
Distribute Subsection #1
| Broadcast to Node List
| | Nodes = 13, 82, 193
Access Table Queue ID = q1 #Columns = 5
Return Data to Application
| #Columns = 5

Subsection #1:
Process Using 4 Subagents
| Access Table Queue ID = q3 #Columns = 3
| Insert Into Sorted Shared Temp Table ID = t1
| | #Columns = 3
| | #Sort Key Columns = 1
| | | Key 1: (Ascending)
| | Use Partitioned Sort
| | Sortheap Allocation Parameters:
| | | #Rows = 27
| | | Row Width = 32
| | Piped
| Access Temp Table ID = t1
| | #Columns = 3
| | Relation Scan
| | | Prefetch: Eligible
| Merge Join
| | Access Table Name = DOOLE.DEPARTMENT ID = 2,4
| | | #Columns = 3
| | | Parallel Scan
| | | Relation Scan
| | | | Prefetch: Eligible
| | | Lock Intents
| | | | Table: Intent Share
| | | | Row : Next Key Share
| | | Insert Into Sorted Shared Temp Table ID = t2
| | | | #Columns = 3
| | | | #Sort Key Columns = 1
| | | | | Key 1: DEPTNO (Ascending)
| | | | Use Partitioned Sort
| | | | Sortheap Allocation Parameters:
| | | | | #Rows = 40
| | | | | Row Width = 48
| | | | Piped

Appendix C. Explain Tool 593

| | Sorted Shared Temp Table Completion ID = t2
| | Access Temp Table ID = t2
| | | #Columns = 3
| | | Relation Scan
| | | | Prefetch: Eligible
| Insert Into Sorted Shared Temp Table ID = t3
| | #Columns = 6
| | #Sort Key Columns = 1
| | | Key 1: (Ascending)
| | Use Partitioned Sort
| | Sortheap Allocation Parameters:
| | | #Rows = 44
| | | Row Width = 76
| | Piped
| Access Temp Table ID = t3
| | #Columns = 6
| | Relation Scan
| | | Prefetch: Eligible
| Merge Join
| | Access Table Queue ID = q5 #Columns = 2
| | Insert Into Sorted Shared Temp Table ID = t4
| | | #Columns = 2
| | | #Sort Key Columns = 1
| | | | Key 1: (Ascending)
| | | Use Partitioned Sort
| | | Sortheap Allocation Parameters:
| | | | #Rows = 38
| | | | Row Width = 28
| | | Piped
| | Access Temp Table ID = t4
| | | #Columns = 2
| | | Relation Scan
| | | | Prefetch: Eligible
| Insert Into Asynchronous Local Table Queue ID = q2
Access Local Table Queue ID = q2 #Columns = 5
Insert Into Asynchronous Table Queue ID = q1
| Broadcast to Coordinator Node
| Rows Can Overflow to Temporary Table

Subsection #2:
Process Using 4 Subagents
| Access Table Name = DOOLE.EMPLOYEE ID = 2,5
| | #Columns = 3
| | Parallel Scan
| | Relation Scan
| | | Prefetch: Eligible
| | Lock Intents
| | | Table: Intent Share
| | | Row : Next Key Share
| | Insert Into Sorted Shared Temp Table ID = t5
| | | #Columns = 3
| | | #Sort Key Columns = 1
| | | | Key 1: WORKDEPT (Ascending)
| | | Use Round-Robin Sort
| | | Sortheap Allocation Parameters:

594 Administration Guide: Performance

| | | | #Rows = 27
| | | | Row Width = 32
| | | Piped
| Sorted Shared Temp Table Completion ID = t5
| Access Temp Table ID = t5
| | #Columns = 3
| | Relation Scan
| | | Prefetch: Eligible
| Insert Into Asynchronous Local Table Queue ID = q4
Access Local Table Queue ID = q4 #Columns = 3
Insert Into Asynchronous Table Queue ID = q3
| Hash to Specific Node
| Rows Can Overflow to Temporary Tables

Subsection #3:
Process Using 4 Subagents
| Access Table Name = DOOLE.PROJECT ID = 2,7
| | #Columns = 2
| | Parallel Scan
| | Relation Scan
| | | Prefetch: Eligible
| | Lock Intents
| | | Table: Intent Share
| | | Row : Next Key Share
| | Insert Into Sorted Shared Temp Table ID = t6
| | | #Columns = 2
| | | #Sort Key Columns = 1
| | | | Key 1: DEPTNO (Ascending)
| | | Use Round-Robin Sort
| | | Sortheap Allocation Parameters:
| | | | #Rows = 38
| | | | Row Width = 28
| | | Piped
| Sorted Shared Temp Table Completion ID = t6
| Access Temp Table ID = t6
| | #Columns = 2
| | Relation Scan
| | | Prefetch: Eligible
| Insert Into Asynchronous Local Table Queue ID = q6
Access Local Table Queue ID = q6 #Columns = 2
Insert Into Asynchronous Table Queue ID = q5
| Hash to Specific Node
| Rows Can Overflow to Temporary Tables

End of section

Optimizer Plan:

RETURN
(1)

|
BTQ
(2)

|

Appendix C. Explain Tool 595

LTQ
(3)

|
MSJOIN
(4)
/ \

TBSCAN TBSCAN
(5) (20)

| |
SORT SORT
(6) (21)

| |
MSJOIN DTQ
(7) (22)
/ \ |

TBSCAN TBSCAN LTQ
(8) (16) (23)

| | |
SORT SORT TBSCAN

(9) (17) (24)
| | |
DTQ TBSCAN SORT
(10) (18) (25)

| | |
LTQ Table: TBSCAN

(11) DOOLE (26)
| DEPARTMENT |

TBSCAN Table:
(12) DOOLE

| PROJECT
SORT
(13)

|
TBSCAN
(14)

|
Table:
DOOLE
EMPLOYEE

This plan is similar to that in “Example Three: Multipartition Database Plan
with Inter-Partition Parallelism” on page 588, except that multiple subagents
execute each subsection. Also, at the end of each subsection, a local table
queue gathers the results from all of the subagents before the qualifying rows
are inserted into the second table queue to be hashed to a specific node.

Example Five: Federated Database Plan
This example shows the same SQL statement as “Example One: No
Parallelism Plan” on page 583, but this query has been compiled on a
federated database where the tables DEPARTMENT and PROJECT are on a
data source and the table EMPLOYEE is on the federated server.

596 Administration Guide: Performance

******************** PACKAGE ***************************************

Package Name = DOOLE.DYNEXPLN
Prep Date = 2000/01/03
Prep Time = 16:29:01

Bind Timestamp = 2000-01-03-16.29.01.479230

Isolation Level = Cursor Stability
Blocking = Block Unambiguous Cursors
Query Optimization Class = 5

Partition Parallel = No
Intra-Partition Parallel = No

Function Path = "SYSIBM", "SYSFUN", "DOOLE"

-------------------- SECTION ---------------------------------------
Section = 1

SQL Statement:

SELECT x.lastname, x.job, y.deptname, y.location, z.projname
FROM employee AS x, department AS y, project AS z
WHERE x.workdept = y.deptno AND x.workdept = z.deptno AND y.deptno

= z.deptno

Estimated Cost = 1954
Estimated Cardinality = 100800

Distribute Subquery #2
| #Columns = 3
Insert Into Sorted Shared Temp Table ID = t1
| #Columns = 3
| #Sort Key Columns = 1
| | Key 1: Remote Query #2, Output Column 1 (Ascending)
| Sortheap Allocation Parameters:
| | #Rows = 1000
| | Row Width = 56
| Piped
Access Temp Table ID = t1
| #Columns = 3
| Relation Scan
| | Prefetch: Eligible
Merge Join
| Access Table Name = DOOLE.DEPARTMENT ID = 2,5
| #Columns = 3
| Relation Scan
| | Prefetch: Eligible
| | Lock Intents
| | | Table: Intent Share
| | | Row : Next Key Share
| | Insert Into Sorted Temp Table ID = t2
| | | #Columns = 3

Appendix C. Explain Tool 597

| | | #Sort Key Columns = 1
| | | | Key 1: WORKDEPT (Ascending)
| | | Sortheap Allocation Parameters:
| | | | #Rows = 63
| | | | Row Width = 32
| | | Piped
| Sorted Temp Table Completion ID = t2
| Access Temp Table ID = t2
| | #Columns = 3
| | Relation Scan
| | | Prefetch: Eligible
Merge Join
| Distribute Subquery #1
| | #Columns = 2
| Insert Into Sorted Temp Table ID = t3
| | #Columns = 2
| | | Key 1: Remote Query #1, Output Column 1 (Ascending)
| | Sortheap Allocation Parameters:
| | | #Rows = 1000
| | | Row Width = 36
| | Piped
| Access Temp Table ID = t3
| | #Columns = 2
| | Relation Scan
| | | Prefetch: Eligible
Return Data to Application
| #Columns = 5

Distributed Subquery #1:
Server: REMOTE_SAMPLE (DB2/CS 7.1)
Subquery SQL Statement:

SELECT A0."DEPTNO", A0."PROJNAME"
FROM "DOOLE"."PROJECT" A0

Nicknames Referenced:
REMOTE.PROJECT ID = 7 Base = DOOLE.PROJECT

#Output Columns = 2

Distributed Subquery #2:
Server: REMOTE_SAMPLE (DB2/CS 7.1)
Subquery SQL Statement:

SELECT A0."DEPTNO", A0."DEPTNAME", A0."LOCATION"
FROM "DOOLE"."DEPARTMENT" A0

Nicknames Referenced:
REMOTE.DEPARTMENT ID = 4 Base = DOOLE.DEPARTMENT

#Output Columns = 3

End of section

Optimizer Plan:

598 Administration Guide: Performance

RETURN
(1)

|
MSJOIN
(2)

/ \
MSJOIN TBSCAN
(3) (13)
/ \ |

TBSCAN TBSCAN SORT
(4) (9) (14)

| | |
SORT SORT DSBQRY
(5) (10) (15)

| | |
DSBQRY TBSCAN Nickname:
(6) (11) REMOTE

| | PROJECT
Nickname: Table:
REMOTE DOOLE
DEPARTMENT EMPLOYEE

This plan has all the same pieces as the plan in the first example, except that
the data for two of the tables are coming from data sources. The two tables
are accessed through distributed subqueries which, in this case, simply select
all the rows from those tables. Once the data is returned to the federated
server, it is joined to the data from the local table.

Appendix C. Explain Tool 599

600 Administration Guide: Performance

Appendix D. db2exfmt - Explain Table Format Tool

You use the db2exfmt tool to format the contents of the explain tables. This
tool is located in the misc subdirectory of the instance sqllib directory.

To use the tool, you require read access to the explain tables being formatted.

-d dbname
Name of the database containing packages.

-e schema
Explain table schema.

-f Formatting flags. In this release, the only supported value is O
(operator summary).

-g Graph plan. If only -g is specified, a graph, followed by formatted
information for all of the tables, is generated. Otherwise, any
combination of the following valid values can be specified:
O Generate a graph only. Do not format the table contents.
T Include total cost under each operator in the graph.
I Include I/O cost under each operator in the graph.
C Include the expected output cardinality (number of tuples) of

each operator in the graph.
-l Respect case when processing package names.
-n name

Name of the source of the explain request (SOURCE_NAME).
-s schema

Schema or qualifier of the source of the explain request
(SOURCE_SCHEMA).

WW db2exfmt
-d dbname -e schema -f O

^-g
O
T
I
C

-l
W

W
-n name -s schema -o outfile

-t
-u userID password

W

W
-w timestamp -# sectnbr -h

WX

© Copyright IBM Corp. 1993, 2001 601

-o outfile
Output file name.

-t Direct the output to the terminal.
-u user ID password

When connecting to a database, use the provided user ID and
password.

Both the user ID and password must be valid according to naming
conventions and be recognized by the database.

-w timestamp
Explain time stamp. Specify -1 to obtain the latest explain request.

-# sectnbr
Section number in the source. To request all sections, specify zero.

-h Display help information. When this option is specified, all other
options are ignored, and only the help information is displayed.

You will be prompted for any parameter values that are not supplied, or that
are incompletely specified, except in the case of the -h and the -l options.

If an explain table schema is not provided, the value of the environment
variable USER is used as the default. If this variable is not found, the user is
prompted for an explain table schema.

Source name, source schema, and explain time stamp can be supplied in LIKE
predicate form, which allows the percent sign (%) and the underscore (_) to be
used as pattern matching characters to select multiple sources with one
invocation. For the latest explained statement, the explain time can be
specified as -1.

If -o is specified without a file name, and -t is not specified, the user is
prompted for a file name (the default name is db2exfmt.out). If neither -o nor
-t is specified, the user is prompted for a file name (the default option is
terminal output). If -o and -t are both specified, the output is directed to the
terminal.

602 Administration Guide: Performance

Appendix E. Using the DB2 Library

The DB2 Universal Database library consists of online help, books (PDF and
HTML), and sample programs in HTML format. This section describes the
information that is provided, and how you can access it.

To access product information online, you can use the Information Center. For
more information, see “Accessing Information with the Information Center”
on page 617. You can view task information, DB2 books, troubleshooting
information, sample programs, and DB2 information on the Web.

DB2 PDF Files and Printed Books

DB2 Information
The following table divides the DB2 books into four categories:

DB2 Guide and Reference Information
These books contain the common DB2 information for all platforms.

DB2 Installation and Configuration Information
These books are for DB2 on a specific platform. For example, there are
separate Quick Beginnings books for DB2 on OS/2, Windows, and
UNIX-based platforms.

Cross-platform sample programs in HTML
These samples are the HTML version of the sample programs that are
installed with the Application Development Client. The samples are
for informational purposes and do not replace the actual programs.

Release notes
These files contain late-breaking information that could not be
included in the DB2 books.

The installation manuals, release notes, and tutorials are viewable in HTML
directly from the product CD-ROM. Most books are available in HTML on the
product CD-ROM for viewing and in Adobe Acrobat (PDF) format on the DB2
publications CD-ROM for viewing and printing. You can also order a printed
copy from IBM; see “Ordering the Printed Books” on page 613. The following
table lists books that can be ordered.

On OS/2 and Windows platforms, you can install the HTML files under the
sqllib\doc\html directory. DB2 information is translated into different

© Copyright IBM Corp. 1993, 2001 603

languages; however, all the information is not translated into every language.
Whenever information is not available in a specific language, the English
information is provided

On UNIX platforms, you can install multiple language versions of the HTML
files under the doc/%L/html directories, where %L represents the locale. For
more information, refer to the appropriate Quick Beginnings book.

You can obtain DB2 books and access information in a variety of ways:
v “Viewing Information Online” on page 616
v “Searching Information Online” on page 620
v “Ordering the Printed Books” on page 613
v “Printing the PDF Books” on page 612

Table 45. DB2 Information

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Guide and Reference Information

Administration Guide Administration Guide: Planning provides
an overview of database concepts,
information about design issues (such as
logical and physical database design),
and a discussion of high availability.

Administration Guide: Implementation
provides information on implementation
issues such as implementing your
design, accessing databases, auditing,
backup and recovery.

Administration Guide: Performance
provides information on database
environment and application
performance evaluation and tuning.

You can order the three volumes of the
Administration Guide in the English
language in North America using the
form number SBOF-8934.

SC09-2946
db2d1x70

SC09-2944
db2d2x70

SC09-2945
db2d3x70

db2d0

Administrative API
Reference

Describes the DB2 application
programming interfaces (APIs) and data
structures that you can use to manage
your databases. This book also explains
how to call APIs from your applications.

SC09-2947

db2b0x70

db2b0

604 Administration Guide: Performance

Table 45. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Application Building
Guide

Provides environment setup information
and step-by-step instructions about how
to compile, link, and run DB2
applications on Windows, OS/2, and
UNIX-based platforms.

SC09-2948

db2axx70

db2ax

APPC, CPI-C, and SNA
Sense Codes

Provides general information about
APPC, CPI-C, and SNA sense codes that
you may encounter when using DB2
Universal Database products.

Available in HTML format only.

No form number

db2apx70

db2ap

Application Development
Guide

Explains how to develop applications
that access DB2 databases using
embedded SQL or Java (JDBC and
SQLJ). Discussion topics include writing
stored procedures, writing user-defined
functions, creating user-defined types,
using triggers, and developing
applications in partitioned environments
or with federated systems.

SC09-2949

db2a0x70

db2a0

CLI Guide and Reference Explains how to develop applications
that access DB2 databases using the DB2
Call Level Interface, a callable SQL
interface that is compatible with the
Microsoft ODBC specification.

SC09-2950

db2l0x70

db2l0

Command Reference Explains how to use the Command Line
Processor and describes the DB2
commands that you can use to manage
your database.

SC09-2951

db2n0x70

db2n0

Connectivity Supplement Provides setup and reference information
on how to use DB2 for AS/400, DB2 for
OS/390, DB2 for MVS, or DB2 for VM as
DRDA application requesters with DB2
Universal Database servers. This book
also details how to use DRDA
application servers with DB2 Connect
application requesters.

Available in HTML and PDF only.

No form number

db2h1x70

db2h1

Appendix E. Using the DB2 Library 605

Table 45. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Data Movement Utilities
Guide and Reference

Explains how to use DB2 utilities, such
as import, export, load, AutoLoader, and
DPROP, that facilitate the movement of
data.

SC09-2955

db2dmx70

db2dm

Data Warehouse Center
Administration Guide

Provides information on how to build
and maintain a data warehouse using
the Data Warehouse Center.

SC26-9993

db2ddx70

db2dd

Data Warehouse Center
Application Integration
Guide

Provides information to help
programmers integrate applications with
the Data Warehouse Center and with the
Information Catalog Manager.

SC26-9994

db2adx70

db2ad

DB2 Connect User’s Guide Provides concepts, programming, and
general usage information for the DB2
Connect products.

SC09-2954

db2c0x70

db2c0

DB2 Query Patroller
Administration Guide

Provides an operational overview of the
DB2 Query Patroller system, specific
operational and administrative
information, and task information for the
administrative graphical user interface
utilities.

SC09-2958

db2dwx70

db2dw

DB2 Query Patroller
User’s Guide

Describes how to use the tools and
functions of the DB2 Query Patroller.

SC09-2960

db2wwx70

db2ww

Glossary Provides definitions for terms used in
DB2 and its components.

Available in HTML format and in the
SQL Reference.

No form number

db2t0x70

db2t0

Image, Audio, and Video
Extenders Administration
and Programming

Provides general information about DB2
extenders, and information on the
administration and configuration of the
image, audio, and video (IAV) extenders
and on programming using the IAV
extenders. It includes reference
information, diagnostic information
(with messages), and samples.

SC26-9929

dmbu7x70

dmbu7

Information Catalog
Manager Administration
Guide

Provides guidance on managing
information catalogs.

SC26-9995

db2dix70

db2di

606 Administration Guide: Performance

Table 45. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Information Catalog
Manager Programming
Guide and Reference

Provides definitions for the architected
interfaces for the Information Catalog
Manager.

SC26-9997

db2bix70

db2bi

Information Catalog
Manager User’s Guide

Provides information on using the
Information Catalog Manager user
interface.

SC26-9996

db2aix70

db2ai

Installation and
Configuration Supplement

Guides you through the planning,
installation, and setup of
platform-specific DB2 clients. This
supplement also contains information on
binding, setting up client and server
communications, DB2 GUI tools, DRDA
AS, distributed installation, the
configuration of distributed requests,
and accessing heterogeneous data
sources.

GC09-2957

db2iyx70

db2iy

Message Reference Lists messages and codes issued by DB2,
the Information Catalog Manager, and
the Data Warehouse Center, and
describes the actions you should take.

You can order both volumes of the
Message Reference in the English
language in North America with the
form number SBOF-8932.

Volume 1
SC09-2978

db2m1x70
Volume 2
SC09-2979

db2m2x70

db2m0

OLAP Integration Server
Administration Guide

Explains how to use the Administration
Manager component of the OLAP
Integration Server.

SC27-0782

db2dpx70

n/a

OLAP Integration Server
Metaoutline User’s Guide

Explains how to create and populate
OLAP metaoutlines using the standard
OLAP Metaoutline interface (not by
using the Metaoutline Assistant).

SC27-0784

db2upx70

n/a

OLAP Integration Server
Model User’s Guide

Explains how to create OLAP models
using the standard OLAP Model
Interface (not by using the Model
Assistant).

SC27-0783

db2lpx70

n/a

OLAP Setup and User’s
Guide

Provides configuration and setup
information for the OLAP Starter Kit.

SC27-0702

db2ipx70

db2ip

OLAP Spreadsheet Add-in
User’s Guide for Excel

Describes how to use the Excel
spreadsheet program to analyze OLAP
data.

SC27-0786

db2epx70

db2ep

Appendix E. Using the DB2 Library 607

Table 45. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

OLAP Spreadsheet Add-in
User’s Guide for Lotus
1-2-3

Describes how to use the Lotus 1-2-3
spreadsheet program to analyze OLAP
data.

SC27-0785

db2tpx70

db2tp

Replication Guide and
Reference

Provides planning, configuration,
administration, and usage information
for the IBM Replication tools supplied
with DB2.

SC26-9920

db2e0x70

db2e0

Spatial Extender User’s
Guide and Reference

Provides information about installing,
configuring, administering,
programming, and troubleshooting the
Spatial Extender. Also provides
significant descriptions of spatial data
concepts and provides reference
information (messages and SQL) specific
to the Spatial Extender.

SC27-0701

db2sbx70

db2sb

SQL Getting Started Introduces SQL concepts and provides
examples for many constructs and tasks.

SC09-2973

db2y0x70

db2y0

SQL Reference, Volume 1
and Volume 2

Describes SQL syntax, semantics, and the
rules of the language. This book also
includes information about
release-to-release incompatibilities,
product limits, and catalog views.

You can order both volumes of the SQL
Reference in the English language in
North America with the form number
SBOF-8933.

Volume 1
SC09-2974

db2s1x70

Volume 2
SC09-2975

db2s2x70

db2s0

System Monitor Guide and
Reference

Describes how to collect different kinds
of information about databases and the
database manager. This book explains
how to use the information to
understand database activity, improve
performance, and determine the cause of
problems.

SC09-2956

db2f0x70

db2f0

Text Extender
Administration and
Programming

Provides general information about DB2
extenders and information on the
administration and configuring of the
text extender and on programming using
the text extenders. It includes reference
information, diagnostic information
(with messages) and samples.

SC26-9930

desu9x70

desu9

608 Administration Guide: Performance

Table 45. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Troubleshooting Guide Helps you determine the source of
errors, recover from problems, and use
diagnostic tools in consultation with DB2
Customer Service.

GC09-2850

db2p0x70

db2p0

What’s New Describes the new features, functions,
and enhancements in DB2 Universal
Database, Version 7.

SC09-2976

db2q0x70

db2q0

DB2 Installation and Configuration Information

DB2 Connect Enterprise
Edition for OS/2 and
Windows Quick
Beginnings

Provides planning, migration,
installation, and configuration
information for DB2 Connect Enterprise
Edition on the OS/2 and Windows 32-bit
operating systems. This book also
contains installation and setup
information for many supported clients.

GC09-2953

db2c6x70

db2c6

DB2 Connect Enterprise
Edition for UNIX Quick
Beginnings

Provides planning, migration,
installation, configuration, and task
information for DB2 Connect Enterprise
Edition on UNIX-based platforms. This
book also contains installation and setup
information for many supported clients.

GC09-2952

db2cyx70

db2cy

DB2 Connect Personal
Edition Quick Beginnings

Provides planning, migration,
installation, configuration, and task
information for DB2 Connect Personal
Edition on the OS/2 and Windows 32-bit
operating systems. This book also
contains installation and setup
information for all supported clients.

GC09-2967

db2c1x70

db2c1

DB2 Connect Personal
Edition Quick Beginnings
for Linux

Provides planning, installation,
migration, and configuration information
for DB2 Connect Personal Edition on all
supported Linux distributions.

GC09-2962

db2c4x70

db2c4

DB2 Data Links Manager
Quick Beginnings

Provides planning, installation,
configuration, and task information for
DB2 Data Links Manager for AIX and
Windows 32-bit operating systems.

GC09-2966

db2z6x70

db2z6

Appendix E. Using the DB2 Library 609

Table 45. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Enterprise - Extended
Edition for UNIX Quick
Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition on
UNIX-based platforms. This book also
contains installation and setup
information for many supported clients.

GC09-2964

db2v3x70

db2v3

DB2 Enterprise - Extended
Edition for Windows Quick
Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition for
Windows 32-bit operating systems. This
book also contains installation and setup
information for many supported clients.

GC09-2963

db2v6x70

db2v6

DB2 for OS/2 Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on the OS/2
operating system. This book also
contains installation and setup
information for many supported clients.

GC09-2968

db2i2x70

db2i2

DB2 for UNIX Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on
UNIX-based platforms. This book also
contains installation and setup
information for many supported clients.

GC09-2970

db2ixx70

db2ix

DB2 for Windows Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on Windows
32-bit operating systems. This book also
contains installation and setup
information for many supported clients.

GC09-2971

db2i6x70

db2i6

DB2 Personal Edition
Quick Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database Personal
Edition on the OS/2 and Windows 32-bit
operating systems.

GC09-2969

db2i1x70

db2i1

DB2 Personal Edition
Quick Beginnings for
Linux

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database Personal
Edition on all supported Linux
distributions.

GC09-2972

db2i4x70

db2i4

610 Administration Guide: Performance

Table 45. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Query Patroller
Installation Guide

Provides installation information about
DB2 Query Patroller.

GC09-2959

db2iwx70

db2iw

DB2 Warehouse Manager
Installation Guide

Provides installation information for
warehouse agents, warehouse
transformers, and the Information
Catalog Manager.

GC26-9998

db2idx70

db2id

Cross-Platform Sample Programs in HTML

Sample programs in
HTML

Provides the sample programs in HTML
format for the programming languages
on all platforms supported by DB2. The
sample programs are provided for
informational purposes only. Not all
samples are available in all
programming languages. The HTML
samples are only available when the DB2
Application Development Client is
installed.

For more information on the programs,
refer to the Application Building Guide.

No form number db2hs

Release Notes

DB2 Connect Release
Notes

Provides late-breaking information that
could not be included in the DB2
Connect books.

See note #2. db2cr

DB2 Installation Notes Provides late-breaking
installation-specific information that
could not be included in the DB2 books.

Available on
product
CD-ROM only.

DB2 Release Notes Provides late-breaking information about
all DB2 products and features that could
not be included in the DB2 books.

See note #2. db2ir

Notes:

1. The character x in the sixth position of the file name indicates the
language version of a book. For example, the file name db2d0e70 identifies
the English version of the Administration Guide and the file name db2d0f70
identifies the French version of the same book. The following letters are
used in the sixth position of the file name to indicate the language version:

Language Identifier
Brazilian Portuguese b

Appendix E. Using the DB2 Library 611

Bulgarian u
Czech x
Danish d
Dutch q
English e
Finnish y
French f
German g
Greek a
Hungarian h
Italian i
Japanese j
Korean k
Norwegian n
Polish p
Portuguese v
Russian r
Simp. Chinese c
Slovenian l
Spanish z
Swedish s
Trad. Chinese t
Turkish m

2. Late breaking information that could not be included in the DB2 books is
available in the Release Notes in HTML format and as an ASCII file. The
HTML version is available from the Information Center and on the
product CD-ROMs. To view the ASCII file:
v On UNIX-based platforms, see the Release.Notes file. This file is located

in the DB2DIR/Readme/%L directory, where %L represents the locale name
and DB2DIR represents:
– /usr/lpp/db2_07_01 on AIX
– /opt/IBMdb2/V7.1 on HP-UX, PTX, Solaris, and Silicon Graphics IRIX
– /usr/IBMdb2/V7.1 on Linux.

v On other platforms, see the RELEASE.TXT file. This file is located in the
directory where the product is installed. On OS/2 platforms, you can
also double-click the IBM DB2 folder and then double-click the Release
Notes icon.

Printing the PDF Books
If you prefer to have printed copies of the books, you can print the PDF files
found on the DB2 publications CD-ROM. Using the Adobe Acrobat Reader,
you can print either the entire book or a specific range of pages. For the file
name of each book in the library, see Table 45 on page 604.

612 Administration Guide: Performance

You can obtain the latest version of the Adobe Acrobat Reader from the
Adobe Web site at http://www.adobe.com.

The PDF files are included on the DB2 publications CD-ROM with a file
extension of PDF. To access the PDF files:
1. Insert the DB2 publications CD-ROM. On UNIX-based platforms, mount

the DB2 publications CD-ROM. Refer to your Quick Beginnings book for
the mounting procedures.

2. Start the Acrobat Reader.
3. Open the desired PDF file from one of the following locations:

v On OS/2 and Windows platforms:
x:\doc\language directory, where x represents the CD-ROM drive and
language represent the two-character country code that represents your
language (for example, EN for English).

v On UNIX-based platforms:
/cdrom/doc/%L directory on the CD-ROM, where /cdrom represents the
mount point of the CD-ROM and %L represents the name of the desired
locale.

You can also copy the PDF files from the CD-ROM to a local or network drive
and read them from there.

Ordering the Printed Books

You can order the printed DB2 books either individually or as a set (in North
America only) by using a sold bill of forms (SBOF) number. To order books,
contact your IBM authorized dealer or marketing representative, or phone
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada. You can
also order the books from the Publications Web page at
http://www.elink.ibmlink.ibm.com/pbl/pbl.

Two sets of books are available. SBOF-8935 provides reference and usage
information for the DB2 Warehouse Manager. SBOF-8931 provides reference
and usage information for all other DB2 Universal Database products and
features. The contents of each SBOF are listed in the following table:

Appendix E. Using the DB2 Library 613

Table 46. Ordering the printed books

SBOF Number Books Included

SBOF-8931 v Administration Guide: Planning

v Administration Guide: Implementation

v Administration Guide: Performance

v Administrative API Reference

v Application Building Guide

v Application Development Guide

v CLI Guide and Reference

v Command Reference

v Data Movement Utilities Guide and
Reference

v Data Warehouse Center Administration
Guide

v Data Warehouse Center Application
Integration Guide

v DB2 Connect User’s Guide

v Installation and Configuration
Supplement

v Image, Audio, and Video Extenders
Administration and Programming

v Message Reference, Volumes 1 and 2

v OLAP Integration Server
Administration Guide

v OLAP Integration Server Metaoutline
User’s Guide

v OLAP Integration Server Model User’s
Guide

v OLAP Integration Server User’s Guide

v OLAP Setup and User’s Guide

v OLAP Spreadsheet Add-in User’s
Guide for Excel

v OLAP Spreadsheet Add-in User’s
Guide for Lotus 1-2-3

v Replication Guide and Reference

v Spatial Extender Administration and
Programming Guide

v SQL Getting Started

v SQL Reference, Volumes 1 and 2

v System Monitor Guide and Reference

v Text Extender Administration and
Programming

v Troubleshooting Guide

v What’s New

SBOF-8935 v Information Catalog Manager
Administration Guide

v Information Catalog Manager User’s
Guide

v Information Catalog Manager
Programming Guide and Reference

v Query Patroller Administration Guide

v Query Patroller User’s Guide

DB2 Online Documentation

Accessing Online Help
Online help is available with all DB2 components. The following table
describes the various types of help.

614 Administration Guide: Performance

Type of Help Contents How to Access...

Command Help Explains the syntax of
commands in the command
line processor.

From the command line processor in interactive
mode, enter:

? command

where command represents a keyword or the entire
command.

For example, ? catalog displays help for all the
CATALOG commands, while ? catalog database
displays help for the CATALOG DATABASE
command.

Client Configuration
Assistant Help

Command Center Help

Control Center Help

Data Warehouse Center
Help

Event Analyzer Help

Information Catalog
Manager Help

Satellite Administration
Center Help

Script Center Help

Explains the tasks you can
perform in a window or
notebook. The help includes
overview and prerequisite
information you need to
know, and it describes how
to use the window or
notebook controls.

From a window or notebook, click the Help push
button or press the F1 key.

Message Help Describes the cause of a
message and any action you
should take.

From the command line processor in interactive
mode, enter:

? XXXnnnnn

where XXXnnnnn represents a valid message
identifier.

For example, ? SQL30081 displays help about the
SQL30081 message.

To view message help one screen at a time, enter:

? XXXnnnnn | more

To save message help in a file, enter:

? XXXnnnnn > filename.ext

where filename.ext represents the file where you
want to save the message help.

Appendix E. Using the DB2 Library 615

Type of Help Contents How to Access...

SQL Help Explains the syntax of SQL
statements.

From the command line processor in interactive
mode, enter:

help statement

where statement represents an SQL statement.

For example, help SELECT displays help about the
SELECT statement.
Note: SQL help is not available on UNIX-based
platforms.

SQLSTATE Help Explains SQL states and
class codes.

From the command line processor in interactive
mode, enter:

? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL
state and class code represents the first two digits
of the SQL state.

For example, ? 08003 displays help for the 08003
SQL state, while ? 08 displays help for the 08 class
code.

Viewing Information Online
The books included with this product are in Hypertext Markup Language
(HTML) softcopy format. Softcopy format enables you to search or browse the
information and provides hypertext links to related information. It also makes
it easier to share the library across your site.

You can view the online books or sample programs with any browser that
conforms to HTML Version 3.2 specifications.

To view online books or sample programs:
v If you are running DB2 administration tools, use the Information Center.
v From a browser, click File —>Open Page. The page you open contains

descriptions of and links to DB2 information:
– On UNIX-based platforms, open the following page:

INSTHOME/sqllib/doc/%L/html/index.htm

where %L represents the locale name.
– On other platforms, open the following page:

sqllib\doc\html\index.htm

The path is located on the drive where DB2 is installed.

616 Administration Guide: Performance

If you have not installed the Information Center, you can open the page
by double-clicking the DB2 Information icon. Depending on the system
you are using, the icon is in the main product folder or the Windows
Start menu.

Installing the Netscape Browser
If you do not already have a Web browser installed, you can install Netscape
from the Netscape CD-ROM found in the product boxes. For detailed
instructions on how to install it, perform the following:
1. Insert the Netscape CD-ROM.
2. On UNIX-based platforms only, mount the CD-ROM. Refer to your Quick

Beginnings book for the mounting procedures.
3. For installation instructions, refer to the CDNAVnn.txt file, where nn

represents your two character language identifier. The file is located at the
root directory of the CD-ROM.

Accessing Information with the Information Center
The Information Center provides quick access to DB2 product information.
The Information Center is available on all platforms on which the DB2
administration tools are available.

You can open the Information Center by double-clicking the Information
Center icon. Depending on the system you are using, the icon is in the
Information folder in the main product folder or the Windows Start menu.

You can also access the Information Center by using the toolbar and the Help
menu on the DB2 Windows platform.

The Information Center provides six types of information. Click the
appropriate tab to look at the topics provided for that type.

Tasks Key tasks you can perform using DB2.

Reference DB2 reference information, such as keywords, commands, and
APIs.

Books DB2 books.

Troubleshooting
Categories of error messages and their recovery actions.

Sample Programs
Sample programs that come with the DB2 Application
Development Client. If you did not install the DB2
Application Development Client, this tab is not displayed.

Web DB2 information on the World Wide Web. To access this
information, you must have a connection to the Web from
your system.

Appendix E. Using the DB2 Library 617

When you select an item in one of the lists, the Information Center launches a
viewer to display the information. The viewer might be the system help
viewer, an editor, or a Web browser, depending on the kind of information
you select.

The Information Center provides a find feature, so you can look for a specific
topic without browsing the lists.

For a full text search, follow the hypertext link in the Information Center to
the Search DB2 Online Information search form.

The HTML search server is usually started automatically. If a search in the
HTML information does not work, you may have to start the search server
using one of the following methods:

On Windows
Click Start and select Programs —> IBM DB2 —> Information —>
Start HTML Search Server.

On OS/2
Double-click the DB2 for OS/2 folder, and then double-click the Start
HTML Search Server icon.

Refer to the release notes if you experience any other problems when
searching the HTML information.

Note: The Search function is not available in the Linux, PTX, and Silicon
Graphics IRIX environments.

Using DB2 Wizards
Wizards help you complete specific administration tasks by taking you
through each task one step at a time. Wizards are available through the
Control Center and the Client Configuration Assistant. The following table
lists the wizards and describes their purpose.

Note: The Create Database, Create Index, Configure Multisite Update, and
Performance Configuration wizards are available for the partitioned
database environment.

Wizard Helps You to... How to Access...

Add Database Catalog a database on a client workstation. From the Client Configuration
Assistant, click Add.

Back up Database Determine, create, and schedule a backup
plan.

From the Control Center, right-click
the database you want to back up
and select Backup —> Database
Using Wizard.

618 Administration Guide: Performance

Wizard Helps You to... How to Access...

Configure Multisite
Update

Configure a multisite update, a distributed
transaction, or a two-phase commit.

From the Control Center, right-click
the Databases folder and select
Multisite Update.

Create Database Create a database, and perform some basic
configuration tasks.

From the Control Center, right-click
the Databases folder and select
Create —> Database Using
Wizard.

Create Table Select basic data types, and create a primary
key for the table.

From the Control Center, right-click
the Tables icon and select Create
—> Table Using Wizard.

Create Table Space Create a new table space. From the Control Center, right-click
the Table Spaces icon and select
Create —> Table Space Using
Wizard.

Create Index Advise which indexes to create and drop for
all your queries.

From the Control Center, right-click
the Index icon and select Create
—> Index Using Wizard.

Performance
Configuration

Tune the performance of a database by
updating configuration parameters to match
your business requirements.

From the Control Center, right-click
the database you want to tune and
select Configure Performance
Using Wizard.

For the partitioned database
environment, from the Database
Partitions view, right-click the first
database partition you want to
tune and select Configure
Performance Using Wizard.

Restore Database Recover a database after a failure. It helps
you understand which backup to use, and
which logs to replay.

From the Control Center, right-click
the database you want to restore
and select Restore —> Database
Using Wizard.

Setting Up a Document Server
By default, the DB2 information is installed on your local system. This means
that each person who needs access to the DB2 information must install the
same files. To have the DB2 information stored in a single location, perform
the following steps:
1. Copy all files and subdirectories from \sqllib\doc\html on your local

system to a Web server. Each book has its own subdirectory that contains
all the necessary HTML and GIF files that make up the book. Ensure that
the directory structure remains the same.

Appendix E. Using the DB2 Library 619

2. Configure the Web server to look for the files in the new location. For
information, refer to the NetQuestion Appendix in the Installation and
Configuration Supplement.

3. If you are using the Java version of the Information Center, you can
specify a base URL for all HTML files. You should use the URL for the list
of books.

4. When you are able to view the book files, you can bookmark commonly
viewed topics. You will probably want to bookmark the following pages:
v List of books
v Tables of contents of frequently used books
v Frequently referenced articles, such as the ALTER TABLE topic
v The Search form

For information about how you can serve the DB2 Universal Database online
documentation files from a central machine, refer to the NetQuestion
Appendix in the Installation and Configuration Supplement.

Searching Information Online
To find information in the HTML files, use one of the following methods:
v Click Search in the top frame. Use the search form to find a specific topic.

This function is not available in the Linux, PTX, or Silicon Graphics IRIX
environments.

v Click Index in the top frame. Use the index to find a specific topic in the
book.

v Display the table of contents or index of the help or the HTML book, and
then use the find function of the Web browser to find a specific topic in the
book.

v Use the bookmark function of the Web browser to quickly return to a
specific topic.

v Use the search function of the Information Center to find specific topics. See
“Accessing Information with the Information Center” on page 617 for
details.

620 Administration Guide: Performance

Appendix F. Notices

IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1993, 2001 621

improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
1150 Eglinton Ave. East
North York, Ontario
M3C 1H7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

622 Administration Guide: Performance

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source
language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using,
marketing or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

Appendix F. Notices 623

Trademarks

The following terms, which may be denoted by an asterisk(*), are trademarks
of International Business Machines Corporation in the United States, other
countries, or both.

ACF/VTAM
AISPO
AIX
AIX/6000
AIXwindows
AnyNet
APPN
AS/400
BookManager
CICS
C Set++
C/370
DATABASE 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Extenders
DB2 OLAP Server
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
eNetwork
Extended Services
FFST
First Failure Support Technology

IBM
IMS
IMS/ESA
LAN DistanceMVS
MVS/ESA
MVS/XA
Net.Data
OS/2
OS/390
OS/400
PowerPC
QBIC
QMF
RACF
RISC System/6000
RS/6000
S/370
SP
SQL/DS
SQL/400
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WebExplorer
WIN-OS/2

The following terms are trademarks or registered trademarks of other
companies:

Microsoft, Windows, and Windows NT are trademarks or registered
trademarks of Microsoft Corporation.

Java or all Java-based trademarks and logos, and Solaris are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States,
other countries, or both.

624 Administration Guide: Performance

UNIX is a registered trademark in the United States, other countries or both
and is licensed exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a
double asterisk(**) may be trademarks or service marks of others.

Appendix F. Notices 625

626 Administration Guide: Performance

Index

A
access control

concurrency 43
locks 51

access path
lock attributes 61
selection 74

access plan
cost estimate 223
db2expln 215
graphical representation 218
objects 219
operators 220
using explain facility 216
Visual Explain 231

access plans
created by compiler 152

ACTIVATE DATABASE 270
add database wizard 618, 619
adding node to system

restrictions on database
operations 295

when redistributing
nodegroup 308

Address Windowing Extensions
(AWE) 248

ADVISE_INDEX table
creation 552
detailed description 540

ADVISE_WORKLOAD table
detailed description 543

ADVISE_WORKLOAD table
definition

creation 554
advisor

index 232
agent pool 272
agent pool size (num_poolagents)

database manager parameter 403
agent process

application heap size
(applheapsz) parameter 363

application support layer heap
size (aslheapsz) parameter 372

maximum number of agents
(maxagents) parameter 399

maximum number of concurrent
agents (maxcagents)
parameter 401

agent process (continued)
priority of agents (agentpri)

parameter 398
agent_stack_sz configuration

parameter 368
impact on memory 245

agentpri configuration
parameter 398

agents
application control heap size,

maximum 358
connection entries, number 461
coordinator agent 272
governor changes priority

of 283
idle agent 272
inactive agent 272
initial number of agents in pool

(num_initagents) database
manager parameter 405

max_coordagents database
manager parameter 402

maximum number of
coordinating 402

pool size, controlling 403
subagent 272

ALTER TABLESPACE
example 97

app_ctl_heap_sz database
configuration parameter

impact on memory 245
app_ctl_heap_sz database

parameter 358
applheapsz configuration

parameter 363
impact on memory 245

application control heap
application control heap size

(app_ctl_heap_sz) database
parameter 358

application control heap size
(app_ctl_heap_sz)
databaseparameter 358

application design
acquiring locks 51
deadlock, avoiding 59
lock compatibility, ensuring 54
lock escalation 56
locking considerations 66

application design (continued)
locks, converting of 56
locks, factors affecting 61
overriding locks 65

application program 43
control heap, setting 358
governor forces 283
maximum number of

coordinating agents at
node 402

architecture
overview 11
storage 15

aslheapsz configuration
parameter 372

impact on memory 245
audit_buf_sz configuration

parameter 381
authentication configuration

parameter 482
authority

configuration parameters 478
required for REORG utility 267

automatic summary tables 197
autorestart database configuration

parameter 421
avg_appls configuration

parameter 396
affect on query optimization 92

B
back up database wizard 618
backbufsz configuration

parameter 352
BACKUP DATABASE utility

default backup buffer size
(backbufsz) parameter 352

backup_pending configuration
parameter 438

benchmark program
creating 318
sample report 326
SQL statements 317
step summary 326

benchmarking
db2batch tool 319
overview 315
preparations for 316
testing methods 316
testing process 324

© Copyright IBM Corp. 1993, 2001 627

binding
changing configuration

parameters 338
default for DEGREE option 87
isolation level 49

block fetch 79
books 603, 613
broadcast inner-table joins 189
broadcast outer table joins 186
buffer pages

allocating multiple 262
buffer pool

binding database
applications 347

performance considerations 347
sizing using buffpage

configuration parameter 345
storage considerations 347

buffer pools 13
AWE 248
choosing number of 254
database managed storage

(DMS) 269
managing 250
memory required 253
multiple 253
outer versus inner table

determination 179
overview 247

buffpage configuration
parameter 345

effect on query optimization 92
impact on memory 244
managing multiple buffer

pools 253

C
capacity management configuration

parameters 344
cartesian products 181

star schemas 181
catalog_noauth configuration

parameter 483
catalog node 43

connection for data
redistribution 309

catalog views
COLDIST 121
COLUMNS 119
functions 140
INDEXES 119
SYSSTAT.COLDIST 121
SYSSTAT.COLUMNS 119
SYSSTAT.FUNCTIONS 140
SYSSTAT.INDEXES 119

catalog views (continued)
SYSSTAT.TABLES 118
TABLES 118
update-capable 134

catalogcache_sz configuration
parameter 349

catalogs
reorganizing 265

character conversion
performance considerations 84

chngpgs_thresh configuration
parameter 387

managing the buffer pool 250
client support

client I/O block size (rqrioblk)
parameter 375

TCP/IP service name (svcename)
parameter 447

transaction program name
(tpname) parameter 448

clustered indexes
cluster ratio statistic 170

clustering indexes 24
code page support

character conversion 84
code pages

guidelines for selecting 84
codepage configuration

parameter 434
codeset configuration

parameter 433
collate_info configuration

parameter 434
collating_sequence server

option 107
collating sequences

federated systems 202
collocated joins 186
collocation

data redistribution preservation
of 307

replicated summary tables 182
column options

numeric string 204
varchar_no_trailing_blanks 205

comm_bandwidth configuration
parameter 471

comm_rate server option 107, 108
commands

ACTIVATE DATABASE 270
db2evmon 279
DEACTIVATE DATABASE 270
REORGCHK 266

commit
number of commits to group

(mincommit) 416
communication

connection retries, number 463
FCM daemon to agent, request

blocks 462
node, connection elapse

time 459
node, message buffers 460

communications bandwidth
configuration parameter 94

compilers
federated database phases 151
overview 149
overview of remote SQL

generation 152
pushdown analysis 151
query rewrite 153

composite tables
composite inner 182
composite outer 182

compound SQL
overview of 83
performance considerations 83

compound statements
dynamic 83

concentrator 273
concurrency

controlling using locks 51
declared temporary tables 51
overview 43

concurrency and granularity
effect of locks on 54

concurrency control
maximum number of active

applications (maxappls)
parameter 394

maximum number of
concurrently active databases
(numdb) parameter 473

configuration 330
adding servers, system

running 298
adding servers, system

stopped 299
changing database manager

parameters 331
changing database

parameters 337
database manager

parameters 331
database parameters 337
parameter details 343

628 Administration Guide: Performance

configuration (continued)
parameter summary,

database 339
parameter summary, database

manager 333
parameters 329
tuning parameters 330

configuration files
governor 284
governor example 291

configuration parameter
dft_degree 87
intra_parallel 87
max_querydegree 87

configuration parameters
agent communication

memory 371
agent private memory 359
agent_stack_sz 245
applheapsz 245
application communication

memory 371
application shared memory 358
applications and agents 394
aslheapsz 245
buffpage 244, 253
capacity management 344
chngpgs_thresh 250
communication protocol

setup 446
communications 446
compiler settings 440
database application remote

interface (DARI) 405
database attributes 432
database management 431
database manager instance

memory 378
database shared memory 345
database status 437
database system monitor 469
DB2 Data Links Manager 435
DB2 discovery 455
dbheap 244
diagnostic information 466
distributed services 450
distributed unit of work 427
drda_heap_sz 245
effect on optimizer 91
estore_seg_sz 38, 244
eutil_heap_sz 244
I/O and storage 386
instance administration 478
instance management 466
keepdari 32

configuration parameters (continued)
locklist 244
locks 382
log activity 415
log files 409
logging 409
maxagents 37, 272
maxappls 37
multipage_alloc 262
num_estore_segs 38, 244
num_iocleaners 250
num_poolagents 272
numdb 36
parallel operations 458
partitioned database 458
pckcachesz 244
query enabler 431
query_heap_sz 245
recovery 409, 420
rqrioblk 245
sheapthres 264
softmax 250
sortheap 245, 264
stat_heap_sz 245
stmtheap 245
stored procedure 405
system management 471
Tivoli Storage Manager 421
udf_mem_sz 245

configurations
changing the size 295

configure multisite update
wizard 618

conn_elapse configuration
parameter 459

connect time reduction 274
connected applications 273
connection elapse time (conn_elapse)

database manager configuration
parameter 459

connection entry 461
connections

elapse time 459
number of retries 463

constraints
Explain tables 523

containers 17
suggestions for parallel I/O 261

Control Center
Event Analyzer 277
Performance Monitor 277
Snapshot Monitor 277

conversion
of locks, rules 56

Coordinated Universal Time 464

coordinator agent 13
maximum number at node 402

coordinator database partition
considerations for dropping 302

copyprotect configuration
parameter 435

correlated subqueries 158
country configuration

parameter 433
cpu_ratio server option 108
CPU speed configuration parameter

effect on query optimization 93
cpuspeed configuration

parameter 472
create database wizard 619
CREATE INDEX

ALLOW REVERSE SCANS 163
create table space wizard 619
create table wizard 619
CREATE TABLESPACE 18
CURRENT DEGREE special

register 87
cursor stability

overview 47
cursors

close using WITH RELEASE
clause 66

read only, uncommitted read 47
updatable, uncommitted read 47

D
DARI 85
data

caching when database is
started 87

connection entries for agents to
pass, number 461

management 21
data integrity

concurrency 43
protecting using locks 51

Data Links access token expiry
interval configuration
parameter 435

Data Links number of copies
configuration parameter 436

Data Links time after drop
configuration parameter 436

Data Links token algorithm
configuration parameter 436

Data Links token in upper case
configuration parameter 437

data page 21

Index 629

data sources
CPU speed and

performance 208
I/O speed and performance 208

database 43
activating 270
agents 272
auto restart enable (autorestart)

parameter 421
backup pending indicator

(backup_pending)
parameter 438

code page for database
(codepage) parameter 434

codeset for database (codeset)
parameter 433

collating information
(collate_info) parameter 434

configuration parameter
summary 339

configuration parameters 337
country code for database

(country) parameter 433
data caching when database is

started 87
database is consistent

(database_consistent)
parameter 438

deactivating 270
maximum file open per

application (maxfilop)
parameter 397

maximum number of
concurrently active databases
(numdb) parameter 473

number of containers (numsegs)
parameter 392

parameter file SQLDBCON 337
release level (release)

parameter 432
startup cost 270
storage for an application 241
territory for database (territory)

parameter 433
user exit enable (userexit)

parameter 420
user exit status indicator

(user_exit_status)
parameter 439

database access
effect of optimization class 67
overview 162, 163

database application remote interface
(DARI) 85

Database Application Remote
Interface (DARI)

initial number of fenced DARI
processes in pool
(num_initdaris) parameter 408

initialize DARI process with JVM
(initdari_jvm) parameter 408

keep DARI process indicator
(keepdari) parameter 405

maximum number of DARI
processes (maxdari)
parameter 406

database configuration
app_ctl_heap_sz parameter 358

database_consistent configuration
parameter 438

database_level configuration
parameter 433

database managed space (DMS) 18
database management, configuration

parameters 431
database manager 43

configuration parameter
summary 333

configuration parameters 331
default database path (dftdbpath)

parameter 484
governor effect on

performance 294
machine node type (nodetype)

parameter 476
parameter file db2systm 331
start timeout 464
stop timeout 464
using memory 240

database manager configuration
conn_elapse parameter 459
fcm_num_anchors

parameter 459
fcm_num_buffers parameter 460
fcm_num_connect

parameter 461
fcm_num_rqb parameter 462
java_heap_sz parameter 382
max_connretries parameter 463
max_coordagents parameter 402
max_time_diff parameter 463
num_initagents parameter 405
num_poolagents parameter 403
start_stop_time parameter 464

database monitor
using 277

database partitions
adding, system running 298
adding, system stopped 299

database partitions (continued)
adding, system with no

datbases 297
adding to a system 297
considerations for dropping a

server 302
dropping server with DB2STOP

CMD/API 302
dropping with DB2STOP

CMD/API 302
database system monitor

configuration parameters 469
fcm_num_rqb database manager

parameter, tuning 463
databases

activating 87
caching data 87

datalinks configuration
parameter 437

DB2_ANTIJOIN 505
DB2_AVOID_PREFETCH 508
DB2_AWE 509
DB2_BINSORT 509
DB2_BLOCK_ON_LOG_DISK_FULL 492
DB2 Connect

connect time reduction 274
DB2_CORRELATED_PREDICATES 505
DB2_DARI_LOOKUP_ALL 515
DB2 Data Links Manager 435
DB2_DISABLE_FLUSH_LOG 493
DB2_DJ_COMM 517
DB2_ENABLE_BUFPD 510
DB2_ENABLE_LDAP 518
DB2_EXTENDED_OPTIMIZATION 510
DB2_FALLBACK 518
DB2_FORCE_FCM_BP 504
DB2_FORCE_NLS_CACHE 498
DB2_FORCE_TRUNCATION 518
DB2_GRP_LOOKUP 518
DB2_HASH_JOIN 506
DB2_INDEX_2BYTEVARLEN 519
DB2 library

books 603
Information Center 617
language identifier for

books 611
late-breaking information 612
online help 614
ordering printed books 613
printing PDF books 612
searching online

information 620
setting up document server 619
structure of 603
viewing online information 616

630 Administration Guide: Performance

DB2 library (continued)
wizards 618

DB2_LIC_STAT_SIZE 493
DB2_LIKE_VARCHAR 506
DB2_MMAP_READ 511
DB2_MMAP_WRITE 511
DB2_NEW_CORR_SQ_FF 507
DB2_NEWLOGPATH2 520
DB2_NO_PKG_LOCK 511
DB2_NUM_FAILOVER_NODES 505
db2_override_bpf 254
DB2_OVERRIDE_BPF 512
DB2_PARALLEL_IO 496
DB2_PINNED_BP 513
DB2_PRED_FACTORIZE 508
DB2_RR_TO_RS 514
DB2_SELECTIVITY 507
DB2_SORT_AFTER_TQ 514
DB2_STPROC_LOOKUP_FIRST 515
DB2_STRIPED_CONTAINERS 497
DB2_UPDATE_PART_KEY 505
DB2_VENDOR_INI 522
DB2_VI_DEVICE 502
DB2_VI_ENABLE 501
DB2_VI_VIPL 502
DB2_XBSA_LIBRARY 522
DB2ACCOUNT 491
DB2ADMINSERVER 517
DB2ATLD_PORTS 504
DB2ATLD_PWFILE 504
db2batch benchmarking tool 319
DB2BIDI 491
DB2BPVARS 509
DB2BQTIME 503
DB2BQTRY 503
DB2CHECKCLIENTINTERVAL 497
DB2CHGPWD_EEE 504
DB2CHKPTR 510
DB2CLIENTADPT 502
DB2CLIENTCOMM 502
DB2CLIINIPATH 517
DB2CODEPAGE 492
DB2COMM 497
DB2CONNECT_IN_APP_PROCESS 495
DB2COUNTRY 492
DB2DBDFT 492
DB2DBMSADDR 492
DB2DEFPREP 517
DB2DIRPATHNAME 502
DB2DISCOVERYTIME 493
DB2DMNBCKCTLR 518
DB2DOMAINLIST 495
db2empfa 262
DB2ENVLIST 496
db2exfmt tool 226, 601

db2expln 555
db2gov command 281
db2govlg command 293
DB2INCLUDE 493
DB2INSTANCE 496
DB2INSTDEF 493
DB2INSTOWNER 493
DB2INSTPROF 496
DB2IQTIME 503
DB2LDAP_BASEDN 519
DB2LDAP_CLIENT_PROVIDER 519
DB2LDAP_SEARCH_SCOPE 520
DB2LDAPCACHE 519
DB2LDAPHOST 519
DB2LIBPATH 496
DB2LOADREC 520
DB2LOCK_TO_RB 520
db2look tool

overview of 142
DB2MAXFSCRSEARCH 23, 510
DB2MEMDISCLAIM 510
DB2MEMMAXFREE 510
DB2NBADAPTERS 498
DB2NBBRECVNCBS 499
DB2NBCHECKUPTIME 498
DB2NBDISCOVERRCVBUFS 494
DB2NBINTRLISTENS 498
DB2NBRECVBUFFSIZE 499
DB2NBRESOURCES 499
DB2NBSENDNCBS 499
DB2NBSESSIONS 499
DB2NBXTRANCBS 499
DB2NETREQ 500
DB2NODE 496

exported when adding
server 299

db2nodes.cfg, having the database
manager update 300

db2nodes.cfg, updating
manually 301

db2nodes.cfg file
adding database partitions when

redistributing data 308
dropping database partitions

when redistributing data 308
DB2NOEXITLIST 520
DB2NTMEMSIZE 511
DB2NTNOCACHE 509, 512
DB2NTPRICLASS 512
DB2NTWORKSET 512
DB2OPTIONS 494
DB2PATH 497
DB2PORTRANGE 505
DB2PRIORITIES 513
DB2REMOTEPREG 520

DB2RETRY 500
DB2RETRYTIME 500
DB2ROUTE 503
DB2ROUTINE_DEBUG 521
DB2RQTIME 503
DB2SERVICETPINSTANCE 500
DB2SLOGON 494
DB2SORCVBUF 521
DB2SORT 521
DB2SOSNDBUF 501
DB2SYSPLEX_SERVER 501
DB2SYSTEM 521
DB2TCPCONNMGRS 501
DB2TIMEOUT 494
DB2TRACEFLUSH 495
DB2TRACENAME 494
DB2TRACEON 494
DB2TRCSYSERR 495
DB2UPMPR 521
DB2YIELD 495
dbexpln tool

data from compiler 153
dbheap configuration

parameter 348
impact on memory 244

dbname server option 108
DEACTIVATE DATABASE 270
deadlock detector 15
deadlocks 15

checking for 383
configuration parameter 383
detecting 59
overview of 59

decimal arithmetic
decimal division scale to 3

(min_dec_div_3)
parameter 373

track modified pages enable
(trackmod) parameter 425

DECLARE CURSOR WITH HOLD
statement 78

declared temporary tables
concurrency 51
locks 65

decorrelation of a query 158
default table spaces 16
DEGREE bind option 87
dft_account_str configuration

parameter 477
dft_client_adpt configuration

parameter 455
dft_client_comm configuration

parameter 454
dft_degree configuration

parameter 87, 92, 442

Index 631

dft_extent_sz configuration
parameter 392

dft_loadrec_ses configuration
parameter 423

dft_mon_bufpool configuration
parameter 470

dft_mon_lock configuration
parameter 470

dft_mon_sort configuration
parameter 470

dft_mon_stmt configuration
parameter 470

dft_mon_table configuration
parameter 470

dft_mon_uow configuration
parameter 470

dft_monswitches configuration
parameter 469

dft_prefetch_sz configuration
parameter 391

dft_queryopt configuration
parameter 92, 442

dft_refresh_age configuration
parameter 443

dft_sqlmathwarn configuration
parameter 440

dftdbpath configuration
parameter 484

diaglevel configuration
parameter 467

diagpath configuration
parameter 467

dir_cache configuration
parameter 379

dir_obj_name configuration
parameter 452

dir_path_name configuration
parameter 452

dir_type configuration
parameter 451

directed inner-table and outer-table
joins 188

directed inner-table joins 190
directed outer-table joins 187
directory structure 16
directory under which Java

Development Kit 1.1 is installed
(jkd11_path) database manager
parameter 477

discover_comm configuration
parameter 457

discover configuration
parameter 456

discover_db configuration
parameter 455

discover_inst configuration
parameter 458

discover server instance
configuration parameter 458

discovery mode configuration
parameter 456

Distributed Computing Environment
(DCE)

configuration parameters 450
dl_expint configuration

parameter 435
dl_num_copies configuration

parameter 436
dl_time_drop configuration

parameter 436
dl_token configuration

parameter 436
dl_upper configuration

parameter 437
dlchktime configuration

parameter 383
DLFM_BACKUP_DIR_NAME 515
DLFM_BACKUP_LOCAL_MP 515
DLFM_BACKUP_TARGET 515
DLFM_BACKUP_TARGET_LIBRARY 516
DLFM_ENABLE_STPROC 516
DLFM_FS_ENVIRONMENT 516
DLFM_GC_MODE 516
DLFM_INSTALL_PATH 516
DLFM_LOG_LEVEL 516
DLFM_PORT 517
DLFM_TSM_MGMTCLASS 517
DMS table space

caching 269
DMS table spaces

performance considerations 269
dos_rqrioblk configuration

parameter 376
drda_heap_sz configuration

parameter 366
impact on memory 245

dropping node from system
when redistributing

nodegroup 308
dyn_query_mgmt configuration

parameter 431
dynamic compound statements 83
dynamic SQL

distribution statistics 125
evaluating optimization class 74
explain facility 227, 228
setting optimization class 71

dynexpln 555

E
enable Data Links support

configuration parameter 437
enable intra-partition parallelism

configuration parameter 466
engine dispatchable unit (EDU) 13,

36
environment variables 491

DB2NODE, exported when
adding server 299

error handling
configuration parameters 466

error messages
when adding nodes to

partitioned databases 303
estore_seg_sz 38
estore_seg_sz configuration

parameter 393
impact on memory 244

event snapshots 278
exclusive mode

uses 65
explain

visual 214, 231
EXPLAIN 227

FOR SNAPSHOT 229
WITH SNAPSHOT 229

EXPLAIN_ARGUMENT table
creation 545
detailed description 524

explain facility
analysis 217
capturing information 216, 227
choosing a tool 214
concepts 218
data from compiler 152
data organization 221
dbexpln tool 153
decision-making 229
explain instance 221
graphical representation 218
instance information 221
keywords 223
objects 219
obtaining data 227
operators 220
overview of 213
snapshot information 224
statement information 222
table information 224
using 216

EXPLAIN_INSTANCE table
creation 546
detailed description 528

explain instances 221

632 Administration Guide: Performance

EXPLAIN_OBJECT table
creation 547
detailed description 530

EXPLAIN_OPERATOR table
creation 548
detailed description 532

EXPLAIN_PREDICATE table
creation 549
detailed description 534

explain snapshots 228
EXPLAIN_STATEMENT table

creation 550
detailed description 536

EXPLAIN_STREAM table
creation 551
detailed description 539

explain table format tool 601
explain tables

accessing 214
explain tool 555

aggregation 577
command options 556, 560
data streams 574
description of output 563
examples of db2expln and

dynexpln output 583
federated statement

processing 580
insert, update, and delete 575
joins 572
miscellaneous statements 581
parallel processing 577
row identifier (RID)

preparation 576
running 556
syntax 556, 560
table access 564
temporary tables 569

extended storage 38, 279
extended storage cache 279
Extended UNIX Code (EUC)

code page support 85
extent 17
extent map pages (EMP) 19
extent size

choosing 256

F
fast communication manager

(FCM) 36
FCM Connection Entries

(fcm_num_connect)
parameter 461

fcm_num_buffers database
manager parameter 460

fast communication manager (FCM)
(continued)

message anchors, number,
specifying 459

message buffers, number,
specifying 460

number of FCM message anchors
fcm_num_anchors database
manager parameter 459

Number of FCM Request Blocks
(fcm_num_rqb) parameter 462

tuning 246
FCM buffers (fcm_num_buffers)

database manager configuration
parameter 460

FCM connection entries
(fcm_num_connect) database
manager parameter 461

fcm_num_anchors configuration
parameter 459

fcm_num_buffers configuration
parameter 460

fcm_num_connect configuration
parameter 461

fcm_num_rqb database manager
configuration parameter 462

federated configuration
parameter 478

federated database system support
configuration parameter 478

federated databases
compiler phases 200
pushdown analysis 200
remote SQL generation 207

federated systems
collating sequences 202

FETCH FIRST clause 78
fileserver configuration

parameter 448
finding errors

data redistribution log file 312
first active log file (loghead)

parameter 415
fold_id server option 108
fold_pw server option 109
FOR FETCH ONLY clause 75, 81
FOR READ ONLY clause 75, 81
FOR UPDATE clause 75, 81
free space control record (FSCR) 22
frequent value statistics

equality predicates 128
number to collect 126
overview 123
updating rules 138

FSCR 22

G
global optimization

analyzing 210
explain tool cost

information 210
nickname characteristics 209
server characteristics 207

governor
configuration file 284
configuration file example 291
daemon 283
database manager

performance 294
db2gov 281
db2govlg 293
error handling 284
log file 292
obtains statistics 283
purpose 281
querying log file 293
rules 285
starting 281
stopping 281

H
hash joins

overview 178
HTML

sample programs 611

I
I/O

configuration parameters 386
enabling parallel I/O 260
prefetch parallel 258

identifier
record (RID) 22

idle agent 272
IN (intent none) mode 52
inactive DRDA agent 274
INCLUDE clause 26
index

index re-creation time (indexrec)
parameter 421

index advisor 99, 232
index clustering

cluster factor statistic 116
cluster ratio statistic 116

index keys
larger 99

index page prefetch 256
index pointer 25
index SARGable predicates

overview 173
index scans 22

Index 633

index scans (continued)
clustered index 170
delimiting ranges 165
ordering data 167
overview 163
predicate terminology 173
predicates 165
previous leaf pointers 165
search processes 164
usage 165
WHERE clause 165

index wizard 619
indexes

administering 103
advisor 99
clustering 24, 103
creating 103
definition of index ANDing 169
definition of index ORing 169
disadvantages 99
guidelines 100
index-only access 168, 567
indexing versus no indexing 98
larger keys 99
lock mode 62
look-up, effect on locks 61
management 98
managing 25
multiple 169
nickname performance

considerations 209
outer versus inner table

determination 179
prefetch 256
reorganizing 101, 265, 268
scans 164
structures 164

indexrec configuration
parameter 421

indexsort configuration
parameter 390

Information Center 617
initdari_jvm configuration

parameter 408
initial number of agents in pool

(num_initagents) database manager
parameter 405

inner-table and outer-table joins,
method 188

inner-table joins, method 189, 190
installing

Netscape browser 617
instances

parallelism support 87

instances (continued)
time difference among nodes,

maximum 463
intra_parallel configuration

parameter 87, 466
intra-partition parallelism 260
io_ratio server option 109
ipx_socket configuration

parameter 450
IS (intent share) mode 52
isolation levels 26

choosing 48
cursor stability 47
description 44
read stability 46
repeatable read 45
specifying 49
statement-level 50
uncommitted read 47

IX (intent exclusive) mode 53

J
java_heap_sz database manager

configuration parameter 382
jdk11_path database manager

configuration parameter 477
join strategies

broadcast inner-table 189
broadcast outer table 186
collocated 186
directed inner-table 190
directed inner-table and

outer-table 188
directed outer-table 187
in partitioned databases 185

joins
cartesian products 181
composite tables 182
definition 175
eliminating redundancy 155
enumeration algorithm 180
hash joins 178
merge join 177
nested loop join 176
optimizer search strategies 180
outer versus inner table

determination 178
overview 175
shared aggregation 156
subquery transformation by

optimizer 154
tables 175

K
keepdari 32
keepdari configuration

parameter 405

L
language identifier

books 611
large objects (LOBs)

DMS storage 270
late-breaking information 612
LOCK TABLE statement

in minimizing escalations 58
use to override locks 65

locking
definition 26
maximum percent of lock list

before escalation (maxlocks)
parameter 384

maximum storage for lock lists
(locklist) parameter 353

time interval for checking
deadlock (dlchktime)
parameter 383

locklist configuration
parameter 353

effect on query optimization 93
impact on memory 244

locks
acquiring 51
attributes 52
attributes, types of

processing 61
avoiding global deadlocks 58
compatibility of, ensuring 54
configuration parameters 382
conversion of 56
creating, using cursor

stability 47
creating, using repeatable

read 45
deadlock, using FOR UPDATE

OF 60
deadlocks 15
declared temporary tables 65
duration attribute 52
escalation 27
escalation and actions to take 57
escalation of 56
exclusive (X) mode 52
exclusive mode, uses 65
factors affecting 60
improving concurrency 57
intent exclusive (IX) mode 52
intent none (IN) mode 52

634 Administration Guide: Performance

locks (continued)
intent share (IS) mode 52
locktimeout configuration

parameter 58
mode attribute 52
modes, index scan 62
modes, table scan 62
object attribute 52
overview 51
read stability 46
reducing waits 58
share (S) mode 52
share mode, uses 65
share with intent exclusive (SIX)

mode 52
superxclusive (Z) mode 52
types 52
update (U) mode 52

LOCKSIZE clause 26
locktimeout configuration

parameter 385
log buffer 15, 28
log files

governor log file 292
written for data

redistribution 312
log_retain_status configuration

parameter 439
logbufsz configuration

parameter 350
logfilsiz configuration

parameter 409
logging 15

circular 27
retain log records 27

loghead configuration
parameter 415

logical nodes
multiple 35

logical partitions
multiple 35

logpath configuration
parameter 415

logprimary configuration
parameter 411

logretain configuration
parameter 419

logs
change database log path

(newlogpath) parameter 413
configuration parameters

affecting log activity 415
configuration parameters

affecting log files 409

logs (continued)
first active log file (loghead)

parameter 415
location of log files (logpath)

parameter 415
log buffer size (logbufsz)

parameter 350
log retain enable (logretain)

parameter 419
log retain status indicator

(log_retain_status)
parameter 439

number of primary log files
(logprimary) parameter 411

number of secondary log files
(logsecond) parameter 413

recovery range and soft
checkpoint interval (softmax)
parameter 417

size of log files (logfilsiz)
parameter 409

logsecond configuration
parameter 413

long fields
DMS storage 270

M
map pages

extent 19
space 19

max_connretries database manager
configuration parameter 463

max_coordagents database manager
configuration parameter 402

max_logicagents configuration
parameter 403

max_querydegree configuration
parameter 87, 464

max_time_diff database manager
configuration parameter 463

maxagents 37, 272
maxagents configuration

parameter 399
effect on memory 241

maxappls 37
maxappls configuration

parameter 394
effect on memory 241

maxcagents configuration
parameter 401

maxdari configuration
parameter 406

maxfilop configuration
parameter 397

maximum Java interpreter heap size
(java_heap_sz) database manager
parameter 382

maximum number of coordinating
agents (max_coordagents) database
manager parameter 402

maximum query degree of
parallelism configuration
parameter 94, 464

maximum time difference among
nodes (max_time_diff) database
manager parameter 463

maxlocks configuration
parameter 384

effect on query optimization 93
maxtotfilop configuration

parameter 397
memory

agent communication 371
agent private 359
application communication 371
application heap size

(applheapsz) parameter 363
application shared 358
application support layer heap

size (aslheapsz) parameter 372
configuration parameters 241
considerations for system

administrator (SYSADM) 239
database heap (dbheap)

parameter 348
database manager instance 378
database shared 345
extending 279
for processing a database 240
fully committed 246
package cache size (pckcachesz)

parameter 356
setting parameter values 245
sort heap size (sortheap)

parameter 360
sort heap threshold (sheapthres)

parameter 360
statement heap size (stmtheap)

parameter 362
use by database manager 240

memory model 36
memory usage

application control heap 358
merge joins

outer versus inner table
determination 180

overview 177
message anchor 460

Index 635

min_dec_div_3 configuration
parameter 373

min_priv_mem configuration
parameter 369

mincommit configuration
parameter 416

MINPCTUSED 101, 268
MINPCTUSED clause 25
mon_heap_sz configuration

parameter 378
monitor switches

updating 277
monitoring

how to 277
multipage_alloc configuration

parameter 439
effect on memory 262

multisite update 43
configuration parameters 427

N
nested loop join

overview 176
nested loop joins

outer versus inner table
determination 179

Netscape browser
installing 617

newlogpath configuration
parameter 413

nicknames
creating indexes 209
gathering statistics 114
global optimization,

characteristics affecting 209
pushdown analysis 200, 203
query performance tips 81
view statistics 114

nname configuration parameter 446
node 43

connection elapse time 459
coordinating agent,

maximum 402
data redistribution, process 309
determining where RUNSTATS

execution occurs 115
maximum number of connection

retries 463
maximum time difference

among 463
message buffers, number,

specifying 460
other operations during

redistribution 312

node (continued)
redistributing data across

database partitions 307
node configuration files

database manager update 300
node connection retries

(max_connretries) 463
node server option 109
nodegroups

other operations during
redistribution 312

redistributing data 307
nodetype configuration

parameter 476
notifylevel configuration

parameter 468
NS (next key share) mode 52
NT_SCATTER_DMSDEVICE 509
NT_SCATTER_DMSFILE 509
NT_SCATTER_SMS 509
num_db_backups configuration

parameter 423
num_estore_segs 38
num_estore_segs configuration

parameter 393
impact on memory 244

num_freqvalues configuration
parameter 443

num_initagents database manager
configuration parameter 405

num_initdaris configuration
parameter 408

num_iocleaners configuration
parameter 387

managing the buffer pool 250
num_ioservers configuration

parameter 389
impact on data prefetch 260

num_poolagents 272
num_poolagents configuration

parameter
impact on parallel systems 276

num_poolagents database manager
configuration parameter 403

num_quantiles configuration
parameter 444

number of database backups
configuration parameter 423

number of FCM message anchors
(fcm_num_anchors) database
manager parameter 459

number of FCM request blocks
(fcm_num_rqb) database manager
parameter 462

numdb 36

numdb configuration
parameter 473

effect on memory 241
numeric string column option 204
numsegs configuration

parameter 392
NW (next key weak exclusive)

mode 53
NX (next key exclusive) mode 53

O
objectname configuration

parameter 449
online help 614
online index reorganization 268
online information

searching 620
viewing 616

optimization, global 207, 209, 210
optimization class

guidelines 72
levels of 68
setting 71

OPTIMIZE FOR clause 76, 81
optimizer

adjusting amount of
optimization 67

creating access plans 152
database access 162, 163
distribution statistics impact 127
effect of statistics 113
selecting optimal join 180
sorting 192
using replicated summary

tables 182
outbound connection pool 274
outer-table joins, method 187
outer versus inner table

determination
merge joins 180
nested loop joins 179
overview 178

overflow records 25

P
packages

isolation levels 44
page cleaners 14

configuration parameters 250
pages

data 21
parallel

configuration parameters 458
parallelism

intra-partition 260

636 Administration Guide: Performance

partitioned database
configuration parameters 458
data distribution 308
data redistribution, error

recovery 312
data redistribution across

database partitions 309
data redistribution in tables 310
decorrelation of a query 158
partitioning map, target,

specifying during data
redistribution 309

partitioned databases
errors when adding nodes 303

partitioning map
redistributing data 308
target, specifying during data

redistribution 309
password server option 109
pckcachesz configuration

parameter 356
impact on memory 244

PCTFREE clause 24
PDF 612
performance

application considerations 43
book summary 8
catalog statistics 210
configuration parameters 330
data distribution, determining

using SQL 308
data source updates 207
database caching 87
database managed storage

(DMS) 269
db2batch benchmarking

tool 319
disk storage 5
elements of 3
environmental considerations 91
federated database systems 200
global optimization 207
governor effect on database

manager 294
guidelines 4
limits to tuning 6
locks, effects 54
nickname index

considerations 209
num_ioservers configuration

parameter 260
operational considerations 239
optimization class, adjusting 67
process 6
programming considerations 43

performance (continued)
pushdown analysis (federated

systems) 200
query rewrite by compiler 153
quick determination 7
redistributing data 307
remote SQL generation 207
remote SQL generation for data

sources 207
row blocking, guidelines 79
RUNSTATS utility 117
server characteristics 207
statistics 113
table collocation, data

redistribution 307
tuning using explain 229
using explain facility 217

performance configuration
wizard 619

performance monitor
using 277

piped versus non-piped sorts
overview 192

plan hints example 208
plan_hints server option 110
point in time monitoring 277
pool size for agents, controlling 403
post-threshold sorts

avoiding 264
precompiling

isolation level 49
predicate

adding by optimizer 159
distribution statistics 128
inclusive inequality 167
translation by optimizer 159

predicates
applying 157
definition 165
index SARGable 173
overview 173
range delimiting 173
residual 174
SARGable 173
strict inequality 167
terminology 173
usage 174

prefetchers 13
prefetches

clustering page reads 171
prefetching data 239

buffer pool 255
data page 255
I/O servers 258
index page 255

prefetching data (continued)
intra-partition parallelism 258
list prefetch 257
PREFETCHSIZE clause 256
sequential 256
sequential detection 257
tuning using database system

monitor 256
previous leaf pointers 165
printing PDF books 612
priv_mem_thresh configuration

parameter 370
privileges

for REORG utility 267
process model 29
processes 29

DB2 271
updating 28

processors, adding to a
machine 296

protocols
updating 28

pushdown analysis
analyzing 205
explain tool operators 205
nickname characteristics 203
overview 200
query characteristics 205
server characteristics 201

pushdown server option 110

Q
quantile value statistics

collecting 127
range statistics 129
updating rules 138

queries
tuning 80

query_heap_sz configuration
parameter 365

impact on memory 245
query rewrite

overview 153

R
range delimiting predicates

overview 173
read locks

CLOSE CURSOR statement 66
read-only cursors

uncommitted read 47
read stability

overview 46
rec_his_retentn configuration

parameter 424

Index 637

record identifier (RID) 22
recovery

configuration parameters 420
recovery history retention period

(rec_his_retentn) configuration
parameter 424

redistributing data
connection to catalog database

partition 309
data distribution, determining

using SQL 308
database partition, process

overview 309
database partitions, adding 308
database partitions,

dropping 308
distribution, specifying 308
distribution file 308
error recovery 312
log file 312
operation successful 310
operation unsuccessful 310
other operations during

redistribution 312
partitioning map, target,

specifying 309
purpose 307
replicated summary table

restriction 308
table, process overview 310
table collocation 307

registry variables 491
DB2_ANTIJOIN 505
DB2_AVOID_PREFETCH 508
DB2_AWE 509
DB2_BINSORT 509
DB2_BLOCK_ON_LOG_DISK_FULL 492
DB2_CORRELATED_PREDICATES 505
DB2_DARI_LOOKUP_ALL 515
DB2_DISABLE_FLUSH_LOG 493
DB2_DJ_COMM 517
DB2_ENABLE_BUFPD 510
DB2_ENABLE_LDAP 518
DB2_EXTENDED_OPTIMIZATION 510
DB2_FALLBACK 518
DB2_FORCE_FCM_BP 504
DB2_FORCE_NLS_CACHE 498
DB2_FORCE_TRUNCATION 518
DB2_GRP_LOOKUP 518
DB2_HASH_JOIN 506
DB2_INDEX_2BYTEVARLEN 519
DB2_LIC_STAT_SIZE 493
DB2_LIKE_VARCHAR 506
DB2_MMAP_READ 511
DB2_MMAP_WRITE 511

registry variables (continued)
DB2_NEW_CORR_SQ_FF 507
DB2_NEWLOGPATH2 520
DB2_NO_PKG_LOCK 511
DB2_NUM_FAILOVER_NODES 505
DB2_OVERRIDE_BPF 512
DB2_PARALLEL_IO 496
DB2_PINNED_BP 513
DB2_PRED_FACTORIZE 508
DB2_RR_TO_RS 514
DB2_SELECTIVITY 507
DB2_SORT_AFTER_TQ 514
DB2_STPROC_LOOKUP_FIRST 515
DB2_STRIPED_CONTAINERS 497
DB2_UPDATE_PART_KEY 505
DB2_VENDOR_INI 522
DB2_VI_DEVICE 502
DB2_VI_ENABLE 501
DB2_VI_VIPL 502
DB2_XBSA_LIBRARY 522
DB2ACCOUNT 491
DB2ADMINSERVER 517
DB2ATLD_PORTS 504
DB2ATLD_PWFILE 504
DB2BIDI 491
DB2BPVARS 509
DB2BQTIME 503
DB2BQTRY 503
DB2CHECKCLIENTINTERVAL 497
DB2CHGPWD_EEE 504
DB2CHKPTR 510
DB2CLIENTADPT 502
DB2CLIENTCOMM 502
DB2CLIINIPATH 517
DB2CODEPAGE 492
DB2COMM 497
DB2CONNECT_IN_APP_PROCESS 495
DB2COUNTRY 492
DB2DBDFT 492
DB2DBMSADDR 492
DB2DEFPREP 517
DB2DIRPATHNAME 502
DB2DISCOVERYTIME 493
DB2DMNBCKCTLR 518
DB2DOMAINLIST 495
DB2ENVLIST 496
DB2INCLUDE 493
DB2INSTANCE 496
DB2INSTDEF 493
DB2INSTOWNER 493
DB2INSTPROF 496
DB2IQTIME 503
DB2LDAP_BASEDN 519
DB2LDAP_CLIENT_PROVIDER 519
DB2LDAP_SEARCH_SCOPE 520

registry variables (continued)
DB2LDAPCACHE 519
DB2LDAPHOST 519
DB2LIBPATH 496
DB2LOADREC 520
DB2LOCK_TO_RB 520
DB2MAXFSCRSEARCH 510
DB2MEMDISCLAIM 510
DB2MEMMAXFREE 510
DB2NBADAPTERS 498
DB2NBBRECVNCBS 499
DB2NBCHECKUPTIME 498
DB2NBDISCOVERRCVBUFS 494
DB2NBINTRLISTENS 498
DB2NBRECVBUFFSIZE 499
DB2NBRESOURCES 499
DB2NBSENDNCBS 499
DB2NBSESSIONS 499
DB2NBXTRANCBS 499
DB2NETREQ 500
DB2NODE 496
DB2NOEXITLIST 520
DB2NTMEMSIZE 511
DB2NTNOCACHE 512
DB2NTPRICLASS 512
DB2NTWORKSET 512
DB2OPTIONS 494
DB2PATH 497
DB2PORTRANCE 505
DB2PRIORITIES 513
DB2REMOTEPREG 520
DB2RETRY 500
DB2RETRYTIME 500
DB2ROUTE 503
DB2ROUTINE_DEBUG 521
DB2RQTIME 503
DB2SERVICETPINSTANCE 500
DB2SLOGON 494
DB2SORCVBUF 521
DB2SORT 521
DB2SOSNDBUF 501
DB2SYSPLEX_SERVER 501
DB2SYSTEM 521
DB2TCPCONNMGRS 501
DB2TIMEOUT 494
DB2TRACEFLUSH 495
DB2TRACENAME 494
DB2TRACEON 494
DB2TRCSYSERR 495
DB2UPMPR 521
DB2YIELD 495
DLFM_BACKUP_DIR_NAME 515
DLFM_BACKUP_LOCAL_MP 515
DLFM_BACKUP_TARGET 515

638 Administration Guide: Performance

registry variables (continued)
DLFM_BACKUP_TARGET_LIBRARY 516
DLFM_ENABLE_STPROC 516
DLFM_FS_ENVIRONMENT 516
DLFM_GC_MODE 516
DLFM_INSTALL_PATH 516
DLFM_LOG_LEVEL 516
DLFM_PORT 517
DLFM_TSM_MGMTCLASS 517

relation scans
definition 163
when to use 172

release configuration parameter 432
release notes 612
remote data services

node name (nname)
parameter 446

remote SQL generation 207
REORG utility

authority and privileges
required 267

overview 265
reorganize index

online 268
REORGCHK 266
repeatable read

overview 45
replicated summary tables

redistributed nodegroup
restriction 308

request blocks, FCM daemon to
agent communication,
number 462

residual predicates
overview of 174

restbufsz configuration
parameter 353

RESTORE DATABASE utility
default restore buffer size

(restbufsz) parameter 353
restore_pending configuration

parameter 439
restore wizard 619
resync_interval configuration

parameter 428
reverse scans 163, 166
REXX

isolation level, specifying 49
roll-forward recovery 27
ROLLFORWARD DATABASE utility

roll forward pending
(rollfwd_pending)
parameter 438

rollfwd_pending configuration
parameter 438

route_obj_name configuration
parameter 453

row blocking
block fetch 79
overview of 79
types of 79

row identifier (RID) 576
rows

blocking 79
fast retrieval 74
lock compatibility, ensuring 54
lock types 52
locking 45, 46, 47
read stability 46

rqrioblk configuration
parameter 375

impact on memory 245
RUNSTATS command/API

node where execution
occurs 115

RUNSTATS utility
for reorganization 116
usage in a partitioned

database 115
using 115
with distribution clause 122

S
S (share) mode 52
sample programs

cross-platform 611
HTML 611

SARGable predicates
overview 173

scaling configurations 295
search discovery communications

protocols configuration
parameter 457

searching
online information 618, 620

select-statement
eliminating DISTINCT

clause 157
guidelines 80, 81
query rewrite by compiler 153
two or more tables 82

select-statements
using 80

seqdetect configuration
parameter 390

understanding sequential
detection 257

sequential detection 239
overview of 257

server options
collating_sequence 107
comm_rate 107
connectstring 108
cpu_ratio 108
dbname 108
fold_id 108
fold_pw 109
io_ratio 109
node 109
password 109
plan_hints 110
pushdown 110
varchar_no_trailing_blanks 110

servers
options 207
pushdown opportunities 201

SET CURRENT EXPLAIN
MODE 227

SET CURRENT EXPLAIN
SNAPSHOT statement 229

SET CURRENT QUERY
OPTIMIZATION statement 71

setting up document server 619
shadow paging 28
share mode

uses 65
sheapthres configuration

parameter 360
SIX (share with intent exclusive)

mode 53
SmartGuides

wizards 618
SMS table space

caching 269
snapshots

point in time monitoring 277
softmax configuration

parameter 417
managing the buffer pool 250

sortheap configuration
parameter 360

effect on query optimization 93
impact on memory 245

sorting
configuration parameters 262
managing performance 264
non-overflowed 263
non-piped 263
overflowed 263
parameters affecting 263
performance problems 263
piped 263
piped versus non-piped

sorts 192

Index 639

sorting (continued)
sort heap size (sortheap)

parameter 360
sort heap threshold (sheapthres)

parameter 360
steps 263

space management 23
space map pages (SMP) 19
special register

CURRENT DEGREE 87
spm_log_file_sz configuration

parameter 430
spm_log_path configuration

parameter 429
spm_max_resync configuration

parameter 431
spm_name configuration

parameter 429
SQL advise facility 232
SQL functions

NODENUMBER, data
distribution, determining 308

PARTITION, data distribution,
determining 308

SQL statements
benchmarking 317
select-statement 80
select-statement guidelines 81
statement heap size (stmtheap)

parameter 362
tuning queries 80
valid during data

redistribution 312
ss_logon configuration

parameter 485
star schemas 181
start

timeout for command,
setting 464

start and stop timeout
(start_stop_time) database manager
parameter 464

start_stop_time database manager
configuration parameter 464

stat_heap_sz configuration
parameter 364

impact on memory 245
statement-level isolation 50
static SQL

distribution statistics 125
evaluating optimization class 74
explain facility 227, 228
setting optimization class 71

statistics
copying from production 142

statistics (continued)
distribution 122
distribution, how computed 123
frequent value 122
gathering for nicknames 114
index clustering 171
modeling data 142
overview 113
quantiles 122
RUNSTATS utility 114
RUNSTATS utility in a

partitioned database 115
updating 134
updating rules 136, 137, 138
user-defined functions

(UDF) 140
when to collect 117

stmtheap configuration
parameter 362

effect on query optimization 93
impact on memory 245

stop
timeout for command,

setting 464
storage

effect of locks 54
stored procedures

configuration parameters 405
performance impact 85
remote procedure calls 85

sub-element statistics 144
subqueries

correlated 158
summary tables

example 197
svcename configuration

parameter 447
sysadm_group configuration

parameter 479
sysctrl_group configuration

parameter 480
sysmaint_group configuration

parameter 481
system catalog

RUNSTATS utility 118
statistics 113

system managed space (SMS) 17
system management

configuration parameters 471
memory considerations 239

T
table queues 191
table scans 163

table spaces
comparisons 20
default 16
effect on query optimization 94
indexes 103
lock types 52
overhead, setting 95
TRANSFERRATE, setting 95

tables
data redistribution, process 310
determining where RUNSTATS

execution occurs 115
joining 175
lock types 52
locking 65

lock compatibility,
ensuring 54

lock mode 62
locks types 52
redistribution, error

recovery 312
reorganizing 265
REORGCHK command 266
scan, effect on locks 61
two or more, select-statement 82

territory configuration
parameter 433

threads 29
DB2 271

time difference among nodes,
maximum 463

timeout, starting and stopping
database manager 464

Tivoli Storage Manager (TSM)
configuration parameters 421

tm_database configuration
parameter 427

tokens
controlling numbers 276

tp_mon_name configuration
parameter 474

tpname configuration
parameter 448

trackmod configuration
parameter 425

triggers
Explain tables 523

trust_allclnts configuration
parameter 485

trust_clntauth configuration
parameter 487

tsm_mgmtclass configuration
parameter 425

tsm_nodename configuration
parameter 426

640 Administration Guide: Performance

tsm_owner configuration
parameter 426

tsm_password configuration
parameter 425

U
U (update) mode 53
udf_mem_sz configuration

parameter 367
impact on memory 245

uncommitted read
overview 47

updatable cursor
uncommitted read 47

user-defined functions (UDF)
updating statistics 140

user_exit_status configuration
parameter 439

userexit configuration
parameter 420

util_heap_sz configuration
parameter 351

impact on memory 244
utilities

reorganization 265
reorganization checking 266

V
varchar_no_trailing_blanks column

option 205
varchar_no_trailing_blanks server

option 110
viewing

online information 616
views

merging by optimizer 154
predicate pushdown by

optimizer 157
Visual Explain 214, 231

W
W (Weak Exclusive) mode 53
wizard

restore database 619
wizards

add database 618, 619
back up database 618
completing tasks 618
configure multisite update 618
create database 619
create table 619
create table space 619
index 619
performance configuration 619

worker agents
coordinator agent 272

worker agents (continued)
idle agent 272
inactive agent 272
subagent 272

write-ahead logging (WAL) 28

X
X (Exclusive) mode 53

Z
Z (Superxclusive) mode 53

Index 641

642 Administration Guide: Performance

Contacting IBM

If you have a technical problem, please review and carry out the actions
suggested by the Troubleshooting Guide before contacting DB2 Customer
Support. This guide suggests information that you can gather to help DB2
Customer Support to serve you better.

For information or to order any of the DB2 Universal Database products
contact an IBM representative at a local branch office or contact any
authorized IBM software remarketer.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-237-5511 for customer support
v 1-888-426-4343 to learn about available service options

Product Information

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) or 1-800-3IBM-OS2 (1-800-342-6672) to

order products or get general information.
v 1-800-879-2755 to order publications.

http://www.ibm.com/software/data/
The DB2 World Wide Web pages provide current DB2 information
about news, product descriptions, education schedules, and more.

http://www.ibm.com/software/data/db2/library/
The DB2 Product and Service Technical Library provides access to
frequently asked questions, fixes, books, and up-to-date DB2 technical
information.

Note: This information may be in English only.

http://www.elink.ibmlink.ibm.com/pbl/pbl/
The International Publications ordering Web site provides information
on how to order books.

http://www.ibm.com/education/certify/
The Professional Certification Program from the IBM Web site
provides certification test information for a variety of IBM products,
including DB2.

© Copyright IBM Corp. 1993, 2001 643

ftp.software.ibm.com
Log on as anonymous. In the directory /ps/products/db2, you can
find demos, fixes, information, and tools relating to DB2 and many
other products.

comp.databases.ibm-db2, bit.listserv.db2-l
These Internet newsgroups are available for users to discuss their
experiences with DB2 products.

On Compuserve: GO IBMDB2
Enter this command to access the IBM DB2 Family forums. All DB2
products are supported through these forums.

For information on how to contact IBM outside of the United States, refer to
Appendix A of the IBM Software Support Handbook. To access this document,
go to the following Web page: http://www.ibm.com/support/, and then
select the IBM Software Support Handbook link near the bottom of the page.

Note: In some countries, IBM-authorized dealers should contact their dealer
support structure instead of the IBM Support Center.

644 Administration Guide: Performance

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-2945-01

	Contents
	About This Book
	Who Should Use This Book
	How This Book is Structured
	A Brief Overview of the Other Volumes of the Administration Guide
	Administration Guide: Planning
	Administration Guide: Implementation

	Part 1. Introduction to Performance
	Chapter 1. Elements of Performance
	Tuning Guidelines
	Disk Storage
	Performance Improvement Process
	How Much Can a System be Tuned?
	A Less Formal Approach
	Putting It All Together

	Chapter 2. Architecture and Processes Overview
	Storage Architecture
	Database Directory
	Table Spaces
	SMS Table Spaces
	DMS Table Spaces
	Comparing SMS and DMS Table Spaces

	Data Management
	Record Identifiers and Pages
	Space Management
	Index Management
	Locking
	Logging
	What Happens When Updating

	Process Model
	Memory Model

	Part 2. Tuning Application Performance
	Chapter 3. Application Considerations
	Concurrency
	Repeatable Read
	Read Stability
	Cursor Stability
	Uncommitted Read
	Choosing the Isolation Level
	Specifying the Isolation Level
	Declared Temporary Tables and Concurrency

	Locking
	Attributes of Locks
	Locks and Application Performance
	Concurrency and Granularity
	Lock Compatibility
	Lock Conversion
	Lock Escalation
	Lock Waits and Timeouts
	Deadlocks

	Factors Affecting Locking
	Application Processing
	Access Paths

	Declared Temporary Tables and Locking
	LOCK TABLE Statement
	CLOSE CURSOR WITH RELEASE
	Summary of Locking Considerations

	Adjusting the Optimization Class
	How Do You Set the Optimization Class?
	How Much Optimization is Necessary?

	Restrictions on Result Sets to Improve Performance
	FOR UPDATE Clause
	FOR READ or FETCH ONLY Clause
	OPTIMIZE FOR n ROWS Clause
	FETCH FIRST n ROWS ONLY Clause
	DECLARE CURSOR WITH HOLD Statement

	Row Blocking
	Tuning Queries
	Using a SELECT-Statement
	Guidelines When Using a SELECT-Statement

	Compound SQL
	Dynamic Compound Statements
	Performance Considerations and Character Conversion
	Code Page Conversion
	Extended UNIX Code (EUC) Code Page Support

	Stored Procedures
	Activating a Database
	Parallel Processing of Applications

	Chapter 4. Environmental Considerations
	Configuration Parameters Affecting Query Optimization
	Nodegroup Impact on Query Optimization
	Table Space Impact on Query Optimization
	Indexing Impact on Query Optimization
	Indexing versus No Indexing
	Using the Index Advisor
	Using Larger Index Keys
	Guidelines for Indexing
	Performance Tips for Administering Indexes

	Server Options Affecting Federated Database Queries

	Chapter 5. System Catalog Statistics
	Collecting Statistics Using the RUNSTATS Utility
	The Database Partition Where RUNSTATS is Executed
	Analyzing Statistics

	Collecting and Using Distribution Statistics
	Understanding Distribution Statistics
	When Should You Use Distribution Statistics?
	How Many Statistics Should You Keep?
	How Does the Optimizer Use Distribution Statistics?

	Collecting and Using Detailed Index Statistics
	Understanding Detailed Index Statistics
	When Should You Use Detailed Index Statistics?

	User Update-Capable Catalog Statistics
	Rules for Updating Catalog Statistics
	Rules for Updating Table and Nickname Statistics
	Rules for Updating Column Statistics
	Rules for Updating Distribution Statistics for Columns
	Rules for Updating Index Statistics
	Updating Statistics for User-Defined Functions
	Modeling Production Databases
	Sub-element Statistics

	Chapter 6. Understanding the SQL Compiler
	Overview of the SQL Compiler
	Rewrite Query by the SQL Compiler
	Operation Merging
	Example - View Merges
	Example - Subquery to Join Transformations
	Example - Redundant Join Elimination
	Example - Shared Aggregation

	Operation Movement
	Example - DISTINCT Elimination
	Example - General Predicate Pushdown
	Example - Decorrelation

	Predicate Translation
	Example - Addition of Implied Predicates
	Example - OR to IN Transformations

	Accounting for Column Correlation
	Data Access Concepts and Optimization
	Index Scan Concepts
	Index Structure
	Index Scans to Delimit a Range
	Index Scans to Order Data
	Index-Only Access
	Multiple Index Access
	Clustered Indexes
	Index Page Prefetch

	Relation Scan versus Index Scan
	Predicate Terminology
	Range Delimiting and Index SARGable Predicates
	Data SARGable Predicates
	Residual Predicates
	Summary of Predicate Usage

	Join Concepts
	Nested Loop Join
	Merge Join
	Hash Join
	Outer Versus Inner Determination
	Search Strategies for Selecting Optimal Join
	Search Strategies for Star Join
	Composite Tables

	Replicated Summary Tables
	Join Strategies in a Partitioned Database
	Collocated Joins
	Broadcast Outer-Table Joins
	Directed Outer-Table Joins
	Directed Inner-Table and Outer-Table Joins
	Broadcast Inner-Table Joins
	Directed Inner-Table Joins
	Table Queues

	Influence of Sorting on the Optimizer
	Piped versus Non-Piped Sorts
	Aggregation and Sort Pushdown Operators
	Aggregation in Sort

	Optimization Strategies for Intra-Partition Parallelism
	Parallel Scan Strategies
	Parallel Sort Strategies
	Round-Robin Sort
	Partitioned Sort
	Replicated Sort
	Shared Sort

	Parallel Temporary Tables
	Parallel Aggregation Strategies
	Parallel Join Strategies

	Automatic Summary Tables
	Federated Database Query Compiler Phases
	Pushdown Analysis
	Server Characteristics Affecting Pushdown Opportunities
	Nickname Characteristics Affecting Pushdown Opportunities
	Query Characteristics Affecting Pushdown Opportunities
	Analyzing and Understanding Pushdown Analysis Decisions

	Remote SQL Generation and Global Optimization
	Server Characteristics/Options Affecting Global Optimization
	Nickname Characteristics Affecting Global Optimization
	Analyzing and Understanding Global Optimization Decisions

	Chapter 7. SQL Explain Facility
	Choosing an Explain Tool
	Using the SQL Explain Facility
	Introductory Concepts for Explain
	Explain Information for Data Objects
	Explain Information for Data Operators

	How Explain Information is Organized
	Explain Instance Information
	Explain Snapshot Information
	Explain Table Information

	Obtaining Explain Data
	Capturing Explain Table Information
	Capturing Explain Snapshot Information

	Guidelines on Using Explain Output
	Visual Explain
	SQL Advise Facility

	Part 3. Tuning and Configuring Your System
	Chapter 8. Operational Performance
	How DB2 Uses Memory
	Setting Parameters That Affect Memory Usage
	FCM Requirements

	Managing the Database Buffer Pool
	Exploiting Large Memories on Windows Systems
	Working With Buffer Pool Pages

	Managing Multiple Database Buffer Pools
	Choosing One or Many Buffer Pools

	Prefetching Data into the Buffer Pool
	Understanding Sequential Prefetching
	Understanding Sequential Detection

	Understanding List Prefetching
	Prefetching and Intra-Partition Parallelism

	Configuring I/O Servers for Prefetching and Parallel I/O
	Enabling Parallel I/O
	Allocating Multiple Pages at a Time

	Sorting
	Different Types of Sorting
	Tuning the Parameters that Affect Sorting
	Looking for Indicators of Sorting Performance Problems
	Techniques for Managing Sorting Performance

	Reorganizing Catalogs and User Tables
	Online Index Reorganization
	Limiting the Need to Reorganize Tables

	Performance Considerations for DMS Devices
	Managing Initialization Overhead
	Database Agents
	Using the Database System Monitor
	Extending Memory

	Chapter 9. Using the Governor
	Starting and Stopping the Governor
	The Governor Daemon
	Creating the Governor Configuration File
	Governor Log Files
	Querying Governor Log Files
	Running the Governor and Database Manager Performance

	Chapter 10. Scaling Your Configuration Through Adding Processors
	Adding Processors to a Machine
	Adding Database Partitions to a Partitioned Database System
	Adding Database Partitions to a Running System
	Adding Database Partitions to a Stopped System
	Having the Database Manager Update the Node Configuration File
	Updating the Node Configuration File Manually

	Dropping a Database Partition from a System
	Problems When Adding Nodes to a Partitioned Database

	Chapter 11. Redistributing Data Across Database Partitions
	How to Partition Data
	Adding and Dropping Database Partitions
	Specifying a Target Partitioning Map
	How Data Is Redistributed Across Database Partitions
	How Data Is Redistributed in Tables
	Recovering From Redistribution Errors
	Data Redistribution and Other Operations
	Following Data Redistribution

	Chapter 12. Benchmark Testing
	Benchmark Testing Methodology
	Preparing for Benchmark Testing
	Creating a Benchmark Program
	Executing the Benchmark Tests

	Chapter 13. Configuring DB2
	Tuning Configuration Parameters
	Database Manager Parameters
	Database Manager Configuration Parameter Summary

	Database Parameters
	Database Configuration Parameter Summary

	Parameter Details by Function
	Capacity Management
	Database Shared Memory
	Buffer Pool Size (buffpage)
	Database Heap (dbheap)
	Catalog Cache Size (catalogcache_sz)
	Log Buffer Size (logbufsz)
	Utility Heap Size (util_heap_sz)
	Default Backup Buffer Size (backbufsz)
	Default Restore Buffer Size (restbufsz)
	Maximum Storage for Lock List (locklist)
	Package Cache Size (pckcachesz)

	Application Shared Memory
	Application Control Heap Size (app_ctl_heap_sz)

	Agent Private Memory
	Sort Heap Size (sortheap)
	Sort Heap Threshold (sheapthres)
	Statement Heap Size (stmtheap)
	Application Heap Size (applheapsz)
	Statistics Heap Size (stat_heap_sz)
	Query Heap Size (query_heap_sz)
	DRDA Heap Size (drda_heap_sz)
	UDF Shared Memory Set Size (udf_mem_sz)
	Agent Stack Size (agent_stack_sz)
	Minimum Committed Private Memory (min_priv_mem)
	Private Memory Threshold (priv_mem_thresh)

	Agent/Application Communication Memory
	Application Support Layer Heap Size (aslheapsz)
	Decimal Division Scale to 3 (min_dec_div_3)
	Client I/O Block Size (rqrioblk)
	DOS Requester I/O Block Size (dos_rqrioblk)

	Database Manager Instance Memory
	Database System Monitor Heap Size (mon_heap_sz)
	Directory Cache Support (dir_cache)
	Audit Buffer Size (audit_buf_sz)
	Maximum Java Interpreter Heap Size (java_heap_sz)

	Locks
	Time Interval for Checking Deadlock (dlchktime)
	Maximum Percent of Lock List Before Escalation (maxlocks)
	Lock Timeout (locktimeout)

	I/O and Storage
	Changed Pages Threshold (chngpgs_thresh)
	Number of Asynchronous Page Cleaners (num_iocleaners)
	Number of I/O Servers (num_ioservers)
	Index Sort Flag (indexsort)
	Sequential Detection Flag (seqdetect)
	Default Prefetch Size (dft_prefetch_sz)
	Default Number of SMS Containers (numsegs)
	Default Extent Size of Table Spaces (dft_extent_sz)
	Extended Storage Memory Segment Size (estore_seg_sz)
	Number of Extended Storage Memory Segments (num_estore_segs)

	Agents
	Maximum Number of Active Applications (maxappls)
	Average Number of Active Applications (avg_appls)
	Maximum Database Files Open per Application (maxfilop)
	Maximum Total Files Open (maxtotfilop)
	Priority of Agents (agentpri)
	Maximum Number of Agents (maxagents)
	Maximum Number of Concurrent Agents (maxcagents)
	Maximum Number of Coordinating Agents (max_coordagents)
	Maximum Number of Logical Agents (max_logicagents)
	Agent Pool Size (num_poolagents)
	Initial Number of Agents in Pool (num_initagents)

	Stored Procedures (DARI)
	Keep DARI Process Indicator (keepdari)
	Maximum Number of DARI Processes (maxdari)
	Initialize DARI Process with JVM (initdari_jvm)
	Initial Number of Fenced DARI Processes in Pool (num_initdaris)

	Logging and Recovery
	Database Log Files
	Size of Log Files (logfilsiz)
	Number of Primary Log Files (logprimary)
	Number of Secondary Log Files (logsecond)
	Change the Database Log Path (newlogpath)
	Location of Log Files (logpath)
	First Active Log File (loghead)

	Database Log Activity
	Number of Commits to Group (mincommit)
	Recovery Range and Soft Checkpoint Interval (softmax)
	Log Retain Enable (logretain)
	User Exit Enable (userexit)

	Recovery
	Auto Restart Enable (autorestart)
	Index Re-creation Time (indexrec)
	Default Number of Load Recovery Sessions (dft_loadrec_ses)
	Number of Database Backups (num_db_backups)
	Recovery History Retention Period (rec_his_retentn)
	Track Modified Pages Enable (trackmod)
	Tivoli Storage Manager Management Class (tsm_mgmtclass)
	Tivoli Storage Manager Password (tsm_password)
	Tivoli Storage Manager Node Name (tsm_nodename)
	Tivoli Storage Manager Owner Name (tsm_owner)

	Distributed Unit of Work Recovery
	Transaction Manager Database Name (tm_database)
	Transaction Resync Interval (resync_interval)
	Sync Point Manager Log File Path (spm_log_path)
	Sync Point Manager Name (spm_name)
	Sync Point Manager Log File Size (spm_log_file_sz)
	Sync Point Manager Resync Agent Limit (spm_max_resync)

	Database Management
	Query Enabler
	Dynamic SQL Query Management (dyn_query_mgmt)

	Attributes
	Configuration File Release Level (release)
	Database Release Level (database_level)
	Territory for the Database (territory)
	Country code for the Database (country)
	Codeset for the Database (codeset)
	Code Page for the Database (codepage)
	Collating Information (collate_info)
	Copy Protection Enable (copyprotect)

	DB2 Data Links Manager
	Data Links Access Token Expiry Interval (dl_expint)
	Data Links Number of Copies (dl_num_copies)
	Data Links Time After Drop (dl_time_drop)
	Data Links Token Algorithm (dl_token)
	Data Links Token in Upper Case (dl_upper)
	Enable Data Links Support (datalinks)

	Status
	Backup Pending Indicator (backup_pending)
	Database is Consistent (database_consistent)
	Roll Forward Pending Indicator (rollfwd_pending)
	Log Retain Status Indicator (log_retain_status)
	User Exit Status Indicator (user_exit_status)
	Restore Pending (restore_pending)
	Multipage File Allocation Enabled (multipage_alloc)

	Compiler Settings
	Continue upon Arithmetic Exceptions (dft_sqlmathwarn)
	Default Degree (dft_degree)
	Default Query Optimization Class (dft_queryopt)
	Default Refresh Age (dft_refresh_age)
	Number of Frequent Values Retained (num_freqvalues)
	Number of Quantiles for Columns (num_quantiles)

	Communications
	Communication Protocol Setup
	NetBIOS Workstation Name (nname)
	TCP/IP Service Name (svcename)
	APPC Transaction Program Name (tpname)
	IPX/SPX File Server Name (fileserver)
	IPX/SPX DB2 Server Object Name (objectname)
	IPX/SPX Socket Number (ipx_socket)

	Distributed Services
	Directory Services Type (dir_type)
	Directory Path Name in DCE Namespace (dir_path_name)
	Object Name in DCE Namespace (dir_obj_name)
	Routing Information Object Name (route_obj_name)
	Default Client Communication Protocol (dft_client_comm)
	Default Client Adapter Number (dft_client_adpt)

	DB2 Discovery
	Discover Database (discover_db)
	Discovery Mode (discover)
	Search Discovery Communications Protocols (discover_comm)
	Discover Server Instance (discover_inst)

	Partition Database
	Communications
	Connection Elapse Time (conn_elapse)
	Number of FCM Message Anchors (fcm_num_anchors)
	Number of FCM Buffers (fcm_num_buffers)
	Number of FCM Connection Entries (fcm_num_connect)
	Number of FCM Request Blocks (fcm_num_rqb)
	Node Connection Retries (max_connretries)
	Maximum Time Difference Among Nodes (max_time_diff)
	Start and Stop Timeout (start_stop_time)

	Parallel Processing
	Maximum Query Degree of Parallelism (max_querydegree)
	Enable Intra-Partition Parallelism (intra_parallel)

	Instance Management
	Diagnostic
	Diagnostic Error Capture Level (diaglevel)
	Diagnostic Data Directory Path (diagpath)
	Notify Level (notifylevel)

	Database System Monitor Parameters
	Default Database System Monitor Switches (dft_monswitches)

	System Management
	Communications Bandwidth (comm_bandwidth)
	CPU Speed (cpuspeed)
	Maximum Number of Concurrently Active Databases (numdb)
	Transaction Processor Monitor Name (tp_mon_name)
	Machine Node Type (nodetype)
	Default Charge-Back Account (dft_account_str)
	Java Development Kit 1.1 Installation Path (jdk11_path)
	Federated Database System Support (federated)

	Instance Administration
	System Administration Authority Group Name (sysadm_group)
	System Control Authority Group Name (sysctrl_group)
	System Maintenance Authority Group Name (sysmaint_group)
	Authentication Type (authentication)
	Cataloging Allowed without Authority (catalog_noauth)
	Default Database Path (dftdbpath)
	LOGON Required for DB2START/DB2STOP (ss_logon)
	Trust All Clients (trust_allclnts)
	Trusted Clients Authentication (trust_clntauth)

	Part 4. Appendixes
	Appendix A. DB2 Registry and Environment Variables
	Appendix B. Explain Tables and Definitions
	EXPLAIN_ARGUMENT Table
	EXPLAIN_INSTANCE Table
	EXPLAIN_OBJECT Table
	EXPLAIN_OPERATOR Table
	EXPLAIN_PREDICATE Table
	EXPLAIN_STATEMENT Table
	EXPLAIN_STREAM Table
	ADVISE_INDEX Table
	ADVISE_WORKLOAD Table
	Table Definitions for Explain Tables
	EXPLAIN_ARGUMENT Table Definition
	EXPLAIN_INSTANCE Table Definition
	EXPLAIN_OBJECT Table Definition
	EXPLAIN_OPERATOR Table Definition
	EXPLAIN_PREDICATE Table Definition
	EXPLAIN_STATEMENT Table Definition
	EXPLAIN_STREAM Table Definition
	ADVISE_INDEX Table Definition
	ADVISE_WORKLOAD Table Definition

	Appendix C. SQL Explain Tools
	Running db2expln and dynexpln
	db2expln Syntax and Parameters
	Usage Notes for db2expln
	dynexpln Syntax and Parameters
	Usage Notes for dynexpln
	Description of db2expln and dynexpln Output
	Table Access
	Number of Columns
	Parallel Scan
	Scan Direction
	Row Access Method
	Lock Intents
	Predicates
	Miscellaneous Table Statements

	Temporary Tables
	Sorted Temporary Tables
	Temporary Table Completion
	Table Functions

	Joins
	Data Streams
	Insert, Update, and Delete
	Row Identifier (RID) Preparation
	Aggregation
	Parallel Processing
	Federated Statement Processing
	Miscellaneous Statements

	Examples of db2expln and dynexpln Output
	Example One: No Parallelism Plan
	Example Two: Single-Partition Database Plan with Intra-Partition Parallelism
	Example Three: Multipartition Database Plan with Inter-Partition Parallelism
	Example Four: Multipartition Database Plan with Inter-Partition and Intra-Partition Parallelism
	Example Five: Federated Database Plan

	Appendix D. db2exfmt - Explain Table Format Tool
	Appendix E. Using the DB2 Library
	DB2 PDF Files and Printed Books
	DB2 Information
	Printing the PDF Books
	Ordering the Printed Books

	DB2 Online Documentation
	Accessing Online Help
	Viewing Information Online
	Installing the Netscape Browser
	Accessing Information with the Information Center

	Using DB2 Wizards
	Setting Up a Document Server
	Searching Information Online

	Appendix F. Notices
	Trademarks

	Index
	Contacting IBM
	Product Information

