IBM DB2 10.1
for Linux, UNIX, and Windows

Administrative Routines and Views
Updated January, 2013

<||I

IBM DB2 10.1
for Linux, UNIX, and Windows

Administrative Routines and Views
Updated January, 2013

..ll

Note
Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on
page 1451.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
¢ To order publications online, go to the IBM Publications Center at http://www.ibm.com/shop/publications/
order

* To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at http://www.ibm.com/
planetwide/

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2006, 2013.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

Contents

Built-in routines and views

Best practices for calling built-in routines and views

in applications.

Authorizations for usmg bullt -in routlnes and views

Built-in views versus table functions
Supported built-in SQL routines and views .

Administrative routines and ADMIN_CMD

procedure . .

Administrative Task Scheduler routlnes and

views .

Audit routines and procedures

Automatic maintenance routines .

Common SQL API procedures.

Configuration routines and views .

DB2 pureScale instance information routines

and views .o

Environment routlnes and views .

Explain routines

Monitor routines

MQSeries routines. .

Security routines and views

Snapshot routines and views .

SQL procedure routines .

Stepwise redistribute routines

Storage management tool routines .

Text Search routines . -

Workload Management routines.

Miscellaneous routines and views .
Deprecated SQL administrative routines and
views. .
ADMIN_ GET DBP MEM USAGE table
function - Get total memory consumption for
instance .
ADMINTABCOMPRESSINFO admlnlstratlve
view and
ADMIN_GET_TAB_COMPRESS_INFO table
function (deprecated) - returns compressed
information.
ADMIN_GET_TAB COMPRESS INFO
V97,
ADMIN_GET_TAB_INFO_V95 table function -
Retrieve size and state information for tables
ADMIN_GET_TAB_INFO_V97 table function -
Retrieve size and state information for tables
AM_BASE_RPT_RECOMS - Recommendations
for activity reports .
AM_BASE_RPTS - Activity event momtor
reports .
AM_DROP_ TASK Delete a monltorlng task
AM_GET_LOCK_CHN_TB - Retrieve

application lock chain data in a tabular format .

AM_GET_LOCK_CHNS - Retrieve lock chain
information for a specific application .
AM_GET_LOCK_RPT - Retrieve application
lock details .

AM_GET_RPT - Retrleve act1v1ty momtor data

© Copyright IBM Corp. 2006, 2013

W W -

.22

. 273
. 286
. 289
. 295
. 346

. 352
. 361
. 375
. 393
. 704
. 725
. 737
.. 992
. 1002
. 1011
. 1015
. 1051
. 1091

. 1136

. 1141

. 1143
. 1148
. 1154
. 1159
. 1166

. 1168

1169

1170

. 1171

. 1172

1179

AM_SAVE_TASK - Create or modlfy a
monitoring task L. .
APPLICATION_ID .

DB_PARTITIONS.

GET_DB_CONFIG

GET_DBM_CONFIG.

ENV_SYS_RESOURCES adm1n1strat1ve view -
Return system information

LOCKS_HELD administrative view - Retrleve
information about locks held . .
LOCKWAITS administrative view - Retr1eve
current lockwaits information

Health snapshot routines . . .
REG_VARIABLES administrative view -
Retrieve DB2 registry settings in use

SNAPAGENT_MEMORY_POOL admlnlstratlve

view and
SNAP_GET_AGENT_MEMORY_POOL table
function - Retrieve memory_pool logical data
group snapshot information . .
SNAP_GET_APPL_INFO_V95 table functlon -
Retrieve appl_info logical data group snapshot
information .
SNAP_GET_ APPL V95 table functlon -
Retrieve appl logical data group snapshot
information

SNAP_GET_BP_V95 table functlon Retrleve

bufferpool logical group snapshot information .

SNAP_GET_CONTAINER_VO1 table function -
Retrieve tablespace_container logical data
group snapshot information . . .
SNAPDB_MEMORY_POOL admlmstratlve
view and SNAP_GET_DB_MEMORY_POOL
table function - Retrieve database level
memory usage information

SNAP_GET_DBM_V95 table functlon Retrleve
the dbm logical grouping snapshot information

SNAPDBM_MEMORY_POOL administrative
view and SNAP_GET_DBM_MEMORY_POOL
table function - Retrieve database manager
level memory usage information
SNAP_GET_DB_V97 table function - Retrleve
snapshot information from the dbase logical
group .

SNAP_GET_ DETAILLOG V91 table functlon -
Retrieve snapshot information from the
detail_log logical data group .
SNAP_GET_DYN_SQL_V95 table functlon -
Retrieve dynsql logical group snapshot
information

SNAPHADR admlnlstratlve view and
SNAP_GET_HADR table function - Retrieve
hadr logical data group snapshot information
SNAPLOCK administrative view and
SNAP_GET_LOCK table function - Retrieve
lock logical data group snapshot information

. 1180
. 1181
. 1182
. 1183
. 1185

. 1186

. 1189

. 1192
. 1195

. 1241

. 1242

. 1246

. 1253

1260

. 1264

. 1266

1270

. 1273

. 1277

. 1287

. 1289

. 1293

. 1297

iii

SNAPLOCKWAIT administrative view and
SNAP_GET_LOCKWAIT table function -
Retrieve lockwait logical data group snapshot
information

SNAP_GET_STO PATI—IS .
SNAPSTORAGE_PATHS admlnrstratrve view
and SNAP_GET_STORAGE_PATHS_V97 table
function - Retrieve automatic storage path
information

SNAPTAB adrmnlstratrve view and
SNAP_GET_TAB table function - Retrieve table
logical data group snapshot information .
SNAP_GET_TAB_V91 . .
SNAP_GET_TBSP_PART_V97 table functlon -
Retrieve tablespace_nodeinfo logical data
group snapshot information .
SNAP_GET_TBSP_V91 .
SNAPAGENT_MEMORY_POOL adrnlnlstratlve
view and
SNAP_GET_AGENT_MEMORY_POOL table
function - Retrieve memory_pool logical data
group snapshot information . . .
SNAPDB_MEMORY_POOL admlnlstratlve
view and SNAP_GET_DB_MEMORY_POOL
table function - Retrieve database level
memory usage information
SNAPDBM_MEMORY_POOL admlnlstratlve
view and SNAP_GET_DBM_MEMORY_POOL
table function - Retrieve database manager
level memory usage information
SNAPHADR administrative view and
SNAP_GET_HADR table function - Retrieve
hadr logical data group snapshot information
SNAPLOCK administrative view and
SNAP_GET_LOCK table function - Retrieve
lock logical data group snapshot information
SNAPLOCKWAIT administrative view and
SNAP_GET_LOCKWAIT table function -
Retrieve lockwait logical data group snapshot
information

SNAPSHOT AGENT

SNAPSHOT_APPL .
SNAPSHOT_APPL_INFO .

SNAPSHOT_BP .

SNAPSHOT CONTAINER
SNAPSHOT_DATABASE .
SNAPSHOT_DBM

SNAPSHOT_DYN_SQL

SNAPSHOT_FCM

SNAPSHOT_FCMNODE .
SNAPSHOT_FILEW.

SNAPSHOT_LOCK .
SNAPSHOT_LOCKWAIT .

1V Administrative Routines and Views

. 1303
. 1309

. 1310

. 1313
. 1317

. 1319

. 1323

. 1327

. 1332

. 1336

. 1340

. 1345

. 1350
. 1356
. 1357
. 1363
. 1365
. 1367
. 1369
. 1375
. 1377
. 1379
. 1380
. 1381
. 1382
. 1384

SNAPSHOT_QUIESCERS . . 1385
SNAPSHOT_RANGES . . 1387
SNAPSHOT_STATEMENT . 1388
SNAPSHOT_SUBSECT . . 1391
SNAPSHOT_SWITCHES . . 1392
SNAPSHOT_TABLE. . 1394
SNAPSHOT_TBREORG . 1395
SNAPSHOT_TBS. . 1397
SNAPSHOT_TBS_CFG . . 1399
SNAPSTORAGE_PATHS adrnlnrstratlve view
and SNAP_GET_STORAGE_PATHS_V97 table
function - Retrieve automatic storage path
information . 1402
SNAPTAB adrmnrstratlve view and
SNAP_GET_TAB table function - Retrieve table
logical data group snapshot information . . 1405
SQLCACHE_SNAPSHOT . . 1408
SYSINSTALLROUTINES . . 1410
WLM_GET_ACTIVITY_DETAILS - Return
detailed information about a specific activity . 1411
WLM_GET_SERVICE_CLASS_AGENTS
_V97 - List agents running in a service class. . 1416
WLM_GET_SERVICE_CLASS
_WORKLOAD_OCCURRENCES_V97 - List of
workload occurrences 1424
WLM_GET_SERVICE SUBCLASS
_STATS_V97 - return statistics of service
subclasses . . 1427
WLM_GET WORKLOAD
_OCCURRENCE_ACTIVITIES
_V97 - Return a list of activities . . 1433
WLM_GET_WORKLOAD_STATS_V97 - return
workload statistics . 1437
Appendix A. Overview of the DB2
technical information . 1441
DB2 technical library in hardcopy or PDF format 1441

Displaying SQL state help from the command line

processor . 1444
Accessing drfferent versions of the DB2
Information Center . . 1444

Updating the DB2 Informatlon Center 1nsta11ed on

your computer or intranet server . 1444
Manually updating the DB2 Information Center

installed on your computer or intranet server . . 1446
DB2 tutorials . . . 1448
DB2 troubleshooting 1nformat10n . 1448
Terms and conditions . 1448
Appendix B. Notices . . 1451
Index . 1455

Built-in routines and views

Built-in administrative routines and views provide an simplified programmatic
interface to administer and use DB2® databases and database objects through
structured query language (SQL). Built-in routines encompass procedures, scalar
functions, and table functions.

You can use built-in routines and views to perform a variety of DB2 tasks. For
example, you can use built-in routines to reorganize a table, capture and retrieve
monitor data, or retrieve the application ID of the current connection.

You can invoke these built-in routines and views from an SQL-based application, a
DB2 command line, or a command script.

Best practices for calling built-in routines and views in applications

To help ensure your successful use of the built-in routines and views, certain
coding practices are recommended. These practices are especially important
because routines might change from release to release and also within releases,
such as through fix packs, as enhancements are made.

When you issue a query to retrieve information by using a built-in routine or view,
select specific columns instead of selecting all columns with a wildcard. For
example, do not issue the following query:

SELECT * FROM TABLE(MON_GET_UNIT_OF WORK(NULL,-1)) AS t
ORDER BY total_cpu_time DESC

Instead, name the result columns in the SELECT statement. This technique gives
the application control over the number of result columns and the sequence in
which they are returned. In the following rewrite of the previous query, the
columns are named:
SELECT application_handle,

uow_id,

total_cpu_time,

app_rqsts_completed_total,

rqsts_completed_total
FROM TABLE(MON_GET_UNIT OF WORK(NULL,-1)) AS t
ORDER BY total_cpu_time DESC

Naming columns prevents problems if the sequence and number of columns in the
routines change. The number of result columns that a routine returns might
increase. If, for example, you provide only five host variables when the routine
returns six result columns, your application will break.

In addition, the type and size of output parameters or result columns of routines
might change. For example, a column might change from VARCHAR(8) to
VARCHAR(128), or an INTEGER column might become a BIGINT column. If a
variable that you use is too small, the data that you receive from the routine might
be truncated.

To protect your C application from such changes, you can describe a prepared

statement to determine which result columns are returned and what their types
and sizes are. The following example shows how to describe a prepared statement:

© Copyright IBM Corp. 2006, 2013 1

strcpy(strStmt, "SELECT application_handle, uow_id,total_cpu_time
FROM TABLE(MON_GET UNIT_OF WORK(NULL,-1))
AS t ORDER BY total cpu_time DESC");

EXEC SQL PREPARE stmt FROM :strStmt;

EXEC SQL DESCRIBE stmt into :*pSqlda;

For an example of how to use the information that is returned in the SQL
description area (SQLDA), see the RowDatamemoryAlloc function in the
samples/c/tbread.sqc file.

For Java " and .NET applications, you need to know the data type and size for a
program, you can use metadata to determine which result columns are returned
and what their types and sizes are, as shown in the following example:

ResultSet rs = pstmt.executeQuery();
ResultSetMetaData rsms = rs.getMetaData();

For an example of how to use the metadata of the result set, see the
execPreparedQueryWithUnknownOutputColumn() method in the
samples/java/jdbc/TbRead. java file.

Authorizations for using built-in routines and views

All built-in routines and views require specific privileges to run.
Built-in routines

For all built-in routines in the SYSPROC schema, you need EXECUTE privilege on the
routine. You can use the following query to check whether your authorization ID,
or a group or a role to which you belong, has EXECUTE privilege:
SELECT A.SPECIFICNAME, GRANTEE, GRANTEETYPE
FROM SYSCAT.ROUTINEAUTH A, SYSCAT.ROUTINES R
WHERE A.SCHEMA = R.ROUTINESCHEMA
AND A.SPECIFICNAME = R.SPECIFICNAME
AND A.SCHEMA = 'SYSPROC'
AND R.ROUTINENAME = 'routine_name'
AND A.EXECUTEAUTH <> 'N'

where routine_name is the name of the built-in routine.

If your authorization ID, or a group or a role to which you belong, is listed in the
GRANTEE column, then you have access to the specified built-in routine.

Built-in views

For all built-in views in the SYSIBMADM schema, you need SELECT privilege on the
view. You can use the following query to check whether your authorization ID, or
a group or a role to which you belong, has SELECT privilege:
SELECT GRANTEE, GRANTEETYPE

FROM SYSCAT.TABAUTH

WHERE TABSCHEMA = 'SYSIBMADM'

AND TABNAME = 'view_name'
AND SELECTAUTH <> 'N'

where view_name is the name of the built-in view.
If your authorization ID, or a group or a role to which you belong, is listed in the

GRANTEE column, then you have access to the specified built-in view.

2 Administrative Routines and Views

Built-in views versus table functions

Built-in views provide a simplified application programming interface to DB2
functions through SQL.

The built-in views fall into three categories:
* Views that are based on catalog views
* Views that are based on table functions with no input parameters

* Views that are based on table functions with one or more input parameters

A table function can return similar information as the built-in view, however you
can use a table function to retrieve the information for a specific database on a
specific database partition, a subset of all database partitions, or all database
partitions.

The following examples illustrate the difference between using an built-in view,
based on a table function with one or more input parameters, and using the
corresponding table function:

* The PDLOGMSGS_LAST24HOURS view, which retrieves notification log messages,
provides quick access to data from the previous 24 hours. By contrast, you can
use the PD_GET_LOG_MSGS table function to retrieve data from a specified period
of time.

* The snapshot monitor views, which are identified by names beginning with
SNAP) provide access to data from each database partition. However, the
snapshot monitor table functions, which are identified by names beginning with
SNAP_GET_) provide the option to choose between data from a single database
partition or a data subset from across all database partitions.

e The ADMINTABINFO view retrieves information for all tables in a database, which
can significantly affect the performance of applications that use large databases.
Instead, you can reduce the performance impact by using the
ADMIN_GET_TAB_INFO table function and specifying the schema name, table name,
or both, as input.

For built-in views based on table functions with one or more input parameters,
both the built-in view and the table function can be used, each achieving a
different goal:

The built-in views are always based on the most current version of the table
functions. However, the column positions in the returned information may change
from release to release to enable new information to be returned. Therefore, you
should select specific columns from the built-in views or table functions, or
describe your result set if your application uses a SELECT * statement.

Table functions with a version suffix (_Vxx) have been deprecated or discontinued.
The deprecated functions might be discontinued in a future release. Therefore, you
should change applications and scripts that use these table functions to invoke the
corresponding table functions that have no version suffix.

Supported built-in SQL routines and views

Provides information about supported built-in SQL routines and views.

This topic provides information about the following built-in SQL routines:

Built-in routines and views 3

* Administrative SQL routines and the ADMIN_CMD stored procedure: Table 1
* Administrative task scheduler routines and views: Table 2 on page 6

* Audit routines and procedures: Table 3 on page 6

* Automatic maintenance built-in SQL routines and views:Table 4 on page 6

* Common SQL API stored procedures: Table 5 on page 6

* Configuration built-in SQL routines and views: Table 6 on page 7

+ DB2 pureScale® instance administrative views: Table 7 on page 7

* Environment built-in SQL routines and views: Table 8 on page 8

* Explain routines: Table 9 on page 8

* Monitor built-in SQL routines: Table 10 on page 9
 MQSeries® built-in SQL routines: Table 11 on page 14
e Security built-in SQL routines and views: Table 12 on page 14

* Snapshot built-in SQL routines and views: Table 13 on page 15

* SQL procedure built-in routines: Table 14 on page 18

* Stepwise redistribute built-in SQL routines: Table 15 on page 18

* Storage management tool built-in SQL routines: Table 16 on page 19

¢ Text search built-in SQL routines: Table 17 on page 19

* Workload Management routines: Table 18 on page 20

* Miscellaneous built-in SQL routines and views: Table 19 on page 21

Table 1. Administrative SQL routines

Routine name

Schema

Description

ADMIN_CMD procedure

SYSPROC

This procedure allows the administrator to
execute administrative commands
(including DB2 command line processor
(CLP) commands) by running
ADMIN_CMD through a CALL statement.

ADMIN_COPY_SCHEMA procedure

SYSPROC

This procedure is used to copy a specific
schema and all objects contained in it.

ADMIN_DROP_SCHEMA procedure

SYSPROC

This procedure is used to drop a specific
schema and all objects contained in it.

ADMIN_EST_INLINE_LENGTH function

SYSIBM

This function returns an estimate of the
inline length that is required to inline the
data stored in an XML column, BLOB
column, CLOB column, or DBCLOB
column.

ADMIN_GET_INDEX_COMPRESS_INFO

SYSPROC

This table function returns the potential
index compression savings for
uncompressed indexes or reports the index
compression statistics from the catalogs.

ADMIN_GET_INDEX_INFO table function

SYSPROC

This table function returns index
information not available in the catalog
views.

ADMIN_GET_INTRA_PARALLEL scalar
function

SYSPROC

This scalar function returns the current state
of intrapartition parallelism for the
application.

ADMIN_GET_MEM_USAGE table function

SYSPROC

This table function returns the memory
usage statistics for a given member.

4 Administrative Routines and Views

Table 1. Administrative SQL routines (continued)

Routine name

Schema

Description

ADMIN_GET_MSGS table function

SYSPROC

This table function is used to retrieve
messages generated by data movement
utilities that are executed through the
ADMIN_CMD procedure.

ADMIN_GET_STORAGE_PATHS table
function

SYSPROC (table
function)

This administrative view and table function
return a list of automatic storage paths for
the database including file system
information for each storage path,
specifically, from the db_storage_group
logical data group

ADMIN_GET_TAB_COMPRESS_INFO table
function

SYSPROC

This table function returns compression
estimates for tables, materialized query
tables (MQT) and hierarchy tables.

ADMIN_GET_TAB_DICTIONARY_INFO table

function

SYSPROC

This table function returns dictionary
information for tables, materialized query
tables (MQT) and hierarchy tables.

ADMIN_IS_INLINED function

SYSIBM

This function retrieves state information
about inline data for an XML column,
BLOB column, CLOB column, or DBCLOB
column.

ADMIN_MOVE_TABLE procedure

SYSPROC

This procedure moves data in an active
table into a new table object with the same
name, while the data remains online and
available for access.

ADMIN_MOVE_TABLE_UTIL procedure

SYSPROC

This procedure alters the user definable
values used by the ADMIN_MOVE_TABLE
procedure.

ADMIN_REMOVE_MSGS procedure

SYSPROC

This procedure is used to clean up
messages generated by data movement
utilities that are executed through the
ADMIN_CMD procedure.

ADMIN_REVALIDATE_DB_OBJECTS
procedure

SYSPROC

This procedure revalidates invalid database
objects.

ADMIN_SET_INTRA_PARALLEL procedure

SYSPROC

This procedure enables or disables
intrapartition parallelism for a database
application.

ADMIN_SET_MAINT_MODE procedure

SYSPROC

This procedure sets an internal flag for the
current connection, such that when SQL is
executed, no triggers or constraints will be
expanded during SQL compilation.

ADMINTABINFO and
ADMIN_GET_TAB_INFO

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This view and table function return size
and state information for tables,
materialized query tables (MQT) and
hierarchy tables.

ADMINTEMPCOLUMNS view and
ADMIN_GET_TEMP_COLUMNS table
function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This view and table function retrieve
column attribute information for created
temporary tables and declared temporary
tables

ADMINTEMPTABLES view and
ADMIN_GET_TEMP_TABLES table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This view and table function retrieve table
attribute and instantiation time information
for instances of created temporary tables
and declared temporary tables.

Built-in routines and views 5

Table 2. Administrative task scheduler routines and views

Routine or view name Schema Description
ADMIN_TASK_ADD SYSPROC ;1;};1; procedure schedules an administrative
SYSTOOLS This administrative view retrieves
ADMIN_TASK_LIST information about each task defined in the
scheduler.
ADMIN_TASK_REMOVE SYSPROC This procedure removes scheduled tasks or
task status records.
SYSTOOLS This administrative view retrieves
ADMIN_TASK_STATUS information about the status of each task.
ADMIN_TASK_UPDATE SYSPROC This procedure updates an existing task
Table 3. Audit routines and procedures
Routine or view name Schema Description
AUDIT_ARCHIVE procedure and table SYSPROC This procedure and table function archives
function the current audit log.
AUDIT_DELIM_EXTRACT procedure SYSPROC This procedure extracts data from the
binary archived logs and loads it into
delimited files.
AUDIT_LIST_LOGS table function SYSPROC This table function returns a list of the

archived audit logs at the specified path,
for the current database.

Table 4. Automatic Maintenance built-in SQL routines and views

Routine or view name Schema Description
AUTOMAINT_GET_POLICY procedure SYSPROC This procedure gets the current automatic
maintenance settings for the database.
AUTOMAINT_GET_POLICYFILE procedure | SYSPROC This procedure gets the current automatic
maintenance settings for the database.
AUTOMAINT_SET_POLICY procedure SYSPROC This procedure sets the automatic
maintenance policy settings for the
currently connected database.
AUTOMAINT_SET_POLICYFILE procedure SYSPROC This procedure sets the automatic
maintenance settings for the currently
connected database.
Table 5. Common SQL API stored procedures
Routine or view name Schema Description
SYSPROC This procedure cancels a specified activity.
CANCEL_WORK procedure If no unique activity ID is spec1f1ed., cancels
all activity for a connected application, and
forces the application off of the system.
SYSPROC This procedure retrieves design advisor

DESIGN_ADVISOR procedure

recommendations from a IBM® DB2 10.1
server.

6 Administrative Routines and Views

Table 5. Common SQL API stored procedures (continued)

Routine or view name

Schema

Description

GET_CONFIG procedure

SYSPROC

This procedure retrieves data server
configuration data, including nodes.cfg file
data, database manager configuration data,
database configuration data, and registry
settings from all database partitions.

GET_MESSAGE procedure

SYSPROC

This procedure retrieves the short message
text, long message text, and SQLSTATE for
an SQLCODE.

GET_SYSTEM_INFO procedure

SYSPROC

This procedure retrieves information about
the data server, including information about
the system, the current instance, installed
DB2 database products, environment
variables, available CPUs, and other system
information.

SET_CONFIG procedure

SYSPROC

This procedure updates the configuration
parameters retrieved by the GET_CONFIG
procedure.

Table 6. Configuration built-in SQL routines and

views

Routine or view name

Schema

Description

DBCFG administrative view

SYSIBMADM

This administrative view returns database
configuration information.

DBMCEFG administrative view

SYSIBMADM

This administrative view returns database
manager configuration information.

Table 7. DB2 pureScale instance administrative views

View name

Schema

Description

DB_MEMBERS table function

SYSIBMADM

This table function returns basic member
information about a DB2 pureScale instance.

DB2_CLUSTER_HOST_STATE administrative
view

SYSIBMADM

The DB2_CLUSTER_HOST_STATE
administrative view and the associated
DB2_GET_CLUSTER_HOST_STATE table
function retrieve information about the
hosts that are part of a DB2 pureScale
instance.

DB2_INSTANCE_ALERTS administrative view

SYSIBMADM

This view provides information about alerts
in the DB2 pureScale instance.

DB2_MEMBER and DB2_CF administrative
views

SYSIBMADM

The DB2_MEMBER and DB2_CF
administrative views and the associated
DB2_GET_INSTANCE_INFO table function
return information about the members and
cluster caching facilities of a DB2 pureScale
instance, including state information where
applicable.

Built-in routines and views 7

Table 8. Environment built-in SQL routines and views

View name Schema Description
SYSIBMADM This administrative view returns a list of
ENV_CF_SYS_RESOURCES administrative system resources used by the cluster
view caching facilities (also known as CFs) on
the system.
SYSPROC This administrative view returns
ENV_FEATURE_INFO administrative view information about all available features for
which a license is required.
ENV_GET DB2 SYSTEM RESOURCES table SYSPROC This table fur.lctlon returns CPU usage and
: DB2 process information for specified
function . .
members in the current instance.
ENV_GET NETWORK_RESOURCES table SYSPROC This t(:.lble function returns information for
- all active network adaptors on the host
function . .
machines running DB2.
ENV_GET REG. VARIABLES table function SYSPROC Thl? table function returns the DB2 registry
settings from one or all database members.
SYSPROC This table function returns operating
ENV_GET_SYSTEM_RESOURCES table system, CPU, memory and other
function information related to members on the
system.
ENV_INST INFO administrative view SYSIBMADM Th1s adn.umstra’ave view returps
information about the current instance.
SYSIBMADM This administrative view returns
ENV_PROD_INFO administrative view information about installed DB2 database
products.
ENV_SYS_INFO administrative view SYSIBMADM Thls adn}lmstratlve view returns
information about the system.
Table 9. Explain Routines
Routine Name Schema Description

EXPLAIN_GET_MSGS table function |The schema is the same as the
Explain table schema.

This table function queries the
EXPLAIN_DIAGNOSTIC and
EXPLAIN_DIAGNOSTIC_DATA
Explain tables, and returns formatted

messages.
EXPLAIN_FORMAT_STATS scalar SYSPROC This new scalar function is used to
function display formatted statistics
information which is parsed and
extracted from explain snapshot
captured for a given query.
EXPLAIN_FROM_ACTIVITY SYSPROC This procedure explains a specific
procedure execution of a statement using the
contents of the section obtained from
an activity event monitor.
EXPLAIN_FROM_CATALOG SYSPROC This procedure explains a statement
procedure using the contents of the section
obtained from the catalogs.
EXPLAIN_FROM_DATA procedure |SYSPROC This procedure explains a statement

using the contents of the input
section.

8 Administrative Routines and Views

Table 9. Explain Routines (continued)

Routine Name Schema Description
EXPLAIN_FROM_SECTION SYSPROC This procedure explains a statement
procedure using the contents of the section

obtained from the package cache or
from the package cache event
monitor.

Table 10. Monitor SQL routines

Routine name

Schema

Description

EVMON_FORMAT_UE_TO_TABLES procedure

SYSPROC

This procedure retrieves data stored in
an unformatted event table and moves
the XML document into a set of
relational tables.

EVMON_FORMAT_UE_TO_XML table function

SYSPROC

This table function extracts binary
events from an unformatted event table
and formats them into an XML
document.

EVMON_UPGRADE_TABLES procedure

SYSPROC

This procedure alters event monitor
target SQL or unformatted event tables
to accommodate new or changed
monitoring elements that have been
added since the event monitor was
created.

MON_BP_UTILIZATION administrative view

SYSIBMADM

This administrative view returns key
monitoring metrics, including hit ratios
and average read and write times, for
all buffer pools and all database
partitions in the currently connected
database.

MON_CONNECTION_SUMMARY administrative view

SYSIBMADM

This administrative view returns key
metrics for all connections in the
currently connected database.

MON_CURRENT_SQL administrative view

SYSIBMADM

This administrative view returns key
metrics for all activities that were
submitted on all members of the
database and have not yet been
completed.

MON_CURRENT_UOW administrative view

SYSIBMADM

This administrative view returns key
metrics for all units of work that were
submitted on all members of the
database.

MON_DB_SUMMARY administrative view

SYSIBMADM

This administrative view returns key
metrics aggregated over all service
classes in the currently connected
database.

MON_FORMAT_LOCK_NAME table function

SYSPROC

This table function formats the internal
lock name and returns details
regarding the lock in a row-based
format.

MON_FORMAT_XML_COMPONENT_TIMES_BY_ROW
table function

SYSPROC

This table function returns formatted
row-based output for the component
times contained in an XML metrics
document.

Built-in routines and views 9

Table 10. Monitor SQL routines (continued)

Routine name

Schema

Description

MON_FORMAT_XML_METRICS_BY_ROW table
function

SYSPROC

This table function returns formatted
row-based output for all metrics
contained in an XML metrics
document.

MON_FORMAT_XML_TIMES_BY_ROW table function

SYSPROC

This table function returns formatted
row based output for the combined
hierarchy of wait and processing times
that are contained in an XML metrics
document.

MON_FORMAT_XML_WAIT_TIMES_BY_ROW table
function

SYSPROC

This table function returns formatted
row-based output for the wait times
contained in an XML metrics
document.

MON_GET_ACTIVITY_DETAILS

SYSPROC

This table function returns details
about an activity, including general
activity information and a set of
metrics for the activity.

MON_GET_APPL_LOCKWAIT table function

SYSPROC

This table function returns information
about all locks that each application's
agents (that are connected to the
current database) are waiting to
acquire.

MON_GET_APPLICATION_HANDLE scalar function

SYSPROC

This scalar function returns the
application handle of the invoking
application.

MON_GET_APPLICATION_ID scalar function

SYSPROC

This scalar function returns the
application ID of the invoking
application.

MON_GET_AUTO_MAINT_QUEUE table function

SYSPROC

This table function returns information
about all automatic maintenance jobs
(with the exception of real-time
statistics which does not submit jobs
on the automatic maintenance queue)
that are currently queued for execution
by the autonomic computing daemon
(db2acd).

MON_GET_AUTO_RUNSTATS_QUEUE table function

SYSPROC

This table function returns information
about all objects which are currently
queued for evaluation by automatic
statistics collection in the currently
connected database.

MON_GET_BUFFERPOOL table function

SYSPROC

This table function returns monitor
metrics for one or more buffer pools.

MON_GET_CF table function

SYSPROC

This table function returns status
information about one or more cluster
caching facilities in a DB2 pureScale
environment.

MON_GET_CF_CMD table function

SYSPROC

This table function returns information
about the processing time for cluster
caching facility (CF) commands.

10 Administrative Routines and Views

Table 10. Monitor SQL routines (continued)

Routine name

Schema

Description

MON_GET_CF_WAIT_TIME table function

SYSPROC

This table function reports the total
amount of time, in microseconds, that
are spent waiting for the cluster
caching facilities (CFs) to process a
request. This time includes the time
that is taken for related
communications to the cluster caching
facilities.

MON_GET_CONNECTION table function

SYSPROC

This table function returns metrics for
one or more connections.

MON_GET_CONNECTION_DETAILS table function

SYSPROC

This table function returns detailed
metrics for one or more connections.

MON_GET_CONTAINER table function

SYSPROC

This table function returns monitor
metrics for one or more table space
containers.

MON_GET_EXTENDED_LATCH_WAIT table function

SYSPROC

This function returns information for
latches which have been involved in
extended latch waits.

MON_GET_EXTENT_MOVEMENT_STATUS table
function

SYSPROC

This table function returns the status of
the extent movement operation.

MON_GET_FCM table function

SYSPROC

This table function returns metrics for
the fast communication manager
(FCM).

MON_GET_FCM_CONNECTION_LIST table function

SYSPROC

This table function returns monitor
metrics for all the fast communication
manager (FCM) connections on the
specified member or members.

MON_GET_GROUP_BUFFERPOOQL table function

SYSPROC

This table function returns statistics
about the group bufferpool, including
the number of times the GBP_FULL
error is encountered.

MON_GET_HADR table function

SYSPROC

This function returns high availability
disaster recovery (HADR) monitoring
information.

MON_GET_INDEX table function

SYSPROC

This table function returns metrics for
one or more indexes.

MON_GET_INDEX_USAGE_LIST table function

SYSPROC

This table function returns information
from a usage list defined for an index.

MON_GET_LOCKS table function

SYSPROC

This table function returns a list of all
locks in the currently connected
database.

MON_GET_MEMORY_POOL table function

SYSPROC

This table function retrieves metrics
from the memory pools contained
within a memory set.

MON_GET_MEMORY_SET table function

SYSPROC

This table function retrieves metrics
from the memory pools contained
within a memory set.

MON_GET_PAGE_ACCESS_INFO table function

SYSPROC

This table function returns information
about bufferpool pages that are being
waited on for a specified table.

Built-in routines and views 11

Table 10. Monitor SQL routines (continued)

Routine name

Schema

Description

MON_GET_PKG_CACHE_STMT table function

SYSPROC

This table function returns a
point-in-time view of both static and
dynamic SQL statements in the
database package cache.

MON_GET_PKG_CACHE_STMT_DETAILS table
function

SYSPROC

This table function returns detailed
metrics for one or more package cache
entries.

MON_GET_REBALANCE_STATUS table function

SYSPROC

This table function returns the status of
a rebalance operation on a table space.

MON_GET_ROUTINE table function

SYSPROC

This table function returns aggregated
execution metrics for procedures,
external procedures, compiled
functions, compiled triggers, and
anonymous blocks invoked since the
database was activated.

MON_GET_ROUTINE_DETAILS table function

SYSPROC

This table function returns aggregated
execution metrics for procedures,
external functions, compiled functions,
compiled triggers, and anonymous
blocks invoked since the database was
activated. The metrics are returned in
an XML document.

MON_GET_ROUTINE_EXEC_LIST table function

SYSPROC

This table function returns a list of all
statements (sections) executed by each
procedure, external function, compiled
function, compiled trigger, and
anonymous block invoked since the
database was activated.

MON_GET_RTS_RQST table function

SYSPROC

This table function returns information
about all real-time statistics requests
that are pending in the system, and the
set of requests that are currently being
processed by the real time statistics
daemon (such as on the real-time
statistics processing queue).

MON_GET_SECTION_ROUTINE table function

SYSPROC

This table function returns a list of all
procedures, external functions,
compiled functions, and compiled
triggers that might be invoked during
the execution of the input section.

MON_GET_SERVERLIST table function

SYSPROC

This table function returns metrics on
the server list for the currently
connected database as cached on one
or more members.

MON_GET_SERVICE_SUBCLASS table function

SYSPROC

This table function returns metrics for
one or more service subclasses.

MON_GET_SERVICE_SUBCLASS_DETAILS table
function

SYSPROC

This table function returns detailed
metrics for one or more service
subclasses.

MON_GET_TABLE table function

SYSPROC

This table function returns monitor
metrics for one or more tables.

12 Administrative Routines and Views

Table 10. Monitor SQL routines (continued)

Routine name

Schema

Description

MON_GET_TABLESPACE table function

SYSPROC

This table function returns monitor
metrics for one or more table spaces.

MON_GET_TABLE_USAGE_LIST table function

SYSPROC

This table function returns information
from a usage list defined for a table.

MON_GET_TRANSACTION_LOG table function

SYSPROC

This table function returns information
about the transaction logging
subsystem for the currently connected
database.

MON_GET_UNIT_OF_WORK table function

SYSPROC

This table function returns metrics for
one or more units of work.

MON_GET_UNIT_OF_WORK_DETAILS table function

SYSPROC

This table function returns detailed
metrics for one or more units of work.

MON_GET_USAGE_LIST_STATUS table function

SYSPROC

This table function returns current
status on a usage list.

MON_GET_WORKLOAD table function

SYSPROC

This table function returns metrics for
one or more workloads.

MON_GET_WORKLOAD_DETAILS table function

SYSPROC

This table function returns detailed
metrics for one or more workloads.

MON_INCREMENT_INTERVAL_ID procedure

SYSPROC

This procedure increments the
monitoring interval by 1 and returns
the new value in the output argument.

MON_LOCKWAITS administrative view

SYSPROC

This administrative view returns
information about agents working on
behalf of applications that are waiting
to obtain locks in the currently
connected database.

MON_PKG_CACHE_SUMMARY administrative view

SYSIBMADM

This administrative view returns key
metrics for both static and dynamic
SQL statements in the cache, providing
a high-level summary of the database
package cache.

MON_SAMPLE_SERVICE_CLASS_METRICS table
function

SYSPROC

The table function reads system
metrics for one or more service classes
across one or more databases at two
points in time: at the time the function
is called and after a given amount of
time has passed.

MON_SAMPLE_WORKLOAD_METRICS table function

SYSPROC

The table function reads system
metrics for one or more workloads
across one or more databases at two
points in time: at the time the function
is called and after a given amount of
time has passed.

MON_SERVICE_SUBCLASS_SUMMARY administrative
view

SYSIBMADM

This administrative view returns key
metrics for all service subclasses in the
currently connected database.

MON_TBSP_UTILIZATION administrative view

SYSIBMADM

This administrative view returns key
monitoring metrics, including hit ratios
and utilization percentage, for all table
spaces and all database partitions in
the currently connected database.

Built-in routines and views 13

Table 10. Monitor SQL routines (continued)

Routine name

Schema

Description

MON_WORKLOAD_SUMMARY administrative view

SYSIBMADM

This administrative view returns key
metrics for all workloads in the
currently connected database.

Table 11. MQSeries built-in SQL routines

Routine name

Schema

Description

MQPUBLISH scalar function

DB2MQ, DB2MQ1C

This scalar function publishes data to an
MQSeries location.

MQREAD scalar function

DB2MQ, DB2MQ1C

This scalar function returns a message from
an MQSeries location.

MQREADALL table function

DB2MQ, DB2MQ1C

This table function returns a table with
messages and message metadata from an
MQSeries location.

MQREADCLOB scalar function

DB2MQ This table function returns a table
MQREADALLCLOB table function containing messages and message metadata
from a specified MQSeries location.
DB2MQ This scalar function returns a message from

a specified MQSeries location.

MQRECEIVE scalar function

DB2MQ, DB2MQ1C

This scalar function returns a message from
an MQSeries location and removes the
message from the associated queue.

MQRECEIVEALL table function

DB2MQ, DB2MQ1C

This table function returns a table
containing the messages and message
metadata from an MQSeries location and
removes the messages from the associated
queue.

MQRECEIVECLOB scalar function

DB2MQ This table function returns a table
MQRECEIVEALLCLOB table function containing messages and message metadata
from a specified MQSeries location.
DB2MQ This scalar function returns a message from

a specified MQSeries location.

MQSEND scalar function

DB2MQ, DB2MQ1C

This scalar function sends data to an
MQSeries location.

MQSUBSCRIBE scalar function

DB2MQ, DB2MQ1C

This scalar function subscribes to MQSeries
messages published on a specific topic.

MQUNSUBSCRIBE scalar function

DB2MQ, DB2MQ1C

This scalar function unsubscribes from
MQSeries messages published on a specific
topic.

Table 12. Security built-in SQL routines and views:

AUTH_LIST_AUTHORITIES_FOR_AUTHID
table function

Routine or view name Schema Description

AUTH_GET_INSTANCE_AUTHID scalar SYSPROC This scalar function returns the

function authorization ID of the instance owner.
SYSPROC This table function returns all authorities

held by the authorization ID, either found
in the database configuration file or granted
to an authorization ID directly or indirectly
through a group or a role.

14 Administrative Routines and Views

Table 12. Security built-in SQL routines and views: (continued)

Routine or view name

Schema

Description

AUTH_LIST_GROUPS_FOR_AUTHID table
function

SYSPROC

This table function returns the list of groups
of which the given authorization ID is a
member.

AUTH_LIST_ROLES_FOR_AUTHID function

SYSPROC

This function returns the list of roles in
which the given authorization ID is a
member.

AUTHORIZATIONIDS administrative view

SYSIBMADM

This administrative view contains a list of
authorization IDs that have been granted
privileges or authorities, along with their
types, for the currently connected database.

OBJECTOWNERS administrative view

SYSIBMADM

This administrative view contains all object
ownership information for the currently
connected database.

PRIVILEGES administrative view

SYSIBMADM

This administrative view contains all
explicit privileges for the currently
connected database.

Table 13. Snapshot built-in SQL routines and views

Routine or view name

Schema

Description

APPL_PERFORMANCE administrative view

SYSIBMADM

This administrative view displays
information about the rate of rows selected
versus rows read per application.

APPLICATIONS administrative view

SYSIBMADM

This administrative view returns
information about the connected database
applications.

BP_HITRATIO administrative view

SYSIBMADM

This administrative view returns bufferpool
hit ratios, including total, data, and index,
in the database.

BP_READ_IO administrative view

SYSIBMADM

This administrative view returns bufferpool
read performance information.

BP_WRITE_IO administrative view

SYSIBMADM

This administrative view returns bufferpool
write performance information per
bufferpool.

CONTAINER_UTILIZATION administrative
view

SYSIBMADM

This administrative view returns
information about table space containers
and utilization rates.

LOCKS_HELD administrative view

SYSIBMADM

This administrative view returns
information about the current locks held.

LOCKWAITS administrative view

SYSIBMADM

This administrative view returns
information about the locks that are waiting
to be granted.

LOG_UTILIZATION administrative view

SYSIBMADM

This administrative view returns
information about log utilization for the
currently connected database.

LONG_RUNNING_SQL administrative view

SYSIBMADM

This administrative view returns the longest
running SQL statements in the currently
connected database.

QUERY_PREP_COST administrative view

SYSIBMADM

This administrative view returns a list of
statements with information about the time
required to prepare the statement.

Built-in routines and views 15

Table 13. Snapshot built-in SQL routines and views (continued)

SNAPAGENT administrative view and
SNAP_GET_AGENT table function

(administrative view),
SYSPROC (table
function)

Routine or view name Schema Description
SYSPROC This procedure writes system snapshot data
SNAP_WRITE_FILE procedure to a file in the tmp subdirectory of the
instance directory.
SYSIBMADM This administrative view and table function

return information about agents from an
application snapshot, in particular, the
agent logical data group.

SNAPAPPL administrative view and
SNAP_GET_APPL table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about applications from
an application snapshot, in particular, the
appl logical data group.

SNAPAPPL_INFO administrative view and
SNAP_GET_APPL_INFO table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about applications from
an application snapshot, in particular, the
appl_info logical data group.

SNAPBP administrative view and
SNAP_GET_BP table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about buffer pools from
a bufferpool snapshot, in particular, the
bufferpool logical data group.

SNAPBP_PART administrative view and
SNAP_GET_BP_PART table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about buffer pools from
a bufferpool snapshot, in particular, the
bufferpool_nodeinfo logical data group.

SNAPCONTAINER administrative view and
SNAP_GET_CONTAINER table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return table space snapshot information
from the tablespace_container logical data

group.

SNAPDB administrative view and
SNAP_GET_DB table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information from the
database (dbase) and database storage
(db_storage_group) logical groupings.

SNAPDBM administrative view and
SNAP_GET_DBM table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return the snapshot monitor DB2 database
manager (dbm) logical grouping
information.

SNAPDETAILLOG administrative view and
SNAP_GET_DETAILLOG table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information from the
detail_log logical data group.

SNAPDYN_SQL administrative view and
SNAP_GET_DYN_SQL table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information from the
dynsql logical data group.

SNAPFCM administrative view and
SNAP_GET_FCM table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about the fast
communication manager (FCM) from a
database manager snapshot, in particular,
the fcm logical data group.

16 Administrative Routines and Views

Table 13. Snapshot built-in SQL routines and views (continued)

Routine or view name

Schema

Description

SNAPFCM_PART administrative view and
SNAP_GET_FCM_PART table function

SYSIBMADM
(administrative view),

SYSPROC (table

This administrative view and table function
return information about the fast
communication manager (FCM) from a

SNAPLOCK administrative view and
SNAP_GET_LOCK table function

function) database manager snapshot, in particular,
the fem_node logical data group.
SYSIBMADM This administrative view and table function

(administrative view),
SYSPROC (table
function)

return snapshot information about locks, in
particular, the lock logical data group.

SNAPLOCKWAIT administrative view and
SNAP_GET_LOCKWAIT table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information about lock
waits, in particular, the lockwait logical
data group.

SNAPSTMT administrative view and
SNAP_GET_STMT table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about statements from
an application snapshot.

SNAPSUBSECTION administrative view and
SNAP_GET_SUBSECTION table function

SYSIBMADM
(administrative view),
SYSPROC (table

function)

This administrative view and table function
return information about application
subsections, namely the subsection logical
monitor grouping.

SNAPSWITCHES administrative view and
SNAP_GET_SWITCHES table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about the database
snapshot switch state.

SNAPTAB administrative view and
SNAP_GET_TAB table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information from the table
logical data group.

SNAPTAB_REORG administrative view and
SNAP_GET_TAB_REORG table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return table reorganization information.

SNAPTBSP administrative view and
SNAP_GET_TBSP table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information from the table
space logical data group.

SNAPTBSP_PART administrative view and
SNAP_GET_TBSP_PART table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information from the
tablespace_nodeinfo logical data group.

SNAPTBSP_QUIESCER administrative view
and SNAP_GET_TBSP_QUIESCER table
function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about quiescers from a
table space snapshot.

SNAPTBSP_RANGE administrative view and
SNAP_GET_TBSP_RANGE table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information from a range snapshot.

17

Built-in routines and views

Table 13. Snapshot built-in SQL routines and views (continued)

Routine or view name

Schema

Description

SNAPUTIL administrative view and
SNAP_GET_UTIL table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information about the
utilities from the utility_info logical data

group.

SNAPUTIL_PROGRESS administrative view
and SNAP_GET_UTIL_PROGRESS table
function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about utility progress, in
particular, the progress logical data group.

TBSP_UTILIZATION administrative view

SYSIBMADM

This administrative view returns table space
configuration and utilization information.

TOP_DYNAMIC_SQL administrative view

SYSIBMADM

This administrative view returns the top
dynamic SQL statements sortable by
number of executions, average execution
time, number of sorts, or sorts per
statement.

Table 14. SQL procedure built-in routines

Routine name

Schema

Description

ALTER_ROUTINE_PACKAGE procedure

SYSPROC

This procedure alters values for the package
associated with a compiled SQL routine or
a compiled trigger, without the need for
rebinding.

GET_ROUTINE_NAME procedure

SYSPROC

This procedure returns the name of an SQL
PL object given the object's LIB_ID.

GET_ROUTINE_OPTS scalar function

SYSPROC

This scalar function returns a character
string value of the options that are to be
used for the creation of SQL procedures in
the current session.

GET_ROUTINE_SAR procedure

SYSFUN

This procedure returns the information
necessary to install an identical routine on
another database server running at least at
the same level and operating system.

PUT_ROUTINE_SAR procedure

SYSFUN

This procedure passes the information
necessary to create and define an SQL
routine at the database server.

REBIND_ROUTINE_PACKAGE procedure

SYSPROC

This procedure rebinds the package
associated with an SQL procedure.

SET_ROUTINE_OPTS procedure

SYSPROC

This procedure sets the options that are to
be used for the creation of SQL procedures
in the current session.

Table 15. Stepwise redistribute built-in SQL routines

GET_SWRD_SETTINGS procedure

Routine name Schema Description
ANALYZE_LOG_SPACE procedure SYSPROC ThlS progedure returns log space analysis
information.
GENERATE_DISTFILE procedure SYSPROC Thls 'pro?edure generates a data
distribution file.
SYSPROC This procedure returns redistribute

information.

18 Administrative Routines and Views

Table 15. Stepwise redistribute built-in SQL routines (continued)

Routine name Schema Description
SET_SWRD_SETTINGS procedure SYSPROC Th1§ p?ocedure .Creates or changes the
redistribute registry.
STEPWISE_REDISTRIBUTE_DBPG procedure SYSPROC This procedu?e. redistributes part of
database partition group.
Table 16. Storage management tool built-in SQL routines
Routine name Schema Description
CAPTURE_STORAGEMGMT_INFO procedure SYSPROC Thls pro;edure retl%rns storage-.related
information for a given root object.
CREATE_STORAGEMGMT_TABLES procedure SYSPROC ;l;l;;lsefrocedure creates storage management
DROP_STORAGEMGMT_TABLES procedure SYSPROC This procedure drops all storage
management tables.
Table 17. Text search built-in SQL routines
Routine name Schema Description
SYSPROC This procedure runs text search
SYSTS_ADMIN_CMD stored procedure administrative commands using the SQL
CALL statement.
SYSTS_ALTER procedure SYSPROC This proc.ed.ure changes the update
characteristics of an index.
SYSPROC This procedure enables removal of obsolete
SYSTS_CLEANUP procedure DB2 Text Search index collections within a
database.
SYSPROC This procedure removes all command locks
SYSTS_CLEAR_COMMANDLOCKS procedure for a specific text search index or for all
text search indexes in the database.
SYSPROC This procedure deletes indexing events
SYSTS_CLEAR_EVENTS procedure from an index's event table used for
administration.
SYSPROC This procedure applies text search server
SYSTS_CONFIGURE procedure connection information to the text search
catalog
SYSPROC This procedure creates a text search index
for a text column which allows the column
SYSTS_CREATE procedure data to be searched using text search
functions.
SYSTS_DISABLE procedure SYSPROC This procedure disables DB2 Text Search for
the current database.
SYSPROC This procedure drops an existing text
SYSTS_DROP procedure search index associated with any table
column.
SYSPROC This procedure must be issued successfully

SYSTS_ENABLE procedure

before text search indexes on columns in
tables within the database can be created.

Built-in routines and views 19

Table 17. Text search built-in SQL routines (continued)

Routine name

Schema

Description

SYSTS_UPDATE procedure

SYSPROC

This procedure updates the text search
index to reflect the current contents of the
text columns with which the index is
associated.

SYSTS_UPGRADE_CATALOG procedure

SYSPROC

This procedure upgrades the DB2 Text
Search catalog, including the administrative
tables and administrative views, to the
latest product version.

SYSTS_UPGRADE_INDEX procedure

SYSPROC

This procedure updates DB2 Text Search
index information in the text search catalog
tables.

Table 18. Workload management built-in SQL routines

_ACTIVITIES table function

Routine name Schema Description

WLM_CANCEL_ACTIVITY procedure SYSPROC This procedure cancels the given activity.

WLM_CAPTURE_ACTIVITY_IN_PROGRESS |SYSPROC This procedure sends information about the

procedure given activity to the activities event
monitor.

WLM_COLLECT_STATS procedure SYSPROC This procedure sends statistics for service
classes, workloads, work classes and
threshold queues to the statistics event
monitor and resets the in-memory copy of
the statistics.

WLM_GET_CONN_ENYV table function SYSPROC This table function returns for a particular
connection the values of settings that
control collection of activity data and
section actuals.

WLM_GET_QUEUE_STATS table function SYSPROC This table function returns basic statistic
information for one or more threshold
queues.

WLM_GET_SERVICE_CLASS_AGENTS table |SYSPROC This table function returns the list of agents

function on the given partition that are executing in
the service class given by the
SERVICE_SUPERCLASS_NAME and
SERVICE_SUBCLASS_NAME or on behalf
of the application given by the
APPLICATION_HANDLE.

WLM_GET_SERVICE_CLASS_WORKLOAD SYSPROC This table function returns the list of all

_OCCURRENCES table function workload occurrences executing in a given
service class on a particular partition.

WLM_GET_SERVICE_SUBCLASS_STATS table |SYSPROC This table function returns basic statistics of

function one or more service subclasses.

WLM_GET_SERVICE_SUPERCLASS_STATS SYSPROC This table function returns basic statistics of

table function one or more service superclasses.

WLM_GET_WORK_ACTION_SET_STATS table | SYSPROC This table function returns basic statistics

function for work classes in a work action set.

WLM_GET_WORKLOAD_OCCURRENCE SYSPROC This table function returns the list of all

activities that were submitted through the
given application on the specified partition
and have not yet completed.

20 Administrative Routines and Views

Table 18. Workload management built-in SQL routines (continued)

Routine name Schema Description
WLM_GET_WORKLOAD_STATS table function | SYSPROC This table function returns basic statistics
for one or more workloads.
WLM_SET_CLIENT_INFO procedure SYSPROC This procedure sets client information
associated with the current connection at
the DB2 database server.
WLM_SET_CONN_ENYV procedure SYSPROC This procedure enables for a particular

connection the collection of activity data
and measurement of section actuals.

Table 19. Miscellaneous built-in SQL routines and views

Routine or view name

Schema

Description

ALTOB]J procedure

SYSPROC

This procedure alters an existing table
using the input CREATE TABLE statement
as the target table definition.

COMPILATION_ENYV table function

SYSPROC

This table function returns the elements of
a compilation environment.

CONTACTGROUPS administrative view

SYSIBMADM

This administrative view returns the list of
contact groups.

CONTACTS administrative view

SYSIBMADM

This administrative view returns the list of
contacts defined on the database server.

DB_HISTORY administrative view

SYSIBMADM

This administrative view returns
information from the history file that is
associated with the currently connected
database partition.

DBPATHS administrative view

SYSIBMADM

This administrative view returns the values
for database paths required for tasks such
as split mirror backups.

GET_DBSIZE_INFO procedure

SYSPROC

This procedure calculates the database size
and maximum capacity.

NOTIFICATIONLIST administrative view

SYSIBMADM

This administrative view returns the list of
contacts and contact groups that are
notified about the health of an instance.

PD_GET_DIAG_HIST table function

SYSPROC

The table function returns log records,
event records and notification records from
a given facility.

PDLOGMSGS_LAST24HOURS administrative
view and PD_GET_LOG_MSGS table function

SYSIBMADM
(administrative view),
SYSPROC (table

This administrative view and table function
return problem determination log messages
that were logged in the DB2 notification

function) log. The information is intended for use by
database and system administrators.
SYSPROC This procedure checks index statistics to
REORGCHK_IX_STATS procedure determine whether or not there is a need
for reorganization.
SYSPROC This procedure checks table statistics to

REORGCHK_TB_STATS procedure

determine whether or not there is a need
for reorganization.

21

Built-in routines and views

Table 19. Miscellaneous built-in SQL routines and views (continued)

Routine or view name

Schema Description

SET_MAINT_MODE_RECORD_
NO_TEMPORALHISTORY procedure

SYSPROC This procedure sets the internal option to
disable recording of temporal history for a
system-period temporal table and allows
values to be specified for the special
temporal columns.

SQLERRM scalar function and language selection. The second is a

SYSPROC This scalar function has two versions. The
first allows for full flexibility of message
retrieval including using message tokens

simple interface which takes only an
SQLCODE as an input parameter and
returns the short message in English.

SYSINSTALLOBJECTS procedure database objects that are required for a

SYSPROC This procedure creates or drops the

specific tool.

Administrative routines and ADMIN_CMD procedure

ADMIN_CMD - Run administrative commands
The ADMIN_CMD procedure is used by applications to run administrative
commands using the SQL CALL statement.

Syntax

v
A

»>—ADMIN_CMD—(—command-string—)

The schema is SYSPROC.

Procedure parameter

command-string
An input argument of type CLOB (2M) that specifies a single command that is
to be executed.

Authorization

One of the following authorities is required to execute the routine:
* EXECUTE privilege on the routine

* DATAACCESS authority

* DBADM authority

* SQLADM authority

Default PUBLIC privilege

In a non-restrictive database, EXECUTE privilege is granted to PUBLIC when the
procedure is automatically created.

The procedure currently supports the following DB2 command line processor
(CLP) commands:

 ADD CONTACT

22 Administrative Routines and Views

« ADD CONTACTGROUP

* AUTOCONFIGURE

¢ BACKUP - online only

* DESCRIBE

* DROP CONTACT

* DROP CONTACTGROUP

e EXPORT

* FORCE APPLICATION

e IMPORT

» INITIALIZE TAPE

* LOAD

 PRUNE HISTORY /LOGFILE

* QUIESCE DATABASE

* QUIESCE TABLESPACES FOR TABLE

* REDISTRIBUTE

* REORG INDEXES/TABLE

* RESET ALERT CONFIGURATION

* RESET DATABASE CONFIGURATION

» RESET DATABASE MANAGER CONFIGURATION
« REWIND TAPE

* RUNSTATS

* SET TAPE POSITION

* UNQUIESCE DATABASE

» UPDATE ALERT CONFIGURATION

» UPDATE CONTACT

 UPDATE CONTACTGROUP

» UPDATE DATABASE CONFIGURATION

» UPDATE DATABASE MANAGER CONFIGURATION
 UPDATE HEALTH NOTIFICATION CONTACT LIST
 UPDATE HISTORY

Note: Some commands might have slightly different supported syntax when
executed through the ADMIN_CMD procedure.

The procedure also supports the following commands which are not supported by
the CLP:

* GET STMM TUNING
* UPDATE STMM TUNING

Usage notes

Retrieving command execution information:

* As the ADMIN_CMD procedure runs on the server, the utility messages are also
created on the server. The MESSAGES ON SERVER option (refer to the specific
command for further details) indicates that the message file is to be created on
the server.

* Command execution status is returned in the SQLCA resulting from the CALL
statement.

Built-in routines and views 23

e If the execution of the administrative command is successful, and the command
returns more than the execution status, the additional information is returned in
the form of a result set (up to two result sets). For example, if the EXPORT
command executes successfully, the returned result set contains information
about the number of exported rows; however, if the RUNSTATS command executes
successfully, no result set is returned. The result set information is documented
with the corresponding command.

e If the execution of the administrative command is not successful, an SQL20397W
warning message is returned by the ADMIN_CMD procedure along with a
result set containing more details about the reason for the failure of the
administrative command. Any application that uses the ADMIN_CMD
procedure should check the SQLCODE returned by the procedure. If the
SQLCODE is >= 0, the result set for the administrative command should be
retrieved. The following table indicates what information might be returned
depending on whether the MESSAGES ON SERVER option is used or not.

Table 20. SQLCODE and information returned by the ADMIN_CMD procedure

Administrative command
execution status

MESSAGES ON SERVER
option specified

MESSAGES ON SERVER
option not specified

20397: Additional
information (result sets)

Successful The SQLCODE returned is The SQLCODE returned is
>= 0: Additional information |>= 0: Additional information
(result sets) returned, if any. | (result sets) returned, if any,
but the MSG_RETRIEVAL
and MSG_REMOVAL
columns are NULL.
Failed The SQLCODE returned The SQLCODE returned is <

0: No additional information
(result sets) is returned.

returned, but only the
MSG_RETRIEVAL and
MSG_REMOVAL columns
are populated.

* The result sets can be retrieved from the CLP or from applications such as JDBC
and CLI applications, but not from embedded C applications.
* Case-sensitive names and double-byte character set (DBCS) names must be

enclosed inside a backward slash and double quotation delimiter, for example,
\" MyTabLe \".

For all commands executed through the ADMIN_CMD, the user ID that
established the connection to the database is used for authentication.

Any additional authority required, for example, for commands that need file
system access on the database server, is documented in the reference information
describing the command.

This procedure cannot be called from a user-defined function (SQLSTATE 38001) or
a trigger.

ADD CONTACT command using the ADMIN_CMD procedure:

Adds a contact to the contact list which can be either defined locally on the system
or in a global list. Contacts are users to whom processes such as the Scheduler and
Health Monitor send messages.

24 Administrative Routines and Views

The setting of the Database Administration Server (DAS) contact_host
configuration parameter determines whether the list is local or global.

Authorization

None

Required connection

Database. The DAS must be running.
Command syntax

»>—ADD CONTACT—name—TYPE EMATL >

|—PAGE _|
I—I:MAXIMUM PAGE LENGTH pg-length
MAX LEN

»—ADDRESS—recipients address ><
|—DESCRIPTION—contact descriptionJ

Command parameters

ADD CONTACT name
The name of the contact that will be added. By default the contact will be
added in the local system, unless the DB2 administration server
configuration parameter contact_host points to another system.

TYPE Method of contact, which must be one of the following two:
EMAIL This contact wants to be notified by email at (ADDRESS).
PAGE This contact wants to be notified by a page sent to ADDRESS.

MAXIMUM PAGE LENGTH pg-length
If the paging service has a message-length restriction, it is
specified here in characters.

The notification system uses the SMTP protocol to send the
notification to the mail server specified by the DB2 Administration
Server configuration parameter smtp_server. It is the responsibility
of the SMTP server to send the email or call the pager.

ADDRESS recipients-address
The SMTP mailbox address of the recipient. For example,
joe@somewhere.org. The smtp_server DAS configuration parameter must
be set to the name of the SMTP server.

DESCRIPTION contact description
A textual description of the contact. This has a maximum length of 128
characters.

Example
Add a contact for user 'testuser' with email address 'testuser@test.com'.

CALL SYSPROC.ADMIN_CMD
('ADD CONTACT testuser TYPE EMAIL ADDRESS testuser@test.com')

Built-in routines and views 25

Usage notes
The DAS must have been created and be running.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

ADD CONTACTGROUP command using the ADMIN_CMD procedure:
Adds a new contact group to the list of groups defined on the local system. A
contact group is a list of users and groups to whom monitoring processes such as

the Scheduler and Health Monitor can send messages.

The setting of the Database Administration Server (DAS) contact_host
configuration parameter determines whether the list is local or global.

Authorization

None

Required connection

Database. The DAS must be running.

Command Syntax

»>—ADD CONTACTGROUP—name—'ECONTACT name >
GROUP

Y
A

|—DESCRIPTION—group description—l

Command Parameters

ADD CONTACTGROUP name
Name of the new contact group, which must be unique among the set of
groups on the system.

CONTACT name
Name of the contact which is a member of the group. A contact can be
defined with the ADD CONTACT command after it has been added to a group.

GROUP name
Name of the contact group of which this group is a member.

DESCRIPTION group description
Optional. A textual description of the contact group.

Example

Create a contact group named 'gnamel’ that contains two contacts: 'cnamel' and
'‘cname?2'.

CALL SYSPROC.ADMIN CMD('add contactgroup gnamel contact cnamel, contact cname2')

26 Administrative Routines and Views

Usage notes

The DAS must have been created and be running.

Command execution status is returned in the SQLCA resulting from the CALL

statement.

AUTOCONFIGURE command using the ADMIN_CMD procedure:

Calculates and displays initial values for the buffer pool size, database
configuration and database manager configuration parameters, with the option of
applying these reported values.

Authorization

SYSADM

Required connection

Database

Command syntax

»>—AUTOCONFIGURE

USING—"input-keyword—param-value

v
A

DB AND DBM—

»—APPLY |:DB ONLY
NONE——+-

Command parameters

|—ON CURRENT MEMBER—|

USING input-keyword param-value

Table 21. Valid input keywords and parameter values

Keyword

Valid values

Default
value

Explanation

mem_percent

1-100

25

Percentage of instance memory that is
assigned to the database. However, if the
CREATE DATABASE command invokes the
configuration advisor and you do not
specify a value for mem_percent, the
percentage is calculated based on memory
usage in the instance and the system up to
a maximum of 25% of the instance
memory.

workload_type

simple,
mixed,
complex

mixed

Simple workloads tend to be I/O intensive
and mostly transactions, whereas complex
workloads tend to be CPU intensive and
mostly queries.

num_stmts

1-1 000 000

10

Number of statements per unit of work

tpm

1-200 000

60

Transactions per minute

Built-in routines and views 27

Table 21. Valid input keywords and parameter values (continued)

Default
Keyword Valid values |value Explanation
admin_priority |performance, | both Optimize for better performance (more
recovery, transactions per minute) or better recovery
both time
is_populated yes, no yes Is the database populated with data?
num_local_apps |[0-5 000 0 Number of connected local applications
num_remote_ 0-5 000 10 Number of connected remote applications
apps
isolation RR, RS, CS, UR | RR Maximum isolation level of applications
connecting to this database (Repeatable
Read, Read Stability, Cursor Stability,
Uncommitted Read). It is only used to
determine values of other configuration
parameters. Nothing is set to restrict the
applications to a particular isolation level
and it is safe to use the default value.
bp_resizeable yes, no yes Are buffer pools resizeable?
APPLY

DB ONLY
Displays the recommended values for the database configuration
and the buffer pool settings based on the current database manager
configuration. Applies the recommended changes to the database
configuration and the buffer pool settings.

DB AND DBM
Displays and applies the recommended changes to the database
manager configuration, the database configuration, and the buffer
pool settings.

NONE Displays the recommended changes, but does not apply them.

ON CURRENT MEMBER
In a partitioned database environment or DB2 pureScale environment, the
Configuration Advisor updates the database configuration on all members
by default. Specifying the ON CURRENT MEMBER option causes the
Configuration Advisor to set the member-level configuration parameters on
the current member determined by your connection, while the global-level
configuration parameters, that can be configured to be functional at only
the global level, are set and affect all members.

The buffer pool changes are always applied to the system catalogs. Thus,
all members are affected. The ON CURRENT MEMBER option is ignored for
buffer pool recommendations.

Example

Invoke autoconfigure on a database through the ADMIN_CMD stored procedure.
CALL SYSPROC.ADMIN_CMD('AUTOCONFIGURE APPLY NONE')

The following is an example of the result set returned by the command.
LEVEL NAME VALUE RECOMMENDED_VALUE DATATYPE

DBM ASLHEAPSZ 15 15 BIGINT

28 Administrative Routines and Views

DBM FCM_NUM_BUFFERS 512 512 BIGINT

DB

DB

BP

APP_CTL_HEAP_SZ 128 144 INTEGER
APPGROUP_MEM_SZ 20000 14559 BIGINT
IBMDEFAULTBP 1000 164182 BIGINT

Usage notes

This command makes configuration recommendations for the currently
connected database and assumes that the database is the only active database on
the instance. If you have not enabled the self tuning memory manager and you
have more than one active database on the instance, specify a mem_percent value
that reflects the database memory distribution. For example, if you have two
active databases on the instance that should use 80% of the instance memory
and should share the resources equally, specify 40% (80% divided by 2
databases) as the mem_percent value.

If you have multiple instances on the same computer and the self tuning
memory manager is not enabled, you should set a fixed value for
instance_memory on each instance or specify a mem_percent value that reflects the
database memory distribution. For example, if all active databases should use
80% of the computer memory and there are 4 instances each with one database,
specify 20% (80% divided by 4 databases) as the mem_percent value.

When explicitly invoking the Configuration Advisor with the AUTOCONFIGURE
command, the setting of the DB2_ENABLE_AUTOCONFIG_DEFAULT registry variable
will be ignored.

Running the AUTOCONFIGURE command on a database will recommend
enablement of the Self Tuning Memory Manager. However, if you run the
AUTOCONFIGURE command on a database in an instance where sheapthres is not
zero, sort memory tuning (sortheap) will not be enabled automatically. To enable
sort memory tuning (sortheap), you must set sheapthres equal to zero using the
UPDATE DATABASE MANAGER CONFIGURATION command. Note that changing the
value of sheapthres may affect the sort memory usage in your previously
existing databases.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

The AUTOCONFIGURE command issues a COMMIT statement at the end if its
execution. In the case of Type-2 connections this will cause the ADMIN_CMD
procedure to return SQL30090N with reason code 2.

Compatibilities

For compatibility with previous versions:

NODE and DBPARTITIONNUM can be specified in place of MEMBER, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

Result set information

Command execution status is returned in the SQLCA resulting from the CALL
statement. If execution is successful, the command returns additional information
the following result set:

Built-in routines and views 29

Table 22. Result set returned by the AUTOCONFIGURE command

Column name

Data type

Description

LEVEL

VARCHAR(3)

Level of parameter and is one of:
* BP for buffer pool level
* DBM for database manager level

* DB for database level

NAME

VARCHAR(128)

e If LEVEL is DB or DBM, this
contains the configuration
parameter keyword.

e If LEVEL is BP, this value
contains the buffer pool name.

VALUE

VARCHAR(256)

If LEVEL is DB or DBM, and the
recommended values were
applied, this column contains
the value of the configuration
parameter identified in the
NAME column before applying
the recommended value (that is,
it contains the old value). If the
change was not applied, this
column contains the current
on-disk (deferred value) of the
identified configuration
parameter.

e If LEVEL is BP, and the
recommended values were
applied, this column contains
the size (in pages) of the buffer
pool identified in the NAME
column before applying the
recommended value (that is, it
contains the old size). If the
change was not applied, this
column contains the current size
(in pages) of the identified
buffer pool.

RECOMMENDED_VALUE

VARCHAR(256)

If LEVEL is DB or DBM, this
column contains the
recommended (or applied) value
of the configuration parameter
identified in the parameter
column.

e If type is BP, this column
contains the recommended (or
applied) size (in pages) of the
buffer pool identified in the
parameter column.

DATATYPE

VARCHAR(128)

Parameter data type.

BACKUP DATABASE command using the ADMIN_CMD procedure:

Creates a backup copy of a database or a table space.

30 Administrative Routines and Views

For information about the backup operations supported by DB2 database systems
between different operating systems and hardware platforms, see “Backup and
restore operations between different operating systems and hardware platforms”.

Scope

In a partitioned database environment, if no database partitions are specified, this
command affects only the database partition on which it is executed.

If the option to perform a partitioned backup is specified, the command can be
called only on the catalog database partition. If the option specifies that all
database partition servers are to be backed up, it affects all database partition
servers that are listed in the db2nodes.cfg file. Otherwise, it affects the database
partition servers that are specified on the command.

Authorization

One of the following authorities:
* SYSADM

* SYSCTRL

¢ SYSMAINT

Required connection

Database. The existing database connection remains after the completion of the
backup operation.

Command syntax

»—BACKUP—EDATABASE atabase-alias >
DB

|—ON DBPARTITIONNUM—_|—| Partition number(s) i |
|:DBPARTITIONNUMS
AL

L DBPARTITIONNUMS

|—EXCEPT DBPARTITIONNUM—_|—| Partition number(s) |
DBPARTITIONNUMS ~

ONLINE
N [1 .

s I—INCREMENTALﬁ
|_ DELTA
L_TABLESPACE—(—tablespace-name)—
—USE: TSM—_|—| Open sessions Options |— |—DEDUP_DEVICEJ
|:XBSA
SNAPSHOT

|—LIBRARY—Z ibrary—numeJ

—LOAD—library-name—| Open sessions |—| Options |7

o
TO dir

Ldev]

I—WITH—num-buffers—BUFFERS—I I—BUFFER—buffer-S ize—I I—PARALLELISM—nJ

Built-in routines and views 31

I—COMPRESc l

I—COMPRLIB—name~L—4|—I I—COMPROPTS—stringJ
EXCLUDE

WITHOUT PROMPTING
[1

I—UTIL_IMPACT_PRIORITY—L—_l—I |:EXCLUDE LOGS—I
priority INCLUDE LOGS—

Partition number(s):

F—(—"—db-partition-numberl B]
TO—db-partition-number?2

Open sessions:

| |
|—OPEN—num-sessions—SESSIONSJ

Options:
B . : I
OPTIONS "options-string"
@—file-name

Command parameters

DATABASE | DB database-alias
Specifies the alias of the database to back up. The alias must be a local
database defined on the server and must be the database name that the
user is currently connected to. If the database-alias is not the one the user
is connected to, an SQL20322N error is returned.

ON Backup the database on a set of database partitions. This clause shall be
specified only on the catalog partition.

DBPARTITIONNUM db-partition-numberl
Specifies a database partition number in the database partition list.

DBPARTITIONNUMS db-partition-numberl TO db-partition-number2
Specifies a range of database partition numbers, so that all
partitions from db-partition-numberl up to and including
db-partition-number2 are included in the database partition list.

ALL DBPARTITIONNUMS
Specifies that the database is to be backed up on all partitions
specified in the db2nodes.cfg file.

EXCEPT Specifies that the database is to be backed up on all
partitions specified in the db2nodes.cfg file, except those
specified in the database partition list.

DBPARTITIONNUM db-partition-numberl
Specifies a database partition number in the
database partition list.

32 Administrative Routines and Views

DBPARTITIONNUMS db-partition-numberl TO
db-partition-number2
Specifies a range of database partition numbers, so
that all partitions from db-partition-numberl up to
and including db-partition-number2 are included in
the database partition list.

TABLESPACE tablespace-name
A list of names used to specify the table spaces to be backed up.

ONLINE

USE

Specifies online backup. This is the only supported mode and is the
default. The ONLINE clause does not need to be specified.

INCREMENTAL
Specifies a cumulative (incremental) backup image. An incremental backup
image is a copy of all database data that has changed since the most recent
successful, full backup operation.

DELTA Specifies a noncumulative (delta) backup image. A delta backup

TSM

XBSA

image is a copy of all database data that has changed since the
most recent successful backup operation of any type.

Specifies that the backup is to use Tivoli® Storage Manager (TSM)
as the target device.

Specifies that the XBSA interface is to be used. Backup Services
APIs (XBSA) are an open application programming interface for
applications or facilities needing data storage management for
backup or archiving purposes.

SNAPSHOT

Specifies that a snapshot backup is to be taken.

You cannot use the SNAPSHOT parameter with any of the following
parameters:

e TABLESPACE

e INCREMENTAL

* WITH num-buffers BUFFERS

* BUFFER

* PARALLELISM

» COMPRESS

e UTIL_IMPACT_PRIORITY

* SESSIONS

The default behavior for a snapshot backup is a full database
offline backup of all paths that make up the database including all
containers, local volume directory, database path (DBPATH), and

primary log and mirror log paths (INCLUDE LOGS is the default for
all snapshot backups unless EXCLUDE LOGS is explicitly stated).

LIBRARY [ibrary-name
Integrated into IBM DB2 Server is a DB2 ACS API driver
for the following storage hardware:

* IBM TotalStorage SAN Volume Controller
« IBM Enterprise Storage Server® Model 800

Built-in routines and views 33

* IBM Storwize® V7000

+ IBM System Storage® DS6000
+ IBM System Storage DS8000°
* IBM System Storage N Series
* IBM XIV®

If you have other storage hardware, and a DB2 ACS API

driver for that storage hardware, you can use the LIBRARY
parameter to specify the DB2 ACS API driver.

™

The value of the LIBRARY parameter is a fully-qualified
library file name.

OPTIONS
"options-string"
Specifies options to be used for the backup operation. The string
will be passed exactly as it was entered, without the double
quotation marks.
@ file-name

Specifies that the options to be used for the backup operation are
contained in a file located on the DB2 server. The string will be
passed to the vendor support library. The file must be a fully
qualified file name.

You cannot use the vendoropt database configuration parameter to specify
vendor-specific options for snapshot backup operations. You must use the
OPTIONS parameter of the backup utilities instead.

OPEN rnum-sessions SESSIONS
The number of I/O sessions to create between the DB2 product and the
TSM product or another backup vendor product. This parameter has no
effect when you back up to tape, disk, or other local device. If you specify
the INCLUDE LOGS parameter for an online backup, an extra session is
created for the OPEN num-sessions SESSIONS parameter after the initial
sessions are closed. If you are creating a Single System View (SSV) online
backup, for each node backed up, an extra session is created for the OPEN
num-sessions SESSIONS parameter after the initial sessions are closed. If you
use this parameter with the TSM option, the number of entries that are
created in the history file is equal to the number of sessions created.

T0 dir | dev
A list of directory or tape device names. The full path on which the
directory resides must be specified. This target directory or device must
exist on the database server.

In a partitioned database, the target directory or device must exist on all
database partitions, and can optionally be a shared path. The directory or
device name may be specified using a database partition expression. For
more information about database partition expressions, see “Automatic
storage databases”.

This parameter can be repeated to specify the target directories and devices
that the backup image will span. If more than one target is specified
(targetl, target2, and target3, for example), targetl will be opened first. The
media header and special files (including the configuration file, table space
table, and history file) are placed in targetl. All remaining targets are
opened, and are then used in parallel during the backup operation.

34 Administrative Routines and Views

Because there is no general tape support on Windows operating systems,
each type of tape device requires a unique device driver.

Use of tape devices or floppy disks might require prompts and user
interaction, which will result in an error being returned.

If the tape system does not support the ability to uniquely reference a
backup image, it is recommended that multiple backup copies of the same
database not be kept on the same tape.

LOAD library-name
The name of the shared library (DLL on Windows operating systems)
containing the vendor backup and restore I/O functions to be used. It can
contain the full path. If the full path is not given, it will default to the path
on which the user exit program resides.

DEDUP_DEVICE
Optimizes the format of the backup images for target storage devices that
support data deduplication.

WITH num-buffers BUFFERS
The number of buffers to be used. If the number of buffers that you specify
is not enough to create a successful backup, then the minimum value
necessary to complete the backup is automatically chosen for this
parameter. If you are backing up to multiple locations, you can specify a
larger number of buffers to improve performance. If you specify the
COMPRESS parameter, to help improve performance, you can add an extra
buffer for each table space that you specify for the PARALLELISM parameter.

BUFFER buffer-size
The size, in 4 KB pages, of the buffer used when building the backup
image. DB2 will automatically choose an optimal value for this parameter
unless you explicitly enter a value. The minimum value for this parameter
is 8 pages.

If using tape with variable block size, reduce the buffer size to within the
range that the tape device supports. Otherwise, the backup operation
might succeed, but the resulting image might not be recoverable.

With most versions of Linux, using the default buffer size included with
DB2 for backup operations to a SCSI tape device results in error
SQL2025N, reason code 75. To prevent the overflow of Linux internal SCSI
buffers, use this formula:

bufferpages <= ST_MAX_BUFFERS * ST BUFFER_BLOCKS / 4

where bufferpages is the value you want to use with the BUFFER parameter,
and ST_MAX BUFFERS and ST_BUFFER_BLOCKS are defined in the Linux kernel
under the drivers/scsi directory.

PARALLELISM n
Determines the number of table spaces which can be read in parallel by the
backup utility. DB2 will automatically choose an optimal value for this
parameter unless you explicitly enter a value.

UTIL_IMPACT_PRIORITY priority
Specifies that the backup will run in throttled mode, with the priority
specified. Throttling allows you to regulate the performance impact of the
backup operation. Priority can be any number between 1 and 100, with 1
representing the lowest priority, and 100 representing the highest priority.
If the UTIL_IMPACT_PRIORITY keyword is specified with no priority, the
backup will run with the default priority of 50. If UTIL_IMPACT_PRIORITY is

Built-in routines and views 35

not specified, the backup will run in unthrottled mode. An impact policy
must be defined by setting the util_impact_lim configuration parameter
for a backup to run in throttled mode.

COMPRESS
Indicates that the backup is to be compressed.

COMPRLIB name
Indicates the name of the library to be used to perform the
compression (for example, db2compr.d11 for Windows;
Tibdb2compr.so for Linux and UNIX operating systems). The name
must be a fully qualified path referring to a file on the server. If
this parameter is not specified, the default DB2 compression library
will be used. If the specified library cannot be loaded, the backup
will fail.

EXCLUDE
Indicates that the compression library will not be stored in the
backup image.

COMPROPTS string
Describes a block of binary data that will be passed to the
initialization routine in the compression library. DB2 will pass this
string directly from the client to the server, so any issues of byte
reversal or code page conversion will have to be handled by the
compression library. If the first character of the data block is '@,
the remainder of the data will be interpreted by DB2 as the name
of a file residing on the server. DB2 will then replace the contents
of string with the contents of this file and will pass this new value
to the initialization routine instead. The maximum length for string
is 1024 bytes.

EXCLUDE LOGS
Specifies that the backup image should not include any log files. When
performing an offline backup operation, logs are excluded whether or not
this option is specified, with the exception of snapshot backups.Logs are
excluded by default in the following backup scenarios:

* Offline backup of a single-partitioned database.

¢ Online or offline backup of a multi-partitioned database, when not using
a single system view backup.

If you specify the EXCLUDE LOGS with a snapshot backup, writes to log files
are allowed during the backup. These log files will be included by default
in the snapshot backup, but are not usable for recovery. If this backup is
restored, the log files must not be extracted from the backup. If the log
path was set to the default when the backup was taken, then it is not
possible to exclude the log files from being restored and they must be
deleted manually after the backup is restored. If the log path was not the
default, then the log files can be excluded at restore time by using the
LOGTARGET EXCLUDE options with the RESTORE DATABASE command.

INCLUDE LOGS
Specifies that the backup image should include the range of log files
required to restore and roll forward this image to some consistent point in
time. This option is not valid for an offline backup, with the exception of
snapshot backups. INCLUDE LOGS is always the default option for any online
backup operation, except a multi-partitioned online backup where each
database partition is backed up independently (that is, a non-single system
view backup).

36 Administrative Routines and Views

If any of the log files that are required for the backup have previously been
backed up and are no longer in the log path, then the DB2 database
manager retrieves them for backup from the overflow log path, if the path
has been set. Otherwise, the database manager retrieves them for backup
from the current log path or mirror log path. These log files are removed
from the log path after the backup has completed.

WITHOUT PROMPTING

Specifies that the backup will run unattended, and that any actions which
normally require user intervention will return an error message. This is the
default.

Examples

The following is a sample weekly incremental backup strategy for a recoverable
database. It includes a weekly full database backup operation, a daily
non-cumulative (delta) backup operation, and a midweek cumulative (incremental)
backup operation:

(Sun) CALL SYSPROC.ADMIN_CMD('backup db sample online use tsm')
(Mon) CALL SYSPROC.ADMIN_CMD

('backup db sample online incremental delta use tsm')

(Tue) CALL SYSPROC.ADMIN_CMD

('backup db sample online incremental delta use tsm')

(Wed) CALL SYSPROC.ADMIN_CMD

('backup db sample online incremental use tsm')

(Thu) CALL SYSPROC.ADMIN_CMD

('backup db sample online incremental delta use tsm')

(Fri) CALL SYSPROC.ADMIN_CMD

('backup db sample online incremental delta use tsm')

(Sat) CALL SYSPROC.ADMIN_CMD

('backup db sample online incremental use tsm')

Usage notes

The data in a backup cannot be protected by the database server. Make sure that
backups are properly safeguarded, particularly if the backup contains
LBAC-protected data.

When backing up to tape, use of a variable block size is currently not supported.
If you must use this option, ensure that you have well tested procedures in place
that enable you to recover successfully, using backup images that were created
with a variable block size.

When using a variable block size, you must specify a backup buffer size that is
less than or equal to the maximum limit for the tape devices that you are using.
For optimal performance, the buffer size must be equal to the maximum block
size limit of the device being used.

Snapshot backups should be complemented with regular disk backups in case of
failure in the filer/storage system.

As you regularly backup your database, you might accumulate very large
database backup images, many database logs and load copy images, all of which
might be taking up a large amount of disk space. Refer to “Managing recovery
objects” for information about how to manage these recovery objects.

You can use the OPTIONS parameter to enable backup operations in TSM
environments supporting proxy nodes. For more information, see the
“Configuring a Tivoli Storage Manager client” topic.

You can use the DB2_BCKP_PAGE_VALIDATION registry variable to enable DMS and
AS page validation during the backup.

Built-in routines and views 37

* You can use the DB2_BCKP_INCLUDE_LOGS_WARNING registry variable to specify that
some online backups can now succeed even if they have not successfully
included all of the required logs.

Result set information

Command execution status is returned in the SQLCA resulting from the CALL
statement. If execution is successful, the command returns additional information.
The backup operation will return one result set, comprising one row per database
partition that participated in the backup.

Table 23. Result set for a backup operation

Column name Data type Description

BACKUP_TIME VARCHAR(14) Corresponds to the
timestamp string used to
name the backup image.

DBPARTITIONNUM SMALLINT The database partition
number on which the agent
executed the backup
operation.

SQLCODE INTEGER Final SQLCODE resulting
from the backup processing
on the specified database
partition.

SQLERRMC VARCHAR(70) Final SQLERRMC resulting
from the backup processing
on the specified database
partition.

SQLERRML SMALLINT Final SQLERRML resulting
from the backup processing
on the specified database
partition.

If a nonpartitioned database is backed up, or if a partitioned database is backed up
using the traditional single-partition syntax, the result set will comprise a single
row. DBPARTITIONNUM will contain the identifier number of the database partition
being backed up.

SQLCODE, SQLERRMC, and SQLERRML refer to the equivalently-named
members of the SQLCA that is returned by the backup on the specified database
partition.

DESCRIBE command using the ADMIN_CMD procedure:

The DESCRIBE command displays metadata about the columns, indexes, and data
partitions of tables or views. This command can also display metadata about the
output of SELECT, CALL, or XQuery statements.

Use the DESCRIBE command to display information about any of the following
items:

* Output of a SELECT, CALL, or XQuery statement
¢ Columns of a table or a view
e Indexes of a table or a view

* Data partitions of a table or view

38 Administrative Routines and Views

Authorization

The authorization required depends on the type of information you want to

display using the DESCRIBE command.

 If the SYSTOOLSTMPSPACE table space exists, one of the authorities shown in

the following table is required.

Object to display information about

Privileges or authorities required

Output of a SELECT statement or XQuery
statement

Any of the following privileges or
authorities for each table or view referenced
in the SELECT statement:

* SELECT privilege

* DATAACCESS authority
* DBADM authority

* SQLADM authority

* EXPLAIN authority

Output of a CALL statement

Any of the following privileges or
authorities:

* DATAACCESS authority

e EXECUTE privilege on the stored
procedure

Columns of a table or a view

Any of the following privileges or
authorities for the SYSCAT.COLUMNS
system catalog table:

e SELECT privilege

* ACCESSCTRL authority

* DATAACCESS authority

* DBADM authority

* SECADM authority

* SQLADM authority

If you want to use the SHOW DETAIL
parameter, you also require any of these
privileges or authorities on the
SYSCAT.DATAPARTITIONEXPRESSION
system catalog table.

Because PUBLIC has all the privileges over
declared temporary tables, you can use the
command to display information about any
declared temporary table that exists within
your connection.

Built-in routines and views 39

Object to display information about

Privileges or authorities required

Indexes of a table or a view

Any of the following privileges or
authorities on the SYSCAT.INDEXES system
catalog table:

* SELECT privilege

* ACCESSCTRL authority

* DATAACCESS authority

* DBADM authority

* SECADM authority

* SQLADM authority

If you want to use the SHOW DETAIL
parameter, you also require EXECUTE
privilege on the GET_INDEX_COLNAMES()
UDE.

Because PUBLIC has all the privileges over
declared temporary tables, you can use the
command to display information about any
declared temporary table that exists within
your connection.

Data partitions of a table or view

Any of the following privileges or
authorities on the
SYSCAT.DATAPARTITIONS system catalog
table:

* SELECT privilege

* ACCESSCTRL authority
* DATAACCESS authority
* DBADM authority

* SECADM authority

* SQLADM authority

Because PUBLIC has all the privileges over
declared temporary tables, you can use the
command to display information about any
declared temporary table that exists within
your connection.

* If the SYSTOOLSTMPSPACE table space does not exist, SYSADM or SYSCTRL
authority is also required in addition to the one of the previously listed

authorities.
Required connection
Database
Command syntax

»>—DESCRIBE

40 Administrative Routines and Views

QUTPUT
> l_ —l |:select—statement >«

call-statement
XQUERY—XQuery-statement—
TABLE table-name

INDEXES FOR TABLE— |—SHOW DET/-\ILJ
RELATIONAL DATA—
XML DATA
TEXT SEARCH——
DATA PARTITIONS FOR TABLE

Command parameters

OUTPUT Indicates that the output of the statement should be described. This
keyword is optional.

select-statement | call-statement | XQUERY XQuery-statement
Identifies the statement about which information is wanted. The
statement is automatically prepared by CLP. To identify an XQuery
statement, precede the statement with the keyword XQUERY. A
DESCRIBE OUTPUT statement only returns information about an
implicitly hidden column if the column is explicitly specified as
part of the SELECT list of the final result table of the query
described.

TABLE table-name
Specifies the table or view to be described. The fully qualified name in the
form schema.table-name must be used. An alias for the table cannot be used
in place of the actual table. Information about implicitly hidden columns is
returned, but SHOW DETAIL must be used to indicate which columns are
implicitly hidden.
The DESCRIBE TABLE command lists the following information about each
column:
¢ Column name
¢ Type schema
¢ Type name
* Length
¢ Scale
* Nulls (yes/no)

INDEXES FOR TABLE table-name
Specifies the table or view for which indexes need to be described. You can
use the fully qualified name in the form schema.table-name or you can just

specify the fable-name and default schema will be used automatically. An
alias for the table cannot be used in place of the actual table.

The DESCRIBE INDEXES FOR TABLE command lists the following information
about each index of the table or view:

* Index schema

* Index name

* Unique rule

* Number of columns

¢ Index type

If the DESCRIBE INDEXES FOR TABLE command is specified with the SHOW

DETAIL option, the index name is truncated when the index name is greater
than 18 bytes. If no index type option is specified, information for all index

Built-in routines and views 41

types is listed: relational data index, index over XML data, and Text Search
index. The output includes the following additional information:

Index ID for a relational data index, an XML path index, an XML regions
index, or an index over XML data

Data Type for an index over XML data

Hashed for an index over XML data

Max VARCHAR Length for an index over XML data
XML Pattern specified for an index over XML data
Codepage for a text search index

Language for a text search index

Format specified for a text search index

Update minimum for a text search index

Update frequency for a text search index

Collection directory for a text search index

Column names

Whether the BUSINESS_TIME WITHOUT OVERLAPS clause is specified

Specify an index type to list information for only a specific index type.
Specifying multiple index types is not supported.

RELATIONAL DATA

If the RELATIONAL DATA index type option is specified without the
SHOW DETAIL option, only the following information is listed:

e Index schema

* Index name

* Unique rule

e Number of columns

If SHOW DETAIL is specified, the column names information is also
listed.

XML DATA

If the XML DATA index type option is specified without the SHOW
DETAIL option, only the following information is listed:

¢ Index schema

¢ Index name

* Unique rule

e Number of columns

* Index type

If SHOW DETAIL is specified, the following information for an index
over XML data is also listed:
e Index ID

* Data type

e Hashed

* Max Varchar length

e XML Pattern

¢ Column names

TEXT SEARCH

If the TEXT SEARCH index type option is specified without the SHOW
DETAIL option, only the following information is listed:

42 Administrative Routines and Views

* Index schema

* Index name

If SHOW DETAIL is specified, the following text search index
information is also listed:

* Column name

* Codepage

* Language

* Format

* Update minimum

* Update frequency

* Collection directory

If the TEXT SEARCH option is specified and a text search option is

not installed or not properly configured, an error (SQLSTATE
42724) is returned.

See DB2 Text Search for information listed in the columns.

DATA PARTITIONS FOR TABLE table-name
Specifies the table or view for which data partitions need to be described.
The information displayed for each data partition in the table includes; the
partition identifier and the partitioning intervals. Results are ordered
according to the partition identifier sequence. The fully qualified name in
the form schema.table-name must be used. An alias for the table cannot be
used in place of the actual table. The schema is the user name under which
the table or view was created.

For the DESCRIBE DATA PARTITIONS FOR TABLE command, specifies that
output include a second table with the following additional information:
 Data partition sequence identifier

¢ Data partition expression in SQL

SHOW DETAIL

For the DESCRIBE TABLE command, specifies that output include the
following additional information as well as a second result set which
contains the table data partition expressions (which might return 0 rows if
the table is not data partitioned):

* Whether a CHARACTER, VARCHAR or LONG VARCHAR column was
defined as FOR BIT DATA

¢ Column number

* Distribution key sequence
* Code page

* Hidden attribute

* Default

¢ Table partitioning type (for tables partitioned by range this output
appears after the original output)

* Partitioning key columns (for tables partitioned by range this output
appears after the original output)

* Identifier of table space used for the index

* Periods that are defined on the table (for temporal tables this output
appears after the original output)

Built-in routines and views 43

* Whether versioning is enabled on the table (for temporal tables this
output appears after the original output)
Examples
Describing the output of a SELECT statement

The following example shows how to describe a SELECT statement:
CALL SYSPROC.ADMIN_CMD('describe select * from emp_photo')

The following is an example of output for this SELECT statement.
Result set 1

SQLTYPE_ID SQLTYPE SQLLENGTH SQLSCALE SQLNAME_DATA
452 CHARACTER.. 6 0 EMPNO h
448 VARCHAR 10 0 PHOTO_FORMAT
405 BLOB 102400 0 PICTURE

3 record(s) selected.

Return Status = 0

Output for this SELECT statement (continued).
. SQLNAME_LENGTH SQLDATATYPENAME_DATA SQLDATATYPENAME_LENGTH

5 SYSIBM .CHARACTER 18

12 SYSIBM .VARCHAR 16
7 SYSIBM .BLOB 13

Describing a table

Describing a non-partitioned table.
CALL SYSPROC.ADMIN_CMD('describe table org show detail')

The following is an example of output for this CALL statement.
Result set 1

COLNAME TYPESCHEMA TYPENAME FOR_BINARY_DATA

DEPTNUMB SYSIBM SMALLINT

N
DEPTNAME SYSIBM VARCHAR N
MANAGER SYSIBM SMALLINT N
DIVISION SYSIBM VARCHAR N
LOCATION SYSIBM VARCHAR N

5 record(s) selected.

Output for this CALL statement (continued).
. LENGTH SCALE NULLABLE COLNO PARTKEYSEQ CODEPAGE DEFAULT

2 0N 0 1 0 -
14 oY 1 0 1208 -
2 0y 2 0 0 -
10 0y 3 0 1208 -
13 0y 4 0 1208 -

Output for this CALL statement (continued).
Result set 2

44 Administrative Routines and Views

0 record(s) selected.

Return Status

0

Describing a partitioned table.

CALL SYSPROC.ADMIN_CMD('describe table part_tablel show detail')

The following is an example of output for this CALL statement.

Result set 1

COL1 SYSIBM

1 record(s) selected.

INTEGER N

Output for this CALL statement (continued).

. LENGTH SCALE NULLABLE COLNO PARTKEYSEQ CODEPAGE DEFAULT

Output for this CALL statement (continued).

Result set 2

1 record(s) selected

Describing a table index

The following example shows how to describe a table index. This call

describes table USER1.DEPARTMENT and lists two relational data indexes,

six xml data indexes, two text search indexes, and the system indexes:
CALL SYSPROC.ADMIN_CMD('describe indexes for table userl.department')

The following is an example of output for this CALL statement.

Result set 1

SYSIBM
SYSIBM
USER1
USER1
SYSIBM
USER1
SYSIBM
USER1
SYSIBM
USER1
SYSIBM
USER1
SYSIBM
USER1
SYSIBM
USER1
SYSIBM
USER1
USER1

INDNAME
SQLO70531145253450
SQLO70531145253620
RELIDX1
RELIDX2
SQLO70531145253650
XMLIDX1
SQLO70531154625650
XMLIDX2
SQLO70531154626000
XMLIDX3
SQLO70531154626090
XMLIDX4
SQLO70531154626190
XMLIDX5
SQLO70531154626290
XMLIDX6
SQLO70531154626400
TXTIDX1
TXTIDX2

UNIQUE_RULE
DUPLICATES_ALLOWED
UNIQUE_ENTRIES_ONLY
DUPLICATES_ALLOWED
DUPLICATES_ALLOWED
PRIMARY_INDEX
DUPLICATES_ALLOWED
DUPLICATES_ALLOWED
DUPLICATES_ALLOWED
DUPLICATES_ALLOWED
DUPLICATES_ALLOWED
DUPLICATES_ALLOWED
DUPLICATES_ALLOWED
DUPLICATES_ALLOWED
DUPLICATES_ALLOWED
DUPLICATES_ALLOWED
DUPLICATES_ALLOWED
DUPLICATES_ALLOWED

Built-in routines and views

45

19 record(s) selected.

Return Status = 0

Output for this CALL statement (continued).
COLCOUNT INDEXTYPE

XML_DATA_REGIONS
XML_DATA_PATH
RELATIONAL_DATA
RELATIONAL_DATA
RELATIONAL_DATA
XML_DATA_VALUES_LOGICAL
XML_DATA_VALUES_PHYSICAL
XML_DATA_VALUES_LOGICAL
XML_DATA_VALUES_PHYSICAL
XML_DATA_VALUES_LOGICAL
XML_DATA_VALUES_PHYSICAL
XML_DATA_VALUES_LOGICAL
XML_DATA_VALUES_PHYSICAL
XML_DATA_VALUES_LOGICAL
XML_DATA_VALUES_PHYSICAL
XML_DATA_VALUES_LOGICAL
XML_DATA_VALUES_PHYSICAL
TEXT_SEARCH

TEXT_SEARCH

R R R R R REREREREREREEREEREEREEDNDE -

Describing a data partition

The following example shows how to describe data partitions.
CALL SYSPROC.ADMIN CMD('describe data partitions for table part_table2')

The following is an example of output for this CALL statement.
Result set 1

3 record(s) selected.

Output for this CALL statement (continued).
. HIGH_KEY INCLUSIVE HIGH_KEY VALUE

N 10
N 20
N 40

The following example shows how to describe data partitions with 'SHOW
DETAIL' clause.

CALL SYSPROC.ADMIN CMD('describe data partitions
for table part_table2 show detail')

The following is an example of output for this CALL statement.
Result set 1

46 Administrative Routines and Views

3 record(s) selected.

Return Status = 0

Output for this CALL statement (continued).
. HIGH_KEY_INCLUSIVE HIGH_KEY_VALUE

N 10
N 20
N 40

Output for this CALL statement (continued).
Result set 2

0 PARTO 3 ...

1 PART1 3 ...
2 PARTZ 3 ...

3 record(s) selected.

Return Status = 0

Output for this CALL statement (continued).
. PARTITION_OBJECT_ID LONG_TBSPID ACCESSMODE STATUS

15 3 FULL_ACCESS
16 3 FULL_ACCESS
17 3 FULL_ACCESS

Usage note

If the DESCRIBE command tries to create a temporary table and fails, creation of
SYSTOOLSTMPSPACE is attempted, and then creation of the temporary table is
attempted again, this time in SYSTOOLSTMPSPACE. SYSCTRL or SYSADM
authority is required to create the SYSTOOLSTMPSPACE table space.

Result set information

Command execution status is returned in the SQLCA resulting from the CALL
statement. If execution is successful, the commands return additional information
in result sets as follows:

* Table 24 on page 48: DESCRIBE sclect-statement, DESCRIBE call-statement and
DESCRIBE XQUERY XQuery-statement commands

 Table 25 on page 48: Result set 1 for the DESCRIBE TABLE command
* Table 26 on page 49: Result set 2 for the DESCRIBE TABLE command
* Table 27 on page 49: DESCRIBE INDEXES FOR TABLE command

 Table 28 on page 51: Result set 1 for the DESCRIBE DATA PARTITIONS FOR TABLE
command

* Table 29 on page 51: Result set 2 for the DESCRIBE DATA PARTITIONS FOR TABLE
command

Built-in routines and views 47

Table 24. Result set returned by the DESCRIBE select-statement, DESCRIBE call-statement and DESCRIBE
XQUERY XQuery-statement commands

Column name Data type LOB only" Description

SQLTYPE_ID SMALLINT No Data type of the column, as it
appears in the SQLTYPE field of the
SQL descriptor area (SQLDA).

SQLTYPE VARCHAR (257) |No Data type corresponding to the
SQLTYPE_ID value.

SQLLEN INTEGER No Length attribute of the column, as it
appears in the SQLLEN field of the
SQLDA.

SQLSCALE SMALLINT No Number of digits in the fractional
part of a decimal value; 0 in the case
of other data types.

SQLNAME_DATA VARCHAR (128) |No Name of the column.

SQLNAME_LENGTH SMALLINT No Length of the column name.

SQLDATA_TYPESCHEMA VARCHAR (128) | Yes Data type schema name.

SQLDATA_TYPENAME VARCHAR (128) | Yes Data type name.

Note: ': Yes indicates that non-null values are returned only when there is LOB

data being described.

Table 25. Result set 1 returned by the DESCRIBE TABLE command

Column name Data type Detail® Description

COLNAME VARCHAR (128) |[No Column name.

TYPESCHEMA VARCHAR (128) |No If the column name is distinct, the
schema name is returned, otherwise,
'SYSIBM' is returned.

TYPENAME VARCHAR (128) |No Name of the column type.

FOR_BINARY_DATA CHAR (1) Yes Returns "Y' if the column is of type
CHAR, VARCHAR or LONG
VARCHAR, and is defined as FOR
BIT DATA, 'N' otherwise.

LENGTH INTEGER No Maximum length of the data. For
DECIMAL data, this indicates the
precision. For discinct types, 0 is
returned.

SCALE SMALLINT No For DECIMAL data, this indicates
the scale. For all other types, 0 is
returned.

NULLABLE CHAR (1) No One of:

* 'Y'if column is nullable

* 'N' if column is not nullable
COLNO SMALLINT Yes Ordinal of the column.
PARTKEYSEQ SMALLINT Yes Ordinal of the column within the

table's partitioning key. NULL or 0 is
returned if the column is not part of

the partitioning key, and is NULL for
subtables and hierarchy tables.

48 Administrative Routines and Views

Table 25. Result set 1 returned by the DESCRIBE TABLE command (continued)

Column name

Data type

Detail®

Description

CODEPAGE

SMALLINT

Yes

Code page of the column and is one
of:

* Value of the database code page
for columns that are not defined
with FOR BIT DATA.

* Value of the DBCS code page for
graphic columns.

* 0 otherwise.

DEFAULT

VARCHAR (254)

Yes

Default value for the column of a
table expressed as a constant, special
register, or cast-function appropriate
for the data type of the column.
Might also be NULL.

Note: % Yes indicates that non-null values are returned only when the SHOW DETAIL

clause is used.

Table 26. Result set 2 returned by the DESCRIBE TABLE command when the SHOW DETAIL clause is used.

Column name Data type Description

DATA_PARTITION_KEY_SEQ INTEGER Data partition key number, for example, 1
for the first data partition expression and 2
for the second data partition expression.

DATA_PARTITION_EXPRESSION CLOB (32K) Expression for this data partition key in SQL
syntax

Table 27. Result set returned by the DESCRIBE INDEXES FOR TABLE command

Column name Data type Detail’> |Index type option* ® Description
INDSCHEMA VARCHAR No RELATIONAL DATA Index schema name.
(128) XML DATA
TEXT SEARCH
INDNAME VARCHAR No RELATIONAL DATA Index name.
(128) XML DATA
TEXT SEARCH
UNIQUE_RULE VARCHAR (30) | No RELATIONAL DATA One of following values:
XML DATA + DUPLICATES_ALLOWED
* PRIMARY_INDEX
* UNIQUE_ENTRIES_ONLY
INDEX CHAR(1) No N/A Identifies the partitioning
_PARTITIONING characteristic of the index. Possible
values are:
* N= Nonpartitioned index
» P= Partitioned index
* Blank = Index is not on a
partitioned table
COLCOUNT SMALLINT No RELATIONAL DATA Number of columns in the key, plus

XML DATA

the number of include columns, if
any.

Built-in routines and views 49

Table 27. Result set returned by the DESCRIBE INDEXES FOR TABLE command (continued)

Column name

Data type

Detail®

Index type option* °

Description

INDEX_TYPE

VARCHAR (30)

No

RELATIONAL DATA
XML DATA
TEXT SEARCH

Type of index:

* RELATIONAL_DATA

* TEXT_SEARCH

* XML_DATA_REGIONS

* XML_DATA_PATH

* XML_DATA_VALUES_LOGICAL

* XML_DATA_VALUES_PHYSICAL

INDEX_ID

SMALLINT

Yes

RELATIONAL DATA
XML DATA

Index ID for a relational data index,
an XML path index, an XML regions
index, or an index over XML data

DATA_TYPE

VARCHAR
(128)

Yes

XML DATA

SQL data type specified for an index
over XML data. One of the following
values:

* VARCHAR
 DOUBLE

» DATE

* TIMESTAMP

HASHED

CHAR (1)

Yes

XML DATA

Indicates whether or not the value for
an index over XML data is hashed.

e 'Y'if the value is hashed.
e 'N'if the value is not hashed.

LENGTH

SMALLINT

Yes

XML DATA

For an index over XML data, the
VARCHAR (integer) length; 0
otherwise.

PATTERN

CLOB (2M)

Yes

XML DATA

XML pattern expression specified for
an index over XML data

CODEPAGE

INTEGER

Yes

TEXT SEARCH

Document code page specified for the
text search index

LANGUAGE

VARCHAR (5)

Yes

TEXT SEARCH

Document language specified for the
text search index

FORMAT

VARCHAR (30)

Yes

TEXT SEARCH

Document format specified for a text
search index

UPDATEMINIMUM

INTEGER

Yes

TEXT SEARCH

Minimum number of entries in the
text search log table before an
incremental update is performed

UPDATEFREQUENCY

VARCHAR
(300)

Yes

TEXT SEARCH

Trigger criterion specified for
applying updates to the text index

COLLECTION
DIRECTORY

VARCHAR
(512)

Yes

TEXT SEARCH

Directory specified for the text search
index files

COLNAMES

VARCHAR
(2048)

Yes

RELATIONAL DATA
XML DATA
TEXT SEARCH

List of the column names, each
preceded with a + to indicate
ascending order or a - to indicate
descending order.

Note: * Yes indicates that values are returned only when the SHOW DETAIL clause is
used without specifying an index type option. Values might be NULL.

50 Administrative Routines and Views

Note: * Indicates the values returned when using DESCRIBE index-type INDEXES FOR
TABLE. For example, INDEX_ID values are not returned if TEXT SEARCH is specified
as index-type. INDEX_ID values are returned if either RELATIONAL DATA or XML DATA

are specified.

Note: °: When using DESCRIBE index-type INDEXES FOR TABLE SHOW DETAIL, the
values are returned only when the index type is listed. For example, DATA_TYPE
values are returned if XML DATA is specified as index-type. DATA_TYPE values are
not returned if either TEXT SEARCH or RELATIONAL DATA is specified as index-type.

Table 28. Result set 1 returned by the DESCRIBE DATA PARTITIONS FOR TABLE command

Column name Data type Detail® Description

DATA_PARTITION_ID INTEGER No Data partition identifier.

LOW_KEY_INCLUSIVE CHAR (1) No "Y' if the low key value is inclusive,
otherwise, 'N'.

LOW_KEY_VALUE VARCHAR (512) |No Low key value for this data
partition.

HIGH_KEY_INCLUSIVE CHAR (1) No "Y' if the high key value is inclusive,
otherwise, 'N'.

HIGH_KEY_VALUE VARCHAR (512) |No High key value for this data

partition.

Note: % Yes indicates that non-null values are returned only when the SHOW DETAIL
clause is used.

Table 29. Result set 2 returned by the DESCRIBE DATA PARTITIONS FOR TABLE command when the SHOW

DETAIL clause is used.

Column name

Data type

Description

DATA_PARTITION_ID

INTEGER

Data partition identifier.

DATA_PARTITION_NAME

VARCHAR (128)

Data partition name.

TBSPID INTEGER Identifier of the table space where this data
partition is stored.

PARTITION_OBJECT_ID INTEGER Identifier of the DMS object where this data
partition is stored.

LONG_TBSPID INTEGER Identifier of the table space where long data
is stored.

INDEX_TBSPID INTEGER Identifier of the table space where index data

is stored.

ACCESSMODE

VARCHAR (20)

Defines accessibility of the data partition and
is one of:

* FULL_ACCESS

* NO_ACCESS

* NO_DATA_MOVEMENT
* READ_ONLY

Built-in routines and views 51

Table 29. Result set 2 returned by the DESCRIBE DATA PARTITIONS FOR TABLE command when the SHOW
DETAIL clause is used. (continued)

Column name

Data type Description

STATUS

VARCHAR(64) Data partition status and can be one of:

* NEWLY_ATTACHED

* NEWLY_DETACHED: MQT maintenance
is required.

* INDEX_CLEANUP_PENDING: detached
data partition whose tuple in
SYSDATAPARTITIONS is maintained only
for index cleanup. This tuple is removed
when all index records referring to the
detached data partition have been deleted.

The column is blank otherwise.

DROP CONTACT command using the ADMIN_CMD procedure:

Removes a contact from the list of contacts defined on the local system. A contact
is a user to whom the Scheduler and Health Monitor send messages. The setting of
the Database Administration Server (DAS) contact_host configuration parameter
determines whether the list is local or global.

Authorization

None

Required connection

Database. The DAS must be running.

Command syntax

»>—DROP CONTACT—name ><

Command parameters

CONTACT name
The name of the contact that will be dropped from the local system.

Example

Drop the contact named 'testuser' from the list of contacts on the server system.
CALL SYSPROC.ADMIN_CMD('drop contact testuser')

Usage notes
The DAS must have been created and be running.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

DROP CONTACTGROUP command using the ADMIN_CMD procedure:

52 Administrative Routines and Views

Removes a contact group from the list of contacts defined on the local system. A
contact group contains a list of users to whom the Scheduler and Health Monitor
send messages. The setting of the Database Administration Server (DAS)
contact_host configuration parameter determines whether the list is local or
global.

Authorization

None

Required Connection

Database. The DAS must be running.

Command Syntax

»»>—DROP CONTACTGROUP—name »><

Command Parameters

CONTACTGROUP name
The name of the contact group that will be dropped from the local system.

Example

Drop the contact group named 'gnamel".
CALL SYSPROC.ADMIN_CMD('drop contactgroup gnamel')

Usage notes
The DAS must have been created and be running.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

EXPORT command using the ADMIN_CMD procedure:

Exports data from a database to one of several external file formats. The user
specifies the data to be exported by supplying an SQL SELECT statement, or by
providing hierarchical information for typed tables. The data is exported to the
server only.

Quick link to “File type modifiers for the export utility” on page 59.
Authorization

One of the following authorities:
* DATAACCESS authority
¢ CONTROL or SELECT privilege on each participating table or view

Required connection
Database. Utility access to Linux, UNIX, or Windows database servers from Linux,

UNIX, or Windows clients must be a direct connection through the engine and not
through a DB2 Connect™ gateway or loop back environment.

Built-in routines and views 53

Command syntax

»»>—EXPORT TO—filename—OF—filetype >

LOBS TO—"lob-path

Yy
4

LOBFILE—Y—fi lename XML TO—Y—xml-path
L XMLFILE—Y—filename L_MODIFIED BY—Y—filetype-mod
l—XMLSAVESCHEMA—l ,

METHOD N— (—Ycolumn-name——)

Y
4

|—MESSAGES ON SERV ER—|

select-statement
>—EXQUERY—xquery—s tatement
HIERARCHY STARTING—sub-table-name
_[‘ traversal-order-list

Y
A

LY _WHERE

traversal-order-list:

f—(—"—sub-table-name) |

Command parameters

T0 filename
Specifies the name of the file to which data is to be exported to on the
server. This must be a fully qualified path and must exist on the server
coordinator partition.

If the name of a file that already exists is specified, the export utility
overwrites the contents of the file; it does not append the information.

OF filetype
Specifies the format of the data in the output file:

* DEL (delimited ASCII format), which is used by a variety of database
manager and file manager programs.

* IXF (Integration Exchange Format, PC version) is a proprietary binary
format.

LOBS TO lob-path
Specifies one or more paths to directories in which the LOB files are to be
stored. The path(s) must exist on the coordinator partition of the server

54 Administrative Routines and Views

and must be fully qualified. There will be at least one file per LOB path,
and each file will contain at least one LOB. The maximum number of paths
that can be specified is 999. This will implicitly activate the LOBSINFILE
behavior.

LOBFILE filename
Specifies one or more base file names for the LOB files. When name space
is exhausted for the first name, the second name is used, and so on. This
will implicitly activate the LOBSINFILE behavior.

When creating LOB files during an export operation, file names are
constructed by appending the current base name from this list to the
current path (from lob-path), and then appending a 3-digit sequence
number to start and the three character identifier Tob. For example, if the
current LOB path is the directory /u/foo/1ob/path/, and the current LOB
file name is bar, the LOB files created will be /u/foo/1ob/path/
bar.001.1ob, /u/foo/Tob/path/bar.002.10b, and so on. The 3-digit
sequence number in the LOB file name will grow to 4-digits once 999 is
used, 4-digits will grow to 5-digits once 9999 is used, and so on.

XML TO xml-path
Specifies one or more paths to directories in which the XML files are to be
stored. There will be at least one file per XML path, and each file will
contain at least one XQuery Data Model (XDM) instance. If more than one
path is specified, then XDM instances are distributed evenly among the
paths.

XMLFILE filename
Specifies one or more base file names for the XML files. When name space
is exhausted for the first name, the second name is used, and so on.

When creating XML files during an export operation, file names are
constructed by appending the current base name from this list to the
current path (from xmi-path), appending a 3-digit sequence number, and
appending the three character identifier xml. For example, if the current
XML path is the directory /u/foo/xml/path/, and the current XML file
name is bar, the XML files created will be /u/foo/xm1/path/bar.001.xml,
/u/foo/xml/path/bar.002.xml, and so on.

MODIFIED BY filetype-mod
Specifies file type modifier options. See “File type modifiers for the export
utility” on page 59.

XMLSAVESCHEMA
Specifies that XML schema information should be saved for all XML
columns. For each exported XML document that was validated against an
XML schema when it was inserted, the fully qualified SQL identifier of that
schema will be stored as an (SCH) attribute inside the corresponding XML
Data Specifier (XDS). If the exported document was not validated against
an XML schema or the schema object no longer exists in the database, an
SCH attribute will not be included in the corresponding XDS.

The schema and name portions of the SQL identifier are stored as the
"OBJECTSCHEMA" and "OBJECTNAME" values in the row of the
SYSCAT.XSROBJECTS catalog table corresponding to the XML schema.

The XMLSAVESCHEMA option is not compatible with XQuery sequences that
do not produce well-formed XML documents.

METHOD N column-name
Specifies one or more column names to be used in the output file. If this

Built-in routines and views 55

parameter is not specified, the column names in the table are used. This
parameter is valid only for IXF files, but is not valid when exporting
hierarchical data.

select-statement
Specifies the SELECT or XQUERY statement that will return the data to be
exported. If the statement causes an error, a message is written to the
message file (or to standard output). If the error code is one of SQL0012W,
SQL0347W, SQL0360W, SQL0437W, or SQL1824W, the export operation
continues; otherwise, it stops.

If the SELECT statement is in the form of SELECT * FROM tablename and
the table contains implicitly hidden columns, you must explicitly specify
whether data for the hidden columns is included in the export operation.
Use one of the following methods to indicate if data for hidden columns is
included:

* Use one of the hidden column file type modifiers: specify
implicitlyhiddeninclude when the export contains data for the hidden
columns, or implicitlyhiddenmissing when the export does not.
db2 export to t.del of del modified by implicitlyhiddeninclude

select * from t

* Use the DB2_DMU_DEFAULT registry variable on the client-side to set
the default behavior when data movement utilities encounter tables with
implicitly hidden columns.

db2set DB2_DMU_DEFAULT=IMPLICITLYHIDDENINCLUDE
db2 export to t.del of del select * from t

HIERARCHY STARTING sub-table-name
Using the default traverse order (OUTER order for ASC or DEL files, or the
order stored in PC/IXF data files), export a sub-hierarchy starting from
sub-table-name.

HIERARCHY traversal-order-list
Export a sub-hierarchy using the specified traverse order. All sub-tables
must be listed in PRE-ORDER fashion. The first sub-table name is used as
the target table name for the SELECT statement.

MESSAGES ON SERVER
Specifies that the message file created on the server by the EXPORT
command is to be saved. The result set returned will include the following
two columns: MSG_RETRIEVAL, which is the SQL statement required to
retrieve all the warnings and error messages that occur during this
operation, and MSG_REMOVAL, which is the SQL statement required to
clean up the messages.

If this clause is not specified, the message file will be deleted when the
ADMIN_CMD procedure returns to the caller. The MSG_RETRIEVAL and
MSG_REMOVAL column in the result set will contain null values.

Note that with or without the clause, the fenced user ID must have the
authority to create files under the directory indicated by the
DB2_UTIL_MSGPATH registry variable, as well as the directory where the data
is to be exported to.

Example
The following example shows how to export information from the STAFF table in
the SAMPLE database to the file myfile.ixf. The output will be in IXF format. You

must be connected to the SAMPLE database before issuing the command.

56 Administrative Routines and Views

CALL SYSPROC.ADMIN _CMD ('EXPORT to /home/userl/data/myfile.ixf

OF ixf MESSAGES ON SERVER select * from staff')

Usage notes

Any path used in the EXPORT command must be a valid fully-qualified path on
the server.

If a table contains LOB columns, at least one fully-qualified LOB path and LOB
name must be specified, using the LOBS T0 and LOBFILE clauses.

The export utility issues a COMMIT statement at the beginning of the operation
which, in the case of Type 2 connections, causes the procedure to return
SQL30090N with reason code 2.

When exporting from a UCS-2 database to a delimited ASCII (DEL) file, all
character data is converted to the code page that is in effect where the procedure
is executing. Both character string and graphic string data are converted to the
same SBCS or MBCS code page of the server.

Be sure to complete all table operations and release all locks before starting an
export operation. This can be done by issuing a COMMIT after closing all
cursors opened WITH HOLD, or by issuing a ROLLBACK.

Table aliases can be used in the SELECT statement.

The messages placed in the message file include the information returned from
the message retrieval service. Each message begins on a new line.

PC/IXF import should be used to move data between databases. If character
data containing row separators is exported to a delimited ASCII (DEL) file and
processed by a text transfer program, fields containing the row separators will
shrink or expand.

The file copying step is not necessary if the source and the target databases are
both accessible from the same client.

DB2 Connect can be used to export tables from DRDA® servers such as DB2 for
0S/390%, DB2 for VM and VSE, and DB2 for OS/400°. Only PC/IXF export is
supported.

When exporting to the IXF format, if identifiers exceed the maximum size
supported by the IXF format, the export will succeed but the resulting datafile
cannot be used by a subsequent import operation using the CREATE mode.
SQL27984W will be returned.

When exporting to a diskette on Windows, and the table that has more data
than the capacity of a single diskette, the system will prompt for another
diskette, and multiple-part PC/IXF files (also known as multi-volume PC/IXF
files, or logically split PC/IXF files), are generated and stored in separate
diskettes. In each file, with the exception of the last, there is a DB2
CONTINUATION RECORD (or "AC" Record in short) written to indicate the
files are logically split and where to look for the next file. The files can then be
transferred to an AIX® system, to be read by the import and load utilities. The
export utility will not create multiple-part PC/IXF files when invoked from an
AIX system. For detailed usage, see the IMPORT command or LOAD command.

The export utility will store the NOT NULL WITH DEFAULT attribute of the

table in an IXF file if the SELECT statement provided is in the form SELECT *
FROM tablename.

When exporting typed tables, subselect statements can only be expressed by
specifying the target table name and the WHERE clause. Fullselect and
select-statement cannot be specified when exporting a hierarchy.

For file formats other than IXF, it is recommended that the traversal order list be
specified, because it tells DB2 how to traverse the hierarchy, and what sub-tables

Built-in routines and views 57

to export. If this list is not specified, all tables in the hierarchy are exported, and
the default order is the OUTER order. The alternative is to use the default order,
which is the order given by the OUTER function.

Use the same traverse order during an import operation. The load utility does
not support loading hierarchies or sub-hierarchies.

When exporting data from a table that has protected rows, the LBAC credentials
held by the session authorization id might limit the rows that are exported.
Rows that the session authorization ID does not have read access to will not be
exported. No error or warning is given.

If the LBAC credentials held by the session authorization id do not allow
reading from one or more protected columns included in the export then the
export fails and an error (SQLSTATE 42512) is returned.

When running Data Movement utilities such as export and db2move, the query
compiler might determine that the underlying query will run more efficiently
against an MQT than the base table or tables. In this case, the query will execute
against a refresh deferred MQT, and the result of the utilities might not
accurately represent the data in the underlying table.

Export packages are bound using DATETIME IS0 format, thus, all
date/time/timestamp values are converted into ISO format when cast to a string
representation. Since the CLP packages are bound using DATETIME LOC format
(locale specific format), you may see inconsistent behavior between CLP and
export if the CLP DATETIME format is different from ISO. For instance, the
following SELECT statement may return expected results:

db2 select col2 from tabl where char(co12)='05/10/2005";
coL2

05/10/2005
05/10/2005
05/10/2005
3 record(s) selected.

But an export command using the same select clause will not:

db2 export to test.del of del select col2 from test
where char(col12)='05/10/2005";
Number of rows exported: 0

Now, replacing the LOCALE date format with ISO format gives the expected
results:
db2 export to test.del of del select col2 from test

where char(col12)='2005-05-10";
Number of rows exported: 3

Result set information

Command execution status is returned in the SQLCA resulting from the CALL
statement. If execution is successful, the command returns additional information
in result sets as follows:

Table 30. Result set returned by the EXPORT command

Column name

Data type Description

ROWS_EXPORTED

BIGINT Total number of exported rows.

58 Administrative Routines and Views

Table 30. Result set returned by the EXPORT command (continued)

Column name

Data type

Description

MSG_RETRIEVAL

VARCHAR(512)

SQL statement that is used to retrieve messages created

by this utility. For example:
SELECT SQLCODE, MSG

FROM TABLE (SYSPROC.ADMIN_GET_MSGS
('3203498 _txu')) AS MSG

MSG_REMOVAL

VARCHAR(512) SQL statement that is used to clean up messages created

by this utility. For example:

CALL SYSPROC.ADMIN_REMOVE_MSGS
(13203498 txu')

File type modifiers for the export utility

Table 31. Valid file type modifiers for the export utility: All file formats

Modifier

Description

lobsinfile

lob-path specifies the path to the files containing LOB data.

Each path contains at least one file that contains at least one LOB pointed to by a
Lob Location Specifier (LLS) in the data file. The LLS is a string representation of
the location of a LOB in a file stored in the LOB file path. The format of an LLS is
filename.ext.nnn.mmm/, where filename.ext is the name of the file that contains the
LOB, nnn is the offset in bytes of the LOB within the file, and mmm is the length
of the LOB in bytes. For example, if the string db2exp.001.123.456/ is stored in
the data file, the LOB is located at offset 123 in the file db2exp.001, and is 456
bytes long.

If you specify the Tobsinfile modifier when using EXPORT, the LOB data is placed
in the locations specified by the LOBS T0 clause. Otherwise the LOB data is sent to
the data file directory. The LOBS TO clause specifies one or more paths to
directories in which the LOB files are to be stored. There will be at least one file
per LOB path, and each file will contain at least one LOB. The LOBS T0 or LOBFILE
options will implicitly activate the LOBSINFILE behavior.

To indicate a null LOB, enter the size as -1. If the size is specified as 0, it is
treated as a 0 length LOB. For null LOBS with length of -1, the offset and the file
name are ignored. For example, the LLS of a null LOB might be db2exp.001.7.-1/.

implicitlyhiddeninclude

This modifier is used with SELECT * queries and specifies that the data in
implicitly hidden columns is exported even though that data is not included in
the result of the SELECT * query. This modifier cannot be used with the
implicitlyhiddenmissing modifier.

If this modifier is used and the query is not a SELECT ¥, then an error is returned
(SQLCODE SQL3526N).

implicitlyhiddenmissing

This modifier is used with SELECT * queries and specifies that the data in
implicitly hidden columns is not exported. This modifier cannot be used with the
implicitlyhiddeninclude modifier.

If this modifier is used and the query is not a SELECT ¥, then an error is returned
(SQLCODE SQL3526N).

xmlinsepfiles Each XQuery Data Model (XDM) instance is written to a separate file. By default,
multiple values are concatenated together in the same file.
lobsinsepfiles Each LOB value is written to a separate file. By default, multiple values are

concatenated together in the same file.

Built-in routines and views 59

Table 31. Valid file type modifiers

for the export utility: All file formats (continued)

Modifier

Description

xmlnodeclaration

XDM instances are written without an XML declaration tag. By default, XDM
instances are exported with an XML declaration tag at the beginning that includes
an encoding attribute.

xmlchar

XDM instances are written in the character code page. Note that the character
codepage is the value specified by the codepage file type modifier, or the
application code page if it is not specified. By default, XDM instances are written
out in Unicode.

xmlgraphic

If the xmlgraphic modifier is specified with the EXPORT command, the exported
XML document will be encoded in the UTF-16 code page regardless of the
application code page or the codepage file type modifier.

Table 32. Valid file type modifiers

for the export utility: DEL (delimited ASCII) file format

Modifier

Description

chardelx

x is a single character string delimiter. The default value is a double quotation
mark ("). The specified character is used in place of double quotation marks to
enclose a character string.” If you want to explicitly specify the double quotation
mark as the character string delimiter, it should be specified as follows:

modified by chardel™"

The single quotation mark (') can also be specified as a character string delimiter
as follows:

modified by chardel''

codepage=x

x is an ASCII character string. The value is interpreted as the code page of the
data in the output data set. Converts character data to this code page from the
application code page during the export operation.

For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to the
range of x00 to x3F, inclusive. The codepage modifier cannot be used with the
lobsinfile modifier.

coldelx

x is a single character column delimiter. The default value is a comma (,). The
specified character is used in place of a comma to signal the end of a column.?

In the following example, coldel; causes the export utility to use the semicolon
character (;) as a column delimiter for the exported data:

db2 "export to temp of del modified by coldel;
select * from staff where dept = 20"

decplusblank

Plus sign character. Causes positive decimal values to be prefixed with a blank
space instead of a plus sign (+). The default action is to prefix positive decimal
values with a plus sign.

decptx

x is a single character substitute for the period as a decimal point character. The
default value is a period (.). The specified character is used in place of a period as
a decimal point character.”

nochardel

Column data will not be surrounded by character delimiters. This option should
not be specified if the data is intended to be imported or loaded using DB2. It is
provided to support vendor data files that do not have character delimiters.
Improper usage might result in data loss or corruption.

This option cannot be specified with chardelx or nodoubledel. These are mutually
exclusive options.

nodoubledel

Suppresses recognition of double character delimiters.

60 Administrative Routines and Views

Table 32. Valid file type modifiers for the export utility: DEL (delimited ASCII) file format (continued)

Modifier

Description

striplzeros

Removes the leading zeros from all exported decimal columns.

Consider the following example:

db2 create table decimalTable (cl decimal(31, 2))
db2 insert into decimalTable values (1.1)

db2 export to data of del select * from decimalTable

db2 export to data of del modified by STRIPLZEROS
select * from decimalTable

In the first export operation, the content of the exported file data will be
+00000000000000000000000000001.10. In the second operation, which is identical
to the first except for the striplzeros modifier, the content of the exported file
data will be +1.10.

Built-in routines and views

61

Table 32. Valid file type modifiers for the export utility: DEL (delimited ASCII) file format (continued)

Modifier

Description

timestampformat="x"

x is the format of the time stamp in the source file.* Valid time stamp elements
are:

YYYY Year (four digits ranging from 0000 - 9999)
M Month (one or two digits ranging from 1 - 12)

MM Month (two digits ranging from 01 - 12; mutually exclusive with M and
MMM)

MMM Month (three-letter case-insensitive abbreviation for the month name;
mutually exclusive with M and MM)

D Day (one or two digits ranging from 1 - 31)
DD Day (two digits ranging from 01 - 31; mutually exclusive with D)

DDD Day of the year (three digits ranging from 001 - 366, mutually exclusive
with other day or month elements)

H Hour (one or two digits ranging from 0 - 12 for a 12 hour system, and 0
- 24 for a 24 hour system)

HH Hour (two digits ranging from 00 - 12 for a 12 hour system, and 00 - 24
for a 24 hour system; mutually exclusive with H)

M Minute (one or two digits ranging from 0 - 59)

MM Minute (two digits ranging from 00 - 59; mutually exclusive with M,
minute)

S Second (one or two digits ranging from 0 - 59)

SS Second (two digits ranging from 00 - 59; mutually exclusive with S)

SSSSS Second of the day after midnight (5 digits ranging from 00000 - 86400;
mutually exclusive with other time elements)

U (1 to 12 times)
Fractional seconds (number of occurrences of U represent the number of
digits with each digit ranging from 0 to 9

TT Meridian indicator (AM or PM)

Following is an example of a time stamp format:
"YYYY/MM/DD HH:MM:SS.UuuUUU"

The MMM element will produce the following values: 'Jan', 'Feb', 'Mar', 'Apr’,
‘May', 'Tun', Tul', 'Aug’, 'Sep', 'Oct’, 'Nov', and 'Dec'. 'Jan' is equal to month 1, and
'Dec' is equal to month 12.

The following example illustrates how to export data containing user-defined
time stamp formats from a table called 'schedule":
db2 export to delfile2 of del

modified by timestampformat="yyyy.mm.dd hh:mm tt"
select * from schedule

62 Administrative Routines and Views

Table 33. Valid file type modifiers for the export utility: IXF file format

Modifier

Description

codepage=x

x is an ASCII character string. The value is interpreted as the code page of the
data in the output data set. Converts character data from this code page to the
application code page during the export operation.

For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to the
range of x00 to x3F, inclusive.

Note:

1.

The export utility does not issue a warning if an attempt is made to use
unsupported file types with the MODIFIED BY option. If this is attempted, the
export operation fails, and an error code is returned.

Delimiter considerations for moving data lists restrictions that apply to the
characters that can be used as delimiter overrides.

The export utility normally writes

* date data in YYYYMMDD format

* char(date) data in "YYYY-MM-DD" format

* time data in "HH.MM.SS" format

* time stamp data in "YYYY-MM-DD-HH.MM.SS.uuuuuu" format

Data contained in any datetime columns specified in the SELECT statement
for the export operation will also be in these formats.

For time stamp formats, care must be taken to avoid ambiguity between the
month and the minute descriptors, since they both use the letter M. A month
field must be adjacent to other date fields. A minute field must be adjacent to
other time fields. Following are some ambiguous time stamp formats:

"M" (could be a month, or a minute)

"M:M" (Which is which?)

"M:YYYY:M" (Both are interpreted as month.)

"S:M:YYYY" (adjacent to both a time value and a date value)

In ambiguous cases, the utility will report an error message, and the operation
will fail.
Following are some unambiguous time stamp formats:

"M:YYYY" (Month)

"S:M" (Minute)

"M:YYYY:S:M" (Month....Minute)

"M:H:YYYY:M:D" (Minute....Month)
All XDM instances are written to XML files that are separate from the main
data file, even if neither the XMLFILE nor the XML TO clause is specified. By
default, XML files are written to the path of the exported data file. The default
base name for XML files is the name of the exported data file with the
extension ".xml" appended to it.

All XDM instances are written with an XML declaration at the beginning that
includes an encoding attribute, unless the XMLNODECLARATION file type
modifier is specified.

By default, all XDM instances are written in Unicode unless the XMLCHAR or
XMLGRAPHIC file type modifier is specified.

The default path for XML data and LOB data is the path of the main data file.
The default XML file base name is the main data file. The default LOB file
base name is the main data file. For example, if the main data file is:

/mypath/myfile.del

Built-in routines and views 63

the default path for XML data and LOB data is:
/mypath"

the default XML file base name is:
myfile.del

and the default LOB file base name is:
myfile.del

The LOBSINFILE file type modifier must be specified in order to have LOB
files generated.

9. The export utility appends a numeric identifier to each LOB file or XML file.
The identifier starts as a 3 digit, 0 padded sequence value, starting at:

.001

After the 999th LOB file or XML file, the identifier will no longer be padded
with zeros (for example, the 1000th LOG file or XML file will have an
extension of:

.1000

Following the numeric identifier is a three character type identifier
representing the data type, either:

.Tob

or

.xml

For example, a generated LOB file would have a name in the format:
myfile.del.001.1ob

and a generated XML file would be have a name in the format:
myfile.del.001.xml

10. It is possible to have the export utility export XDM instances that are not
well-formed documents by specifying an XQuery. However, you will not be
able to import or load these exported documents directly into an XML
column, since XML columns can only contain complete documents.

FORCE APPLICATION command using the ADMIN_CMD procedure:

Forces local or remote users or applications off the system to allow for
maintenance on a server.

Attention: If an operation that cannot be interrupted (RESTORE DATABASE, for
example) is forced, the operation must be successfully re-executed before the
database becomes available.

Scope

This command affects all database partitions that are listed in the
$HOME/sq11ib/db2nodes.cfg file.

In a partitioned database environment, this command does not have to be issued

from the coordinator database partition of the application being forced. It can be
issued from any database partition server in the partitioned database environment.

64 Administrative Routines and Views

Authorization

One of the following authorities:
* SYSADM

* SYSCTRL

* SYSMAINT

Required connection
Database

Command syntax

»»>—FORCE APPLICATION ALL _| <
r J L oo Asyne
(—-application-handle——)

Command parameters

FORCE APPLICATION

ALL All applications will be disconnected from the database. This might
close the connection the ADMIN_CMD procedure is running on,
which causes an SQL1224N error to be returned for the
ADMIN_CMD procedure once the force operation is completed
successfully.

application-handle
Specifies the agent to be terminated. List the values using the LIST
APPLICATIONS command.

MODE ASYNC
The command does not wait for all specified users to be terminated before
returning; it returns as soon as the function has been successfully issued or
an error (such as invalid syntax) is discovered.

This is the only mode that is currently supported.
Examples

The following example forces two users, with application-handle values of 41408 and
55458, to disconnect from the database:

CALL SYSPROC.ADMIN_CMD('force application (41408, 55458)')
Usage notes

The database manager remains active so that subsequent database manager
operations can be handled without the need for db2start.

To preserve database integrity, only users who are idling or executing interruptible
database operations can be terminated.

The following types of users and applications cannot be forced:
* users creating a database

* system applications

Built-in routines and views 65

In order to successfully force these types of users and applications, the database
must be deactivated and/or the instance restarted.

After a FORCE APPLICATION has been issued, the database will still accept requests
to connect. Additional forces might be required to completely force all users off.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

GET STMM TUNING command using the ADMIN_CMD procedure:

Used to read the catalog tables to report the user preferred self tuning memory
manager (STMM) tuning member number and current STMM tuning member
number.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities or privilege:

« DBADM

« SECADM

* SQLADM

* ACCESSCTRL

 DATAACCESS

e SELECT on SYSIBM.SYSTUNINGINFO

Required connection
Database
Command syntax

»»—GET—STMM—TUNING—MEMBER ><

Example
CALL SYSPROC.ADMIN_CMD('get stmm tuning member')

The following is an example of output from this query.
Result set 1

1 record(s) selected.

Return Status = 0

Usage notes

* The user preferred self tuning memory manager (STMM) tuning member
number (USER_PREFERRED_NUMBER) is set by the user and specifies the member on
which the user wants to run the memory tuner. While the database is running,
the tuning member is applied a few times an hour. As a result, it is possible that

66 Administrative Routines and Views

the CURRENT_NUMBER and USER_PREFERRED_NUMBER returned are not in sync after an
update of the user preferred STMM member. To resolve this, either wait for the
CURRENT_NUMBER to be updated asynchronously, or stop and start the database to
force the update of CURRENT_NUMBER.

Compeatibilities

For compatibility with previous versions:

DBPARTITIONNUM can be substituted for MEMBER, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

Result set information

Command execution status is returned in the SQLCA resulting from the CALL
statement. If execution is successful, the command returns additional information
in the following result set:

Table 34. Result set returned by the GET STMM TUNING command

Column name Data type Description

USER_PREFERRED_NUMBER INTEGER User preferred self tuning memory

manager (STMM) tuning member
number. In a partitioned database
environment, a value of -1
indicates that the default member
is used.

CURRENT_NUMBER INTEGER Current STMM tuning member

number. A value of -1 indicates
that the default member is used.

IMPORT command using the ADMIN_CMD procedure:

Inserts data from an external file with a supported file format into a table,
hierarchy, view or nickname. LOAD is a faster alternative, but the load utility does
not support loading data at the hierarchy level.

Quick link to “File type modifiers for the import utility” on page 82.

Authorization

IMPORT using the INSERT option requires one of the following authorities:
— DATAACCESS authority

— CONTROL privilege on each participating table, view, or nickname

— INSERT and SELECT privilege on each participating table or view

IMPORT to an existing table using the INSERT_UPDATE option, requires one of the
following authorities:

— DATAACCESS authority
— CONTROL privilege on each participating table, view, or nickname

— INSERT, SELECT, UPDATE and DELETE privilege on each participating table
or view

IMPORT to an existing table using the REPLACE or REPLACE_CREATE option, requires
one of the following authorities:

— DATAACCESS authority
— CONTROL privilege on the table or view

Built-in routines and views 67

— INSERT, SELECT, and DELETE privilege on the table or view
* IMPORT to a new table using the CREATE or REPLACE_CREATE option, requires one
of the following authorities:
— DBADM authority
— CREATETAB authority on the database and USE privilege on the table space,
as well as one of:
- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit
schema name of the table does not exist
- CREATEIN privilege on the schema, if the schema name of the table refers
to an existing schema
e IMPORT to a hierarchy that does not exist using the CREATE, or the
REPLACE_CREATE option, requires one of the following authorities:
— DBADM authority
— CREATETAB authority on the database and USE privilege on the table space
and one of:
- IMPLICIT_SCHEMA authority on the database, if the schema name of the
table does not exist
- CREATEIN privilege on the schema, if the schema of the table exists
- CONTROL privilege on every sub-table in the hierarchy, if the
REPLACE_CREATE option on the entire hierarchy is used
 IMPORT to an existing hierarchy using the REPLACE option requires one of the
following authorities:
— DATAACCESS authority
— CONTROL privilege on every sub-table in the hierarchy
* To import data into a table that has protected columns, the session authorization
ID must have LBAC credentials that allow write access to all protected columns

in the table. Otherwise the import fails and an error (SQLSTATE 42512) is
returned.

* To import data into a table that has protected rows, the session authorization ID
must hold LBAC credentials that meet these criteria:

— It is part of the security policy protecting the table

— It was granted to the session authorization ID for write access

The label on the row to insert, the user's LBAC credentials, the security policy
definition, and the LBAC rules determine the label on the row.

e If the REPLACE or REPLACE_CREATE option is specified, the session authorization ID
must have the authority to drop the table.

* To import data into a nickname, the session authorization ID must have the
privilege to access and use a specified data source in pass-through mode.

e If the table has row access control activated, then IMPORT REPLACE on that table
would require the ability to drop the table. Specifically, you must have either
CONTROL or DBADM on the table.

Required connection
Database. Utility access to Linux, UNIX, or Windows database servers from Linux,

UNIX, or Windows clients must be a direct connection through the engine and not
through a DB2 Connect gateway or loop back environment.

68 Administrative Routines and Views

Command syntax

»»—IMPORT FROM—fil OF—filetyp
\\LOBS FROM—'Zob-path]—‘ \\XML FROM—'me-path]—‘
v filetype-mod]—|

-MODIFIED BY

L-METHO! L—(—~ column—start—column—endJ—)

\\NULL INDICATORS—(—l_.null-indi(:ator-Zist’]—)J
Y _column |)

N—()

P—(—'column-pTion—'—)

|—XMLPARSE—[STRIP WHITESPACEJ
PRESERVE:

ALLOW NO ACCESS:
[] N
{ Ignore and Map parameters '—J |—ALLO)/»J WRITE ACCESS—I

|—XML\/ALIDATE USING XDS

|—DEFAU LT—schema-sql idJ
SCHEMA—schema-sqlid-
SCHEMALOCATION HINTS

I—COMMITCOUNT—[n——‘—I LERESTARTCO%_HJ |—ROWCOUNT—nJ I—!rlARNINGCOUNT—nJ |—NOTIMEOUTJ
AUTOMATIC: SKIPCOUNT:

I—MESSAGES ON SERVERJ

> INSERT. INT table »><
INSERT_UPDATE— s
REPLACE |_
REPLACE_CREATE- (—insert-column)
hierarchy description |—

CREATE—INT! tabl i tb1space-specs

\\(v insert’-column]—)J

hierarchy description |—|:AS ROOT TABLE:
UNDER—sub—table—name:I

Ignore and Map parameters:

IGNORE— (——schema-sqlid——)

AP— (—Y—(—schema-sqlid—,—schema-sqlid—)——)

Built-in routines and views 69

hierarchy description:
ALL TABLES
}—E‘ sub-tablmm—HIERARCHY STARTING—sub-table-name
IN _E‘ traversal-order-list

sub-table-list:

f—(—"—sub-table-name L J) |
(—-insert-column——)

traversal-order-list:

f—(—"-sub-table-name——) |

tblspace-specs:

| |
f
I—IN—tabZespace-name |
I—I NDEX IN—tabl espace-name—l I—LONG IN—tab Zespace-name—I

Command parameters

FROM filename
Specifies the name of the file that contains the data to be imported. This
must be a fully qualified path and the file must exist on the database
server.

OF filetype
Specifies the format of the data in the input file:
* ASC (non-delimited ASCII format)
* DEL (delimited ASCII format), which is used by a variety of database
manager and file manager programs

* IXF (Integration Exchange Format, PC version) is a binary format that is
used exclusively by DB2.

LOBS FROM lob-path
Specifies one or more fully qualified paths that store LOB files. The paths
must exist on the database server coordinator partition. The names of the
LOB data files are stored in the main data file (ASC, DEL, or IXF), in the
column that will be loaded into the LOB column. The maximum number of
paths that can be specified is 999. This will implicitly activate the
LOBSINFILE behavior.

This parameter is not valid when you import to a nickname.

XML FROM xml-path
Specifies one or more paths that contain the XML files.

70 Administrative Routines and Views

MODIFIED BY filetype-mod

METHOD

Specifies file type modifier options. See “File type modifiers for the import
utility” on page 82.

L Specifies the start and end column numbers from which to import
data. A column number is a byte offset from the beginning of a
row of data. It is numbered starting from 1.

Note: This method can only be used with ASC files, and is the
only valid option for that file type.

N Specifies the names of the columns in the data file to be imported.
The case of these column names must match the case of the
corresponding names in the system catalogs. Each table column
that is not nullable should have a corresponding entry in the
METHOD N list. For example, given data fields F1, F2, F3, F4, F5, and
F6, and table columns C1 INT, C2 INT NOT NULL, C3 INT NOT
NULL, and C4 INT, method N (F2, F1, F4, F3) is a valid request,
while method N (F2, F1) is not valid.

Note: This method can only be used with IXF files.

P Specifies the field numbers (numbered from 1) of the input data
tields to be imported. Each table column that is not nullable should
have a corresponding entry in the METHOD P list. For example, given
data fields F1, F2, F3, F4, F5, and F6, and table columns C1 INT, C2
INT NOT NULL, C3 INT NOT NULL, and C4 INT, method P (2,
1, 4, 3) is a valid request, while method P (2, 1) is not valid.
This method can only be used with file types IXF or DEL, and is
the only valid method for the DEL file type.

For each of the fields specified by method P, you need to define a
corresponding column in the action statement, unless all columns
are accounted for or the first x columns are going to be loaded, as
shown in the following example:

db2 Toad from datafilel.del of del method P(1, 3, 4)
replace into tablel (cl, c3, c4)

NULL INDICATORS null-indicator-list

This option can only be used when the METHOD L parameter is specified.
That is, the input file is an ASC file. The null indicator list is a
comma-separated list of positive integers specifying the column number of
each null indicator field. The column number is the byte offset of the null
indicator field from the beginning of a row of data. There must be one
entry in the null indicator list for each data field defined in the METHOD L
parameter. A column number of zero indicates that the corresponding data
field always contains data.

A value of Y in the NULL indicator column specifies that the column data
is NULL. Any character other than Y in the NULL indicator column
specifies that the column data is not NULL, and that column data specified
by the METHOD L option will be imported.

The NULL indicator character can be changed using the MODIFIED BY
option, with the nullindchar file type modifier.

XMLPARSE

Specifies how XML documents are parsed. If this option is not specified,

Built-in routines and views 71

the parsing behavior for XML documents will be determined by the value
of the CURRENT XMLPARSE OPTION special register.

STRIP WHITESPACE
Specifies to remove whitespace when the XML document is parsed.

PRESERVE WHITESPACE
Specifies not to remove whitespace when the XML document is
parsed.

XMLVALIDATE
Specifies that XML documents are validated against a schema, when
applicable.

USING XDS
XML documents are validated against the XML schema identified
by the XML Data Specifier (XDS) in the main data file. By default,
if the XMLVALIDATE option is invoked with the USING XDS clause, the
schema used to perform validation will be determined by the SCH
attribute of the XDS. If an SCH attribute is not present in the XDS,
no schema validation will occur unless a default schema is
specified by the DEFAULT clause.

The DEFAULT, IGNORE, and MAP clauses can be used to modify the
schema determination behavior. These three optional clauses apply
directly to the specifications of the XDS, and not to each other. For
example, if a schema is selected because it is specified by the
DEFAULT clause, it will not be ignored if also specified by the IGNORE
clause. Similarly, if a schema is selected because it is specified as
the first part of a pair in the MAP clause, it will not be re-mapped
if also specified in the second part of another MAP clause pair.

USING SCHEMA schema-sqlid
XML documents are validated against the XML schema with the
specified SQL identifier. In this case, the SCH attribute of the XML
Data Specifier (XDS) will be ignored for all XML columns.

USING SCHEMALOCATION HINTS
XML documents are validated against the schemas identified by
XML schema location hints in the source XML documents. If a
schemalocation attribute is not found in the XML document, no
validation will occur. When the USING SCHEMALOCATION HINTS clause
is specified, the SCH attribute of the XML Data Specifier (XDS) will
be ignored for all XML columns.

See examples of the XMLVALIDATE option in the following section.

DEFAULT schema-sqlid
This option can only be used when the USING XDS parameter is specified.
The schema specified through the DEFAULT clause identifies a schema to use
for validation when the XML Data Specifier (XDS) of an imported XML
document does not contain an SCH attribute identifying an XML Schema.

The DEFAULT clause takes precedence over the IGNORE and MAP clauses. If an
XDS satisfies the DEFAULT clause, the IGNORE and MAP specifications will be
ignored.

IGNORE schema-sqlid
This option can only be used when the USING XDS parameter is specified.
The IGNORE clause specifies a list of one or more schemas to ignore if they
are identified by an SCH attribute. If an SCH attribute exists in the XML

72 Administrative Routines and Views

Data Specifier for an imported XML document, and the schema identified
by the SCH attribute is included in the list of schemas to ignore, then no
schema validation will occur for the imported XML document.

If a schema is specified in the IGNORE clause, it cannot also be present in
the left side of a schema pair in the MAP clause.

The IGNORE clause applies only to the XDS. A schema that is mapped by
the MAP clause will not be subsequently ignored if specified by the IGNORE
clause.

MAP schema-sqlid
This option can only be used when the USING XDS parameter is specified.
Use the MAP clause to specify alternate schemas to use in place of those
specified by the SCH attribute of an XML Data Specifier (XDS) for each
imported XML document. The MAP clause specifies a list of one or more
schema pairs, where each pair represents a mapping of one schema to
another. The first schema in the pair represents a schema that is referred to
by an SCH attribute in an XDS. The second schema in the pair represents
the schema that should be used to perform schema validation.

If a schema is present in the left side of a schema pair in the MAP clause, it
cannot also be specified in the IGNORE clause.

Once a schema pair mapping is applied, the result is final. The mapping
operation is non-transitive, and therefore the schema chosen will not be
subsequently applied to another schema pair mapping.

A schema cannot be mapped more than once, meaning that it cannot
appear on the left side of more than one pair.

ALLOW NO ACCESS
Runs import in the offline mode. An exclusive (X) lock on the target table
is acquired before any rows are inserted. This prevents concurrent
applications from accessing table data. This is the default import behavior.

ALLOW WRITE ACCESS
Runs import in the online mode. An intent exclusive (IX) lock on the target
table is acquired when the first row is inserted. This allows concurrent
readers and writers to access table data. Online mode is not compatible
with the REPLACE, CREATE, or REPLACE_CREATE import options. Online mode
is not supported in conjunction with buffered inserts. The import operation
will periodically commit inserted data to prevent lock escalation to a table
lock and to avoid running out of active log space. These commits will be
performed even if the COMMITCOUNT option was not used. During each
commit, import will lose its IX table lock, and will attempt to reacquire it
after the commit. This parameter is required when you import to a
nickname and COMMITCOUNT must be specified with a valid number
(AUTOMATIC is not considered a valid option).

COMMITCOUNT » | AUTOMATIC
Performs a COMMIT after every n records are imported. When a number n
is specified, import performs a COMMIT after every n records are
imported. When compound inserts are used, a user-specified commit
frequency of n is rounded up to the first integer multiple of the compound
count value. When AUTOMATIC is specified, import internally determines
when a commit needs to be performed. The utility will commit for either
one of two reasons:

* to avoid running out of active log space
* to avoid lock escalation from row level to table level

Built-in routines and views 73

If the ALLOW WRITE ACCESS option is specified, and the COMMITCOUNT option
is not specified, the import utility will perform commits as if COMMITCOUNT
AUTOMATIC had been specified.

The ability of the import operation to avoid running out of active log space
is affected by the DB2 registry variable DB2_FORCE_APP_ON_MAX_LOG:

« If DB2_FORCE_APP_ON_MAX_LOG is set to FALSE and the COMMITCOUNT
AUTOMATIC command option is specified, the import utility will be able to
automatically avoid running out of active log space.

« If DB2_FORCE_APP_ON_MAX_LOG is set to FALSE and the COMMITCOUNT 7
command option is specified, the import utility will attempt to resolve
the log full condition if it encounters an SQL0964C (Transaction Log
Full) while inserting or updating a record. It will perform an
unconditional commit and then will reattempt to insert or update the
record. If this does not help resolve the issue (which would be the case
when the log full is attributed to other activity on the database), then the
IMPORT command will fail as expected, however the number of rows
committed may not be a multiple of the COMMITCOUNT 7 value. To avoid
processing the rows that were already committed when you retry the
import operation, use the RESTARTCOUNT or SKIPCOUNT command
parameters.

» If DB2_FORCE_APP_ON_MAX_LOG is set to TRUE (which is the default), the
import operation will fail if it encounters an SQL0964C while inserting
or updating a record. This can occur irrespective of whether you specify
COMMITCOUNT AUTOMATIC or COMMITCOUNT .

The application is forced off the database and the current unit of work is
rolled back. To avoid processing the rows that were already committed
when you retry the import operation, use the RESTARTCOUNT or SKIPCOUNT
command parameters.

RESTARTCOUNT n
Specifies that an import operation is to be started at record n+1. The first n
records are skipped. This option is functionally equivalent to SKIPCOUNT.
RESTARTCOUNT and SKIPCOUNT are mutually exclusive.

SKIPCOUNT n
Specifies that an import operation is to be started at record n+1. The first n
records are skipped. This option is functionally equivalent to RESTARTCOUNT.
SKIPCOUNT and RESTARTCOUNT are mutually exclusive.

ROWCOUNT
Specifies the number 1 of physical records in the file to be imported
(inserted or updated). Allows a user to import only n rows from a file,
starting from the record determined by the SKIPCOUNT or RESTARTCOUNT
options. If the SKIPCOUNT or RESTARTCOUNT options are not specified, the
first n rows are imported. If SKIPCOUNT 1 or RESTARTCOUNT 1 is specified,
rows m+1 to m+n are imported. When compound inserts are used, user
specified ROWCOUNT 7 is rounded up to the first integer multiple of the
compound count value.

WARNINGCOUNT n
Stops the import operation after n warnings. Set this parameter if no
warnings are expected, but verification that the correct file and table are
being used is required. If the import file or the target table is specified
incorrectly, the import utility will generate a warning for each row that it

74 Administrative Routines and Views

attempts to import, which will cause the import to fail. If # is zero, or this
option is not specified, the import operation will continue regardless of the
number of warnings issued.

NOTIMEOUT

Specifies that the import utility will not time out while waiting for locks.
This option supersedes the Tocktimeout database configuration parameter.
Other applications are not affected.

MESSAGES ON SERVER

INSERT

Specifies that the message file created on the server by the IMPORT
command is to be saved. The result set returned will include the following
two columns: MSG_RETRIEVAL, which is the SQL statement required to
retrieve all the warnings and error messages that occur during this
operation, and MSG_REMOVAL, which is the SQL statement required to
clean up the messages.

If this clause is not specified, the message file will be deleted when the
ADMIN_CMD procedure returns to the caller. The MSG_RETRIEVAL and
MSG_REMOVAL column in the result set will contain null values.

Note that with or without the clause, the fenced user ID must have the
authority to create files under the directory indicated by the
DB2_UTIL_MSGPATH registry variable, as well as the directory where the data
is to be exported to.

Adds the imported data to the table without changing the existing table
data.

INSERT_UPDATE

REPLACE

Adds rows of imported data to the target table, or updates existing rows
(of the target table) with matching primary keys.

Deletes all existing data from the table by truncating the data object, and
inserts the imported data. The table definition and the index definitions are
not changed. This option can only be used if the table exists. If this option
is used when moving data between hierarchies, only the data for an entire
hierarchy, not individual subtables, can be replaced.

This parameter is not valid when you import to a nickname.

This option does not honor the CREATE TABLE statement's NOT
LOGGED INITIALLY (NLI) clause or the ALTER TABLE statement's
ACTIVE NOT LOGGED INITIALLY clause.

This option cannot be used to import data into system-period temporal
tables.

If an import with the REPLACE option is performed within the same
transaction as a CREATE TABLE or ALTER TABLE statement where the
NLI clause is invoked, the import will not honor the NLI clause. All inserts
will be logged.

Workaround 1
Delete the contents of the table using the DELETE statement, then
invoke the import with INSERT statement

Workaround 2
Drop the table and re-create it, then invoke the import with
INSERT statement.

Built-in routines and views 75

This limitation applies to DB2 Universal Database Version 7 and DB2
UDB Version 8

REPLACE_CREATE

Note: The REPLACE_CREATE parameter is deprecated and may be removed
in a future release. For additional details, see “IMPORT command options
CREATE and REPLACE_CREATE are deprecated”.

If the table exists, deletes all existing data from the table by truncating the
data object, and inserts the imported data without changing the table
definition or the index definitions.

If the table does not exist, creates the table and index definitions, as well as
the row contents, in the code page of the database. See Imported table
re-creation for a list of restrictions.

This option can only be used with IXF files. If this option is used when
moving data between hierarchies, only the data for an entire hierarchy, not
individual subtables, can be replaced.

This parameter is not valid when you import to a nickname.

INTO table-name
Specifies the database table into which the data is to be imported. This
table cannot be a system table, a created temporary table, a declared
temporary table, or a summary table.

One can use an alias for INSERT, INSERT_UPDATE, or REPLACE, except in the
case of an earlier server, when the fully qualified or the unqualified table
name should be used. A qualified table name is in the form:
schema.tablename. The schema is the user name under which the table was
created.

If the database table contains implicitly hidden columns, you must specify
whether data for the hidden columns is included in the import operation.
Use one of the following methods to indicate if data for hidden columns is
included:

* Use insert-column to explicitly specify the columns into which data is to
be inserted.
db2 import from delfilel of del

insert into tablel (cl, c2, c3,...)

* Use one of the hidden column file type modifiers: specify
implicitlyhiddeninclude when the input file contains data for the
hidden columns, or implicitlyhiddenmissing when the input file does
not.
db2 import from delfilel of del modified by implicitlyhiddeninclude

insert into tablel

* Use the DB2_DMU_DEFAULT registry variable on the client-side to set
the default behavior when data movement utilities encounter tables with
implicitly hidden columns.

db2set DB2_DMU_DEFAULT=IMPLICITLYHIDDENINCLUDE
db2 import from delfilel of del insert into tablel

insert-column
Specifies the name of a column in the table or the view into which data is
to be inserted.

76 Administrative Routines and Views

ALL TABLES
An implicit keyword for hierarchy only. When importing a hierarchy, the
default is to import all tables specified in the traversal order.

sub-table-list
For typed tables with the INSERT or the INSERT_UPDATE option, a list of
sub-table names is used to indicate the sub-tables into which data is to be
imported.

HIERARCHY
Specifies that hierarchical data is to be imported.

STARTING sub-table-name
A keyword for hierarchy only, requesting the default order, starting from
sub-table-name. For PC/IXF files, the default order is the order stored in the
input file. The default order is the only valid order for the PC/IXF file
format.

traversal-order-list
For typed tables with the INSERT, INSERT_UPDATE, or the REPLACE option, a
list of sub-table names is used to indicate the traversal order of the
importing sub-tables in the hierarchy.

CREATE

Note: The CREATE parameter is deprecated and may be removed in a future
release. For additional details, see “IMPORT command options CREATE and
REPLACE_CREATE are deprecated”.

Creates the table definition and row contents in the code page of the
database. If the data was exported from a DB2 table, sub-table, or
hierarchy, indexes are created. If this option operates on a hierarchy, and
data was exported from DB2, a type hierarchy will also be created. This
option can only be used with IXF files.

This parameter is not valid when you import to a nickname.

Note: If the data was exported from an MVS™ host database, and it
contains LONGVAR fields whose lengths, calculated on the page size, are
more than 254, CREATE might fail because the rows are too long. See
“Imported table re-creation” for a list of restrictions. In this case, the table
should be created manually, and IMPORT with INSERT should be invoked, or,
alternatively, the LOAD command should be used.

AS ROOT TABLE
Creates one or more sub-tables as a stand-alone table hierarchy.

UNDER sub-table-name
Specifies a parent table for creating one or more sub-tables.

IN tablespace-name
Identifies the table space in which the table will be created. The table space
must exist, and must be a REGULAR table space. If no other table space is
specified, all table parts are stored in this table space. If this clause is not
specified, the table is created in a table space created by the authorization
ID. If none is found, the table is placed into the default table space
USERSPACEL. If USERSPACEL1 has been dropped, table creation fails.

INDEX IN tablespace-name
Identifies the table space in which any indexes on the table will be created.
This option is allowed only when the primary table space specified in the

Built-in routines and views 77

IN clause is a DMS table space. The specified table space must exist, and
must be a REGULAR or LARGE DMS table space.

Note: Specifying which table space will contain an index can only be done
when the table is created.

LONG IN tablespace-name
Identifies the table space in which the values of any long columns (LONG
VARCHAR, LONG VARGRAPHIC, LOB data types, or distinct types with
any of these as source types) will be stored. This option is allowed only if
the primary table space specified in the IN clause is a DMS table space. The
table space must exist, and must be a LARGE DMS table space.

Example

The following example shows how to import information from the file myfile.ixf
to the STAFF table in the SAMPLE database.
CALL SYSPROC.ADMIN_CMD

('IMPORT FROM /home/userid/data/myfile.ixf
OF IXF MESSAGES ON SERVER INSERT INTO STAFF')

Usage notes

Any path used in the IMPORT command must be a valid fully-qualified path on the
coordinator database partition for the server.

If the ALLOW WRITE ACCESS or COMMITCOUNT options are specified, a commit will be
performed by the import utility. This causes the ADMIN_CMD procedure to return
an SQL30090N error with reason code 1 in the case of Type 2 connections.

If the value to be assigned for a column of a result set from the ADMIN_CMD
procedure is greater than the maximum value for the data type of the column, then
the maximum value for the data type is assigned and a warning message,
SQL1155W, is returned.

Be sure to complete all table operations and release all locks before starting an
import operation. This can be done by issuing a COMMIT after closing all cursors
opened WITH HOLD, or by issuing a ROLLBACK.

The import utility adds rows to the target table using the SQL INSERT statement.
The utility issues one INSERT statement for each row of data in the input file. If an
INSERT statement fails, one of two actions result:

* If it is likely that subsequent INSERT statements can be successful, a warning
message is written to the message file, and processing continues.
e If it is likely that subsequent INSERT statements will fail, and there is potential

for database damage, an error message is written to the message file, and
processing halts.

The utility performs an automatic COMMIT after the old rows are deleted during a
REPLACE or a REPLACE_CREATE operation. Therefore, if the system fails, or the
application interrupts the database manager after the table object is truncated, all
of the old data is lost. Ensure that the old data is no longer needed before using
these options.

If the log becomes full during a CREATE, REPLACE, or REPLACE_CREATE operation, the
utility performs an automatic COMMIT on inserted records. If the system fails, or

78 Administrative Routines and Views

the application interrupts the database manager after an automatic COMMIT, a
table with partial data remains in the database. Use the REPLACE or the
REPLACE_CREATE option to rerun the whole import operation, or use INSERT with the
RESTARTCOUNT parameter set to the number of rows successfully imported.

Updates from the IMPORT command will always be committed at the end of an
IMPORT task. The IMPORT command can also perform automatic commits during
its execution to reduce the size of the lock list and the active log space. The
IMPORT command will roll back if the active log becomes full during IMPORT
processing.

* By default, automatic commits are not performed for the INSERT or the
INSERT_UPDATE option. They are, however, performed if the COMMITCOUNT
parameter is not zero.

* Offline import does not perform automatic COMMITs if any of the following
conditions are true:

— The target is a view, not a table
— Compound inserts are used
— Buffered inserts are used

* By default, online import performs automatic commit to free both the active log
space and the lock list. Automatic commits are not performed only if a
COMMITCOUNT value of zero is specified.

Whenever the import utility performs a COMMIT, two messages are written to the
message file: one indicates the number of records to be committed, and the other is
written after a successful COMMIT. When restarting the import operation after a
failure, specify the number of records to skip, as determined from the last
successful COMMIT.

The import utility accepts input data with minor incompatibility problems (for
example, character data can be imported using padding or truncation, and numeric
data can be imported with a different numeric data type), but data with major
incompatibility problems is not accepted.

You cannot REPLACE or REPLACE_CREATE an object table if it has any dependents
other than itself, or an object view if its base table has any dependents (including
itself). To replace such a table or a view, do the following:

1. Drop all foreign keys in which the table is a parent.
2. Run the import utility.
3. Alter the table to re-create the foreign keys.

If an error occurs while recreating the foreign keys, modify the data to maintain
referential integrity.

Referential constraints and foreign key definitions are not preserved when
recreating tables from PC/IXF files. (Primary key definitions are preserved if the
data was previously exported using SELECT *.)

Importing to a remote database requires enough disk space on the server for a
copy of the input data file, the output message file, and potential growth in the

size of the database.

If an import operation is run against a remote database, and the output message
file is very long (more than 60 KB), the message file returned to the user on the

Built-in routines and views 79

client might be missing messages from the middle of the import operation. The
first 30 KB of message information and the last 30 KB of message information are
always retained.

Importing PC/IXF files to a remote database is much faster if the PC/IXF file is on
a hard drive rather than on diskettes.

The database table or hierarchy must exist before data in the ASC or DEL file
formats can be imported; however, if the table does not already exist, IMPORT
CREATE or IMPORT REPLACE_CREATE creates the table when it imports data from a
PC/IXEF file. For typed tables, IMPORT CREATE can create the type hierarchy and the
table hierarchy as well.

PC/IXF import should be used to move data (including hierarchical data) between
databases. If character data containing row separators is exported to a delimited
ASCII (DEL) file and processed by a text transfer program, fields containing the
row separators will shrink or expand. The file copying step is not necessary if the
source and the target databases are both accessible from the same client.

The data in ASC and DEL files is assumed to be in the code page of the client
application performing the import. PC/IXF files, which allow for different code
pages, are recommended when importing data in different code pages. If the
PC/IXF file and the import utility are in the same code page, processing occurs as
for a regular application. If the two differ, and the FORCEIN option is specified, the
import utility assumes that data in the PC/IXF file has the same code page as the
application performing the import. This occurs even if there is a conversion table
for the two code pages. If the two differ, the FORCEIN option is not specified, and
there is a conversion table, all data in the PC/IXF file will be converted from the
file code page to the application code page. If the two differ, the FORCEIN option is
not specified, and there is no conversion table, the import operation will fail. This
applies only to PC/IXF files on DB2 clients on the AIX operating system.

For table objects on an 8 KB page that are close to the limit of 1012 columns,
import of PC/IXF data files might cause DB2 to return an error, because the
maximum size of an SQL statement was exceeded. This situation can occur only if
the columns are of type CHAR, VARCHAR, or CLOB. The restriction does not
apply to import of DEL or ASC files. If PC/IXF files are being used to create a
new table, an alternative is use db21ook to dump the DDL statement that created
the table, and then to issue that statement through the CLP.

DB2 Connect can be used to import data to DRDA servers such as DB2 for
0S/390, DB2 for VM and VSE, and DB2 for OS/400. Only PC/IXF import (INSERT
option) is supported. The RESTARTCOUNT parameter, but not the COMMITCOUNT
parameter, is also supported.

When using the CREATE option with typed tables, create every sub-table defined in
the PC/IXF file; sub-table definitions cannot be altered. When using options other
than CREATE with typed tables, the traversal order list enables one to specify the
traverse order; therefore, the traversal order list must match the one used during
the export operation. For the PC/IXF file format, one need only specify the target
sub-table name, and use the traverse order stored in the file.

The import utility can be used to recover a table previously exported to a PC/IXF
file. The table returns to the state it was in when exported.

80 Administrative Routines and Views

Data cannot be imported to a system table, a created temporary table, a declared
temporary table, or a summary table.

Views cannot be created through the import utility.

Importing a multiple-part PC/IXF file whose individual parts are copied from a
Windows system to an AIX system is supported. Only the name of the first file
must be specified in the IMPORT command. For example, IMPORT FROM data.ixf OF
IXF INSERT INTO TABLEL. The file data.002, etc should be available in the same
directory as data.ixf.

On the Windows operating system:
* Importing logically split PC/IXF files is not supported.
* Importing bad format PC/IXF files is not supported.

Security labels in their internal format might contain newline characters. If you
import the file using the DEL file format, those newline characters can be mistaken
for delimiters. If you have this problem use the older default priority for delimiters
by specifying the delprioritychar file type modifier in the IMPORT command.

If the database table contains implicitly hidden columns, you must specify whether
data for the hidden columns is included in the import operation.

The IMPORT utility does not match the number of columns in a table and the
number of fields in a data file. The utility checks for a sufficient amount of data in
the data file and if a row in the data file does not contain sufficient columns of
data, the row may either be rejected with a warning message if the corresponding
table columns without data are defined as NOT NULL, or be inserted successfully
without a warning message if the corresponding table columns are defined as
NULL. On the other hand, if a row contains a higher number of columns than
required, the sufficient number of columns are processed while the remaining
columns of data are omitted and no warning message is given.

Federated considerations

When using the IMPORT command and the INSERT, UPDATE, or INSERT_UPDATE
command parameters, you must ensure that you have CONTROL privilege on the
participating nickname. You must ensure that the nickname you want to use when
doing an import operation already exists. There are also several restrictions you
should be aware of as shown in the IMPORT command parameters section.

Some data sources, such as ODBC, do not support importing into nicknames.
Result set information
Command execution status is returned in the SQLCA resulting from the CALL

statement. If execution is successful, the command returns additional information
in result sets as follows:

Table 35. Result set returned by the IMPORT command

Column name Data type Description

ROWS_READ BIGINT Number of records read from the file during import.

ROWS_SKIPPED BIGINT Number of records skipped before inserting or updating
begins.

Built-in routines and views 81

Table 35. Result set returned by the IMPORT command (continued)

Column name Data type Description
ROWS_INSERTED BIGINT Number of rows inserted into the target table.
ROWS_UPDATED BIGINT Number of rows in the target table updated with
information from the imported records (records whose
primary key value already exists in the table).
ROWS_REJECTED BIGINT Number of records that could not be imported.
ROWS_COMMITTED BIGINT Number of records imported successfully and
committed to the database.
MSG_RETRIEVAL VARCHAR(512) SQL statement that is used to retrieve messages created
by this utility. For example:
SELECT SQLCODE, MSG
FROM TABLE (SYSPROC.ADMIN_GET_MSGS
('1203498_txu')) AS MSG
MSG_REMOVAL VARCHAR(512) SQL statement that is used to clean up messages created

by this utility. For example:

CALL SYSPROC.ADMIN_REMOVE_MSGS
('1203498 txu')

File type modifiers for the import utility

Table 36. Valid file type modifiers for the import utility: All file formats

Modifier

Description

compound=x

overflow.

x is a number between 1 and 100 inclusive. Uses nonatomic compound SQL to
insert the data, and x statements will be attempted each time.

If this modifier is specified, and the transaction log is not sufficiently large, the
import operation will fail. The transaction log must be large enough to
accommodate either the number of rows specified by COMMITCOUNT, or the number
of rows in the data file if COMMITCOUNT is not specified. It is therefore
recommended that the COMMITCOUNT option be specified to avoid transaction log

This modifier is incompatible with INSERT_UPDATE mode, hierarchical tables, and
the following modifiers: usedefaults, identitymissing, identityignore,
generatedmissing, and generatedignore.

generatedignore

This modifier informs the import utility that data for all generated columns is
present in the data file but should be ignored. This results in all values for the
generated columns being generated by the utility. This modifier cannot be used
with the generatedmissing modifier.

generatedmissing

modifier.

If this modifier is specified, the utility assumes that the input data file contains no
data for the generated columns (not even NULLs), and will therefore generate a
value for each row. This modifier cannot be used with the generatedignore

identityignore

This modifier informs the import utility that data for the identity column is
present in the data file but should be ignored. This results in all identity values
being generated by the utility. The behavior will be the same for both
GENERATED ALWAYS and GENERATED BY DEFAULT identity columns. This
means that for GENERATED ALWAYS columns, no rows will be rejected. This
modifier cannot be used with the identitymissing modifier.

82 Administrative Routines and Views

Table 36. Valid file type modifiers for the import utility: All file formats (continued)

Modifier

Description

identitymissing

If this modifier is specified, the utility assumes that the input data file contains no
data for the identity column (not even NULLs), and will therefore generate a
value for each row. The behavior will be the same for both GENERATED
ALWAYS and GENERATED BY DEFAULT identity columns. This modifier cannot
be used with the identityignore modifier.

implicitlyhiddeninclude

If this modifier is specified, the utility assumes that the input data file contains
data for the implicitly hidden columns and this data will also be imported. This
modifier cannot be used with the implicitlyhiddenmissing modifier. See the
Note: section for information about the precedence when multiple modifiers are
specified.

implicitlyhiddenmissing

If this modifier is specified, the utility assumes that the input data file does not
contain data for the implicitly hidden columns and the utility will generate values
for those hidden columns. This modifier cannot be used with the
implicitlyhiddeninclude modifier. See the Note: section for information about
the precedence when multiple modifiers are specified.

lobsinfile

lob-path specifies the path to the files containing LOB data.

Each path contains at least one file that contains at least one LOB pointed to by a
Lob Location Specifier (LLS) in the data file. The LLS is a string representation of
the location of a LOB in a file stored in the LOB file path. The format of an LLS is
filename.ext.nnn.mmm/, where filename.ext is the name of the file that contains
the LOB, nnn is the offset in bytes of the LOB within the file, and mmm is the
length of the LOB in bytes. For example, if the string db2exp.001.123.456/ is
stored in the data file, the LOB is located at offset 123 in the file db2exp.001, and
is 456 bytes long.

The LOBS FROM clause specifies where the LOB files are located when the
“lobsinfile” modifier is used. The LOBS FROM clause will implicitly activate the
LOBSINFILE behavior. The LOBS FROM clause conveys to the IMPORT utility the list
of paths to search for the LOB files while importing the data.

To indicate a null LOB, enter the size as -1. If the size is specified as 0, it is
treated as a 0 length LOB. For null LOBS with length of -1, the offset and the file
name are ignored. For example, the LLS of a null LOB might be db2exp.001.7.-1/.

no_type_id

Valid only when importing into a single sub-table. Typical usage is to export data
from a regular table, and then to invoke an import operation (using this modifier)
to convert the data into a single sub-table.

nodefaults

If a source column for a target table column is not explicitly specified, and the
table column is not nullable, default values are not loaded. Without this option, if
a source column for one of the target table columns is not explicitly specified, one
of the following occurs:

* If a default value can be specified for a column, the default value is loaded

e If the column is nullable, and a default value cannot be specified for that
column, a NULL is loaded

* If the column is not nullable, and a default value cannot be specified, an error
is returned, and the utility stops processing.

norowwarnings

Suppresses all warnings about rejected rows.

periodignore

This modifier informs the import utility that data for the period columns is
present in the data file but should be ignored. When this modifier is specified, all
period column values are generated by the utility. This modifier cannot be used
with the periodmissing modifier.

Built-in routines and views 83

Table 36. Valid file type modifiers for the import utility: All file formats (continued)

Modifier

Description

periodmissing

If this modifier is specified, the utility assumes that the input data file contains no
data for the period columns. When this modifier is specified, all period column
values are generated by the utility. This modifier cannot be used with the
periodignore modifier.

rowchangetimestampignore

This modifier informs the import utility that data for the row change timestamp
column is present in the data file but should be ignored. This results in all ROW
CHANGE TIMESTAMP being generated by the utility. The behavior will be the
same for both GENERATED ALWAYS and GENERATED BY DEFAULT columns.
This means that for GENERATED ALWAYS columns, no rows will be rejected.
This modifier cannot be used with the rowchangetimestampmissing modifier.

rowchangetimestampmissing

If this modifier is specified, the utility assumes that the input data file contains no
data for the row change timestamp column (not even NULLs), and will therefore
generate a value for each row. The behavior will be the same for both
GENERATED ALWAYS and GENERATED BY DEFAULT columns. This modifier
cannot be used with the rowchangetimestampignore modifier.

seclabelchar

Indicates that security labels in the input source file are in the string format for
security label values rather than in the default encoded numeric format. IMPORT
converts each security label into the internal format as it is loaded. If a string is
not in the proper format the row is not loaded and a warning (SQLSTATE 01H53)
is returned. If the string does not represent a valid security label that is part of
the security policy protecting the table then the row is not loaded and a warning
(SQLSTATE 01H53, SQLCODE SQL3243W)) is returned.

This modifier cannot be specified if the seclabelname modifier is specified,
otherwise the import fails and an error (SQLCODE SQL3525N) is returned.

seclabelname

Indicates that security labels in the input source file are indicated by their name
rather than the default encoded numeric format. IMPORT will convert the name to
the appropriate security label if it exists. If no security label exists with the
indicated name for the security policy protecting the table the row is not loaded
and a warning (SQLSTATE 01H53, SQLCODE SQL3244W) is returned.

This modifier cannot be specified if the seclabelchar modifier is specified,
otherwise the import fails and an error (SQLCODE SQL3525N) is returned.
Note: If the file type is ASC, any spaces following the name of the security label
will be interpreted as being part of the name. To avoid this use the striptblanks
file type modifier to make sure the spaces are removed.

transactionidignore

This modifier informs the import utility that data for the TRANSACTION START
ID column is present in the data file but should be ignored. When this modifier is
specified, the value for the TRANSACTION START ID column is generated by

the utility. This modifier cannot be used with the transactionidmissing modifier.

transactionidmissing

If this modifier is specified, the utility assumes that the input data file contains no
data for the TRANSACTION START ID columns. When this modifier is specified,
the value for the TRANSACTION START ID column is generated by the utility.
This modifier cannot be used with the transactionidignore modifier.

84 Administrative Routines and Views

Table 36. Valid file type modifiers

for the import utility: All file formats (continued)

Modifier

Description

usedefaults

If a source column for a target table column has been specified, but it contains no
data for one or more row instances, default values are loaded. Examples of
missing data are:

"non

» For DEL files: two adjacent column delimiters (",,") or two adjacent column
delimiters separated by an arbitrary number of spaces (", ,") are specified for a
column value.

* For DEL/ASC files: A row that does not have enough columns, or is not long
enough for the original specification.
Note: For ASC files, NULL column values are not considered explicitly
missing, and a default will not be substituted for NULL column values. NULL
column values are represented by all space characters for numeric, date, time,
and /timestamp columns, or by using the NULL INDICATOR for a column of
any type to indicate the column is NULL.

Without this option, if a source column contains no data for a row instance, one
of the following occurs:

e For DEL/ASC files: If the column is nullable, a NULL is loaded. If the column
is not nullable, the utility rejects the row.

Table 37. Valid file type modifiers

for the import utility: ASCII file formats (ASC/DEL)

Modifier

Description

codepage=x

x is an ASCII character string. The value is interpreted as the code page of the
data in the input data set. Converts character data from this code page to the
application code page during the import operation.

The following rules apply:

* For pure DBCS (graphic) mixed DBCS, and EUC, delimiters are restricted to the
range of x00 to x3F, inclusive.

* nulTindchar must specify symbols included in the standard ASCII set between
code points x20 and x7F, inclusive. This refers to ASCII symbols and code
points.

Note:
1. The codepage modifier cannot be used with the Tobsinfile modifier.

2. If data expansion occurs when the code page is converted from the
application code page to the database code page, the data might be truncated
and loss of data can occur.

dateformat="x"

x is the format of the date in the source file.” Valid date elements are:

YYYY Year (four digits ranging from 0000 - 9999)

M Month (one or two digits ranging from 1 - 12)

MM Month (two digits ranging from 01 - 12; mutually exclusive with M)
D Day (one or two digits ranging from 1 - 31)

DD Day (two digits ranging from 01 - 31; mutually exclusive with D)

DDD Day of the year (three digits ranging from 001 - 366, mutually exclusive
with other day or month elements)

A default value of 1 is assigned for each element that is not specified. Some
examples of date formats are:

"D-M-YYYY"

“MM.DD.YYYY"

"YYYYDDD"

Built-in routines and views 85

Table 37. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

implieddecimal The location of an implied decimal point is determined by the column definition;
it is no longer assumed to be at the end of the value. For example, the value
12345 is loaded into a DECIMAL(8,2) column as 123.45, not 12345.00.

timeformat="x" x is the format of the time in the source file.? Valid time elements are:

H Hour (one or two digits ranging from 0 - 12 for a 12 hour system, and 0
- 24 for a 24 hour system)

HH Hour (two digits ranging from 00 - 12 for a 12 hour system, and 00 - 24
for a 24 hour system; mutually exclusive with H)

M Minute (one or two digits ranging from 0 - 59)

MM Minute (two digits ranging from 00 - 59; mutually exclusive with M)
S Second (one or two digits ranging from 0 - 59)

SS Second (two digits ranging from 00 - 59; mutually exclusive with S)

SSSSS Second of the day after midnight (5 digits ranging from 00000 - 86400;
mutually exclusive with other time elements)

TT Meridian indicator (AM or PM)

A default value of 0 is assigned for each element that is not specified. Some
examples of time formats are:
"HH:MM:SS"

"HH.MM TT"
"SSSSS”

86 Administrative Routines and Views

Table 37. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL) (continued)

Modifier

Description

timestampformat="x"

x is the format of the time stamp in the source file.” Valid time stamp elements
are:

YYYY Year (four digits ranging from 0000 - 9999)
M Month (one or two digits ranging from 1 - 12)

MM Month (two digits ranging from 01 - 12; mutually exclusive with M and
MMM)

MMM Month (three-letter case-insensitive abbreviation for the month name;
mutually exclusive with M and MM)

D Day (one or two digits ranging from 1 - 31)
DD Day (two digits ranging from 01 - 31; mutually exclusive with D)

DDD Day of the year (three digits ranging from 001 - 366; mutually exclusive
with other day or month elements)

H Hour (one or two digits ranging from 0 - 12 for a 12 hour system, and 0
- 24 for a 24 hour system)

HH Hour (two digits ranging from 00 - 12 for a 12 hour system, and 00 - 24
for a 24 hour system; mutually exclusive with H)

M Minute (one or two digits ranging from 0 - 59)

MM Minute (two digits ranging from 00 - 59; mutually exclusive with M,
minute)

S Second (one or two digits ranging from 0 - 59)

SS Second (two digits ranging from 00 - 59; mutually exclusive with S)

SSSSS Second of the day after midnight (5 digits ranging from 00000 - 86400;
mutually exclusive with other time elements)

U (1 to 12 times)
Fractional seconds(number of occurrences of U represent the number of
digits with each digit ranging from 0 to 9

TT Meridian indicator (AM or PM)

A default value of 1 is assigned for unspecified YYYY, M, MM, D, DD, or DDD
elements. A default value of 'Jan' is assigned to an unspecified MMM element. A
default value of 0 is assigned for all other unspecified elements. Following is an
example of a time stamp format:

"YYYY/MM/DD HH:MM:SS.uuuuuu"

The valid values for the MMM element include: 'jan', 'feb', 'mar', 'apr', 'may',
"jun', '"jul', 'aug', 'sep', 'oct', 'nov' and 'dec'. These values are case
insensitive.

The following example illustrates how to import data containing user defined
date and time formats into a table called schedule:
db2 import from delfile2 of del

modified by timestampformat="yyyy.mm.dd hh:mm tt"
insert into schedule

Built-in routines and views 87

Table 37. Valid file type modifiers

for the import utility: ASCII file formats (ASC/DEL) (continued)

Modifier

Description

usegraphiccodepage

If usegraphiccodepage is given, the assumption is made that data being imported
into graphic or double-byte character large object (DBCLOB) data fields is in the
graphic code page. The rest of the data is assumed to be in the character code
page. The graphic code page is associated with the character code page. IMPORT
determines the character code page through either the codepage modifier, if it is
specified, or through the code page of the application if the codepage modifier is
not specified.

This modifier should be used in conjunction with the delimited data file
generated by drop table recovery only if the table being recovered has graphic
data.

Restrictions

The usegraphiccodepage modifier MUST NOT be specified with DEL files created
by the EXPORT utility, as these files contain data encoded in only one code page.
The usegraphiccodepage modifier is also ignored by the double-byte character
large objects (DBCLOBs) in files.

xmlchar

Specifies that XML documents are encoded in the character code page.

This option is useful for processing XML documents that are encoded in the
specified character code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute,
the encoding must match the character code page, otherwise the row containing
the document will be rejected. Note that the character code page is the value
specified by the codepage file type modifier, or the application code page if it is
not specified. By default, either the documents are encoded in Unicode, or they
contain a declaration tag with an encoding attribute.

xmlgraphic

Specifies that XML documents are encoded in the specified graphic code page.

This option is useful for processing XML documents that are encoded in a specific
graphic code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute,
the encoding must match the graphic code page, otherwise the row containing
the document will be rejected. Note that the graphic code page is the graphic
component of the value specified by the codepage file type modifier, or the
graphic component of the application code page if it is not specified. By default,
documents are either encoded in Unicode, or they contain a declaration tag with
an encoding attribute.

Note: If the xmlgraphic modifier is specified with the IMPORT command, the XML
document to be imported must be encoded in the UTF-16 code page. Otherwise,
the XML document may be rejected with a parsing error, or it may be imported
into the table with data corruption.

Table 38. Valid file type modifiers

for the import utility: ASC (non-delimited ASCII) file format

Modifier

Description

nochecklengths

If nochecklengths is specified, an attempt is made to import each row, even if the
source data has a column definition that exceeds the size of the target table
column. Such rows can be successfully imported if code page conversion causes
the source data to shrink; for example, 4-byte EUC data in the source could
shrink to 2-byte DBCS data in the target, and require half the space. This option
is particularly useful if it is known that the source data will fit in all cases despite
mismatched column definitions.

88 Administrative Routines and Views

Table 38. Valid file type modifiers for the import utility: ASC (non-delimited ASCII) file format (continued)

Modifier

Description

nullindchar=x

x is a single character. Changes the character denoting a null value to x. The
default value of x is Y.?

This modifier is case sensitive for EBCDIC data files, except when the character is
an English letter. For example, if the null indicator character is specified to be the
letter N, then n is also recognized as a null indicator.

reclen=x

x is an integer with a maximum value of 32 767. x characters are read for each
row, and a new-line character is not used to indicate the end of the row.

striptblanks

Truncates any trailing blank spaces when loading data into a variable-length field.
If this option is not specified, blank spaces are kept.

In the following example, striptblanks causes the import utility to truncate
trailing blank spaces:
db2 import from myfile.asc of asc
modified by striptblanks

method 1 (1 10, 12 15) messages msgs.txt
insert into staff

This option cannot be specified together with striptnulls. These are mutually
exclusive options. This option replaces the obsolete t option, which is supported
for earlier compatibility only.

striptnulls

Truncates any trailing NULLs (0x00 characters) when loading data into a
variable-length field. If this option is not specified, NULLs are kept.

This option cannot be specified together with striptblanks. These are mutually
exclusive options. This option replaces the obsolete padwithzero option, which is
supported for earlier compatibility only.

Table 39. Valid file type modifiers for the import utility: DEL (delimited ASCII) file format

Modifier

Description

chardelx

x is a single character string delimiter. The default value is a double quotation
mark ("). The specified character is used in place of double quotation marks to
enclose a character string.* If you want to explicitly specify the double quotation
mark as the character string delimiter, it should be specified as follows:

modified by chardel""

The single quotation mark (') can also be specified as a character string delimiter.
In the following example, chardel'' causes the import utility to interpret any
single quotation mark (') it encounters as a character string delimiter:

db2 "import from myfile.del of del

modified by chardel''
method p (1, 4) insert into staff (id, years)"

coldelx

x is a single character column delimiter. The default value is a comma (,). The
specified character is used in place of a comma to signal the end of a column.**

In the following example, coldel; causes the import utility to interpret any
semicolon (;) it encounters as a column delimiter:
db2 import from myfile.del of del
modified by coldel;
messages msgs.txt insert into staff

decplusblank

Plus sign character. Causes positive decimal values to be prefixed with a blank
space instead of a plus sign (+). The default action is to prefix positive decimal
values with a plus sign.

Built-in routines and views 89

Table 39. Valid file type modifiers

for the import utility: DEL (delimited ASCII) file format (continued)

Modifier

Description

decptx

x is a single character substitute for the period as a decimal point character. The
default value is a period (.). The specified character is used in place of a period as
a decimal point character.*

In the following example, decpt; causes the import utility to interpret any
semicolon (;) it encounters as a decimal point:
db2 "import from myfile.del of del

modified by chardel''
decpt; messages msgs.txt insert into staff"

delprioritychar

The current default priority for delimiters is: record delimiter, character delimiter,
column delimiter. This modifier protects existing applications that depend on the
older priority by reverting the delimiter priorities to: character delimiter, record
delimiter, column delimiter. Syntax:

db2 import ... modified by delprioritychar ...

For example, given the following DEL data file:
"Smith, Joshua",4000,34.98<row delimiter>

"Vincent,<row delimiter>, is a manager", ...
. 4005,44.37<row delimiter>

With the delprioritychar modifier specified, there will be only two rows in this
data file. The second <row delimiter> will be interpreted as part of the first data
column of the second row, while the first and the third <row delimiter> are
interpreted as actual record delimiters. If this modifier is not specified, there will
be three rows in this data file, each delimited by a <row delimiter>.

keepblanks

Preserves the leading and trailing blanks in each field of type CHAR, VARCHAR,
LONG VARCHAR, or CLOB. Without this option, all leading and trailing blanks

that are not inside character delimiters are removed, and a NULL is inserted into
the table for all blank fields.

nochardel

The import utility will assume all bytes found between the column delimiters to
be part of the column's data. Character delimiters will be parsed as part of
column data. This option should not be specified if the data was exported using
DB2 (unless nochardel was specified at export time). It is provided to support
vendor data files that do not have character delimiters. Improper usage might
result in data loss or corruption.

This option cannot be specified with chardelx, delprioritychar or nodoubledel.
These are mutually exclusive options.

nodoubledel

Suppresses recognition of double character delimiters.

Table 40. Valid file type modifiers

for the import utility: IXF file format

Modifier

Description

forcein

Directs the utility to accept data despite code page mismatches, and to suppress
translation between code pages.

Fixed length target fields are checked to verify that they are large enough for the
data. If nochecklengths is specified, no checking is done, and an attempt is made
to import each row.

indexixf

Directs the utility to drop all indexes currently defined on the existing table, and
to create new ones from the index definitions in the PC/IXF file. This option can
only be used when the contents of a table are being replaced. It cannot be used
with a view, or when a insert-column is specified.

90 Administrative Routines and Views

Table 40. Valid file type modifiers for the import utility: IXF file format (continued)

Modifier

Description

indexschema=schema

Uses the specified schema for the index name during index creation. If schema is
not specified (but the keyword indexschema is specified), uses the connection user
ID. If the keyword is not specified, uses the schema in the IXF file.

nochecklengths

If nochecklengths is specified, an attempt is made to import each row, even if the
source data has a column definition that exceeds the size of the target table
column. Such rows can be successfully imported if code page conversion causes
the source data to shrink; for example, 4-byte EUC data in the source could
shrink to 2-byte DBCS data in the target, and require half the space. This option
is particularly useful if it is known that the source data will fit in all cases despite
mismatched column definitions.

forcecreate

Specifies that the table should be created with possible missing or limited
information after returning SQL3311N during an import operation.

Table 41. IMPORT behavior when using codepage and usegraphiccodepage

codepage=N

usegraphiccodepage

IMPORT behavior

Absent

Absent

All data in the file is assumed to be in the application
code page.

Present

Absent

All data in the file is assumed to be in code page N.

Warning: Graphic data will be corrupted when
imported into the database if N is a single-byte code

page.

Absent

Present

Character data in the file is assumed to be in the
application code page. Graphic data is assumed to be in
the code page of the application graphic data.

If the application code page is single-byte, then all data
is assumed to be in the application code page.

Warning: If the application code page is single-byte,
graphic data will be corrupted when imported into the
database, even if the database contains graphic columns.

Present

Present

Character data is assumed to be in code page N. Graphic
data is assumed to be in the graphic code page of N.

If N is a single-byte or double-byte code page, then all
data is assumed to be in code page N.

Warning: Graphic data will be corrupted when
imported into the database if N is a single-byte code

page.

Note:

1.

The import utility does not issue a warning if an attempt is made to use
unsupported file types with the MODIFIED BY option. If this is attempted, the
import operation fails, and an error code is returned.

Double quotation marks around the date format string are mandatory. Field
separators cannot contain any of the following: a-z, A-Z, and 0-9. The field
separator should not be the same as the character delimiter or field delimiter
in the DEL file format. A field separator is optional if the start and end

Built-in routines and views 91

positions of an element are unambiguous. Ambiguity can exist if (depending
on the modifier) elements such as D, H, M, or S are used, because of the
variable length of the entries.

For time stamp formats, care must be taken to avoid ambiguity between the
month and the minute descriptors, since they both use the letter M. A month
field must be adjacent to other date fields. A minute field must be adjacent to
other time fields. Following are some ambiguous time stamp formats:

"M" (could be a month, or a minute)

"M:M" (Which is which?)

"M:YYYY:M" (Both are interpreted as month.)

"S:M:YYYY" (adjacent to both a time value and a date value)

In ambiguous cases, the utility will report an error message, and the operation
will fail.

Following are some unambiguous time stamp formats:

"M:YYYY" (Month)

"S:M" (Minute)

"M:YYYY:S:M" (Month....Minute)
"M:H:YYYY:M:D" (Minute....Month)

Some characters, such as double quotation marks and back slashes, must be
preceded by an escape character (for example, \).

3. Character values provided for the chardel, coldel, or decpt file type modifiers
must be specified in the code page of the source data.

The character code point (instead of the character symbol), can be specified
using the syntax xJJ or 0x]JJ, where JJ is the hexadecimal representation of the
code point. For example, to specify the # character as a column delimiter, use
one of the following statements:

. modified by coldel# ...
. modified by coldelOx23 ...
. modified by coldelX23 ...

4. Delimiter considerations for moving data lists restrictions that apply to the
characters that can be used as delimiter overrides.

5. The following file type modifiers are not allowed when importing into a
nickname:

* indexixf
* indexschema
e dlidelfiletype
* nodefaults
* usedefaults
* no_type_idfiletype
* generatedignore
e generatedmissing
* identityignore
* ijdentitymissing
* lobsinfile
6. The CREATE mode is not supported for XML columns.

7. All XML data must reside in XML files that are separate from the main data
file. An XML Data Specifier (XDS) (or a NULL value) must exist for each XML
column in the main data file.

8. XML documents are assumed to be in Unicode format or to contain a

declaration tag that includes an encoding attribute, unless the XMLCHAR or
XMLGRAPHIC file type modifier is specified.

92 Administrative Routines and Views

9. Rows containing documents that are not well-formed will be rejected.

10. If the XMLVALIDATE option is specified, documents that successfully validate

11.

against their matching schema will be annotated with the schema information
as they are inserted. Rows containing documents that fail to validate against
their matching schema will be rejected. To successfully perform the validation,
the privileges held by the user invoking the import must include at least one
of the following:

¢ DBADM authority
¢ USAGE privilege on the XML schema to be used in the validation

When multiple modifiers suffixed with ignore, include, missing, and override
are specified, they are applied in the order that they are listed. In the
following statement, data for implicitly hidden columns that are not identity
columns is included in the input data. While data for all identity columns,
regardless of their implicitly hidden status, is not.

db2 import from delfilel of del modified by
implicitlyhiddeninclude identitymissing insert into tablel

However, changing the order of the file type modifiers in the following
statement means that data for all implicitly hidden columns (including hidden
identity columns) is included in the input data. While data for identity
columns that are not implicitly hidden is not.

db2 import from delfilel of del modified by
identitymissing implicitlyhiddeninclude insert into tablel

If the DB2_DMU_DEFAULT registry variable is set to
IMPLICITLYHIDDENINCLUDE, then:

db2set DB2_DMU_DEFAULT=IMPLICITLYHIDDENINCLUDE
db2 import from delfilel of del modified by identitymissing insert into tablel

is equivalent to:

db2 import from delfilel of del modified by
implicitlyhiddeninclude identitymissing insert into tablel

INITIALIZE TAPE command using the ADMIN_CMD procedure:

Initializes tapes for backup and restore operations to streaming tape devices. This
command is only supported on Windows operating systems.

Authorization

One of the following authorities:
* SYSADM

¢ SYSCTRL

* SYSMAINT

Required connection

Database

Command syntax

»»—INITIALIZE TAPE ><

|—ON—device—| I—USING—blksize—|

Built-in routines and views 93

Command parameters

ON device
Specifies a valid tape device name. The default value is \\.\TAPEO. The
device specified must be relative to the server.

USING blksize
Specifies the block size for the device, in bytes. The device is initialized to
use the block size specified, if the value is within the supported range of
block sizes for the device.

The buffer size specified for the BACKUP DATABASE command and for
RESTORE DATABASE must be divisible by the block size specified here.

If a value for this parameter is not specified, the device is initialized to use
its default block size. If a value of zero is specified, the device is initialized
to use a variable length block size; if the device does not support variable
length block mode, an error is returned.

When backing up to tape, use of a variable block size is currently not
supported. If you must use this option, ensure that you have well tested
procedures in place that enable you to recover successfully, using backup
images that were created with a variable block size.

When using a variable block size, you must specify a backup buffer size
that is less than or equal to the maximum limit for the tape devices that
you are using. For optimal performance, the buffer size must be equal to
the maximum block size limit of the device being used.

Example

Initialize the tape device to use a block size of 2048 bytes, if the value is within the
supported range of block sizes for the device.

CALL SYSPROC.ADMIN_CMD('initialize tape using 2048')
Usage notes

Command execution status is returned in the SQLCA resulting from the CALL
statement.

LOAD command using the ADMIN_CMD procedure:
Loads data into a DB2 table.

Data stored on the server can be in the form of a file, tape, or named pipe. Data
can also be loaded from a cursor defined from a query running against the
currently connected database, a different database, or by using a user-written script
or application. If the COMPRESS attribute for the table is set to YES, the data loaded is
subject to compression on every data and database partition for which a dictionary
exists in the table, including data in the XML storage object of the table.

Quick link to “File type modifiers for the load utility” on page 121.
Restrictions

The load utility does not support loading data at the hierarchy level. The load
utility is not compatible with range-clustered tables. The load utility does not
support the NOT LOGGED INITIALLY parameter for the CREATE TABLE or
ALTER TABLE statements.

94 Administrative Routines and Views

Scope

This command can be issued against multiple database partitions in a single
request.

Authorization

One of the following authorities:
* DATAACCESS
¢ LOAD authority on the database and the following privileges:

— INSERT privilege on the table when the load utility is invoked in INSERT
mode, TERMINATE mode (to terminate a previous load insert operation), or
RESTART mode (to restart a previous load insert operation)

— INSERT and DELETE privilege on the table when the load utility is invoked
in REPLACE mode, TERMINATE mode (to terminate a previous load replace
operation), or RESTART mode (to restart a previous load replace operation)

— INSERT privilege on the exception table, if such a table is used as part of the
load operation.

* To load data into a table that has protected columns, the session authorization
ID must have LBAC credentials directly or indirectly through a group or a role
that allow write access to all protected columns in the table. Otherwise the load
fails and an error (SQLSTATE 5U014) is returned.

* To load data into a table that has protected rows, the session authorization ID
must hold a security label that meets these criteria:

— The security label is part of the security policy protecting the table.

— The security label was granted to the session authorization ID directly or
indirectly through a group or a role for write access or for all access.

If the session authorization ID does not hold such a security label, then the load
fails and an error (SQLSTATE 5U014) is returned. The security label protects a
loaded row if the session authorization ID LBAC credentials do not allow it to
write to the security label that protects that row in the data. This does not
happen, however, when the security policy protecting the table was created with
the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option of the
CREATE SECURITY POLICY statement. In this case the load fails and an error
(SQLSTATE 42519) is returned.

When you load data into a table with protected rows, the target table has one
column with a data type of DB2SECURITYLABEL. If the input row of data does
not contain a value for that column, that row is rejected unless the usedefaults
file type modifier is specified in the load command, in which case the security
label you hold for write access from the security policy protecting the table is
used. If you do not hold a security label for write access, the row is rejected and
processing continues on to the next row

* If the REPLACE option is specified, the session authorization ID must have the
authority to drop the table.

¢ If the LOCK WITH FORCE option is specified, SYSADM authority is required.
e If the table has row access control activated, then LOAD REPLACE on that table

would require the ability to drop the table. Specifically, you must have either
CONTROL or DBADM on the table.

Since all load processes (and all DB2 server processes, in general) are owned by the

instance owner, and all of these processes use the identification of the instance
owner to access needed files, the instance owner must have read access to input

Built-in routines and views 95

data files. These input data files must be readable by the instance owner, regardless
of who invokes the command.

Required connection
Database.

Instance. An explicit attachment is not required. If a connection to the database has
been established, an implicit attachment to the local instance is attempted.

Command syntax

»»—| OAD—FROM—Y——fi lename OF—filetyp >
pipenai

evice
(—query-statement—)
(—DATABASE—database-al ias—query-statement—)—

L-LOBS FROM—'lob-path]—| \»XML FROM—'xml-path]—‘ \»MODIFIED BY.

L_METHOD. L—(—X col-sturt—col-end]—)

Y_fi le-type-mod]—‘

\\NULL INDICATORS—(—'nuZl-indicator-list]—)J

N—(—Y—col-nam)
p—(—X col—position]—)

|—XMLPARSE—l:STRIP WHITESPACE—I
PRESERVE:

|—XMLVALIDATE USING XDS: i Ignore and Map parameters '——l |—SAVIZCOUNT—n—I
|—DEFAU LT—schema-sql id—l

SCHEMA—schema-sqlid

SCHEMALOCATION HINTS

|—R()WCOUNT—n—I |—l/tlARNINGCOUNT—n—I I—MESSAGES ON SERVER—I |—TEMPFILES PATH—temp-pathname—l

»——INSERT: INTO—table-na >
KEEPDICTIONARY: s
e = 1
|—RESETDICTIONARY— (—insert-column)
—RESTART:
L TERMINATE:

5 I—STATISTICS USE PROFILE-
"0 © | No——]

L_FOR EXCEPTION—table-name—Y |: _|

NORANGEEXC
NOUNIQUEEXC—

96 Administrative Routines and Views

WITHOUT PROMPTING
[1

NO I
COPY. YES USE TSM
LopEN—num-sess—sEssTons—]

T0—device/directory

LOAD—I ib

I—OPEN—num—sess—SESSIONSJ

NONRECOVERABLE

|—DATA BUFFER—buffer‘-size—I |—SORT BUFFER—buffer-size—l |—CPU_PARALLELISM—n—I |—DISK_PARALLELISM—n—I

ALLOW NO ACCESS
r | .

|—INDEXING MODE:- AUTOSELECT: |—ALLOW READ ACCESS |
REBUILD l—USE—tablespace—name—l
INCREMENTAL:
DEFERRE
I_ YES:l |—SET INTEGRITY PENDING CASCADE IMMEDIATE_—I—| |—LOCK WITH FORCEJ
FETCH_PARALLELISM NO DEFERRED:

|—SOURCEUSEREXIT—executable—| Redirect Input/Output parameters '—L—J—I
PARALLELIZE-

rPARTITIONED DB CONFIG—l | |
Y _partitioned-db-option

Ignore and Map parameters:

IGNORE— (——schema-sqlid——)

MAP— (—Y—(—schema-sqlid—,—schema-sqlid—)——)

Redirect Input/Output parameters:

| |
1
I—REDIRECT—|:INPUT FRO BUFFER—input-buffer |

FILE—input-file— 1 LOUTPUT TO FILE—output-file—)
OUTPUT TO FILE—output-file

Notes:
1 These keywords can appear in any order.

2 Each of these keywords can only appear once.

Built-in routines and views 97

Command parameters

FROM filename | pipename | device(query-statement) | (DATABASE database-alias
query-statement)
Specifies the file, pipe or device referring to an SQL statement that contains
the data being loaded, or the SQL statement itself and the optional source
database to load from cursor.

The query-statement option is used to LOAD from a cursor. It contains only
one query statement, which is enclosed in parentheses, and can start with
VALUES, SELECT or WITH. For example,

LOAD FROM (SELECT * FROM T1) OF CURSOR INSERT INTO T2

When the DATABASE database-alias clause is included before the query
statement in the parentheses, the LOAD command will attempt to load the
data using the query-statement from the given database as indicated by the
database-alias name. Note that the LOAD will be executed using the user ID
and password explicitly provided for the currently connected database (an
implicit connection will cause the LOAD to fail).

If the input source is a file, pipe, or device, it must be accessible from the
coordinator partition on the server.

If several names are specified, they will be processed in sequence. If the
last item specified is a tape device and the user is prompted for a tape, the
LOAD will fail and the ADMIN_CMD procedure will return an error.

Note:

A fully qualified path file name must be used and must exist on the
server.

* If data is exported into a file using the EXPORT command using the
ADMIN_CMD procedure, the data file is owned by the fenced user ID.
This file is not usually accessible by the instance owner. To run the LOAD
from CLP or the ADMIN_CMD procedure, the data file must be
accessible by the instance owner ID, so read access to the data file must
be granted to the instance owner.

* Loading data from multiple IXF files is supported if the files are
physically separate, but logically one file. It is not supported if the files
are both logically and physically separate. Note that if more than one
logically and physically separate files are specified, then any file after
the first one is ignored. (Multiple physical files would be considered
logically one if they were all created with one invocation of the EXPORT
command.)

* When loading XML data from files into tables in a partitioned database
environment, the XML data files must be read-accessible to all the
database partitions where loading is taking place.

OF filetype

Specifies the format of the data:

* ASC (non-delimited ASCII format)

* DEL (delimited ASCII format)

* IXF (Integration Exchange Format, PC version) is a binary format that is
used exclusively by DB2 databases.

* CURSOR (a cursor declared against a SELECT or VALUES statement).

Note:

98 Administrative Routines and Views

* When using a CURSOR file type to load XML data into a table in a
distributed database environment, the PARTITION_ONLY and
LOAD_ONLY modes are not supported.

* When performing a load using the CURSOR file type where the
DATABASE keyword was specified during the DECLARE CURSOR
statement, load internally spawns a separate application to fetch the
data; whereas when the DATABASE keyword is not specified, load
fetches data within the same application. This difference between the
two cases can also cause locking behavior difference. In particular, if you
currently specify the DATABASE keyword using the same database as
the currently connected database (and same userid and password as the
current connection, if specified), there might be cases where you get into
a lock issue (such as a lock wait or lock timeout, depending on the
database configuration) which can be worked around by omitting the
DATABASE keyword.

LOBS FROM lob-path

The path to the data files containing LOB values to be loaded. The path
must end with a slash. The path must be fully qualified and accessible
from the coordinator partition on the server . The names of the LOB data
files are stored in the main data file (ASC, DEL, or IXF), in the column that
will be loaded into the LOB column. The maximum number of paths that
can be specified is 999. This will implicitly activate the LOBSINFILE
behavior.

This option is ignored when specified in conjunction with the CURSOR file
type.

MODIFIED BY file-type-mod

METHOD

Specifies file type modifier options. See “File type modifiers for the load
utility” on page 121.

L Specifies the start and end column numbers from which to load
data. A column number is a byte offset from the beginning of a
row of data. It is numbered starting from 1. This method can only
be used with ASC files, and is the only valid method for that file

type.

NULL INDICATORS null-indicator-list
This option can only be used when the METHOD L parameter
is specified; that is, the input file is an ASC file). The null
indicator list is a comma-separated list of positive integers
specifying the column number of each null indicator field.
The column number is the byte offset of the null indicator
field from the beginning of a row of data. There must be
one entry in the null indicator list for each data field
defined in the METHOD L parameter. A column number of
zero indicates that the corresponding data field always
contains data.

A value of Y in the NULL indicator column specifies that
the column data is NULL. Any character other than Y in
the NULL indicator column specifies that the column data
is not NULL, and that column data specified by the METHOD
L option will be loaded.

The NULL indicator character can be changed using the
MODIFIED BY option.

Built-in routines and views 99

Specifies the names of the columns in the data file to be loaded.
The case of these column names must match the case of the
corresponding names in the system catalogs. Each table column
that is not nullable should have a corresponding entry in the
METHOD N list. For example, given data fields F1, F2, F3, F4, F5, and
F6, and table columns C1 INT, C2 INT NOT NULL, C3 INT NOT
NULL, and C4 INT, method N (F2, F1, F4, F3) is a valid request,
while method N (F2, F1) is not valid. This method can only be
used with file types IXF or CURSOR.

Specifies the field numbers (numbered from 1) of the input data
fields to be loaded. Each table column that is not nullable should
have a corresponding entry in the METHOD P list. For example, given
data fields F1, F2, F3, F4, F5, and F6, and table columns C1 INT, C2
INT NOT NULL, C3 INT NOT NULL, and C4 INT, method P (2,
1, 4, 3) is a valid request, while method P (2, 1) is not valid.
This method can only be used with file types IXF, DEL, or
CURSOR, and is the only valid method for the DEL file type.

For each of the fields specified by method P, you need to define a
corresponding column in the action statement, unless all columns
are accounted for or the first x columns are going to be loaded, as
shown in the following example:

db2 import from datafilel.del of del method P(1, 3, 4)
replace into tablel (cl, c3, c4)

XML FROM xml-path
Specifies one or more paths that contain the XML files. XDSs are contained
in the main data file (ASC, DEL, or IXF), in the column that will be loaded
into the XML column.

XMLPARSE

Specifies how XML documents are parsed. If this option is not specified,
the parsing behavior for XML documents will be determined by the value
of the CURRENT XMLPARSE OPTION special register.

STRIP WHITESPACE

Specifies to remove whitespace when the XML document is parsed.

PRESERVE WHITESPACE

XMLVALIDATE

Specifies not to remove whitespace when the XML document is
parsed.

Specifies that XML documents are validated against a schema, when
applicable.

USING XDS

100 Administrative Routines and Views

XML documents are validated against the XML schema identified
by the XML Data Specifier (XDS) in the main data file. By default,
if the XMLVALIDATE option is invoked with the USING XDS clause, the
schema used to perform validation will be determined by the SCH
attribute of the XDS. If an SCH attribute is not present in the XDS,
no schema validation will occur unless a default schema is
specified by the DEFAULT clause.

The DEFAULT, IGNORE, and MAP clauses can be used to modify the
schema determination behavior. These three optional clauses apply
directly to the specifications of the XDS, and not to each other. For
example, if a schema is selected because it is specified by the

DEFAULT clause, it will not be ignored if also specified by the IGNORE
clause. Similarly, if a schema is selected because it is specified as
the first part of a pair in the MAP clause, it will not be re-mapped if
also specified in the second part of another MAP clause pair.

USING SCHEMA schema-sqlid
XML documents are validated against the XML schema with the
specified SQL identifier. In this case, the SCH attribute of the XML
Data Specifier (XDS) will be ignored for all XML columns.

USING SCHEMALOCATION HINTS
XML documents are validated against the schemas identified by
XML schema location hints in the source XML documents. If a
schemalocation attribute is not found in the XML document, no
validation will occur. When the USING SCHEMALOCATION HINTS clause
is specified, the SCH attribute of the XML Data Specifier (XDS) will
be ignored for all XML columns.

See examples of the XMLVALIDATE option in the following section.

IGNORE schema-sqlid
This option can only be used when the USING XDS parameter is specified.
The IGNORE clause specifies a list of one or more schemas to ignore if they
are identified by an SCH attribute. If an SCH attribute exists in the XML
Data Specifier for a loaded XML document, and the schema identified by
the SCH attribute is included in the list of schemas to ignore, then no
schema validation will occur for the loaded XML document.

Note:

If a schema is specified in the IGNORE clause, it cannot also be present in
the left side of a schema pair in the MAP clause.

The IGNORE clause applies only to the XDS. A schema that is mapped by
the MAP clause will not be subsequently ignored if specified by the IGNORE
clause.

DEFAULT schema-sqlid
This option can only be used when the USING XDS parameter is specified.
The schema specified through the DEFAULT clause identifies a schema to use
for validation when the XML Data Specifier (XDS) of a loaded XML
document does not contain an SCH attribute identifying an XML Schema.

The DEFAULT clause takes precedence over the IGNORE and MAP clauses. If an
XDS satisfies the DEFAULT clause, the IGNORE and MAP specifications will be
ignored.

MAP schema-sqlid
This option can only be used when the USING XDS parameter is specified.
Use the MAP clause to specify alternate schemas to use in place of those
specified by the SCH attribute of an XML Data Specifier (XDS) for each
loaded XML document. The MAP clause specifies a list of one or more
schema pairs, where each pair represents a mapping of one schema to
another. The first schema in the pair represents a schema that is referred to
by an SCH attribute in an XDS. The second schema in the pair represents
the schema that should be used to perform schema validation.

If a schema is present in the left side of a schema pair in the MAP clause, it
cannot also be specified in the IGNORE clause.

Built-in routines and views 101

Once a schema pair mapping is applied, the result is final. The mapping
operation is non-transitive, and therefore the schema chosen will not be
subsequently applied to another schema pair mapping.

A schema cannot be mapped more than once, meaning that it cannot
appear on the left side of more than one pair.

SAVECOUNT n
Specifies that the load utility is to establish consistency points after every n
rows. This value is converted to a page count, and rounded up to intervals
of the extent size. Since a message is issued at each consistency point, this
option should be selected if the load operation will be monitored using
LOAD QUERY. If the value of # is not sufficiently high, the synchronization of
activities performed at each consistency point will impact performance.

The default value is zero, meaning that no consistency points will be
established, unless necessary.

This option is not allowed when specified in conjunction with the
CURSOR file type or when loading a table containing an XML column.

ROWCOUNT n
Specifies the number of n physical records in the file to be loaded. Allows
a user to load only the first n rows in a file.

WARNINGCOUNT n
Stops the load operation after n warnings. Set this parameter if no
warnings are expected, but verification that the correct file and table are
being used is desired. If the load file or the target table is specified
incorrectly, the load utility will generate a warning for each row that it
attempts to load, which will cause the load to fail. If # is zero, or this
option is not specified, the load operation will continue regardless of the
number of warnings issued. If the load operation is stopped because the
threshold of warnings was encountered, another load operation can be
started in RESTART mode. The load operation will automatically continue
from the last consistency point. Alternatively, another load operation can
be initiated in REPLACE mode, starting at the beginning of the input file.

MESSAGES ON SERVER
Specifies that the message file created on the server by the LOAD command
is to be saved. The result set returned will include the following two
columns: MSG_RETRIEVAL, which is the SQL statement required to
retrieve all the warnings and error messages that occur during this
operation, and MSG_REMOVAL, which is the SQL statement required to
clean up the messages.

If this clause is not specified, the message file will be deleted when the
ADMIN_CMD procedure returns to the caller. The MSG_RETRIEVAL and
MSG_REMOVAL column in the result set will contain null values.

Note that with or without the clause, the fenced user ID must have the
authority to create files under the directory indicated by the
DB2_UTIL_MSGPATH registry variable.

TEMPFILES PATH temp-pathname
Specifies the name of the path to be used when creating temporary files
during a load operation, and should be fully qualified according to the
server database partition.

102 Administrative Routines and Views

Temporary files take up file system space. Sometimes, this space
requirement is quite substantial. The following list is an estimate of how
much file system space should be allocated for all temporary files:

* 136 bytes for each message that the load utility generates
* 15 KB overhead if the data file contains long field data or LOBs. This

quantity can grow significantly if the INSERT option is specified, and
there is a large amount of long field or LOB data already in the table.

INSERT One of four modes under which the load utility can execute. Adds the
loaded data to the table without changing the existing table data.

REPLACE

One of four modes under which the load utility can execute. Deletes all
existing data from the table, and inserts the loaded data. The table
definition and index definitions are not changed. If this option is used
when moving data between hierarchies, only the data for an entire
hierarchy, not individual subtables, can be replaced.

This option cannot be used to load data into system-period temporal

tables.

KEEPDICTIONARY

An existing compression dictionary is preserved across the LOAD
REPLACE operation. Provided the table COMPRESS attribute is YES,
the newly replaced data is subject to being compressed using the
dictionary that existed before the invocation of the load. If no
dictionary previously existed in the table, a new dictionary is built
using the data that is being replaced into the table as long as the
table COMPRESS attribute is YES. The amount of data that is
required to build the compression dictionary in this case is subject
to the policies of ADC. This data is populated into the table as
uncompressed. Once the dictionary is inserted into the table, the
remaining data to be loaded is subject to being compressed with
this dictionary. This is the default parameter. For summary, see
Table 1.

The following example keeps the old dictionary if it is currently in
the table:

CALL SYSPROC.ADMIN_CMD('load from staff.del of del replace
keepdictionary into SAMPLE.STAFF statistics use profile
data buffer 8')

Table 42. LOAD REPLACE KEEPDICTIONARY

Table row data

XML storage
object dictionary

Compress dictionary exists | exists' Compression dictionary |Data compression
YES YES YES Preserve table row data |Data to be loaded is subject to
and XML dictionaries. compression.
YES YES NO Preserve table row data | Table row data to be loaded is
dictionary and build a subject to compression. After
new XML dictionary. XML dictionary is built,

remaining XML data to be
loaded is subject to
compression.

Built-in routines and views 103

Table 42. LOAD REPLACE KEEPDICTIONARY (continued)

Table row data

XML storage
object dictionary

Compress dictionary exists | exists' Compression dictionary |Data compression
YES NO YES Build table row data After table row data
dictionary and preserve |dictionary is built, remaining
XML dictionary. table row data to be loaded is
subject to compression. XML
data to be loaded is subject to
compression.
YES NO NO Build new table row data | After dictionaries are built,
and XML dictionaries. remaining data to be loaded
is subject to compression.
NO YES YES Preserve table row data | Data to be loaded is not
and XML dictionaries. compressed.
NO YES NO Preserve table row data | Data to be loaded is not
dictionary. compressed.
NO NO YES No effect on table row Data to be loaded is not
dictionary. Preserve XML | compressed.
dictionary.
NO NO NO No effect. Data to be loaded is not
compressed.
Note:

104 Administrative Routines and Views

1. A compression dictionary can be created for the XML storage
object of a table only if the XML columns are added to the table
in DB2 Version 9.7 or later, or if the table is migrated using an
online table move.

2. If LOAD REPLACE KEEPDICTIONARY operation is interrupted, load
utility can recover after either LOAD RESTART or LOAD TERMINATE
is issued. Existing XML storage object dictionary may not be
preserved after recovery from interrupted LOAD REPLACE
KEEPDICTIONARY operation. A new XML storage object dictionary
will be created if LOAD RESTART is used

RESETDICTIONARY

This directive instructs LOAD REPLACE processing to build a new
dictionary for the table data object provided that the table
COMPRESS attribute is YES. If the COMPRESS attribute is NO and
a dictionary was already present in the table it will be removed
and no new dictionary will be inserted into the table. A
compression dictionary can be built with just one user record. If
the loaded data set size is zero and if there is a preexisting
dictionary, the dictionary will not be preserved. The amount of
data required to build a dictionary with this directive is not subject
to the policies of ADC. For summary, see Table 2.

The following example will reset the current dictionary and make a
new one:
CALL SYSPROC.ADMIN_CMD('load from staff.del of del replace

resetdictionary into SAMPLE.STAFF statistics use profile
data buffer 8')

Table 43. LOAD REPLACE RESETDICTIONARY

Table row data

XML storage object

Compress dictionary exists | dictionary exists’ Compression dictionary |Data compression

YES YES YES Build new dictionaries®. | After dictionaries are built,

If the DATA CAPTURE | remaining data to be loaded is
CHANGES option is subject to compression.
enabled on the CREATE

TABLE or ALTER TABLE

statements, the current

table row data dictionary

is kept (and referred to

as the historical

compression dictionary).

YES YES NO Build new dictionaries®. | After dictionaries are built,

If the DATA CAPTURE | remaining data to be loaded is
CHANGES option is subject to compression.
enabled on the CREATE

TABLE or ALTER TABLE

statements, the current

table row data dictionary

is kept (and referred to

as the historical

compression dictionary).

YES NO YES Build new dictionaries. After dictionaries are built,
remaining data to be loaded is
subject to compression.

YES NO NO Build new dictionaries. After dictionaries are built,
remaining data to be loaded is
subject to compression.

NO YES YES Remove dictionaries. Data to be loaded is not
compressed.

NO YES NO Remove table row data Data to be loaded is not

dictionary. compressed.

NO NO YES Remove XML storage Data to be loaded is not

object dictionary:. compressed.

NO NO NO No effect. All table data is not
compressed.

Notes:

1. A compression dictionary can be created for the XML storage
object of a table only if the XML columns are added to the table
in DB2 Version 9.7 or later, or if the table is migrated using an
online table move.

2. If a dictionary exists and the compression attribute is enabled,
but there are no records to load into the table partition, a new
dictionary cannot be built and the RESETDICTIONARY operation
will not keep the existing dictionary.

TERMINATE

One of four modes under which the load utility can execute. Terminates a
previously interrupted load operation, and rolls back the operation to the
point in time at which it started, even if consistency points were passed.
The states of any table spaces involved in the operation return to normal,
and all table objects are made consistent (index objects might be marked as

105

Built-in routines and views

invalid, in which case index rebuild will automatically take place at next
access). If the load operation being terminated is a LOAD REPLACE, the table
will be truncated to an empty table after the LOAD TERMINATE operation. If
the load operation being terminated is a LOAD INSERT, the table will retain
all of its original records after the LOAD TERMINATE operation. For summary
of dictionary management, see Table 3.

The LOAD TERMINATE option will not remove a backup pending state from
table spaces.

RESTART
One of four modes under which the load utility can execute. Restarts a
previously interrupted load operation. The load operation will
automatically continue from the last consistency point in the load, build, or
delete phase. For summary of dictionary management, see Table 4.

INTO table-name
Specifies the database table into which the data is to be loaded. This table
cannot be a system table, a declared temporary table, or a created
temporary table. An alias, or the fully qualified or unqualified table name
can be specified. A qualified table name is in the form schema.tablename. If
an unqualified table name is specified, the table will be qualified with the
CURRENT SCHEMA.

If the database table contains implicitly hidden columns, you must specify
whether data for the hidden columns is included in the load operation.
Use one of the following methods to indicate if data for hidden columns is
included:

* Use insert-column to explicitly specify the columns into which data is to
be inserted.
db2 load from delfilel of del

insert into tablel (cl, c2, c3,...)

* Use one of the hidden column file type modifiers: specify
implicitlyhiddeninclude when the input file contains data for the
hidden columns, or implicitlyhiddenmissing when the input file does
not.
db2 Toad from delfilel of del modified by implicitlyhiddeninclude

insert into tablel

* Use the DB2_DMU_DEFAULT registry variable on the server-side to set
the default behavior when data movement utilities encounter tables with
implicitly hidden columns. Specify IMPLICITLYHIDDENINCLUDE when
utilities assume that the implicitly hidden columns are included, or
IMPLICITLYHIDDENMISSING when utilities assume that the implicitly
hidden columns are not included.

db2set DB2_DMU DEFAULT=IMPLICITLYHIDDENINCLUDE
db2 load from delfilel of del insert into tablel

insert-column
Specifies the table column into which the data is to be inserted.

The load utility cannot parse columns whose names contain one or more
spaces. For example,
CALL SYSPROC.ADMIN_CMD('Toad from delfilel of del noheader

method P (1, 2, 3, 4, 5, 6, 7, 8, 9)

insert into tablel (BLOB1, S2, I3, Int 4, I5, 16, DT7, I8, TM9)')

will fail because of the Int 4 column. The solution is to enclose such
column names with double quotation marks:

106 Administrative Routines and Views

CALL SYSPROC.ADMIN CMD('load from delfilel of del noheader
method P (1, 2, 3, 4, 5, 6, 7, 8, 9)
insert into tablel (BLOB1, S2, I3, "Int 4", I5, 16, DT7, I8, TM9)')

FOR EXCEPTION table-name
Specifies the exception table into which rows in error will be copied. Any
row that is in violation of a unique index or a primary key index is copied.
If an unqualified table name is specified, the table will be qualified with
the CURRENT SCHEMA.

Information that is written to the exception table is not written to the
dump file. In a partitioned database environment, an exception table must
be defined for those database partitions on which the loading table is
defined. The dump file, otherwise, contains rows that cannot be loaded
because they are invalid or have syntax errors.

When loading XML data, using the FOR EXCEPTION clause to specify a load
exception table is not supported in the following cases:

* When using label-based access control (LBAC).
* When loading data into a partitioned table.

NORANGEEXC
Indicates that if a row is rejected because of a range violation it will not be
inserted into the exception table.

NOUNIQUEEXC
Indicates that if a row is rejected because it violates a unique constraint it
will not be inserted into the exception table.

STATISTICS USE PROFILE
Instructs load to collect statistics during the load according to the profile
defined for this table. This profile must be created before load is executed.
The profile is created by the RUNSTATS command. If the profile does not
exist and load is instructed to collect statistics according to the profile, a
warning is returned and no statistics are collected.

During load, distribution statistics are not collected for columns of type
XML.

STATISTICS NO
Specifies that no statistics are to be collected, and that the statistics in the
catalogs are not to be altered. This is the default.

COPY NO
Specifies that the table space in which the table resides will be placed in
backup pending state if forward recovery is enabled (that is, if either
logarchmethl or Togarchmeth2 is set to a value other than OFF). The COPY
NO option will also put the table space state into the Load in Progress table
space state. This is a transient state that will disappear when the load
completes or aborts. The data in any table in the table space cannot be
updated or deleted until a table space backup or a full database backup is
made. However, it is possible to access the data in any table by using the
SELECT statement.

LOAD with COPY NO on a recoverable database leaves the table spaces in a
backup pending state. For example, performing a LOAD with COPY NO and
INDEXING MODE DEFERRED will leave indexes needing a refresh. Certain
queries on the table might require an index scan and will not succeed until
the indexes are refreshed. The index cannot be refreshed if it resides in a
table space which is in the backup pending state. In that case, access to the
table will not be allowed until a backup is taken. Index refresh is done

Built-in routines and views 107

automatically by the database when the index is accessed by a query. If
one of COPY NO, COPY YES, or NONRECOVERABLE is not specified, and the
database is recoverable (Togarchmethl or Togarchmeth2 is set to value other
than OFF), then COPY NO is the default.

COPY YES
Specifies that a copy of the loaded data will be saved. This option is
invalid if forward recovery is disabled.

USE TSM
Specifies that the copy will be stored using Tivoli Storage Manager
(TSM).

OPEN num-sess SESSIONS
The number of I/O sessions to be used with TSM or the vendor
product. The default value is 1.

TO device/directory
Specifies the device or directory on which the copy image will be
created.

LOAD [ib-name
The name of the shared library (DLL on Windows operating
systems) containing the vendor backup and restore I/O functions
to be used. It can contain the full path. If the full path is not given,
it will default to the path where the user exit programs reside.

NONRECOVERABLE
Specifies that the load transaction is to be marked as unrecoverable and
that it will not be possible to recover it by a subsequent roll forward
action. The roll forward utility will skip the transaction and will mark the
table into which data was being loaded as "invalid". The utility will also
ignore any subsequent transactions against that table. After the roll
forward operation is completed, such a table can only be dropped or
restored from a backup (full or table space) taken after a commit point
following the completion of the non-recoverable load operation.

With this option, table spaces are not put in backup pending state
following the load operation, and a copy of the loaded data does not have
to be made during the load operation. If one of COPY NO, COPY YES, or
NONRECOVERABLE is not specified, and the database is not recoverable
(Togarchmethl and Togarchmeth2 are both set to OFF), then NONRECOVERABLE
is the default.

WITHOUT PROMPTING
Specifies that the list of data files contains all the files that are to be
loaded, and that the devices or directories listed are sufficient for the entire
load operation. If a continuation input file is not found, or the copy targets
are filled before the load operation finishes, the load operation will fail,
and the table will remain in load pending state.

This is the default. Any actions which normally require user intervention
will return an error message.

DATA BUFFER buffer-size
Specifies the number of 4 KB pages (regardless of the degree of
parallelism) to use as buffered space for transferring data within the utility.
If the value specified is less than the algorithmic minimum, the minimum
required resource is used, and no warning is returned.

108 Administrative Routines and Views

This memory is allocated directly from the utility heap, whose size can be
modified through the util_heap_sz database configuration parameter.
Beginning in version 9.5, the value of the DATA BUFFER option of the
LOAD command can temporarily exceed util_heap_sz if more memory is
available in the system. In this situation, the utility heap is dynamically
increased as needed until the database_memory limit is reached. This
memory will be released once the load operation completes.

If a value is not specified, an intelligent default is calculated by the utility
at run time. The default is based on a percentage of the free space available
in the utility heap at the instantiation time of the loader, as well as some
characteristics of the table.

SORT BUFFER buffer-size
This option specifies a value that overrides the sortheap database
configuration parameter during a load operation. It is relevant only when
loading tables with indexes and only when the INDEXING MODE parameter is
not specified as DEFERRED. The value that is specified cannot exceed the
value of sortheap. This parameter is useful for throttling the sort memory
that is used when loading tables with many indexes without changing the
value of sortheap, which would also affect general query processing.

CPU_PARALLELISM n
Specifies the number of processes or threads that the load utility will create
for parsing, converting, and formatting records when building table
objects. This parameter is designed to exploit the number of processes
running per database partition. It is particularly useful when loading
presorted data, because record order in the source data is preserved. If the
value of this parameter is zero, or has not been specified, the load utility
uses an intelligent default value (usually based on the number of CPUs
available) at run time.

Note:

1. If this parameter is used with tables containing either LOB or LONG
VARCHAR fields, its value becomes one, regardless of the number of
system CPUs or the value specified by the user.

2. Specifying a small value for the SAVECOUNT parameter causes the loader
to perform many more I/O operations to flush both data and table
metadata. When CPU_PARALLELISM is greater than one, the flushing
operations are asynchronous, permitting the loader to exploit the CPU.
When CPU_PARALLELISM is set to one, the loader waits on 1/O during
consistency points. A load operation with CPU_PARALLELISM set to two,
and SAVECOUNT set to 10 000, completes faster than the same operation
with CPU_PARALLELISM set to one, even though there is only one CPU.

DISK PARALLELISM n
Specifies the number of processes or threads that the load utility will create
for writing data to the table space containers. If a value is not specified, the
utility selects an intelligent default based on the number of table space
containers and the characteristics of the table.

INDEXING MODE
Specifies whether the load utility is to rebuild indexes or to extend them
incrementally. Valid values are:

AUTOSELECT
The load utility will automatically decide between REBUILD or
INCREMENTAL mode. The decision is based on the amount of

Built-in routines and views 109

REBUILD

data being loaded and the depth of the index tree. Information
relating to the depth of the index tree is stored in the index object.
RUNSTATS is not required to populate this information. AUTOSELECT
is the default indexing mode.

All indexes will be rebuilt. The utility must have sufficient
resources to sort all index key parts for both old and appended
table data.

If the LogIndexBuild database configuration parameter is turned
on, the transaction log contains the image of each index page after
it is created. If the LogIndexBuild database configuration
parameter is turned off, only the allocation and initialization of
each page is logged by the Index Manager (about 250 bytes per
page approximately as opposed to the non-empty portion of each

page).

INCREMENTAL

Indexes will be extended with new data. This approach consumes
index free space. It only requires enough sort space to append
index keys for the inserted records. This method is only supported
in cases where the index object is valid and accessible at the start
of a load operation (it is, for example, not valid immediately
following a load operation in which the DEFERRED mode was
specified). If this mode is specified, but not supported due to the
state of the index, a warning is returned, and the load operation
continues in REBUILD mode. Similarly, if a load restart operation
is begun in the load build phase, INCREMENTAL mode is not
supported.

If the LogIndexBuild database configuration parameter is turned
on, the DB2 software generates the log records for the insertion of
every key into the index as well as any page splits performed. If
this parameter is turned off (which is common when not using
HADR), the amount of index logging performed by the Index
Manager depends on whether or not the ALLOW READ ACCESS
option was specified. If the ALLOW READ ACCESS option is
specified, the log record is generated including logs for page splits.
If the ALLOW READ ACCESS option is not specified, no log
record from the Index Manager is generated.

DEFERRED

110 Administrative Routines and Views

The load utility will not attempt index creation if this mode is
specified. Indexes will be marked as needing a refresh. The first
access to such indexes that is unrelated to a load operation might
force a rebuild, or indexes might be rebuilt when the database is
restarted. This approach requires enough sort space for all key
parts for the largest index. The total time subsequently taken for
index construction is longer than that required in REBUILD mode.
Therefore, when performing multiple load operations with deferred
indexing, it is advisable (from a performance viewpoint) to let the
last load operation in the sequence perform an index rebuild,
rather than allow indexes to be rebuilt at first non-load access.

Deferred indexing is only supported for tables with non-unique
indexes, so that duplicate keys inserted during the load phase are
not persistent after the load operation.

ALLOW NO ACCESS
Load will lock the target table for exclusive access during the load. The
table state will be set to Load In Progress during the load. ALLOW NO ACCESS
is the default behavior. It is the only valid option for LOAD REPLACE.

When there are constraints on the table, the table state will be set to Set
Integrity Pending as well as Load In Progress. The SET INTEGRITY
statement must be used to take the table out of Set Integrity Pending state.

ALLOW READ ACCESS
Load will lock the target table in a share mode. The table state will be set
to both Load In Progress and Read Access. Readers can access the
non-delta portion of the data while the table is being load. In other words,
data that existed before the start of the load will be accessible by readers to
the table, data that is being loaded is not available until the load is
complete.

Important: Starting with Version 10.1 Fix Pack 1, the ALLOW READ
ACCESS parameter is deprecated and might be removed in a future
release. For more details, see “ALLOW READ ACCESS parameter in the
LOAD command is deprecated” in What’s New for DB2 Version 10.1.

LOAD TERMINATE or LOAD RESTART of an ALLOW READ ACCESS load can use this
parameter; LOAD TERMINATE or LOAD RESTART of an ALLOW NO ACCESS load
cannot use this parameter. Furthermore, this option is not valid if the
indexes on the target table are marked as requiring a rebuild.

When there are constraints on the table, the table state will be set to Set
Integrity Pending as well as Load In Progress, and Read Access. At the end
of the load, the table state Load In Progress will be removed but the table
states Set Integrity Pending and Read Access will remain. The SET
INTEGRITY statement must be used to take the table out of Set Integrity
Pending. While the table is in Set Integrity Pending and Read Access
states, the non-delta portion of the data is still accessible to readers, the
new (delta) portion of the data will remain inaccessible until the SET
INTEGRITY statement has completed. A user can perform multiple loads
on the same table without issuing a SET INTEGRITY statement. Only the
original (checked) data will remain visible, however, until the SET
INTEGRITY statement is issued.

ALLOW READ ACCESS also supports the following modifiers:

USE tablespace-name
If the indexes are being rebuilt, a shadow copy of the index is built
in table space tablespace-name and copied over to the original table
space at the end of the load during an INDEX COPY PHASE. Only
system temporary table spaces can be used with this option. If not
specified then the shadow index will be created in the same table
space as the index object. If the shadow copy is created in the same
table space as the index object, the copy of the shadow index object
over the old index object is instantaneous. If the shadow copy is in
a different table space from the index object a physical copy is
performed. This could involve considerable I/O and time. The
copy happens while the table is offline at the end of a load during
the INDEX COPY PHASE.

Without this option the shadow index is built in the same table
space as the original. Since both the original index and shadow
index by default reside in the same table space simultaneously,

Built-in routines and views 111

there might be insufficient space to hold both indexes within one
table space. Using this option ensures that you retain enough table
space for the indexes.

This option is ignored if the user does not specify INDEXING MODE
REBUILD or INDEXING MODE AUTOSELECT. This option will also be
ignored if INDEXING MODE AUTOSELECT is chosen and load chooses to
incrementally update the index.

FETCH_PARALLELISM YES | NO
When performing a load from a cursor where the cursor is declared using
the DATABASE keyword, or when using the API sqlu_remotefetch_entry
media entry, and this option is set to YES, the load utility attempts to
parallelize fetching from the remote data source if possible. If set to NO, no
parallel fetching is performed. The default value is YES. For more
information, see “Moving data using the CURSOR file type”.

SET INTEGRITY PENDING CASCADE
If LOAD puts the table into Set Integrity Pending state, the SET INTEGRITY
PENDING CASCADE option allows the user to specify whether or not Set
Integrity Pending state of the loaded table is immediately cascaded to all
descendents (including descendent foreign key tables, descendent
immediate materialized query tables and descendent immediate staging

tables).

IMMEDIATE
Indicates that Set Integrity Pending state is immediately extended
to all descendent foreign key tables, descendent immediate
materialized query tables and descendent staging tables. For a LOAD
INSERT operation, Set Integrity Pending state is not extended to
descendent foreign key tables even if the IMMEDIATE option is
specified.

When the loaded table is later checked for constraint violations
(using the IMMEDIATE CHECKED option of the SET INTEGRITY
statement), descendent foreign key tables that were placed in Set
Integrity Pending Read Access state will be put into Set Integrity
Pending No Access state.

DEFERRED
Indicates that only the loaded table will be placed in the Set
Integrity Pending state. The states of the descendent foreign key
tables, descendent immediate materialized query tables and
descendent immediate staging tables will remain unchanged.

Descendent foreign key tables might later be implicitly placed in
Set Integrity Pending state when their parent tables are checked for
constraint violations (using the IMMEDIATE CHECKED option of
the SET INTEGRITY statement). Descendent immediate
materialized query tables and descendent immediate staging tables
will be implicitly placed in Set Integrity Pending state when one of
its underlying tables is checked for integrity violations. A query of
a table that is in the Set Integrity Pending state might succeed if an
eligible materialized query table that is not in the Set Integrity
Pending state is accessed by the query instead of the specified
table. A warning (SQLSTATE 01586) will be issued to indicate that
descendent tables have been placed in Set Integrity Pending state.

112 Administrative Routines and Views

See the Notes section of the SET INTEGRITY statement in the SQL
Reference for when these descendent tables will be put into Set
Integrity Pending state.

If the SET INTEGRITY PENDING CASCADE option is not specified:

* Only the loaded table will be placed in Set Integrity Pending state. The
state of descendent foreign key tables, descendent immediate
materialized query tables and descendent immediate staging tables will
remain unchanged, and can later be implicitly put into Set Integrity
Pending state when the loaded table is checked for constraint violations.

If LOAD does not put the target table into Set Integrity Pending state, the
SET INTEGRITY PENDING CASCADE option is ignored.

LOCK WITH FORCE
The utility acquires various locks including table locks in the process of
loading. Rather than wait, and possibly timeout, when acquiring a lock,
this option allows load to force off other applications that hold conflicting
locks on the target table. Applications holding conflicting locks on the
system catalog tables will not be forced off by the load utility. Forced
applications will roll back and release the locks the load utility needs. The
load utility can then proceed. This option requires the same authority as
the FORCE APPLICATIONS command (SYSADM or SYSCTRL).

ALLOW NO ACCESS loads might force applications holding conflicting locks at
the start of the load operation. At the start of the load the utility can force
applications that are attempting to either query or modify the table.

ALLOW READ ACCESS loads can force applications holding conflicting locks at
the start or end of the load operation. At the start of the load the load
utility can force applications that are attempting to modify the table. At the
end of the load operation, the load utility can force applications that are
attempting to either query or modify the table.

SOURCEUSEREXIT executable
Specifies an executable filename which will be called to feed data into the
utility.

REDIRECT
INPUT FROM

BUFFER input-buffer
The stream of bytes specified in input-buffer is
passed into the STDIN file descriptor of the process
executing the given executable.

FILE input-file
The contents of this client-side file are passed into
the STDIN file descriptor of the process executing
the given executable.

OUTPUT TO

FILE output-file
The STDOUT and STDERR file descriptors are
captured to the fully qualified server-side file
specified.
PARALLELIZE
Increases the throughput of data coming into the load utility by
invoking multiple user exit processes simultaneously. This option is

Built-in routines and views 113

only applicable in multi-partition database environments and is
ignored in single-partition database environments.

For more information, see “Moving data using a customized application
(user exit)”.

PARTITIONED DB CONFIG partitioned-db-option
Allows you to execute a load into a table distributed across multiple
database partitions. The PARTITIONED DB CONFIG parameter allows you to
specify partitioned database-specific configuration options. The
partitioned-db-option values can be any of the following options:
PART FILE_LOCATION x
OUTPUT_DBPARTNUMS x
PARTITIONING_DBPARTNUMS x
MODE x
MAX_NUM_PART AGENTS x
ISOLATE_PART_ERRS x
STATUS_INTERVAL x
PORT_RANGE x
CHECK_TRUNCATION
MAP_FILE_INPUT x
MAP_FILE_OUTPUT x
TRACE x
NEWLINE
DISTFILE x
OMIT_HEADER
RUN_STAT_DBPARTNUM x

Detailed descriptions of these options are provided in “Load configuration
options for partitioned database environments”.

RESTARTCOUNT
Deprecated.

USING directory
Deprecated.

Example

Issue a load with replace option for the employee table data from a file.

CALL SYSPROC.ADMIN_CMD('LOAD FROM /home/theresax/tmp/emp_exp.dat
OF DEL METHOD P (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)
MESSAGES /home/theresax/tmp/emp_load.msg
REPLACE INTO THERESAX.EMPLOYEE (EMPNO, FIRSTNME, MIDINIT, LASTNAME,
WORKDEPT, PHONENO, HIREDATE, JOB, EDLEVEL, SEX, BIRTHDATE, SALARY,
BONUS, COMM) COPY NO INDEXING MODE AUTOSELECT ISOLATE_PART_ERRS
LOAD_ERRS_ONLY MODE PARTITION AND LOAD')

The following section is an example of output from a single-partition database.
Result set 1

ROWS_READ ROWS_SKIPPED ROWS_LOADED ROWS_REJECTED

1 record(s) selected.

Return Status = 0

Output from a single-partition database (continued).

114 Administrative Routines and Views

. ROWS_DELETED ROWS_COMMITTED MSG_RETRIEVAL

TABLE(SYSPROC.ADMIN_GET_MSGS (
'2203498_thx')) AS MSG

Output from a single-partition database (continued).
. MSG_REMOVAL

::: CALL SYSPROC.ADMIN_REMOVE_MSGS('2203498_thx'5..

Note: The following columns are also returned in this result set, but are set to
NULL because they are only populated when loading into a multi-partition
database: ROWS_PARTITIONED and NUM_AGENTINFO_ENTRIES.

The following section is an example of output from a multi-partition database.
Result set 1

ROWS_READ ROWS_REJECTED ROWS_PARTITIONED NUM_AGENTINFO_ENTRIES ...

1 record(s) selected.

Output from a multi-partition database (continued).
. MSG_RETRIEVAL MSG_REMOVAL

... SELECT DBPARTITIONNUM, AGENT TYPE, CALL SYSPROC.ADMIN_ REMOVE_MSGS
SQLCODE, MSG_TEXT FROM TABLE (12203498 thx')
(SYSPROC.ADMIN_GET_MSGS
(12203498 _thx')) AS MSG

Note: The following columns are also returned in this result set, but are set to
NULL because they are only populated when loading into a single-partition
database: ROWS_SKIPPED, ROWS_LOADED, ROWS_DELETED and
ROWS_COMMITTED.

Output from a multi-partition database (continued).
Result set 2

DBPARTITIONNUM SQLCODE TABSTATE AGENTTYPE

20 0 NORMAL LOAD

30 0 NORMAL LOAD

20 0 NORMAL PARTITION

10 0 NORMAL PRE_PARTITION

1 record(s) selected.

Return Status = 0

Built-in routines and views 115

Example : Loading XML data

The user has constructed a data file with XDS fields to describe the documents that
are to be inserted into the table. It might appear like this :

1, "<XDS FIL=""filel.xml"" />"
2, "<XDS FIL='file2.xml' OFF='23' LEN='45' />"

For the first row, the XML document is identified by the file named filel.xml.
Note that since the character delimiter is the double quote character, and double
quotation marks exist inside the XDS, the double quotation marks contained within
the XDS are doubled. For the second row, the XML document is identified by the
file named file2.xml, and starts at byte offset 23, and is 45 bytes in length.

The user issues a load command without any parsing or validation options for the
XML column, and the data is loaded successfully:

LOAD
FROM data.del of DEL INSERT INTO mytable

Example : Loading XML data from CURSOR

Loading data from cursor is the same as with a regular relational column type. The
user has two tables, T1 and T2, each of which consist of a single XML column
named C1. To LOAD from T1 into T2, the user will first declare a cursor:

DECLARE
X1 CURSOR FOR SELECT C1 FROM T1;

Next, the user may issue a LOAD using the cursor type:

LOAD FROM X1 of
CURSOR INSERT INTO T2

Applying the XML specific LOAD options to the cursor type is the same as loading
from a file.

Usage notes

* Data is loaded in the sequence that appears in the input file. If a particular
sequence is desired, the data should be sorted before a load is attempted. If
preservation of the source data order is not required, consider using the
ANYORDER file type modifier, described in the following “File type modifiers for
the load utility” section.

* The load utility builds indexes based on existing definitions. The exception
tables are used to handle duplicates on unique keys. The utility does not enforce
referential integrity, perform constraints checking, or update materialized query
tables that are dependent on the tables being loaded. Tables that include
referential or check constraints are placed in Set Integrity Pending state.
Summary tables that are defined with REFRESH IMMEDIATE, and that are
dependent on tables being loaded, are also placed in Set Integrity Pending state.
Issue the SET INTEGRITY statement to take the tables out of Set Integrity
Pending state. Load operations cannot be carried out on replicated materialized
query tables.

 If a clustering index exists on the table, the data should be sorted on the

clustering index before loading. Data does not need to be sorted before loading
into a multidimensional clustering (MDC) table, however.

* If you specify an exception table when loading into a protected table, any rows
that are protected by invalid security labels will be sent to that table. This might
allow users that have access to the exception table to access to data that they

116 Administrative Routines and Views

would not normally be authorized to access. For better security be careful who
you grant exception table access to, delete each row as soon as it is repaired and
copied to the table being loaded, and drop the exception table as soon as you
are done with it.

Security labels in their internal format might contain newline characters. If you
load the file using the DEL file format, those newline characters can be mistaken
for delimiters. If you have this problem use the older default priority for
delimiters by specifying the delprioritychar file type modifier in the LOAD
command.

The LOAD utility issues a COMMIT statement at the beginning of the operation
which, in the case of Type 2 connections, causes the procedure to return
SQL30090N with reason code 1.

Any path used in the LOAD command must be a valid fully-qualified path on the
server coordinator partition.

For performing a load using the CURSOR file type where the DATABASE
keyword was specified during the DECLARE CURSOR statement, the user ID
and password used to authenticate against the database currently connected to
(for the load) will be used to authenticate against the source database (specified
by the DATABASE option of the DECLARE CURSOR statement). If no user ID
or password was specified for the connection to the loading database, a user ID
and password for the source database must be specified during the DECLARE
CURSOR statement.

Loading a multiple-part PC/IXF file whose individual parts are copied from a
Windows system to an AIX system is supported. The names of all the files must
be specified in the LOAD command. For example, LOAD FROM DATA.IXF, DATA.002
OF IXF INSERT INTO TABLEL. Loading to the Windows operating system from
logically split PC/IXF files is not supported.

When restarting a failed LOAD, the behavior will follow the existing behavior in
that the BUILD phase will be forced to use the REBUILD mode for indexes.

The Load utility might generate a very large copy of the image file when the
COPY YES option is used. This behavior is expected when the LOAD command
writes out an entire buffer of data to the copy image for every LOB/LF column
value that is loaded. The buffer is an internal object, and its size is determined
by several internal and external factors. Typically, the buffer size is between
68KB and a few hundred KB.

Loading XML documents between databases is not supported and returns error
message SQL1407N.

The LOAD utility does not support loading into tables that contain columns that
reference fenced procedures. If you issue the LOAD command on such table, you
will receive error message SQL1376N. To work around this restriction, you can
redefine the routine to be unfenced, or use the import utility.

If the database table contains implicitly hidden columns, you must specify
whether data for the hidden columns is included in the load operation.

The IMPORT utility does not match the number of columns in a table and the
number of fields in a data file. The utility checks for a sufficient amount of data
in the data file and if a row in the data file does not contain sufficient columns
of data, the row may either be rejected with a warning message if the
corresponding table columns without data are defined as NOT NULL, or be
inserted successfully without a warning message if the corresponding table
columns are defined as NULL. On the other hand, if a row contains a higher
number of columns than required, the sufficient number of columns are
processed while the remaining columns of data are omitted and no warning
message is given.

Built-in routines and views 117

Summary of LOAD TERMINATE and LOAD RESTART dictionary management

The following chart summarizes the compression dictionary management behavior
for LOAD processing under the TERMINATE directive.

Table 44. LOAD TERMINATE dictionary management

Does table row TERMINATE: LOAD
Table data dictionary XML storage object | REPLACE TERMINATE: LOAD
COMPRESS existed before dictionary exists KEEPDICTIONARY or REPLACE
attribute LOAD? before LOAD' LOAD INSERT RESETDICTIONARY
YES YES YES Keep existing dictionaries. | Neither dictionary is
kept. 2
YES YES NO Keep existing dictionary. Nothing is kept. 2
YES NO YES Keep existing dictionary. Nothing is kept.
YES NO NO Nothing is kept. Nothing is kept.
NO YES YES Keep existing dictionaries. | Nothing is kept.
NO YES NO Keep existing dictionary. Nothing is kept.
NO NO YES Keep existing dictionary. Nothing is kept.
NO NO NO Do nothing. Do nothing.
Note:

1. A compression dictionary can be created for the XML storage object of a table
only if the XML columns are added to the table in DB2 Version 9.7 or later, or if
the table is migrated using an online table move.

2. In the special case that the table has data capture enabled, the table row data
dictionary is kept.

LOAD RESTART truncates a table up to the last consistency point reached. As part of
LOAD RESTART processing, a compression dictionary will exist in the table if it was
present in the table at the time the last LOAD consistency point was taken. In that
case, LOAD RESTART will not create a new dictionary. For a summary of the possible
conditions, see Table 4.

Table 45. LOAD RESTART dictionary management

Table row data
dictionary exist RESTART: LOAD
Table before LOAD XML Storage object | REPLACE RESTART: LOAD
COMPRESS consistency dictionary existed KEEPDICTIONARY or REPLACE
Attribute point?' before last LOAD?* LOAD INSERT RESETDICTIONARY
YES YES YES Keep existing dictionaries. Keep existing
dictionaries.
YES YES NO Keep existing table row Keep existing table row
data dictionary and build data dictionary and
XML dictionary subject to build XML dictionary.
ADC.
YES NO YES Build table row data Build table row data
dictionary subject to ADC. |dictionary. Keep existing
Keep existing XML XML dictionary.
dictionary.
YES NO NO Build table row data and Build table row data and
XML dictionaries subject to | XML dictionaries.
ADC.

118 Administrative Routines and Views

Table 45. LOAD RESTART dictionary management (continued)

Table row data
dictionary exist RESTART: LOAD
Table before LOAD XML Storage object | REPLACE RESTART: LOAD
COMPRESS consistency dictionary existed KEEPDICTIONARY or REPLACE
Attribute point?’ before last LOAD?* LOAD INSERT RESETDICTIONARY
NO YES YES Keep existing dictionaries. | Remove existing
dictionaries.
NO YES NO Keep existing table row Remove existing table
data dictionary. row data dictionary.
NO NO YES Keep existing XML Remove existing XML
dictionary. dictionary.
NO NO NO Do nothing. Do nothing.
Notes:

1. The SAVECOUNT option is not allowed when loading XML data, load operations
that fail during the load phase restart from the beginning of the operation.

2. A compression dictionary can be created for the XML storage object of a table
only if the XML columns are added to the table in DB2 Version 9.7 or later, or if
the table is migrated using an online table move.

Result set information

Command execution status is returned in the SQLCA resulting from the CALL
statement. If execution is successful, the command returns additional information.
A single-partition database will return one result set; a multi-partition database
will return two result sets.

 Table 46: Result set for a load operation.

* Table 47 on page 120: Result set 2 contains information for each database
partition in a multi-partition load operation.

Table 46. Result set returned by the LOAD command

Column name

Data type

Description

ROWS_READ

BIGINT

Number of rows read during the load
operation.

ROWS_SKIPPED

BIGINT

Number of rows skipped before the load
operation started. This information is
returned for a single-partition database only.

ROWS_LOADED

BIGINT

Number of rows loaded into the target table.
This information is returned for a
single-partition database only.

ROWS_REJECTED

BIGINT

Number of rows that could not be loaded
into the target table.

ROWS_DELETED

BIGINT

Number of duplicate rows that were not
loaded into the target table. This information
is returned for a single-partition database
only.

ROWS_COMMITTED

BIGINT

Total number of rows processed: the number
of rows successfully loaded into the target
table, plus the number of skipped and
rejected rows. This information is returned
for a single-partition database only.

Built-in routines and views 119

Table 46. Result set returned by the LOAD command (continued)

Column name

Data type

Description

ROWS_PARTITIONED

BIGINT

Number of rows distributed by all database
distributing agents. This information is
returned for a multi-partition database only.

NUM_AGENTINFO_ENTRIES

BIGINT

Number of entries returned in the second
result set for a multi-partition database. This
is the number of agent information entries
produced by the load operation. This
information is returned for multi-partition
database only.

MSG_RETRIEVAL

VARCHAR(512)

SQL statement that is used to retrieve
messages created by this utility. For example,

SELECT SQLCODE, MSG
FROM TABLE
(SYSPROC.ADMIN_GET_MSGS
(12203498 _thx')) AS MSG

This information is returned only if the
MESSAGES ON SERVER clause is specified.

MSG_REMOVAL

VARCHAR(512)

SQL statement that is used to clean up
messages created by this utility. For example:

CALL SYSPROC.ADMIN_REMOVE_MSGS
('2203498_thx')

This information is returned only if the
MESSAGES ON SERVER clause is specified.

Table 47. Result set 2 returned by the LOAD command for each database partition in a multi-partition database.

Column name Data type Description

DBPARTITIONNUM SMALLINT The database partition number on which the
agent executed the load operation.

SQLCODE INTEGER Final SQLCODE resulting from the load

processing.

120 Administrative Routines and Views

Table 47. Result set 2 returned by the LOAD command for each database partition in a multi-partition

database. (continued)

Column name

Data type Description

TABSTATE

VARCHAR(20) Table state after load operation has
completed. It is one of:

e LOADPENDING: Indicates that the load did
not complete, but the table on the partition
has been left in a LOAD PENDING state.
A load restart or terminate operation must
be done on the database partition.

* NORMAL: Indicates that the load completed
successfully on the database partition and
the table was taken out of the LOAD IN
PROGRESS (or LOAD PENDING) state.
Note that the table might still be in Set
Integrity Pending state if further
constraints processing is required, but this
state is not reported by this interface.

* UNCHANGED: Indicates that the load did not
complete due to an error, but the state of
the table has not yet been changed. It is
not necessary to perform a load restart or
terminate operation on the database
partition.

Note: Not all possible table states are
returned by this interface.

AGENTTYPE

VARCHAR(20) Agent type and is one of:
e FILE_TRANSFER

* LOAD

+ LOAD_TO_FILE

* PARTITIONING

* PRE_PARTITIONING

File type modifiers for the load utility

Table 48. Valid file type modifiers for the load utility: All file formats

Modifier

Description

anyorder

This modifier is used in conjunction with the cpu_parallelism parameter.
Specifies that the preservation of source data order is not required, yielding
significant additional performance benefit on SMP systems. If the value of
cpu_parallelismis 1, this option is ignored. This option is not supported if
SAVECOUNT > 0, since crash recovery after a consistency point requires that data be
loaded in sequence.

generatedignore

This modifier informs the load utility that data for all generated columns is
present in the data file but should be ignored. This results in all generated
column values being generated by the utility. This modifier cannot be used with
either the generatedmissing or the generatedoverride modifier.

generatedmissing

If this modifier is specified, the utility assumes that the input data file contains no
data for the generated column (not even NULLSs). This results in all generated
column values being generated by the utility. This modifier cannot be used with
either the generatedignore or the generatedoverride modifier.

Built-in routines and views 121

Table 48. Valid file type modifiers for the load utility: All file formats (continued)

Modifier

Description

generatedoverride

This modifier instructs the load utility to accept user-supplied data for all
generated columns in the table (contrary to the normal rules for these types of
columns). This is useful when migrating data from another database system, or
when loading a table from data that was recovered using the RECOVER DROPPED
TABLE option on the ROLLFORWARD DATABASE command. When this modifier is used,
any rows with no data or NULL data for a non-nullable generated column will be
rejected (SQL3116W). When this modifier is used, the table will be placed in Set
Integrity Pending state. To take the table out of Set Integrity Pending state
without verifying the user-supplied values, issue the following command after
the load operation:
SET INTEGRITY FOR table-name GENERATED COLUMN

IMMEDIATE UNCHECKED

To take the table out of Set Integrity Pending state and force verification of the
user-supplied values, issue the following command after the load operation:

SET INTEGRITY FOR table-name IMMEDIATE CHECKED.

When this modifier is specified and there is a generated column in any of the
partitioning keys, dimension keys or distribution keys, then the LOAD command
will automatically convert the modifier to generatedignore and proceed with the
load. This will have the effect of regenerating all of the generated column values.

This modifier cannot be used with either the generatedmissing or the
generatedignore modifier.

identityignore

This modifier informs the load utility that data for the identity column is present
in the data file but should be ignored. This results in all identity values being
generated by the utility. The behavior will be the same for both GENERATED
ALWAYS and GENERATED BY DEFAULT identity columns. This means that for
GENERATED ALWAYS columns, no rows will be rejected. This modifier cannot
be used with either the identitymissing or the identityoverride modifier.

identitymissing

If this modifier is specified, the utility assumes that the input data file contains no
data for the identity column (not even NULLs), and will therefore generate a
value for each row. The behavior will be the same for both GENERATED
ALWAYS and GENERATED BY DEFAULT identity columns. This modifier cannot
be used with either the identityignore or the identityoverride modifier.

identityoverride

This modifier should be used only when an identity column defined as
GENERATED ALWAYS is present in the table to be loaded. It instructs the utility
to accept explicit, non-NULL data for such a column (contrary to the normal rules
for these types of identity columns). This is useful when migrating data from
another database system when the table must be defined as GENERATED
ALWAYS, or when loading a table from data that was recovered using the
DROPPED TABLE RECOVERY option on the ROLLFORWARD DATABASE command. When
this modifier is used, any rows with no data or NULL data for the identity
column will be rejected (SQL3116W). This modifier cannot be used with either the
identitymissing or the identityignore modifier. The load utility will not attempt
to maintain or verify the uniqueness of values in the table's identity column when
this option is used.

implicitlyhiddeninclude

If this modifier is specified, the utility assumes that the input data file contains
data for the implicitly hidden columns and this data will also be loaded. This
modifier cannot be used with the implicitlyhiddenmissing modifier. See the
Note: section for information about the precedence when multiple modifiers are
specified.

122 Administrative Routines and Views

Table 48. Valid file type modifiers for the load utility: All file formats (continued)

Modifier

Description

implicitlyhiddenmissing

If this modifier is specified, the utility assumes that the input data file does not
contain data for the implicitly hidden columns and the utility will generate values
for those hidden columns. This modifier cannot be used with the
implicitlyhiddeninclude modifier. See the Note: section for information about
the precedence when multiple modifiers are specified.

indexfreespace=x

x is an integer between 0 and 99 inclusive. The value is interpreted as the
percentage of each index page that is to be left as free space when load rebuilds
the index. Load with INDEXING MODE INCREMENTAL ignores this option. The first
entry in a page is added without restriction; subsequent entries are added to
maintain the percent free space threshold. The default value is the one used at
CREATE INDEX time.

This value takes precedence over the PCTFREE value specified in the CREATE
INDEX statement. The indexfreespace option affects index leaf pages only.

lobsinfile

lob-path specifies the path to the files containing LOB data. The ASC, DEL, or IXF
load input files contain the names of the files having LOB data in the LOB
column.

This option is not supported in conjunction with the CURSOR filetype.

The LOBS FROM clause specifies where the LOB files are located when the
Tobsinfile modifier is used. The LOBS FROM clause will implicitly activate the
Tobsinfile behavior. The LOBS FROM clause conveys to the LOAD utility the list of
paths to search for the LOB files while loading the data.

Each path contains at least one file that contains at least one LOB pointed to by a
Lob Location Specifier (LLS) in the data file. The LLS is a string representation of
the location of a LOB in a file stored in the LOB file path. The format of an LLS is
filename.ext.nnn.mmm/, where filename.ext is the name of the file that contains
the LOB, nnn is the offset in bytes of the LOB within the file, and mmm is the
length of the LOB in bytes. For example, if the string db2exp.001.123.456/ is
stored in the data file, the LOB is located at offset 123 in the file db2exp.001, and
is 456 bytes long.

To indicate a null LOB, enter the size as -1. If the size is specified as 0, it is
treated as a 0 length LOB. For null LOBS with length of -1, the offset and the file
name are ignored. For example, the LLS of a null LOB might be
db2exp.001.7.-1/.

noheader

Skips the header verification code (applicable only to load operations into tables
that reside in a single-partition database partition group).

If the default MPP load (mode PARTITION_AND_LOAD) is used against a table
residing in a single-partition database partition group, the file is not expected to
have a header. Thus the noheader modifier is not needed. If the LOAD_ONLY
mode is used, the file is expected to have a header. The only circumstance in
which you should need to use the noheader modifier is if you wanted to perform
LOAD_ONLY operation using a file that does not have a header.

norowwarnings

Suppresses all warnings about rejected rows.

Built-in routines and views 123

Table 48. Valid file type modifiers for the load utility: All file formats (continued)

Modifier

Description

pagefreespace=x

x is an integer between 0 and 100 inclusive. The value is interpreted as the
percentage of each data page that is to be left as free space. If the specified value
is invalid because of the minimum row size, (for example, a row that is at least
3 000 bytes long, and an x value of 50), the row will be placed on a new page. If
a value of 100 is specified, each row will reside on a new page. The PCTFREE
value of a table determines the amount of free space designated per page. If a
pagefreespace value on the load operation or a PCTFREE value on a table have
not been set, the utility will fill up as much space as possible on each page. The
value set by pagefreespace overrides the PCTFREE value specified for the table.

periodignore

This modifier informs the load utility that data for the period columns is present

in the data file but should be ignored. When this modifier is specified, all period

column values are generated by the utility. This modifier cannot be used with the
periodmissing modifier or the periodoverride modifier.

periodmissing

If this modifier is specified, the utility assumes that the input data file contains no
data for the period columns. When this modifier is specified, all period column
values are generated by the utility. This modifier cannot be used with the
periodignore modifier or the periodoverride modifier.

periodoverride

This modifier instructs the load utility to accept user-supplied data for
GENERATED ALWAYS AS ROW BEGIN and GENERATED ALWAYS AS ROW
END columns in a system-period temporal table. This behavior is contrary to the
normal rules for these types of columns. The modifier can be useful when you
want to maintain history data and load data that includes time stamps into a
system-period temporal table. When this modifier is used, any rows with no data
or NULL data in a ROW BEGIN or ROW END column are rejected.

rowchangetimestampignore

This modifier informs the load utility that data for the row change timestamp
column is present in the data file but should be ignored. This results in all ROW
CHANGE TIMESTAMPs being generated by the utility. The behavior will be the
same for both GENERATED ALWAYS and GENERATED BY DEFAULT columns.
This means that for GENERATED ALWAYS columns, no rows will be rejected.
This modifier cannot be used with either the rowchangetimestampmissing or the
rowchangetimestampoverride modifier.

rowchangetimestampmissing

If this modifier is specified, the utility assumes that the input data file contains no
data for the row change timestamp column (not even NULLs), and will therefore
generate a value for each row. The behavior will be the same for both
GENERATED ALWAYS and GENERATED BY DEFAULT columns. This modifier
cannot be used with either the rowchangetimestampignore or the
rowchangetimestampoverride modifier.

rowchangetimestampoverride

This modifier should be used only when a row change timestamp column
defined as GENERATED ALWAYS is present in the table to be loaded. It instructs
the utility to accept explicit, non-NULL data for such a column (contrary to the
normal rules for these types of row change timestamp columns). This is useful
when migrating data from another database system when the table must be
defined as GENERATED ALWAYS, or when loading a table from data that was
recovered using the DROPPED TABLE RECOVERY option on the ROLLFORWARD DATABASE
command. When this modifier is used, any rows with no data or NULL data for
the ROW CHANGE TIMESTAMP column will be rejected (SQL3116W). This
modifier cannot be used with either the rowchangetimestampmissing or the
rowchangetimestampignore modifier. The load utility will not attempt to maintain
or verify the uniqueness of values in the table's row change timestamp column
when this option is used.

124 Administrative Routines and Views

Table 48. Valid file type modifiers for the load utility: All file formats (continued)

Modifier

Description

seclabelchar

Indicates that security labels in the input source file are in the string format for
security label values rather than in the default encoded numeric format. LOAD
converts each security label into the internal format as it is loaded. If a string is
not in the proper format the row is not loaded and a warning (SQLSTATE 01H53,
SQLCODE SQL3242W) is returned. If the string does not represent a valid
security label that is part of the security policy protecting the table then the row
is not loaded and a warning (SQLSTATE 01H53, SQLCODE SQL3243W) is
returned.

This modifier cannot be specified if the seclabelname modifier is specified,
otherwise the load fails and an error (SQLCODE SQL3525N) is returned.

If you have a table consisting of a single DB2SECURITYLABEL column, the data file
might look like this:

"CONFIDENTIAL:ALPHA:G2"
"CONFIDENTIAL;SIGMA:G2"
"TOP SECRET:ALPHA:G2"

To load or import this data, the seclabelchar file type modifier must be used:
LOAD FROM input.del OF DEL MODIFIED BY SECLABELCHAR INSERT INTO tl

seclabelname

Indicates that security labels in the input source file are indicated by their name
rather than the default encoded numeric format. LOAD will convert the name to
the appropriate security label if it exists. If no security label exists with the
indicated name for the security policy protecting the table the row is not loaded
and a warning (SQLSTATE 01H53, SQLCODE SQL3244W) is returned.

This modifier cannot be specified if the seclabelchar modifier is specified,
otherwise the load fails and an error (SQLCODE SQL3525N) is returned.

If you have a table consisting of a single DB2SECURITYLABEL column, the data file
might consist of security label names similar to:
"LABEL1"

"LABEL1"
"LABEL2"

To load or import this data, the seclabelname file type modifier must be used:
LOAD FROM input.del OF DEL MODIFIED BY SECLABELNAME INSERT INTO tl

Note: If the file type is ASC, any spaces following the name of the security label
will be interpreted as being part of the name. To avoid this use the striptblanks
file type modifier to make sure the spaces are removed.

totalfreespace=x

x is an integer greater than or equal to 0. The value is interpreted as the
percentage of the total pages in the table that is to be appended to the end of the
table as free space. For example, if x is 20, and the table has 100 data pages after
the data has been loaded, 20 additional empty pages will be appended. The total
number of data pages for the table will be 120. The data pages total does not
factor in the number of index pages in the table. This option does not affect the
index object. If two loads are done with this option specified, the second load will
not reuse the extra space appended to the end by the first load.

transactionidignore

This modifier informs the load utility that data for the TRANSACTION START ID
column is present in the data file but should be ignored. When this modifier is
specified, the value for the TRANSACTION START ID column is generated by
the utility. This modifier cannot be used with the transactionidmissing modifier
or the transactionidoverride modifier.

Built-in routines and views 125

Table 48. Valid file type modifiers

for the load utility: All file formats (continued)

Modifier

Description

transactionidmissing

If this modifier is specified, the utility assumes that the input data file contains no
data for the TRANSACTION START ID columns. When this modifier is specified,
the value for the TRANSACTION START ID column is generated by the utility.
This modifier cannot be used with the transactionidignore modifier or the
transactionidoverride modifier.

transactionidoverride

This modifier instructs the load utility to accept user-supplied data for the
GENERATED ALWAYS AS TRANSACTION START ID column in a system-period
temporal table. This behavior is contrary to the normal rules for this type of
column. When this modifier is used, any rows with no data or NULL data in a
TRANSACTION START ID column are rejected.

usedefaults

If a source column for a target table column has been specified, but it contains no
data for one or more row instances, default values are loaded. Examples of
missing data are:

"non

» For DEL files: two adjacent column delimiters (",,") or two adjacent column
delimiters separated by an arbitrary number of spaces (", ,") are specified for a
column value.

» For DEL/ASC files: A row that does not have enough columns, or is not long
enough for the original specification. For ASC files, NULL column values are
not considered explicitly missing, and a default will not be substituted for
NULL column values. NULL column values are represented by all space
characters for numeric, date, time, and /timestamp columns, or by using the
NULL INDICATOR for a column of any type to indicate the column is NULL.

Without this option, if a source column contains no data for a row instance, one
of the following occurs:

¢ For DEL/ASC files: If the column is nullable, a NULL is loaded. If the column

is not nullable, the utility rejects the row.

Table 49. Valid file type modifiers

for the load utility: ASCII file formats (ASC/DEL)

Modifier

Description

codepage=x

x is an ASCII character string. The value is interpreted as the code page of the
data in the input data set. Converts character data (and numeric data specified in
characters) from this code page to the database code page during the load
operation.

The following rules apply:

* For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to
the range of x00 to x3F, inclusive.

* For DEL data specified in an EBCDIC code page, the delimiters might not
coincide with the shift-in and shift-out DBCS characters.

* nullindchar must specify symbols included in the standard ASCII set between
code points x20 and x7F, inclusive. This refers to ASCII symbols and code
points. EBCDIC data can use the corresponding symbols, even though the code
points will be different.

This option is not supported in conjunction with the CURSOR filetype.

126 Administrative Routines and Views

Table 49. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier

Description

a

dateformat="x

x is the format of the date in the source file.! Valid date elements are:

YYYY - Year (four digits ranging from 0000 - 9999)
M - Month (one or two digits ranging from 1 - 12)
MM - Month (two digits ranging from 01 - 12;
mutually exclusive with M)
D - Day (one or two digits ranging from 1 - 31)
DD - Day (two digits ranging from 01 - 31;
mutually exclusive with D)
DDD - Day of the year (three digits ranging
from 001 - 366; mutually exclusive
with other day or month elements)

A default value of 1 is assigned for each element that is not specified. Some
examples of date formats are:

"D-M-YYYY"

"MM.DD.YYYY"

"YYYYDDD"

dumpfile = x x is the fully qualified (according to the server database partition) name of an
exception file to which rejected rows are written. A maximum of 32 KB of data is
written per record. The following section is an example that shows how to specify

a dump file:

db2 Toad from data of del
modified by dumpfile = /u/user/filename
insert into table_name

The file will be created and owned by the instance owner. To override the default

file permissions, use the dumpfileaccessall file type modifier.

Note:

1. In a partitioned database environment, the path should be local to the loading
database partition, so that concurrently running load operations do not
attempt to write to the same file.

2. The contents of the file are written to disk in an asynchronous buffered mode.
In the event of a failed or an interrupted load operation, the number of
records committed to disk cannot be known with certainty, and consistency
cannot be guaranteed after a LOAD RESTART. The file can only be assumed to be
complete for a load operation that starts and completes in a single pass.

3. If the specified file already exists, it will not be re-created, but it will be
truncated.

dumpfileaccessall Grants read access to 'OTHERS' when a dump file is created.

This file type modifier is only valid when:

1. it is used in conjunction with dumpfile file type modifier

2. the user has SELECT privilege on the load target table

3. it is issued on a DB2 server database partition that resides on a UNIX
operating system

If the specified file already exists, its permissions will not be changed.

fastparse Use with caution. Reduces syntax checking on user-supplied column values, and

enhances performance. Tables are guaranteed to be architecturally correct (the
utility performs sufficient data checking to prevent a segmentation violation or
trap), however, the coherence of the data is not validated. Only use this option if
you are certain that your data is coherent and correct. For example, if the
user-supplied data contains an invalid timestamp column value of
:1>0-00-20-07.11.12.000000, this value is inserted into the table if fastparse is
specified, and rejected if fastparse is not specified.

Built-in routines and views 127

Table 49. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier

Description

implieddecimal

The location of an implied decimal point is determined by the column definition;
it is no longer assumed to be at the end of the value. For example, the value
12345 is loaded into a DECIMAL(8,2) column as 123.45, not 12345.00.

This modifier cannot be used with the packeddecimal modifier.

a

timeformat="x

x is the format of the time in the source file.! Valid time elements are:

H - Hour (one or two digits ranging from 0 - 12
for a 12 hour system, and 0 - 24
for a 24 hour system)
HH - Hour (two digits ranging from 00 - 12
for a 12 hour system, and 00 - 24
for a 24 hour system; mutually exclusive

with H)
M - Minute (one or two digits ranging
from 0 - 59)
MM - Minute (two digits ranging from 00 - 59;
mutually exclusive with M)
S - Second (one or two digits ranging
from 0 - 59)
SS - Second (two digits ranging from 00 - 59;

mutually exclusive with S)

SSSSS - Second of the day after midnight (5 digits
ranging from 00000 - 86400; mutually
exclusive with other time elements)

1T - Meridian indicator (AM or PM)

A default value of 0 is assigned for each element that is not specified. Some
examples of time formats are:
"HH:MM:SS"

"HH.MM TT"
"SSSSS”

128 Administrative Routines and Views

Table 49. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier

Description

timestampformat="x

I

x is the format of the time stamp in the source file."! Valid time stamp elements
are:

YYYY - Year (four digits ranging from 0000 - 9999)

M - Month (one or two digits ranging from 1 - 12)
MM - Month (two digits ranging from 01 - 12;
mutually exclusive with M and MMM)
MMM - Month (three-letter case-insensitive abbreviation for
the month name; mutually exclusive with M and MM)
D - Day (one or two digits ranging from 1 - 31)
DD - Day (two digits ranging from 01 - 31; mutually exclusive with D)
DDD - Day of the year (three digits ranging from 001 - 366;
mutually exclusive with other day or month elements)
H - Hour (one or two digits ranging from 0 - 12
for a 12 hour system, and 0 - 24 for a 24 hour system)
HH - Hour (two digits ranging from 00 - 12

for a 12 hour system, and 00 - 24 for a 24 hour system;
mutually exclusive with H)

M - Minute (one or two digits ranging from 0 - 59)

MM - Minute (two digits ranging from 00 - 59;
mutually exclusive with M, minute)

S - Second (one or two digits ranging from 0 - 59)

SS - Second (two digits ranging from 00 - 59;

mutually exclusive with S)
SSSSS - Second of the day after midnight (5 digits

ranging from 00000 - 86400; mutually

exclusive with other time elements)
U (1 to 12 times)

- Fractional seconds(number of occurrences of U represent the
number of digits with each digit ranging from 0 to 9

1T - Meridian indicator (AM or PM)

timestampformat="x

(Continued)

I

A default value of 1 is assigned for unspecified YYYY, M, MM, D, DD, or DDD
elements. A default value of 'Jan' is assigned to an unspecified MMM element. A
default value of 0 is assigned for all other unspecified elements. The following
section is an example of a time stamp format:

"YYYY/MM/DD HH:MM:SS.UUUUUU"

The valid values for the MMM element include: Yjan’, 'feb’, 'mar’, 'apr’, 'may’, jun’,
jul', 'aug’, 'sep’, 'oct’, nmov' and 'dec'. These values are case insensitive.

If the timestampformat modifier is not specified, the load utility formats the
timestamp field using one of two possible formats:

YYYY-MM-DD-HH.MM.SS
YYYY-MM-DD HH:MM:SS

The load utility chooses the format by looking at the separator between the DD
and HH. If it is a dash '-', the load utility uses the regular dashes and dots format
(YYYY-MM-DD-HH.MM. SS). If it is a blank space, then the load utility expects a colon
"' to separate the HH, MM and SS.

In either format, if you include the microseconds field (UUUUUU), the load
utility expects the dot "." as the separator. Either YYYY-MM-DD-HH.MM. SS.UUUUUU or
YYYY-MM-DD HH:MM:SS.UUUUUU are acceptable.

The following example illustrates how to load data containing user defined date
and time formats into a table called schedule:
db2 load from delfile2 of del

modified by timestampformat="yyyy.mm.dd hh:mm tt"
insert into schedule

Built-in routines and views 129

Table 49. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier

Description

usegraphiccodepage

If usegraphiccodepage is given, the assumption is made that data being loaded
into graphic or double-byte character large object (DBCLOB) data field(s) is in the
graphic code page. The rest of the data is assumed to be in the character code
page. The graphic codepage is associated with the character code page. LOAD
determines the character code page through either the codepage modifier, if it is
specified, or through the code page of the database if the codepage modifier is not
specified.

This modifier should be used in conjunction with the delimited data file
generated by drop table recovery only if the table being recovered has graphic
data.

Restrictions

The usegraphiccodepage modifier MUST NOT be specified with DEL files created
by the EXPORT utility, as these files contain data encoded in only one code page.
The usegraphiccodepage modifier is also ignored by the double-byte character
large objects (DBCLOBs) in files.

xmlchar

Specifies that XML documents are encoded in the character code page.

This option is useful for processing XML documents that are encoded in the
specified character code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute,
the encoding must match the character code page, otherwise the row containing
the document will be rejected. Note that the character codepage is the value
specified by the codepage file type modifier, or the application codepage if it is
not specified. By default, either the documents are encoded in Unicode, or they
contain a declaration tag with an encoding attribute.

xmlgraphic

Specifies that XML documents are encoded in the specified graphic code page.

This option is useful for processing XML documents that are encoded in a specific
graphic code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute,
the encoding must match the graphic code page, otherwise the row containing
the document will be rejected. Note that the graphic code page is the graphic
component of the value specified by the codepage file type modifier, or the
graphic component of the application code page if it is not specified. By default,
documents are either encoded in Unicode, or they contain a declaration tag with
an encoding attribute.

130 Administrative Routines and Views

Table 50. Valid file type modifiers for the load utility: ASC file formats (Non-delimited ASCII)

Modifier

Description

binarynumerics

Numeric (but not DECIMAL) data must be in binary form, not the character
representation. This avoids costly conversions.

This option is supported only with positional ASC, using fixed length records
specified by the reclen option.

The following rules apply:

* No conversion between data types is performed, with the exception of BIGINT,
INTEGER, and SMALLINT.

* Data lengths must match their target column definitions.
* FLOATs must be in IEEE Floating Point format.

* Binary data in the load source file is assumed to be big-endian, regardless of
the platform on which the load operation is running.

NULLSs cannot be present in the data for columns affected by this modifier.
Blanks (normally interpreted as NULL) are interpreted as a binary value when
this modifier is used.

nochecklengths

If nochecklengths is specified, an attempt is made to load each row, even if the
source data has a column definition that exceeds the size of the target table
column. Such rows can be successfully loaded if code page conversion causes the
source data to shrink; for example, 4-byte EUC data in the source could shrink to
2-byte DBCS data in the target, and require half the space. This option is
particularly useful if it is known that the source data will fit in all cases despite
mismatched column definitions.

nullindchar=x

x is a single character. Changes the character denoting a NULL value to x. The
default value of x is Y.2

This modifier is case sensitive for EBCDIC data files, except when the character is
an English letter. For example, if the NULL indicator character is specified to be
the letter N, then n is also recognized as a NULL indicator.

packeddecimal Loads packed-decimal data directly, since the binarynumerics modifier does not
include the DECIMAL field type.
This option is supported only with positional ASC, using fixed length records
specified by the reclen option.
Supported values for the sign nibble are:
+ = OxC OxA OxE OxF

- = 0xD 0xB

NULLSs cannot be present in the data for columns affected by this modifier.
Blanks (normally interpreted as NULL) are interpreted as a binary value when
this modifier is used.
Regardless of the server platform, the byte order of binary data in the load source
file is assumed to be big-endian; that is, when using this modifier on Windows
operating systems, the byte order must not be reversed.
This modifier cannot be used with the implieddecimal modifier.

reclen=x x is an integer with a maximum value of 32 767. x characters are read for each

row, and a newline character is not used to indicate the end of the row.

Built-in routines and views 131

Table 50. Valid file type modifiers for the load utility: ASC file formats (Non-delimited ASCII) (continued)

Modifier

Description

striptblanks

Truncates any trailing blank spaces when loading data into a variable-length field.
If this option is not specified, blank spaces are kept.

This option cannot be specified together with striptnulls. These are mutually
exclusive options. This option replaces the obsolete t option, which is supported
for earlier compatibility only.

striptnulls

Truncates any trailing NULLs (0x00 characters) when loading data into a
variable-length field. If this option is not specified, NULLs are kept.

This option cannot be specified together with striptblanks. These are mutually
exclusive options. This option replaces the obsolete padwithzero option, which is
supported for earlier compatibility only.

zoneddecimal

Loads zoned decimal data, since the binarynumerics modifier does not include
the DECIMAL field type. This option is supported only with positional ASC,
using fixed length records specified by the reclen option.

Half-byte sign values can be one of the following value:

0xC OxA OxE OxF 0x3
0xD OxB 0x7

+

Supported values for digits are 0x0 to 0x9.

Supported values for zones are 0x3 and OxF.

Table 51. Valid file type modifiers for the load utility: DEL file formats (Delimited ASCII)

Modifier

Description

chardelx

x is a single character string delimiter. The default value is a double quotation
mark ("). The specified character is used in place of double quotation marks to
enclose a character string.” If you want to explicitly specify the double quotation
mark (") as the character string delimiter, you should specify it as follows:

modified by chardel™"

The single quotation mark (') can also be specified as a character string delimiter
as follows:

modified by chardel''

coldelx

x is a single character column delimiter. The default value is a comma (,). The
specified character is used in place of a comma to signal the end of a column.”

decplushlank

Plus sign character. Causes positive decimal values to be prefixed with a blank
space instead of a plus sign (+). The default action is to prefix positive decimal
values with a plus sign.

decptx

x is a single character substitute for the period as a decimal point character. The
default value is a period (.). The specified character is used in place of a period as
a decimal point character.”

132 Administrative Routines and Views

Table 51. Valid file type modifiers for the load utility: DEL file formats (Delimited ASCII) (continued)

Modifier

Description

delprioritychar

The current default priority for delimiters is: record delimiter, character delimiter,
column delimiter. This modifier protects existing applications that depend on the
older priority by reverting the delimiter priorities to: character delimiter, record
delimiter, column delimiter. Syntax:

db2 Toad ... modified by delprioritychar ...

For example, given the following DEL data file:

"Smith, Joshua",4000,34.98<row delimiter>
"Vincent,<row delimiter>, is a manager", ...
. 4005,44.37<row delimiter>

With the delprioritychar modifier specified, there will be only two rows in this
data file. The second <row delimiter> will be interpreted as part of the first data
column of the second row, while the first and the third <row delimiter> are
interpreted as actual record delimiters. If this modifier is not specified, there will
be three rows in this data file, each delimited by a <row delimiter>.

keepblanks

Preserves the leading and trailing blanks in each field of type CHAR, VARCHAR,
LONG VARCHAR, or CLOB. Without this option, all leading and trailing blanks

that are not inside character delimiters are removed, and a NULL is inserted into
the table for all blank fields.

The following example illustrates how to load data into a table called TABLEL,
while preserving all leading and trailing spaces in the data file:
db2 load from delfile3 of del

modified by keepblanks
insert into tablel

nochardel

The load utility will assume all bytes found between the column delimiters to be
part of the column's data. Character delimiters will be parsed as part of column
data. This option should not be specified if the data was exported using a DB2
database system (unless nochardel was specified at export time). It is provided to
support vendor data files that do not have character delimiters. Improper usage
might result in data loss or corruption.

This option cannot be specified with chardelx, delprioritychar or nodoubledel.
These are mutually exclusive options.

nodoubledel

Suppresses recognition of double character delimiters.

Table 52. Valid file type modifiers

for the load utility: IXF file format

Modifier

Description

forcein

Directs the utility to accept data despite code page mismatches, and to suppress
translation between code pages.

Fixed length target fields are checked to verify that they are large enough for the
data. If nochecklengths is specified, no checking is done, and an attempt is made
to load each row.

nochecklengths

If nochecklengths is specified, an attempt is made to load each row, even if the
source data has a column definition that exceeds the size of the target table
column. Such rows can be successfully loaded if code page conversion causes the
source data to shrink; for example, 4-byte EUC data in the source could shrink to
2-byte DBCS data in the target, and require half the space. This option is
particularly useful if it is known that the source data will fit in all cases despite
mismatched column definitions.

Note:

Built-in routines and views 133

1. Double quotation marks around the date format string are mandatory. Field
separators cannot contain any of the following characters: a-z, A-Z, and 0-9.
The field separator should not be the same as the character delimiter or field
delimiter in the DEL file format. A field separator is optional if the start and
end positions of an element are unambiguous. Ambiguity can exist if
(depending on the modifier) elements such as D, H, M, or S are used, because
of the variable length of the entries.

For time stamp formats, care must be taken to avoid ambiguity between the
month and the minute descriptors, since they both use the letter M. A month
field must be adjacent to other date fields. A minute field must be adjacent to
other time fields. Following are some ambiguous time stamp formats:

"M" (could be a month, or a minute)

"M:M" (Which is which?)

"M:YYYY:M" (Both are interpreted as month.)

"S:M:YYYY" (adjacent to both a time value and a date value)

In ambiguous cases, the utility will report an error message, and the operation
will fail.

Following are some unambiguous time stamp formats:

"M:YYYY" (Month)

"S:M" (Minute)

"M:YYYY:S:M" (Month....Minute)

"M:H:YYYY:M:D" (Minute....Month)

Some characters, such as double quotation marks and back slashes, must be
preceded by an escape character (for example, \).

2. Character values provided for the chardel, coldel, or decpt file type modifiers
must be specified in the code page of the source data.

The character code point (instead of the character symbol), can be specified
using the syntax xJJ or 0x]JJ, where JJ is the hexadecimal representation of the
code point. For example, to specify the # character as a column delimiter, use
one of the following statements:

. modified by coldel# ...

. modified by coldelOx23 ...

. modified by coldelX23 ...

3. “Delimiter considerations for moving data” lists restrictions that apply to the

characters that can be used as delimiter overrides.

4. The load utility does not issue a warning if an attempt is made to use
unsupported file types with the MODIFIED BY option. If this is attempted, the
load operation fails, and an error code is returned.

5. When multiple modifiers suffixed with ignore, include, missing, and override
are specified, they are applied in the order that they are listed. In the following
statement, data for implicitly hidden columns that are not identity columns is
included in the input data. While data for all identity columns, regardless of
their implicitly hidden status, is not.

db2 Toad from delfilel of del modified by
implicitlyhiddeninclude identitymissing insert into tablel

However, changing the order of the file type modifiers in the following
statement means that data for all implicitly hidden columns (including hidden
identity columns) is included in the input data. While data for identity columns
that are not implicitly hidden is not.

db2 Toad from delfilel of del modified by
identitymissing implicitlyhiddeninclude insert into tablel

134 Administrative Routines and Views

Table 53. LOAD behavior when using codepage and usegraphiccodepage

codepage=N

usegraphiccodepage LOAD behavior

Absent

Absent All data in the file is assumed to be in the database code
page, not the application code page, even if the CLIENT
option is specified.

Present

Absent All data in the file is assumed to be in code page N.

Warning: Graphic data will be corrupted when loaded
into the database if N is a single-byte code page.

Absent

Present Character data in the file is assumed to be in the
database code page, even if the CLIENT option is
specified. Graphic data is assumed to be in the code
page of the database graphic data, even if the CLIENT
option is specified.

If the database code page is single-byte, then all data is
assumed to be in the database code page.

Warning: Graphic data will be corrupted when loaded
into a single-byte database.

Present

Present Character data is assumed to be in code page N. Graphic
data is assumed to be in the graphic code page of N.

If N is a single-byte or double-byte code page, then all
data is assumed to be in code page N.

Warning: Graphic data will be corrupted when loaded
into the database if N is a single-byte code page.

PRUNE HISTORY/LOGFILE command using the ADMIN_CMD procedure:

Used to delete entries from the recovery history file or to delete log files from the
active log file path of the currently connected database partition. Deleting entries
from the recovery history file might be necessary if the file becomes excessively
large and the retention period is high.

In a partitioned environment, the PRUNE HISTORY command only performs on the
database partition it is issued on. To prune the history on multiple partitions, you
can either issue the PRUNE HISTORY command from each individual database
partition, or use the db2_al1 prefix to run the PRUNE HISTORY command on all
database partitions.

Important: The PRUNE LOGFILE command is deprecated and might be removed in a
future release. Use the PRUNE HISTORY command instead.

Authorization

One of the following authorities:
* SYSADM

* SYSCTRL

* SYSMAINT

 DBADM

Built-in routines and views 135

Required connection
Database

Command syntax

»»—PRUNE HISTORY—t imestamp <
|-—WITH FORCE OPTION—-| |-—AND DELETE—-|
LOGFILE PRIOR TO—log-file-name

Command parameters

HISTORY timestamp
Identifies a range of entries in the recovery history file that will be deleted.
A complete time stamp (in the form yyyymmddhhmmss), or an initial prefix
(minimum yyyy) can be specified. All entries with time stamps equal to or
less than the time stamp provided are deleted from the recovery history
file. When an initial prefix is specified, the unspecified components of the
time stamp are interpreted as yyyy0101000000.

WITH FORCE OPTION
Specifies that the entries will be pruned according to the time stamp
specified, even if some entries from the most recent restore set are deleted
from the file. A restore set is the most recent full database backup
including any restores of that backup image. If this parameter is not
specified, all entries from the backup image forward will be maintained in
the history.

AND DELETE
Specifies that the associated log archives will be physically deleted (based
on the location information) when the history file entry is removed. This
option is especially useful for ensuring that archive storage space is
recovered when log archives are no longer needed. If you are archiving
logs via a user exit program, the logs cannot be deleted using this option.

If you set the auto_del_rec_obj database configuration parameter to ON,
calling PRUNE HISTORY with the AND DELETE parameter will also physically
delete backup images and load copy images if their history file entry is
pruned.

LOGFILE PRIOR TO log-file-name
Specifies a string for a log file name, for example S0000100.L0G. All log
files before (but not including) the specified log file will be deleted. The
Togarchmethl database configuration parameter must be set to a value
other than OFF.

Note: This value is not supported in DB2 pureScale environments.
Example

Example 1: Remove all entries from the recovery history file that were written on or
before December 31, 2003:

CALL SYSPROC.ADMIN_CMD ('prune history 20031231'")

Example 2: Delete all log files from the active log file path before (but not
including) $6000100. LOG:

CALL SYSPROC.ADMIN_CMD('prune logfile prior to S0000100.L0G')

136 Administrative Routines and Views

Usage notes

If the WITH FORCE OPTION is used, you might delete entries that are required for
automatic restoration of databases. Manual restores will still work correctly. Use of
this command can also prevent the db2ckrst utility from being able to correctly
analyze the complete chain of required backup images. Using the PRUNE HISTORY
command without the WITH FORCE OPTION prevents required entries from being
deleted.

Those entries with status DB2HISTORY_STATUS DO_NOT_DELETE will not be
pruned. If the WITH FORCE OPTION is used, then objects marked as
DB2HISTORY_STATUS_DO_NOT_DELETE will still be pruned or deleted. You can
set the status of recovery history file entries to
DB2HISTORY_STATUS_DO_NOT_DELETE using the UPDATE HISTORY command,
the ADMIN_CMD with UPDATE_HISTORY, or the db2HistoryUpdate APIL You can
use the DB2HISTORY_STATUS_DO_NOT_DELETE status to prevent key recovery
history file entries from being pruned and to prevent associated recovery objects
from being deleted.

You can prune snapshot backup database history file entries using the PRUNE
HISTORY command, but you cannot delete the related physical recovery objects
using the AND DELETE parameter. The only way to delete snapshot backup object is
to use the db2acsutil command.

The command affects only the database partition to which the application is
currently connected.

QUIESCE DATABASE command using the ADMIN_CMD procedure:

Forces all users off the specified database and puts it into a quiesced mode.

While the database is in quiesced mode, you can perform administrative tasks on
it. After administrative tasks are complete, use the UNQUIESCE command to activate
the database and allow other users to connect to the database without having to
shut down and perform another database start.

In this mode, only users with authority in this restricted mode are allowed to

connect to the database. Users with SYSADM and DBADM authority always have
access to a database while it is quiesced.

Scope

QUIESCE DATABASE results in all objects in the database being in the quiesced mode.
Only the allowed user or group and SYSADM, SYSMAINT, DBADM, or SYSCTRL
will be able to access the database or its objects.

If a database is in the SUSPEND_WRITE state, it cannot be put in quiesced mode.
Authorization

One of the following authorities:

For database level quiesce:
* SYSADM
+ DBADM

Built-in routines and views 137

Required connection
Database

Command syntax

>>—QUIESCE—|:DATABASE IMMEDIATE >
DB DEFER |

|—WITH TIMEOUT—minuteS—|

FORCE CONNECTIONS
[1

»
>

v
A

Command parameters
DEFER Wait for applications until they commit the current unit of work.

WITH TIMEOUT minutes
Specifies a time, in minutes, to wait for applications to commit the
current unit of work. If no value is specified, in a single-partition
database environment, the default value is 10 minutes. In a
partitioned database environment the value specified by the
start_stop_time database manager configuration parameter will be
used.

IMMEDIATE
Do not wait for the transactions to be committed, immediately roll back the
transactions.

FORCE CONNECTIONS
Force the connections off.

DATABASE
Quiesce the database. All objects in the database will be placed in quiesced
mode. Only specified users in specified groups and users with SYSADM,
SYSMAINT, and SYSCTRL authority will be able to access to the database
or its objects.

Example

Force off all users with connections to the database.
CALL SYSPROC.ADMIN CMD('quiesce db immediate')
e This command will force all users off the database if the FORCE CONNECTIONS

option is supplied. FORCE CONNECTIONS is the default behavior; the parameter is
allowed in the command for compatibility reasons.

* The command will be synchronized with the FORCE CONNECTIONS and will only
complete once the FORCE CONNECTIONS has completed.

Usage notes

 After QUIESCE DATABASE, users with SYSADM, SYSMAINT, SYSCTRL, or
DBADM authority, and GRANT or REVOKE privileges can designate who will
be able to connect. This information will be stored permanently in the database
catalog tables.
For example,

grant quiesce_connect on database to username/groupname
revoke quiesce_connect on database from username/groupname

138 Administrative Routines and Views

* Command execution status is returned in the SQLCA resulting from the CALL
statement.

¢ In a DB2 pureScale environment, after quiescing a database and restarting the
instance, the database will remain quiesced across all members. An explicit
UNQUIESCE DATABASE command is required to remove the quiesce state.

QUIESCE TABLESPACES FOR TABLE command using the ADMIN_CMD
procedure:

Quiesces table spaces for a table. There are three valid quiesce modes: share, intent
to update, and exclusive.

There are three possible states resulting from the quiesce function:
* Quiesced: SHARE

* Quiesced: UPDATE

* Quiesced: EXCLUSIVE

Scope

In a single-partition environment, this command quiesces all table spaces involved
in a load operation in exclusive mode for the duration of the load operation. In a
partitioned database environment, this command acts locally on a database
partition. It quiesces only that portion of table spaces belonging to the database
partition on which the load operation is performed. For partitioned tables, all of
the table spaces listed in SYSDATAPARTITIONS.TBSPACEID and
SYSDATAPARTITIONS.LONG_TBSPACEID associated with a table and with a
status of normal, attached or detached, (for example,
SYSDATAPARTITIONS.STATUS of ", 'A" or 'D') are quiesced.

Authorization

One of the following authorities:
* SYSADM

* SYSCTRL

* SYSMAINT

* DBADM

* LOAD

Required connection
Database

Command syntax

»»—QUIESCE TABLESPACES FOR TABLE—[tablename J SHARE >«
schema. tablename INTENT TO UPDATE—
EEXCLUSIVE
RESET

Command parameters

TABLE

Built-in routines and views 139

tablename
Specifies the unqualified table name. The table cannot be a system
catalog table.

schema.tablename
Specifies the qualified table name. If schema is not provided, the
CURRENT SCHEMA will be used. The table cannot be a system
catalog table.

SHARE Specifies that the quiesce is to be in share mode.

When a "quiesce share" request is made, the transaction requests intent
share locks for the table spaces and a share lock for the table. When the
transaction obtains the locks, the state of the table spaces is changed to
QUIESCED SHARE. The state is granted to the quiescer only if there is no
conflicting state held by other users. The state of the table spaces, along
with the authorization ID and the database agent ID of the quiescer, are
recorded in the table space table, so that the state is persistent. The table
cannot be changed while the table spaces for the table are in QUIESCED
SHARE state. Other share mode requests to the table and table spaces are
allowed. When the transaction commits or rolls back, the locks are
released, but the table spaces for the table remain in QUIESCED SHARE
state until the state is explicitly reset.

INTENT TO UPDATE
Specifies that the quiesce is to be in intent to update mode.

When a "quiesce intent to update" request is made, the table spaces are
locked in intent exclusive (IX) mode, and the table is locked in update (U)
mode. The state of the table spaces is recorded in the table space table.

EXCLUSIVE
Specifies that the quiesce is to be in exclusive mode.

When a "quiesce exclusive" request is made, the transaction requests super
exclusive locks on the table spaces, and a super exclusive lock on the table.
When the transaction obtains the locks, the state of the table spaces
changes to QUIESCED EXCLUSIVE. The state of the table spaces, along
with the authorization ID and the database agent ID of the quiescer, are
recorded in the table space table. Since the table spaces are held in super
exclusive mode, no other access to the table spaces is allowed. The user
who invokes the quiesce function (the quiescer) has exclusive access to the
table and the table spaces.

RESET Specifies that the state of the table spaces is to be reset to normal. A
quiesce state cannot be reset if the connection that issued the quiesce
request is still active.

When a quiescer issues a reset, only the quiesce mode for that quiescer is
reset. If there are multiple quiescers, then the state of the table space will
appear unchanged.

When working with a system-period temporal table and its associated
history table, the reset operation must be performed on the same table that
was used to originally set the quiesce mode.

Example

Quiesce the table spaces containing the staff table.

CALL SYSPROC.ADMIN _CMD('quiesce tablespaces for table staff share')

140 Administrative Routines and Views

Usage notes
This command is not supported in DB2 pureScale environments.

A quiesce is a persistent lock. Its benefit is that it persists across transaction
failures, connection failures, and even across system failures (such as power failure,
or reboot).

A quiesce is owned by a connection. If the connection is lost, the quiesce remains,
but it has no owner, and is called a phantom quiesce. For example, if a power outage
caused a load operation to be interrupted during the delete phase, the table spaces
for the loaded table would be left in quiesce exclusive state. Upon database restart,
this quiesce would be an unowned (or phantom) quiesce. The removal of a
phantom quiesce requires a connection with the same user ID used when the
quiesce mode was set.

To remove a phantom quiesce:

1. Connect to the database with the same user ID used when the quiesce mode
was set.

2. Use the LIST TABLESPACES command to determine which table space is
quiesced.

3. Re-quiesce the table space using the current quiesce state. For example:
CALL SYSPROC.ADMIN CMD('quiesce tablespaces for table mytable exclusive')

Once completed, the new connection owns the quiesce, and the load operation can
be restarted.

There is a limit of five quiescers on a table space at any given time.

A quiescer can alter the state of a table space from a less restrictive state to a more
restrictive one (for example, S to U, or U to X). If a user requests a state lower than
one that is already held, the original state is returned. States are not downgraded.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

When quiescing against a system-period temporal table, all the tables paces
associated with the system-period temporal table and the history table are
quiesced. When quiescing against a history table, all the tables paces associated
with the history table, and the associated system-period temporal table are
quiesced.

REDISTRIBUTE DATABASE PARTITION GROUP command using the
ADMIN_CMD procedure:

Redistributes data across the partitions in a database partition group. This
command affects all objects present in the database partition group and cannot be
restricted to one object alone.

Scope

This command affects all database partitions in the database partition group.

Built-in routines and views 141

Authorization

One of the following authorities is required:

* SYSADM
* SYSCTRL
- DBADM

In addition, one of the following groups of authorizations is also required:
* DELETE, INSERT, and SELECT privileges on all tables in the database partition

group being redistributed
* DATAACCESS authority

Required connection
Connection to the catalog partition.

Command syntax

»>—REDISTRIBUTE DATABASE PARTITION GROUP—db-partition-group

> Action
—EVIJOT ROLLF(SRWARD RECOVERABLE—| Action ! Not rollforward recoverable options |J

@ { {
e o] o] 1
TABLE—(—table-name)AH— EXCLUDE—(—Ytable-name)

FIRST:

@ @
I—STOP AT—ZocaZ—isoiEime—I

Action:

[LUNIFORM]
USING DISTFILE—distfilename

{ Add/Drop DB partition i

USING TARGETMAP—targetmapfilename
CONTINUE

ABORT

Add/Drop DB partition:

ADD—EDBPARTITIONNU Vlj—(
DBPARTITIONNUMS

Yy

Yo)
|—TO—m—|

DROP DBPARTITIONNUMT(LA)
[DBPARTITIONNUMS L 10—n

142 Administrative Routines and Views

Not roliforward recoverable options:

® ® ®
LpATA BUFFER—n— ~ LINDEXING MODE DEFERRED- I:PRECHECK Noi‘

|—QUIESCE DATABASE YES—l |—STATISTICS USE PROFILE—

INDEXING MODE REBUILD PRECHECK YES
1l ol]

PRECHECK ONLY

|—QUIESCE DATABASE NO—| |—STATISTICS NONE

Command parameters

DATABASE PARTITION GROUP db-partition-group
The name of the database partition group. This one-part name identifies a
database partition group described in the SYSCAT. DBPARTITIONGROUPS
catalog table. The database partition group cannot currently be undergoing
redistribution.

Note: Tables in the IBMCATGROUP and the IBMTEMPGROUP database
partition groups cannot be redistributed.

NOT ROLLFORWARD RECOVERABLE
When this option is used, the REDISTRIBUTE DATABASE PARTITION GROUP
command is not rollforward recoverable.

Data is moved in bulk instead of by internal insert and delete operations.
This reduces the number of times that a table must be scanned and accessed,
which results in better performance.

Log records are no longer required for each of the insert and delete
operations. This means that you no longer need to manage large amounts of
active log space and log archiving space in your system when performing
data redistribution.

When using the REDISTRIBUTE DATABASE PARTITION GROUP command with the
NOT ROLLFORWARD RECOVERABLE option, the redistribute operation uses the
INDEXING MODE DEFERRED option for tables that contain XML columns. If a
table does not contain an XML column, the redistribute operation uses the
indexing mode specified when issuing the command.

When this option is not used, extensive logging of all row movement is
performed such that the database can be recovered later in the event of any
interruptions, errors, or other business need.

UNIFORM
Specifies that the data is uniformly distributed across hash partitions (that is,
every hash partition is assumed to have the same number of rows), but the
same number of hash partitions do not map to each database partition. After
redistribution, all database partitions in the database partition group have
approximately the same number of hash partitions.

USING DISTFILE distfilename
If the distribution of distribution key values is skewed, use this option to
achieve a uniform redistribution of data across the database partitions of a
database partition group.

Use the distfilename to indicate the current distribution of data across the
32 768 hash partitions.

Use row counts, byte volumes, or any other measure to indicate the amount of
data represented by each hash partition. The utility reads the integer value

Built-in routines and views 143

associated with a partition as the weight of that partition. When a distfilename
is specified, the utility generates a target distribution map that it uses to
redistribute the data across the database partitions in the database partition
group as uniformly as possible. After the redistribution, the weight of each
database partition in the database partition group is approximately the same
(the weight of a database partition is the sum of the weights of all hash
partitions that map to that database partition).

For example, the input distribution file might contain entries as follows:

10223
1345
112000
0

100

In the example, hash partition 2 has a weight of 112000, and partition 3 (with a
weight of 0) has no data mapping to it at all.

The distfilename should contain 32 768 positive integer values in character
format. The sum of the values should be less than or equal to 4 294 967 295.

The complete path name for distfilename must be included and distfilename must
exist on the server and be accessible from the connected partition.

USING TARGETMAP targetmapfilename
The file specified in targetmapfilename is used as the target distribution map.
Data redistribution is done according to this file. The complete path name for
targetmapfilename must be included and targetmapfilename must exist on the
server and be accessible from the connected partition.

The targetmapfilename should contain 32 768 integers, each representing a valid
database partition number. The number on any row maps a hash value to a
database partition. This means that if row X contains value Y, then every
record with HASHEDVALUE() of X is to be located on database partition Y.

If a database partition, included in the target map, is not in the database
partition group, an error is returned. Issue ALTER DATABASE PARTITION
GROUP ADD DBPARTITIONNUM statement before running REDISTRIBUTE
DATABASE PARTITION GROUP command.

If a database partition, excluded from the target map, is in the database
partition group, that database partition will not be included in the partitioning.
Such a database partition can be dropped using ALTER DATABASE
PARTITION GROUP DROP DBPARTITIONNUM statement either before or
after the REDISTRIBUTE DATABASE PARTITION GROUP command.

CONTINUE
Continues a previously failed or stopped REDISTRIBUTE DATABASE PARTITION
GROUP operation. If none occurred, an error is returned.

ABORT
Aborts a previously failed or stopped REDISTRIBUTE DATABASE PARTITION GROUP
operation. If none occurred, an error is returned.

ADD
DBPARTITIONNUM n
T0 m

n or n T0 m specifies a list or lists of database partition numbers which are
to be added into the database partition group. Any specified partition must

144 Administrative Routines and Views

not already be defined in the database partition group (SQLSTATE 42728).
This is equivalent to executing the ALTER DATABASE PARTITION
GROUP statement with ADD DBPARTITIONNUM clause specified.

DBPARTITIONNUMS n
T0m

n or n T m specifies a list or lists of database partition numbers which are
to be added into the database partition group. Any specified partition must
not already be defined in the database partition group (SQLSTATE 42728).
This is equivalent to executing the ALTER DATABASE PARTITION
GROUP statement with ADD DBPARTITIONNUM clause specified.

Note:

1. When a database partition is added using this option, containers for
table spaces are based on the containers of the corresponding table
space on the lowest numbered existing partition in the database
partition group. If this would result in a naming conflict among
containers, which could happen if the new partitions are on the same
physical machine as existing containers, this option should not be used.
Instead, the ALTER DATABASE PARTITION GROUP statement should
be used with the WITHOUT TABLESPACES option before issuing the
REDISTRIBUTE DATABASE PARTITION GROUP command. Table space
containers can then be created manually specifying appropriate names.

2. Data redistribution might create table spaces for all new database
partitions if the ADD DBPARTITIONNUMS parameter is specified.

DROP
DBPARTITIONNUM n
T0m

n or n T0 m specifies a list or lists of database partition numbers which are
to be dropped from the database partition group. Any specified partition
must already be defined in the database partition group (SQLSTATE
42729). This is equivalent to executing the ALTER DATABASE PARTITION
GROUP statement with the DROP DBPARTITIONNUM clause specified.

DBPARTITIONNUMS n
T0m

n or n T0 m specifies a list or lists of database partition numbers which are
to be dropped from the database partition group. Any specified partition
must already be defined in the database partition group (SQLSTATE
42729). This is equivalent to executing the ALTER DATABASE PARTITION
GROUP statement with the DROP DBPARTITIONNUM clause specified.

TABLE tablename
Specifies a table order for redistribution processing.

ONLY
If the table order is followed by the ONLY keyword (which is the default),
then, only the specified tables will be redistributed. The remaining tables
can be later processed by REDISTRIBUTE CONTINUE commands. This is the
default.

Built-in routines and views 145

FIRST
If the table order is followed by the FIRST keyword, then, the specified
tables will be redistributed with the given order and the remaining tables
in the database partition group will be redistributed with random order.

EXCLUDE tablename
Specifies tables to omit from redistribution processing. For example, you can
temporarily omit a table until you can configure it to meet the requirements for
data redistribution. The omitted tables can be later processed by REDISTRIBUTE
CONTINUE commands.

STOP AT local-isotime
When this option is specified, before beginning data redistribution for each
table, the local-isotime is compared with the current local timestamp. If the
specified local-isotime is equal to or earlier than the current local timestamp, the
utility stops with a warning message. Data redistribution processing of tables
in progress at the stop time will complete without interruption. No new data
redistribution processing of tables begins. The unprocessed tables can be
redistributed using the CONTINUE option. This local-isotime value is specified as a
time stamp, a 7-part character string that identifies a combined date and time.
The format is yyyy-mm-dd-hh.mm.ss.nnnnnn (year, month, day, hour, minutes,
seconds, microseconds) expressed in local time.

DATA BUFFER n
Specifies the number of 4 KB pages to use as buffered space for transferring
data within the utility. This command parameter can be used only when the
NOT ROLLFORWARD RECOVERABLE parameter is also specified.

If the value specified is lower than the minimum supported value, the
minimum value is used and no warning is returned. If a DATA BUFFER value is
not specified, an intelligent default is calculated by the utility at runtime at the
beginning of processing each table. Specifically, the default is to use 50% of the
memory available in the utility heap at the time redistribution of the table
begins and to take into account various table properties as well.

This memory is allocated directly from the utility heap, whose size can be
modified through the util_heap_sz database configuration parameter. The
value of the DATA BUFFER parameter of the REDISTRIBUTE DATABASE PARTITION
GROUP command can temporarily exceed util_heap_sz if more memory is
available in the system.

INDEXING MODE
Specifies how indexes are maintained during redistribution. This command
parameter can be used only when the NOT ROLLFORWARD RECOVERABLE parameter
is also specified.

Valid values are:

REBUILD
Indexes will be rebuilt from scratch. Indexes do not have to be valid to use
this option. As a result of using this option, index pages will be clustered
together on disk.

DEFERRED
Redistribute will not attempt to maintain any indexes. Indexes will be
marked as needing a refresh. The first access to such indexes might force a
rebuild, or indexes might be rebuilt when the database is restarted.

Note: For non-MDC and non-ITC tables, if there are invalid indexes on the
tables, the REDISTRIBUTE DATABASE PARTITION GROUP command

146 Administrative Routines and Views

automatically rebuilds them if you do not specify INDEXING MODE DEFERRED.
For an MDC or ITC table, even if you specify INDEXING MODE DEFERRED, a
composite index that is invalid is rebuilt before table redistribution begins
because the utility needs the composite index to process an MDC or ITC
table.

PRECHECK
Verifies that the database partition group can be redistributed. This command
parameter can be used only when the NOT ROLLFORWARD RECOVERABLE parameter
is also specified.

YES
This is the default value. The redistribution operation begins only if the
verification completes successfully. If the verification fails, the command

terminates and returns an error message related to the first check that
failed.

NO The redistribution operation begins immediately; no verification occurs.

ONLY
The command terminates after performing the verification; no
redistribution occurs. By default it will not quiesce the database. If the
QUIESCE DATABASE command parameter was set to YES or defaulted to a
value of YES, the database remains quiesced. To restore connectivity to the
database, perform the redistribution operation or issue UNQUIESCE DATABASE
command.

QUIESCE DATABASE
Specifies to force all users off the database and put it into a quiesced mode.
This command parameter can be used only when the NOT ROLLFORWARD
RECOVERABLE parameter is also specified.

YES
This is the default value. Only users with SYSADM, SYSMAINT, or
SYSCTRL authority or users who have been granted QUIESCE_CONNECT
authority will be able to access the database or its objects. Once the
redistribution completes successfully, the database is unquiesced.

NO The redistribution operation does not quiesce the database; no users are
forced off the database.

For more information, refer to the QUIESCE DATABASE command.

STATISTICS
Specifies that the utility should collect statistics for the tables that have a
statistics profile. This command parameter can be used only when the NOT
ROLLFORWARD RECOVERABLE parameter is also specified.

Specifying this option is more efficient than separately issuing the RUNSTATS
command after the data redistribution is completed.

USE PROFILE
Statistics will be collected for the tables with a statistics profile. For tables
without a statistics profile, nothing will be done. This is the default.

NONE
Statistics will not be collected for tables.

Built-in routines and views 147

Examples

Redistribute database partition group DBPG_1 by providing the current data
distribution through a data distribution file, distfile_for_dbpg_l. Move the data
onto two new database partitions, 6 and 7.

CALL SYSPROC.ADMIN_CMD('REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1

USING DISTFILE /home/userl/data/distfile_for_dbpg_1
ADD DATABASE PARTITION (6 TO 7) ')

Redistribute database partition group DBPG_2 such that:

e The redistribution is not rollforward recoverable;

* Data is uniformly distributed across hash partitions;

¢ Indexes are rebuilt from scratch;

 Statistics are not collected;

+ 180,000 4 KB pages are used as buffered space for transferring the data.

CALL SYSPROC.ADMIN_CMD('REDISTRIBUTE DATABASE PARTITION GROUP DBPG_2
NOT ROLLFORWARD RECOVERABLE

UNIFORM

INDEXING MODE REBUILD

DATA BUFFER 180000

STATISTICS NONE')

This redistribution operation also quiesces the database and performs a precheck
due to the default values for the QUIESCE DATABASE and PRECHECK command
parameters.

Usage notes

* Before starting a redistribute operation, ensure that the tables are in normal state
and not in "load pending" state or "reorg pending" state. Table states can be
checked by using the LOAD QUERY command.

* When the NOT ROLLFORWARD RECOVERABLE option is specified and the database is a
recoverable database, the first time the utility accesses a table space, it is put into
the BACKUP PENDING state. All the tables in that table space will become
read-only until the table space is backed-up, which can only be done when all
tables in the table space have finished being redistributed.

* When a redistribution operation is running, it produces an event log file
containing general information about the redistribution operation and
information such as the starting and ending time of each table processed. This
event log file is written to the server:

— The homeinst/sql1ib/redist directory on Linux and UNIX operating systems,
using the following format for subdirectories and file name:
database-name .database-partition-group-name.timestamp.l0g.

— The DB2INSTPROF\instance\redist directory on Windows operating systems
(where DB2INSTPROF is the value of the DB2INSTPROF registry variable), using
the following format for subdirectories and file name: database-
name .database-partition-group-name.timestamp.10g.

— The time stamp value is the time when the command was issued.

* This utility performs intermittent COMMITs during processing. This can cause
type 2 connections to receive an SQL30090N error.

 All packages having a dependency on a table that has undergone redistribution
are invalidated. It is recommended to explicitly rebind such packages after the
redistribute database partition group operation has completed. Explicit rebinding

148 Administrative Routines and Views

eliminates the initial delay in the execution of the first SQL request for the
invalid package. The redistribute message file contains a list of all the tables that
have undergone redistribution.

* By default, the redistribute utility will update the statistics for those tables that
have a statistics profile. For the tables without a statistics profile, it is
recommended that you separately update the table and index statistics for these
tables by calling the db2Runstats API or by issuing the RUNSTATS command after
the redistribute operation has completed.

* Database partition groups containing replicated materialized query tables or
tables defined with DATA CAPTURE CHANGES cannot be redistributed.

* Redistribution is not allowed if there are user temporary table spaces with
existing declared temporary tables or created temporary tables in the database
partition group.

* Options such as INDEXING MODE are ignored on tables, on which they do not
apply, without warning. For example, INDEXING MODE will be ignored on tables
without indexes.

* Command execution status is returned in the SQLCA resulting from the CALL
statement.

* The file referenced in USING DISTFILE distfilename or USING TARGETMAP
targetmapfilename, must refer to a file on the server.

e The REDISTRIBUTE DATABASE PARTITION GROUP command might fail (SQLSTATE
55071) if an add database partition server request is either pending or in
progress. This command might also fail (SQLSTATE 55077) if a new database
partition server is added online to the instance and not all applications are
aware of the new database partition server.

Compeatibilities

Tables containing XML columns that use the DB2 Version 9.5 or earlier XML record
format cannot be redistributed. Use the ADMIN_MOVE_TABLE stored procedure
to migrate the table to the new format.

REORG INDEXES/TABLE command using the ADMIN_CMD procedure:
Reorganizes an index or a table.

You can reorganize all indexes defined on a table by rebuilding the index data into
unfragmented, physically contiguous pages. On a data partitioned table, you can
reorganize a specific nonpartitioned index on a partitioned table, or you can
reorganize all the partitioned indexes on a specific data partition.

If you specify the CLEANUP option of the index clause, cleanup is performed without
rebuilding the indexes. This command cannot be used against indexes on declared
temporary tables or created temporary tables (SQLSTATE 42995).

The table option reorganizes a table by reconstructing the rows to eliminate
fragmented data, and by compacting information. On a partitioned table, you can
reorganize a single partition.

Scope

This command affects all database partitions in the database partition group.

Built-in routines and views 149

Authorization

One of the following authorities:

* SYSADM

* SYSCTRL

* SYSMAINT

* DBADM

* SQLADM

¢ CONTROL privilege on the table.

Required connection
Database
Command syntax

»>—REORG >

TABLE—table-name Table clause }
INDEXES ALL FOR TABLE—table-name | i Index clause |—
INDEX—index-name

v

|—FOR TABLE—tabZe-name—|
|—ALLOw WRITE ACCESS—
TABLE—table-name—RECLAIM EXTENTS i:

ALLOW READ ACCESS—
ALLOW NO ACCESS——

L‘ Table partitioning clause ’J L‘ Database partition clause ’J

Table clause:

|
I—INDEX—inde.’x-nameJ

KEEPDICTIONARY-

1
\\':ALLOW NO ACCESS—J LUSE—tbspace—name—I |—INDEXSCAN—' |—| Tonglob-options '—I |—RESETDICTIONAR\I—I
SS

ALLOW READ ACCE

ALLOW WRITE ACCESS START:
INPLACE- [_|—| O T _l_l
ALLOW READ ACCESS NOTRUNCATE TABLE RESUME
L[STOP
PAUSEJ

longlob-options:

|—LONGLOBDATA |_ _| |
USE—Ilongtbspace-name

Index clause:

REBUILD———————
| |_ |
' L

ALLOW NO ACCESS——
ALLOW WRITE ACCESS—
ALLOW READ ACCESS—

space-reclaim-options—

150 Administrative Routines and Views

space-reclaim-options:

[
L ALL |—RECLAIM EXTENTS—|
cuemur———-
PAGES

Table partitioning clause:

[—ON DATA PARTITION—partition-name }

Database partition clause:

}—On DBPARTITIONNUM Partition selection clause | |
|:DBPARTITIONNUMS
AL

L DBPARTITIONNUMS

|—E)(CEPT—I:DBPARTITIONNUM—_|—| Partition selection clause |—)J
DBPARTITIONNUMS

Partition selection clause:

F—(—"—db-partition-numberl B 7
TO—db-partition-number2

Command parameters

INDEXES ALL FOR TABLE table-name
Specifies the table whose indexes are to be reorganized. The table can be in
a local or a remote database.

INDEX index-name
Specifies an individual index to be reorganized on a data partitioned table.
Reorganization of individual indexes are only supported for nonpartitioned
indexes on a partitioned table. This parameter is not supported for block
indexes.

FOR TABLE table-name
Specifies the name of the table on which the nonpartitioned index
index-name is created. This parameter is optional, given that index names
are unique across the database.

ALLOW NO ACCESS
For REORG INDEXES, specifies that no other users can access the
table while the indexes are being reorganized. If the ON DATA
PARTITION clause is specified for a partitioned table, only the
specified partition is restricted to the access mode level.

For REORG INDEX, specifies that no other users can access the table
while the nonpartitioned index is being reorganized.

ALLOW READ ACCESS
For REORG INDEXES, specifies that other users can have read-only
access to the table while the indexes are being reorganized. ALLOW
READ ACCESS mode is not supported for REORG INDEXES of a
partitioned table unless the CLEANUP or RECLAIM EXTENTS option or

Built-in routines and views 151

the ON DATA PARTITION clause is specified. If the ON DATA PARTITION
clause is specified for a partitioned table, only the specified
partition is restricted to the access mode level.

For REORG INDEX, specifies that can have read-only access to the
table while the nonpartitioned index is being reorganized.

ALLOW WRITE ACCESS

For REORG INDEXES, specifies that other users can read from and
write to the table while the indexes are being reorganized. ALLOW
WRITE ACCESS mode is not supported for a partitioned table unless
the CLEANUP or RECLAIM EXTENTS option or the ON DATA PARTITION
clause is specified. If the ON DATA PARTITION clause is specified for
a partitioned table, only the specified partition is restricted to the
access mode level.

For REORG INDEX, specifies that can read from and write to the table
while the nonpartitioned index is being reorganized.

ALLOW WRITE ACCESS mode is not supported for multidimensional
clustering (MDC) or insert time clustering (ITC) tables or extended
indexes unless the CLEANUP or RECLAIM EXTENTS option is specified.

The following items apply for a data partitioned table when the ON DATA

PARTITION clause is specified with the REORG INDEXES ALL command:

* Only the specified data partition is restricted to the access mode level.
Users are allowed to read from and write to the other partitions of the
table while the partitioned indexes of a specified partition are being
reorganized.

The following table lists the access modes supported and the concurrent

access allowed on other partitions of the table when the ON DATA
PARTITION clause is specified:

Table 54. Access modes supported and concurrent access allowed when the ON DATA
PARTITION clause is specified with REORG INDEXES ALL

Access mode

Concurrent access allowed
on the specified partition

Concurrent access allowed
on other partitions

ALLOW NO ACCESS

No access

Read and write access

ALLOW READ ACCESS

Read on the partition up
until index is updated

Read and write access

ALLOW WRITE ACCESS

Read and write access on the
partition up until index is
updated

Read and write access

* Only the partitioned indexes for the specified partition are reorganized.

The nonpartitioned indexes on the partitioned table are not reorganized.

If there are any nonpartitioned indexes on the table marked "invalid" or
"for rebuild", these indexes are rebuilt before reorganization. If not, only
the partitioned indexes on the specified partition are reorganized or
rebuilt if the index object is marked "invalid" or "for rebuild".

Only partitioned indexes for the specified partition are cleaned when the
CLEANUP or RECLAIM EXTENTS option is also specified.

The following table lists the supported access modes for index
reorganization of partitioned and nonpartitioned tables:

152 Administrative Routines and Views

Table 55. Supported access modes for index reorganization on partitioned and nonpartitioned table

Table partitioning

Additional
parameters
specified for

Command Table type clause index clause Supported access mode
REORG INDEXES Nonpartitioned table Not applicable Any ALLOW NO ACCESS,
ALLOW READ ACCESS',
ALLOW WRITE ACCESS
REORG INDEX Partitioned table Not applicable Any ALLOW NO ACCESS,

ALLOW READ ACCESS!,
ALLOW WRITE ACCESS

REORG INDEXES

Partitioned table

None REBUILD (this is |ALLOW NO ACCESS '
the default if

none specified)

REORG INDEXES

Partitioned table

ON DATA PARTITION REBUILD (this is
the default if

none specified)

ALLOW NO ACCESS,
ALLOW READ ACCESS!,
ALLOW WRITE ACCESS

REORG INDEXES

Partitioned table

With or without the | CLEANUP or ALLOW NO ACCESS,
ON DATA PARTITION RECLAIM EXTENTS |ALLOW READ ACCESS!,
clause specified ALLOW WRITE ACCESS

Note:

1. Default mode when an access clause is not specified.

CLEANUP

ALL

PAGES

When CLEANUP is requested, a cleanup rather than a REBUILD is
done. The indexes are not rebuilt and any pages freed up are
available for reuse by indexes defined on this table only.

Specifies that indexes should be cleaned up by removing
committed pseudo deleted keys and committed pseudo empty
pages.

The CLEANUP ALL option will free committed pseudo empty pages,
as well as remove committed pseudo deleted keys from pages that
are not pseudo empty. This option will also try to merge adjacent
leaf pages if doing so will result in a merged leaf page that has at
least PCTFREE free space on the merged leaf page, where
PCTEFREE is the percent free space defined for the index at index
creation time. The default PCTFREE is ten percent. If two pages
can be merged, one of the pages will be freed. The number of
pseudo deleted keys in an index , excluding those on pseudo
empty pages, can be determined by running RUNSTATS and then
selecting the NUMRIDS DELETED from SYSCAT.INDEXES. The
ALL option will clean the NUMRIDS DELETED and the NUM
EMPTY LEAFS if they are determined to be committed.

Specifies that committed pseudo empty pages should be removed
from the index tree. This will not clean up pseudo deleted keys on
pages that are not pseudo empty. Since it is only checking the
pseudo empty leaf pages, it is considerably faster than using the
ALL option in most cases.

The CLEANUP PAGES option will search for and free committed
pseudo empty pages. A committed pseudo empty page is one
where all the keys on the page are marked as deleted and all these

153

Built-in routines and views

deletions are known to be committed. The number of pseudo
empty pages in an indexes can be determined by running RUNSTATS
and looking at the NUM EMPTY LEAFS column in
SYSCAT.INDEXES. The PAGES option will clean the NUM EMPTY
LEAFS if they are determined to be committed.

Use the ALLOW READ ACCESS or ALLOW WRITE ACCESS option to allow other
transactions either read-only or read-write access to the table while the
indexes are being reorganized. No access to the table is allowed when
rebuilding an index during the period in which the reorganized copies of
the indexes are made available.

INDEX index-name REBUILD
The REBUILD option is the default and represents the same functionality
provided by index reorganization in previous releases when the CLEANUP
and CONVERT clauses were not specified. The REBUILD option of index
reorganization rebuilds the index data into physically contiguous pages.
The default access mode is dependent on the table type.

INDEX index-name RECLAIM EXTENTS
Specifies the index to reorganize and reclaim extents that are not being
used. This action moves index pages around within the index object to
create empty extents, and then free these empty extents from exclusive use
by the index object and makes the space available for use by other
database objects within the table space. Extents are reclaimed from the
index object back to the table space. ALLOW READ ACCESS is the default,
however all access modes are supported.

TABLE fable-name RECLAIM EXTENTS
Specifies the table to reorganize and reclaim extents that are not being
used. The table-name variable must specify a multidimensional clustering
(MDC) or insert time clustering (ITC) table. The name or alias in the form:
schema.table-name can be used. The schema is the user name under which
the table was created. If you omit the schema name, the default schema is
assumed.

For REORG TABLE RECLAIM EXTENTS when the ON DATA PARTITION clause is
specified, the access clause only applies to the named partition. Users can
read from and write to the rest of the table while the extents on the
specified partition are being reclaimed. This situation also applies to the
default access levels.

ALLOW NO ACCESS
For REORG TABLE RECLAIM EXTENTS, specifies that no other users can
access the table while the extents are being reclaimed.

ALLOW READ ACCESS
For REORG TABLE RECLAIM EXTENTS, specifies that other users can
have read-only access to the table while the extents are being
reclaimed.

ALLOW WRITE ACCESS
For REORG TABLE RECLAIM EXTENTS, specifies that other users can
read from and write to the table while the extents are being
reclaimed.

TABLE table-name
Specifies the table to reorganize. The table can be in a local or a remote
database. The name or alias in the form: schema.table-name can be used. The

154 Administrative Routines and Views

schema is the user name under which the table was created. If you omit the
schema name, the default schema is assumed.

For typed tables, the specified table name must be the name of the
hierarchy's root table.

You cannot specify an index for the reorganization of a multidimensional
clustering (MDC) or insert time clustering (ITC) table. In place
reorganization of tables cannot be used for MDC or ITC tables.

When the ON DATA PARTITION clause is specified for a table reorganization
of a data partitioned table, only the specified data partition is reorganized:

* If there are no nonpartitioned indexes (except system-generated XML
path indexes) defined on the table, the access mode applies only to the
specified partition, users are allowed to read from and write to the other
partitions of the table.

¢ If there are nonpartitioned indexes defined on the table (excluding
system-generated XML path indexes), the ALLOW NO ACCESS mode is the
default and only supported access mode. In this case, the table is placed
in ALLOW NO ACCESS mode. If ALLOW READ ACCESS is specified, SQL1548N
is returned (SQLSTATE 5U047).

Table 56. Supported access mode for table reorganization on nonpartitioned and partitioned table

Command

Table type Table partitioning clause Supported access mode

REORG TABLE

ALLOW NO ACCESS,
ALLOW READ ACCESS'

Nonpartitioned table | Not applicable

REORG TABLE

Partitioned table Not specified ALLOW NO ACCESS'

REORG TABLE (There are no
indexes or only partitioned
indexes defined on the table.)

Partitioned table ON DATA PARTITION ALLOW NO ACCESS,

ALLOW READ ACCESS'

REORG TABLE (there are
nonpartitioned indexes
defined on the table,
excluding system-generated
XML path indexes.)

Partitioned table ON DATA PARTITION ALLOW NO ACCESS'

Note:
1. Default mode when an access clause is not specified.

For a data partitioned table, a table reorganization rebuilds the
nonpartitioned indexes and partitioned indexes on the table after
reorganizing the table. If the ON DATA PARTITION clause is used to
reorganize a specific data partition of a data partitioned table, a table
reorganization rebuilds the nonpartitioned indexes and partitioned indexes
only for the specified partition.

INDEX index-name
Specifies the index to use when reorganizing the table. If you do
not specify the fully qualified name in the form: schema.index-name,
the default schema is assumed. The schema is the user name under
which the index was created. The database manager uses the index
to physically reorder the records in the table it is reorganizing.

For an in place table reorganization, if a clustering index is defined
on the table and an index is specified, it must be the clustering
index. If the in place option is not specified, any index specified
will be used. If you do not specify the name of an index, the

155

Built-in routines and views

records are reorganized without regard to order. If the table has a
clustering index defined, however, and no index is specified, then
the clustering index is used to cluster the table. You cannot specify
an index if you are reorganizing an MDC or ITC table.

If a table reorganization uses both the INDEX and ON DATA
PARTITION clauses, only the specified partition is reorganized using
the index index-name.

ALLOW NO ACCESS

ALLOW R

INPLACE

156 Administrative Routines and Views

Specifies that no other users can access the table while the table is
being reorganized.

The ALLOW NO ACCESS mode is the default and only supported
access mode when reorganizing a partitioned table without the ON
DATA PARTITION clause.

If the ON DATA PARTITION clause is specified for a data partitioned
table, only the specified data partition is reorganized:

* If there are no nonpartitioned indexes defined on the table
(except system-generated XML path indexes), only the specified
partition is restricted to the ALLOW NO ACCESS mode. Users are
allowed to read from and write to the other partitions of the
table.

* If there are nonpartitioned indexes defined on the table (except
system-generated XML path indexes), the ALLOW NO ACCESS mode
is the default and only supported access mode. In this case, the
table is placed in ALLOW NO ACCESS mode.

EAD ACCESS
Allow only read access to the table during reorganization.

The ALLOW READ ACCESS mode is the default mode for a
nonpartitioned table.

If the ON DATA PARTITION clause is specified for a data partitioned
table, only the specified data partition is reorganized:

* If there are no nonpartitioned indexes defined on the table
(except system-generated XML path indexes), the ALLOW READ
ACCESS mode is the default mode and only the specified partition
is restricted to the access mode level. Users are allowed to read
from and write to the other partitions of the table.

* If there are nonpartitioned indexes defined on the table (except
system-generated XML path indexes), the ALLOW READ ACCESS
mode is not supported. If ALLOW READ ACCESS is specified in this
case, SQL1548N is returned (SQLSTATE 5U047)

Reorganizes the table while permitting user access.

In place table reorganization is allowed only on nonpartitioned,
non-MDC, and non-ITC tables without extended indexes and with
no indexes defined over XML columns in the table. In place table
reorganization can only be performed on tables that are at least
three pages in size.

In place table reorganization takes place asynchronously, and might
not be effective immediately.

ALLOW READ ACCESS
Allow only read access to the table during reorganization.

ALLOW WRITE ACCESS
Allow write access to the table during reorganization. This
is the default behavior.

NOTRUNCATE TABLE
Do not truncate the table after in place reorganization.
During truncation, the table is S-locked.

START Start the in place REORG processing. Because this is the
default, this keyword is optional.

STOP Stop the in place REORG processing at its current point.
PAUSE Suspend or pause in place REORG for the time being.

RESUME Continue or resume a previously paused in place table
reorganization. When an online reorganization is resumed
and you want the same options as when the reorganization
was paused, you must specify those options again while
resuming.

USE tbspace-name
Specifies the name of a system temporary table space in which to
store a temporary copy of the table being reorganized. If you do
not provide a table space name, the database manager stores a
working copy of the table in the table spaces that contain the table
being reorganized.

For an 8 KB, 16 KB, or 32 KB table object, if the page size of the
system temporary table space that you specify does not match the
page size of the table spaces in which the table data resides, the
DB2 database product will try to find a temporary table space of
the correct size of the LONG/LOB objects. Such a table space must
exist for the reorganization to succeed.

For partitioned tables, the temporary table space is used as
temporary storage for the reorganization of data partitions in the
table. Reorganization of the entire partitioned table reorganizes a
single data partition at a time. The temporary table space must be
able to hold the largest data partition in the table, and not the
entire table. When the ON DATA PARTITION clause is specified, the
temporary table space must be able to hold the specified partition.

If you do not supply a table space name for a partitioned table, the
table space where each data partition is located is used for
temporary storage of that data partition. There must be enough
free space in each data partition's table space to hold a copy of the
data partition.

INDEXSCAN
For a clustering REORG an index scan will be used to re-order table
records. Reorganize table rows by accessing the table through an
index. The default method is to scan the table and sort the result to
reorganize the table, using temporary table spaces as necessary.
Even though the index keys are in sort order, scanning and sorting
is typically faster than fetching rows by first reading the row
identifier from an index.

Built-in routines and views 157

LONGLOBDATA

Long field and LOB data are to be reorganized.

This is not required even if the table contains long or LOB
columns. The default is to avoid reorganizing these objects because
it is time consuming and does not improve clustering. However,
running a reorganization with the LONGLOBDATA option on tables
with XML columns will reclaim unused space and thereby reduce
the size of the XML storage object.

This parameter is required when converting existing LOB data into
inlined LOB data.

USE longtbspace-name

This is an optional parameter, which can be used to specify the
name of a temporary table space to be used for rebuilding long
data. If no temporary table space is specified for either the table
object or for the long objects, the objects will be constructed in the
table space they currently reside. If a temporary table space is
specified for the table but this parameter is not specified, then the
table space used for base reorg data will be used, unless the page
sizes differ. In this situation, the DB2 database system will attempt
to choose a temporary container of the appropriate page size to
create the long objects in.

If USE longtbspace-name is specified, USE tbspace-name must also be
specified. If it is not, the longtbspace-name argument is ignored.

KEEPDICTIONARY

If the COMPRESS attribute for the table is YES and the table has a
compression dictionary then no new dictionary is built. All the
rows processed during reorganization are subject to compression
using the existing dictionary. If the COMPRESS attribute is YES and a
compression dictionary doesn't exist for the table, a dictionary will
only be created (and the table compressed) in this scenario if the
table is of a certain size (approximately 1 to 2 MB) and sufficient
data exists within this table. If, instead, you explicitly state REORG
RESETDICTIONARY, then a dictionary is built as long as there is at
least 1 row in the table. If the COMPRESS attribute for the table is NO
and the table has a compression dictionary, then reorg processing
will preserve the dictionary and all the rows in the newly
reorganized table will be in noncompressed format. It is not
possible to compress some data such as LOB data not stored in the
base table row.

When the LONGLOBDATA option is not specified, only the table row
data is reorganized. The following table describes the behavior of
KEEPDICTIONARY syntax in REORG command when the LONGLOBDATA
option is not specified.

Table 57. REORG KEEPDICTIONARY

Compress Dictionary Exists Result; outcome
Y Y Preserve dictionary; rows compressed.
Y N Build dictionary; rows compressed
N Y Preserve dictionary; all rows uncompressed
N N No effect; all rows uncompressed

158 Administrative Routines and Views

The following table describes the behavior of KEEPDICTIONARY
syntax in REORG command when the LONGLOBDATA option is
specified.

Table 58. REORG KEEPDICTIONARY when LONGLOBDATA option is specified.

Table row XML storage
data object
dictionary dictionary Compression
Compress | exists exists! dictionary Data compression

Y Y Y Preserve dictionaries. |Existing data is
compressed. New data
will be compressed.

Y Y N Preserve table row Existing data is
dictionary and create | compressed. New data
an XML storage object |will be compressed.
dictionary.

Y N Y Create table row Existing data is
dictionary and compressed. New data
preserve the XML will be compressed.
dictionary.

Y N N Create table row and | Existing data is
XML dictionaries. compressed. New data

will be compressed.

N Y Y Preserve table row and | Table data is
XML dictionaries. uncompressed. New

data will be not be
compressed.

N Y N Preserve table row Table data is
dictionary. uncompressed. New

data will be not be
compressed.

N N Y Preserve XML Table data is
dictionary. uncompressed. New

data will be not be
compressed.

N N N No effect. Table data is
uncompressed. New
data will be not be
compressed.

Note:

1. A compression dictionary can be created for the XML storage
object of a table only if the XML columns are added to the table
in DB2 V9.7 or later, or if the table is migrated using the
ONLINE_TABLE_MOVE stored procedure.

For any reinitialization or truncation of a table (such as for a
replace operation), if the compress attribute for the table is NO, the
dictionary is discarded if one exists. Conversely, if a dictionary
exists and the compress attribute for the table is YES then a
truncation will save the dictionary and not discard it. The
dictionary is logged in its entirety for recovery purposes and for
future support with data capture changes (that is, replication).

RESETDICTIONARY
If the COMPRESS attribute for the table is YES then a new row

Built-in routines and views

159

compression dictionary is built. All the rows processed during
reorganization are subject to compression using this new
dictionary. This dictionary replaces any previous dictionary. If the
COMPRESS attribute for the table is NO and the table does have an
existing compression dictionary then reorg processing will remove
the dictionary and all rows in the newly reorganized table will be
in noncompressed format. It is not possible to compress some data
such as LOB data not stored in the base table row.

If the LONGLOBDATA option is not specified, only the table row data
is reorganized. The following table describes the behavior of
RESETDICTIONARY syntax in REORG command when the LONGLOBDATA
option is not specified.

Table 59. REORG RESETDICTIONARY

Compress Dictionary Exists Result; outcome

Y Y Build new dictionary*; rows compressed. If
DATA CAPTURE CHANGES option is specified
on the CREATE TABLE or ALTER TABLE
statements, the current dictionary is kept
(referred to as the historical compression

dictionary).

Build new dictionary; rows compressed

Remove dictionary; all rows uncompressed. If
the DATA CAPTURE NONE option is specified
on the CREATE TABLE or ALTER TABLE
statements, the historical compression dictionary is
also removed for the specified table.

N N

No effect; all rows uncompressed

* - If a dictionary exists and the compression attribute is enabled
but there currently isn't any data in the table, the RESETDICTIONARY
operation will keep the existing dictionary. Rows which are smaller
in size than the internal minimum record length and rows which
do not demonstrate a savings in record length when an attempt is
made to compress them are considered "insufficient" in this case.

The following table describes the behavior of RESETDICTIONARY
syntax in REORG command when the LONGLOBDATA option is

specified.
Table 60. REORG RESETDICTIONARY when LONGLOBDATA option is specified.
Table row XML storage
data object
dictionary dictionary
Compress |exists exists' Data dictionary Data compression
Y Y Y Build dictionaries® °. Existing data is
compressed. New data
will be compressed.

Y Y N Build new table row | Existing data is
dictionary and create a | compressed. New data
new XML dictionary’. |will be compressed.

Y N Y Create table row data | Existing data is
dictionary and build a |compressed. New data
new XML dictionary. | will be compressed.

160 Administrative Routines and Views

Table 60. REORG RESETDICTIONARY when LONGLOBDATA option is
specified. (continued)

Table row XML storage
data object
dictionary dictionary
Compress | exists exists' Data dictionary Data compression

Y N N Create dictionaries. Existing data is
compressed. New data
will be compressed.

N Y Y Remove dictionaries. | Existing table data is
Existing and new data | uncompressed. New
is not compressed. data will be not be

compressed.

N Y N Remove table row Existing table data is
dictionary. All data is | uncompressed. New
uncompressed. data will be not be

compressed.

N N Y Remove XML storage |Existing table data is
object dictionary. uncompressed. New

data will be not be
compressed.

N N N No effect. Existing table data is
uncompressed. New
data will be not be
compressed.

Note:

1. A compression dictionary can be created for the XML storage
object of a table only if the XML columns are added to the table
in DB2 V9.7 or later, or if the table is migrated using an online
table move.

2. If a dictionary exists and the compression attribute is enabled
but there currently isn't any data in the table, the
RESETDICTIONARY operation will keep the existing dictionary.
Rows which are smaller in size than the internal minimum
record length and rows which do not demonstrate a savings in
record length when an attempt is made to compress them are
considered insufficient in this case.

3. If DATA CAPTURE CHANGES option is specified on the
CREATE TABLE or ALTER TABLE statements, the current data
dictionary is kept (referred to as the historical compression
dictionary).

ON DATA PARTITION partition-name
For data partitioned tables, specifies the data partition for the
reorganization.

For DB2 V9.7 Fix Pack 1 and later releases, the clause can be used with the
REORG INDEXES ALL command to reorganize the partitioned indexes on a
specific partition and the REORG TABLE command to reorganize data of a
specific partition.

When using the clause with a REORG TABLE or REORG INDEXES ALL command
on a partitioned table, the reorganization fails and returns SQL2222N with
reason code 1 if the partition partition-name does not exist for the specified

Built-in routines and views 161

table. The reorganization fails and returns SQL2222N with reason code 3 if
the partition partition-name is in the attached or detached state.

If the REORG INDEX command is issued with the ON DATA PARTITION clause,
the reorganization fails and returns SQL2222N with reason code 2.

The REORG TABLE command fails and returns SQL1549N (SQLSTATE 5U047)
if the partitioned table is in the reorg pending state and there are
nonpartitioned indexes defined on the table.

ALL DBPARTITIONNUMS

Specifies that operation is to be done on all database partitions specified in
the db2nodes.cfg file. This is the default if a database partition clause is
not specified.

EXCEPT Specifies that operation is to be done on all database partitions specified in

the db2nodes.cfg file, except those specified in the database partition list.

ON DBPARTITIONNUM | ON DBPARTITIONNUMS

Perform operation on a set of database partitions.

db-partition-numberl
Specifies a database partition number in the database partition list.

db-partition-number2
Specifies the second database partition number, so that all database
partitions from db-partition-numberl up to and including
db-partition-number2 are included in the database partition list.

Example

Reorganize the tables in a database partition group consisting of database
partitions 1, 3 and 4.

CALL SYSPROC.ADMIN_CMD ('REORG TABLE employee

INDEX empid ON DBPARTITIONNUM (1,3,4)')

Usage notes

Restrictions:

Command execution status is returned in the SQLCA resulting from the CALL
statement.

The REORG utility issue a COMMIT statement at the beginning of the operation
which, in the case of Type 2 connections, causes the procedure to return
SQL30090N with reason code 2.

The REORG utility does not support the use of nicknames.

The REORG TABLE command is not supported for declared temporary tables or
created temporary tables.

The REORG TABLE command cannot be used on views.

Reorganization of a table is not compatible with range-clustered tables, because
the range area of the table always remains clustered.

REORG TABLE cannot be used on a partitioned table in a DMS table space while
an online backup of ANY table space in which the table resides, including LOBs
and indexes, is being performed.

REORG TABLE cannot use an index that is based on an index extension.
If a table is in reorg pending state, an inplace reorg is not allowed on the table.

Concurrent table reorganization sharing the same temporary DMS table space is
not supported.

162 Administrative Routines and Views

* Before running a reorganization operation against a table to which event
monitors write, you need to deactivate the event monitors on that table.

* For data partitioned tables:
— The table must have an ACCESS_MODE in SYSCAT.TABLES of Full Access.

— Reorganization skips data partitions that are in a restricted state due to an
attach or detach operation. If the ON DATA PARTITION clause is specified, that
partition must be fully accessible.

— If an error occurs during table reorganization, some indexes or index
partitions might be left invalid. The nonpartitioned indexes of the table will
be marked invalid if the reorganization has reached or passed the replace
phase for the first data partition. The index partitions for any data partition
that has already reached or passed the replace phase will be marked invalid.
Indexes will be rebuilt on the next access to the table or data partition.

— If an error occurs during index reorganization when the ALLOW NO ACCESS
mode is used, some indexes on the table might be left invalid. For
nonpartitioned RID indexes on the table, only the index that is being
reorganized at the time of the failure will be left invalid. For MDC tables with
nonpartitioned block indexes, one or more of the block indexes might be left
invalid if an error occurs. For MDC or ITC tables with partitioned indexes,
only the index object on the data partition being reorganized will be left
invalid. Any indexes marked invalid will be rebuilt on the next access to the
table or data partition.

— When a data partitioned table with only partitioned indexes defined on the
table is in the reorg pending state, issuing a REORG TABLE command with the
ON DATA PARTITION clause brings only the specified data partition out of the
reorg pending state. To bring the remaining partitions of the table out of the
reorg pending state, either issue REORG TABLE command on the entire table
(without the ON DATA PARTITION clause), or issue a REORG TABLE command
with the ON DATA PARTITION clause for each of the remaining partitions.

Information about the current progress of table reorganization is written to the
history file for database activity. The history file contains a record for each
reorganization event. To view this file, execute the LIST HISTORY command for the
database that contains the table you are reorganizing.

You can also use table snapshots to monitor the progress of table reorganization.
Table reorganization monitoring data is recorded regardless of the Database
Monitor Table Switch setting.

If an error occurs, an SQLCA dump is written to the history file. For an inplace
table reorganization, the status is recorded as PAUSED.

When an indexed table has been modified many times, the data in the indexes
might become fragmented. If the table is clustered with respect to an index, the
table and index can get out of cluster order. Both of these factors can adversely
affect the performance of scans using the index, and can impact the effectiveness of
index page prefetching. REORG INDEX or REORG INDEXES with the REBUILD option can
be used to reorganize one or all of the indexes on a table. Index reorganization
rebuild will remove any fragmentation and restore physical clustering to the leaf
pages. Use the REORGCHK command to help determine if an index needs
reorganizing. Be sure to complete all database operations and release all locks
before invoking index reorganization. This can be done by issuing a COMMIT after
closing all cursors opened WITH HOLD, or by issuing a ROLLBACK.

Built-in routines and views 163

A classic table reorganization (offline reorganization) rebuilds the indexes during
the last phase of the reorganization. When more than one temporary table space
exists, it is possible that a temporary table space in addition to the one specified on
the REORG TABLE command may be utilized for additional sorts that can
accompanying table reorg processing. However, the inplace table reorganization
(online reorganization) does not rebuild the indexes. It is recommended that you
issue a REORG INDEXES command after the completion of an inplace table
reorganization. An inplace table reorganization is asynchronous, therefore care
must be taken to ensure that the inplace table reorganization is complete before
issuing the REORG INDEXES command. Issuing the REORG INDEXES command before
the inplace table reorganization is complete, might cause the reorganization to fail
(SQLCODE -2219).

Tables that have been modified so many times that data is fragmented and access
performance is noticeably slow are candidates for the REORG TABLE command. You
should also invoke this utility after altering the inline length of a structured type
column in order to benefit from the altered inline length. Use the REORGCHK
command to determine whether a table needs reorganizing. Be sure to complete all
database operations and release all locks before invoking REORG TABLE. This can be
done by issuing a COMMIT after closing all cursors opened WITH HOLD, or by
issuing a ROLLBACK. After reorganizing a table, use RUNSTATS to update the table
statistics, and REBIND to rebind the packages that use this table. The reorganize
utility will implicitly close all the cursors.

With DB2 V9.7 Fix Pack 1 and later, REORG TABLE commands and REORG INDEXES
ALL commands can be issued on a data partitioned table to concurrently reorganize
different data partitions or partitioned indexes on a partition. When concurrently
reorganizing data partitions or the partitioned indexes on a partition, users can
access the unaffected partitions but cannot access the affected partitions. All the
following criteria must be met to issue REORG commands that operate concurrently
on the same table:

* Each REORG command must specify a different partition with the ON DATA
PARTITION clause.

e Each REORG command must use the ALLOW NO ACCESS mode restrict access to the
data partitions.

* The partitioned table must have only partitioned indexes if issuing REORG TABLE
commands. No nonpartitioned indexes (except system-generated XML path
indexes) can be defined on the table.

For a partitioned table T1 with no nonpartitioned indexes (except system-generated
XML path indexes) and with partitions P1, P2, P3, and P4, the following REORG
commands can run concurrently:

REORG INDEXES ALL FOR TABLE T1 ALLOW NO ACCESS ON DATA PARTITION P1
REORG TABLE T1 ALLOW NO ACCESS ON DATA PARTITION P2
REORG INDEXES ALL FOR TABLE T1 ALLOW NO ACCESS ON DATA PARTITION P3

Operations such as the following are not supported when using concurrent REORG
commands:

* Using a REORG command without the ON DATA PARTITION clause on the table.

* Using an ALTER TABLE statement on the table to add, attach, or detach a data
partition.

* Loading data into the table.
* Performing an online backup that includes the table.

164 Administrative Routines and Views

If the table contains mixed row format because the table value compression has
been activated or deactivated, an offline table reorganization can convert all the
existing rows into the target row format.

If the table is distributed across several database partitions, and the table or index
reorganization fails on any of the affected database partitions, only the failing
database partitions will have the table or index reorganization rolled back.

If the reorganization is not successful, temporary files should not be deleted. The
database manager uses these files to recover the database.

If the name of an index is specified, the database manager reorganizes the data
according to the order in the index. To maximize performance, specify an index
that is often used in SQL queries. If the name of an index is not specified, and if a
clustering index exists, the data will be ordered according to the clustering index.

The PCTFREE value of a table determines the amount of free space designated per
page. If the value has not been set, the utility will fill up as much space as possible
on each page.

To complete a table space rollforward recovery following a table reorganization,
both regular and large table spaces must be enabled for rollforward recovery.

If the table contains LOB columns that do not use the COMPACT option, the LOB
DATA storage object can be significantly larger following table reorganization. This
can be a result of the order in which the rows were reorganized, and the types of
table spaces used (SMS or DMS).

Indexes over XML data may be re-created by the REORG INDEXES/TABLE command.
For details, see “Recreation of indexes over XML data”.

RESET ALERT CONFIGURATION command using the ADMIN_CMD
procedure:

Resets the health indicator settings for specific objects to the current defaults for
that object type or resets the current default health indicator settings for an object
type to the install defaults.

Important: This command or API has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. It is
not supported in DB2 pureScale environments. For more information, see “Health
monitor has been deprecated” at http://publib.boulder.ibm.com/infocenter/
db2luw /v9r7 /topic/com.ibm.db2.luw.wn.doc/doc/i0055045.html.

Authorization

One of the following authorities:
* SYSADM

* SYSMAINT

* SYSCTRL

Required connection

Database

Built-in routines and views 165

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.wn.doc/doc/i0055045.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.wn.doc/doc/i0055045.html

Command syntax

»»—RESET ALERT: CONFIGURATION: FOR:
E“""ﬂ
CFG

> DATABASE MANAGER <
DB MANAGE R—|
DBM———————

CONTAINERS
DATABASES
TABLESPACES
CONTAINER—container—nume—FOR—tblspace—name—l—ON—database—al ia.
DATABASE:
TABLESPACE—tblspace-nai I

LUSING—heal th—indicator—name—l

Command parameters

DATABASE MANAGER | DB MANAGER | DBM
Resets alert settings for the database manager.

CONTAINERS
Resets default alert settings for all table space containers managed by the
database manager to the install default. These are the settings that apply to
all table space containers that do not have custom settings. Custom settings
are defined using the CONTAINER container-name FOR tblspace-name ON
database-alias clause.

DATABASES
Resets alert settings for all databases managed by the database manager.
These are the settings that apply to all databases that do not have custom
settings. Custom settings are defined using the DATABASE ON database-alias
clause.

TABLESPACES
Resets default alert settings for all table spaces managed by the database
manager to the install default. These are the settings that apply to all table
spaces that do not have custom settings. Custom settings are defined using
the TABLESPACE tblspace-name ON database-alias clause.

CONTAINER container-name FOR tblspace-name ON database-alias
Resets the alert settings for the table space container called container-name,
for the table space specified using the FOR tblspace-name clause, on the
database specified using the ON database-alias clause. If this table space
container has custom settings, then these settings are removed and the
current table space containers default is used.

DATABASE ON database-alias
Resets the alert settings for the database specified using the ON database-alias
clause. If this database has custom settings, then these settings are removed
and the install default is used.

TABLESPACE tblspace-name ON database-alias
Resets the alert settings for the table space called tblspace-name, on the
database specified using the ON database-alias clause. If this table space has
custom settings, then these settings are removed and the install default is
used.

USING health-indicator-name
Specifies the set of health indicators for which alert configuration will be
reset. Health indicator names consist of a two-letter object identifier
followed by a name that describes what the indicator measures. For
example:

db.sort_privmem util

166 Administrative Routines and Views

If you do not specify this option, all health indicators for the specified
object or object type will be reset.

Example

Reset alert settings for the database manager that owns the database which
contains the ADMIN_CMD procedure.

CALL SYSPROC.ADMIN_CMD('reset alert cfg for dbm')
Usage notes

Command execution status is returned in the SQLCA resulting from the CALL
statement.

The database-alias must be a local database defined in the catalog on the server
because the ADMIN_CMD procedure runs on the server only.

RESET DATABASE CONFIGURATION command using the ADMIN_CMD
procedure:

Resets the configuration of a specific database to the system defaults.
Scope

This command only affects the database partition that the application is connected
to.

Authorization

One of the following authorities:
¢ SYSADM

* SYSCTRL

* SYSMAINT

Required connection
Database

Command syntax

»>—RESET DATABASE CONFIGURATION——FOR—database-alias >
DB;,—ECONFIC
CFG————

|—MEMBER—member-number—|

Command parameters

FOR database-alias
Specifies the alias of the database whose configuration is to be reset to the
system defaults. The database alias must be one that is defined in the
catalog on the server, and must refer to a local database on the server.

Built-in routines and views 167

MEMBER member-number
If a database configuration reset is to be applied to a specific member, this
parameter may be used. If this parameter is not provided, the reset will
take effect on all members.

Example

Reset the configuration of a database cataloged with alias SAMPLE on the server
CALL SYSPROC.ADMIN _CMD('reset db cfg for SAMPLE')

Usage notes

To view or print a list of the database configuration parameters, use the
SYSIBMADM.DBCFG administration view.

To change the value of a configurable parameter, use the UPDATE DATABASE
CONFIGURATION command.

Changes to the database configuration file become effective only after they are
loaded into memory. All applications must disconnect from the database before
this can occur.

If an error occurs, the database configuration file does not change.

The database configuration file cannot be reset if the checksum is invalid. This
might occur if the database configuration file is changed without using the
appropriate command. If this happens, the database must be restored to reset the
database configuration file.

The RESET DATABASE CONFIGURATION command will reset the database configuration
parameters to the documented default configuration values, where auto_runstats
will be ON. Self_tuning_mem will be reset to ON on non-partitioned database
environments and to OFF on partitioned database environments.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

The database-alias must be a local database defined in the catalog on the server
because the ADMIN_CMD procedure runs on the server only.

Compatibilities

For compatibility with previous versions:

* DBPARTITIONNUM can be substituted for MEMBER, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

RESET DATABASE MANAGER CONFIGURATION command using the
ADMIN_CMD procedure:

Resets the parameters in the database manager configuration file to the system
defaults for the instance that contains the currently connected database. The values
are reset by node type.

Authorization

SYSADM

168 Administrative Routines and Views

Required connection
Database
Command syntax

»>—RESET DATABASE MANAGER— CONFIGURATION <
EDB MANAGER——— ECONFIG—
DBM CFG

Command parameters
None
Example

Reset the configuration of the instance which contains the database the
ADMIN_CMD stored procedure belongs to.

CALL SYSPROC.ADMIN_CMD('reset dbm cfg')
Usage notes

This command resets all parameters set by the installation program. This could
cause error messages to be returned when restarting DB2. For example, if the
svcename parameter is reset, the user will receive the SQL5043N error message
when trying to restart DB2.

Before running this command, save the output from the SYSIBMADM.DBMCFG
administrative view to a file so that you can refer to the existing settings.
Individual settings can then be updated using the UPDATE DATABASE MANAGER
CONFIGURATION command through the ADMIN_CMD procedure.

It is not recommended that the svcename parameter, set by the installation
program, be modified by the user.

To view or print a list of the database manager configuration parameters, use the
SYSIBMADM.DBMCFG administration view. To change the value of a configurable
parameter, use the UPDATE DATABASE MANAGER CONFIGURATION command through the
ADMIN_CMD procedure.

For more information about these parameters, refer to the summary list of
configuration parameters and the individual parameters.

Some changes to the database manager configuration file become effective only
after they are loaded into memory. For more information aboutwhich parameters
are configurable online and which ones are not, see the configuration parameter
summary. Server configuration parameters that are not reset immediately are reset
during execution of db2start. For a client configuration parameter, parameters are
reset the next time you restart the application. If the client is the command line
processor, it is necessary to invoke TERMINATE.

If an error occurs, the database manager configuration file does not change.

The database manager configuration file cannot be reset if the checksum is invalid.
This might occur if you edit the configuration file manually and do not use the

Built-in routines and views 169

appropriate command. If the checksum is invalid, you must re-create the instance.
REWIND TAPE command using the ADMIN_CMD procedure:

Rewinds tapes for backup and restore operations to streaming tape devices. This
command is only supported on Windows operating systems.

Authorization

One of the following authorities:
* SYSADM

* SYSCTRL

* SYSMAINT

Required connection
Database
Command syntax

»»—REWIND TAPE ><
|—ON—device—|

Command parameters

ON device
Specifies a valid tape device name. The default value is \\.\TAPEO.The
device specified must be relative to the server.

Example

Rewind the tape on the device named "\\.\TAPEL1".
CALL SYSPROC.ADMIN_CMD('rewind tape on \\.\TAPEl')

Usage notes

Command execution status is returned in the SQLCA resulting from the CALL
statement.

RUNSTATS command using the ADMIN_CMD procedure:

Updates statistics about the characteristics of a table and/or associated indexes, or
statistical views. These characteristics include number of records, number of pages,
and average record length. The optimizer uses these statistics when determining
access paths to the data.

For a table, call the RUNSTATS command when the table has had many updates,
or after reorganizing the table. For a statistical view, call the RUNSTATS command
when changes to underlying tables have substantially affected the rows returned
by the view. The view must have been previously enabled for use in query
optimization by using the ALTER VIEW statement.

170 Administrative Routines and Views

Scope

The RUNSTATS command can be issued from any database partition in the
db2nodes.cfg file. It can be used to update the catalogs on the catalog database
partition.

For tables, this command collects statistics for a table on the database partition
from which it is invoked. If the table does not exist on that database partition, the
first database partition in the database partition group is selected.

For views, this command collects statistics using data from tables on all
participating database partitions.

Authorization

For tables, one of the following authorities:
* SYSADM

* SYSCTRL

* SYSMAINT

+ DBADM

* SQLADM

* CONTROL privilege on the table

* LOAD authority

You do not need any explicit privilege to use this command on any declared
temporary table that exists within its connection.

For statistical views, one of the following authorities:
* SYSADM

¢ SYSCTRL

* SYSMAINT

+ DBADM

* SQLADM

* CONTROL privilege on the statistical view

Required connection
Database

Command syntax

v

»»>—RUNSTATS ON—ETAB LE_—I—object-name

VIEW USE PROFILE
UNSET PROFILE

Statistics Options |—

|—UTI L_IMPACT_PRIORITYﬁ
priority

Built-in routines and views 171

Statistics Options:

ALLOW WRITE ACCESS

v

|
L‘ TabTe Object Options ’J |—ALLOW READ ACCESSJ

L‘ TabTe Sampling Options ’J L‘ Index Sampling Options ’J

A\

L‘ Profile Options ’J

Table Object Options:

FOR: Index Clause }
1 ! I—EXCLUDING XML COLUMNS—I |

I—' Column Stats Clause 'J I—EXCLUDING XML COLUMNS—I I—AND—' Index Clause 'J

Table Sampling Options:

|—TABLESAMPLE BERNOULLI (—numeric-literal—)
SYSTEM——I_

|—REPEATAB LE—(—integer-litera l—)—|

Index Sampling Options:

|—INDEXSAMPLE BERNOULLI (—numeric-literal—)
SYSTEM——I_

Profile Options:

SET PROFILE NONE
L

LI:S ET—_I—PROFI LE
UPDATE ONLY

Index Clause:

} INDEXES Y _index-name

SAMPLED J |—INDEX ALL
|_ _| DETAILED

|—UNSAMPLED—|

172 Administrative Routines and Views

Column Stats Clause:

|—|—| On Cols Clause | I
i Distribution Clause ’J
L‘ On Cols Clause ’J

On Cols Clause:

ON ALL COLUMNS

ON COLUMNS—(—" Column Option }) }
LI:ALL COLUMNS AND—| !

KEY
ON KEY COLUMNS

Distribution Clause:

|—WITH DISTRIBUTION
L‘ On Dist Cols Clause ’J

> I
L‘ Default Dist Options ’J

On Dist Cols Clause:

v

ON ALL COLUMNS

ON.

Quantile Option

”OLUMNS—(—" Column Option |—~ |
I—|:ALL:|—C0LUMNS I\ND—I I Frequency Option
KEY-

ON KEY COLUMNS

Default Dist Option:

—DEFAULT— Frequency Option | }
Quantile Option ’—I

Frequency Option:

[—NUM_FREQVALUES—integer |

Quantile Option:

|—NUM_QUANTI LES—integer I

Column Option:

Built-in routines and views 173

column-name |_ _|
LIKE STATISTICS

H

(—X—column-name)

Command parameters

object-name
Identifies the table or statistical view on which statistics are to be collected.
This parameter must not be a hierarchy table. For typed tables, object-name
must be the name of the root table of the table hierarchy. The fully
qualified name or alias in the form: schema.object-name must be used. The
schema is the user name under which the table was created.

USE PROFILE
This option allows RUNSTATS to employ a previously stored statistics profile
to gather statistics for a table or statistical view. The statistics profile is
created using the SET PROFILE options and is updated using the UPDATE
PROFILE options.

UNSET PROFILE
Specify this option to remove an existing statistics profile. For example,

RUNSTATS ON tablemyschema.mytable UNSET PROFILE

FOR INDEXES
Collects and updates statistics for the indexes only. If no table statistics had
been previously collected on the table, basic table statistics are also
collected. These basic statistics do not include any distribution statistics.
This option cannot be used for views.

SAMPLED
Used together only with the DETAILED parameter. Specifying this option
does not change the default functionality from DETAILED. This option is left
in for compatibility with previous versions of DB2. This option cannot be
used for views.

UNSAMPLED
This option, when used with the DETAILED option, forces RUNSTATS to
examine every entry in the index to compute the extended index statistics.
This option cannot be used for views and it cannot be used together with
scan index sampling (INDEXSAMPLE keyword). This option significantly
increases RUNSTATS resource consumption, while rarely providing
significant improvement over the DETAILED or SAMPLED DETAILED options,
which are equivalent.

DETAILED
Calculates extended index statistics. The extended index statistics are the
CLUSTERFACTOR and PAGE_FETCH_PAIRS statistics that are gathered for
relatively large indexes. Not all index entries are examined, a CPU
sampling technique is employed instead to improve performance. This
option cannot be used for views.

index-name
Identifies an existing index defined on the table. If you do not specify the
fully qualified name in the form: schema.index-name, the default schema is
assumed. This option cannot be used for views.

EXCLUDING XML COLUMNS
Use this clause to omit all XML type columns from statistics collection.

174 Administrative Routines and Views

Using this clause facilitates the collection of statistics on non-XML columns
because the inclusion of XML data can require greater system resources.
The EXCLUDING XML COLUMNS clause takes precedence over other clauses that
specify XML columns for statistics collection. For example, if you use the
EXCLUDING XML COLUMNS clause, and you also specify XML type columns
with the ON COLUMNS clause or you use the ON ALL COLUMNS clause, all XML
type columns will be ignored during statistics collection. For DB2 V9.7 Fix
Pack 1 and later releases, distribution statistics over XML type columns are
not collected when this clause is specified.

AND INDEXES
Collects and updates statistics for both the table and the indexes. This
option cannot be used for views.

ON ALL COLUMNS
To collect statistics on all eligible columns, use the ON ALL COLUMNS clause.
Columns can be specified either for basic statistics collection (On Cols
clause) or in conjunction with the WITH DISTRIBUTION clause (On Dist Cols
clause). The ON ALL COLUMNS specification is the default option if neither of
the column specific clauses are specified.

If it is specified in the On Cols clause, all columns will have only basic
column statistics collected unless specific columns are chosen as part of the
WITH DISTRIBUTION clause. Those columns specified as part of the WITH
DISTRIBUTION clause will also have basic and distribution statistics
collected.

If the WITH DISTRIBUTION ON ALL COLUMNS is specified both basic statistics
and distribution statistics are collected for all eligible columns. Anything
specified in the On Cols clause is redundant and therefore not necessary.

ON COLUMNS
To collect statistics on specific columns, column groups, or both, use the ON
COLUMNS. A column group is a parenthesized comma-separated list of
columns for which you want to collect combined statistics.

The column and column groups are specified as a parenthesized
comma-separated list.

When you run the RUNSTATS command on a table without gathering index
statistics and specify a subset of columns for which statistics are to be
gathered:

* Statistics for columns not specified in the RUNSTATS command but which
are the first column in an index are not reset.

* Statistics for all other columns not specified in the RUNSTATS command
are reset.

This clause can be used in the On Cols clause and the On Dist Cols clause.
Collecting distribution statistics for a group of columns is not currently
supported.

If XML type columns are specified in a column group, the XML type
columns are ignored for collecting distinct values for the group. However,
basic XML column statistics are collected for the XML type columns in the
column group.

ON KEY COLUMNS
Instead of listing specific columns, you can choose to collect statistics on
columns that make up all the indexes defined on the table. It is assumed
here that critical columns in queries are also those used to create indexes

Built-in routines and views 175

on the table. If there are no indexes on the table, it is as good as an empty
list and no column statistics will be collected. It can be used in the On Cols
clause or the On Dist Cols clause. It is redundant in the On Cols clause if
specified in both clauses since the WITH DISTRIBUTION clause is used to
specify collection of both basic and distribution statistics. XML type
columns are by definition not a key column and will not be included for
statistics collection by the ON KEY COLUMNS clause. This option cannot be
used for views.

column-name
Name of a column in the table or statistical view. If you specify the name
of an ineligible column for statistics collection, such as a nonexistent
column or a mistyped column name, error (-205) is returned. Two lists of
columns can be specified, one without distribution and one with
distribution. If the column is specified in the list that is not associated with
the WITH DISTRIBUTION clause only basic column statistics will be collected.
If the column appears in both lists, distribution statistics will be collected
(unless NUM_FREQVALUES and NUM_QUANTILES are set to zero).

LIKE STATISTICS
When this option is specified additional column statistics might be
collected for columns of type CHAR and VARCHAR with a code page
attribute of single-byte character set (SBCS), FOR BIT DATA, or UTE-8.
The statistics are collected if the runstats utility determines that such
statistics are appropriate after analyzing column values. These statistics
are the SUB_COUNT and the SUB_DELIM_LENGTH statistics in SYSSTAT.COLUMNS.
They are used by the query optimizer to improve the selectivity estimates
for predicates of the type "column LIKE '%xyz'"and "column LIKE

oln

'%xXyz%

WITH DISTRIBUTION
This clause specifies that both basic statistics and distribution statistics are
to be collected on the columns. If the ON COLUMNS clause is not specified,
distribution statistics are collected on all the columns of the table or
statistical view (excluding columns that are ineligible such as CLOB and
LONG VARCHAR). If the ON COLUMNS clause is specified, distribution
statistics are collected only on the column list provided (excluding those
ineligible for statistics collection). If the clause is not specified, only basic
statistics are collected.

Collection of distribution statistics on column groups is currently not
supported; distribution statistics will not be collected when column groups
are specified in the WITH DISTRIBUTION ON COLUMNS clause.

DEFAULT
If NUM_FREQVALUES or NUM_QUANTILES are specified, these values will be used
to determine the maximum number of frequency and quantile statistics to
be collected for the columns, if these are not specified for individual
columns in the ON COLUMNS clause. If the DEFAULT clause is not specified, the
values used will be those in the corresponding database configuration
parameters.

NUM_FREQVALUES
Defines the maximum number of frequency values to collect. It can be
specified for an individual column in the ON COLUMNS clause. If the value is
not specified for an individual column, the frequency limit value will be
picked up from that specified in the DEFAULT clause. If it is not specified
there either, the maximum number of frequency values to be collected will
be what is set in the num_freqvalues database configuration parameter.

176 Administrative Routines and Views

NUM_QUANTILES
Defines the maximum number of distribution quantile values to collect. It
can be specified for an individual column in the ON COLUMNS clause. If the
value is not specified for an individual column, the quantile limit value
will be picked up from that specified in the DEFAULT clause. If it is not
specified there either, the maximum number of quantile values to be
collected will be what is set in the num_quantiles database configuration
parameter.

For DB2 V9.7 Fix Pack 1 and later releases, distribution statistics for each
index over XML data uses a maximum of 250 quantiles as the default. The
default can be changed by specifying the NUM_QUANTILES parameter in the
ON COLUMNS or the DEFAULT clause. The num_quantiles database
configuration parameter is ignored while collecting XML distribution
statistics.

ALLOW WRITE ACCESS
Specifies that other users can read from and write to the tables while
statistics are calculated. For statistical views, these are the base tables
referenced in the view definition.

The ALLOW WRITE ACCESS option is not recommended for tables that will
have a lot of inserts, updates or deletes occurring concurrently. The
RUNSTATS command first performs table statistics and then performs index
statistics. Changes in the table's state between the time that the table and
index statistics are collected might result in inconsistencies. Although
having up-to-date statistics is important for the optimization of queries, it
is also important to have consistent statistics. Therefore, statistics should be
collected at a time when inserts, updates or deletes are at a minimum.

ALLOW READ ACCESS
Specifies that other users can have read-only access to the tables while
statistics are calculated. For statistical views, these are the base tables
referenced in the view definition.

TABLESAMPLE BERNOULLI
This option allows RUNSTATS to collect statistics on a sample of the rows
from the table or statistical view. Bernoulli sampling considers each row
individually, including that row with probability P/100 (where P is the
value of numeric-literal) and excluding it with probability 1-P/100. Thus, if
the numeric-literal were evaluated to be the value 10, representing a 10
percent sample, each row would be included with probability 0.1 and be
excluded with probability 0.9. Unless the optional REPEATABLE clause is
specified, each execution of RUNSTATS will usually yield a different such
sample of the table. All data pages will be retrieved through a table scan
but only the percentage of rows as specified through the numeric-literal
parameter will be used for the statistics collection.

TABLESAMPLE SYSTEM
This option allows RUNSTATS to collect statistics on a sample of the data
pages from the tables. System sampling considers each page individually,
including that page with probability P/100 (where P is the value of
numeric-literal) and excluding it with probability 1-P/100. Unless the
optional REPEATABLE clause is specified, each execution of RUNSTATS will
usually yield a different such sample of the table. The size of the sample is
controlled by the numeric-literal parameter in parentheses, representing an
approximate percentage P of the table to be returned. Only a percentage of
the data pages as specified through the numeric-literal parameter will be
retrieved and used for the statistics collection.

Built-in routines and views 177

For statistical views, SYSTEM sampling can only be applied to a single
base table referenced in the view definition. If the view contains multiple
tables, SYSTEM sampling is possible if a single table among all the tables
in the statistical view can be identified as being joined with all primary
keys or unique index columns of the other tables used in the view. If the
statistical view does not meet those conditions, Bernoulli sampling will be
used instead and a warning will be returned.

numeric-literal
The numeric-literal parameter specifies the size of the sample to be
obtained, as a percentage P. This value must be a positive number that is
less than or equal to 100, and can be between 1 and 0. For example, a
value of 0.01 represents one one-hundredth of a percent, such that 1 row in
10,000 would be sampled, on average. A value of 0 or 100 will be treated
by the DB2 database system as if sampling was not specified, regardless of
whether TABLESAMPLE BERNOULLI or TABLESAMPLE SYSTEM is specified. A
value greater than 100 or less than 0 will be treated as an error (SQL1197N)
by the DB2 database system.

REPEATABLE (integer-literal)
Adding the REPEATABLE clause to the TABLESAMPLE clause ensures that
repeated executions of RUNSTATS return the same sample. The integer-literal
parameter is a non-negative integer representing the seed to be used in
sampling. Passing a negative seed will result in an error (SQL1197N). The
sample set might still vary between repeatable RUNSTATS invocations if
activity against the table or statistical view resulted in changes to the table
or statistical view data since the last time TABLESAMPLE REPEATABLE was
run. Also, the method by which the sample was obtained as specified by
the BERNOULLI or SYSTEM keyword, must also be the same to ensure
consistent results.

INDEXSAMPLE BERNOULLI
Use this option to collect index statistics on a sample of the rows in the
index. Bernoulli sampling considers each row individually, including the row
with probability P/100 (where P is the value of the numeric-literal) and
excluding it with probability 1-P/100. Thus, if the numeric-literal were
evaluated to be the value 10, representing a 10 percent sample, each row
would be included with probability 0.1 and be excluded with probability
0.9. Each execution of RUNSTATS is likely to yield a different sample of the
index. All index pages are retrieved through an index scan but only the
percentage of rows as specified through the numeric-literal parameter is
used for the statistics collection. This option is not supported on statistical
views.

INDEXSAMPLE SYSTEM
Use this option to collect statistics on a sample of the index pages. System
sampling considers each page individually, including the page with
probability P/100 (where P is the value of the numeric-literal) and
excluding it with probability 1-P/100. Each execution of the RUNSTATS
command usually yields a different sample of the index. The size of the
sample is controlled by the numeric-literal parameters in parentheses,
representing an approximate percentage P of the index to be returned.
Only a percentage of the index pages as specified through the
numeric-literal parameter is retrieved and used for the statistics collection.
This option is not supported on statistical views.

SET PROFILE NONE
Specifies that no statistics profile will be set for this RUNSTATS invocation.

178 Administrative Routines and Views

SET PROFILE
Allows RUNSTATS to generate and store a specific statistics profile in the
system catalog tables and executes the RUNSTATS command options to
gather statistics.

SET PROFILE ONLY
Allows RUNSTATS to generate and store a specific statistics profile in the
system catalog tables without running the RUNSTATS command options.

UPDATE PROFILE
Allows RUNSTATS to modify an existing statistics profile in the system
catalog tables, and runs the RUNSTATS command options of the updated
statistics profile to gather statistics. You cannot use the UPDATE PROFILE
option to remove clauses that are in a statistics profile.

UPDATE PROFILE ONLY
Allows RUNSTATS to modify an existing statistics profile in the system
catalog tables without running the RUNSTATS command options of the
updated statistics profile. You cannot use the UPDATE PROFILE ONLY option
to remove clauses that are in a statistics profile.

UTIL_IMPACT_PRIORITY priority
Specifies that RUNSTATS will be throttled at the level specified by priority.
priority is a number in the range of 1 to 100, with 100 representing the
highest priority and 1 representing the lowest. The priority specifies the
amount of throttling to which the utility is subjected. All utilities at the
same priority undergo the same amount of throttling, and utilities at lower
priorities are throttled more than those at higher priorities. If priority is not
specified, the RUNSTATS will have the default priority of 50. Omitting the
UTIL_IMPACT_PRIORITY keyword will invoke the RUNSTATS utility without
throttling support. If the UTIL_IMPACT_PRIORITY keyword is specified, but
the util_impact_1im configuration parameter is set to 100, then the utility
will run unthrottled.

In a partitioned database, when used on tables, the RUNSTATS command collects the
statistics on only a single database partition. If the database partition from which
the RUNSTATS command is executed has a partition of the table, then the command
executes on that database partition. Otherwise, the command executes on the first
database partition in the database partition group across which the table is
partitioned.

Example

Collect statistics on all columns used in indexes and on all indexes.

CALL SYSPROC.ADMIN_CMD ('RUNSTATS ON TABLE employee
ON KEY COLUMNS and INDEXES ALL')

Usage notes

1. When there are detached partitions on a partitioned table, index keys that still
belong to detached data partitions which require cleanup will not be counted
as part of the keys in the statistics. These keys are not counted because they
are invisible and no longer part of the table. They will eventually get removed
from the index by asynchronous index cleanup. As a result, statistics collected
before asynchronous index cleanup is run will be misleading. If the RUNSTATS
command is issued before asynchronous index cleanup completes, it will
likely generate a false alarm for index reorganization or index cleanup based
on the inaccurate statistics. Once asynchronous index cleanup is run, all the

Built-in routines and views 179

index keys that still belong to detached data partitions which require cleanup
will be removed and this may eliminate the need for index reorganization.

For partitioned tables, you are encouraged to issue the RUNSTATS command
after an asynchronous index cleanup has completed in order to generate
accurate index statistics in the presence of detached data partitions. To
determine whether or not there are detached data partitions in the table, you
can check the status field in the SYSCAT.DATAPARTITIONS catalog view and
look for the value L (logically detached), I (index cleanup), or D (detached
with dependent MQT).

The RUNSTATS command collects statistics for all index partitions of a
partitioned index. Statistics in the SYSSTAT.INDEXES view for the partitioned
index represent an index partition, except for FIRSTKEYCARD,
FIRST2KEYCARD, FIRST3KEYCARD, FIRSTAKEYCARD, and FULLKEYCARD
statistics. Because these statistics are used in cardinality estimates, they are for
the entire index and not for an index partition. Distribution statistics (frequent
values and quantiles) are not collected for partitioned indexes, but are
gathered if RUNSTATS is run on the table. Statistics on the leading columns of a
partitioned index might not be as accurate as statistics on the leading columns
of a nonpartitioned index.

2. Command execution status is returned in the SQLCA resulting from the CALL
statement.

3. It is recommended to run the RUNSTATS command:

* On tables that have been modified considerably (for example, if a large
number of updates have been made, or if a significant amount of data has
been inserted or deleted or if LOAD has been done without the statistics
option during LOAD).

* On tables that have been reorganized (using REORG, REDISTRIBUTE DATABASE
PARTITION GROUP).

* On tables which have been row compressed.

* When a new index has been created.

* Before binding applications whose performance is critical.
* When the prefetch quantity is changed.

* On statistical views whose underlying tables have been modified
substantially so as to change the rows that are returned by the view.

* After LOAD has been executed with the STATISTICS option, use the RUNSTATS
utility to collect statistics on XML columns. Statistics for XML columns are
never collected during LOAD, even when LOAD is executed with the
STATISTICS option. When RUNSTATS is used to collect statistics for XML
columns only, existing statistics for non-XML columns that have been
collected by LOAD or a previous execution of the RUNSTATS utility are
retained. In the case where statistics on some XML columns have been
collected previously, the previously collected statistics for an XML column
will either be dropped if no statistics on that XML column are collected by
the current command, or be replaced if statistics on that XML column are
collected by the current command.

4. The options chosen must depend on the specific table and the application. In
general:

* If the table is a very critical table in critical queries, is relatively small, or
does not change too much and there is not too much activity on the system
itself, it might be worth spending the effort on collecting statistics in as
much detail as possible.

180 Administrative Routines and Views

* If the time to collect statistics is limited, if the table is relatively large, or if
the table is updated frequently, it might be beneficial to execute RUNSTATS
limited to the set of columns that are used in predicates. This way, you will
be able to execute the RUNSTATS command more often.

* If time to collect statistics is very limited and the effort to tailor the
RUNSTATS command on a table by table basis is a major issue, consider
collecting statistics for the "KEY" columns only. It is assumed that the index
contains the set of columns that are critical to the table and are most likely
to appear in predicates.

e If time to collect statistics is very limited and table statistics are to be
gathered, consider using the TABLESAMPLE option to collect statistics on a
subset of the table data.

* If time to collect statistics is very limited and index statistics are to be
gathered, consider using the INDEXSAMPLE option to collect statistics on a
subset of the index data.

e If there is skew in certain columns and predicates of the type "column =
constant", it might be beneficial to specify a larger NUM_FREQVALUES value
for that column

* Collect distribution statistics for all columns that are used in equality
predicates and for which the distribution of values might be skewed.

* For columns that have range predicates (for example "column >=
constant", "column BETWEEN constantl AND constant2") or of the type
"column LIKE '%xyz'", it might be beneficial to specify a larger
NUM_QUANTILES value.

* If storage space is a concern and one cannot afford too much time on
collecting statistics, do not specify high NUM_FREQVALUES or NUM_QUANTILES
values for columns that are not used in predicates.

* If index statistics are requested, and statistics have never been run on the
table containing the index, statistics on both the table and indexes are
calculated.

* If statistics for XML columns in the table are not required, the EXCLUDING
XML COLUMNS option can be used to exclude all XML columns. This option
takes precedence over all other clauses that specify XML columns for
statistics collection.

. After the command is run, note the following:
* A COMMIT should be issued to release the locks.

* To allow new access plans to be generated, the packages that reference the
target table must be rebound.

* Executing the command on portions of the table could result in
inconsistencies as a result of activity on the table since the command was
last issued. In this case a warning message is returned. Issuing RUNSTATS on
the table only might make table and index level statistics inconsistent. For
example, you might collect index level statistics on a table and later delete a
significant number of rows from the table. If you then issue RUNSTATS on the
table only, the table cardinality might be less than FIRSTKEYCARD, which is
an inconsistency. In the same way, if you collect statistics on a new index
when you create it, the table level statistics might be inconsistent.

. The RUNSTATS command will drop previously collected distribution statistics if

table statistics are requested. For example, RUNSTATS ON TABLE, or RUNSTATS ON

TABLE ... AND INDEXES ALL will cause previously collected distribution

statistics to be dropped. If the command is run on indexes only then

previously collected distribution statistics are retained. For example, RUNSTATS

Built-in routines and views 181

ON TABLE ... FOR INDEXES ALL will cause the previously collected distribution
statistics to be retained. If the RUNSTATS command is run on XML columns
only, then previously collected basic column statistics and distribution
statistics are retained. In the case where statistics on some XML columns have
been collected previously, the previously collected statistics for an XML
column will either be dropped if no statistics on that XML column are
collected by the current command, or be replaced if statistics on that XML
column are collected by the current command.

7. For DB2 V9.7 Fix Pack 1 and later releases, distribution statistics are collected
on indexes over XML data defined on an XML column. When the RUNSTATS
command is run on a table with the WITH DISTRIBUTION clause, the following
apply to the collection of distribution statistics on a column of type XML:

¢ Distribution statistics are collected for each index over XML data specified
on an XML column.

* The RUNSTATS command must collect both distribution statistics and table
statistics to collect distribution statistics for indexes over XML data defined
on an XML column. Table statistics must be gathered in order for
distribution statistics to be collected since XML distribution statistics are
stored with table statistics.

An index clause is not required to collect XML distribution statistics.
Specifying only an index clause does not collect XML distribution statistics

By default, XML distribution statistics use a maximum of 250 quantiles for
each index over XML data. When collecting distribution statistics on an
XML column, you can change the maximum number of quantiles by
specifying a value with NUM_QUANTILES parameter in the ON COLUMNS or the
DEFAULT clause.

* Distribution statistics are collected for indexes over XML data of type
VARCHAR, DOUBLE, TIMESTAMP, and DATE. Distribution statistics are
not collected over indexes of type VARCHAR HASHED.

* Distribution statistics are not collected for partitioned indexes over XML
data defined on a partitioned table.

8. For range-clustered tables, there is a special system-generated index in the
catalog tables which represents the range ordering property of range-clustered
tables. When statistics are collected on this type of table, if the table is to be
included as part of the statistics collection, statistics will also be collected for
the system-generated index. The statistics reflect the fast access of the range
lookups by representing the index as a two-level index with as many pages as
the base data table, and having the base data clustered perfectly along the
index order.

9. In the On Dist Cols clause of the command syntax, the Frequency Option and
Quantile Option parameters are currently not supported for column GROUPS.
These options are supported for single columns.

10. There are three prefetch statistics that cannot be computed when working in
DMS mode. When looking at the index statistics in the index catalogs, you
will see a -1 value for the following statistics:

* AVERAGE_SEQUENCE_FETCH_PAGES
* AVERAGE_SEQUENCE_FETCH_GAP
* AVERAGE_RANDOM_FETCH_PAGES

11. A statistics profile can be set or updated for the table or statistical view
specified in the RUNSTATS command, by using the set profile or update profile

182 Administrative Routines and Views

12.

13.

14.

15.

16.

17.

18.

options. The statistics profile is stored in a visible string format, which
represents the RUNSTATS command, in the STATISTICS_PROFILE column of the
SYSCAT.TABLES system catalog table.

Statistics collection on XML type columns is governed by two DB2 database
system registry values: DB2_XML_RUNSTATS_PATHID_K and
DB2_XML_RUNSTATS_PATHVALUE_K. These two parameters are similar to the
NUM_FREQVALUES parameter in that they specify the number of frequency values
to collect. If not set, a default of 200 will be used for both parameters.

RUNSTATS acquires an IX table lock on SYSTABLES and a U lock on the row for
the table on which statistics are being gathered at the beginning of RUNSTATS.
Operations can still read from SYSTABLES including the row with the U lock.
Write operations are also possible, providing they do not occur against the
row with the U lock. However, another reader or writer will not be able
acquire an S lock on SYSTABLES because of RUNSTATS' IX lock.

Statistics are not collected for columns with structured types. If they are
specified, columns with these data types are ignored.

Only AVGCOLLEN and NUMNULLS are collected for columns with LOB or
LONG data types.

AVGCOLLEN represents the average space in bytes when the column is
stored in database memory or a temporary table. This value represents the
length of the data descriptor for LOB or LONG data types, except when LOB
data is inlined on the data page.

Note: The average space required to store the column on disk may be
different than the value represented by this statistic.

The UNSAMPLED DETAILED option is available to change the way index statistics
are collected, but it should be used only in cases where its clear that the
default or DETAILED doesnt work.

When using the INDEXSAMPLE keyword you cannot specify different index
sampling rates for different indexes within a single command. For example:

runstats on table orders and index o_ck indexsample system(5),
index o_ok indexsample system(10)

is invalid. The following two RUNSTATS commands can be used to achieve the
required result:

runstats on table orders and index o_ck indexsample system(5)
runstats on table orders for index o_ok indexsample system(10)

SET TAPE POSITION command using the ADMIN_CMD procedure:

Sets the positions of tapes for backup and restore operations to streaming tape
devices. This command is only supported on Windows operating systems.

Authorization

One of the following authorities:
* SYSADM

* SYSCTRL

¢ SYSMAINT

Required connection

Database

Built-in routines and views 183

Command syntax

»>—SET TAPE POSITION

v
A

|_ _| TO—position
ON—device

Command parameters

ON device
Specifies a valid tape device name. The default value is \\.\TAPEO. The
device specified must be relative to the server.

TO position
Specifies the mark at which the tape is to be positioned. DB2 for Windows
writes a tape mark after every backup image. A value of 1 specifies the
first position, 2 specifies the second position, and so on. If the tape is
positioned at tape mark 1, for example, archive 2 is positioned to be
restored.

Example

Because DB2 databases write a tape mark after every backup image, specifying a
position of 1 will move the tape to the start of the second archive on the tape.

CALL SYSPROC.ADMIN CMD('set tape position to 1')
Usage notes

Command execution status is returned in the SQLCA resulting from the CALL
statement.

UNQUIESCE DATABASE command using the ADMIN_CMD procedure:
Restores user access to databases which have been quiesced for maintenance or
other reasons. The UNQUIESCE command restores user access without necessitating a
shutdown and database restart.

Scope

UNQUIESCE DB restores user access to all objects in the quiesced database.

To stop the instance and unquiesce it and all its databases, issue the db2stop
command. Stopping and restarting DB2 will unquiesce all instances and databases.

Authorization
One of the following authorities:

For database level unquiesce:
* SYSADM
+ DBADM

Command syntax

»»—UNQUIESCE—DB > <

184 Administrative Routines and Views

Required connection
Database

Command parameters

DB Unquiesce the database. User access will be restored to all objects in the
database.

Example : Unquiescing a database

The following command unquiesces the database that had previously been
quiesced.

CALL SYSPROC.ADMIN CMD('unquiesce db')

The following command will unquiesce the instance instA that had previously
been quiesced.

db2 unquiesce instance instA

Usage notes

¢ Command execution status is returned in the SQLCA resulting from the CALL
statement.

* In a DB2 pureScale environment, after quiescing a database and restarting the
instance, the database will remain quiesced across all members. An explicit
UNQUIESCE DATABASE command is required to remove the quiesce state.

UPDATE ALERT CONFIGURATION command using the ADMIN_CMD
procedure:

Updates the alert configuration settings for health indicators.

Important: This command or API has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. It is
not supported in DB2 pureScale environments. For more information, see “Health
monitor has been deprecated” at http://publib.boulder.ibm.com/infocenter/
db2luw /v9r7 /topic/com.ibm.db2.luw.wn.doc/doc/i0055045.html.

Authorization

One of the following authorities:
* SYSADM

* SYSMAINT

* SYSCTRL

Required Connection
Database

Command Syntax

»»—UPDATE ALERT: CONFIGURATION FOR
Ew”ﬂ
CFG:

Built-in routines and views 185

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.wn.doc/doc/i0055045.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.wn.doc/doc/i0055045.html

> DATABASE MANAGER: USING—health-indicator-name————»>

DB MANAGER
DBl

DATABASES:

CONTAINERS
TABLESPACES
DATABASE:
TABLESPACE—tblspace-nal l
CONTAINER—container-name—FOR—tblspace-name—I

ON—database-alias

>——SET—parameter name—valu >

SET—parameter-name—val

—UPDATE ACTION—[v SCRIPT—pathname N——WARNING
TASK—task-name: HALARM——

—ALLALERT:

LATTENTION—state—

-DELETE ACTION—Y——SCRIPT—path ON WARNING |

TASK—task—name—I —ALARM——————
—ALLALERT
L-ATTENTION—state—

—ADD ACTION—l_ESCRIPT—pathname—| Add Script Details |—|_0N_| State and User Details 'J—

TASK—task-na

Add Script Details:

—TYPE 2
STATEMENT TERMINATION CHARACTER——character
LESTMT TERM CHAR
TERM CHAR

OPERATING SYSTEM | J
LI:COMMAND LINE PARAMETERS

—I—parms
PARMS

»—WORKING DIRECTORY—pathname I

State and User Details:

WARNING USER—username—USING—password4|
ALARM |—ON—hostname—|

ALLALERT
ATTENTION—state—

Command Parameters

DATABASE MANAGER
Updates alert settings for the database manager.

DATABASES
Updates alert settings for all databases managed by the database manager.
These are the settings that apply to all databases that do not have custom
settings. Custom settings are defined using the DATABASE ON database-alias
clause.

CONTAINERS
Updates alert settings for all table space containers managed by the
database manager. These are the settings that apply to all table space
containers that do not have custom settings. Custom settings are defined
using the CONTAINER container-name ON database-alias clause.

186 Administrative Routines and Views

TABLESPACES
Updates alert settings for all table spaces managed by the database
manager. These are the settings that apply to all table spaces that do not
have custom settings. Custom settings are defined using the TABLESPACE
tblspace-name ON database-alias clause.

DATABASE ON database-alias
Updates the alert settings for the database specified using the ON
database-alias clause. If this database has custom settings, then they override
the settings for all databases for the instance, which is specified using the
DATABASES parameter.

CONTAINER container-name FOR tblspace-name ON database-alias
Updates the alert settings for the table space container called
container-name, for the table space specified using the FOR tblspace-name
clause, on the database specified using the ON database-alias clause. If this
table space container has custom settings, then they override the settings
for all table space containers for the database, which is specified using the
CONTAINERS parameter.

TABLESPACE tblspace-name ON database-alias
Updates the alert settings for the table space called name, on the database
specified using the ON database-alias clause. If this table space has custom
settings, then they override the settings for all table spaces for the
database, which is specified using the TABLESPACES parameter.

USING health-indicator-name
Specifies the set of health indicators for which alert configuration will be
updated. Health indicator names consist of a two-letter object identifier
followed by a name which describes what the indicator measures. For
example:

db.sort_privmem_util
SET parameter-name value
Updates the alert configuration element, parameter-name, of the health

indicator to the specified value. parameter-name must be one of the
following values:

* ALARM: the value is a health indicator unit.

* WARNING: the value is a health indicator unit.

* SENSITIVITY: the value is in seconds.

e ACTIONSENABLED: the value can be either YES or NO.

* THRESHOLDSCHECKED: the value can be either YES or NO.

The list of possible health indicator units for your specific DB2 version can
be gathered by running the following query :

SELECT SUBSTR(UNIT,1,80) AS UNIT
FROM TABLE(HEALTH_GET_IND DEFINITION('')) AS T GROUP BY UNIT

UPDATE ACTION SCRIPT pathname ON [WARNING | ALARM | ALLALERT | ATTENTION state]
Specifies that the script attributes of the predefined script with absolute
path name pathname will be updated according to the following clause:

SET parameter-name value
Updates the script attribute, parameter-name, to the specified value.
parameter-name must be one of the following values:

e SCRIPTTYPE
0S or DB2 are the valid types.
* WORKINGDIR

Built-in routines and views 187

e TERMCHAR
e CMDLINEPARMS

The command line parameters that you specify for the operating
system script will precede the default supplied parameters. The
parameters that are sent to the operating system script are:
— List of user supplied parameters
— Health indicator short name
— Fully qualified object name
— Health indicator value
— Alert state
« USERID
> PASSWORD

e SYSTEM

UPDATE ACTION TASK task-name ON [WARNING | ALARM | ALLALERT | ATTENTION state]
Specifies that the task attributes of the task with name name will be
updated according to the following clause:

SET parameter-name value
Updates the task attribute, parameter-name, to the specified value.
parameter-name must be one of the following values:

* USERID
e PASSWORD
e SYSTEM

DELETE ACTION SCRIPT pathname ON [WARNING | ALARM | ALLALERT | ATTENTION state]
Removes the action script with absolute path name pathname from the list
of alert action scripts.

DELETE ACTION TASK task-name ON [WARNING | ALARM | ALLALERT | ATTENTION state]
Removes the action task called name from the list of alert action tasks.

ADD ACTION SCRIPT pathname ON [WARNING | ALARM | ALLALERT | ATTENTION state]
Specifies that a new action script with absolute path name pathname is to
be added, the attributes of which are given by the following:

TYPE An action script must be either a DB2 Command script or an
operating system script:

* DB2
* OPERATING SYSTEM

If it is a DB2 Command script, then the following clause allows
one to optionally specify the character, character, that is used in the
script to terminate statements:

STATEMENT TERMINATION CHARACTER ;

If it is an operating system script, then the following clause allows
one to optionally specify the command-line parameters, parms, that
would be passed to the script upon invocation: COMMAND LINE
PARAMETERS parms

WORKING DIRECTORY pathname
Specifies the absolute path name, pathname, of the directory in
which the script will be executed.

USER username USING password
Specifies the user account, username, and associated password,
password, under which the script will be executed. When using the

188 Administrative Routines and Views

ADD ACTION option, the username and password might be exposed in
the network (where the username and password are sent
unencrypted), to the db2diag log file, trace files, dump file,
snapshot monitor (dynamic SQL snapshot), system monitor
snapshots, a number of event monitors (such as statement,
deadlock), explain tables, db2pd output (such as package cache and
lock timeout mechanisms) and DB2 audit records.

ADD ACTION TASK name ON [WARNING | ALARM | ALLALERT | ATTENTION state]
Specifies that a new task, called name, is to be added to be run ON the
specified condition.

ON [WARNING | ALARM | ALLALERT | ATTENTION state]
Specifies the condition on which the action or task will run. For
threshold-based health indicators (HIs), this is WARNING or ALARM. For
state-based HlIs, this can be a numeric state as documented for each
state-based HI (for example, for the ts.ts_op_status health indicator, refer to
the tablespace_state monitor element for table space states), or a text
identifier for this state. ALLALERTS handles any changes in the state for
threshold-based Hls and state-based HIs (for example, the state changes
from warning to normal).

ATTENTION state
Valid numeric values for some of the database health indicator
states are given in the following section, as an example for the ADD
ACTION SCRIPT CLP command option:

e 0 - Active; Normal (ACTIVE)

* 1 - Quiesce pending (QUIESCE_PEND)
e 2 - Quiesced (QUIESCED)

* 3 - Rollforward (ROLLFWD)

Additional state-based health indicators are defined in the header
files sqImon.h and sqlutil.h.

The UPDATE ALERT CFG command called by the ADMIN_CMD
stored procedure supports either a numeric value or a text
identifier for state. Valid numeric values and text identifiers for
some additional health indicator states, as an example for the table
space operational status health indicator (ts.ts_op_status), are:

* 0x1 - QUIESCED_SHARE

* 0x2 - QUIESCED_UPDATE

* 0x4 - QUIESCED_EXCLUSIVE

Using the UPDATE ALERT CFG command and the health indicator
values listed previously, the following command line entry,

ADD ACTION SCRIPT ... ON ATTENTION 2

is equivalent to
ADD ACTION SCRIPT ... ON ATTENTION QUIESCED_UPDATE

In addition, for the table space operational status health indicator
(ts.ts_op_status), you can specify multiple states using a single
numeric value by OR'ing states together. For example, you can
specify state 7 (= Ox1 + 0x2 + 0x4), the action will be performed
when the table space enters any of the Quiesced: SHARE,
Quiesced: UPDATE or Quiesce: EXCLUSIVE states. Alternatively,

Built-in routines and views 189

you could specify QUIESCED_SHARE, QUIESCED_UPDATE, and
QUIESCED_EXCLUSIVE in three separate UPDATE ALERT CFG
command executions.

Example

Add an action for the db.log_fs_util indicator that will execute the script
/home/test/scripts/logfsutilact when there is an alarm on the system with
hostname 'plato’.

CALL SYSPROC.ADMIN_CMD('update alert cfg for databases using
db.log_fs util add action script /home/test/scripts/lTogfsutilact
type os command line parameters "paraml param2" working
directory /tmp on alarm on plato user dricard using mypasswdv')

To check the alert configuration after it has been set, you can use the
HEALTH_GET_IND_DEFINITION and HEALTH_GET_ALERT_ACTION_CFG
table functions as follows:

SELECT OBJECTTYPE, ID, CONDITION, ACTIONTYPE,
SUBSTR(ACTIONNAME,1,50) AS ACTION_NAME
FROM TABLE(SYSPROC.HEALTH_GET_ALERT ACTION CFG('DB','G','',''))
AS ALERT_ACTION_CFG

The following is an example of output from this query:
OBJECTTYPE 1ID CONDITION ACTIONTYPE ACTION_NAME

DB 1006 ALARM S /home/dricard/scripts/logfsutilact

1 record(s) selected.
Usage notes

For the ADD ACTION option, the supplied username and password may be exposed in
various places where SQL statement text is captured:

* the network (username/password are passed over the wire unencrypted)
» db2diag log file

* trace files

* dump file

* snapshot monitor (dynamic SQL snapshot)

* system monitor snapshots

* a number of event monitors (statement, deadlock)

* explain tables

* db2pd output (package cache and lock timeout mechanisms, among others)
* DB2 audit records

Command execution status is returned in the SQLCA resulting from the CALL
statement.

The database-alias must be defined in the catalog on the server and be local to the
server.

The pathname must be with a fully-qualified server path name.

UPDATE CONTACT command using the ADMIN_CMD procedure:

190 Administrative Routines and Views

Updates the attributes of a contact that is defined on the local system. A contact is
a user to whom the Scheduler and Health Monitor send messages.

To create a contact, use the ADD CONTACT command. The setting of the Database
Administration Server (DAS) contact_host configuration parameter determines
whether the list is local or global.

Authorization

None

Required connection

Database. The DAS must be running.

Command syntax

»»>—UPDATE CONTACT—name—USING—keyword—value »><

Command parameters

UPDATE CONTACT name
The name of the contact that will be updated.

USING keyword value
Specifies the contact parameter to be updated (keyword) and the value to
which it will be set (value). The valid set of keywords is:

ADDRESS
The email address that is used by the SMTP server to send the
notification.

TYPE = Whether the address is for an email address or a pager.

MAXPAGELEN
The maximum number of characters that the pager can accept.

DESCRIPTION
A textual description of the contact. This has a maximum length of
128 characters.

Example

Update the address of user 'test' to 'newaddress@test.com'.
CALL SYSPROC.ADMIN _CMD('update contact test using address newaddress@test.com')

Usage notes
The DAS must have been created and be running.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

UPDATE CONTACTGROUP command using the ADMIN_CMD procedure:

Built-in routines and views 191

Updates the attributes of a contact group that is defined on the local system. A
contact group is a list of users who should be notified by the Scheduler and the
Health Monitor.

The setting of the Database Administration Server (DAS) contact_host
configuration parameter determines whether the list is local or global.

Authorization

None

Required Connection

Database. The DAS must be running.

Command Syntax

»»>—UPDATE CONTACTGROUP—name—Y——ADD CONTACT name >
DROP GROUP

v
A

|—DESCRIPTION—new description—|

Command Parameters

CONTACTGROUP name
Name of the contact group which will be updated.

ADD CONTACT name
Specifies the name of the new contact to be added to the group. A contact
can be defined with the ADD CONTACT command after it has been added to a

group.
DROP CONTACT name
Specifies the name of a contact in the group that will be dropped from the

group.
ADD GROUP name
Specifies the name of the new contact group to be added to the group.

DROP GROUP name
Specifies the name of a contact group that will be dropped from the group.

DESCRIPTION new description
Optional. A new textual description for the contact group.

Example

Add the contact named 'cname?2' to the contact group named 'gnamel":
CALL SYSPROC.ADMIN_CMD('update contactgroup gnamel add contact cname2')

Usage notes

The DAS must have been created and be running.

192 Administrative Routines and Views

Command execution status is returned in the SQLCA resulting from the CALL
statement.

UPDATE DATABASE CONFIGURATION command using the ADMIN_CMD
procedure:

Modifies individual entries in a specific database configuration file. A database
configuration file resides on every database partition on which the database has
been created.

Scope

This command updates all database partitions or members by default, except when
the following optional clause is specified:

* MEMBER to update only one database member for a DB2 pureScale environment,
or to update only one database partition in a partitioned database environment.

Authorization

One of the following authorities:
* SYSADM

* SYSCTRL

¢ SYSMAINT

Required connection

Database. The database connection must be local to the instance containing the
connected database.

Command syntax

»»—PDATE DATABASE CONFIGURATION |_ _|
DB;,_ECONFIG— FOR—database-alias

CFG

USING—Y—config-keyword value >
|—MEMBER—member-number‘J value—AUTOMATIC—
AUTOMATIC

ANUAL

Y

IMMEDIATE
[il

|—DEFERREDJ

Y

Command parameters

FOR database-alias
Specifies the alias of the database whose configuration is to be updated.
Specifying the database alias is not required when a database connection
has already been established. The database alias must be defined locally on
the server. You can update the configuration file for another database

Built-in routines and views 193

residing under the same database instance. For example, if you are
connected only to database dbll, and issue update db config for alias
db22 using immediate:

* If there is no active connection on db22, the update will be successful
because only the configuration file needs to be updated. A new
connection (which will activate the database) will see the new change in
memory.

¢ If there are active connections on db22 from other applications, the
update will work on disk but not in memory. You will receive a warning
saying that the database needs to be restarted.

MEMBER member-number
The MEMBER clause specifies to which member the change should be
applied. Omission of this clause results in the change being applied to all
the members.

USING config-keyword value
config-keyword specifies the database configuration parameter to be
updated. value specifies the value to be assigned to the parameter.

AUTOMATIC
Some configuration parameters can be set to AUTOMATIC, allowing DB2
database systems to automatically adjust these parameters to reflect the
current resource requirements. For a list of configuration parameters that
support the AUTOMATIC keyword, refer to the configuration parameters
summary. If a value is specified along with the AUTOMATIC keyword, it
might influence the automatic calculations. For specific details about this
behavior, refer to the documentation for the configuration parameter.

Note: The app1_memory, Togindexbuild, max_log and num_log_span
database configuration parameters can only be set to AUTOMATIC using the
command line processor.

MANUAL Disables automatic tuning for the configuration parameter. The parameter
is set to its current internal value and is no longer updated automatically.

IMMEDIATE
Make the changes immediately, while the database is running. IMMEDIATE is
the default action. Since the ADMIN_CMD procedure requires a database
connection, the changes will be effective immediately for any dynamically
configurable parameters for the connected database.

This is a default clause when operating in the CLPPlus interface as well.
IMMEDIATE need not be called when using CLPPlus processor.

DEFERRED
Make the changes only in the configuration file, so that the changes take
effect the next time you reactivate the database.

Example

Set the database configuration parameter sortheap to a value of 1000 on the
database partition to which the application is currently connected to.

CALL SYSPROC.ADMIN_CMD ('UPDATE DB CFG USING sortheap 1000')
Usage notes

Command execution status is returned in the SQLCA resulting from the CALL
statement.

194 Administrative Routines and Views

The database-alias must be an alias name that is defined on the server.
The command affects all database partitions unless MEMBER is specified.

To view or print a list of the database configuration parameters, use the
SYSIBMADM.DBCFG administration view.

To reset all the database configuration parameters to the recommended defaults,
use the RESET DATABASE CONFIGURATION command using the ADMIN_CMD
procedure.

To change a database configuration parameter, use the UPDATE DATABASE
CONFIGURATION command through the ADMIN_CMD procedure. For example, to
change the logging mode to “archival logging” on a single-partition database
environment containing a database called ZELLMART, use:

CALL SYSPROC.ADMIN_CMD ('update db cfg for zellmart using Togarchmethl logretain')

To check that the Togarchmethl configuration parameter has changed, use:
SELECT = FROM SYSIBMADM.DBCFG WHERE NAME='Togarchmethl'

To update a database configuration parameter on a specific database partition, you
can:

1. set the DB2NODE variable to a database partition number.

2. connect to the database partition.

3. update the database configuration parameters using UPDATE DATABASE
CONFIGURATION command through the ADMIN_CMD procedure.

4. disconnect from the database partition.

or you can use MEMBER. For example, to update the logging mode to only one
specific partition (30) using MEMBER, use:

CALL SYSPROC.ADMIN_CMD ('update db cfg for zellmart member 30 using
Togarchmethl Togretain')

For more information about DB2 database configuration parameters and the values
available for each type of database node, see the individual configuration
parameter descriptions. The values of these parameters differ for each type of
database node configured (server, client, or server with remote clients).

Not all parameters can be updated.

Some changes to the database configuration file become effective only after they
are loaded into memory. All applications must disconnect from the database before
this can occur. For more information aboutwhich parameters are configurable
online and which ones are not, see summary list of configuration parameters.

If an error occurs, the database configuration file does not change. The database
configuration file cannot be updated if the checksum is invalid. This might occur if
the database configuration file is changed without using the appropriate command.
If this happens, the database must be restored to reset the database configuration
file.

Compatibilities

For compatibility with previous versions:

Built-in routines and views 195

* DBPARTITIONNUM can be substituted for MEMBER, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

UPDATE DATABASE MANAGER CONFIGURATION command using the
ADMIN_CMD procedure:

Modifies individual entries in the database manager configuration file for the
instance that contains the currently connected database.

Authorization
SYSADM

Required connection
Database

Command syntax

»>—UPDATE DATABASE MANAGER— CONFIGURATION
EDB MANAGER ECONFIG—
DBM CFG

v

DEFERRED
[]

A\
A

»—USING—"—config-keyword——value
—value—AUTOMATIC—
—AUTOMATIC

—MANUAL

Command parameters

USING config-keyword value
Specifies the database manager configuration parameter to be updated. For
a list of configuration parameters, refer to the configuration parameters
summary. value specifies the value to be assigned to the parameter.

AUTOMATIC
Some configuration parameters can be set to AUTOMATIC, allowing DB2 to
automatically adjust these parameters to reflect the current resource
requirements. For a list of configuration parameters that support the
AUTOMATIC keyword, refer to the configuration parameters summary. If a
value is specified along with the AUTOMATIC keyword, it might influence the
automatic calculations. For specific details about this behavior, refer to the
documentation for the configuration parameter.

Note: Note that the federated_async database manager configuration
parameter can only be set to AUTOMATIC using the command line processor.

MANUAL Disables automatic tuning for the configuration parameter. The parameter
is set to its current internal value and is no longer updated automatically.

DEFERRED
Make the changes only in the configuration file, so that the changes take
effect when the instance is restarted. This is the default.

196 Administrative Routines and Views

This is a default clause when operating in the CLPPlus interface. DEFERRED
need not be called when using CLPPlus processor.

Example

Update the diagnostic level to 1 for the database manager configuration.
CALL SYSPROC.ADMIN_CMD('db2 update dbm cfg using DIAGLEVEL 1')

Usage notes

To view or print a list of the database manager configuration parameters, use the
SYSIBMADM.DBMCEFG administrative view. To reset the database manager
configuration parameters to the recommended database manager defaults, use the
RESET DATABASE MANAGER CONFIGURATION command through the ADMIN_CMD
procedure. For more information about database manager configuration parameters
and the values of these parameters appropriate for each type of database node
configured (server, client, or server with remote clients), see individual
configuration parameter descriptions.

Not all parameters can be updated.

Some changes to the database manager configuration file become effective only
after they are loaded into memory. For more information aboutwhich parameters
are configurable online and which ones are not, see the configuration parameter
summary. Server configuration parameters that are not reset immediately are reset
during execution of db2start. For a client configuration parameter, parameters are
reset the next time you restart the application. If the client is the command line
processor, it is necessary to invoke TERMINATE.

If an error occurs, the database manager configuration file does not change.

The database manager configuration file cannot be updated if the checksum is
invalid. This can occur if you edit database manager configuration file and do not
use the appropriate command. If the checksum is invalid, you must reinstall the
database manager to reset the database manager configuration file.

When you update the SVCENAME, or TPNAME database manager configuration
parameters for the current instance, if LDAP support is enabled and there is an
LDAP server registered for this instance, the LDAP server is updated with the new
value or values.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

Updates can only be made to the database instance that contains the connected
database.

If a parameter supports dynamic update, an attempt is made to update it
dynamically, even if the IMMEDIATE keyword is not specified. The authorization
used is the current SYSTEM_USER id.

UPDATE HEALTH NOTIFICATION CONTACT LIST command using the
ADMIN_CMD procedure:

Updates the contact list for notification about health alerts issued by an instance.

Built-in routines and views 197

Authorization

One of the following authorities:
* SYSADM

* SYSCTRL

* SYSMAINT

Required Connection
Database

Command Syntax

»»—UPDATE HEALTH NOTIFICATION CONTACT | LIST >
NOTIFICATION

>—|:' ADD CONTACT name ><
DROP: GROUPJ

Command Parameters

ADD GROUP name
Add a new contact group that will notified of the health of the instance.

ADD CONTACT name
Add a new contact that will notified of the health of the instance.

DROP GROUP name
Removes the contact group from the list of contacts that will notified of the
health of the instance.

DROP CONTACT name
Removes the contact from the list of contacts that will notified of the health
of the instance.

Example

Add the contact group 'gnamel’ to the health notification contact list:
CALL SYSPROC.ADMIN CMD('update notification Tist add group gnamel')

Usage note

Command execution status is returned in the SQLCA resulting from the CALL
statement.

UPDATE HISTORY command using the ADMIN_CMD procedure:

Updates the location, device type, comment, or status in a database history records
entry on the currently connected database partition.

198 Administrative Routines and Views

Authorization

One of the following authorities:
* SYSADM

* SYSCTRL

* SYSMAINT

+ DBADM

Required connection
Database

Command syntax

»>—UPDATE HISTORY—[FOR—object-part WITH >
EID—eid
LOCATION—new-location—DEVICE TYPE—new-device-type »><
ECOMMENT—new—comment
STATUS—new-status

Command parameters

FOR object-part
Specifies the identifier for the history entry to be updated. It is a time
stamp with an optional sequence number from 001 to 999. This parameter
cannot be used to update the entry status. To update the entry status,
specify an EID instead.

EID eid Specifies the history entry ID.

LOCATION new-location
Specifies the new physical location of a backup image. The interpretation
of this parameter depends on the device type.

DEVICE TYPE new-device-type
Specifies a new device type for storing the backup image. Valid device
types are:

Disk

Diskette

Tape

Tivoli Storage Manager
Snapshot backup
User exit

Pipe

Null device
XBSA

SQL statement
Other

o O X Z w & =m » - X O

Built-in routines and views 199

COMMENT new-comment
Specifies a new comment to describe the entry.

STATUS new-status
Specifies a new status for an entry. Only backup entries can have their
status updated. Valid values are:

A Active. The backup image is on the active log chain. Most entries
are active.

I Inactive. Backup images that no longer correspond to the current
log sequence, also called the current log chain, are flagged as
inactive.

E Expired. Backup images that are no longer required, because there
are more than NUM_DB_BACKUPS active images, are flagged as
expired.

D Deleted. Backup images that are no longer available for recovery
should be marked as having been deleted.

X Do not delete. Recovery database history records file entries that
are marked DB2HISTORY_STATUS_DO_NOT_DELETE will not be
pruned by calls to the PRUNE HISTORY command, running the
ADMIN_CMD procedure with PRUNE HISTORY, calls to the
db2Prune API, or automated recovery database history records
pruning. You can use the
DB2HISTORY_STATUS_DO_NOT_DELETE status to protect key
recovery file entries from being pruned and the recovery objects
associated with them from being deleted. Only log files, backup
images, and load copy images can be marked as
DB2HISTORY_STATUS_DO_NOT_DELETE.

Example

To update the database history records entry for a full database backup taken on
April 13, 1997 at 10:00 a.m., enter:
CALL SYSPROC.ADMIN_CMD('update history

for 19970413100000001 with location
/backup/dbbackup.1 device type D')

Usage notes

The primary purpose of the database history records is to record information, but
the data contained in the history is used directly by automatic restore operations.
During any restore where the AUTOMATIC option is specified, the history of backup
images and their locations will be referenced and used by the restore utility to
fulfill the automatic restore request. If the automatic restore function is to be used
and backup images have been relocated since they were created, it is
recommended that the database history record for those images be updated to
reflect the current location. If the backup image location in the database history is
not updated, automatic restore will not be able to locate the backup images, but
manual restore commands can still be used successfully.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

The object-part or eid must refer to the log history entries on the connected database
partition.

200 Administrative Routines and Views

UPDATE STMM TUNING command using the ADMIN_CMD procedure:

Update the user preferred self tuning memory manager (STMM) tuning database
member number.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:

« DBADM
« DATAACCESS
*« SQLADM

Required connection
Database

Command syntax

»»—UPDATE—STMM—TUNING—MEMBER——member-number: >

Command parameter

member-number
member-number is an integer. In a partitioned database environment, if -1 or
a nonexistent member number is used, DB2 will automatically select an
appropriate member on which to run the STMM memory tuner. In a DB2
pureScale environment, if -1 or a nonexistent member number is used, DB2
will randomly select an appropriate member on which to run the STMM
memory tuner.

Example

In a partitioned database environment, update the user preferred self tuning
memory manager (STMM) tuning database partition to member 3.

CALL SYSPROC.ADMIN CMD('update stmm tuning member 3')

Usage notes

¢ The STMM tuning process periodically checks for a change in the user preferred
STMM tuning member number value. The STMM tuning process will move to
the user preferred STMM tuning member if member-number exists and is an
active member. Once this command changes the STMM tuning member number
an immediate change is made to the current STMM tuning member number.

¢ Command execution status is returned in the SQLCA resulting from the CALL
statement.

* This command commits its changes in the ADMIN_CMD procedure.
Compatibilities

For compatibility with previous versions:

¢ DBPARTITIONNUM can be substituted for MEMBER, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

Built-in routines and views 201

ADMIN_COPY_SCHEMA procedure - Copy a specific schema and
its objects

The ADMIN_COPY_SCHEMA procedure is used to copy a specific schema and all
objects contained in it. The new target schema objects will be created using the
same object names as the objects in the source schema, but with the target schema
qualifier.

The ADMIN_COPY_SCHEMA procedure can be used to copy tables with or
without the data of the original tables.

Syntax
»>—ADMIN_COPY_SCHEMA— (—sourceschema—,—targetschema— ,—copymode—,—— >
»—objectowner—,—sourcetbsp—,—targettbsp—,—errortabschema—,—errortab—)—»<

The schema is SYSPROC.

Procedure parameters

sourceschema
An input argument of type VARCHAR(128) that specifies the name of the
schema whose objects are being copied. The name is case-sensitive.

targetschema
An input argument of type VARCHAR(128) that specifies a unique schema
name to create the copied objects into. The name is case-sensitive. If the
schema name already exists, the procedure call will fail and return a message
indicating that the schema must be removed before invoking the procedure.

copymode
An input argument of type VARCHAR(128) that specifies the mode of copy
operation. Valid options are:

¢ 'DDL" create empty copies of all supported objects from the source schema.

* 'COPY": create empty copies of all objects from the source schema, then load
each target schema table with data. Load is done in 'NONRECOVERABLE'
mode. A backup must be taken after calling the ADMIN_COPY_SCHEMA,
otherwise the copied tables will be inaccessible following recovery.

* 'COPYNO': create empty copies of all objects from the source schema, then
load each target schema table with data. Load is done in 'COPYNO' mode.

Note: If copymode is 'COPY' or 'COPYNO), a fully qualified filename, for
example 'COPYNO /home/mckeough/loadoutput’, can be specified along
with the copymode parameter value. When a path is passed in, load messages
will be logged to the file indicated. The file name must be writable by the user
ID used for fenced routine invocations on the instance. If no path is specified,
then load message files will be discarded (default behavior).

objectowner
An input argument of type VARCHAR(128) that specifies the authorization ID
to be used as the owner of the copied objects. If NULL, then the owner will be
the authorization ID of the user performing the copy operation.

sourcetbsp
An input argument of type CLOB(2 M) that specifies a list of source table
spaces for the copy, separated by commas. Delimited table space names are
supported. For each table being created, any table space found in this list, and

202 Administrative Routines and Views

the tables definition, will be converted to the nth entry in the targettbsp list. If
NULL is specified for this parameter, new objects will be created using the
same table spaces as the source objects use.

targettbsp

An input argument of type CLOB(2 M) that specifies a list of target table
spaces for the copy, separated by commas. Delimited table space names are
supported. One table space must be specified for each entry in the sourcetbsp
list of table spaces. The nth table space in the sourcetbsp list will be mapped to
the nth table space in the targettbsp list during DDL replay. It is possible to
specify 'SYS_ANY" as the final table space (an additional table space name, that
does not correspond to any name in the source list). When 'SYS_ANY" is
encountered, the default table space selection algorithm will be used when
creating objects (refer to the IN tablespace-namel option of the CREATE TABLE
statement documentation for further information about the selection
algorithm). If NULL is specified for this parameter, new objects will be created
using the same table spaces as the source objects use.

errortabschema

An input and output argument of type VARCHAR(128) that specifies the
schema name of a table containing error information for objects that could not
be copied. This table is created for the user by the ADMIN_COPY_SCHEMA
procedure in the SYSTOOLSPACE table space. If no errors occurred, then this
parameter is NULL on output.

errortab

An input and output argument of type VARCHAR(128) that specifies the name
of a table containing error information for objects that could not be copied.
This table is created for the user by the ADMIN_COPY_SCHEMA procedure in
the SYSTOOLSPACE table space. This table is owned by the user ID that
invoked the procedure. If no errors occurred, then this parameter is NULL on
output. If the table cannot be created or already exists, the procedure operation
fails and an error message is returned. The table must be cleaned up by the
user following any call to the ADMIN_COPY_SCHEMA procedure; that is, the
table must be dropped in order to reclaim the space it is consuming in
SYSTOOLSPACE.

Table 61. ADMIN_COPY_SCHEMA errortab format

Column name

Data type

Description

OBJECT_SCHEMA

VARCHAR(128)

object_schema - Object
schema monitor element

OBJECT_NAME

VARCHAR(128)

object_name - Object name
monitor element

OBJECT_TYPE

VARCHAR(30)

objtype - Object type monitor
element

SQLCODE

INTEGER

The error SQLCODE.

SQLSTATE

CHAR()

The error SQLSTATE.

ERROR_TIMESTAMP

TIMESTAMP

Time of failure for the
operation that failed.

STATEMENT

CLOB(2 M)

DDL for the failing object. If
the failure occurred when
data was being loaded into a
target table, this field
contains text corresponding
to the load command that
failed.

Built-in routines and views 203

Table 61. ADMIN_COPY_SCHEMA errortab format (continued)
Column name Data type Description

DIAGTEXT CLOB(2 K) Error message text for the
failed operation.

Authorization

In order for the schema copy to be successful, the user must have the
CREATE_SCHEMA privilege as well as DB2 object-specific privileges.

Example: CREATE_TABLE privilege is needed to copy a table and CREATE_INDEX
privilege is needed to copy an index under the ADMIN_COPY_SCHEMA
command.

If a table in the source schema is protected by label based access control (LBAC),
the user ID must have LBAC credentials that allow creating that same protection
on the target table. If copying with data, the user ID must also have LBAC
credentials that allow both reading the data from the source table and writing that
data to the target table.

EXECUTE privilege on the ADMIN_COPY_SCHEMA procedure is also needed.
Default PUBLIC privilege

In a non-restrictive database, EXECUTE privilege is granted to PUBLIC when the
procedure is automatically created.

Example

CALL SYSPROC.ADMIN_COPY_SCHEMA('SOURCE_SCHEMA', 'TARGET_SCHEMA',
'COPY', NULL, 'SOURCETS1 , SOURCETS2', 'TARGETTS1, TARGETTSZ,
SYS_ANY', 'ERRORSCHEMA', 'ERRORNAME')

Restrictions
* Only DDL copymode is supported for HADR databases.
¢ XML with COPY or COPY NO is not supported.

* Using the ADMIN_COPY_SCHEMA procedure with the COPYNO option places
the table spaces in which the target database object resides in backup pending
state. After the load operation completes, target schema tables are in set integrity
pending state, and the ADMIN_COPY_SCHEMA procedure issues a SET
INTEGRITY statement to get the tables out of this state. Because the table spaces
are already in backup pending state, the SET INTEGRITY statement fails. For
information about how to resolve this problem, see “Copying a schema”.

Usage notes

* References to fully qualified objects within the objects being copied will not be
modified. The ADMIN_COPY_SCHEMA procedure only changes the qualifying
schema of the object being created, not any schema names that appear within
SQL expressions for those objects. This includes objects such as generated
columns and trigger bodies.

* This procedure does not support copying the following objects:
— index extensions
— nicknames

— packages

204 Administrative Routines and Views

— typed tables

— array types

— user-defined structured types (and their transform functions)

- typed views

— jars (Java routine archives)

— staging tables

— aliases with base objects that do not belong to the same source schema

If one of these objects exists in the schema being copied, the object is not copied
but an entry is added to the error table indicating that the object has not been
copied.

When a replicated table is copied, the new copy of the table does not have
subscriptions enabled. The table is re-created as a basic table only.

The operation of this procedure requires the existence of the SYSTOOLSPACE
table space. This table space is used to hold metadata used by the
ADMIN_COPY_SCHEMA procedure as well as error tables returned by this
procedure. If the table space does not exist, an error is returned.

Statistics for the objects in the target schema are set to default.

If a table has a generated identity column, and copymode is either 'COPY" or
'COPYNO/, the data values from the source table are preserved during the load.

A new catalog entry is created for each external routine, referencing the binary
of the original source routine.

If a table is in set integrity pending state at the beginning of the copy operation,
the data is not loaded into the target table and an entry is logged in errortab
indicating that the data was not loaded for that table.

If a Load or DDL operation fails, an entry is logged in errortab for any object that
was not created. All objects that are successfully created remain. To recover, a
manual load can be initiated, or the new schema can be dropped using the
ADMIN_DROP_SCHEMA procedure and the ADMIN_COPY_SCHEMA
procedure can be called again.

During DDL replay, the default schema is overridden to the target schema if it
matches the source schema.

The function path used to compile a trigger, view or SQL function is the path
used to create the source object, with the following exception: if the object's
function path contains the source schema name, this entry in the path is
modified to the target schema name during DDL replay.

Running multiple ADMIN_COPY_SCHEMA procedures will result in deadlocks.
Only one ADMIN_COPY_SCHEMA procedure call should be issued at a time.
Changes to tables in the source schema during copy processing might mean that
the data in the target schema is not identical following a copy operation.

Careful consideration should be taken when copying a schema with tables from
a table space in a single-partition database partition group to a table space in a
multiple-partition database partition group. Unless automatic distribution key
selection is preferred, the distribution key should be defined on the tables before
the copy schema operation is undertaken. Altering the distribution key can only
be done to a table whose table space is associated with a single-partition
database partition group.

Transactional considerations

e If the ADMIN_COPY_SCHEMA procedure is forced to roll back due to a
deadlock or lock timeout during its processing, any work performed in the unit
of work that called the ADMIN_COPY_SCHEMA procedure is also rolled back.

Built-in routines and views 205

* If a failure occurs during the DDL phase of the copy, all the changes that were
made to the target schema are rolled back to a savepoint.

* If copymode is set to 'COPY' or 'COPYNO', the ADMIN_COPY_SCHEMA
procedure commits once the DDL phase of the copy is complete, also
committing any work done in the unit of work that called the procedure.

ADMIN_DROP_SCHEMA procedure - Drop a specific schema and
its objects

The ADMIN_DROP_SCHEMA procedure is used to drop a specific schema and all
objects contained in it.

Syntax

\/

»>—ADMIN_DROP_SCHEMA— (—schema— ,—dropmode— ,—errortabschema—,

»—errortab—) >

The schema is SYSPROC.

Procedure parameters

schema
An input argument of type VARCHAR(128) that specifies the name of the
schema being dropped. The name must be specified in uppercase characters.

dropmode
Reserved for future use and should be set to NULL.

errortabschema
An input and output argument of type VARCHAR(128) that specifies the
schema name of a table containing error information for objects that could not
be dropped. The name is case-sensitive. This table is created for the user by the
ADMIN_DROP_SCHEMA procedure in the SYSTOOLSPACE table space. If no
errors occurred, then this parameter is NULL on output.

errortab
An input and output argument of type VARCHAR(128) that specifies the name
of a table containing error information for objects that could not be dropped.
The name is case-sensitive. This table is created for the user by the
ADMIN_DROP_SCHEMA procedure in the SYSTOOLSPACE table space. This
table is owned by the user ID that invoked the procedure. If no errors
occurred, then this parameter is NULL on output. If the table cannot be created
or already exists, the procedure operation fails and an error message is
returned. The table must be cleaned up by the user following any call to
ADMIN_DROP_SCHEMA,; that is, the table must be dropped in order to
reclaim the space it is consuming in SYSTOOLSPACE.

Table 62. ADMIN_DROP_SCHEMA errortab format

Column name Data type Description

OBJECT_SCHEMA VARCHAR(128) object_schema - Object
schema monitor element

OBJECT_NAME VARCHAR(128) object_name - Object name
monitor element

OBJECT_TYPE VARCHAR(30) objtype - Object type monitor
element

206 Administrative Routines and Views

Table 62. ADMIN_DROP_SCHEMA errortab format (continued)

Column name Data type Description

SQLCODE INTEGER The error SQLCODE.

SQLSTATE CHAR(5) The error SQLSTATE.

ERROR_TIMESTAMP TIMESTAMP Time that the drop command
failed.

STATEMENT CLOB(22 M) DDL for the failing object.

DIAGTEXT CLOB(2 K) Error message text for the
failed drop command.

Authorization

One of the following authorizations is required:

* EXECUTE privilege on the ADMIN_DROP_SCHEMA procedure
* DATAACCESS authority

* DBADM authority

* SQLADM authority

In addition, drop authority is needed on all objects being removed for the user
calling this procedure.

Default PUBLIC privilege

In a non-restrictive database, EXECUTE privilege is granted to PUBLIC when the
procedure is automatically created.

Example
CALL SYSPROC.ADMIN_DROP_SCHEMA('SCHNAME', NULL, 'ERRORSCHEMA', 'ERRORTABLE')

The following is an example of output for this procedure.
Value of output parameters

Parameter Name : ERRORTABSCHEMA
Parameter Value : ERRORSCHEMA <-- error!

Parameter Name : ERRORTAB
Parameter Value : ERRORTABLE <-- error!

Return Status = 0

The return status is not zero only when an internal error has been detected (for
example, if SYSTOOLSPACE does not exist).

Errors can be checked by querying the error table:
SELECT * FROM ERRORSCHEMA.ERRORTABLE

Usage notes

* If objects in another schema depend on an object being dropped, the default
DROP statement semantics apply.

* This procedure does not support dropping the following objects:
— Index extensions

— Nicknames

Built-in routines and views 207

— Packages

— Typed tables

— Array types

— User-defined structured types (and their transform functions)
- Typed views

— Jars (Java routine archives)

- Staging tables

— XSR objects

* If one of these objects exists in the schema being dropped, neither the object nor
the schema is dropped, and an entry is added to the error table indicating that
the object was not dropped.

* The operation of this procedure requires the existence of the SYSTOOLSPACE
table space. This table space is used to hold metadata used by the
ADMIN_DROP_SCHEMA procedure as well as error tables returned by this
procedure. If the table space does not exist, an error is returned.

ADMIN_EST_INLINE_LENGTH function - Estimate length required
to inline data

The ADMIN_EST INLINE_LENGTH function returns an estimate of the inline
length that is required to inline the data stored in an XML column, BLOB column,
CLOB column, or DBCLOB column.

If the data cannot be inlined, the function returns a negative value.

If the data is already inlined, the function returns the actual length of the inlined
data.

Syntax

v
A

»>—ADMIN_EST_INLINE_LENGTH—(—column-name—)

The schema is SYSIBM.
Return value

This function returns either an INTEGER value that represents the estimated inline
length (in bytes) of the data, or one of the following values:

NULL Indicates that the inputs are NULL.

-1 Indicates that the data cannot be inlined because there is no valid inline
length that would allow the column value to be inlined.

-2 Indicates that the estimated inline length of the document cannot be
determined because the document was inserted and stored in a release
before DB2 for Linux, UNIX, and Windows Version 9.7.

Function parameters

column-name
Identifies a column of the base table with a data type of XML, BLOB, CLOB, or
DBCLOB (SQLSTATE 42884). The column must directly or indirectly reference
the column of a base table that is not generated based on an expression
(SQLSTATE 42815).

208 Administrative Routines and Views

Example

Example 1: The following example returns the estimated inline length of three XML
documents that are contained in XML column xml_docl of TAB1 table.
db2 => SELECT PK, ADMIN_IS INLINED(xml_docl) as IS_INLINED,

ADMIN_EST_INLINE_LENGTH(xml_docl) as EST_INLINE_LENGTH
from TAB1

This query results in the following output:

PK IS_INLINED EST_INLINE_LENGTH
1 1 292
2 0 450
3 0 454

3 record(s) selected.

In the example, the ADMIN_IS_INLINED function indicates that the first
document is inlined. Therefore, the ADMIN_EST INLINE_LENGTH function
returns the actual length of the inlined XML document. The second document is
not inlined, so the ADMIN_EST INLINE_LENGTH function returns the estimated
inline length that is required to inline the second XML document.

Example 2: The following example returns the estimated inline length of one XML
document that is contained in the XML column xml_docl of the TABI table. This
example includes a predicate.

db2 => SELECT PK, ADMIN_IS INLINED(xml_docl) as IS_INLINED,
ADMIN_EST_INLINE_LENGTH(xml1_docl) as EST_INLINE_LENGTH
from TAB1 where PK=2

This query results in the following output:
PK IS_INLINED EST_INLINE_LENGTH

1 record(s) selected.

Example 3: The following example returns the estimated inline length of three
CLOB data that are contained in CLOB column clob_1 of the TAB1 table.

db2 => SELECT PK, ADMIN_IS INLINED(clob_1) as IS_INLINED,
ADMIN_EST_INLINE_LENGTH(cTob_1) as EST_INLINE_LENGTH
from TAB1

This query results in the following output:

PK IS_INLINED EST_INLINE_LENGTH
1 1 68
2 0 3665
3 0 -1

3 record(s) selected.

Usage notes

* XML columns are only supported when the XML documents were inserted using
DB2 for Linux, UNIX, and Windows Version 9.7 or later. XML documents
inserted before this release have a different storage format. When the
ADMIN_EST INLINE_LENGTH function encounters an incorrect storage format,
it returns a value of -2.

Built-in routines and views 209

* If you plan to increase the column inline length, remember that this length
cannot be reduced.

* Increasing the inline length also increases the total row size and might affect the
performance of buffer pools. The total row size has the following limits.

Table 63. Row size limits

Page size Row size limit Inline length limit
4K 4005 4001

8K 8101 8097

16K 16 293 16 289

32K 32 677 32 673

* The estimated inline length might not be accurate if the XML storage object page
size is not same as the base table page size.

ADMIN_GET_INDEX_COMPRESS_INFO table function - returns
compressed index information

The ADMIN_GET_INDEX_COMPRESS_INFO table function returns the potential
index compression savings for uncompressed indexes.

Syntax

»»—ADMIN_GET_INDEX_COMPRESS_INFO—(—objecttype—,—objectschema—,—objectname—,—— >

»—nember— ,—datapartitionid—) <

The schema is SYSPROC.

Table function parameters

objecttype
An input argument of type VARCHAR(1) that indicates the object type. The
value must be one of the following case-sensitive values:
¢ 'T", NULL, or the empty string to indicate a table

e T for an index

objectschema
A case-sensitive input parameter of type VARCHAR(128) that specifies the
object schema.

If objecttype is 'T', NULL, or the empty string ("), then objectschema indicates the

table schema.

e If objectschema is specified and objectname is NULL or the empty string ("),
then information is returned for all indexes on all tables in the specified
schema.

* If both objectschema and objectname are specified, then information is returned
for all indexes on the specified table.

If objecttype is 'T', then objectschema indicates the index schema.

* If objectschema is specified and objectname is NULL or the empty string ("),
then information is returned for all indexes in the specified schema.

e If both objectschema and objectname are specified, then information is returned
for the specified index.

210 Administrative Routines and Views

¢ If neither objectschema or objectname are specified, then information is
returned for all indexes in all of the schemas.

If objectname is specified and objectschema is not specified, the function returns
an SQL error. A parameter value is said to be unspecified when either it has a
value of NULL or the empty string (").

objectname
A case-sensitive input parameter of type VARCHAR(128) that specifies the
object name. See the description for the objectschema parameter.

member
An input parameter of type INTEGER that specifies a database member
number. When specified, information is returned only for indexes that reside
on the specified database member. To specify that data should be returned for
all active database members, set the member parameter value to either -2 or
NULL. In single-member environments, specify -2 or NULL.

datapartitionid
An input parameter of type INTEGER that specifies the data partition ID.
When specified, information is returned only for index partitions defined on
the specified data partitions. The data partition ID should correspond to the
DATAPARTITIONID found in the SYSCAT.DATAPARTITIONS view. To specify
that data should be returned for all data partitions, set the datapartitionid
parameter value to either -2 or NULL. For nonpartitioned indexes, specify -2,
0, or NULL.

Authorization

One of the following authorities is required to execute the routine:
* EXECUTE privilege on the routine

¢ DATAACCESS authority

* DBADM authority

* SQLADM authority

Default PUBLIC privilege

In a non-restrictive database, EXECUTE privilege is granted to PUBLIC when the
function is automatically created.

Usage notes

* Do not use this function on existing indexes to get actual compression savings;
instead run the RUNSTATS command (if statistics are not up to date), then
query either or both of the following catalog values:

- SYSCAT.INDEXES.PCTPAGESSAVED

— SYSCAT.INDEXPARTITIONS.PCTPAGESSAVED
Example

After database migration, all the existing indexes are uncompressed. You may want
to estimate the potential index compression savings for existing indexes on the
table "S.T1", which has a data partition ID of 3 and resides on database partition
number 2. In this example, S is the schema name and T1 is the table name, and T1
is not compressed

Built-in routines and views 211

SELECT compress_attr, iid, dbpartitionnum, index_compressed,
pct_pages_saved, num_leaf_pages_saved
FROM TABLE(sysproc.admin_get_ index_compress_info('', 'S', 'T1', 2, 3))
AS t

The following is a sample of the output from this statement.

COMPRESS_ATTR IID DBPARTITIONNUM INDEX_COMPRESSED ...
N 1 2N
N 2 2N

You may decide that the savings from compression are worthwhile, and you want
to enable index compression.
ALTER INDEX INDEX1 compress yes

ALTER INDEX INDEX2 compress yes
REORG INDEXES all FOR table S.T1

As time passes, you may determine the need to create new indexes for the table
and want to estimate index compression savings for these indexes before
compressing them. You may also want to see the compression statistics from
already compressed indexes.
SELECT compress_attr, iid, dbpartitionnum, index_compressed,
pct_pages_saved, num_leaf_pages_saved
FROM TABLE(sysproc.admin_get index_compress_info('', 'S', 'T1', 2, 3))
AS t

The following is a sample of the output from this statement.

COMPRESS_ATTR IID DBPARTITIONNUM INDEX_COMPRESSED ...
Y 1 2 Y
Y 2 2y
N 3 2N
N 4 2N

-1 -1
-1 -1
58 230
49 140

As the first two indexes were already compressed, as indicated by the
index_compressed column, the statement returns values from the system catalogs.
In this case, the values from the catalogs were not collected.

After running RUNSTATS on the table, the next run of the index function yields
the corrected results.

RUNSTATS ON TABLE S.T1 FOR INDEXES ALL
SELECT compress_attr, iid, dbpartitionnum, index_compressed,
pct_pages_saved, num_leaf_pages_saved
FROM TABLE(sysproc.admin_get_index_compress_info('', 'S', 'T1', 2, 3))
AS t

The following is a sample of the output from this statement.
COMPRESS_ATTR ITD DBPARTITIONNUM INDEX_COMPRESSED ...

212 Administrative Routines and Views

Information returned

Table 64. Information returned by ADMIN_GET_INDEX_COMPRESS_INFO

Column Name

Data Type

Description

INDSCHEMA

VARCHAR(128)

index_schema - Index schema monitor element

INDNAME

VARCHAR(128)

index_name - Index name monitor element

TABSCHEMA

VARCHAR(128)

table_schema - Table schema name monitor element

TABNAME

VARCHAR(128)

table_name - Table name monitor element

DBPARTITIONNUM

SMALLINT

dbpartitionnum - Database partition number monitor element

1ID

SMALLINT

iid - Index identifier monitor element

DATAPARTITIONID

INTEGER

Data partition ID.

COMPRESS_ATTR

CHAR(1)

The state of the COMPRESSION attribute on the index.
* “Y” = Index compression is enabled

e “N” = Index compression is not enabled

INDEX_COMPRESSED

CHAR(1)

Physical index format.

e “Y” = Index is in compressed format

* “N” = Index is in uncompressed format

If the physical index format does not match the compression
attribute, an index reorganization is needed to convert index to

the defined format If the table or index is in error at the time
this function is executed, then this value is NULL.

PCT_PAGES_SAVED

SMALLINT

If the index is not physically compressed
(INDEX_COMPRESSED is “N”), then this value represents the
estimated percentage of leaf pages saved, as if the index were
actually compressed. If the index is physically compressed
(INDEX_COMPRESSED is “Y”), then this value reports the
PCTPAGESSAVED value from the system catalog view (either
SYSCAT.INDEXES or SYSCAT.INDEXPARTITIONS).

Note: This value is the same for each entry of an index or index
partition for each database partition in a partitioned database
environment. If the table or index is in error at the time this
function is executed, then this value is NULL.

213

Built-in routines and views

Table 64. Information returned by ADMIN_GET_INDEX_COMPRESS_INFO (continued)

Column Name

Data Type Description

NUM_LEAF_PAGES_SAVED BIGINT If the index is not physically compressed

(INDEX_COMPRESSED is “N”), then this value represents the
estimated number of leaf pages saved as if the index were
actually compressed. If the index is physically compressed
(INDEX_COMPRESSED is “Y”), then this value reports the
calculated number of leaf pages saved, based on the
PCTPAGESSAVED and NLEAF values from the system catalog
view (either SYSCAT.INDEXES or SYSCAT.INDEXPARTITIONS).
If either PCTPAGESSAVED or NLEAF are invalid values (-1),
then this value is set to -1 as well.

Note: This value is the same for each entry of an index or index
partition for each database partition in a partitioned database
environment. If the table or index is in error at the time this
function is executed, then this value is NULL.

ADMIN_GET_INDEX_INFO table function - returns index
information

The ADMIN_GET_INDEX_INFO table function returns index information not
available in the catalog views, such as compression information and the logical and
physical size of the index.

Syntax

»>—ADMIN_GET_INDEX INFO—(—objecttype—,—objectschema—,—objectname—)——><

The schema is SYSPROC.

Table function parameters

objecttype
An input argument of type VARCHAR(1) that indicates the object type. The
value must be one of the following case-sensitive values:
* 'T", NULL, or the empty string (") to indicate a table

e T for an index

objectschema
A case-sensitive input parameter of type VARCHAR(128) that specifies the
object schema.

If objecttype is 'T', NULL, or the empty string ("), thenobjectschema indicates the
table schema.

* If objectschema is specified and objectname is NULL or the empty string ("),
then information is returned for all indexes on all tables in the specified
schema.

e If both objectschema and objectname are specified, then information is returned
for all indexes on the specified table.

If objecttype is 'T', then objectschema indicates the index schema.

e If objectschema is specified and objectname is NULL or the empty string ("),
then information is returned for all indexes in the specified schema.

* If both objectschema and objectname are specified, then information is returned
for the specified index.

214 Administrative Routines and Views

¢ If neither objectschema or objectname are specified, then information is
returned for all indexes in all of the schemas.

If objectname is specified and objectschema is not specified, the function returns
an SQL error. A parameter value is said to be unspecified when either it has a
value of NULL or the empty string (").

objectname
A case-sensitive input parameter of type VARCHAR(128) that specifies the
object name. See the description for the objectschema parameter.

Authorization

One of the following authorities is required to execute the routine:
* EXECUTE privilege on the routine

* DATAACCESS authority

* DBADM authority

* SQLADM authority

Default PUBLIC privilege

In a non-restrictive database, EXECUTE privilege is granted to PUBLIC when the
function is automatically created.

Example

After enabling index compression for several indexes on a table, you want to
determine which indexes are compressed and which indexes require a rebuild in
order to be compressed. In this example, S is the schema name and T1 is the table
name.

db2 SELECT iid, compress_attr, index_compressed
FROM TABLE(sysproc.admin_get_index_info('','S','T1')) AS t

The following is an example of output from this query.
IID COMPRESS_ATTR INDEX_COMPRESSED

Additionally, you want to see other index information for all indexes in the schema
52. In this example:

* T2 = a partitioned table with two data partitions
* T3 = a nonpartitioned table

* IND_1 = a nonpartitioned index on T2

* IND_2 = a partitioned index on T2

¢ IND_3 = a partitioned index on T2

e IND_4 = an index on T3

e IND_5 = an index on T3

db2 SELECT tabname, indname, iid,index_partitioning, datapartitionid,
index_object_1_size, index_object p_size, index_requires_rebuild,
large_rids FROM TABLE(sysproc.admin_get index_info('I','S2','')) AS t

The following is an example of the output from this query.

Built-in routines and views 215

TABNAME INDNAME IID

T2 IND_1
T2 IND_2
T2 IND_2
T2 IND_3
T2 IND_3
T3 IND_4
T3 IND_5

INDEX_PARTITIONING DATAPARTITIONID

Output from this procedure (continued):
INDEX_OBJECT_L_SIZE INDEX_OBJECT P_SIZE INDEX REQUIRES REBUILD LARGE_RIDS

Information returned

Table 65. Information returned by ADMIN_GET_INDEX_INFO

Column Name Data Type Description
INDSCHEMA VARCHAR(128) |index_schema - Index schema monitor element
INDNAME VARCHAR(128) |index_name - Index name monitor element
TABSCHEMA VARCHAR(128) | table_schema - Table schema name monitor element
TABNAME VARCHAR(128) |table_name - Table name monitor element
DBPARTITIONNUM SMALLINT dbpartitionnum - Database partition number monitor element
D SMALLINT iid - Index identifier monitor element
DATAPARTITIONID INTEGER Data partition ID.
COMPRESS_ATTR CHAR(1) The state of the COMPRESSION attribute on the index.
* “Y” = Index compression is enabled
* “N” = Index compression is not enabled
INDEX_COMPRESSED CHAR(1) Physical index format.
e “Y” = Index is in compressed format
* “N” = Index is in uncompressed format
If the physical index format does not match the compression
attribute, an index reorganization is needed to convert the index
to the defined format. If the table or index is in error when this
function is executed, then this value is NULL.
INDEX_PARTITIONING CHAR(1) Identifies the partitioning characteristic of the index.
* “N” = Nonpartitioned index
* “P” = Partitioned index
* Blank = Index is not on a partitioned table

216 Administrative Rout

ines and Views

Table 65. Information returned by ADMIN_GET_INDEX_INFO (continued)

Column Name

Data Type

Description

INDEX_OBJECT_L_SIZE

BIGINT

Logical size of the index object. For nonpartitioned tables, this is
the amount of disk space logically allocated for all indexes
defined on the table. For a nonpartitioned index on a partitioned
table, this is the amount of disk space logically allocated for the
index. For a partitioned index on a partitioned table, this is the
amount of disk space logically allocated for all index partitions
defined on the data partition. All sizes are reported in kilobytes
(KB).

The logical size is the amount of space that the table or data
partition knows about. It may be less than the amount of space
physically allocated to hold index data for the table or data
partition (for example, in the case of a logical table truncation).
The size returned takes into account full extents that are
logically allocated for the indexes and, for indexes created in
DMS table spaces, an estimate of the EMP extents. If the table or
index is in error when this function is executed, then this value
is NULL.

INDEX_OBJECT_P_SIZE

BIGINT

Physical size of the index object. For nonpartitioned tables, this
is the amount of disk space physically allocated for all indexes
defined on the table. For a nonpartitioned index on a partitioned
table, this is the amount of disk space physically allocated for
the index. For a partitioned index on a partitioned table, this is
the amount of disk space physically allocated for all index
partitions defined on the data partition. All sizes are reported in
kilobytes (KB).

The size returned takes into account full extents allocated for the
indexes and includes the EMP extents for indexes created in
DMS table spaces. If the table or index is in error when this
function is executed, then this value is NULL.

INDEX_REQUIRES_REBUILD

CHAR(1)

Rebuild status for the index.

e “Y” if the index defined on the table or data partition requires
a rebuild

e “N” otherwise

If the table is in error when this function is executed, then this
value is NULL.

LARGE_RIDS

CHAR(1)

Indicates whether or not the index is using large row IDs (RIDs)
(4 byte page number, 2 byte slot number).

* “Y” indicates that the index is using large RIDs
* “N” indicates that the index is not using large RIDs

e “P” (pending) indicates that the table that the index is defined
on supports large RIDs (that is, the table is in a large table
space), but the index for the table or data partition has not
been reorganized or rebuilt yet. Therefore, the table is still
using 4 byte RIDs, and action must be taken to convert the
table or index to large RIDs.

If the table is in error where this function is executed, then this
value is NULL.

Built-in routines and views 217

Table 65. Information returned by ADMIN_GET_INDEX_INFO (continued)

Column Name

Data Type Description

RECLAIMABLE_SPACE

BIGINT This value applies only to an index in a DMS table space. This
value is an estimate of disk space, in kilobytes, that can be
reclaimed from the entire index object by running the REORG
INDEXES or REORG INDEX command with the RECLAIM EXTENTS
option. For any index not defined in a DMS table space, the
value is zero. If the table or index is in error when this function
is executed, then this value is NULL.

ADMIN_GET_INTRA_PARALLEL - Get intrapartition parallelism
state

The ADMIN_GET_INTRA_PARALLEL scalar function returns the current state of
intrapartition parallelism for the application. It can be used to check if current
statements are running with parallelized query access plan.

Syntax

»>—ADMIN_GET_INTRA PARALLEL—(—state—)

v
A

The schema is SYSPROC.

state
An output argument of type VARCHAR(3) that specifies the current state of
intrapartition parallelism for the database application. The argument can be
one of the following values:

YES The database application will run with intrapartition parallelism
enabled.

NO The database application will run with intrapartition parallelism
disabled.

Authorization

One of the following authorities is required to execute the routine:
* EXECUTE privilege on the routine

* DATAACCESS authority

* DBADM authority

* SQLADM authority

Default PUBLIC privilege
None
Example

Find the current state of intrapartition parallelism from DB2 CLP:
VALUES SYSPROC.ADMIN_GET_INTRA_PARALLEL
1

NO

1 record(s) selected.

218 Administrative Routines and Views

Usage notes

The value returned by ADMIN_GET_INTRA_PARALLEL can be different from the
state set by ADMIN_SET_INTRA_PARALLEL in the following cases:

¢ ADMIN_SET_INTRA_PARALLEL was called during a transaction and the
transaction is not yet committed or rolled back.

* ADMIN_SET_INTRA_PARALLEL was called during a transaction that opens a
with hold cursor and the current transaction has not yet closed the cursor.

* The application is associated with a DB2 workload, which has a value applied to
the MAX DEGREE workload attribute that is different than the one specified by
the call to ADMIN_SET_INTRA_PARALLEL.

ADMIN_GET_MEM_USAGE table function - Get total memory
consumption for instance

The ADMIN_GET_MEM_USAGE table function gets the total memory
consumption for a given instance.

Syntax

»>—ADMIN_GET_MEM_USAGE—(

) <
|—memb e rJ

The schema is SYSPROC.

Table function parameters

member
An optional input argument of type integer that specifies the member from
which the memory usage statistics are retrieved. If -1 or the NULL value is
specified, data is returned from the currently connected member.

Authorization

One of the following authorities is required to execute the routine:
* EXECUTE privilege on the routine

* DATAACCESS authority

* DBADM authority

* SQLADM authority

Default PUBLIC privilege
None

Information returned

Table 66. Information returned for ADMIN_GET_MEM_USAGE

Column Name Data type Description

MEMBER SMALLINT member - Database member monitor
element

MAX_MEMBER_MEM BIGINT The maximum amount of memory

(in bytes) available for the member.

CURRENT_MEMBER_MEM BIGINT The amount of memory (in bytes)

currently used by the member.

Built-in routines and views 219

Table 66. Information returned for ADMIN_GET_MEM_USAGE (continued)

Column Name

Data type Description

PEAK_MEMBER_MEM

BIGINT The peak or high watermark of
memory (in bytes) used by the
member since the instance started.

Examples

Example 1: Report memory usage for all members

SELECT MEMBER, MAX_MEMBER_MEM, CURRENT_MEMBER_MEM, PEAK MEMBER_MEM
FROM TABLE(SYSPROC.ADMIN_GET_MEM_USAGE()) AS T

MEMBER MAX_MEMBER_MEM CURRENT_MEMBER_MEM PEAK_MEMBER_MEM
0 7430103040 958169088 958300160
3 7430103040 951615488 951615488
1 7430103040 952664064 952664064
2 7430103040 951615488 951615488

4 record(s) selected.

ADMIN_GET_MSGS table function - Retrieve messages
generated by a data movement utility that is executed through
the ADMIN_CMD procedure

The ADMIN_GET_MSGS table function is used to retrieve messages generated by
a single execution of a data movement utility command through the ADMIN_CMD
procedure.

The input parameter operation_id identifies that operation.

Syntax

»»>—ADMIN_GET_MSGS— (—operation_id—) ><

The schema is SYSPROC.

Table function parameter

operation_id
An input argument of type VARCHAR(139) that specifies the operation ID of
the message file(s) produced by a data movement utility that was executed
through the ADMIN_CMD procedure. The operation ID is generated by the
ADMIN_CMD procedure.

Authorization

EXECUTE privilege on the ADMIN_GET_MSGS table function. The fenced user ID
must have read access to the files under the directory indicated by registry variable
DB2_UTIL_MSGPATH. If the registry variable is not set, then the fenced user ID must
have read access to the files in the tmp subdirectory of the instance directory.

Default PUBLIC privilege

In a non-restrictive database, EXECUTE privilege is granted to PUBLIC when the
function is automatically created.

220 Administrative Routines and Views

Example

Check all the messages returned by EXPORT utility that was executed through
ADMIN_CMD procedure, with operation ID '24523_ THERESAX'

SELECT * FROM TABLE(SYSPROC.ADMIN GET_MSGS('24523 THERESAX')) AS MSG

The following output is an example of sample output from this query.
DBPARTITIONNUM AGENTTYPE SQLCODE MSG

- - SQL3104N The Export utility is beginning to
export data to file
"/home/theresax/rtest/data/ac_load03.del".
- - SQL3105N The Export utility has finished
exporting "8" rows.

2 record(s) selected.

Usage notes

The query statement that invokes this table function with the appropriate
operation_id can be found in the MSG_RETRIEVAL column of the first result set
returned by the ADMIN_CMD procedure.

Information returned
Table 67. Information returned by the ADMIN_GET_MSGS table function

Column name Data type Description

DBPARTITIONNUM INTEGER dbpartitionnum - Database
partition number monitor
element

AGENTTYPE CHAR(4) Agent type. This value is

only returned for a

distributed load. The

possible values are:

¢ 'LOAD': for load agent

* 'PART": for partitioning
agent

¢ 'PREP" for pre-partitioning
agent

* NULL: no agent type
information is available

SQLCODE VARCHAR(9) SQLCODE of the message
being returned.

MSG VARCHAR(1024) Short error message that
corresponds to the
SQLCODE.

ADMIN_GET_STORAGE_PATHS table function - retrieve
automatic storage path information

The ADMIN_GET_STORAGE_PATHS table function returns a list of automatic
storage paths for each database storage group, including file system information
for each storage path.

Refer to Table 68 on page 223 for a complete list of information that can be
returned.

Built-in routines and views 221

Syntax

»>—ADMIN_GET_STORAGE_PATHS— (—storage_group_name— ,—member—)

v
A

The schema is SYSPROC.

Table function parameters

storage_group_name
An input argument of type VARCHAR(128) that specifies a valid storage group
name in the currently connected database when this function is called. If the
argument is NULL or an empty string, information is returned for all storage
groups in the database. If the argument is specified, information is only
returned for the identified storage group.

member
An input argument of type INTEGER that specifies a valid member in the
same instance as the currently connected database when calling this function.
Specify -1 for the current database member, or -2 for all database members. If
the NULL value is specified, -1 is set implicitly.

Authorization

One of the following authorities is required to execute the routine:
* EXECUTE privilege on the routine

* DATAACCESS authority

* DBADM authority

* SQLADM authority

Default PUBLIC privilege

None
Example

Determine which dropped storage paths are still being used:

SELECT VARCHAR(STORAGE_GROUP_NAME, 30) AS STOGROUP, VARCHAR(DB_STORAGE_PATH, 40)
AS STORAGE_PATH FROM TABLE(ADMIN_GET STORAGE_PATHS('',-1)) AS T
WHERE DB_STORAGE_PATH_STATE = 'DROP_PENDING'

The following is an example of the output from this query.
STOGROUP STORAGE_PATH

HOTSTORAGE /home/hotel155/hotpathl

1 record(s) selected.

List all the storage paths for the currently connected database:

SELECT VARCHAR(STORAGE_GROUP_NAME, 30) AS STOGROUP, VARCHAR(DB_STORAGE_PATH, 40)
AS STORAGE_PATH FROM TABLE(ADMIN_GET STORAGE_PATHS('',-1)) AS T

The following is an example of the output from this query.
STOGROUP STORAGE_PATH

IBMSTOGROUP /home/hotel55/instowner

222 Administrative Routines and Views

HOTSTORAGE
COLDSTORAGE

3 record(s) selected.

/home/hotel55/hotpathl
/home/hote155/coldpathl

Information returned by ADMIN_GET_STORAGE_PATHS
Table 68. Information returned by the ADMIN_GET_STORAGE_PATHS table function

Description or corresponding

Column Name Data Type monitor element
STORAGE_GROUP_NAME VARCHAR(128) storage_group_name - Storage
group name
STORAGE_GROUP_ID INTEGER storage_group_id - Storage
group identifier
DBPARTITIONNUM SMALLINT dbpartitionnum - Database
partition number
DB_STORAGE_PATH VARCHAR(256) db_storage_path - Automatic
storage path
DB_STORAGE_PATH_WITH_DPE VARCHAR(256) db_storage_path_with_dpe -
Database storage path with
database partition expression
DB_STORAGE_PATH_STATE VARCHAR(16) db_storage_path_state - Storage
path state
Value is one of:
» IN_USE
« NOT_IN_USE
* DROP_PENDING
DB_STORAGE_PATH_ID BIGINT db_storage_path_id - Storage
path identifier
FS_ID VARCHAR(22) fs_id - Unique file system
identification number
FS_TOTAL_SIZE BIGINT fs_total_size - Total size of a file
system
FS_USED_SIZE BIGINT fs_used_size - Amount of space
used on a file system
STO_PATH_FREE_SIZE BIGINT sto_path_free_size - Automatic

Storage path free space

ADMIN_GET_TAB_COMPRESS_INFO
table function - estimate compression savings

The ADMIN_GET_TAB_COMPRESS_INFO table function estimates the
compression savings that can be gained for the table, assuming a REORG with
RESETDICTIONARY option will be performed.

This table function provides a direct replacement for the 'ESTIMATE' mode
provided by the deprecated ADMIN_GET_TAB_COMPRESS_INFO table function
in previous versions of DB2 for Linux, UNIX, and Windows.

Syntax

»>—ADMIN_GET_TAB_COMPRESS_INFO—(—tabschema— ,—tabname—)

v
A

Built-in routines and views 223

The schema is SYSPROC.

Table function parameters

tabschema
An input argument of type VARCHAR(128) that specifies the schema name.

tabname
An input argument of type VARCHAR(128) that specifies the table name, a
materialized query table name or a hierarchy table name.

Authorization

One of the following authorities is required to execute the routine:
* EXECUTE privilege on the routine

* DATAACCESS authority

* DBADM authority

* SQLADM authority

Default PUBLIC privilege
None

Information returned

Table 69. Information returned for ADMIN_GET_TAB_COMPRESS_INFO

Column Name

Data Type Description

TABSCHEMA

VARCHAR(128) table_schema - Table schema name
monitor element

TABNAME

VARCHAR(128) table_name - Table name monitor
element

DBPARTITIONNUM

SMALLINT dbpartitionnum - Database partition
number monitor element

DATAPARTITIONID

INTEGER Data partition number.

OBJECT_TYPE

VARCHAR(4) objtype - Object type monitor
element

ROWCOMPMODE

CHAR(1) The current row compression mode
for the object. The returned metric
can be one of the following values:

* 'S'if Classic Row Compression is
enabled

* 'A'if Adaptive Row Compression
is enabled

* Blank if no row compression is
enabled

PCTPAGESSAVED_CURRENT SMALLINT Current percentage of pages saved

from row compression.

AVGROWSIZE_CURRENT SMALLINT Current average record length.

PCTPAGESSAVED_STATIC SMALLINT Estimated percentage of pages saved

from Classic Row Compression.

AVGROWSIZE_STATIC

SMALLINT Estimated average record length from
Classic Row Compression.

224 Administrative Routines and Views

Table 69. Information returned for ADMIN_GET_TAB_COMPRESS_INFO (continued)

Column Name

Data Type Description

PCTPAGESSAVED_ADAPTIVE SMALLINT Estimated percentage of pages saved

from Adaptive Row Compression.

AVGROWSIZE_ADAPTIVE SMALLINT Estimated average record length from

Adaptive Row Compression.

Usage Notes

e If both the tabschema and tabname are specified, information is returned for that
specific table only.

e If the tabschema is specified but tabname is empty (") or NULL, information is
returned for all tables in the given schema.

* If the tabschema is empty (") or NULL and tabname is specified, an error is
returned. To retrieve information for a specific table, the table must be identified
by both schema and table name.

e If both tabschema and tabname are empty (") or NULL, information is returned for
all tables.

e If tabschema or tabname do not exist, or tabname does not correspond to a table
name (type T) or a materialized query table name (type S), an empty result set is
returned.

* When the ADMIN_GET_TAB_COMPRESS_INFO table function is retrieving data
for a given table, it will acquire a shared lock on the corresponding row of
SYSTABLES to ensure consistency of the data that is returned (for example, to
ensure that the table is not altered while information is being retrieved for it).
The lock will only be held for as long as it takes to retrieve the compression
information for the table, and not for the duration of the table function call.

e If the specified table has one or more XML columns, the
ADMIN_GET_TAB_COMPRESS_INFO table function will return two rows per
partition. One row with OBJECT_TYPE returning 'DATA' and another row with
OBJECT_TYPE returning 'XML'. If the specified table does not have any XML
columns, then only one row per partition will be returned with OBJECT_TYPE
of 'DATA".

* For XML object types, the estimates returned for PCTPAGESSAVED_ADAPTIVE
and PCTPAGESSAVED_STATIC are identical as adaptive compression only
applies to the data portion of the table.

Examples

Example 1: View the current compression results and estimate report of both classic
row compression and adaptive compression information of the TABLEL1 table in the
SCHEMAL1 schema.

SELECT SUBSTR(TABSCHEMA, 1, 10) AS TABSCHEMA, SUBSTR(TABNAME, 1, 10) AS TABNAME,
DBPARTITIONNUM, DATAPARTITIONID, OBJECT_TYPE, ROWCOMPMODE,
PCTPAGESSAVED_CURRENT, AVGROWSIZE_CURRENT,

PCTPAGESSAVED_STATIC, AVGROWSIZE_STATIC,
PCTPAGESSAVED_ADAPTIVE, AVGROWSIZE_ADAPTIVE
FROM TABLE(SYSPROC.ADMIN GET_TAB_COMPRESS INFO('SCHEMAl', 'TABLE1l'))

Output from this query:
TABSCHEMA TABNAME DBPARTITIONNUM DATAPARTITIONID OBJECT_TYPE ROWCOMPMODE ...

SCHEMA1 TABLE1 0 0 DATA A
SCHEMAL TABLE1 0 0 XML S

Built-in routines and views 225

PCTPAGESSAVED_CURRENT AVGROWSIZE_CURRENT PCTPAGESSAVED_STATIC AVGROWSIZE_STATIC ...

60 10 68 34 ...
58 255 62 198 ...

PCTPAGESSAVED_ADAPTIVE AVGROWSIZE_ADAPTIVE

70 30
62 198

2 record(s) selected.

ADMIN_GET_TAB_DICTIONARY_INFO

table function - report properties of existing table dictionaries
The ADMIN_GET_TAB_DICTIONARY_INFO table function reports the dictionary
information of classic row compression for a specified schema and table when the
table dictionary was created.

This is a direct replacement for the 'REPORT' mode provided by the deprecated
