IBM DB2 10.1
for Linux, UNIX, and Windows

Call Level Interface Guide and
Reference Volume 2

<||I

IBM DB2 10.1
for Linux, UNIX, and Windows

Call Level Interface Guide and
Reference Volume 2

..ll

Note
Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on
page 549.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
¢ To order publications online, go to the IBM Publications Center at http://www.ibm.com/shop/publications/
order

* To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at http://www.ibm.com/
planetwide/

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2012.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

Contents
About this book .

Chapter 1. CLI and ODBC function
summary

Unicode functions (CLI)

SQLAIllocConnect function (CLI) - Allocate
connection handle

SQLAllocEnv function (CLI) - Allocate env1ronment

handle . .
SQLAllocHandle funct1on (CLI) Allocate handle .

SQLAIllocStmt function (CLI) - Allocate a statement

handle . .

SQLBindCol funct1on (CLI) Bmd a column to an
application variable or LOB locator
SQLBindFileToCol function (CLI) - Bind LOB flle
reference to LOB column .

SQLBindFileToParam function (CLI) Blnd LOB flle

reference to LOB parameter .

SQLBindParameter function (CLI) - Bmd a
parameter marker to a buffer or LOB locator .
SQLBrowseConnect function (CLI) - Get required
attributes to connect to data source
SQLBulkOperations function (CLI) - Add, update
delete, or fetch a set of rows. .
SQLCancel function (CLI) - Cancel statement .
SQLCloseCursor function (CLI) - Close cursor and
discard pending results

SQLColAttribute function (CLI) - Return a column
attribute .

SQLColAttributes funct1on (CLI) Get column
attributes .

SQLColumnPr1V1leges funct1on (CLI) Get
privileges associated with the columns of a table .
SQLColumns function (CLI) - Get column
information for a table. .

SQLConnect function (CLI) - Connect to a data
source .

SQLCopyDesc functlon (CLI) Copy descnptor
information between handles .
SQLCreateDb function (CLI) - Create a database .
SQLCreatePkg . .
SQLDataSources function (CLI) Get l1st of data
sources . .
SQLDescrlbeCol funct1on (CLI) Return a set of
attributes for a column

SQLDescribeParam function (CLI) Return
description of a parameter marker. .
SQLDisconnect function (CLI) - Disconnect from a
data source

SQLDriverConnect funct1on (CLI) (Expanded)
Connect to a data source . .

SQLDropDb function (CLI) - Drop a database
SQLEndTran function (CLI) - End transactions of a
connection or an environment .

o]

. 10

. 10

.17

. 20

.23

. 37

.42
. 47

.49

. 51

. 59

. 60

. 64

. 70

.72

.75

.77

.78

. 81

. 85

. 88

. 89
. 94

. 96

SQLError function (CLI) - Retrieve error 1nformat1on 99

© Copyright IBM Corp. 2012

SQLExecDirect function (CLI) - Execute a statement

directly .
SQLExecute functron (CLI) Execute a statement

SQLExtendedBind function (CLI) - Bind an array of

columns . .

SQLExtendedFetch functlon (CLI) Extended fetch
(fetch array of rows) .

SQLExtendedPrepare funct1on (CLI) Prepare a
statement and set statement attributes .

SQLExtendedProcedures function (CLI) - Get l1st of
. 115

procedure names . .
SQLExtendedProcedureColumns funct1on (CLI)
Get input/output parameter information for a
procedure .
SQLFetch function (CLI) Fetch next row . .
SQLFetchScroll function (CLI) - Fetch rowset and
return data for all bound columns

Cursor positioning rules for SQLFetchScroll()

(CLI) .
SQLForeignKeys funct1on (CLI) Get the llst of
foreign key columns . .
SQLFreeConnect function (CLI) Free connectron
handle. .
SQLFreeEnv funct1on (CLI) Free enV1ronment
handle. .
SQLFreeHandle funct1on (CLI) Free handle
resources . .
SQLFreeStmt funct1on (CLI) Free (or reset) a
statement handle . .
SQLGetConnectAttr function (CLI)
attribute setting .
SQLGetConnectOption functlon (CLI) Return
current setting of a connect option
SQLGetCursorName function (CLI) - Get cursor
name .
SQLGetData functlon (CLI) Get data from a
column
SQLGetDescF1eld functron (CLI) Get smgle f1eld
settings of descriptor record
SQLGetDescRec function (CLI) - Get multlple f1eld
settings of descriptor record
SQLGetDiagField function (CLI) - Get a f1eld of
diagnostic data .

Get current

SQLGetDiagRec function (CLI) Get multlple flelds
. 175

settings of diagnostic record

SQLGetEnvAttr function (CLI) - Retr1eve current
environment attribute value

SQLGetFunctions function (CLI) - Get functlons
SQLGetInfo function (CLI) - Get general
information .

SQLGetLength funct1on (CLI) Retrleve length of a

string value .

SQLGetPosition funct1on (CLI) Return startmg
position of string .
SQLGetSQLCA function (CLI)
structure .

Get SQLCA data

. 99

104

. 107

. 110

111

. 119
. 126

. 133

. 139

. 142

. 146

. 147

. 147

. 150

. 152

. 155

. 155

. 157

. 163

. 167

. 171

. 178

179

. 181

. 211

. 213

. 217

iii

SQLGetStmtAttr function (CLI) - Get current
setting of a statement attribute
SQLGetStmtOption function (CLI) - Return current
setting of a statement option
SQLGetSubString function (CLI) - Retrleve portlon
of a string value .
SQLGetTypelnfo function (CLI)
information .
SQLMoreResults funct1on (CLI) Determme 1f
there are more result sets .
SQLNativeSql function (CLI) - Get nat1ve SQL text
SQLNumParams function (CLI) - Get number of
parameters in a SQL statement .
SQLNextResult function (CLI) - Assocrate next
result set with another statement handle
SQLNumResultCols function (CLI - Get number of
result columns .
SQLParamData function (CLI) Get next parameter
for which a data value is needed . .
SQLParamOptions function (CLI) - Specify an
input array for a parameter.
SQLPrepare function (CLI) - Prepare a statement
SQLPrimaryKeys function (CLI) - Get primary key
columns of a table. . .
SQLProcedureColumns funct1on (CLI) Get
input/output parameter information for a
procedure
SQLProcedures funct1on (CLI) Get llst of
procedure names . .
SQLPutData function (CLI) Passmg data Value for
a parameter . .
SQLReloadConfig functlon (CLI) Reload a
configuration property from the client
configuration file . .
SQLRowCount function (CLI) Get row count .
SQLSetColAttributes function (CLI) - Set column
attributes .
SQLSetConnectAttr funct1on (CLI) Set connect1on
attributes .
SQLSetConnection funct1on (CLI) Set connectlon
handle. .
SQLSetConnectOpt1on funct1on (CLI) Set
connection option . .
SQLSetCursorName functron (CLI) Set cursor
name . .
SQLSetDescF1eld funct1on (CLI) Set a s1ngle f1eld
of a descriptor record. .
SQLSetDescRec function (CLI) Set multrple
descriptor fields for a column or parameter data
SQLSetEnvAttr function (CLI) - Set environment
attribute .
SQLSetParam funct1on (CLI) Brnd a parameter
marker to a buffer or LOB locator
SQLSetPos function (CLI) - Set the cursor p051t1on
in a rowset .
SQLSetStmtAttr funct1on (CLI) Set optrons related
to a statement . .
SQLSetStmtOption funct1on (CLI) Set statement
option.
SQLSpec1alColumns functron (CLI) Get spec1al
(row identifier) columns. . .

Get data type

iV Call Level Interface Guide and Reference Volume 2

. 217

. 220

. 220

. 223

. 228
229

. 231

. 233

. 235

. 236

. 239

239

. 244

. 247

. 253

. 257

. 260

. 262

. 264

. 264

. 268

. 269

. 270

. 272

. 277

. 280

. 281

. 282

. 289

. 294

. 295

SQLStatistics function (CLI) - Get index and

statistics information for a base table . 299
SQLTablePrivileges function (CLI) - Get pr1v1leges
associated with a table . 304
SQLTables function (CLI) - Get table 1nformatlon 308
SQLTransact function (CLI) - Transaction

management . 313
Chapter 2. Return codes and

SQLSTATES for CLI. . 315
CLI function return codes . . 315
SQLSTATES for CLI . . 316
Return codes for compound SQL (CLl) in CLl
applications . . e . 317
Chapter 3. CLI/ODBC configuration
keywords listing by category . 319
db2cli.ini initialization file . . 324
AllowGetDataLOBReaccess CLI/ ODBC

configuration keyword . . 327
AllowInterleavedGetData CLI / ODBC conflguratlon
keyword . . . 327
AltHostName CLI / ODBC Conflguratlon keyword 328
AltPort CLI/ODBC configuration keyword . 328
AppUsesLOBLocator CLI/ODBC configuration
keyword 329
Append APIName CLI/ ODBC conf1gurat1on

keyword . . . 329
AppendForFetchOnly CLI/ ODBC conf1gurat1on
keyword329
AppendRowColToErrorMessage CLI / ODBC
configuration keyword . . 330
ArrayInputChain CLI/ODBC conf1gurat1on

keyword . . 331
AsyncEnable CLI / ODBC confrguratron keyword 331
Attach CLI/ODBC configuration keyword. . 332
Authentication CLI/ODBC configuration keyword 333
AutoCommit CLI/ODBC configuration keyword = 334
BIDI CLI/ODBC configuration keyword . 334
BitData CLI/ODBC configuration keyword . 335
BlockForNRows CLI/ODBC configuration

keyword . . 335
BlockLobs CLI/ ODBC conf1gurat1on keyword . 336
CLIPkg CLI/ODBC configuration keyword . 336
CheckForFork CLI/ODBC configuration keyword 337
ClientAcctStr CLI/ODBC configuration keyword 337
ClientApplName CLI/ODBC configuration

keyword 338
Cl1entBuffersUnboundLOBS CLI / ODBC

configuration keyword . . . 338
ClientEncAlg CLI/ODBC conflguratlon keyword 339
ClientUserID CLI/ODBC configuration keyword 339
ClientWrkStnName CLI/ODBC configuration

keyword 340
ColumnwiseMRI CLI/ ODBC conf1guratron

keyword . . . 341
CommitOnEOF CLI / ODBC conflguratlon keyword 341
ConcurrentAccessResolution CLI/ODBC

configuration keyword . . 341
ConnectNode CLI/ODBC conﬁguratlon keyword 342

ConnectTimeout CLI/ODBC configuration
keyword . .

ConnectType CLI/ ODBC confrguratron keyword
CurrentFunctionPath CLI/ODBC conflguratlon
keyword .

CurrentImphcrtXMLParseOptron CLI / ODBC
configuration keyword .
CurrentMamtamedTableTypesForOpt CLI / ODBC
configuration keyword .
CURRENTOPTIMIZATIONPROFILE CLI / ODBC
configuration keyword . .
CurrentPackagePath CLI/ ODBC conﬁguratlon
keyword .

CurrentPackageSet CLI/ ODBC confrguratron
keyword . .

CurrentRefreshAge CLI/ ODBC Conflguratlon
keyword .

CurrentSQLID CLI / ODBC conﬁguratron keyword
CurrentSchema CLI/ODBC configuration keyword
CursorHold CLI/ODBC configuration keyword
CursorTypes CLI/ODBC configuration keyword
DB2Degree CLI/ODBC configuration keyword .
DB2Explain CLI/ODBC configuration keyword
DB2NETNamedParam CLI/ODBC configuration
keyword . . .
DB2Optimization CLI / ODBC confrguratron
keyword . .

DBAlias CLI/ ODBC Conflguratlon keyword
DBName CLI/ODBC configuration keyword .
DSN CLI/ODBC configuration keyword
Database CLI/ODBC configuration keyword .
DateTimeStringFormat CLI/ODBC configuration
keyword . . .o
Dec1malFloatRound1ngMode CLI / ODBC
configuration keyword .

DeferredPrepare CLI/ODBC confrguratlon
keyword . .

DescribeCall CLI/ ODBC conflguratlon keyword
DescribeInputOnPrepare CLI/ODBC configuration
keyword . .
DescrlbeOutputLevel CLI/ ODBC Confrguratron
keyword . .

DescribeParam CLI / ODBC conflguratlon keyword
DiagLevel CLI/ODBC configuration keyword
DiagPath CLI/ODBC configuration keyword .
DisableKeysetCursor CLI/ODBC configuration
keyword .

DrsableMultrThread CLI / ODBC conﬁguratron
keyword . .

DisableUnicode CLI / ODBC conﬁguratlon keyword
EnableNamedParameterSupport CLI/ODBC
configuration keyword .

FET_BUF_SIZE CLI/ODBC confrguratron keyword
FileDSN CLI/ODBC configuration keyword .
FloatPrecRadix CLI/ODBC configuration keyword
GetDataLobNoTotal CLI/ODBC configuration
keyword . .

GranteeList CLI/ ODBC conflguratlon keyword
GrantorList CLI/ODBC configuration keyword .
Graphic CLI/ODBC configuration keyword .
Hostname CLI/ODBC configuration keyword

. 343

344

. 344

. 345

. 345

. 346

. 346

. 347

. 347
348
348
348
349

. 349

350

. 351
. 351
. 352
. 352
. 353
. 353
. 353
. 354

. 355

356

. 356

. 357
358

. 359
. 359

. 359

. 359
360

. 360
361

. 361

361

. 362
. 362
. 363
. 363
. 364

IgnoreWarnList CLI/ODBC configuration keyword
IgnoreWarnings CLI/ODBC configuration keyword
Instance CLI/ODBC configuration keyword .
Interrupt CLI/ODBC configuration keyword .
KRBPlugin CLI/ODBC configuration keyword .
KeepDynamic CLI/ODBC configuration keyword
LOBCacheSize CLI/ODBC configuration keyword
LOBFileThreshold CLI/ODBC configuration
keyword . .
LOBMaxColumn51ze CLI/ ODBC conﬁguratlon
keyword .
LoadXAInterceptor CLI / ODBC conflguratlon
keyword .
LockTimeout CLI / ODBC confrguratron keyword
LongDataCompat CLI/ODBC configuration
keyword .
MapBlgthDefault CLI / ODBC confrguratron
keyword .
MapCharToWChar CLI / ODBC conflguratlon
keyword . .
MapDateCDefault CLI / ODBC confrguratron
keyword . . .
MapDateDescribe CLI/ ODBC conflguratlon
keyword . .
MapDecrmalFloatDescrrbe CLI / ODBC
configuration keyword . .
MapGraphicDescribe CLI/ ODBC conflguratlon
keyword .
MapTlmeCDefault CLI / ODBC confrguratron
keyword . .
MapTlmeDescrlbe CLI / ODBC conflguratlon
keyword .
MapTlmestampCDefault CLI/ ODBC conflguratlon
keyword . .
MapTlmestampDescrlbe CLI/ ODBC conflguratron
keyword . .
MapXMLCDefault CLI/ ODBC confrguratlon
keyword . .
MapXMLDescrlbe CLI / ODBC conflguratron
keyword .
MaxLOBBlockS1ze CLI / ODBC confrguratron
keyword .
Mode CLI/ ODBC conflguratlon keyword .
NotifyLevel CLI/ODBC configuration keyword
OleDbReportlsLongForLongTypes CLI/ODBC
configuration keyword . .
OleDbReturnCharAsWChar CLI / ODBC
configuration keyword .
OleDbSQLColumnsSOrtByOrdmal CLI / ODBC
configuration keyword . .
OnlyUseBigPackages CLI/ ODBC conﬁguratron
keyword .
OptlmlzeForNRows CLI/ ODBC conflguratlon
keyword .
PWD CL1/ ODBC conﬁguratlon keyword .
PWDPlugin CLI/ODBC configuration keyword
Patchl CLI/ODBC configuration keyword.
Patch2 CLI/ODBC configuration keyword.
Port CLI/ODBC configuration keyword .
ProgramID CLI/ODBC configuration keyword .
ProgramName CLI/ODBC configuration keyword

Contents

364
365

. 365
. 366
. 366

366
367

. 368

. 368

. 368

369

. 369

. 370

. 370

. 371

. 371

. 372

. 373

. 373

. 374

. 374

. 375

. 376

. 376

. 377
. 377

377

. 378

. 378

. 379

. 380

. 380
. 380

381

. 381
. 384
. 387
. 388

388

A\

PromoteLONGVARtoLOB CLI/ODBC
configuration keyword . . .
Protocol CLI/ODBC Conf1gurat10r1 keyword .
QueryTimeoutInterval CLI/ODBC configuration
keyword .

ReadCommonSectlonOnN ullConnect CLI / ODBC
configuration keyword .

ReceiveTimeout CLI/ODBC conﬁguratlon keyword
Reopt CLI/ODBC configuration keyword . .
ReportPublicPrivileges CLI/ODBC configuration
keyword . . .
ReportRetryErrorsAsWarnmgs CLI / ODBC
configuration keyword .

RetCatalogAsCurrServer CLI/ ODBC confrguratron
keyword . . .o
RetOleDbConnStr CLI / ODBC conﬁguratlon
keyword .

RetryOnError CLI / ODBC conf1gurat1on keyword
ReturnAliases CLI/ODBC configuration keyword
ReturnSynonymSchema CLI/ODBC configuration
keyword .

SQLOverrrdeFﬂeName CLI / ODBC conflgurahon
keyword . . .
SaveFile CLI/ ODBC conflguratlon keyword
SchemalList CLI/ODBC configuration keyword .
security CLI/ODBC configuration keyword .
ServerMsgMask CLI/ODBC configuration keyword
ServiceName CLI/ODBC configuration keyword
SkipTrace CLI/ODBC configuration keyword.
SQLCODEMAP CLI/ODBC configuration keyword
SSLClientLabel CLI/ODBC configuration keyword
SSLClientKeystash CLI/ODBC configuration
keyword . . .
SSLChentKeystoredb CLI / ODBC conflguratlon
keyword . . .
SSLChentKeystoreDBPassword CLI / ODBC
configuration keyword .

StaticCapFile CLI/ODBC conflguratlon keyword
StaticLogFile CLI/ODBC configuration keyword
StaticMode CLI/ODBC configuration keyword .
StaticPackage CLI/ODBC configuration keyword
StmtConcentrator CLI/ODBC configuration
keyword . .

StreamGetData CLI / ODBC conflguratlon keyword
StreamPutData CLI/ODBC configuration keyword
SysSchema CLI/ODBC Configuration Keyword
TableType CLI/ODBC configuration keyword
TargetPrincipal CLI/ODBC configuration keyword
TempDir CLI/ODBC configuration keyword .
TimestampTruncErrToWarning CLI/ODBC
configuration keyword . .

Trace CLI/ODBC configuration keyword
TraceAPIList CLI/ODBC configuration keyword
TraceAPIList! CLI/ODBC configuration keyword
TraceComm CLI/ODBC configuration keyword
TraceErrImmediate CLI/ODBC configuration
keyword . .

TraceFileName CLI/ ODBC conflguratlon keyword
TraceFlush CLI/ODBC configuration keyword
TraceFlushOnError CLI/ODBC Confrguratlon
keyword . .o

Vi Call Level Interface Guide and Reference Volume 2

. 389
. 389

. 390

. 391
391

. 391

. 392

. 392

. 393

. 393

394
395

. 395

. 396
. 397
. 397

. 398
398
399

. 399

399
400

. 400

. 401

. 401

402
402

. 402

403

. 403
404
404
405

. 406

406

. 407

. 407
. 408

409
411
413

. 413
414

. 415

. 415

TraceLocks CLI/ODBC configuration keyword . . 416
TracePIDList CLI/ODBC configuration keyword 416
TracePIDTID CLI/ODBC configuration keyword 417
TracePathName CLI/ODBC configuration keyword 417
TraceRefreshInterval CLI/ODBC configuration

keyword 418
TraceStmtOnly CLI / ODBC conflguratlon keyword 419
TraceTime CLI/ODBC configuration keyword . . 419
TraceTimestamp CLI/ODBC configuration

keyword 420
Trusted Connectlon CLI / ODBC conflguratlon
keyword 420
Txnlsolation CLI/ ODBC conﬁguratlon keyword 421
UID CLI/ODBC configuration keyword 422

Underscore CLI/ODBC configuration keyword . . 423
UseOldStpCall CLI/ODBC configuration keyword 423
UseServerMsgSP CLI/ODBC configuration

keyword 424
ServerMsgTextSP CLI/ ODBC conflguratlon
keyword . . . 424

WarningList CLI / ODBC confrguratron keyword 425
XMLDeclaration CLI/ODBC configuration
keyword425

Chapter 4. Environment, connection,
and statement attributes in CLI

applications . Y -4 4
Environment attributes (CLI) list 429
Connection attributes (CLI) list436
Statement attributes (CLI) list 465
Chapter 5. Descriptor values. . 489

Descriptor Fieldldentifier argument values (CLI) 489
Descriptor header and record field initialization
values (CL).500

Chapter 6. Header and record fields

for the Diagldentifier argument (CLI) . 505
Chapter 7. CLI data type attributes 511
SQL symbolic and default data types for CLI
applications 51
C data types for CLI apphcatrons512
Data conversions supported in CLI 517
SQL to C data conversionin CLI.520
C to SQL data conversionin CLI.527
Data type attributes ¢ 2
Data type precision (CLI) table53
Data type scale (CLI) table 533
Data type length (CLI) table534
Data type display (CLI) table 536
Appendix A. Overview of the DB2
technical information . . 539

DB2 technical library in hardcopy or PDF format 539
Displaying SQL state help from the command line

processor. 542
Accessing dlfferent versions of the DBZ
Information Center542

Updating the DB2 Information Center installed on
your computer or intranet server .

Manually updating the DB2 Information Center
installed on your computer or intranet server
DB2 tutorials ..

DB2 troubleshooting mformahon

. 542

. 544
. 545
. 546

Terms and conditions.
Appendix B. Notices

Index .

. 546

. 549

. 5583

Contents

vii

viil Call Level Interface Guide and Reference Volume 2

About this book

The Call Level Interface (CLI) Guide and Reference is in two volumes:

* Volume 1 describes how to use CLI to create database applications for DB2®
Database for Linux, UNIX, and Windows.

* Volume 2 is a reference that describes CLI functions, keywords and
configuration.

© Copyright IBM Corp. 2012

ix

About this book

X Call Level Interface Guide and Reference Volume 2

Chapter 1. CLI and ODBC function summary

Depr in the ODBC column indicates that the function has been deprecated for
ODBC.

The SQL/CLI column can have the following values:

95 The function is defined in the SQL/CLI 9075-3 specification.

SQL3 The function is defined in the SQL/CLI part of the ISO SQL3 draft
replacement for SQL/CLI 9075-3.

Table 1. CLI Function list by category

DB2 CLI

Task ODBC SQL/ first version

Function name 3.0 CLI supported Purpose

Connecting to a data source

SQLConnect() Depr 95 V1.1 Obtains a connection handle.

SQLATTocEnv() Depr 95 V1.1 Obtains an environment handle. One
environment handle is used for one or
more connections.

SQLAT1ocHandle() Core 95 V5 Obtains a handle.

SQLBrowseConnect () Level 1 95 V5 Gets required attributes to connect to a
data source.

SQLConnect () Core 95 V1.1 Connects to a specific driver by using a
data source name, user ID, and password.

SQLDriverConnect() Core SQL3 V21! Connects to a specific driver by using a
connection string or optionally requests
that the Driver Manager and driver display
connection dialogs for the user.
Note: This function is also affected by the
additional IBM keywords supported in the
ODBC. INI file.

SQLDrivers() Core No None CLI does not support this function because
this function is implemented by a Driver
Manager.

SQLSetConnectAttr() Core 95 V5 Sets connection attributes.

SQLSetConnectOption() Depr 95 V2.1 Sets connection attributes.

SQLSetConnection() No SQL3 V2.1 Sets the current active connection. You
have to use this function only when using
embedded SQL within a CLI application
with multiple concurrent connections.

Obtaining information about a driver and data source

SQLDataSources() Lvl2 95 V1.1 Returns the list of available data sources.

SQLGetInfo() Core 95 V1.1 Returns information about a specific driver
and data source.

SQLGetFunctions () Core 95 V1.1 Returns a list of supported driver

functions.

© Copyright IBM Corp. 2012 1

CLI and ODBC function summary

Table 1. CLI Function list by category (continued)

DB2 CLI

Task ODBC SQL/ first version

Function name 3.0 CLI supported Purpose

SQLGetTypelInfo() Core 95 V1.1 Returns information about supported data
types.

Setting and retrieving driver options

SQLCreatePkg() No No V9.5 Binds packages to the database.

SQLSetEnvAttr() Core 95 V2.1 Sets an environment option.

SQLGetEnvAttr() Core 95 V2.1 Returns the value of an environment
option.

SQLGetConnectAttr() Lvl1l 95 V5 Returns the value of a connection option.

SQLGetConnectOption() Depr 95 v2.1! Returns the value of a connection option.

SQLSetStmtAttr() Core 95 V5 Sets a statement attribute.

SQLSetStmtOption() Depr 95 v2.1'! Sets a statement option.

SQLGetStmtAttr() Core 95 V5 Returns the value of a statement attribute.

SQLGetStmtOption() Depr 95 v2.1! Returns the value of a statement option.

SQLReloadConfig() No No V9.7 Reloads a configuration property from the
client configuration file db2dsdriver.cfg

Preparing SQL requests

SQLATTocStmt () Depr 95 V1.1 Allocates a statement handle.

SQLPrepare() Core 95 V1.1 Prepares an SQL statement for later
execution.

SQLExtendedPrepare() No No Vo6 Prepares an array of statement attributes
for an SQL statement for later execution.

SQLExtendedBind() No No AY%d Bind an array of columns instead of using
repeated calls to SQLBindCol() and
SQLBindParameter()

SQLBindParameter() Lvl1 95 2 V2.1 Assigns storage for a parameter in an SQL
statement (ODBC 2.0).

SQLSetParam() Depr No V1.1 Assigns storage for a parameter in an SQL
statement (ODBC 1.0).
Note: In ODBC 2.0, this function has been
replaced by SQLBindParameter().

SQLParamOptions () Depr No V2.1 Specifies the use of multiple values for
parameters.

SQLGetCursorName() Core 95 V1.1 Returns the cursor name associated with a
statement handle.

SQLSetCursorName() Core 95 V1.1 Specifies a cursor name.

Submitting requests

SQLDescribeParam() Level 2 SQL3 V5 Returns the description of a parameter
marker.

SQLExecute() Core 95 V1.1 Executes a prepared statement.

SQLExecDirect() Core 95 V1.1 Executes a statement.

SQLNativeSql() Lvl2 95 v2.1! Returns the text of an SQL statement as

2 Call Level Interface Guide and Reference Volume 2

translated by the driver.

Table 1. CLI Function list by category (continued)

CLI and ODBC function summary

DB2 CLI

Task ODBC SQL/ first version

Function name 3.0 CLI supported Purpose

SQLNumParams () Lvl2 95 V2.1! Returns the number of parameters in a
statement.

SQLParamData() Lvl1l 95 V21! Used in conjunction with SQLPutData() to
supply parameter data at execution time.
This is useful for long data values.

SQLPutData() Core 95 V21! Sends part or all of a data value for a
parameter. This is useful for long data
values.

Retrieving results and information about results

SQLRowCount () Core 95 V1.1 Returns the number of rows affected by an
insert, update, or delete request.

SQLNumResultCols() Core 95 V1.1 Returns the number of columns in the
result set.

SQLDescribeCol () Core 95 V1.1 Describes a column in the result set.

SQLCoTAttribute() Core Yes V5 Describes attributes of a column in the
result set.

SQLColAttributes() Depr Yes V1.1 Describes attributes of a column in the
result set.

SQLColumnPrivileges() Level 2 95 V2.1 Gets privileges associated with the
columns of a table.

SQLSetColAttributes() No No V2.1 Sets attributes of a column in the result set.

SQLBindCol() Core 95 V1.1 Assigns storage for a result column and
specifies the data type.

SQLFetch() Core 95 V1.1 Returns a result row.

SQLFetchScrol1() Core 95 V5 Returns a rowset from a result row.

SQLExtendedFetch() Depr 95 V2.1 Returns multiple result rows.

SQLGetData() Core 95 V1.1 Returns part or all of one column of one
row of a result set. This is useful for long
data values.

SQLMoreResults () Lvl1l SQL3 v2.1°* Determines whether there are more result
sets available and, if so, initializes
processing for the next result set.

SQLNextResult () No Yes V7.1 Provides nonsequential access to multiple
result sets returned from a stored
procedure.

SQLError() Depr 95 V1.1 Returns additional error or status
information.

SQLGetDiagField() Core 95 V5 Gets a field of diagnostic data.

SQLGetDiagRec () Core 95 V5 Gets multiple fields of diagnostic data.

SQLSetPos () Level 1 SQL3 V5 Sets the cursor position in a rowset.

SQLGetSQLCA() No No V2.1 Returns the SQLCA associated with a
statement handle.

SQLBulkOperations() Level 1 No V6 Performs bulk insertions, updates,

deletions, and fetches by bookmark.

Chapter 1. CLI and ODBC functions 3

CLI and ODBC function summary

Table 1. CLI Function list by category (continued)

DB2 CLI

Task ODBC SQL/ first version

Function name 3.0 CLI supported Purpose

Descriptors

SQLCopyDesc () Core 95 V5 Copies descriptor information between
handles.

SQLGetDescField() Core 95 V5 Gets single field settings of a descriptor
record.

SQLGetDescRec () Core 95 V5 Gets multiple field settings of a descriptor
record.

SQLSetDescField() Core 95 V5 Sets a single field of a descriptor record.

SQLSetDescRec() Core 95 V5 Sets multiple field settings of a descriptor
record.

Large object support

SQLBindFileToCol() No No V2.1 Associates a LOB file reference with a LOB
column.

SQLBindFileToParam() No No V2.1 Associates a LOB file reference with a
parameter marker.

SQLGetLength() No SQL3 V2.1 Gets the length of a string referenced by a
LOB locator.

SQLGetPosition() No SQL3 V2.1 Gets the position of a string within a
source string referenced by a LOB locator.

SQLGetSubString() No SQL3 V2.1 Creates a new LOB locator that references

a substring within a source string. The
source string is also represented by a LOB
locator.

Obtaining information about the data source's system tables (catalog functions)

SQLCoTlumns () Lvl1l SQL3

v2.1'!

Returns the list of column names in
specified tables.

SQLExtendedProcedures() No No

V9.7

Returns the list of procedure names stored
in a specific data source with additional
information.

SQLExtendedProceduresColumns() No No

V9.7

Returns the list of input and output
parameters for the specified procedures
with additional information.

SQLForeignKeys () Lvl2 SQL3

V21

Returns the list of column names that
comprise foreign keys, if they exist for a
specified table.

SQLPrimaryKeys () Lvl1l SQL3

V21

Returns the list of column names that
comprise the primary key for a table.

SQLProcedureColumns () Lvl2 No

V21

Returns the list of input and output
parameters for the specified procedures.

SQLProcedures () Lvl2 No

V2.1

Returns the list of procedure names stored
in a specific data source.

SQLSpecialColumns () Core SQL3

4 Call Level Interface Guide and Reference Volume 2

V21!

Returns information about the optimal set
of columns that uniquely identifies a row
in a specified table.

CLI and ODBC function summary

Table 1. CLI Function list by category (continued)

DB2 CLI

Task ODBC SQL/ first version

Function name 3.0 CLI supported Purpose

SQLStatistics() Core SQL3 v2.1'! Returns statistics about a single table and
the list of indexes associated with the table.

SQLTablePrivileges() Lvl2 SQL3 V2.1 Returns a list of tables and the privileges
associated with each table.

SQLTables() Core SQL3 v2.1'! Returns the list of table names stored in a
specific data source.

Terminating a statement

SQLFreeHandle() Core 95 V1.1 Frees handle resources.

SQLFreeStmt () Core 95 V1.1 Ends statement processing and closes the
associated cursor, discards pending results,
and, optionally, frees all resources
associated with the statement handle.

SQLCancel () Core 95 V1.1 Cancels an SQL statement.

SQLTransact() Depr No V1.1 Commits or rolls back a transaction.

SQLCloseCursor() Core 95 V5 Commits or rolls back a transaction.

Terminating a connection

SQLDisconnect () Core 95 V1.1 Closes the connection.

SQLEndTran() Core 95 V5 Ends the transaction of a connection.

SQLFreeConnect () Depr 95 V1.1 Releases the connection handle.

SQLFreeEnv() Depr 95 V1.1 Releases the environment handle.

Creating and dropping a database

SQLCreateDb() No No V9.7 Creates a database based on the specified
database name, code-set, and mode.

SQLDropDb () No No V9.7 Drops the specified database.

Note:

! Runtime support for this function was also available in the DB2 Client Application Enabler for DOS

Version 1.2 product.
2 SQLBindParam() has been replaced by SQLBindParameter().

The following limitations apply to ODBC functions:

* SQLSetScrollOptions() is supported for runtime use only, because it has been superseded by the
SQL_CURSOR_TYPE, SQL_CONCURRENCY, SQL_KEYSET_SIZE, and SQL_ROWSET_SIZE statement options.

+ SQLDrivers() is implemented by the ODBC driver manager.

Unicode functions (CLI)

CLI Unicode functions accept Unicode string arguments in place of ANSI string
arguments. The Unicode string arguments must be in UCS-2 encoding
(native-endian format). ODBC API functions have suffixes to indicate the format of
their string arguments: those that accept Unicode end in W, and those that accept
ANSI have no suffix (ODBC adds equivalent functions with names that end in A,
but these are not offered by CLI). The following list of CLI functions are available
in both ANSI and Unicode versions:

Chapter 1. CLI and ODBC functions 5

Unicode functions (CLI)

* SQLBrowseConnect

¢ SQLColAttribute

* SQLColAttributes

* SQLColumnPrivileges
* SQLColumns

* SQLConnect

¢ SQLCreateDb

e SQLDataSources

* SQLDescribeCol

¢ SQLDriverConnect

* SQLDropDb

e SQLError

¢ SQLExecDirect

* SQLExtendedPrepare
* SQLExtendedProcedures
¢ SQLExtendedProcedureColumns
* SQLForeignKeys

* SQLGetConnectAttr

* SQLGetConnectOption
* SQLGetCursorName
* SQLGetDescField

* SQLGetDescRec

* SQLGetDiagField

* SQLGetDiagRec

* SQLGetInfo

¢ SQLGetPosition

* SQLGetStmtAttr

* SQLNativeSQL

* SQLPrepare

* SQLPrimaryKeys

* SQLProcedureColumns
* SQLProcedures

* SQLReloadConfig

¢ SQLSetConnectAttr

* SQLSetConnectOption
e SQLSetCursorName
* SQLSetDescField

* SQLSetStmtAttr

* SQLSpecialColumns
e SQLStatistics

* SQLTablePrivileges

* SQLTables

Unicode functions that have arguments which are always the length of strings
interpret these arguments as the number of SQLWCHAR elements needed to store
the string. For functions that return length information for server data, the display

6 Call Level Interface Guide and Reference Volume 2

Unicode functions (CLI)

size and precision are again described in terms of the number of SQLWCHAR
elements used to store them. When the length (transfer size of the data) can refer
to string or non-string data, it is interpreted as the number of bytes needed to store
the data.

For example, SQLGetInfol () will still take the length as the number of bytes, but
SQLExecDirectW() will use the number of SQLWCHAR elements. Consider a single
character from the UTF-16 extended character set (UTF-16 is an extended character
set of UCS-2; Microsoft Windows 2000 and Microsoft Windows XP use UTF-16).
Microsoft Windows 2000 will use two SQL_C_WCHAR elements, which is
equivalent to 4 bytes, to store this single character. The character therefore has a
display size of 1, a string length of 2 (when using SQL_C_WCHAR), and a byte
count of 4. CLI will return data from result sets in either Unicode or ANSI,
depending on the application's binding. If an application binds to SQL_C_CHAR,
the driver will convert SQL_WCHAR data to SQL_CHAR. An ODBC driver
manager, if used, maps SQL_C_WCHAR to SQL_C_CHAR for ANSI drivers but
does no mapping for Unicode drivers.

ANSI to Unicode function mappings

The syntax for a CLI Unicode function is the same as the syntax for its
corresponding ANSI function, except that SQLCHAR parameters are defined as
SQLWCHAR. Character buffers defined as SQLPOINTER in the ANSI syntax can
be defined as either SQLCHAR or SQLWCHAR in the Unicode function. Refer to
the ANSI version of the CLI Unicode functions for ANSI syntax details.

SQLAllocConnect function (CLI) - Allocate connection handle

In ODBC 3.0, SQLAllocConnect() has been deprecated and replaced with
SQLAllocHandle().

Although this version of CLI continues to support SQLAllocConnect(), it is
recommended that you use SQLAllocHandle() in your CLI programs so that they
conform to the latest standards.

Migrating to the new function

The statement:
SQLATTocConnect (henv, &hdbc);

for example, would be rewritten using the new function as:
SQLAT1ocHandle(SQL_HANDLE_DBC, henv, &hdbc);

SQLAIllocEnv function (CLI) - Allocate environment handle

In ODBC 3.0, SQLAllocEnv() has been deprecated and replaced with
SQLATTocHandle().

Although this version of CLI continues to support SQLAllocEnv(), use
SQLATTocHandle() in your CLI programs so that they conform to the latest
standards.

Chapter 1. CLI and ODBC functions 7

SQLAIllocEnv function (CLI) - Allocate environment handle

Migrating to the new function

The statement:
SQLAT1ocEnv (&henv) ;

for example, would be rewritten using the new function as:
SQLATTocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

SQLAllocHandle function (CLI) - Allocate handle

Allocates environment, connection, statement, or descriptor handles.

Note: This function replaces the deprecated ODBC 2.0 functions
SQLAllocConnect(), SQLAllocEnv(), and SQLAllocStmt().

Specification:

e CLI50

* ODBC 3.0

* ISO CLI

Syntax

SQLRETURN SQLATlocHandle (
SQLSMALLINT HandleType, /* fHandleType */
SQLHANDLE InputHandle, /* hInput =/
SQLHANDLE *QutputHandlePtr); /* *phQutput =/

Function Arguments

Table 2. SQLAllocHandle arguments

Data type

Argument Use Description

SQLSMALLINT

HandleType input The type of handle to be allocated by

SQLAT1ocHandle(). Must be one of the following
values:

* SQL_HANDLE_ENV

* SQL_HANDLE_DBC

e SQL_HANDLE_STMT

* SQL_HANDLE_DESC

SQLHANDLE

InputHandle input Existing handle to use as a context for the new

handle being allocated. If HandleType is
SQL_HANDLE_ENYV, this is SQL_NULL_HANDLE.
If HandleType is SQL_HANDLE_DBC, this must be
an environment handle, and if it is
SQL_HANDLE_STMT or SQL_HANDLE_DESC, it
must be a connection handle.

SQLHANDLE *

OutputHandlePtr output Pointer to a buffer in which to return the handle to

the newly allocated data structure.

Usage

SQLAIllocHandle() is used to allocate environment, connection, statement, and
descriptor handles. An application can allocate multiple environment, connection,
statement, or descriptor handles at any time a valid InputHandle exists.

8 Call Level Interface Guide and Reference Volume 2

SQLAllocHandle function (CLI) - Allocate handle

If the application calls SQLAllocHandle() with *OutputHandlePtr set to an existing
environment, connection, statement, or descriptor handle, CLI overwrites the
handle, and new resources appropriate to the handle type are allocated. There are
no changes made to the CLI resources associated with the original handle.

Return codes
+ SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO
* SQL_INVALID_HANDLE

« SQL_ERROR

If SQLAllocHandle() returns SQL_INVALID_HANDLE, it will set OutputHandlePtr
to SQL_NULL_HENYV, SQL_NULL_HDBC, SQL_NULL_HSTMT, or
SQL_NULL_HDESC, depending on the value of HandleType, unless the output
argument is a null pointer. The application can then obtain additional information
from the diagnostic data structure associated with the handle in the InputHandle

argument.

Diagnostics

Table 3. SQLAllocHandle SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

08003

Connection is closed.

The HandleType argument was SQL_HANDLE_STMT or
SQL_HANDLE_DESC, but the connection handle specified by the
InputHandle argument did not have an open connection. The
connection process must be completed successfully (and the
connection must be open) for CLI to allocate a statement or
descriptor handle.

HYO000

General error.

An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001

Memory allocation failure.

DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY013

Unexpected memory handling
error.

The HandleType argument was SQL_HANDLE_DBC,
SQL_HANDLE_STMT, or SQL_HANDLE_DESC; and the function
call could not be processed because the underlying memory
objects could not be accessed, possibly because of low memory
conditions.

HY014

No more handles.

The limit for the number of handles that can be allocated for the
type of handle indicated by the HandleType argument has been
reached, or in some cases, insufficient system resources exist to
properly initialize the new handle.

HY092

Option type out of range.

The HandleType argument was not one of:
* SQL_HANDLE_ENV

* SQL_HANDLE_DBC

* SQL_HANDLE_STMT

* SQL_HANDLE_DESC

Chapter 1. CLI and ODBC functions 9

SQLAllocHandle function (CLI) - Allocate handle

Restrictions
None.

Example

SQLHANDLE henv; /* environment handle */
SQLHANDLE hdbc; /* connection handle */
SQLHANDLE hstmt; /* statement handle */
SQLHANDLE hdesc; /* descriptor handle */

/% oo %/

/* allocate an environment handle */
c1iRC = SQLATTocHandle(SQL_HANDLE_ENV, SQL NULL_HANDLE, &henv);

[* oo %/

/* allocate a database connection handle */
c1iRC = SQLATTocHandle(SQL_HANDLE DBC, henv, &hdbc);

[* ... %/
/* connect to database using hdbc */
[* .. %/

/% allocate one or more statement handles =*/
c1iRC = SQLATTocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

[* ... %/
/* allocate a descriptor handle */
c1iRC = SQLA11ocHandle(SQL_HANDLE_DESC, hstmt, &hdesc);

SQLAIllocStmt function (CLI) - Allocate a statement handle

In ODBC 3.0, SQLAllocStmt() has been deprecated and replaced with
SQLAllocHandle().

Although this version of CLI continues to support SQLAllocStmt(), use
SQLAllocHandle() in your CLI programs so that they conform to the latest
standards.

Migrating to the new function

The statement:
SQLA1TocStmt (hdbc, &hstmt);

for example, would be rewritten using the new function as:
SQLATT1ocHand1e(SQL_HANDLE_STMT, hdbc, &hstmt);

SQLBindCol function (CLI) - Bind a column to an application variable
or LOB locator

Application can associates (bind) columns in a result set to C data type variables,
and associate (bind) LOB columns in a result set to LOB locators.

Specification:
« CLI11

+ ODBC 1.0

+ ISO CLI

10 Call Level Interface Guide and Reference Volume 2

SQLBindCol function (CLI) - Bind a column to an application variable or LOB locator

SQLBindCol() is used to associate columns in a result set to either:

* Application variables or arrays of application variables (storage buffers), for all
C data types. Data is transferred from the DBMS to the application when
SQLFetch() or SQLFetchScroll() is called. Data conversion might occur as the
data is transferred.

e A LOB locator, for LOB columns. A LOB locator, not the data itself, is transferred
from the DBMS to the application when SQLFetch() is called.

Alternatively, LOB columns can be bound directly to a file using
SQLBindFileToCol().

SQLBindCol() is called once for each column in the result set that the application
needs to retrieve.

In general, SQLPrepare(), SQLExecDirect() or one of the schema functions is called
before this function, and SQLFetch(), SQLFetchScroll(), SQLBulkOperations(), or

SQLSetPos() is called after. Column attributes might also be needed before calling
SQLBindCol(), and can be obtained using SQLDescribeCol() or SQLColAttribute().

Syntax

SQLRETURN SQLBindCol (
SQLHSTMT StatementHandle, /* hstmt =/
SQLUSMALLINT ColumnNumber, /* icol */
SQLSMALLINT TargetType, /* fCType */
SQLPOINTER TargetValuePtr, /* rgbValue */
SQLLEN BufferLength, /* dbValueMax =/
SQLLEN *StrLen_or_IndPtr); /* *pcbValue =/

Function arguments

Table 4. SQLBindCol arguments

Data type Argument Use Description
SQLHSTMT StatementHandle input Statement handle
SQLUSMALLINT | ColumnNumber input Number identifying the column. Columns are

numbered sequentially, from left to right.

¢ Column numbers start at 1 if bookmarks are not
used (SQL_ATTR_USE_BOOKMARKS statement
attribute set to SQL_UB_OFF).

¢ Column numbers start at 0 if bookmarks are
used (the statement attribute is set to
SQL_UB_ON). Column 0 is the bookmark
column.

Chapter 1. CLI and ODBC functions 11

SQLBindCol function (CLI) - Bind a column to an application variable or LOB locator

Table 4. SQLBindCol arguments (continued)

Data type

Argument

Use

Description

SQLSMALLINT

TargetType

input

The C data type for column number ColumnNumber
in the result set. When the application retrieves
data from the data source, it will convert the data
to this C type. When using SQLBulkOperations() or
SQLSetPos (), the driver will convert data from this
C data type when sending information to the data
source. The following types are supported:

* SQL_C_BINARY

* SQL_C_BIT

* SQL_C_BLOB_LOCATOR

* SQL_C_CHAR

* SQL_C_CLOB_LOCATOR

* SQL_C_DBCHAR

* SQL_C_DBCLOB_LOCATOR

* SQL_C_DECIMAL_IBM

* SQL_C_DOUBLE

* SQL_C_FLOAT

* SQL_C_LONG

* SQL_C_NUMERIC *

* SQL_C_SBIGINT

* SQL_C_SHORT

* SQL_C_TYPE_DATE

* SQL_C_TYPE_TIME

* SQL_C_TYPE_TIMESTAMP

* SQL_C_TYPE_TIMESTAMP_EXT

* SQL_C_TINYINT

* SQL_C_UBIGINT

* SQL_C_UTINYINT

* SQL_C_WCHAR

Specifying SQL_C_DEFAULT causes data to be
transferred to its default C data type.

SQLPOINTER

TargetValuePtr

input/output
(deferred)

Pointer to buffer or an array of buffers with either
column-wise or row-wise binding, where CLI is to
store the column data or the LOB locator when the
fetch occurs.

This buffer is used to return data when any of the
following functions are called: SQLFetch(),
SQLFetchScrol1(), SQLSetPos () using the Operation
argument SQL_REFRESH, or SQLBulkOperations()
using the Operation argument
SQL_FETCH_BY_BOOKMARK. Otherwise,
SQLBuTkOperations() and SQLSetPos() use the
buffer to retrieve data.

If TargetValuePtr is null, the column is unbound. All
columns can be unbound with a call to
SQLFreeStmt () with the SQL_UNBIND option.

12 Call Level Interface Guide and Reference Volume 2

SQLBindCol function (CLI) - Bind a column to an application variable or LOB locator

Table 4. SQLBindCol arguments (continued)

Data type

Argument

Use

Description

SQLLEN

BufferLength

input

Size in bytes of TargetValuePtr buffer available to
store the column data or the LOB locator.

If TargetType denotes a binary or character string
(either single or double byte) or is
SQL_C_DEFAULT for a column returning variable
length data, then BufferLength must be > 0, or an
error will be returned. Note that for character data,
the driver counts the NULL termination character
and so space must be allocated for it. For all other
data types, this argument is ignored.

SQLLEN *

StrLen_or_IndPtr

input/output
(deferred)

Pointer to value (or array of values) which
indicates the number of bytes CLI has available to
return in the TargetValuePtr buffer. If TargetType is a
LOB locator, the size of the locator is returned, not
the size of the LOB data.

This buffer is used to return data when any of the
following functions are called: SQLFetch(),
SQLFetchScrol1(), SQLSetPos () using the Operation
argument SQL_REFRESH, or SQLBulkOperations()
using the Operation argument
SQL_FETCH_BY_BOOKMARK. Otherwise,
SQLBulkOperations() and SQLSetPos() use the
buffer to retrieve data.

SQLFetch() returns SQL_NULL_DATA in this
argument if the data value of the column is null.

This pointer value must be unique for each bound
column, or NULL. A value of
SQL_COLUMN_IGNORE, SQL_NTS,
SQL_NULL_DATA, or the length of the data can be
set for use with SQLBulkOperations().

SQL_NO_LENGTH might also be returned, refer to
the Usage section for more information.

¢ For this function, both TargetValuePtr and StrLen_or_IndPtr are deferred outputs,
meaning that the storage locations these pointers point to do not get updated
until a result set row is fetched. As a result, the locations referenced by these
pointers must remain valid until SQLFetch() or SQLFetchScroll() is called. For
example, if SQLBindCol() is called within a local function, SQLFetch() must be
called from within the same scope of the function or the TargetValuePtr buffer
must be allocated as static or global.

¢ CLI will be able to optimize data retrieval for all variable length data types if
TargetValuePtr is placed consecutively in memory after StrLen_or_IndPtr.

Usage

Call SQLBindCol() once for each column in the result set for which either the data
or, for LOB columns, the LOB locator is to be retrieved. When SQLFetch() or
SQLFetchScroll() is called to retrieve data from the result set, the data in each of
the bound columns is placed in the locations assigned by the TargetValuePtr and
StrLen_or_IndPtr pointers. When the statement attribute
SQL_ATTR_ROW_ARRAY_SIZE is greater than 1, then TargetType should refer to

Chapter 1. CLI and ODBC functions 13

SQLBindCol function (CLI) - Bind a column to an application variable or LOB locator

an array of buffers. If TargetType is a LOB locator, a locator value is returned, not
the actual LOB data. The LOB locator references the entire data value in the LOB
column.

If a CLI application does not provide an output buffer for a LOB column using the
function SQLBindCol() the IBM® data server client will, by default, request a LOB
locator on behalf of the application for each LOB column in the result sets.

Columns are identified by a number, assigned sequentially from left to right.

* Column numbers start at 1 if bookmarks are not used
(SQL_ATTR_USE_BOOKMARKS statement attribute set to SQL_UB_OFF).

e Column numbers start at 0 if bookmarks are used (the statement attribute set to
SQL_UB_ON).

After columns have been bound, in subsequent fetches the application can change
the binding of these columns or bind previously unbound columns by calling
SQLBindCol(). The new binding does not apply to data already fetched, it will be
used on the next fetch. To unbind a single column (including columns bound with
SQLBindFileToCol()), call SQLBindCol() with the TargetValuePtr pointer set to
NULL. To unbind all the columns, the application should call SQLFreeStmt() with
the Option input set to SQL_UNBIND.

The application must ensure enough storage is allocated for the data to be
retrieved. If the buffer is to contain variable length data, the application must
allocate as much storage as the maximum length of the bound column plus the
NULL terminator. Otherwise, the data might be truncated. If the buffer is to
contain fixed length data, CLI assumes the size of the buffer is the length of the C
data type. If data conversion is specified, the required size might be affected.

If string truncation does occur, SQL_SUCCESS_WITH_INFO is returned and
StrLen_or_IndPtr will be set to the actual size of TargetValuePtr available for return
to the application.

Truncation is also affected by the SQL_ATTR_MAX_LENGTH statement attribute
(used to limit the amount of data returned to the application). The application can
specify not to report truncation by calling SQLSetStmtAttr() with
SQL_ATTR_MAX_LENGTH and a value for the maximum length to return for all
variable length columns, and by allocating a TargetValuePtr buffer of the same size
(plus the null-terminator). If the column data is larger than the set maximum
length, SQL_SUCCESS will be returned when the value is fetched and the
maximum length, not the actual length, will be returned in StrLen_or_IndPtr.

If the column to be bound is a SQL_GRAPHIC, SQL_VARGRAPHIC or
SQL_LONGVARGRAPHIC type, then TargetType can be set to SQL_C_DBCHAR or
SQL_C_CHAR. If TargetType is SQL_C_DBCHAR, the data fetched into the
TargetValuePtr buffer will be null-terminated with a double byte null-terminator. If
TargetType is SQL_C_CHAR, then there will be no null-termination of the data. In
both cases, the length of the TargetValuePtr buffer (BufferLength) is in units of bytes
and should therefore be a multiple of 2. It is also possible to force CLI to null
terminate graphic strings using the PATCH1 keyword.

Note: SQL_NO_TOTAL will be returned in StrLen_or_IndPtr if:
* The SQL type is a variable length type, and

» StrLen_or_IndPtr and TargetValuePtr are contiguous, and

* The column type is NOT NULLABLE, and

e String truncation occurred.

14 Call Level Interface Guide and Reference Volume 2

SQLBindCol function (CLI) - Bind a column to an application variable or LOB locator

Descriptors and SQLBindCol
The following sections describe how SQLBindCol() interacts with descriptors.

Note: Calling SQLBindCol() for one statement can affect other statements. This
occurs when the ARD associated with the statement is explicitly allocated and is
also associated with other statements. Because SQLBindCol() modifies the
descriptor, the modifications apply to all statements with which this descriptor is
associated. If this is not the required behavior, the application should dissociate
this descriptor from the other statements before calling SQLBindCol().

Argument mappings

Conceptually, SQLBindCol() performs the following steps in sequence:
Calls SQLGetStmtAttr() to obtain the ARD handle.

* Calls SQLGetDescField() to get this descriptor's SQL_DESC_COUNT field, and if
the value in the ColumnNumber argument exceeds the value of
SQL_DESC_COUNT, calls SQLSetDescField() to increase the value of
SQL_DESC_COUNT to ColumnNumber.

 Calls SQLSetDescField() multiple times to assign values to the following fields of
the ARD:

— Sets SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE to the value of
TargetType.

— Sets one or more of SQL_DESC_LENGTH, SQL_DESC_PRECISION,
SQL_DESC_SCALE as appropriate for TargetType.

— Sets the SQL_DESC_OCTET_LENGTH field to the value of BufferLength.

— Sets the SQL_DESC_DATA_PTR field to the value of TargetValue.

— Sets the SQL_DESC_INDICATOR_PTR field to the value of StrLen_or_IndPtr
(see the following paragraph).

— Sets the SQL_DESC_OCTET_LENGTH_PTR field to the value of
StrLen_or_IndPtr (see the following paragraph).

The variable that the StrLen_or_IndPtr argument refers to is used for both indicator
and length information. If a fetch encounters a null value for the column, it stores
SQL_NULL_DATA in this variable; otherwise, it stores the data length in this
variable. Passing a null pointer as StrLen_or_IndPtr keeps the fetch operation from
returning the data length, but makes the fetch fail if it encounters a null value and
has no way to return SQL_NULL_DATA.

If the call to SQLBindCol() fails, the content of the descriptor fields it would have
set in the ARD are undefined, and the value of the SQL_DESC_COUNT field of
the ARD is unchanged.

Implicit resetting of COUNT field

SQLBindCol() sets SQL_DESC_COUNT to the value of the ColumnNumber
argument only when this would increase the value of SQL_DESC_COUNT. If the
value in the TargetValuePtr argument is a null pointer and the value in the
ColumnNumber argument is equal to SQL_DESC_COUNT (that is, when unbinding
the highest bound column), then SQL_DESC_COUNT is set to the number of the
highest remaining bound column.

Cautions regarding SQL_C_DEFAULT

To retrieve column data successfully, the application must determine correctly the
length and starting point of the data in the application buffer. When the

Chapter 1. CLI and ODBC functions 15

SQLBindCol function (CLI) - Bind a column to an application variable or LOB locator

application specifies an explicit TargetType, application misconceptions are readily
detected. However, when the application specifies a TargetType of
SQL_C_DEFAULT, SQLBindCol() can be applied to a column of a different data
type from the one intended by the application, either from changes to the metadata
or by applying the code to a different column. In this case, the application might
fail to determine the start or length of the fetched column data. This can lead to
unreported data errors or memory violations.

Return codes
+ SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO

* SQL_ERROR
* SQL_INVALID_HANDLE
Diagnostics
Table 5. SQLBindCol SQLSTATEs
SQLSTATE Description Explanation
07009 Invalid descriptor index The value specified for the argument ColumnNumber exceeded the

maximum number of columns in the result set, or the value
specified was less than 0.

40003 08501

Communication link failure.

The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HYO003 Program type out of range. TargetType was not a valid data type or SQL_C_DEFAULT.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling DB2 CLI was unable to access memory required to support

error. execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the argument BufferLength is less than 1
and the argument TargetType is either SQL_C_CHAR,
SQL_C_BINARY or SQL_C_DEFAULT.

HYC00 Driver not capable. CLI recognizes, but does not support the data type specified in

the argument TargetType

A LOB locator C data type was specified, but the connected server
does not support LOB data types.

Note: Additional diagnostic messages relating to the bound columns might be reported at fetch time.

16 Call Level Interface Guide and Reference Volume 2

Restrictions

The LOB data support is only available when connected to a server that supports
large object data types. If the application attempts to specify a LOB locator C data
type for a server that does not support it, SQLSTATE HYCO00 will be returned.

SQLBindCol function (CLI) - Bind a column to an application variable or LOB locator

Example

/* bind column 1 to variable x/
c1iRC = SQLBindCol(hstmt, 1, SQL_C_SHORT, &deptnumb.val, 0, &deptnumb.ind);

SQLBindFileToCol function (CLI) - Bind LOB file reference to LOB

column

Associates or binds a LOB or XML column in a result set to a file reference or an
array of file references.

This enables data in that column to be transferred directly into a file when each
row is fetched for the statement handle.

Specification:
« CLI21

The LOB file reference arguments (file name, file name length, file reference
options) refer to a file within the application's environment (on the client). Before
fetching each row, the application must make sure that these variables contain the
name of a file, the length of the file name, and a file option (new / overwrite /
append). These values can be changed between each row fetch operation.

Syntax

SQLRETURN SQLBindFileToCol (SQLHSTMT StatementHandle, /* hstmt */
SQLUSMALLINT ColumnNumber, /* icol */
SQLCHAR *FileName,
SQLSMALLINT *FileNameLength,
SQLUINTEGER *FileOptions,
SQLSMALLINT MaxFileNameLength,
SQLINTEGER *StringlLength,
SQLINTEGER xIndicatorValue);

Function arguments

Table 6. SQLBindFileToCol arguments

Data type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement handle.

SQLUSMALLINT

icol

input

Number identifying the column. Columns are
numbered sequentially, from left to right, starting at
1.

SQLCHAR *

FileName

input
(deferred)

Pointer to the location that will contain the file name
or an array of file names at the time of the next fetch
using the StatementHandle. This is either the complete
path name of the file(s) or a relative file name(s). If
relative file name(s) are provided, they are appended
to the current path of the running application. This
pointer cannot be NULL.

SQLSMALLINT *

FileNameLength

input
(deferred)

Pointer to the location that will contain the length of
the file name (or an array of lengths) at the time of
the next fetch using the StatementHandle. If this
pointer is NULL, then the FileName will be
considered a null-terminated string, similar to
passing a length of SQL_NTS.

The maximum value of the file name length is 255.

Chapter 1. CLI and ODBC functions 17

SQLBindFileToCol function (CLI) - Bind LOB file reference to LOB column

Table 6. SQLBindFileToCol arguments (continued)

Data type Argument Use Description
SQLUINTEGER * | FileOptions input Pointer to the location that will contain the file
(deferred) option or (array of file options) to be used when

writing the file at the time of the next fetch using the
StatementHandle. The following FileOptions are
supported:

SQL_FILE_CREATE
Create a new file. If a file by this name
already exists, SQL_ERROR will be
returned.

SQL_FILE_OVERWRITE
If the file already exists, overwrite it.
Otherwise, create a new file.

SQL_FILE_APPEND
If the file already exists, append the data to
it. Otherwise, create a new file.

Only one option can be chosen per file, there is no
default.

SQLSMALLINT

MaxFileNameLength input This specifies the length of the FileName buffer or, if

the application uses SQLFetchScroll() to retrieve
multiple rows for the LOB column, this specifies the
length of each element in the FileName array.

SQLINTEGER *

StringLength output Pointer to the location that contains the length (or

(deferred) array of lengths) in bytes of the LOB data that is
returned. If this pointer is NULL, nothing is

returned.
SQLINTEGER * IndicatorValue output Pointer to the location that contains an indicator
(deferred) value (or array of values).

Usage

The application calls SQLBindFileToCol() once for each column that should be
transferred directly to a file when a row is fetched. LOB data is written directly to
the file without any data conversion, and without appending null-terminators.
XML data is written out in UTF-8, with an XML declaration generated according to
the setting of the SQL_ATTR_XML_DECLARATION connection or statement
attribute.

FileName, FileNameLength, and FileOptions must be set before each fetch. When
SQLFetch() or SQLFetchScroll() is called, the data for any column which has been
bound to a LOB file reference is written to the file or files pointed to by that file
reference. Errors associated with the deferred input argument values of
SQLBindFileToCol() are reported at fetch time. The LOB file reference, and the
deferred StringLength and IndicatorValue output arguments are updated between
fetch operations.

If SQLFetchScroll() is used to retrieve multiple rows for the LOB column, FileName,
FileNameLength, and FileOptions point to arrays of LOB file reference variables. In
this case, MaxFileNameLength specifies the length of each element in the FileName
array and is used by CLI to determine the location of each element in the FileName
array. The contents of the array of file references must be valid at the time of the

18 Call Level Interface Guide and Reference Volume 2

SQLBindFileToCol function (CLI) - Bind LOB file reference to LOB column

SQLFetchScroll() call. The StringLength and IndicatorValue pointers each point to an
array whose elements are updated upon the SQLFetchScroll() call.

Using SQLFetchScroll(), multiple LOB values can be written to multiple files, or to
the same file depending on the file names specified. If writing to the same file, the
SQL_FILE_APPEND file option should be specified for each file name entry. Only

column-wise binding of arrays of file references is supported with

SQLFetchScroll().

Return codes
+ SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO

* SQL_ERROR
* SQL_INVALID_HANDLE
Diagnostics
Table 7. SQLBindFileToCol SQLSTATEs
SQLSTATE Description Explanation
07009 Invalid column number. The value specified for the argument icol was less than 1.

The value specified for the argument icol exceeded the maximum
number of columns supported by the data source.

40003 08501

Communication link failure.

The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY009 Invalid argument value. FileName, StringLength or FileOptions is a null pointer.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.
HY013 Unexpected memory handling DB2 CLI was unable to access memory required to support
error. execution or completion of the function.

HY090 Invalid string or buffer length. ~ The value specified for the argument MaxFileNameLength was less
than 0.

HYCO00 Driver not capable. The application is currently connected to a data source that does

not support large objects.

Restrictions

This function is not available when connected to DB2 servers that do not support
large object data types. Call SQLGetFunctions() with the function type set to
SQL_API_SQLBINDFILETOCOL and check the SupportedPtr output argument to
determine if the function is supported for the current connection.

Chapter 1. CLI and ODBC functions 19

SQLBindFileToCol function (CLI) - Bind LOB file reference to LOB column

Example

/* bind a file to the BLOB column */
rc = SQLBindFileToCol (hstmt,

1,
fileName,
&fileNamelLength,
&fileOption,
14,
NULL,
&filelnd);

SQLBindFileToParam function (CLI) - Bind LOB file reference to LOB

parameter

SQLBindFileToParam() is used to associate or bind a parameter marker in an SQL
statement to a file reference or an array of file references. This enables data from
the file to be transferred directly into a LOB or XML column when the statement is
subsequently executed.

Specification:
« CLI21

The LOB file reference arguments (file name, file name length, file reference
options) refer to a file within the application's environment (on the client). Before
calling SQLExecute() or SQLExecDirect(), the application must make sure that this
information is available in the deferred input buffers. These values can be changed
between SQLExecute() calls.

Syntax

SQLRETURN SQLBindFileToParam (
SQLHSTMT StatementHandle, /* hstmt =/
SQLUSMALLINT TargetType, /* ipar */
SQLSMALLINT DataType, /* £Sq1Type */
SQLCHAR *FileName,
SQLSMALLINT *FileNameLength,
SQLUINTEGER *FileOptions,
SQLSMALLINT MaxFileNamelLength,
SQLINTEGER xIndicatorValue);

Function arguments

Table 8. SQLBindFileToParam arguments

Data type

Argument Use Description

SQLHSTMT

StatementHandle input Statement handle.

SQLUSMALLINT

TargetType input Parameter marker number. Parameters are numbered

sequentially, from left to right, starting at 1.

SQLSMALLINT

DataType input SQL Data Type of the column. The data type must

be one of:

- SQL_BLOB

* SQL_CLOB

* SQL_DBCLOB
* SQL_XML

20 Call Level Interface Guide and Reference Volume 2

SQALBindFileToParam function (CLI) - Bind LOB file reference to LOB parameter

Table 8. SQLBindFileToParam arguments (continued)

Data type Argument Use Description
SQLCHAR * FileName input Pointer to the location that will contain the file name
(deferred) or an array of file names when the statement

(StatementHandle) is executed. This is either the
complete path name of the file or a relative file
name. If a relative file name is provided, it is
appended to the current path of the client process.

This argument cannot be NULL.

SQLSMALLINT * | FileNameLength input Pointer to the location that will contain the length of
(deferred) the file name (or an array of lengths) at the time of
the next SQLExecute() or SQLExecDirect() using the
StatementHandle.

If this pointer is NULL, then the FileName will be
considered a null-terminated string, similar to
passing a length of SQL_NTS.

The maximum value of the file name length is 255.

SQLUINTEGER * | FileOptions input Pointer to the location that will contain the file
(deferred) option (or an array of file options) to be used when
reading the file. The location will be accessed when
the statement (StatementHandle) is executed. Only one
option is supported (and it must be specified):

SQL_FILE_READ
A regular file that can be opened, read and
closed. (The length is computed when the
file is opened)

This pointer cannot be NULL.

SQLSMALLINT MaxFileNameLength input This specifies the length of the FileName buffer. If the
application calls SQLParamOptions() to specify
multiple values for each parameter, this is the length
of each element in the FileName array.

SQLINTEGER * IndicatorValue input Pointer to the location that contains an indicator
(deferred) value (or array of values), which is set to
SQL_NULL_DATA if the data value of the parameter
is to be null. It must be set to 0 (or the pointer can
be set to null) when the data value is not null.

Usage

The application calls SQLBindFileToParam() once for each parameter marker whose
value should be obtained directly from a file when a statement is executed. Before
the statement is executed, FileName, FileNameLength, and FileOptions values must be
set. When the statement is executed, the data for any parameter which has been
bound using SQLBindFileToParam() is read from the referenced file and passed to
the server.

If the application uses SQLParamOptions() to specify multiple values for each
parameter, then FileName, FileNameLength, and FileOptions point to an array of LOB
file reference variables. In this case, MaxFileNameLength specifies the length of each
element in the FileName array and is used by CLI to determine the location of each
element in the FileName array.

Chapter 1. CLI and ODBC functions 21

SQLBindFileToParam function (CLI) - Bind LOB file reference to LOB parameter

A LOB parameter marker can be associated with (bound to) an input file using
SQLBindFileToParam(), or with a stored buffer using SQLBindParameter(). The
most recent bind parameter function call determines the type of binding that is in

effect.

Return codes
+ SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO

+ SQL_ERROR

* SQL_INVALID_HANDLE

Diagnostics

Table 9. SQLBindFileToParam SQLSTATEs

SQLSTATE

Description

Explanation

40003 08501

Communication link failure.

The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HYO001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY004 SQL data type out of range. The value specified for DataType was not a valid SQL type for this
function call.

HY009 Invalid argument value. FileName, FileOptions FileNameLength, is a null pointer.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.
HY013 Unexpected memory handling DB2 CLI was unable to access memory required to support
error. execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the input argument MaxFileNameLength
was less than 0.

HY093 Invalid parameter number. The value specified for TargetType was either less than 1 or greater
than the maximum number of parameters supported.

HYC00 Driver not capable. The server does not support Large Object data types.

22 Call Level Interface Guide and Reference Volume 2

Restrictions

This function is not available when connected to DB2 servers that do not support
large object data types. Call SQLGetFunctions() with the function type set to
SQL_API_SQLBINDFILETOPARAM and check the SupportedPtr output argument
to determine if the function is supported for the current connection.

Example

/* bind the file parameter */
rc = SQLBindFileToParam(hstmt,

39
SQL_BLOB,
fileName,

SQALBindFileToParam function (CLI) - Bind LOB file reference to LOB parameter

&fileNamelLength,
&fileOption,

14,

&filelnd);

SQLBindParameter function (CLI) - Bind a parameter marker to a
buffer or LOB locator

Binds parameter markers in an SQL statement to application variables, arrays of
application variables, or lob locators.

Specification:
« CLI21
+ ODBC 2.0

SQLBindParameter() binds parameter markers to either:

* Application variables or arrays of application variables (storage buffers) for all C
data types. In this case data is transferred from the application to the DBMS
when SQLExecute() or SQLExecDirect() is called. Data conversion might occur as
the data is transferred.

* A LOB locator, for SQL LOB data types. In this case a LOB locator value, not the
LOB data itself, is transferred from the application to the server when the SQL
statement is executed.

Alternatively, LOB parameters can be bound directly to a file using
SQLBindFileToParam()

This function must also be used to bind a parameter of a stored procedure CALL
statement to the application where the parameter can be input, output or both.

Syntax

SQLRETURN SQLBindParameter(
SQLHSTMT StatementHandle, /* hstmt =/
SQLUSMALLINT ParameterNumber, /* ipar */
SQLSMALLINT InputOutputType, /* fParamType =*/
SQLSMALLINT ValueType, /* fCType */
SQLSMALLINT ParameterType, /* £Sq1Type */
SQLULEN ColumnSize, /* chColDef */
SQLSMALLINT DecimalDigits, /* ibScale */
SQLPOINTER ParameterValuePtr, /% rgbValue */
SQLLEN BufferLength, /* cbValueMax */
SQLLEN *StrLen_or _IndPtr); /* pcbValue */

Function arguments

Table 10. SQLBindParameter arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement Handle

SQLUSMALLINT | ParameterNumber input Parameter marker number, ordered sequentially left
to right, starting at 1.

Chapter 1. CLI and ODBC functions 23

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

Table 10. SQLBindParameter arguments (continued)

Data type

Argument

Use

Description

SQLSMALLINT

InputOutputType

input

The type of parameter. The value of the
SQL_DESC_PARAMETER_TYPE field of the IPD is
also set to this argument. The supported types are:

¢ SQL_PARAM_INPUT: The parameter marker is
associated with an SQL statement that is not a
stored procedure CALL; or, it marks an input
parameter of the CALLed stored procedure.

When the statement is executed, the data for the
parameter is sent to the server and as such, the
ParameterValuePtr buffer must contain valid input
data value(s), unless the StrLen_or_IndPtr buffer
contains SQL_NULL_DATA or

SQL_DATA_AT _EXEC (if the value should be sent
via SQLParamData() and SQLPutData()).

¢ SQL_PARAM_INPUT_OUTPUT: The parameter
marker is associated with an input/output
parameter of the CALLed stored procedure.

When the statement is executed, the data for the
parameter is sent to the server and as such, the
ParameterValuePtr buffer must contain valid input
data value(s), unless the StrLen_or_IndPtr buffer
contains SQL_NULL_DATA or
SQL_DATA_AT_EXEC (if the value should be sent
via SQLParamData() and SQLPutData()).

¢ SQL_PARAM_OUTPUT: The parameter marker is
associated with an output parameter of the
CALLed stored procedure or the return value of
the stored procedure.

After the statement is executed, data for the
output parameter is returned to the application
buffer specified by ParameterValuePtr and
StrLen_or_IndPtr, unless both are NULL pointers,
in which case the output data is discarded. If an
output parameter does not have a return value
then StrLen_or_IndPtr is set to SQL_NULL_DATA.

24 Call Level Interface Guide and Reference Volume 2

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

Table 10. SQLBindParameter arguments (continued)

Data type

Argument

Use

Description

SQLSMALLINT

ValueType

input

C data type of the parameter. The following types
are supported:

+ SQL_C_BINARY

e SQL_C_BIT

* SQL_C_BLOB_LOCATOR

* SQL_C_CHAR

* SQL_C_CLOB_LOCATOR

* SQL_C_DBCHAR

* SQL_C_DBCLOB_LOCATOR

* SQL_C_DECIMAL_IBM

* SQL_C_DOUBLE

* SQL_C_FLOAT

* SQL_C_LONG

* SQL_C_NUMERIC *

* SQL_C_SBIGINT

* SQL_C_SHORT

* SQL_C_TYPE_DATE

* SQL_C_TYPE TIME

* SQL_C_TYPE_TIMESTAMP

* SQL_C_TYPE_TIMESTAMP_EXT
* SQL_C_TYPE_TIMESTAMP_EXT_TZ
* SQL_C_TINYINT

e SQL_C_UBIGINT

* SQL_C_UTINYINT

* SQL_C_WCHAR

Specifying SQL_C_DEFAULT causes data to be
transferred from its default C data type to the type
indicated in ParameterType.

a Windows 32-bit only

Chapter 1. CLI and ODBC functions 25

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

Table 10. SQLBindParameter arguments (continued)

Data type

Argument

Use

Description

SQLSMALLINT

ParameterType

input

SQL data type of the parameter. The supported types
are:

* SQL_BIGINT

* SQL_BINARY

* SQL_BIT

* SQL_BLOB

* SQL_BLOB_LOCATOR

* SQL_CHAR

* SQL_CLOB

* SQL_CLOB_LOCATOR

* SQL_DBCLOB

* SQL_DBCLOB_LOCATOR
* SQL_DECIMAL

* SQL_DOUBLE

* SQL_FLOAT

* SQL_GRAPHIC

* SQL_INTEGER

* SQL_LONGVARBINARY

* SQL_LONGVARCHAR

* SQL_LONGVARGRAPHIC
* SQL_NUMERIC

* SQL_REAL

* SQL_SMALLINT

* SQL_TINYINT

* SQL_TYPE_DATE

* SQL_TYPE_TIME

* SQL_TYPE_TIMESTAMP

* SQL_TYPE_TIMESTAMP_WITH_TIMEZONE
* SQL_VARBINARY

* SQL_VARCHAR

* SQL_VARGRAPHIC

* SQL_WCHAR

* SQL_XML

Note: SQL_BLOB_LOCATOR,
SQL_CLOB_LOCATOR, SQL_DBCLOB_LOCATOR
are application related concepts and do not map to a

data type for column definition during a CREATE
TABLE statement.

26 Call Level Interface Guide and Reference Volume 2

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

Table 10. SQLBindParameter arguments (continued)

Data type Argument Use

Description

SQLULEN ColumnSize input

Precision of the corresponding parameter marker. If

ParameterType denotes:

* A binary or single byte character string (for
example, SQL_CHAR, SQL_BLOB), this is the
maximum length in bytes for this parameter
marker.

* A double byte character string (for example,
SQL_GRAPHIC), this is the maximum length in
double-byte characters for this parameter.

* SQL_DECIMAL, SQL_NUMERIC, this is the
maximum decimal precision.

¢ An XML value (SQL_XML) for an external routine
argument, this is the maximum length in bytes, n,
of the declared XML AS CLOB(n) argument. For
all other parameters of type SQL_XML, this
argument is ignored.

* Otherwise, this argument is ignored.

SQLSMALLINT DecimalDigits input

If ParameterType is SQL_DECIMAL or
SQL_NUMERIC, DecimalDigits represents the scale of
the corresponding parameter and sets the
SQL_DESC_SCALE field of the IPD.

If ParameterType is SQL_TYPE_TIMESTAMP or
SQL_TYPE_TIME, Decimal Digits represents the
precision of the corresponding parameter and sets
the SQL_DESC_PRECISION field of the IPD. The
precision of a time timestamp value is the number of
digits to the right of the decimal point in the string
representation of a time or timestamp (for example,
the scale of yyyy-mm-dd hh:mm:ss.fff is 3).

Other than for the ParameterType values mentioned
here, DecimalDigits is ignored.

Chapter 1. CLI and ODBC functions 27

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

Table 10. SQLBindParameter arguments (continued)

Data type Argument Use Description
SQLPOINTER ParameterValuePtr input « On input (InputOutputType set to
(deferred), SQL_PARAM_INPUT, or
output SQL_PARAM_INPUT_OUTPUT):
(deferred), or . . .
both At execution time, if StrLen_or_IndPtr does not

contain SQL_NULL_DATA or
SQL_DATA_AT_EXEC, then ParameterValuePtr
points to a buffer that contains the actual data for
the parameter.

If StrLen_or_IndPtr contains SQL_DATA_AT_EXEC,
then ParameterValuePtr is an application-defined
32-bit value that is associated with this parameter.
This 32-bit value is returned to the application via
a subsequent SQLParamData() call.

If SQLParamOptions() is called to specify multiple
values for the parameter, then ParameterValuePtr is
a pointer to a input buffer array of BufferLength
bytes.

¢ On output (InputOutputType set to
SQL_PARAM_OUTPUT, or
SQL_PARAM_INPUT_OUTPUT):

ParameterValuePtr points to the buffer where the
output parameter value of the stored procedure
will be stored.

If InputOutputType is set to
SQL_PARAM_OUTPUT, and both
ParameterValuePtr and StrLen_or_IndPtr are NULL
pointers, then the output parameter value or the
return value from the stored procedure call is
discarded.

28 Call Level Interface Guide and Reference Volume 2

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

Table 10. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLLEN BufferLength input For character and binary data, BufferLength specifies
the length of the ParameterValuePtr buffer (if is
treated as a single element) or the length of each
element in the ParameterValuePtr array (if the
application calls SQLParamOptions() to specify
multiple values for each parameter). For
non-character and non-binary data, this argument is
ignored -- the length of the ParameterValuePtr buffer
(if it is a single element) or the length of each
element in the ParameterValuePtr array (if
SQLParamOptions() is used to specify an array of
values for each parameter) is assumed to be the
length associated with the C data type.

For output parameters, BufferLength is used to
determine whether to truncate character or binary
output data in the following manner:

* For character data, if the number of bytes
available to return is greater than or equal to
BufferLength, the data in ParameterValuePtr is
truncated to BufferLength-1 bytes and is
null-terminated (unless null-termination has been
turned off).

* For binary data, if the number of bytes available
to return is greater than BufferLength, the data in
ParameterValuePtr is truncated to BufferLength
bytes.

Chapter 1. CLI and ODBC functions 29

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

Table 10. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLLEN * StrLen_or_IndPtr input
(deferred), If this is an input or input/output parameter:
output

(deferred), or
both

This is the pointer to the location which contains
(when the statement is executed) the length of the
parameter marker value stored at ParameterValuePtr.

To specify a null value for a parameter marker, this
storage location must contain SQL_NULL_DATA.

If ValueType is SQL_C_CHAR, this storage location
must contain either the exact length of the data
stored at ParameterValuePtr, or SQL_NTS if the
contents at ParameterValuePtr is null-terminated.

If ValueType indicates character data (explicitly, or
implicitly using SQL_C_DEFAULT), and this pointer
is set to NULL, it is assumed that the application
will always provide a null-terminated string in
ParameterValuePtr. This also implies that this
parameter marker will never have a null value.

If ParameterType denotes a graphic data type and the
ValueType is SQL_C_CHAR, the pointer to
StrLen_or_IndPtr can never be NULL and the
contents of StrLen_or_IndPtr can never hold
SQL_NTS. In general for graphic data types, this
length should be the number of octets that the
double byte data occupies; therefore, the length
should always be a multiple of 2. In fact, if the
length is odd, then an error will occur when the
statement is executed.

When SQLExecute() or SQLExecDirect() is called,
and StrLen_or_IndPtr points to a value of
SQL_DATA_AT_EXEC, the data for the parameter
will be sent with SQLPutData(). This parameter is
referred to as a data-at-execution parameter.

When SQLBindParameter() or SQLExtendedBind()
method is called through after setting the
SQL_ATTR_EXTENDED_INDICATORS attribute, the
StrLen_or_IndPtr argument allows
SQL_UNASSIGNED and SQL_DEFAULT_PARAM
constant to pass through the method.

30 Call Level Interface Guide and Reference Volume 2

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

Table 10. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLINTEGER * StrLen_or_IndPtr (cont) input
(deferred), If SQLSetStmtAttr() is used with the

output SQL_ATTR_PARAMSET_SIZE attribute to specify
(deferred), or multiple values for each parameter, StrLen_or_IndPtr
both points to an array of SQLINTEGER values where

each of the elements can be the number of bytes in
the corresponding ParameterValuePtr element
(excluding the null-terminator), or
SQL_NULL_DATA.

The StrLen_or_IndPtr represents the size of the
parameter. If you have an output parameter,
StrLen_or_IndPtr is a memory address (a pointer) to
an SQLINTEGER and the value will contain either:

* The length of the buffer (minus the NULL
terminator).

e -1 (SQL_NULL_DATA), which means that the
value is NULL, and you can ignore the actual
value.

* -4 (SQL_NO_TOTAL), which is only used for LOB
type of data, and is used to indicate that the
number of bytes available to return cannot be
determined.

Usage

SQLBindParameter() extends the capability of the deprecated SQLSetParam()

function, by providing a method of:

* Specifying whether a parameter is input, input / output, or output, necessary
for proper handling of parameters for stored procedures.

* Specifying an array of input parameter values when SQLSetStmtAttr() with the
SQL_ATTR_PARAMSET_SIZE attribute is used in conjunction with
SQLBindParameter().

This function can be called before SQLPrepare() if the data types and lengths of the
target columns in the WHERE or UPDATE clause, or the parameters for the stored
procedure are known. Otherwise, you can obtain the attributes of the target
columns or stored procedure parameters after the statement is prepared using
SQLDescribeParam(), and then bind the parameter markers.

Parameter markers are referenced by number (ParameterNumber) and are numbered
sequentially from left to right, starting at 1.

The C buffer data type given by ValueType must be compatible with the SQL data
type indicated by ParameterType, or an error will occur.

All parameters bound by this function remain in effect until one of the following
event takes place:

* SQLFreeStmt() is called with the SQL_RESET_PARAMS option, or

* SQLFreeHandle() is called with HandleType set to SQL_HANDLE_STMT, or
SQLFreeStmt() is called with the SQL_DROP option, or

* SQLBindParameter() is called again for the same ParameterNumber, or

Chapter 1. CLI and ODBC functions 31

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

» SQLSetDescField() is called, with the associated APD descriptor handle, to set
SQL_DESC_COUNT in the header field of the APD to zero (0).

A parameter can only be bound to either a file or a storage location, not both. The
most recent parameter binding function call determines the bind that is in effect.

Parameter type

The InputOutputType argument specifies the type of the parameter. All parameters
in the SQL statements that do not call procedures are input parameters. Parameters
in stored procedure calls can be input, input/output, or output parameters. Even
though the DB2 stored procedure argument convention typically implies that all
procedure arguments are input/output, the application programmer can still
choose to specify more exactly the input or output nature on the
SQLBindParameter() to follow a more rigorous coding style.

 If an application cannot determine the type of a parameter in a procedure call,
set InputOutputType to SQL_PARAM_INPUT; if the data source returns a value
for the parameter, CLI discards it.

 If an application has marked a parameter as SQL_PARAM_INPUT_OUTPUT or
SQL_PARAM_OUTPUT and the data source does not return a value, CLI sets
the StrLen_or_IndPtr buffer to SQL_NULL_DATA.

* If an application marks a parameter as SQL_PARAM_OUTPUT, data for the
parameter is returned to the application after the CALL statement has been
processed. If the ParameterValuePtr and StrLen_or_IndPtr arguments are both null
pointers, CLI discards the output value. If the data source does not return a

value for an output parameter, CLI sets the StrLen_or_IndPtr buffer to
SQL_NULL_DATA.

* For this function, ParameterValuePtr and StrLen_or_IndPtr are deferred arguments.
In the case where InputOutputType is set to SQL_PARAM_INPUT or
SQL_PARAM_INPUT_OUTPUT, the storage locations must be valid and contain
input data values when the statement is executed. This means either keeping the
SQLExecDirect() or SQLExecute() call in the same procedure scope as the
SQLBindParameter() calls, or, these storage locations must be dynamically
allocated or statically / globally declared.

Similarly, if InputOutputType is set to SQL_PARAM_OUTPUT or
SQL_PARAM_INPUT_OUTPUT, the ParameterValuePtr and StrLen_or_IndPtr
buffer locations must remain valid until the CALL statement has been executed.

ParameterValuePtr and StrLen_or_IndPtr arguments

ParameterValuePtr and StrLen_or_IndPtr are deferred arguments, so the storage
locations they point to must be valid and contain input data values when the
statement is executed. This means either keeping the SQLExecDirect() or
SQLExecute() call in the same application function scope as the
SQLBindParameter() calls, or dynamically allocating or statically or globally
declaring these storage locations.

Since the data in the variables referenced by ParameterValuePtr and
StrLen_or_IndPtr is not verified until the statement is executed, data content or
format errors are not detected or reported until SQLExecute() or SQLExecDirect() is
called.

An application can pass the value for a parameter either in the ParameterValuePtr
buffer or with one or more calls to SQLPutData(). In the latter case, these
parameters are data-at-execution parameters. The application informs CLI of a

32 Call Level Interface Guide and Reference Volume 2

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

data-at-execution parameter by placing the SQL_DATA_AT_EXEC value in the
buffer pointed to by StrLen_or_IndPtr. It sets the ParameterValuePtr input argument
to a 32-bit value which will be returned on a subsequent SQLParamData() call and
can be used to identify the parameter position.

When SQLBindParameter() is used to bind an application variable to an output
parameter for a stored procedure, CLI can provide some performance enhancement
if the ParameterValuePtr buffer is placed consecutively in memory after the
StrLen_or_IndPtr buffer. For example:

struct { SQLINTEGER StrLen_or_IndPtr;

SQLCHAR ParameterValuePtr[MAX BUFFER];
} column;

BufferLength argument

For character and binary C data, the BufferLength argument specifies the length of
the ParameterValuePtr buffer if it is a single element; or, if the application calls
SQLSetStmtAttr() with the SQL_ATTR_PARAMSET_SIZE attribute to specify
multiple values for each parameter, BufferLength is the length of each element in the
ParameterValuePtr array, including the null-terminator. If the application specifies
multiple values, BufferLength is used to determine the location of values in the
ParameterValuePtr array. For all other types of C data, the BufferLength argument is
ignored.

ColumnSize argument

When actual size of the target column or output parameter is not known, the
application can specify 0 for the length of the column. (ColumnSize set to 0).

If the column's data type is of fixed-length, the CLI driver will base the length
from the data type itself. However, setting ColumnSize to 0 means different things
when the data type is of type character, binary string or large object:

Input parameter
A 0 ColumnSize means that CLI will use the maximum length for the SQL
type provided as the size of the column or stored procedure parameter.
CLI will perform any necessary conversions using this size.

Output parameter (stored procedures only)
A 0 ColumnSize means that CLI will use BufferLength as the parameter's
size. Note that this means that the stored procedure must not return more
than BufferLength bytes of data or a truncation error will occur.

For Input-output parameter (store procedures only)
A 0 ColumnSize means that CLI will set both the input and output to
BufferLength as the target parameter. This means that the input data will be
converted to this new size if necessary before being sent to the stored
procedure and at most BufferLength bytes of data are expected to be
returned.

Setting ColumnSize to 0 is not recommended unless it is required; it causes CLI to
perform costly checking for the length of the data at run time.

Descriptors

How a parameter is bound is determined by fields of the APD and IPD. The
arguments in SQLBindParameter() are used to set those descriptor fields. The fields

Chapter 1. CLI and ODBC functions 33

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

can also be set by the SQLSetDescField() functions, although SQLBindParameter()
is more efficient to use because the application does not have to obtain a descriptor
handle to call SQLBindParameter().

Note: Calling SQLBindParameter() for one statement can affect other statements.
This occurs when the APD associated with the statement is explicitly allocated and
is also associated with other statements. Because SQLBindParameter() modifies the
fields of the APD, the modifications apply to all statements with which this
descriptor is associated. If this is not the required behavior, the application should
dissociate the descriptor from the other statements before calling
SQLBindParameter().

Conceptually, SQLBindParameter() performs the following steps in sequence:

» Calls SQLGetStmtAttr() to obtain the APD handle.

* Calls SQLGetDescField() to get the SQL_DESC_COUNT header field from the
APD, and if the value of the ParameterNumber argument exceeds the value of
SQL_DESC_COUNT, calls SQLSetDescField() to increase the value of
SQL_DESC_COUNT to ParameterNumber.

* Calls SQLSetDescField() multiple times to assign values to the following fields of
the APD:

— Sets SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE to the value of
ValueType, except that if ValueType is one of the concise identifiers of a
datetime, it sets SQL_DESC_TYPE to SQL_DATETIME, sets
SQL_DESC_CONCISE_TYPE to the concise identifier, and sets
SQL_DESC_DATETIME_INTERVAL_CODE to the corresponding datetime
subcode.

— Sets the SQL_DESC_DATA_PTR field to the value of ParameterValue.

— Sets the SQL_DESC_OCTET_LENGTH_PTR field to the value of
StrLen_or_Ind.

— Sets the SQL_DESC_INDICATOR_PTR field also to the value of StrLen_or_Ind.

The StrLen_or_Ind parameter specifies both the indicator information and the

length for the parameter value.

* Calls SQLGetStmtAttr() to obtain the IPD handle.

* Calls SQLGetDescField() to get the IPD's SQL_DESC_COUNT field, and if the
value of the ParameterNumber argument exceeds the value of
SQL_DESC_COUNT, calls SQLSetDescField() to increase the value of
SQL_DESC_COUNT to ParameterNumber.

 Calls SQLSetDescField() multiple times to assign values to the following fields of
the IPD:

— Sets SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE to the value of
ParameterType, except that if ParameterType is one of the concise identifiers of a
datetime, it sets SQL_DESC_TYPE to SQL_DATETIME, sets
SQL_DESC_CONCISE_TYPE to the concise identifier, and sets
SQL_DESC_DATETIME_INTERVAL_CODE to the corresponding datetime
subcode.

— Sets one or more of SQL_DESC_LENGTH, SQL_DESC_PRECISION, and
SQL_DESC_SCALE as appropriate for ParameterType.

If the call to SQLBindParameter() fails, the content of the descriptor fields that it
would have set in the APD are undefined, and the SQL_DESC_COUNT field of the
APD is unchanged. In addition, the SQL_DESC_LENGTH,
SQL_DESC_PRECISION, SQL_DESC_SCALE, and SQL_DESC_TYPE fields of the
appropriate record in the IPD are undefined and the SQL_DESC_COUNT field of
the IPD is unchanged.

34 Call Level Interface Guide and Reference Volume 2

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

Return codes
+ SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO

* SQL_ERROR
* SQL_INVALID_HANDLE
Diagnostics
Table 11. SQLBindParameter SQLSTATEs
SQLSTATE Description Explanation
07006 Invalid conversion. The conversion from the data value identified by the ValueType

argument to the data type identified by the ParameterType
argument is not a meaningful conversion. (For example,
conversion from SQL_C_TYPE_DATE to SQL_DOUBLE.)

40003 08501

Communication link failure.

The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY003 Program type out of range. The value specified by the argument ParameterNumber not a valid
data type or SQL_C_DEFAULT.

HY004 SQL data type out of range. The value specified for the argument ParameterType is not a valid
SQL data type.

HY009 Invalid argument value. The argument ParameterValuePtr was a null pointer and the
argument StrLen_or_IndPtr was a null pointer, and
InputOutputType is not SQL_PARAM_OUTPUT.

HYO010 Function sequence error. Function was called after SQLExecute() or SQLExecDirect() had
returned SQL_NEED_DATA, but data has not been sent for all
data-at-execution parameters.

HY013 Unexpected memory handling DB2 CLI was unable to access memory required to support

error. execution or completion of the function.

HY021 Inconsistent descriptor The descriptor information checked during a consistency check

information was not consistent.

HY090 Invalid string or buffer length. The value specified for the argument BufferLength was less than 0.

HY093 Invalid parameter number. The value specified for the argument ValueType was less than 1 or
greater than the maximum number of parameters supported by
the server.

HY094 Invalid scale value. The value specified for ParameterType was either SQL_DECIMAL

or SQL_NUMERIC and the value specified for DecimalDigits was
less than 0 or greater than the value for the argument ParamDef
(precision).

The value specified for ParameterType was
SQL_C_TYPE_TIMESTAMP and the value for ParameterType was
either SQL_CHAR or SQL_VARCHAR and the value for
DecimalDigits was less than 0 or greater than 9.

The value specified for ParameterType was
SQL_C_TIMESTAMP_EXT and the value for ParameterType was
either SQL_CHAR or SQL_VARCHAR and the value for
DecimalDigits was less than 0 or greater than 12.

Chapter 1. CLI and ODBC functions 35

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

Table 11. SQLBindParameter SQLSTATEs (continued)

SQLSTATE Description Explanation

HY104 Invalid precision value. The value specified for ParameterType was either SQL_DECIMAL
or SQL_NUMERIC and the value specified for ParamDef was less
than 1.

HY105 Invalid parameter type. InputOutputType is not one of SQL_PARAM_INPUT,
SQL_PARAM_OUTPUT, or SQL_PARAM_INPUT_OUTPUT.

HYC00 Driver not capable. CLI or data source does not support the conversion specified by

the combination of the value specified for the argument ValueType
and the value specified for the argument ParameterType.

The value specified for the argument ParameterType is not
supported by either CLI or the data source.

Restrictions

SQLBindParameter() replaces the deprecated SQLSetParam() API in CLI V5 and
later, and ODBC 2.0 and later.

An additional value for StrLen_or_IndPtr, SQL_DEFAULT_PARAM, was introduced
in ODBC 2.0, to indicate that the procedure is to use the default value of a
parameter, rather than a value sent from the application. Since DB2 stored
procedure arguments do not support default values, specification of this value for
StrLen_or_IndPtr argument will result in an error when the CALL statement is
executed since the SQL_DEFAULT_PARAM value will be considered an invalid
length.

ODBC 2.0 also introduced the SQL_LEN_DATA_AT_EXEC(length) macro to be
used with the StrLen_or_IndPtr argument. The macro is used to specify the sum
total length of the entire data that would be sent for character or binary C data via
the subsequent SQLPutData() calls. Since the DB2 ODBC driver does not need this
information, the macro is not needed. An ODBC application calls SQLGetInfo()
with the SQL_NEED_LONG_DATA_LEN option to check if the driver needs this
information. The DB2 ODBC driver will return 'N' to indicate that this information
is not needed by SQLPutData().

Example
SQLSMALLINT parameterl = 0;

[* o0 %/

cTiRC = SQLBindParameter(hstmt,
]-3
SQL_PARAM_INPUT,
SQL_C_SHORT,
SQL_SMALLINT,
0,
0,
¶meterl,
0’
NULL) ;

36 Call Level Interface Guide and Reference Volume 2

SQLBrowseConnect function (CLI) - Get required attributes to connect to data source

SQLBrowseConnect function (CLI) - Get required attributes to connect
to data source

Supports an iterative method of discovering and enumerating the attributes and
attribute values required to connect to a data source.

Specification:
+ CLI5.0
« ODBC 1

Each call to SQLBrowseConnect() returns successive levels of attributes and
attribute values. When all levels have been enumerated, a connection to the data
source is completed and a complete connection string is returned by
SQLBrowseConnect(). A return code of SQL_SUCCESS or
SQL_SUCCESS_WITH_INFO indicates that all connection information has been
specified and the application is now connected to the data source.

Unicode Equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLBrowseConnectW(). Refer to
“Unicode functions (CLI)” on page 5 for information about ANSI to Unicode

function mappings.

Syntax

SQLRETURN SQLBrowseConnect (
SQLHDBC ConnectionHandle, /* hdbc =/
SQLCHAR *InConnectionString, /% *szConnStrin */
SQLSMALLINT InConnectionStringlLength, /* dbConnStrin */
SQLCHAR *QutConnectionString, /* *szConnStrOut =/
SQLSMALLINT OutConnectionStringCapacity, /* dbConnStrOutMax */
SQLSMALLINT =*QutConnectionStringlLengthPtr); /* *pcbConnStrQut =/

Function Arguments

Table 12. SQLBrowseConnect arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle.

SQLCHAR * InConnectionString input Browse request connection string (see
InConnectionString argument).

SQLSMALLINT InConnectionStringLength | input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store *InConnectionString.

SQLCHAR * OutConnectionString output Pointer to a buffer in which to return the browse
result connection string (see OutConnectionString
argument).

SQLSMALLINT input Number of SQLCHAR elements (or SQLWCHAR

OutConnectionString elements for the Unicode variant of this function)
Capacity needed to store the *OutConnectionString buffer.
SQLSMALLINT * output The total number of elements (excluding the null
OutConnectionString termination character) available to return in
LengthPtr *OutConnectionString. If the number of elements

available to return is greater than or equal to
OutConnectionStringCapacity, the connection string in
*OutConnectionString is truncated to
OutConnectionStringCapacity minus the length of a
null termination character.

Chapter 1. CLI and ODBC functions 37

SQLBrowseConnect function (CLI) - Get required attributes to connect to data source

Usage

SQLBrowseConnect() requires an allocated connection. If SQLBrowseConnect()
returns SQL_ERROR, outstanding connection information is discarded, and the
connection is returned to an unconnected state.

When SQLBrowseConnect() is called for the first time on a connection, the browse
request connection string must contain the DSN keyword.

On each call to SQLBrowseConnect(), the application specifies the connection
attribute values in the browse request connection string. CLI returns successive
levels of attributes and attribute values in the browse result connection string; it
returns SQL_NEED_DATA as long as there are connection attributes that have not
yet been enumerated in the browse request connection string. The application uses
the contents of the browse result connection string to build the browse request
connection string for the next call to SQLBrowseConnect(). All mandatory
attributes (those not preceded by an asterisk in the OutConnectionString argument)
must be included in the next call to SQLBrowseConnect(). Note that the application
cannot simply copy the entire content of previous browse result connection strings
when building the current browse request connection string; that is, it cannot
specify different values for attributes set in previous levels.

When all levels of connection and their associated attributes have been
enumerated, CLI returns SQL_SUCCESS, the connection to the data source is
complete, and a complete connection string is returned to the application. The
connection string is suitable to use as an argument for SQLDriverConnect() in
conjunction with the SQL_DRIVER_NOPROMPT option to establish another
connection. The complete connection string cannot be used in another call to
SQLBrowseConnect(), however; if SQLBrowseConnect() were called again, the
entire sequence of calls would have to be repeated.

SQLBrowseConnect() also returns SQL._NEED_DATA if there are recoverable,
nonfatal errors during the browse process, for example, an invalid password
supplied by the application or an invalid attribute keyword supplied by the
application. When SQL_NEED_DATA is returned and the browse result connection
string is unchanged, an error has occurred and the application can call
SQLGetDiagRec() to return the SQLSTATE for browse-time errors. This permits the
application to correct the attribute and continue the browse.

An application can terminate the browse process at any time by calling
SQLDisconnect(). CLI will terminate any outstanding connection information and
return the connection to an unconnected state.

InConnectionString argument

A browse request connection string has the following syntax:

connection-string ::= attribute[] | attribute: connection-string

attribute ::= attribute-keyword=attribute-value
| DRIVER=[{]attribute-value[}]

attribute-keyword ::= DSN | UID | PWD | NEWPWD
| driver-defined-attribute-keyword

38 Call Level Interface Guide and Reference Volume 2

SQLBrowseConnect function (CLI) - Get required attributes to connect to data source

attribute-value ::= character-string
driver-defined-attribute-keyword ::= identifier
where

* character-string has zero or more SQLCHAR or SQLWCHAR elements

* identifier has one or more SQLCHAR or SQLWCHAR elements

* attribute-keyword is case insensitive

* attribute-value might be case sensitive

* the value of the DSN keyword does not consist solely of blanks

* NEWPWD is used as part of a change password request. The application can either
specify the new string to use, for example, NEWPWD=anewpass; or specify NEWPWD=;
and rely on a dialog box generated by the CLI driver to prompt for the new
password

Because of connection string and initialization file grammar, keywords and
attribute values that contain the characters [1{}(),;,?*=!@ should be avoided. Because
of the grammar in the system information, keywords and data source names
cannot contain the backslash (\) character. For CLI Version 2, braces are required
around the DRIVER keyword.

If any keywords are repeated in the browse request connection string, CLI uses the
value associated with the first occurrence of the keyword. If the DSN and DRIVER
keywords are included in the same browse request connection string, CLI uses
whichever keyword appears first.

OutConnectionString argument

The browse result connection string is a list of connection attributes. A connection
attribute consists of an attribute keyword and a corresponding attribute value. The
browse result connection string has the following syntax:

connection-string = attribute[;] | attribute; connection-string

attribute = [*[attribute-keyword=attribute-value
attribute-keyword ::= ODBC-attribute-keyword
| driver-defined-attribute-keyword

ODBC-attribute-keyword = {UID | PWD|[:localized-identifier]
driver-defined-attribute-keyword ::= identifier[:localized-identifier]

attribute-value ::= {attribute-value-list} | ?

(The braces are literal; they are returned by CLIL)

attribute-value-list ::= character-string [:localized-character

string] | character-string [:localized-character string], attribute-value-list

where

* character-string and localized-character string have zero or more SQLCHAR or
SQLWCHAR elements

* identifier and localized-identifier have one or more elements; attribute-keyword
is case insensitive

* attribute-value might be case sensitive

Because of connection string and initialization file grammar, keywords, localized
identifiers, and attribute values that contain the characters [I{}(),;?*=!@ should be
avoided. Because of the grammar in the system information, keywords and data
source names cannot contain the backslash (\) character.

Chapter 1. CLI and ODBC functions 39

SQLBrowseConnect function (CLI) - Get required attributes to connect to data source

The browse result connection string syntax is used according to the following
semantic rules:

If an asterisk (*) precedes an attribute-keyword, the attribute is optional, and can
be omitted in the next call to SQLBrowseConnect().

The attribute keywords UID and PWD have the same meaning as defined in
SQLDriverConnect().

When connecting to a DB2 database, only DSN, UID and PWD are required. Other
keywords can be specified but do not affect the connection.

ODBC-attribute-keywords and driver-defined-attribute-keywords include a
localized or user-friendly version of the keyword. This might be used by
applications as a label in a dialog box. However, UID, PWD, or the identifier alone
must be used when passing a browse request string to CLL

The {attribute-value-list} is an enumeration of actual values valid for the
corresponding attribute-keyword. Note that the braces ({}) do not indicate a list
of choices; they are returned by CLI. For example, it might be a list of server
names or a list of database names.

If the attribute-value is a single question mark (?), a single value corresponds to
the attribute-keyword. For example, UID=JohnS; PWD=Sesame.

Each call to SQLBrowseConnect() returns only the information required to satisfy
the next level of the connection process. CLI associates state information with
the connection handle so that the context can always be determined on each call.

Return codes

SQL_SUCCESS
SQL_SUCCESS_WITH_INFO
SQL_NEED_DATA
SQL_ERROR
SQL_INVALID_HANDLE

Diagnostics

Table 13. SQLBrowseConnect SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The buffer *OutConnectionString was not large enough to return
entire browse result connection string, so the string was truncated.
The buffer *OutConnectionStringLengthPtr contains the length of
the untruncated browse result connection string. (Function returns
SQL_SUCCESS_WITH_INFO.)

01500 Invalid connection string An invalid attribute keyword was specified in the browse request

attribute. connection string (InConnectionString). (Function returns

SQL_NEED_DATA.)
An attribute keyword was specified in the browse request
connection string (InConnectionString) that does not apply to the
current connection level. (Function returns SQL_NEED_DATA.)

01502 Option value changed. CLI did not support the specified value of the ValuePtr argument
in SQLSetConnectAttr() and substituted a similar value. (Function
returns SQL_SUCCESS_WITH_INFO.)

08001 Unable to connect to data source. CLI was unable to establish a connection with the data source.

08002 Connection in use. The specified connection had already been used to establish a

connection with a data source and the connection was open.

40 Call Level Interface Guide and Reference Volume 2

SQLBrowseConnect function (CLI) - Get required attributes to connect to data source

Table 13. SQLBrowseConnect SQLSTATEs (continued)

SQLSTATE Description Explanation

08004 The application server rejected The data source rejected the establishment of the connection for

establishment of the connection. implementation defined reasons.

08501 Communication link failure. The communication link between CLI and the data source to
which it was trying to connect failed before the function
completed processing.

28000 Invalid authorization Either the user identifier or the authorization string or both as

specification. specified in the browse request connection string
(InConnectionString) violated restrictions defined by the data
source.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HYO001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY013 Unexpected memory handling DB2 CLI was unable to access memory required to support

error. execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for argument InConnectionStringLength was

less than 0 and was not equal to SQL_NTS.

The value specified for argument OutConnectionStringCapacity was
less than 0.

Restrictions
None.

Example

SQLCHAR connInStr[255]; /* browse request connection string =/
SQLCHAR outStr[1025]; /* browse result connection string=*/

[* o0 %/

c1iRC = SQL_NEED_DATA;
while (c1iRC == SQL_NEED_DATA)

/* get required attributes to connect to data source */
cTiRC = SQLBrowseConnect (hdbc,

connInStr,
SQL_NTS,
outStr,

sizeof (outStr),
&indicator);

DBC_HANDLE_CHECK(hdbc, c1iRC);

printf(" So far, have connected %d times to database %s\n",
count++, dblAlias);
printf(" Resulting connection string:

/* if inadequate connection information was provided, exit

the program */

if (c1iRC == SQL_NEED_DATA)

{

printf(" You can provide other connection information

Chapter 1. CLI and ODBC functions 41

SQLBrowseConnect function (CLI) - Get required attributes to connect to data source

"here by setting connInStr\n");
break;

}

/* if the connection was successful, output confirmation =*/
if (c1iRC == SQL_SUCCESS)
{

printf(" Connected to the database

}
}

SQLBulkOperations function (CLI) - Add, update, delete, or fetch a set

of rows

Adds, updates, deletes, or fetches a set of rows on a keyset-driven cursor.

Specification:
+ CLI 6.0
+ ODBC 3.0

SQLBulkOperations() is used to perform the following operations on a
keyset-driven cursor:

* Add new rows

* Update a set of rows where each row is identified by a bookmark

* Delete a set of rows where each row is identified by a bookmark

* Fetch a set of rows where each row is identified by a bookmark

Syntax

SQLRETURN SQLBulkOperations (
SQLHSTMT StatementHandle,
SQLSMALLINT Operation);

Function arguments

Table 14. SQLBulkOperations arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLSMALLINT Operation Input Operation to perform:
* SQL_ADD
¢ SQL_UPDATE_BY_BOOKMARK
* SQL_DELETE_BY_BOOKMARK
* SQL_FETCH_BY_BOOKMARK

Usage

An application uses SQLBulkOperations() to perform the following operations on
the base table or view that corresponds to the current query in a keyset-driven
cursor:

* Add new rows

* Update a set of rows where each row is identified by a bookmark

* Delete a set of rows where each row is identified by a bookmark

* Fetch a set of rows where each row is identified by a bookmark

A generic application should first ensure that the required bulk operation is
supported. To do so, it can call SQLGetInfo() with an InfoType of
SQL_DYNAMIC_CURSOR_ATTRIBUTESI and

42 Call Level Interface Guide and Reference Volume 2

SQLBulkOperations function (CLI) - Add, update, delete, or fetch a set of rows

SQL_DYNAMIC_CURSOR_ATTRIBUTES?2 (for example, to see if
SQL_CA1_BULK_UPDATE_BY_BOOKMARK is returned)

After a call to SQLBulkOperations(), the block cursor position is undefined. The
application has to call SQLFetchScroll() to set the cursor position. An application
should only call SQLFetchScroll() with a FetchOrientation argument of
SQL_FETCH_FIRST, SQL_FETCH_LAST, SQL_FETCH_ABSOLUTE, or
SQL_FETCH_BOOKMARK. The cursor position is undefined if the application
calls SQLFetch(), or SQLFetchScroll() with a FetchOrientation argument of
SQL_FETCH_PRIOR, SQL_FETCH_NEXT, or SQL_FETCH_RELATIVE.

A column can be ignored in bulk operations (calls to SQLBulkOperations()). To do
so, call SQLBindCol() and set the column length/indicator buffer (StrLen_or_IndPtr)
to SQL_COLUMN_IGNORE. This does not apply to
SQL_DELETE_BY_BOOKMARK bulk operation.

It is not necessary for the application to set the
SQL_ATTR_ROW_OPERATION_PTR statement attribute when calling
SQLBulkOperations() because rows cannot be ignored when performing bulk
operations with this function.

The buffer pointed to by the SQL_ATTR_ROWS_FETCHED_PTR statement
attribute contains the number of rows affected by a call to SQLBulkOperations().

When the Operation argument is SQL_ADD or SQL_UPDATE_BY_BOOKMARK,
and the select-list of the query specification associated with the cursor contains
more than one reference to the same column, an error is generated.

Return codes

+ SQL_SUCCESS

+ SQL_SUCCESS_WITH_INFO
+ SQL_NEED_DATA

+ SQL_STILL_EXECUTING

+ SQL_ERROR

+ SQL_INVALID _HANDLE

Diagnostics
Table 15. SQLBulkOperations SQLSTATEs
SQLSTATE Description Explanation
01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)
01004 Data truncated. The Operation argument was SQL_FETCH_BY_BOOKMARK, and

string or binary data returned for a column or columns with a
data type of SQL_C_CHAR or SQL_C_BINARY resulted in the
truncation of non-blank character or non-NULL binary data.

01507 Invalid conversion. The Operation argument was SQL_FETCH_BY_BOOKMARK, the
data type of the application buffer was not SQL_C_CHAR or
SQL_C_BINARY, and the data returned to application buffers for
one or more columns was truncated. (For numeric C data types,
the fractional part of the number was truncated. For time and
timestamp data types, the fractional portion of the time was
truncated.)

(Function returns SQL_SUCCESS_WITH_INFO.)

Chapter 1. CLI and ODBC functions 43

SQLBulkOperations function (CLI) - Add, update, delete, or fetch a set of rows

Table 15. SQLBulkOperations SQLSTATEs (continued)

SQLSTATE Description

Explanation

07006 Restricted data type attribute
violation.

The Operation argument was SQL_FETCH_BY_BOOKMARK, and
the data value of a column in the result set could not be
converted to the data type specified by the TargetType argument in
the call to SQLBindCo1().

The Operation argument was SQL_UPDATE_BY_BOOKMARK or
SQL_ADD, and the data value in the application buffers could not
be converted to the data type of a column in the result set.

07009 Invalid descriptor index.

The argument Operation was SQL_ADD and a column was bound
with a column number greater than the number of columns in the
result set, or the column number was less than 0.

21502 Degree of derived table does not
match column list.

The argument Operation was SQL_UPDATE_BY_BOOKMARK;
and no columns were updatable because all columns were either
unbound, read-only, or the value in the bound length/indicator
buffer was SQL_COLUMN_IGNORE.

22001 String data right truncation.

The assignment of a character or binary value to a column in the
result set resulted in the truncation of non-blank (for characters)
or non-null (for binary) characters or bytes.

22003 Numeric value out of range.

The Operation argument was SQL_ADD or
SQL_UPDATE_BY_BOOKMARK, and the assignment of a
numeric value to a column in the result set caused the whole (as
opposed to fractional) part of the number to be truncated.

The argument Operation was SQL_FETCH_BY_BOOKMARK, and
returning the numeric value for one or more bound columns
would have caused a loss of significant digits.

22007 Invalid datetime format.

The Operation argument was SQL_ADD or
SQL_UPDATE_BY_BOOKMARK, and the assignment of a date or
timestamp value to a column in the result set caused the year,
month, or day field to be out of range.

The argument Operation was SQL_FETCH_BY_BOOKMARK, and
returning the date or timestamp value for one or more bound
columns would have caused the year, month, or day field to be
out of range.

22008 Date/time field overflow.

The Operation argument was SQL_ADD or
SQL_UPDATE_BY_BOOKMARK, and the performance of
datetime arithmetic on data being sent to a column in the result
set resulted in a datetime field (the year, month, day, hour,
minute, or second field) of the result being outside the permissible
range of values for the field, or being invalid based on the natural
rules for datetimes based on the Gregorian calendar.

The Operation argument was SQL_FETCH_BY_BOOKMARK, and
the performance of datetime arithmetic on data being retrieved
from the result set resulted in a datetime field (the year, month,
day, hour, minute, or second field) of the result being outside the
permissible range of values for the field, or being invalid based on
the natural rules for datetimes based on the Gregorian calendar.

44 Call Level Interface Guide and Reference Volume 2

SQLBulkOperations function (CLI) - Add, update, delete, or fetch a set of rows

Table 15. SQLBulkOperations SQLSTATEs (continued)

SQLSTATE

Description

Explanation

22018

Invalid character value for cast
specification.

The Operation argument was SQL_FETCH_BY_BOOKMARK; the
C type was an exact or approximate numeric or datetime data
type; the SQL type of the column was a character data type; and
the value in the column was not a valid literal of the bound C

type.

The argument Operation was SQL_ADD or
SQL_UPDATE_BY_BOOKMARK; the SQL type was an exact or
approximate numeric or datetime data type; the C type was
SQL_C_CHAR; and the value in the column was not a valid literal
of the bound SQL type.

23000

Integrity constraint violation.

The Operation argument was SQL_ADD,
SQL_DELETE_BY_BOOKMARK, or
SQL_UPDATE_BY_BOOKMARK, and an integrity constraint was
violated.

The Operation argument was SQL_ADD, and a column that was
not bound is defined as NOT NULL and has no default.

The Operation argument was SQL_ADD, the length specified in
the bound StrLen_or_IndPtr buffer was SQL_COLUMN_IGNORE,
and the column did not have a default value.

24000

Invalid cursor state.

The StatementHandle was in an executed state but no result set was
associated with the StatementHandle. SQLFetch() or
SQLFetchScrol1() was not called by the application after
SQLExecute() or SQLExecDirect().

40001

Serialization failure.

The transaction was rolled back due to a resource deadlock with
another transaction.

40003

Statement completion unknown.

The associated connection failed during the execution of this
function and the state of the transaction cannot be determined.

42000

Syntax error or access violation.

CLI was unable to lock the row as needed to perform the
operation requested in the Operation argument.

44000

WITH CHECK OPTION
violation.

The Operation argument was SQL_ADD or
SQL_UPDATE_BY_BOOKMARK, and the insert or update was
performed on a viewed table or a table derived from the viewed
table which was created by specifying WITH CHECK OPTION,
such that one or more rows affected by the insert or update will
no longer be present in the viewed table.

HY000

General error.

An error occurred for which there was no specific SQLSTATE and
for which no implementation-specific SQLSTATE was defined. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001

Memory allocation error.

DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY008

Operation was Canceled.

Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,

SQLCancel () was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

Chapter 1. CLI and ODBC functions 45

SQLBulkOperations function (CLI) - Add, update, delete, or fetch a set of rows

Table 15. SQLBulkOperations SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error.
The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.
The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.
An asynchronously executing function (not this one) was called
For the StatementHandle and was still executing when this function
was called.
The function was called before a statement was prepared on the
statement handle.

HYO011 Operation invalid at this time. The SQL_ATTR_ROW_STATUS_PTR statement attribute was set
between calls to SQLFetch() or SQLFetchScrol1() and
SQLBulkOperations.

HY013 Unexpected memory handling CLI was unable to access memory required to support execution

error. or completion of this function.
HY090 Invalid string or buffer length. The Operation argument was SQL_ADD or

SQL_UPDATE_BY_BOOKMARK, a data value was a null pointer,
and the column length value was not 0, SQL_DATA_AT_EXEC,
SQL_COLUMN_IGNORE, SQL_NULL_DATA, or less than or
equal to SQL_LEN_DATA_AT_EXEC_OFFSET.

The Operation argument was SQL_ADD or
SQL_UPDATE_BY_BOOKMARK, a data value was not a null
pointer; the C data type was SQL_C_BINARY or SQL_C_CHAR;
and the column length value was less than 0, but not equal to
SQL_DATA_AT_EXEC, SQL_COLUMN_IGNORE, SQL_NTS, or
SQL_NULL_DATA, or less than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

The value in a length/indicator buffer was SQL_DATA_AT_EXEC;
the SQL type was either SQL_LONGVARCHAR,
SQL_LONGVARBINARY, or a long data type; and the
SQL_NEED_LONG_DATA_LEN information type in SQLGetInfo()
was “Y”.

The Operation argument was SQL_ADD, the
SQL_ATTR_USE_BOOKMARKS statement attribute was set to
SQL_UB_VARIABLE, and column 0 was bound to a buffer whose
length was not equal to the maximum length for the bookmark
for this result set. (This length is available in the
SQL_DESC_OCTET_LENGTH field of the IRD, and can be
obtained by calling SQLDescribeCol(), SQLCoTAttribute(), or
SQLGetDescField().)

46 Call Level Interface Guide and Reference Volume 2

SQLBulkOperations function (CLI) - Add, update, delete, or fetch a set of rows

Table 15. SQLBulkOperations SQLSTATEs (continued)

SQLSTATE

Description Explanation

HY092

Invalid attribute identifier. The value specified for the Operation argument was invalid.

The Operation argument was SQL_ADD,
SQL_UPDATE_BY_BOOKMARK, or
SQL_DELETE_BY_BOOKMARK, and the
SQL_ATTR_CONCURRENCY statement attribute was set to
SQL_CONCUR_READ_ONLY.

The Operation argument was SQL_DELETE_BY_BOOKMARK,
SQL_FETCH_BY_BOOKMARK, or
SQL_UPDATE_BY_BOOKMARK, and the bookmark column was
not bound or the SQL_ATTR_USE_BOOKMARKS statement
attribute was set to SQL_UB_OFE.

HYCO00

Optional feature not CLI or data source does not support the operation requested in
implemented. the Operation argument.

HYTO00

Timeout expired. The query timeout period expired before the data source returned

the result set. The timeout period is set through SQLSetStmtAttr()
with an Attribute argument of SQL_ATTR_QUERY_TIMEOUT.

HYTO01

Connection timeout expired. The connection timeout period expired before the data source

responded to the request. The connection timeout period is set
through SQLSetConnectAttr(),
SQL_ATTR_CONNECTION_TIMEOUT.

Restrictions

None.

SQLCancel function (CLI) - Cancel statement

Facilitates premature termination of the data-at-execution sequence for sending and
retrieving long data in pieces. It can also be used to cancel a function called in a
different thread.

Specification:
« CLI11

+ ODBC 1.0

+ ISO CLI

Syntax
SQLRETURN SQLCancel (SQLHSTMT StatementHandle); /% hstmt *x/

Function arguments

Table 16. SQLCancel arguments

Data type Argument Use Description
SQLHSTMT StatementHandle input Statement handle
Usage

After SQLExecDirect() or SQLExecute() returns SQL_NEED_DATA to solicit for
values for data-at-execution parameters, SQLCancel() can be used to cancel the

Chapter 1. CLI and ODBC functions 47

SQLCancel function (CLI) - Cancel statement

data-at-execution sequence for sending and retrieving long data in pieces.
SQLCancel() can be called any time before the final SQLParamData() in the
sequence. After the cancellation of this sequence, the application can call
SQLExecute() or SQLExecDirect() to re-initiate the data-at-execution sequence.

If no processing is being done on the statement, SQLCancel() has no effect.
Applications should not call SQLCancel() to close a cursor, but rather
SQLFreeStmt() should be used.

Canceling queries on host databases

To call SQLCancel () against a server which does not have native interrupt support
(such as DB2 for z/0S®, Version 7 and earlier, and IBM DB2 for IBM i), the
INTERRUPT_ENABLED option must be set when cataloging the DCS database entry for
the server.

When the INTERRUPT_ENABLED option is set and SQLCancel () is received by the
server, the server drops the connection and rolls back the unit of work. The
application receives an SQL30081N error indicating that the connection to the
server has been terminated. In order for the application to process additional
database requests, the application must establish a new connection with the
database server.

Canceling asynchronous processing

After an application calls a function asynchronously, it calls the function repeatedly
to determine whether it has finished processing. If the function is still processing, it
returns SQL_STILL_EXECUTING.

After any call to the function that returns SQL_STILL_EXECUTING, an application
can call SQLCancel() to cancel the function. If the cancel request is successful,
SQL_SUCCESS is returned. This message does not indicate that the function was
actually canceled; it indicates that the cancel request was processed. The
application must then continue to call the original function until the return code is
not SQL_STILL_EXECUTING. If the function was successfully canceled, the return
code is for that function is SQL_ERROR and SQLSTATE HY008 (Operation was
Canceled.). If the function succeeded by completing its normal processing, the
return code is SQL_SUCCESS or SQL_SUCCESS_WITH_INFO. If the function
failed for reasons other than cancellation, the return code is SQL_ERROR and an
SQLSTATE other than HY008 (Operation was Canceled.).

Canceling functions in multithread applications

In a multithread application, the application can cancel a function that is running
synchronously on a statement. To cancel the function, the application calls
SQLCancel() with the same statement handle as that used by the target function,
but on a different thread. How the function is canceled depends upon the
operating system. The return code of the SQLCancel() call indicates only whether
CLI processed the request successfully. Only SQL_SUCCESS or SQL_ERROR can be
returned; no SQLSTATEs are returned. If the original function is canceled, it
returns SQL_ERROR and SQLSTATE HY008 (Operation was Canceled.).

If an SQL statement is being executed when SQLCancel() is called on another
thread to cancel the statement execution, it is possible that the execution succeeds
and returns SQL_SUCCESS, while the cancel is also successful. In this case, CLI
assumes that the cursor opened by the statement execution is closed by the cancel,

48 Call Level Interface Guide and Reference Volume 2

SQLCancel function (CLI) - Cancel statement

so the application will not be able to use the cursor.

Return codes
+ SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO
* SQL_INVALID_HANDLE

+ SQL_ERROR

Note: SQL_SUCCESS means that the cancel request was processed, not that the
function call was canceled.

Diagnostics
Table 17. SQLCancel SQLSTATEs

SQLSTATE Description

Explanation

40003 08501 Communication link failure.

The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY013 Unexpected memory handling DB2 CLI was unable to access memory required to support

error. execution or completion of the function.

HY018 Server declined cancel request. ~ The server declined the cancel request.

HY506 Error closing a file. An error occurred when closing the temporary file generated by
CLI when inserting LOB data in pieces using SQLParamData()/
SQLPutData().

Restrictions
None.
Example

/* cancel the SQL_DATA_AT_EXEC state for hstmt =/
c1iRC = SQLCancel (hstmt);

SQLCloseCursor function (CLI) - Close cursor and discard pending

results

Closes a cursor that has been opened on a statement and discards pending results.

Specification:
+ CLI5.0

+ ODBC 3.0

+ ISO CLI

Syntax

SQLRETURN SQLCloseCursor (SQLHSTMT StatementHandle); /* hStmt */

Chapter 1. CLI and ODBC functions 49

SQLCloseCursor function (CLI) - Close cursor and discard pending results

Function arguments

Table 18. SQLCloseCursor arguments

Data type Argument Use Description
SQLHSTMT StatementHandle input Statement handle
Usage

After an application calls SQLCloseCursor(), the application can reopen the cursor
later by executing a SELECT statement again with the same or different parameter
values. SQLCloseCursor() can be called before a transaction is completed.

SQLCloseCursor() returns SQLSTATE 24000 (Invalid cursor state) if no cursor is
open. Calling SQLCloseCursor() is equivalent to calling SQLFreeStmt () with the
SQL_CLOSE option, with the exception that SQLFreeStmt () with SQL_CLOSE has
no effect on the application if no cursor is open on the statement, while
SQLCloseCursor() returns SQLSTATE 24000 (Invalid cursor state).

The statement attribute SQL_ATTR_CLOSE_BEHAVIOR can be used to indicate
whether or not CLI should attempt to release read locks acquired during a cursor's
operation when the cursor is closed. If SQL_ATTR_CLOSE_BEHAVIOR is set to
SQL_CC_RELEASE then the database manager will attempt to release all read
locks (if any) that have been held for the cursor.

Return codes
+ SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO

* SQL_ERROR
* SQL_INVALID_HANDLE
Diagnostics

Table 19. SQLCloseCursor SQLSTATEs

SQLSTATE Description Explanation

01000 General warning Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state. No cursor was open on the StatementHandle. (This is returned only
by CLI Version 5 or later.)

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY010 Function sequence error. An asynchronously executing function was called for the

StatementHandle and was still executing when this function was
called.

SQLExecute() or SQLExecDirect() was called for the
StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution
parameters or columns.

50 Call Level Interface Guide and Reference Volume 2

SQLCloseCursor function (CLI) - Close cursor and discard pending results

Table 19. SQLCloseCursor SQLSTATEs (continued)

SQLSTATE Description Explanation
HY013 Unexpected memory handling DB2 CLI was unable to access memory required to support
error. execution or completion of the function.
Restrictions
None.
Example

/* close the cursor */
cTiRC = SQLCloseCursor(hstmt);

SQLColAttribute function (CLI) - Return a column attribute

Returns descriptor information for a column in a result set. Descriptor information
is returned as a character string, a 32-bit descriptor-dependent value, or an integer
value.

Specification:
« CLI5.0

« ODBC 3.0

« ISO CLI

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLColAttributeW(). See “Unicode
functions (CLI)” on page 5 for information about ANSI to Unicode function

mappings.
Syntax

In a Windows 64-bit environment, the syntax is as follows:
SQLRETURN SQLColAttribute (

SQLHSTMT StatementHandle, /* hstmt =/
SQLSMALLINT ColumnNumber, /* icol =/
SQLSMALLINT FieldIdentifier, /* fDescType */
SQLPOINTER CharacterAttributePtr, /* rgbDesc */
SQLSMALLINT BufferLength, /* cbDescMax */
SQLSMALLINT *StringlengthPtr, /* pcbDesc x/
SQLLEN *NumericAttributePtr); /* pfDesc */

The syntax for all other platforms is as follows:
SQLRETURN SQLColAttribute (

SQLHSTMT StatementHandle, /* hstmt =/
SQLSMALLINT ColumnNumber, /* icol =/
SQLSMALLINT FieldIdentifier, /* fDescType */
SQLPOINTER CharacterAttributePtr, /* rgbDesc */
SQLSMALLINT BufferLength, /* cbDescMax */
SQLSMALLINT *StringlLengthPtr, /* pchDesc */
SQLPOINTER NumericAttributePtr); /* pfDesc */

Chapter 1. CLI and ODBC functions 51

SQLColAttribute function (CLI) - Return a column

Function arguments
Table 20. SQLColAttribute arguments

attribute

Data type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement handle.

SQLUSMALLINT

ColumnNumber

input

The number of the record in the IRD from which the
field value is to be retrieved. This argument
corresponds to the column number of result data,
ordered sequentially from left to right, starting at 1.
Columns can be described in any order.

Column 0 can be specified in this argument, but all
values except SQL_DESC_TYPE and
SQL_DESC_OCTET_LENGTH will return undefined
values.

SQLSMALLINT

Fieldldentifier

input

The field in row ColumnNumber of the IRD that is to
be returned (see Table 21 on page 53).

SQLPOINTER

CharacterAttributePtr

output

Pointer to a buffer in which to return the value in
the Fieldldentifier field of the ColumnNumber row of
the IRD, if the field is a character string. Otherwise,
the field is unused.

SQLINTEGER

BufferLength

input

Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the *CharacterAttributePtr buffer, if
the field is a character string. Otherwise, the field is
ignored.

SQLSMALLINT *

StringLengthPtr

output

Pointer to a buffer in which to return the total
number of bytes (excluding the byte count of the
null termination character for character data)
available to return in *CharacterAttributePtr.

For character data, if the number of bytes available
to return is greater than or equal to BufferLength, the
descriptor information in *CharacterAttributePtr is
truncated to BufferLength minus the length of a null
termination character and is null-terminated by CLL

For all other types of data, the value of BufferLength
is ignored and CLI assumes the size of
*CharacterAttributePtr is 32 bits.

SQLLEN* (Window
64-bit) or
SQLPOINTER

NumericAttributePtr

output

Pointer to a buffer in which to return the value in
the Fieldldentifier field of the ColumnNumber row of
the IRD, if the field is a numeric descriptor type,
such as SQL_DESC_COLUMN_LENGTH. Otherwise,
the field is unused.

Usage

SQLColAttribute() returns information either in *NumericAttributePtr or in
*CharacterAttributePtr. Integer information is returned in *NumericAttributePtr as a
32-bit, signed value; all other formats of information are returned in
*CharacterAttributePtr. When information is returned in *NumericAttributePtr, CLI
ignores CharacterAttributePtr, BufferLength, and StringLengthPtr When information is
returned in *CharacterAttributePtr, CLI ignores NumericAttributePtr.

52 Call Level Interface Guide and Reference Volume 2

SQLColAttribute function (CLI) - Return a column attribute

SQLColAttribute() returns values from the descriptor fields of the IRD. The
function is called with a statement handle rather than a descriptor handle. The
values returned by SQLColAttribute() for the Fieldldentifier values, listed in the
following table, can also be retrieved by calling SQLGetDescField() with the
appropriate IRD handle.

The currently defined descriptor types, the version of CLI in which they were
introduced (perhaps with a different name), and the arguments in which
information is returned for them are shown in the following table; it is expected
that more descriptor types will be defined to take advantage of different data

sources.

CLI must return a value for each of the descriptor types. If a descriptor type does
not apply to a data source, then, unless otherwise stated, CLI returns 0 in
*StringLengthPtr or an empty string in *CharacterAttributePtr.

The following table lists the descriptor types returned by SQLColAttribute().

Table 21. SQLColAttribute arguments

Fieldldentifier

Information
returned in

Description

SQL_DESC_AUTO_UNIQUE_VALUE
(DB2 CLI v2)

Numeric
AttributePtr

Indicates if the column data type is an auto
increment data type.

SQL_FALSE is returned in NumericAttributePtr for all
DB2 SQL data types. Currently CLI is not able to
determine if a column is an identity column,
therefore SQL_FALSE is always returned. This
limitation does not fully conform to the ODBC
specifications. Future versions of CLI for UNIX and
Windows servers will provide auto-unique support.

SQL_DESC_BASE_COLUMN_NAME
(DB2 CLI v5)

Character
AttributePtr

The base column name for the set column. If a base
column name does not exist (as in the case of
columns that are expressions), then this variable
contains an empty string.

This information is returned from the
SQL_DESC_BASE_COLUMN_NAME record field of
the IRD, which is a read-only field.

SQL_DESC_BASE_TABLE_NAME (DB2
CLI v5)

Character
AttributePtr

The name of the base table that contains the column.
If the base table name cannot be defined or is not
applicable, then this variable contains an empty
string.

SQL_DESC_CASE_SENSITIVE (DB2 CLI
v2)

Numeric
AttributePtr

Indicates if the column data type is a case sensitive
data type.

Either SQL_TRUE or SQL_FALSE will be returned in
NumericAttributePtr depending on the data type.

Case sensitivity does not apply to graphic data types,
SQL_FALSE is returned.

SQL_FALSE is returned for non-character data types
and for the XML data type.

SQL_DESC_CATALOG_NAME (DB2 CLI
v2)

Character
AttributePtr

An empty string is returned since CLI only supports
two part naming for a table.

Chapter 1. CLI and ODBC functions 53

SQLColAttribute function (CLI) - Return a column attribute

Table 21. SQLColAttribute arguments (continued)

Fieldldentifier

Information
returned in

Description

SQL_DESC_CONCISE_TYPE (DB2 CLI
v5)

Numeric
AttributePtr

The concise data type.

For the datetime data types, this field returns the
concise data type, for example, SQL_TYPE_TIME.

This information is returned from the
SQL_DESC_CONCISE_TYPE record field of the IRD.

SQL_DESC_COUNT (DB2 CLI v2)

Numeric
AttributePtr

The number of columns in the result set is returned
in NumericAttributePtr.

SQL_DESC_DISPLAY_SIZE (DB2 CLI v2)

Numeric
AttributePtr

The maximum number of bytes needed to display
the data in character form is returned in
NumericAttributePtr.

Refer to the data type display size table for the
display size of each of the column types.

SQL_DESC_DISTINCT_TYPE (DB2 CLI
v2)

Character
AttributePtr

The user defined distinct type name of the column is
returned in CharacterAttributePtr. If the column is a
built-in SQL type and not a user defined distinct
type, an empty string is returned.

Note: This is an IBM defined extension to the list of
descriptor attributes defined by ODBC.

SQL_DESC_FIXED_PREC_SCALE (DB2
CLI v2)

Numeric
AttributePtr

SQL_TRUE if the column has a fixed precision and
non-zero scale that are data-source-specific.

SQL_FALSE if the column does not have a fixed
precision and non-zero scale that are
data-source-specific.

SQL_FALSE is returned in NumericAttributePtr for all
DB2 SQL data types.

SQL_DESC_LABEL (DB2 CLI v2)

Character
AttributePtr

The column label is returned in CharacterAttributePtr.
If the column does not have a label, the column
name or the column expression is returned. If the
column is unlabeled and unnamed, an empty string
is returned.

SQL_DESC_LENGTH (DB2 CLI v2)

Numeric
AttributePtr

A numeric value that is either the maximum or
actual element (SQLCHAR or SQLWCHAR) length of
a character string or binary data type. It is the
maximum element length for a fixed-length data
type, or the actual element length for a
variable-length data type. Its value always excludes
the null termination byte that ends the character
string.

This information is returned from the
SQL_DESC_LENGTH record field of the IRD.

This value is 0 for the XML data type.

SQL_DESC_LITERAL_PREFIX (DB2 CLI
v5)

Character
AttributePtr

This VARCHAR(128) record field contains the
character or characters that CLI recognizes as a prefix
for a literal of this data type. This field contains an
empty string for a data type for which a literal prefix
is not applicable.

54 Call Level Interface Guide and Reference Volume 2

SQLColAttribute function (CLI) - Return a column attribute

Table 21. SQLColAttribute arguments (continued)

Fieldldentifier

Information
returned in

Description

SQL_DESC_LITERAL_SUFFIX (DB2 CLI
v5)

Character
AttributePtr

This VARCHAR(128) record field contains the
character or characters that CLI recognizes as a suffix
for a literal of this data type. This field contains an
empty string for a data type for which a literal suffix
is not applicable.

SQL_DESC_LOCAL_TYPE_NAME (DB2
CLI v5)

Character
AttributePtr

This VARCHAR(128) record field contains any
localized (native language) name for the data type
that might be different from the regular name of the
data type. If there is no localized name, then an
empty string is returned. This field is for display
purposes only. The character set of the string is
locale-dependent and is typically the default
character set of the server.

SQL_DESC_NAME (DB2 CLI v2)

Character
AttributePtr

The name of the column ColumnNumber is returned
in CharacterAttributePtr. If the column is an
expression, then the column number is returned.

In either case, SQL_DESC_UNNAMED is set to
SQL_NAMED. If there is no column name or a
column alias, an empty string is returned and
SQL_DESC_UNNAMED is set to SQL_UNNAMED.

This information is returned from the
SQL_DESC_NAME record field of the IRD.

SQL_DESC_NULLABLE (DB2 CLI v2)

Numeric
AttributePtr

If the column identified by ColumnNumber can
contain nulls, then SQL_NULLABLE is returned in
NumericAttributePtr.

If the column is constrained not to accept nulls, then
SQL_NO_NULLS is returned in NumericAttributePtr.

This information is returned from the
SQL_DESC_NULLABLE record field of the IRD.

SQL_DESC_NUM._PREX_RADIX (DB2
CLI v5)

Numeric
AttributePtr

* If the data type in the SQL_DESC_TYPE field is an
approximate data type, this SQLINTEGER field
contains a value of 2 because the
SQL_DESC_PRECISION field contains the number
of bits.

 If the data type in the SQL_DESC_TYPE field is an
exact numeric data type, this field contains a value
of 10 because the SQL_DESC_PRECISION field
contains the number of decimal digits.

Chapter 1. CLI and ODBC functions 55

SQLColAttribute function (CLI) - Return a column attribute

Table 21. SQLColAttribute arguments (continued)

FieldIdentifier

Information
returned in

Description

SQL_DESC_OCTET_LENGTH (DB2 CLI
v2)

Numeric
AttributePtr

The number of bytes of data associated with the
column is returned in NumericAttributePtr. This is the
length in bytes of data transferred on the fetch or
SQLGetData() for this column if SQL_C_DEFAULT is
specified as the C data type. Refer to data type
length table for the length of each of the SQL data

types.

If the column identified in ColumnNumber is a fixed
length character or binary string, (for example,
SQL_CHAR or SQL_BINARY) the actual length is
returned.

If the column identified in ColumnNumber is a
variable length character or binary string, (for
example, SQL_VARCHAR or SQL_BLOB) the
maximum length is returned.

If the column identified in ColumnNumber is of type
SQL_XML, 0 is returned.

SQL_DESC_PRECISION (DB2 CLI v2)

Numeric
AttributePtr

The precision in units of digits is returned in
NumericAttributePtr if the column is SQL_DECIMAL,
SQL_NUMERIC, SQL_DOUBLE, SQL_FLOAT,
SQL_INTEGER, SQL_REAL or SQL_SMALLINT.

If the column is a character SQL data type, then the
precision returned in NumericAttributePtr, indicates
the maximum number of SQLCHAR or SQLWCHAR
elements the column can hold.

If the column is a graphic SQL data type, then the
precision returned in NumericAttributePtr, indicates
the maximum number of double-byte elements the
column can hold.

If the column is the XML data type, the precision is
0.

Refer to data type precision table for the precision of
each of the SQL data types.

This information is returned from the
SQL_DESC_PRECISION record field of the IRD.

SQL_DESC_SCALE (DB2 CLI v2)

Numeric
AttributePtr

The scale attribute of the column is returned. Refer to
the data type scale table for the scale of each of the
SQL data types.

This information is returned from the SCALE record
field of the IRD.

SQL_DESC_SCHEMA_NAME (DB2 CLI
v2)

Character
AttributePtr

The schema of the table that contains the column is
returned in CharacterAttributePtr. The name of the
schema that contains the table is returned. If the
schema name is of less than 8 characters, then spaces
are appended as extra characters.

56 Call Level Interface Guide and Reference Volume 2

SQLColAttribute function (CLI) - Return a column attribute

Table 21. SQLColAttribute arguments (continued)

Information

Fieldldentifier returned in Description

SQL_DESC_SEARCHABLE (DB2 CLI v2) |Numeric Indicates if the column data type is searchable:
AttributePtr * SQL_PRED_NONE (SQL_UNSEARCHABLE in

DB2 CLI v2) if the column cannot be used in a
WHERE clause.

* SQL_PRED_CHAR (SQL_LIKE_ONLY in DB2 CLI
v2) if the column can be used in a WHERE clause
only with the LIKE predicate.

* SQL_PRED_BASIC (SQL_ALL_EXCEPT_LIKE in
DB2 CLI v2) if the column can be used in a
WHERE clause with all comparison operators
except LIKE.

¢ SQL_SEARCHABLE if the column can be used in
a WHERE clause with any comparison operator.

SQL_DESC_TABLE_NAME (DB2 CLI v2) |Character

The name of the table that contains the column is

AttributePtr returned. If the table name cannot be defined or is
not applicable, then this variable contains an empty
string.

SQL_DESC_TYPE (DB2 CLI v2) Numeric The SQL data type of the column identified in

AttributePtr ColumnNumber is returned in NumericAttributePtr.

The possible values returned are listed in table of
symbolic and default data types for CLI.

When ColumnNumber is equal to 0, SQL_BINARY is
returned for variable-length bookmarks, and
SQL_INTEGER is returned for fixed-length
bookmarks.

For the datetime data types, this field returns the
verbose data type, for example, SQL_DATETIME.

This information is returned from the
SQL_DESC_TYPE record field of the IRD.

SQL_DESC_TYPE_NAME (DB2 CLI v2) Character
AttributePtr

The type of the column (as entered in an SQL
statement) is returned in CharacterAttributePtr.

For information about each data type, refer to the list
of symbolic and default data types for CLL

SQL_DESC_UNNAMED (DB2 CLI v5) Numeric
AttributePtr

SQL_NAMED or SQL_UNNAMED. If the
SQL_DESC_NAME field of the IRD contains a
column alias, or a column name, SQL_NAMED is
returned. If there is no column name or a column
alias, SQL_UNNAMED is returned.

This information is returned from the
SQL_DESC_UNNAMED record field of the IRD.

SQL_DESC_UNSIGNED (DB2 CLI v2) Numeric
AttributePtr

Indicates if the column data type is an unsigned type
or not.

SQL_TRUE is returned in NumericAttributePtr for all
non-numeric data types, SQL_FALSE is returned for
all numeric data types.

Chapter 1. CLI and ODBC functions 57

SQLColAttribute function (CLI) - Return a column attribute

Table 21. SQLColAttribute arguments (continued)

Information

FieldIdentifier returned in Description

SQL_DESC_UPDATABLE (DB2 CLI v2) Numeric Indicates if the column data type is an updatable
AttributePtr data type:

* SQL_ATTR_READONILY is returned if the result
set column is read-only.

¢ SQL_ATTR_WRITE is returned if the result set
column is read-write.

e SQL_ATTR_READWRITE_UNKNOWN is returned
if it is not known whether the result set column is
updatable or not.

This function is an extensible alternative to SQLDescribeCol(). SQLDescribeCol()
returns a fixed set of descriptor information based on ANSI-89 SQL.
SQLColAttribute() allows access to the more extensive set of descriptor information
available in ANSI SQL-92 and DBMS vendor extensions.

Return codes
+ SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO
* SQL_STILL_EXECUTING

* SQL_ERROR
* SQL_INVALID_HANDLE
Diagnostics

Table 22. SQLColAttribute SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The buffer *CharacterAttributePtr was not large enough to return
the entire string value, so the string was truncated. The length of
the untruncated string value is returned in *StringLengthPtr.
(Function returns SQL_SUCCESS_WITH_INFO.)

07005 The statement did not return a The statement associated with the StatementHandle did not return

result set. a result set. There were no columns to describe.

07009 Invalid descriptor index. The value specified for ColumnNumber was equal to 0, and the
SQL_ATTR_USE_BOOKMARKS statement attribute was
SQL_UB_OFF. The value specified for the argument
ColumnNumber was greater than the number of columns in the
result set.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

58 Call Level Interface Guide and Reference Volume 2

Table 22. SQLColAttribute SQLSTATEs (continued)

SQLColAttribute function (CLI) - Return a column attribute

SQLSTATE Description Explanation

HY008 Operation was Canceled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel () was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HYO010 Function sequence error. The function was called before calling SQLPrepare() or
SQLExecDirect() for the StatementHandle.
An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.
SQLExecute() or SQLExecDirect() was called for the
StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution
parameters or columns.

HY090 Invalid string or buffer length. ~ The value specified for the argument BufferLength was less than 0.

HY091 Invalid descriptor field identifier. The value specified for the argument Fieldldentifier was not one of
the defined values, and was not an implementation-defined value.

HYCO00 Driver not capable. The value specified for the argument FieldIdentifier was not

supported by CLI.

SQLColAttribute() can return any SQLSTATE that can be returned by SQLPrepare()
or SQLExecute() when called after SQLPrepare() and before SQLExecute()
depending on when the data source evaluates the SQL statement associated with

the StatementHandle.

For performance reasons, an application should not call SQLColAttribute() before

executing a statement.
Restrictions
None.

Example

/* get display size for column */
c1iRC = SQLColAttribute(hstmt,

(SQLSMALLINT) (i + 1),
SQL_DESC_DISPLAY SIZE,
NULL,

0,
NULL,
&colDataDisplaySize)

SQLColAttributes function (CLI) - Get column attributes
In ODBC 3.0, SQLColAttributes() has been deprecated and replaced with

SQLColAttribute().

Although this version of CLI continues to support SQLColAttributes(), use
SQLColAttribute() in your CLI programs so that they conform to the latest

standards.

Chapter 1. CLI and ODBC functions 59

SQLColAttributes function (CLI) - Get column attributes

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLColAttributesW(). See “Unicode
functions (CLI)” on page 5 for information about ANSI to Unicode function

mappings.
Migrating to the new function

The statement:

SQLColAttributes (hstmt, colNum, SQL_DESC_COUNT, NULL, Ten,
NULL, &numCols);

for example, would be rewritten using the new function as:

SQLColAttribute (hstmt, colNum, SQL_DESC_COUNT, NULL, Ten,
NULL, &numCols);

SQLColumnPrivileges function (CLI) - Get privileges associated with
the columns of a table

Returns a list of columns and associated privileges for the specified table.

The information is returned in an SQL result set, which can be retrieved using the
same functions that are used to process a result set generated from a query.

Specification:
« CLI21
+ ODBC 1.0

SQLCoTumnPrivileges() returns a list of columns and associated privileges for the
specified table. The information is returned in an SQL result set, which you can
retrieve by using the same functions that you use to process a result set that is
generated from a query.

Unicode equivalent: You can also use this function with the Unicode character set.
The corresponding Unicode function is SQLColumnPrivil egesW(). See “Unicode
functions (CLI)” on page 5 for information about ANSI to Unicode function
mappings.

Syntax
SQLRETURN SQLColumnPrivileges(
SQLHSTMT StatementHandle, /* hstmt */
SQLCHAR *CatalogName, /* szCatalogName */
SQLSMALLINT NamelLengthl, /* chCatalogName */
SQLCHAR *SchemaName, /* szSchemaName */
SQLSMALLINT NameLength2, /* cbSchemaName */
SQLCHAR *TableName /* szTableName */
SQLSMALLINT NameLength3, /* cbTableName =*/
SQLCHAR *ColumnName, /* szColumnName */
SQLSMALLINT NameLength4) ; /* cbColumnName =*/
Function arguments
Table 23. SQLColumnPrivileges arguments
Data type Argument Use Description
SQLHSTMT StatementHandle input The statement handle.

60 Call Level Interface Guide and Reference Volume 2

SQLColumnPrivileges function (CLI) - Get privileges associated with the columns of a

Table 23. SQLColumnPrivileges arguments (continued)

table

Data type Argument Use

Description

SQLCHAR * CatalogName Input

The catalog qualifier of a 3-part table name. If the
target DBMS does not support 3-part naming, and
CatalogName is not a null pointer and does not point
to a zero-length string, then an empty result set and
SQL_SUCCESS is returned. Otherwise, this is a valid
filter for DBMSs that support 3-part naming.

SQLSMALLINT NameLengthl Input

The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store CatalogName, or SQL_NTS
if CatalogName is null-terminated.

SQLCHAR * SchemaName Input

The schema qualifier of the table name.

SQLSMALLINT NameLength2 Input

The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store SchemaName, or SQL_NTS
if SchemaName is null-terminated.

SQLCHAR * TableName Input

The table name.

SQLSMALLINT NameLength3 Input

The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store TableName, or SQL_NTS if
TableName is null-terminated.

SQLCHAR * ColumnName Input

A buffer that might contain a pattern value to qualify
the result set by column name.

SQLSMALLINT NameLength4 Input

The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store ColumnName, or SQL_NTS
if ColumnName is null-terminated.

Usage

The results are returned as a standard result set that contains the columns listed in
Columns Returned by SQLColumnPrivileges. The result set is ordered by
TABLE_CAT, TABLE_SCHEM, TABLE_NAME, COLUMN_NAME, and
PRIVILEGE. If multiple privileges are associated with any given column, each
privilege is returned as a separate row. A typical application might want to call this
function after a call to SQLColumns () to determine column privilege information.
The application should use the character strings that are returned in the
TABLE_CAT, TABLE_SCHEM, TABLE_NAME, COLUMN_NAME columns of the
SQLCoTumns () result set as input arguments to this function.

Because calls to SQLColumnPrivileges(), in many cases, map to a complex and thus
expensive query against the system catalog, you should use the calls sparingly, and
save the results rather than repeating the calls.

The ColumnName input argument accepts a search pattern, however, all other input

arguments do not.

Sometimes, an application calls the function and no attempt is made to restrict the
result set that is returned. In order to help reduce the long retrieval times, you can
specify the configuration keyword SchemalList in the CLI initialization file to help
restrict the result set when the application has supplied a null pointer for
SchemaName. If the application specifies a SchemaName string, the SchemalList

Chapter 1. CLI and ODBC functions 61

SQLColumnPrivileges function (CLI) - Get privileges associated with the columns of a

table

keyword is still used to restrict the output. Therefore, if the schema name that is
supplied is not in the SchemalList string, the result is an empty result set.

You can specify *ALL or *USRLIBL as values in the SchemaName to resolve
unqualified stored procedure calls or to find libraries in catalog API calls. If you
specify *ALL, CLI searches on all existing schemas in the connected database. You
are not required to specify *ALL, as this behavior is the default in CLI. For IBM
DB2 for IBM i servers, if you specify *USRLIBL, CLI searches on the current
libraries of the server job. For other DB2 servers, *USRLIBL does not have a special
meaning and CLI searches using *USRLIBL as a pattern. Alternatively, you can set
the SchemaFilter IBM Data Server Driver configuration keyword or the Schema
List CLI/ODBC configuration keyword to *ALL or *USRLIBL.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns will not change.

Columns returned by SQLColumnPrivileges

Column 1 TABLE_CAT (VARCHAR(128) Data type)
Name of the catalog. The value is NULL if this table does not have
catalogs.

Column 2 TABLE_SCHEM (VARCHAR(128))
Name of the schema containing TABLE_NAME.

Column 3 TABLE_NAME (VARCHAR(128) not NULL)
Name of the table or view.

Column 4 COLUMN_NAME (VARCHAR(128) not NULL)
Name of the column of the specified table or view.

Column 5 GRANTOR (VARCHAR(128))
Authorization ID of the user who granted the privilege.

Column 6 GRANTEE (VARCHAR(128))
Authorization ID of the user to whom the privilege is granted.

Column 7 PRIVILEGE (VARCHAR(128))
The column privilege. This can be:
¢ INSERT
* REFERENCES
* SELECT
* UPDATE

Note: Some IBM RDBMSs do not offer column level privileges at the
column level. DB2 Database for Linux, UNIX, and Windows, DB2 for
z/0S, and DB2 Server for VM and VSE support the UPDATE column
privilege; there is one row in this result set for each updateable column.
For all other privileges for DB2 Database for Linux, UNIX, and Windows,
DB2 for z/OS, and DB2 Server for VM and VSE, and for all privileges for
other IBM RDBMSs, if a privilege has been granted at the table level, a row
is present in this result set.

Column 8 IS_GRANTABLE (VARCHAR(3) Data type)
Indicates whether the grantee is permitted to grant the privilege to other
users.

Either “YES” or “NO”.

62 Call Level Interface Guide and Reference Volume 2

SQLColumnPrivileges function (CLI) - Get privileges associated with the columns of a

table

Note: The column names that are used by CLI follow the X/Open CLI CAE
specification style. The column types, contents, and order are identical to those
defined for the SQLCoTlumnPrivileges() result set in ODBC.

If there is more than one privilege associated with a column, each privilege is
returned as a separate row in the result set.

Return Codes
+ SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO

* SQL_ERROR
* SQL_INVALID_HANDLE
Diagnostics
Table 24. SQLColumnPrivileges SQLSTATEs
SQLSTATE Description Explanation
24000 Invalid cursor state. A cursor was already opened on the statement handle.
40001 Serialization failure The transaction was rolled back due to a resource deadlock with

another transaction.

40003 08501

Communication link failure.

The communication link between the application and data source
failed before the function completed.

HY001

Memory allocation failure.

DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY008

Operation was Canceled.

Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY009

Invalid argument value.

TableName is NULL.

HY010

Function sequence error

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

SQLExecute(), SQLExecDirect(), or SQLSetPos() was called for the
StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution
parameters or columns.

HY014

No more handles.

DB2 CLI was unable to allocate a handle due to resource
limitations.

HY090

Invalid string or buffer length.

The value of one of the name length arguments was less than 0,
but not equal to SQL_NTS.

HYTO00

Timeout expired.

The timeout period expired before the data source returned the
result set. The timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

Chapter 1. CLI and ODBC functions 63

SQLColumnPrivileges function (CLI) - Get privileges associated with the columns of a
table

Example

cT1iRC = SQLColumnPrivileges (hstmt,
NULL,
0,
tbSchema,
SQL_NTS,
tbName,
SQL_NTS,
colNamePattern,
SQL_NTS);

SQLColumns function (CLI) - Get column information for a table

The SQLCoTumns () function returns a list of columns in the specified tables. The
information is returned in an SQL result set, which you can retrieve by using the
same functions that you use to fetch a result set that is generated by a query.

Specification:
« CLI21
+ ODBC 1.0

Unicode Equivalent: You can also use this function with the Unicode character set.
The corresponding Unicode function is SQLCoTumnsW (). For details about ANSI to
Unicode function mappings, see “Unicode functions (CLI)” on page 5.

Syntax
SQLRETURN SQLColumns (
SQLHSTMT StatementHandle, /% hstmt =/
SQLCHAR *CatalogName, /* szCatalogName */
SQLSMALLINT NameLengthl, /* cbCatalogName */
SQLCHAR *SchemaName, /* szSchemaName */
SQLSMALLINT NameLength2, /* cbSchemaName */
SQLCHAR *TableName, /* szTableName =/
SQLSMALLINT NameLength3, /* cbTableName =/
SQLCHAR *ColumnName, /* szColumnName =*/
SQLSMALLINT NameLength4) ; /* cbColumnName »*/
Function arguments
Table 25. SQLColumns arguments
Data type Argument Use Description
SQLHSTMT StatementHandle Input The statement handle.
SQLCHAR * CatalogName Input A catalog qualifier of a 3-part table name. If the
target DBMS does not support 3-part naming, and
CatalogName is not a null pointer and does not point
to a zero-length string, then an empty result set and
SQL_SUCCESS will be returned. Otherwise, this is a
valid filter for DBMSs that supports 3-part naming.
SQLSMALLINT NameLengthl Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that is required to store CatalogName, or SQL_NTS if
CatalogName is null-terminated.
SQLCHAR * SchemaName Input A buffer that might contain a pattern value to qualify
the result set by schema name.

64 Call Level Interface Guide and Reference Volume 2

SQLColumns function (CLI) - Get column information for a table

Table 25. SQLColumns arguments (continued)

Data type

Argument Use Description

SQLSMALLINT

NameLength?2 Input The number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)
that are required to store SchemaName, or SQL_NTS
if SchemaName is null-terminated.

SQLCHAR *

TableName Input A buffer that might contain a pattern value to qualify

the result set by table name.

SQLSMALLINT

NameLength3 Input The number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)
that are required to store TaubleName, or SQL_NTS if
TableName is null-terminated.

SQLCHAR *

ColumnName Input A buffer that might contain a pattern value to qualify

the result set by column name.

SQLSMALLINT

NameLength4 Input The number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)
that are required to store ColumnName, or SQL_NTS
if ColumnName is null-terminated.

Usage

Use this function to retrieve information about the columns of either a table or a
set of tables. An application can call this function after a call to SQLTables() to
determine the columns of a table. The application must use the character strings
that are returned in the TABLE_SCHEMA and TABLE_NAME columns of the
SQLTables() result set as input to this function.

The SQLCoTumns () function returns a standard result set that is ordered by
TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and ORDINAL_POSITION.
Columns returned by SQLColumns lists the columns that are in the result set.

The SchemaName, TableName, and ColumnName input arguments accept search
patterns.

Sometimes, an application calls the function and no attempt is made to restrict the
result set that is returned. For some data sources that contain a large quantity of
tables, views, and aliases for example, this scenario maps to an extremely large
result set and very long retrieval times. In order to help reduce the long retrieval
times, you can specify the configuration keyword Schemalist in the CLI
initialization file to help restrict the result set when the application has supplied a
null pointer for the SchemaName. If the application specifies a SchemaName string, the
SchemaList keyword is still used to restrict the output. Therefore, if the schema
name supplied is not in the Schemalist string, the result will be an empty result
set.

This function does not return information about the columns of a result set.
Instead, you should use SQLDescribeCol() or SQLColAttribute() function.

If the SQL_ATTR_LONGDATA_COMPAT attribute is set to
SQL_LD_COMPAT_YES via either a call to SQLSetConnectAttr() or by setting the
LONGDATACOMPAT keyword in the CLI initialization file, then the LOB data
types are reported as SQL_LONGVARCHAR, SQL_LONGVARBINARY or
SQL_LONGVARGRAPHIC.

Chapter 1. CLI and ODBC functions 65

SQLColumns function (CLI) - Get column information for a table

In many cases, calls to the SQLColumns () function map to a complex and thus
expensive query against the system catalog, so you should use the calls sparingly,
and save the results rather than repeating calls.

Call SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_OWNER_SCHEMA_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine the actual lengths of the
TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
that are supported by the connected DBMS.

You can specify *ALL or *USRLIBL as values in the SchemaName to resolve
unqualified stored procedure calls or to find libraries in catalog API calls. If you
specify *ALL, CLI searches on all existing schemas in the connected database. You
are not required to specify *ALL, as this behavior is the default in CLIL. For IBM
DB2 for IBM i servers, if you specify *USRLIBL, CLI searches on the current
libraries of the server job. For other DB2 servers, “USRLIBL does not have a special
meaning and CLI searches using *USRLIBL as a pattern. Alternatively, you can set
the SchemaFilter IBM Data Server Driver configuration keyword or the Schema
List CLI/ODBC configuration keyword to *ALL or *USRLIBL.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns will not change.

Columns returned by SQLColumns

Column 1 TABLE_CAT (VARCHAR(128))
The name of the catalog. The value is NULL if this table does not have
catalogs.

Column 2 TABLE_SCHEM (VARCHAR(128))
The name of the schema containing TABLE_NAME.

Column 3 TABLE_NAME (VARCHAR(128) not NULL)
The name of the table, view, alias, or synonym.

Column 4 COLUMN_NAME (VARCHAR(128) not NULL)
The column identifier. The name of the column of the specified table, view,
alias, or synonym.

Column 5 DATA_TYPE (SMALLINT not NULL)
The SQL data type of the column that is identified by COLUMN_NAME.
The DATA_TYPE is one of the values in the Symbolic SQL Data Type
column in the table of symbolic and default data types for CLL

Column 6 TYPE_NAME (VARCHAR(128) not NULL)
A character string that represents the name of the data type that
corresponds to DATA_TYPE.

Column 7 COLUMN_SIZE (INTEGER)
If the DATA_TYPE column value denotes a character or binary string, this
column contains the maximum length in SQLCHAR or SQLWCHAR
elements for the column.

For date, time, and timestamp data types, the COLUMN_SIZE is the total
number of SQLCHAR or SQLWCHAR elements that are required to
display the value when converted to character data type.

66 Call Level Interface Guide and Reference Volume 2

SQLColumns function (CLI) - Get column information for a table

For numeric data types, the COLUMN_SIZE is either the total number of
digits or the total number of bits that are allowed in the column,
depending on the value in the NUM_PREC_RADIX column in the result
set.

For the XML data type, the length of zero is returned.
See the table of data type precision.

Column 8 BUFFER_LENGTH (INTEGER)
The maximum number of bytes for the associated C buffer to store data
from this column if SQL_C_DEFAULT is specified on the SQLBindCo1(),
SQLGetData() and SQLBindParameter() calls. This length does not include
any null-terminator. For exact numeric data types, the length accounts for
the decimal and the sign.

See the table of data type lengths.

Column 9 DECIMAL_DIGITS (SMALLINT)
The scale of the column. NULL is returned for data types where scale is
not applicable.

See the table of data type scale.

Column 10 NUM_PREC_RADIX (SMALLINT)
Either 10, 2, or NULL. If DATA_TYPE is an approximate numeric data
type, this column contains the value 2, and the COLUMN_SIZE column
contains the number of bits that are allowed in the column.

If DATA_TYPE is an exact numeric data type, this column contains the
value 10, and the COLUMN_SIZE contains the number of decimal digits
that are allowed for the column.

For numeric data types, the DBMS can return a NUM_PREC_RADIX of 10
or 2.

NULL is returned for data types where the radix is not applicable.

Column 11 NULLABLE (SMALLINT not NULL)
SQL_NO_NULLS if the column does not accept NULL values.

SQL_NULLABLE if the column accepts NULL values.

Column 12 REMARKS (VARCHAR(254))
Might contain descriptive information about the column. It is possible that
no information is returned in this column. For more details, see Optimize
SQL columns keyword and attribute.

Column 13 COLUMN_DEF (VARCHAR(254))
The default value of the column. If the default value is a numeric literal,
this column contains the character representation of the numeric literal
with no enclosing single quotation marks. If the default value is a character
string, this column is that string that is enclosed in single quotation marks.
If the default value is a pseudo-literal, such as for DATE, TIME, and
TIMESTAMP columns, this column contains the keyword of the
pseudo-literal (for example. CURRENT DATE) with no enclosing quotation
marks.

If NULL is specified as the default value, this column returns the word
NULL, not enclosed in quotation marks. If the default value cannot be
represented without truncation, this column contains TRUNCATED with
no enclosing single quotation marks. If no default value is specified, this
column is NULL.

Chapter 1. CLI and ODBC functions 67

SQLColumns function (CLI) - Get column information for a table

It is possible that no information is returned in this column. For more
details, see Optimize SQL columns keyword and attribute.

Column 14 SQL_DATA_TYPE (SMALLINT not NULL)
The SQL data type, as it is displayed in the SQL_DESC_TYPE record field
in the IRD. This column is the same as the DATA_TYPE column in
Columns returned by SQLColumns for the date, time, and timestamp data

types.

Column 15 SQL_DATETIME_SUB (SMALLINT)
The subtype code for datetime data types:
* SQL_CODE_DATE
* SQL_CODE_TIME
* SQL_CODE_TIMESTAMP

For all other data types this column returns NULL.

Column 16 CHAR_OCTET_LENGTH (INTEGER)
For single byte character sets, this is the same as COLUMN_SIZE. For the
XML type, zero is returned. For all other data types, NULL is returned.

Column 17 ORDINAL_POSITION (INTEGER not NULL)
The ordinal position of the column in the table. The first column in the
table is number 1.

Column 18 IS_NULLABLE (VARCHAR(254))
Contains the string 'NO' if the column is known to be not nullable, and
YES' if the column is nullable.

Note: This result set is identical to the X/Open CLI Columns () result set
specification, which is an extended version of the SQLColumns () result set that is
specified in ODBC V2. The ODBC SQLColumns () result set includes every column
in the same position.

Optimize SQL columns keyword and attribute

It is possible to set up the CLI/ODBC Driver to optimize calls to the SQLCoTumns ()

function by using either:

* OPTIMIZESQLCOLUMNS CLI/ODBC configuration keyword

* SQL_ATTR_OPTIMIZESQLCOLUMNS connection attribute of
SQLSetConnectAttr()

If either of these values are set, the information that is contained in the succeeding
columns is not returned:

¢ Column 12 REMARKS

e Column 13 COLUMN_DEF

Return codes

+ SQL_ERROR

+ SQL_INVALID_HANDLE

+ SQL_STILL_EXECUTING

+ SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO

68 Call Level Interface Guide and Reference Volume 2

SQLColumns function (CLI) - Get column information for a table

Diagnostics
Table 26. SQLColumns SQLSTATEs
SQLSTATE Description Explanation
24000 Invalid cursor state. A cursor was already opened on the statement handle.
40003 08501 Communication link failure. The communication link between the application and data source

failed before the function completed.

HY001

Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY008

Operation was Canceled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel () was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY010

Function sequence error.
The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
for StatementHandle and was still executing when this function
was called.

The function was called before a statement was prepared on the
statement handle.

HY014

No more handles. DB2 CLI was unable to allocate a handle due to resource
limitations.

HY090

Invalid string or buffer length. The value of one of the name-length arguments was less than 0,
but not equal to SQL_NTS.

HYTO00

Timeout expired. The timeout period expired before the data source returned the
result set. You can set the timeout period by using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restriction

The SQLColumns() function does not support returning data from an alias of an
alias. When called against an alias of an alias, the SQLColumns() function returns
an empty result set.

Example

/* get column information for a table */
cTiRC = SQLColumns (hstmt,
NULL,
0,
tbSchemaPattern,
SQL_NTS,
tbNamePattern,
SQL_NTS,
colNamePattern,
SQL_NTS);

Chapter 1. CLI and ODBC functions 69

SQLConnect function (CLI) - Connect to a data source

SQLConnect function (CLI) - Connect to a data source

Establishes a connection or a trusted connection to the target database.

The application must supply a target SQL database, and optionally an
authorization-name and an authentication-string.

Specification:
« CLI1.1

+ ODBC 1.0

+ ISO CLI

A connection must be established before allocating a statement handle using
SQLATTocHandle().

Unicode Equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLConnectW(). See “Unicode
functions (CLI)” on page 5 for information about ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLConnect (
SQLHDBC ConnectionHandle, /* hdbc */
SQLCHAR *ServerName, /* szDSN */
SQLSMALLINT ServerNamelLength, /* cbDSN =/
SQLCHAR xUserName, /% szUID */
SQLSMALLINT UserNamelLength, /* cbUID =/
SQLCHAR *Authentication, /* szAuthStr =/
SQLSMALLINT AuthenticationLength); /* cbAuthStr */

Function arguments
Table 27. SQLConnect arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle

SQLCHAR * ServerName input Data Source: The name or alias-name of the
database.

SQLSMALLINT ServerNameLength input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)
needed to store the ServerName argument.

SQLCHAR * UserName input Authorization-name (user identifier)

SQLSMALLINT UserNameLength input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the UserName argument.

SQLCHAR * Authentication input Authentication-string (password)

SQLSMALLINT AuthenticationLength input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the Authentication argument.

Usage

The target database (also known as data source) for IBM RDBMSs is the
database-alias. The application can obtain a list of databases available to connect to
by calling SQLDataSources ().

70 Call Level Interface Guide and Reference Volume 2

SQLConnect function (CLI) - Connect to a data source

The input length arguments to SQLConnect() (ServerNameLength, UserNameLength,
AuthenticationLength) can be set to the actual length of their associated data in
elements (SQLCHAR or SQLWCHAR), not including any null-terminating
character, or to SQL_NTS to indicate that the associated data is null-terminated.

The ServerName and UserName argument values must not contain any blanks.

Stored procedures written using CLI must make a null SQLConnect() call. A null
SQLConnect() is where the ServerName, UserName, and Authentication argument
pointers are all set to NULL and their length arguments are all set to 0. A null
SQLConnect() still requires SQLA1TocHandle() to be called first, but does not
require that SQLEndTran() be called before SQLDisconnect().

To create a trusted connection, specify the connection attribute
SQL_ATTR_USE_TRUSTED_CONTEXT before calling SQLConnect (). If the database
server accepts the connection as trusted the connection is treated as a trusted
connection. Otherwise the connection is a regular connection and a warning is
returned.

Return codes

+ SQL_SUCCESS

+ SQL_SUCCESS_WITH_INFO
+ SQL_ERROR

+ SQL_INVALID _HANDLE

Diagnostics
Table 28. SQLConnect SQLSTATEs
SQLSTATE Description Explanation
01679 Unable to establish a trusted CLI requested a trusted connection but the trust attributes of the
connection. connection do not match any trusted context object on the
database server. The connection is allowed but it is a regular
connection, not a trusted connection.
08001 Unable to connect to data source. CLI was unable to establish a connection with the data source
(server).
The connection request was rejected because an existing
connection established via embedded SQL already exists.
08002 Connection in use. The specified ConnectionHandle has already been used to establish
a connection with a data source and the connection is still open.
08004 The application server rejected ~ The data source (server) rejected the establishment of the
establishment of the connection. connection.
28000 Invalid authorization The value specified for the argument UserName or the value
specification. specified for the argument Authentication violated restrictions
defined by the data source.
58004 Unexpected system failure. Unrecoverable system error.
HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY013 Unexpected memory handling DB2 CLI was unable to access memory required to support
error. execution or completion of the function.

Chapter 1. CLI and ODBC functions 71

SQLConnect function (CLI) - Connect to a data source

Table 28. SQLConnect SQLSTATEs (continued)

SQLSTATE Description Explanation

HY090 Invalid string or buffer length. The value specified for argument ServerNameLength was less than
0, but not equal to SQL_NTS and the argument ServerName was
not a null pointer.
The value specified for argument UserNameLength was less than 0,
but not equal to SQL_NTS and the argument UserName was not a
null pointer.
The value specified for argument AuthenticationLength was less
than 0, but not equal to SQL_NTS and the argument
Authentication was not a null pointer.

HY501 Invalid data source name. An invalid data source name was specified in argument
ServerName.

HYTO00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

The implicit connection (or default database) option for IBM RDBMSs is not
supported. SQLConnect() must be called before any SQL statements can be

executed.

Example

/* connect to the database */
c1iRC = SQLConnect (hdbc,

(SQLCHAR =*)dblAlias,

SQL_NTS,
(SQLCHAR *)user,
SQL_NTS,
(SQLCHAR *)pswd,
SQL_NTS);

SQLCopyDesc function (CLI) - Copy descriptor information between

handles

Copies descriptor information from one descriptor handle to another.

Specification:
« CLI5.0

+ ODBC 3.0

+ ISO CLI

Syntax

SQLRETURN SQLCopyDesc (

SQLHDESC
SQLHDESC

SourceDescHandle, /* hDescSource */
TargetDescHandle); /* hDescTarget */

72 Call Level Interface Guide and Reference Volume 2

SQLCopyDesc function (CLI) - Copy descriptor information between handles

Function arguments

Table 29. SQLCopyDesc arguments

Data type Argument Use Description

SQLHDESC SourceDescHandle input Source descriptor handle.

SQLHDESC TargetDescHandle input Target descriptor handle. TargetDescHandle can be a
handle to an application descriptor or an IPD.
SQLCopyDesc() will return SQLSTATE HY016
(Cannot modify an implementation descriptor) if
TargetDescHandle is a handle to an IRD.

Usage

A call to SQLCopyDesc() copies the fields of the source descriptor handle to the
target descriptor handle. Fields can only be copied to an application descriptor or
an IPD, but not to an IRD. Fields can be copied from either an application or an
implementation descriptor.

All fields of the descriptor, except SQL_DESC_ALLOC_TYPE (which specifies
whether the descriptor handle was automatically or explicitly allocated), are
copied, whether or not the field is defined for the destination descriptor. Copied
fields overwrite the existing fields in the TargetDescHandle.

All descriptor fields are copied, even if SourceDescHandle and TargetDescHandle are
on two different connections or environments.

The call to SQLCopyDesc() is immediately aborted if an error occurs.

When the SQL_DESC_DATA_PTR field is copied, a consistency check is
performed. If the consistency check fails, SQLSTATE HY021 (Inconsistent
descriptor information.) is returned and the call to SQLCopyDesc() is immediately
aborted.

Note: Descriptor handles can be copied across connections or environments. An
application may, however, be able to associate an explicitly allocated descriptor
handle with a StatementHandle, rather than calling SQLCopyDesc() to copy fields
from one descriptor to another. An explicitly allocated descriptor can be associated
with another StatementHandle on the same ConnectionHandle by setting the
SQL_ATTR_APP_ROW_DESC or SQL_ATTR_APP_PARAM_DESC statement
attribute to the handle of the explicitly allocated descriptor. When this is done,
SQLCopyDesc() does not have to be called to copy descriptor field values from one
descriptor to another.

A descriptor handle cannot be associated with a StatementHandle on another
ConnectionHandle, however; to use the same descriptor field values on
StatementHandle on different ConnectionHandle, SQLCopyDesc() has to be called.

Copying rows between tables

An ARD on one statement handle can serve as the APD on another statement
handle. This allows an application to copy rows between tables without copying
data at the application level. To do this, an application calls SQLCopyDesc() to
copy the fields of an ARD that describes a fetched row of a table, to the APD for a
parameter in an INSERT statement on another statement handle. The
SQL_ACTIVE_STATEMENTS InfoType returned by the driver for a call to

Chapter 1. CLI and ODBC functions 73

SQLCopyDesc function (CLI) - Copy descriptor information between handles

SQLGetInfo() must be greater than 1 for this operation to succeed.

Return codes
+ SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO

+ SQL_ERROR

* SQL_INVALID_HANDLE

Diagnostics

When SQLCopyDesc() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an
associated SQLSTATE value may be obtained by calling SQLGetDiagRec() with a
HandleType of SQL_HANDLE_DESC and a Handle of TargetDescHandle. If an
invalid SourceDescHandle was passed in the call, SQL_INVALID_HANDLE will be
returned, but no SQLSTATE will be returned.

When an error is returned, the call to SQLCopyDesc() is immediately aborted, and
the contents of the fields in the TargetDescHandle descriptor are undefined.

Table 30. SQLCopyDesc SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

08501 Communication link failure. The communication link between CLI and the data source to
which it was trying to connect failed before the function
completed processing.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY007 Associated statement is not SourceDescHandle was associated with an IRD, and the associated

prepared. statement handle was not in the prepared or executed state.

HY010 Function sequence error.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

HY016 Cannot modify an TargetDescHandle was associated with an IRD.

implementation row descriptor.

HY021 Inconsistent descriptor The descriptor information checked during a consistency check

information. was not consistent.

HY092 Option type out of range. The call to SQLCopyDesc() prompted a call to SQLSetDescField(),

but *ValuePtr was not valid for the Fieldldentifier argument on
TargetDescHandle.

74 Call Level Interface Guide and Reference Volume 2

SQLCopyDesc function (CLI) - Copy descriptor information between handles

Restrictions
None.

Example
SQLHANDLE hIRD, hARD; /* descriptor handles */

[* ... o*/

/* copy descriptor information between handles */
rc = SQLCopyDesc(hIRD, hARD);

SQLCreateDb function (CLI) - Create a database

The SQLCreateDb() function creates a database by using the specified database
name, code set, and mode.

Specification:
« CLI V9.7

+ ODBC

* ISO CLI

An active connection to the server must exist before you issue the SQLCreateDb
APL

Unicode equivalent: The corresponding Unicode function is the SQLCreateDbW()
function. For information about ANSI to Unicode function mappings, refer to
“Unicode functions (CLI)” on page 5.

Syntax
SQLRETURN SQL_API FN SQLCreateDb (SQLHDBC hDbc,
SQLCHAR *szDbName,
SQLINTEGER chDbName,
SQLCHAR *szCodeSet,
SQLINTEGER chCodeSet,
SQLCHAR *szMode,
SQLINTEGER cbMode) ;
Function arguments
Table 31. SQLCreateDb arguments
Data type Argument Use Description
SQLHDBC hDbc input Connection handle.
SQLCHAR * szDbName input Name of the database that is to be created.
SQLINTEGER cbDbName input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of the function)
that is needed to store the szDbName argument or to
store SQL_NTS if the szDbName argument is null
terminated.
SQLCHAR * szCodeSet input Database code set information.

Note: If the value of the szCodeSetargument is
NULL, the database is created in the Unicode code
page for DB2 data servers and in the UTF-8 code
page for IDS data servers.

Chapter 1. CLI and ODBC functions 75

SQLCreateDb function (CLI) - Create a database

Table 31. SQLCreateDb arguments (continued)

Data type

Argument Use Description

SQLINTEGER

cbCodeSet input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of the function)
that is needed to store the szCodeSet argument or to
store SQL_NTS if szCodeSet argument is null
terminated.

SQLCHAR *

szMode input Database logging mode.

Note: This value is applicable only to IDS data
servers.

SQLINTEGER

cbMode input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of the function)
that is needed to store the szMode argument or to
store SQL_NTS if szMode argument is null
terminated.

Usage

When creating a DB2 database, CLI application must first connect to the server
instance by specifying the ATTACH keyword. The valid APIs, after connecting to
the server instance using ATTACH keyword are SQLCreateDb(), SQLDropDb(),
and SQLDisconnect(). Before performing other CLI operations on the new
database, you must disconnect from the server instance and then connect to the
new database.

Return codes
+ SQL_SUCCESS

* SQL_ERROR
Diagnostics
Table 32. SQLCreateDb SQLSTATEs
SQLSTATE Description Explanation
08003 Connection is closed. The connection that was specified for the SQLCreateDb argument
was not open.
HY090 Invalid string or buffer length. The cbDbName, cbCodeSet, and cbMode arguments have a

maximum length of 128. If you specify an invalid value, CLI
generates an error.

Restrictions
* A connection representing an instance attachment is required.

* The SQLCreateDb() function is not supported for DB2 for IBM i and DB2 for
z/0S servers.

Examples

The following example creates DB2 databases on a local server:

sqldriverconnect 1 0 "attach=true" -3 50 SQL_DRIVER_NOPROMPT
sqlcreatedb 1 samplel 8 null O null 0
sqlcreatedb 1 sample2 8 null 0 null 0

76 Call Level Interface Guide and Reference Volume 2

SQLCreateDb function (CLI) - Create a database

The following example creates DB2 databases on a remote server:

sqldriverconnect 1 0 "attach=true;hostname=myhostname;port=9999;
uid=myuid;pwd=mypwd;protocol=tcpip" -3 50 SQL_DRIVER_NOPROMPT
sqlcreatedb 1 samplel 8 null O null 0

sqlcreatedb 1 sample2 8 null 0 null 0

Version information

Last update
This topic was last updated for IBM DB2 Version 9.7, Fix Pack 3.

IBM Data Server Client
Supported in IBM DB2 for Linux, UNIX, and Windows

SQLCreatePkg

SQLCreatePkg() invokes the bind utility, which prepares SQL statements stored in
the bind file, and creates a package that is stored in the database.

Specification:

* CLI95

Syntax

SQLRETURN SQLCreatePkg (
SQLHDBC hDbc,
SQLCHAR *szBindFileNameln,
SQLINTEGER cbBindFileNameln,
SQLCHAR *szBindOpts,
SQLINTEGER cbBindOpts)

Function arguments

Table 33. SQLCreatePkg () arguments

Data type Argument Use Description

SQLHDBC hDbc input Connection handle.

SQLCHAR* szBindFileNameln input Name of the file to bind, or the name of a file
containing a list of bind file names.

SQLINTEGER cbBindFileNameln input Number of SQLCHAR elements needed to store
szBindFileNameln, or SQL_NTS if szBindFileNameln is
null-terminated.

SQLCHAR* szBindOpts input List of bind options separated by semicolon.

SQLINTEGER cbBindOpts input Number of SQLCHAR elements needed to store
szBindOpts, or SQL_NTS if szBindOpts is
null-terminated.

Usage

The argument szBindFileNameln is a string containing the name of the bind file, or
the name of a file containing a list of bind file names. The bind file names must
contain the extension .bnd. You can specify a path for these files. Precede the name
of a bind list file with the at sign (@). The following example is a fully qualified
bind list file name:

/u/userl/sqllib/bnd/@all.1st

Chapter 1. CLI and ODBC functions 77

SQLCreatePkg

The bind list file should contain one or more bind file names, and must have the
extension .1st. Precede all but the first bind file name with a plus symbol (+). The
bind file names can be on one or more lines. For example, the bind list file al1.1st
might contain the following lines:

mybindl.bnd+mybind2.bnd+

mybind3.bnd+
mybind4.bnd

You can use path specifications on bind file names in the list file. If no path is
specified, the database manager takes path information from the bind list file.

The following BIND command parameters can be specified with SQLCreatePkg():
* KEEPDYNAMIC={YES | NO}

* ISOLATION={CS | NC | RR | RS | UR}

* BLOCKING={YES | NO | UNAMBIG}

* ENCODING={ASCII | EBCDIC | UNICODE | CCSID | integer} (DB2 for z/OS and
0S/390° only)

* REOPT={NONE | ONCE | ALWAYS}
* COLLECTION={schema name

The BIND command parameters can be passed in as a string with name-value pairs
separated by a semicolon. For example:

keepdynamic=yes; isolation=cs; blocking=no
Both options and values are case insensitive.

Example 1: Binding a file with REOPT=0NCE and ENCODING=CCSID

strcpy (bindFileName, "insertEmp.bnd");
cTiRC = SQLCreatePkg(hdbc,
bindFileName,
-3, // SQL_NTS
"REOPT=0NCE; ENCODING=CCSID");

Example 2: Binding a list of files all with KEEPDYNAMIC=YES, BLOCKING=NO, and
ISOLATION=RS

strcpy (bindFileName, "/u/userl/sqllib/bnd/@all.1st");
c1iRC = SQLCreatePkg(hdbc,
bindFileName,
strien(bindFileName),
"KEEPDYNAMIC=YES; BLOCKING=NO; ISOLATION=RS");

Example 3: Binding a file with COLLECTION=SCHEMA NAME

strcpy (bindFileName, "insertEmp.bnd");
cliRC = SQLCreatePkg(hdbc,
bindFileName,
-3, // SQL_NTS
"REOPT=0NCE; ENCODING=CCSID;
COLLECTION=NEWTON");

SQLDataSources function (CLI) - Get list of data sources

Returns a list of target databases available, one at a time.

A database must be cataloged to be available.

78 Call Level Interface Guide and Reference Volume 2

SQLDataSources function (CLI) - Get list of data sources

Specification:

- CLI11
« ODBC 1.0
* ISO CLI

SQLDataSources() is usually called before a connection is made, to determine the
databases that are available to connect to.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLDataSourcesW(). See “Unicode
functions (CLI)” on page 5 for information about ANSI to Unicode function

mappings.

Syntax
SQLRETURN

SQLDataSources (

SQLHENV
SQLUSMALLINT
SQLCHAR
SQLSMALLINT
SQLSMALLINT
SQLCHAR
SQLSMALLINT
SQLSMALLINT

Function arguments

Table 34. SQLDataSources arguments

EnvironmentHandle,

Direction,
*ServerName,
BufferLengthl,
*NameLengthlPtr,
*Description,
BufferLength2,
*NameLength2Ptr) ;

/*
/*
/*
/*
/*
/*
/*
/*

henv */

fDirection */
*5ZDSN */

chDSNMax */

*pchDSN */
xszDescription x/
chDescriptionMax */
xpcbDescription */

Data type

Argument

Use

Description

SQLHENV

EnvironmentHandle

input

Environment handle.

SQLUSMALLINT

Direction

input

Used by application to request the first data source
name in the list or the next one in the list. Direction
can take on only the following values:

* SQL_FETCH_FIRST

* SQL_FETCH_NEXT

SQLCHAR *

ServerName

output

Pointer to buffer in which to return the data source
name.

SQLSMALLINT

BufferLengthl

input

Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the ServerName buffer. This number

must be less than or equal to
SQL_MAX_DSN_LENGTH + 1.

SQLSMALLINT *

NameLength1Ptr

output

Pointer to a buffer in which to return the total
number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function),
excluding the null-termination character, available to
return in *ServerName. If the number of SQLCHAR
or SQLWCHAR elements available to return is
greater than or equal to BufferLengthl, the data
source name in *ServerName is truncated to
BufferLengthl minus the length of a null-termination
character.

SQLCHAR *

Description

output

Pointer to buffer where the description of the data
source is returned. CLI will return the Comment
field associated with the database catalogued to the
DBMS.

Chapter 1. CLI and ODBC functions 79

SQLDataSources function (CLI) - Get list of data sources

Table 34. SQLDataSources arguments (continued)

Data type Argument Use

Description

SQLSMALLINT

BufferLength?2 input

Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the Description buffer.

SQLSMALLINT * | NameLength2Ptr output

Pointer to a buffer in which to return the total
number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function),
excluding the null-termination character, available to
return in *Description. If the number of SQLCHAR or
SQLWCHAR elements available to return is greater
than or equal to BufferLength2, the driver description
in *Description is truncated to BufferLength? minus
the length of a null-termination character.

Usage

The application can call this function any time with Direction set to either
SQL_FETCH_FIRST or SQL_FETCH_NEXT.

If SQL_FETCH_FIRST is specified, the first database in the list will always be

returned.

If SQL_FETCH_NEXT is specified:

* Directly following a SQL_FETCH_FIRST call, the second database in the list is

returned

* Before any other SQLDataSources() call, the first database in the list is returned

* When there are no more databases in the list, SQL_NO_DATA_FOUND is
returned. If the function is called again, the first database is returned.

* Any other time, the next database in the list is returned.

In an ODBC environment, the ODBC Driver Manager will perform this function.

Since the IBM RDBMSs always returns the description of the data source blank
padded to 30 bytes, CLI will do the same.

Return codes
+ SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO

* SQL_ERROR

* SQL_INVALID_HANDLE
* SQL_NO_DATA_FOUND

80 Call Level Interface Guide and Reference Volume 2

SQLDataSources function (CLI) - Get list of data sources

Diagnostics

Table 35. SQLDataSources SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data truncated.

The data source name returned in the argument ServerName was
longer than the value specified in the argument BufferLengthl. The
argument NameLengthlPtr contains the length of the full data
source name. (Function returns SQL_SUCCESS_WITH_INFO.)

The data source name returned in the argument Description was
longer than the value specified in the argument BufferLength2. The
argument NameLength2Ptr contains the length of the full data
source description. (Function returns
SQL_SUCCESS_WITH_INFO.)

58004

Unexpected system failure.

Unrecoverable system error.

HY000

General error.

An error occurred for which there was no specific SQLSTATE and
for which no implementation-specific SQLSTATE was defined. The
error message returned by SQLGetDiagRec() in the MessageText
argument describes the error and its cause.

HY001

Memory allocation failure.

DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY013

Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090

Invalid string or buffer length.

The value specified for argument BufferLengthl was less than 0.

The value specified for argument BufferLength2 was less than 0.

HY103

Direction option out of range.

The value specified for the argument Direction was not equal to
SQL_FETCH_FIRST or SQL_FETCH_NEXT.

Authorization
None.

Example

/* get list of data sources */
c1iRC = SQLDataSources (henv,

SQL_FETCH_FIRST,
dbAliasBuf,
SQL_MAX_DSN_LENGTH + 1,
&aliaslen,
dbCommentBuf,

255,

&commentLen)

SQLDescribeCol function (CLI) - Return a set of attributes for a column

Returns a set of commonly used descriptor information (column name, type,
precision, scale, nullability) for the indicated column in the result set generated by

a query.

Chapter 1. CLI and ODBC functions 81

SQLDescribeCol function (CLI) - Return a set of attributes for a column

Specification:
« CLI 1.1

+ ODBC 1.0

+ ISO CLI

This information is also available in the fields of the IRD.

If the application needs only one attribute of the descriptor information, or needs
an attribute not returned by SQLDescribeCol(), the SQLColAttribute() function can
be used in place of SQLDescribeCol().

Either SQLPrepare() or SQLExecDirect() must be called before calling this function.

This function (or SQLColAttribute()) is usually called before a bind column
function (SQLBindCol(), SQLBindFileToCol()) to determine the attributes of a

column before binding it to an application variable.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLDescribeColW(). See “Unicode
functions (CLI)” on page 5 for information about ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLDescribeCol (
SQLHSTMT StatementHandle, /* hstmt */
SQLUSMALLINT ColumnNumber, /* icol =/
SQLCHAR *ColumnName, /* szColName =*/
SQLSMALLINT BufferLength, /* cbColNameMax */
SQLSMALLINT *NamelLengthPtr, /* pchColName */
SQLSMALLINT *DataTypePtr, /* pfSqlType =/
SQLULEN *ColumnSizePtr, /* pchColDef */
SQLSMALLINT *DecimalDigitsPtr, /* pibScale */
SQLSMALLINT *NullablePtr); /* pfNullable =/

Function arguments
Table 36. SQLDescribeCol arguments

Data type Argument Use Description
SQLHSTMT StatementHandle input Statement handle
SQLUSMALLINT | ColumnNumber input Column number to be described. Columns are

numbered sequentially from left to right, starting at
1. This can also be set to 0 to describe the bookmark
column.

SQLCHAR * ColumnName output Pointer to column name buffer. This value is read
from the SQL_DESC_NAME field of the IRD. This is
set to NULL if the column name cannot be
determined.

SQLSMALLINT BufferLength input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the * ColumnName buffer.

82 Call Level Interface Guide and Reference Volume 2

SQLDescribeCol function (CLI) - Return a set of attributes for a column

Table 36. SQLDescribeCol arguments (continued)

Data type

Argument Use Description

SQLSMALLINT *

NameLengthPtr output Pointer to a buffer in which to return the total

number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function),
excluding the null-termination character, available to
return in * ColumnName. Truncation of column name
(* ColumnName) to BufferLength - 1 SQLCHAR or
SQLWCHAR elements occurs if NameLengthPtr is
greater than or equal to BufferLength.

SQLSMALLINT *

DataTypePtr output Base SQL data type of column. To determine if there

is a User Defined Type associated with the column,
call SQLColAttribute() with fDescType set to
SQL_COLUMN_DISTINCT_TYPE. Refer to the
Symbolic SQL Data Type column of the symbolic
and default data types table for the data types that
are supported.

SQLULEN *

ColumnSizePtr output Precision of column as defined in the database.

If fSqlType denotes a graphic or DBCLOB SQL data
type, then this variable indicates the maximum
number of double-byte characters the column can
hold.

SQLSMALLINT *

DecimalDigitsPtr output Scale of column as defined in the database (only

applies to SQL_DECIMAL, SQL_NUMERIC,
SQL_TYPE_TIMESTAMP). Refer to the data type
scale table for the scale of each of the SQL data

types.

SQLSMALLINT *

NullablePtr output Indicates whether NULLS are allowed for this

column
* SQL_NO_NULLS
* SQL_NULLABLE

Usage

Columns are identified by a number, are numbered sequentially from left to right,

and can be described in any order.

¢ Column numbers start at 1 if bookmarks are not used
(SQL_ATTR_USE_BOOKMARKS statement attribute set to SQL_UB_OFF).

¢ The ColumnNumber argument can be set to 0 to describe the bookmark column if
bookmarks are used (the statement attribute is set to SQL_UB_ON).

If a null pointer is specified for any of the pointer arguments, CLI assumes that the
information is not needed by the application and nothing is returned.

If the column is a User Defined Type, SQLDescribeCol() only returns the built-in
type in DataTypePtr. Call SQLColAttribute() with fDescType set to
SQL_COLUMN_DISTINCT_TYPE to obtain the User Defined Type.

Return codes

+ SQL_SUCCESS

+ SQL_SUCCESS_WITH_INFO
+ SQL_STILL_EXECUTING

+ SQL_ERROR

+ SQL_INVALID_HANDLE

Chapter 1. CLI and ODBC functions 83

SQLDescribeCol function (CLI) - Return a set of attributes for a column

Diagnostics

If SQLDescribeCol() returns either SQL_ERROR, or SQL_SUCCESS_WITH_INFO,
one of the following SQLSTATEs can be obtained by calling the SQLGetDiagRec ()
or SQLGetDiagField() function.

Table 37. SQLDescribeCol SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The column name returned in the argument * ColumnName was
longer than the value specified in the argument BufferLength. The
argument * NameLengthPtr contains the length of the full column
name. (Function returns SQL_SUCCESS_WITH_INFO.)

07005 The statement did not return a The statement associated with the StatementHandle did not return

result set. a result set. There were no columns to describe. (Call

SQLNumResultCols() first to determine if there are any rows in
the result set.)

07009 Invalid descriptor index The value specified for ColumnNumber was equal to 0, and the

SQL_ATTR_USE_BOOKMARKS statement attribute was
SQL_UB_OFF. The value specified for the argument
ColumnNumber was greater than the number of columns in the
result set.

40003 08501

Communication link failure.

The communication link between the application and data source
failed before the function completed.

58004

Unexpected system failure.

Unrecoverable system error.

HY001

Memory allocation failure.

DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY008

Operation was Canceled.

Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY010

Function sequence error.

The function was called before calling SQLPrepare() or
SQLExecDirect() for the StatementHandle.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013

Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090

Invalid string or buffer length.

The length specified in argument BufferLength less than 1.

HYCO00

Driver not capable.

The SQL data type of column ColumnNumber is not recognized by
CLL

HYTO00

Timeout expired.

The timeout period expired before the data source returned the
result set. The timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

84 Call Level Interface Guide and Reference Volume 2

SQLDescribeCol function (CLI) - Return a set of attributes for a column

Restrictions

The following ODBC defined data types are not supported:
* SQL_BIT
* SQL_TINYINT

Example

/* return a set of attributes for a column */
c1iRC = SQLDescribeCol (hstmt,
(SQLSMALLINT) (i + 1),
colName,
sizeof(colName),
&colNameLen,
&colType,
&colSize,
&colScale,
NULL) ;

SQLDescribeParam function (CLI) - Return description of a parameter

marker

Returns the description of a parameter marker associated with a prepared SQL
statement.

Specification:
+ CLI5.0

+ ODBC 1.0

+ ISO CLI

The description of a parameter marker is also available in the fields of the IPD.
If deferred prepared is enabled, and this is the first call to SQLDescribeParam(),

SQLNumResultCols(), or SQLDescribeCol(), the call will force a PREPARE of the
SQL statement to be flowed to the server.

Syntax

SQLRETURN SQLDescribeParam (
SQLHSTMT StatementHandle, /* hstmt =/
SQLUSMALLINT ParameterNumber, /* ipar */
SQLSMALLINT *DataTypePtr, /* pfSq1Type =/
SQLULEN *ParameterSizePtr, /* pcbParamDef */
SQLSMALLINT x*DecimalDigitsPtr, /* pibScale */
SQLSMALLINT *NullablePtr); /* pfNullable =/

Function arguments

Table 38. SQLDescribeParam arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT | ParameterNumber input Parameter marker number ordered sequentially in
increasing parameter order, starting at 1.

Chapter 1. CLI and ODBC functions 85

SQLDescribeParam function (CLI) - Return description of a parameter marker

Table 38. SQLDescribeParam arguments (continued)

Data type

Argument

Use

Description

SQLSMALLINT *

DataTypePtr

output

Pointer to a buffer in which to return the SQL data
type of the parameter. This value is read from the
SQL_DESC_CONCISE_TYPE record field of the IPD.

When ColumnNumber is equal to 0 (for a bookmark
column), SQL_BINARY is returned in *DataTypePtr
for variable-length bookmarks.

SQLULEN *

ParameterSizePtr

output

Pointer to a buffer in which to return the size of the
column or expression of the corresponding
parameter marker as defined by the data source.

SQLSMALLINT *

DecimalDigitsPtr

output

Pointer to a buffer in which to return the number of
decimal digits of the column or expression of the
corresponding parameter as defined by the data
source.

SQLSMALLINT *

NullablePtr

output

Pointer to a buffer in which to return a value that
indicates whether the parameter allows NULL
values. This value is read from the
SQL_DESC_NULLABLE field of the IPD.

The ODBC specification lists following returned

values. However, the CLI driver only returns

SQL_NULLABLE_UNKNOWN return value.

¢ SQL_NO_NULLS: The parameter does not allow
NULL values (this is the default value).

* SQL_NULLABLE: The parameter allows NULL
values.

* SQL_NULLABLE_UNKNOWN: Cannot determine
if the parameter allows NULL values.

Note: The CLI driver returns
SQL_NULLABLE_UNKNOWN.

Usage

Parameter markers are numbered in increasing order as they appear in the SQL
statement, starting with 1.

SQLDescribeParam() does not return the type (input, input/output, or output) of a
parameter in an SQL statement. Except in calls to stored procedures, all parameters
in SQL statements are input parameters. To determine the type of each parameter
in a call to a stored procedure, call SQLProcedureColumns ().

Return codes
+ SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO
* SQL_STILL_EXECUTING

* SQL_ERROR

* SQL_INVALID_HANDLE

86 Call Level Interface Guide and Reference Volume 2

SQLDescribeParam function (CLI) - Return description of a parameter marker

Diagnostics

Table 39. SQLDescribeParam SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

07009

Invalid descriptor index.

The value specified for the argument ParameterNumber less than 1.

The value specified for the argument ParameterNumber was greater
than the number of parameters in the associated SQL statement.

The parameter marker was part of a non-DML statement.

The parameter marker was part of a SELECT list.

08501

Communication link failure.

The communication link between CLI and the data source to
which it was connected failed before the function completed
processing.

21501

Insert value list does not match
column list.

The number of parameters in the INSERT statement did not match
the number of columns in the table named in the statement.

HY000

General error.

An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001

Memory allocation failure.

DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HYO008

Operation was Canceled.

Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,

SQLCancel () was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY010

Function sequence error.

The function was called before calling SQLPrepare() or
SQLExecDirect() for the StatementHandle.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

SQLExecute() SQLExecDirect(), SQLBulkOperations(), or
SQLSetPos () was called for the StatementHandle and returned
SQL_NEED_DATA. This function was called before data was sent
for all data-at-execution parameters or columns.

HY013

Unexpected memory handling
€rror.

The function call could not be processed because the underlying
memory objects could not be accessed, possibly because of low
memory conditions.

HYCO00

Driver not capable.

The schema function stored procedures are not accessible on the
server. Install the schema function stored procedures on the server
and ensure they are accessible.

Restrictions

None.

Chapter 1. CLI and ODBC functions 87

SQLDisconnect function (CLI) - Disconnect from a data source

SQLDisconnect function (CLI) - Disconnect from a data source

Closes the connection associated with the database connection handle.

Specification:
« CLI1.1

+ ODBC 1.0

+ ISO CLI

SQLEndTran() must be called before calling SQLDisconnect() if an outstanding
transaction exists on this connection.

After calling this function, either call SQLConnect() to connect to another database,
or use SQLFreeHandle() to free the connection handle.

Syntax
SQLRETURN SQLDisconnect (SQLHDBC ConnectionHandle;) /* hdbc */

Function arguments

Table 40. SQLDisconnect arguments

Data type Argument Use Description
SQLHDBC ConnectionHandle input Connection handle
Usage

If an application calls SQLDisconnect() before it has freed all the statement handles
associated with the connection, CLI frees them after it successfully disconnects
from the database.

If SQL_SUCCESS_WITH_INFO is returned, it implies that even though the
disconnect from the database is successful, additional error or implementation
specific information is available. For example, a problem was encountered on the
clean up subsequent to the disconnect, or if there is no current connection because
of an event that occurred independently of the application (such as communication
failure).

After a successful SQLDisconnect() call, the application can re-use ConnectionHandle
to make another SQLConnect() or SQLDriverConnect() request.

An application should not rely on SQLDisconnect() to close cursors (with both
stored procedures and regular client applications). In both cases the cursor should
be closed using SQLCloseCursor(), then the statement handle freed using
SQLFreeHandle().

Return codes

+ SQL_SUCCESS

+ SQL_SUCCESS_WITH_INFO
+ SQL_ERROR

+ SQL_INVALID_HANDLE

88 Call Level Interface Guide and Reference Volume 2

SQLDisconnect function (CLI) - Disconnect from a data source

Diagnostics
Table 41. SQLDisconnect SQLSTATEs
SQLSTATE Description Explanation
01002 Disconnect error. An error occurred during the disconnect. However, the disconnect
succeeded. (Function returns SQL_SUCCESS_WITH_INFO.)
08003 Connection is closed. The connection specified in the argument ConnectionHandle was

not open.

25000 25501

Invalid transaction state.

There was a transaction in process on the connection specified by
the argument ConnectionHandle. The transaction remains active,
and the connection cannot be disconnected.

Note: This error does not apply to stored procedures written in
CLL

25501

Invalid transaction state.

There was a transaction in process on the connection specified by
the argument ConnectionHandle. The transaction remains active,
and the connection cannot be disconnected.

58004

Unexpected system failure.

Unrecoverable system error.

HY001

Memory allocation failure.

DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY010

Function sequence error.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

HY013

Unexpected memory handling
€rror.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

Restrictions
None.

Example

SQLHANDLE hdbc; /* connection handle =/

[* oo %/

/* disconnect from the database =*/
cT1iRC = SQLDisconnect (hdbc);

SQLDriverConnect function (CLI) - (Expanded) Connect to a data

source

An alternative to SQLConnect(). Both functions establish a connection to the target
database, but SQLDriverConnect() supports additional connection parameters and
the ability to prompt the user for connection information.

Specification:
« CLI21
+ ODBC 1.0

Use SQLDriverConnect() when the data source requires parameters other than the
3 input arguments supported by SQLConnect() (data source name, user ID and

Chapter 1. CLI and ODBC functions 89

SQLDriverConnect function (CLI) - (Expanded) Connect to a data source

password), or when you want to use CLI's graphical user interface to prompt the
user for mandatory connection information.

Once a connection is established, the completed connection string is returned.
Applications can store this string for future connection requests.

Syntax

Generic

SQLRETURN SQLDriverConnect (
SQLHDBC ConnectionHandle, /* hdbc */
SQLHWND WindowHandle, /* hwnd */
SQLCHAR *InConnectionString, /* szConnStrIn =/
SQLSMALLINT InConnectionStringlLength, /* cbConnStrin */
SQLCHAR *0QutConnectionString, /* szConnStrOut =*/

SQLSMALLINT OutConnectionStringCapacity, /% chConnStrOutMax =*/
SQLSMALLINT *QutConnectionStringLengthPtr, /* pcbConnStrOut =/
SQLUSMALLINT DriverCompletion); /* fDriverCompletion x/

Function arguments

Table 42. SQLDriverConnect arguments

Data type Argument Use Description
SQLHDBC ConnectionHandle input Connection handle
SQLHWND WindowHandle input Window handle. On Windows operating systems,

this is the parent Windows handle. Currently the
window handle is only supported on Windows.

If a NULL is passed, then no dialog will be

presented.
SQLCHAR * InConnectionString input A full, partial or empty (null pointer) connection
string (see following syntax and description).
SQLSMALLINT InConnectionStringLength | input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)
needed to store InConnectionString.

SQLSMALLINT * | OutConnectionString output Pointer to buffer for the completed connection string.

If the connection was established successfully, this
buffer will contain the completed connection string.
Applications should allocate at least
SQL_MAX_OPTION_STRING_LENGTH bytes for

this buffer.
SQLSMALLINT OutConnectionString input Number of SQLCHAR elements (or SQOLWCHAR
Capacity elements for the Unicode variant of this function)
needed to store OutConnectionString.
SQLSMALLINT * OutConnectionString output Pointer to the number of SQLCHAR elements (or
LengthPtr SQLWCHAR elements for the Unicode variant of this

function), excluding the null-termination character,
available to return in the OutConnectionString buffer.

If the value of *OutConnectionStringLengthPtr is
greater than or equal to OutConnectionStringCapacity,
the completed connection string in
OutConnectionString is truncated to
OutConnectionStringCapacity - 1 SQLCHAR or
SQLWCHAR elements.

90 Call Level Interface Guide and Reference Volume 2

SQLDriverConnect function (CLI) - (Expanded) Connect to a data source

Table 42. SQLDriverConnect arguments (continued)

Data type Argument Use Description
SQLUSMALLINT | DriverCompletion input Indicates when CLI should prompt the user for more
information.

Possible values:

* SQL_DRIVER_PROMPT

* SQL_DRIVER_COMPLETE

* SQL_DRIVER_COMPLETE_REQUIRED
* SQL_DRIVER_NOPROMPT

Usage

InConnectionString Argument

A request connection string has the following syntax:
connection-string ::= attribute[;] | attribute; connection-string

attribute := attribute-keyword=attribute-value
| DRIVER=[{]attribute-value[}]

attribute-keyword := DSN | UID | PWD | NEWPWD
| driver-defined-attribute-keyword

attribute-value := character-string
driver-defined-attribute-keyword ::= identifier
where

* character-string has zero or more SQLCHAR or SQLWCHAR elements

* identifier has one or more SQLCHAR or SQLWCHAR elements

¢ attribute-keyword is case insensitive

* attribute-value may be case sensitive

¢ the value of the DSN keyword does not consist solely of blanks

* NEWPWD is used as part of a change password request. The application can either
specify the new string to use, for example, NEWPWD=anewpass; or specify NEWPWD=;
and rely on a dialog box generated by the CLI driver to prompt for the new
password

Because of connection string and initialization file grammar, keywords and
attribute values that contain the characters [1{}(),;?*=!@ should be avoided. Because
of the grammar in the system information, keywords and data source names
cannot contain the backslash (\) character. For CLI Version 2, braces are required
around the DRIVER keyword.

If any keywords are repeated in the browse request connection string, CLI uses the
value associated with the first occurrence of the keyword. If the DSN and DRIVER
keywords are included in the same browse request connection string, CLI uses
whichever keyword appears first.

OutConnectionString Argument
The result connection string is a list of connection attributes. A connection attribute

consists of an attribute keyword and a corresponding attribute value. The browse
result connection string has the following syntax:

Chapter 1. CLI and ODBC functions 91

SQLDriverConnect function (CLI) - (Expanded) Connect to a data source

connection-string ::= attribute[;] | attribute; connection-string

attribute := [*]attribute-keyword=attribute-value
attribute-keyword := ODBC-attribute-keyword
| driver-defined-attribute-keyword

ODBC-attribute-keyword = {UID | PWD}:[localized-identifier]
driver-defined-attribute-keyword ::= identifier[:localized-identifier]

attribute-value ::= {attribute-value-list} | ?

(The braces are literal; they are returned by CLIL)

attribute-value-list ::= character-string [:localized-character

string] | character-string [:localized-character string], attribute-value-list

where

* character-string and localized-character string have zero or more SQLCHAR or
SQLWCHAR elements

* identifier and localized-identifier have one or more SQLCHAR or SQLWCHAR
elements; attribute-keyword is case insensitive

* attribute-value may be case sensitive

Because of connection string and initialization file grammar, keywords, localized
identifiers, and attribute values that contain the characters [I{}(),;?*=!@ should be
avoided. Because of the grammar in the system information, keywords and data
source names cannot contain the backslash (\) character.

The connection string is used to pass one or more values needed to complete a
connection. The contents of the connection string and the value of DriverCompletion
will determine if CLI needs to establish a dialog with the user.

»—" Connection string syntax |—=—attribute ><

Connection string syntax

F——DsN |
UID
PWD
NEWPWD
CLI-defined-keyword—

Attribute associated with each keyword are:

DSN Data source name. The name or alias-name of the database. Required if
DriverCompletion is equal to SQL_DRIVER_NOPROMPT.

UID Authorization-name (user identifier).

PWD The password corresponding to the authorization name. If there is no
password for the user ID, an empty value is specified (PWD=;).

NEWPWD
New password used as part of a change password request. The application

can either specify the new string to use, for example,
NEWPWD=anewpass; or specify NEWPWD=; and rely on a dialog box

92 Call Level Interface Guide and Reference Volume 2

SQLDriverConnect function (CLI) - (Expanded) Connect to a data source

generated by the CLI driver to prompt for the new password (set the
DriverCompletion argument to anything other than
SQL_DRIVER_NOPROMPT).

Any one of the CLI keywords can be specified on the connection string. If any
keywords are repeated in the connection string, the value associated with the first
occurrence of the keyword is used.

If any keywords exists in the CLI initialization file, the keywords and their values
are used to augment the information passed to CLI in the connection string. If the
information in the CLI initialization file contradicts information in the connection
string, the values in connection string take precedence.

If the end user Cancels a dialog box presented, SQL_NO_DATA_FOUND is
returned.

The following values of DriverCompletion determines when a dialog will be opened:

SQL_DRIVER_PROMPT:
A dialog is always initiated. The information from the connection string
and the CLI initialization file are used as initial values, to be supplemented
by data input via the dialog box.

SOL_DRIVER_COMPLETE:
A dialog is only initiated if there is insufficient information in the
connection string. The information from the connection string is used as
initial values, to be supplemented by data entered via the dialog box.

SQL_DRIVER_COMPLETE_REQUIRED:
A dialog is only initiated if there is insufficient information in the
connection string. The information from the connection string is used as
initial values. Only mandatory information is requested. The user is
prompted for required information only.

SQL_DRIVER_NOPROMPT:
The user is not prompted for any information. A connection is attempted
with the information contained in the connection string. If there is not
enough information, SQL_ERROR is returned.

Once a connection is established, the complete connection string is returned.
Applications that need to set up multiple connections to the same database for a
given user ID should store this output connection string. This string can then be
used as the input connection string value on future SQLDriverConnect() calls.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLDriverConnectW(). See “Unicode
functions (CLI)” on page 5 for information about ANSI to Unicode function
mappings.

Return codes

+ SQL_SUCCESS

+ SQL_SUCCESS_WITH_INFO
+ SQL_NO_DATA_FOUND

+ SQL_INVALID HANDLE

+ SQL_ERROR

Chapter 1. CLI and ODBC functions 93

SQLDriverConnect function (CLI) - (Expanded) Connect to a data source

Diagnostics

All of the diagnostics generated by SQLConnect() can be returned here as well. The
following table shows the additional diagnostics that can be returned.

Table 43. SQLDriverConnect SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data truncated.

The buffer szConnstrOut was not large enough to hold the entire
connection string. The argument *OutConnectionStringLengthPtr
contains the actual length of the connection string available for
return. (Function returns SQL_SUCCESS_WITH_INFO)

01500

Invalid connection string
attribute.

An invalid keyword or attribute value was specified in the input

connection string, but the connection to the data source was

successful anyway because one of the listed event has occurred:

* The unrecognized keyword was ignored.

* The invalid attribute value was ignored, the default value was
used instead.

(Function returns SQL_SUCCESS_WITH_INFO)

HY000

General error.

Dialog Failed

The information specified in the connection string was insufficient
for making a connect request, but the dialog was prohibited by
setting fCompletion to SQL_DRIVER_NOPROMPT.

The attempt to display the dialog failed.

HY090

Invalid string or buffer length.

The value specified for InConnectionStringLength was less than 0,
but not equal to SQL_NTS.

The value specified for OutConnectionStringCapacity was less than
0.

HY110

Invalid driver completion.

The value specified for the argument fCompletion was not equal to
one of the valid values.

Restrictions
None.

Example

rc = SQLDriverConnect (hdbc,

(SQLHWND) sqTHWND,
InConnectionString,
InConnectionStringlLength,
OutConnectionString,
OutConnectionStringCapacity,
StrLength2,
DriveCompletion);

SQLDropDb function (CLI) - Drop a database
The SQLDropDb() function drops the specified database.

Specification:
« CLI V9.7

Unicode Equivalent: The corresponding Unicode function is the SQLDropDbW()
function. For information about ANSI to Unicode function mappings, see “Unicode
functions (CLI)” on page 5.

94 Call Level Interface Guide and Reference Volume 2

Table 44. SQLDropDb function argument

Syntax

SQLDropDb function (CLI) - Drop a database

SQLRETURN SQL_API_FN SQLDropDb (SQLHDBC hDbc,

Function arguments

SQLCHAR *szDbName,
SQLINTEGER chDbName) ;

Data type Argument Use Description

SQLHDBC hDbc input Connection handle.

SQLCHAR * szDbName input Name of the database that is to be dropped.

SQLINTEGER cbDbName input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of the function)
that is needed to store the szDbName argument or to
store SQL_NTS if the szDbName is null terminated.

Usage

To drop a DB2 database, the CLI application must first attach to the server instance

by using the ATTACH keyword. The valid APIs, after connecting to the server
instance using ATTACH keyword are SQLCreateDb(), SQLDropDb(), and
SQLDisconnect().

Return codes
+ SQL_SUCCESS
+ SQL_ERROR

Restrictions
e An already connected database cannot be dropped.

¢ The SQLDropDb() function is not supported for DB2 for IBM i and DB2 for
z/0S data servers.

Example

The following example creates and drops DB2 databases on a local server:

sqldriverconnect 1 0 "attach=true" -3 50 SQL_DRIVER NOPROMPT
sqlcreatedb 1 samplel 8 null @ null 0

sqlcreatedb 1 sample2 8 null 0 null 0

sqldropdb 1 samplel 8

sqldropdb 1 sample2 8

sqldisconnect 1

The following example creates and drops DB2 databases on a remote server:

sqldriverconnect 1 0 "attach=true;hostname=myhostname;port=9999;
uid=myuid;pwd=mypwd;protocol=tcpip" -3 50 SQL_DRIVER_NOPROMPT
sqlcreatedb 1 samplel 8 null @ null 0

sqlcreatedb 1 sample2 8 null @ null 0

sqldropdb 1 samplel 8

sqldropdb 1 sample2 8

sqldisconnect 1

Version information

Last update
This topic was last updated for IBM DB2 Version 9.7, Fix Pack 3.

Chapter 1. CLI and ODBC functions

95

SQLDropDb function (CLI) - Drop a database

IBM Data Server Client
Supported in IBM DB2 Database for Linux, UNIX, and Windows

SQLENndTran function (CLI) - End transactions of a connection or an

environment

Requests a commit or rollback operation for all active operations on all statements
associated with a connection, or for all connections associated with an
environment.

Specification:
« CLI5.0

+ ODBC 3.0

+ ISO CLI

SQLEndTran() requests a commit or rollback operation for all active operations on
all statements that are associated with a connection, or for all connections that are
associated with an environment.

Syntax

SQLRETURN SQLEndTran (
SQLSMALLINT HandleType, /* fHandleType */
SQLHANDLE Handle, /* hHandle */
SQLSMALLINT CompletionType); /x fType */

Function arguments

Table 45. SQLEndTran arguments

Data type

Argument Use Description

SQLSMALLINT

HandleType Input Handle type identifier. Contains either

SQL_HANDLE_ENV if Handle is an environment
handle, or SQL_HANDLE_DBC if Handle is a
connection handle.

SQLHANDLE

Handle Input The handle, of the type that is indicated by

HandleType, that indicates the scope of the
transaction.

SQLSMALLINT

CompletionType Input One of the following two values:

* SQL_COMMIT
* SQL_ROLLBACK

Usage

If HandleType is SQL_HANDLE_ENV and Handle is a valid environment
handle,CLI attempts to commit or roll back transactions one at a time, depending
on the value of CompletionType, on all connections that are in a connected state on
that environment. SQL_SUCCESS is returned only if it receives SQL_SUCCESS for
each connection. If it receives SQL_ERROR on one or more connections, it returns
SQL_ERROR to the application, and the diagnostic information is placed in the
diagnostic data structure of the environment. To determine which connections
failed during the commit or rollback operation, the application can call
SQLGetDiagRec() for each connection.

You must not useSQLEndTran() when working in a Distributed Unit of Work
environment. Use the transaction manager APIs instead.

96 Call Level Interface Guide and Reference Volume 2

SQLEnNndTran function (CLI) - End transactions of a connection or an environment

If CompletionType is SQL_COMMIT, SQLEndTran() issues a commit request for all
active operations on any statement that is associated with an affected connection. If
CompletionType is SQL_ROLLBACK, SQLEndTran() issues a rollback request for all
active operations on any statement that is associated with an affected connection. If
no transactions are active, SQLEndTran() returns SQL_SUCCESS with no effect on
any data sources.

To determine how transaction operations affect cursors, an application calls
SQLGetInfo() with the SQL_CURSOR_ROLLBACK_BEHAVIOR and
SQL_CURSOR_COMMIT_BEHAVIOR options.

If the SQL_CURSOR_ROLLBACK_BEHAVIOR or
SQL_CURSOR_COMMIT_BEHAVIOR value equals SQL_CB_DELETE,
SQLEndTran() closes and deletes all open cursors on all statements that are
associated with the connection, and discards all pending results. SQLEndTran ()
leaves any statement present in an allocated (unprepared) state; the application can
reuse them for subsequent SQL requests or can call SQLFreeStmt () or
SQLFreeHandle() with a HandleType of SQL_HANDLE_STMT to deallocate them.

If the SQL_CURSOR_ROLLBACK_BEHAVIOR or
SQL_CURSOR_COMMIT_BEHAVIOR value equals SQL_CB_CLOSE, SQLEndTran()
closes all open cursors on all statements that are associated with the connection.
SQLEndTran() leaves any statement present in a prepared state; the application can
call SQLExecute() for a statement that is associated with the connection without
first calling SQLPrepare().

If the SQL_CURSOR_ROLLBACK_BEHAVIOR or
SQL_CURSOR_COMMIT_BEHAVIOR value equals SQL_CB_PRESERVE,
SQLEndTran() does not affect open cursors that are associated with the connection.
Cursors remain at the row that they pointed to before the call to SQLEndTran().

When autocommit mode is off, calling SQLEndTran() with either SQL_COMMIT or
SQL_ROLLBACK when no transaction is active returns SQL_SUCCESS, which
indicates that there is no work to be committed or rolled back. Calling

SQLEndTran () has no effect on the data source, unless errors that are not related to
the transactions occur.

When autocommit mode is on, calling SQLEndTran () with a CompletionType of either
SQL_COMMIT or SQL_ROLLBACK always returns SQL_SUCCESS, unless errors
that are not related to the transactions occur.

When a CLI application is running in autocommit mode, the CLI driver does not
pass the statement to the server.

For applications that use the ODBC driver version 3.8 or later, the SQLEnTran
function can set the connection to suspended state and returns SQL_ERROR (with
SQLSTATE set to HY117). You must set the SQL_ATTR_ODBC_VERSION
environment attribute to SQL_OV_ODBC3_80. For more details about necessary
conditions to set the connection in a suspended state, see the Microsoft MSDN
documentation for the SQLEndTran() at http://msdn.microsoft.com/en-us/library/
ms716544(v=vs.85).aspx.

Return codes

+ SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO
+ SQL_ERROR

Chapter 1. CLI and ODBC functions 97

http://msdn.microsoft.com/en-us/library/ms716544(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms716544(v=vs.85).aspx

SQLEnNndTran function (CLI) - End transactions of a connection or an environment

* SQL_INVALID_HANDLE

Diagnostics

Table 46. SQLEndTran SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

An informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

08003

Connection is closed.

The ConnectionHandle is not in a connected state.

08007

Connection failure during
transaction.

The connection that is associated with the ConnectionHandle failed
during the execution of the function, and it cannot be determined
whether the requested COMMIT or ROLLBACK occurred before
the failure.

40001

Transaction rollback.

The transaction is rolled back due to a resource deadlock with
another transaction.

HY000

General error.

An error occurred for which there is no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001

Memory allocation failure.

DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY010

Function sequence error.

An asynchronously executing function was called for a
StatementHandle that is associated with the ConnectionHandle and
was still executing when SQLEndTran() was called.

SQLExecute() or SQLExecDirect() was called for a StatementHandle
that is associated with the ConnectionHandle and returned
SQL_NEED_DATA. This function was called before data was sent
for all data-at-execution parameters or columns.

An exception to this behavior exists for CLI applications that run
against a DB2 for z/OS database server. When the connection
attribute SQL_ATTR_FORCE_ROLLBACK is turned on, CLI
applications can successfully perform SQLEndTran() or
SQLTransact () when CompletionType is SQL_ROLLBACK. The
StreamPutData configuration keyword must be set to 1 (on).

HY012

Invalid transaction code.

The value that is specified for the argument CompletionType is
neither SQL_COMMIT nor SQL_ROLLBACK.

HY092

Option type out of range.

The value specified for the argument HandleType was neither
SQL_HANDLE_ENV nor SQL_HANDLE_DBC.

98 Call Level Interface Guide and Reference Volume 2

Restrictions
None.

Example

/* commit all active transactions on the connection */
c1iRC = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT)

/% oo0x/

/* rollback all active transactions on the connection */
cTiRC = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_ROLLBACK);

SQLEnNndTran function (CLI) - End transactions of a connection or an environment

[* .. %/

/* rollback all active transactions on all connections
in this environment =/
c1iRC = SQLEndTran(SQL_HANDLE_ENV, henv, SQL_ROLLBACK);

SQLError function (CLI) - Retrieve error information

In ODBC 3.0, SQLError() has been deprecated and replaced with SQLGetDiagRec()
and SQLGetDiagField().

Although this version of CLI continues to support SQLError(), use
SQLGetDiagRec() in your CLI programs so that they conform to the latest
standards.

Note:

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLErrorW(). See “Unicode functions
(CLI)” on page 5 for information about ANSI to Unicode function mappings.

Migrating to the new function

To read the error diagnostic records for a statement handle, the SQLError()
function,

SQLError(henv, hdbc, hstmt, *szSqlState, *pfNativeError,
*szErrorMsg, cbErrorMsgMax, *pcbErrorMsg);

for example, would be rewritten using the new function as:

SQLGetDiagRec(SQL_HANDLE_HSTMT, hstmt, 1, szSqlState, pfNativeError,
szErrorMsg, cbErrorMsgMax, pcbErrorMsg);

SQLExecDirect function (CLI) - Execute a statement directly

Directly executes the specified SQL statement or XQuery expression using the
current values of the parameter marker variables if any parameters exist in the
statement.

The statement or expression can only be executed once.

Specification:
« CLI11

+ ODBC 1.0
 ISO CLI

For XQuery expressions, you cannot specify parameter markers in the expression
itself. You can, however, use the XMLQUERY function to bind parameter markers
to XQuery variables. The values of the bound parameter markers will then be
passed to the XQuery expression specified in XMLQUERY for execution.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLExecDirectW(). Refer to “Unicode
functions (CLI)” on page 5 for information about ANSI to Unicode function

mappings.

Chapter 1. CLI and ODBC functions 99

SQLExecDirect function (CLI) - Execute a statement directly

Syntax
SQLRETURN SQLExecDirect (
SQLHSTMT StatementHandle, /* hstmt =/
SQLCHAR *StatementText, /* szSq1Str */
SQLINTEGER TextLength); /* cbSq1Str =/
Function arguments
Table 47. SQLExecDirect arguments
Data type Argument Use Description
SQLHSTMT StatementHandle input Statement handle. There must not be an open cursor
associated with StatementHandle.
SQLCHAR * StatementText input SQL statement or XQuery expression string.
SQLINTEGER TextLength input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the StatementText argument, or
SQL_NTS if StatementText is null-terminated.
Usage

If the SQL statement text contains vendor escape clause sequences, CLI will first
modify the SQL statement text to the appropriate DB2 specific format before
submitting it for preparation and execution. If the application does not generate
SQL statements that contain vendor escape clause sequences, then it must set the
SQL_ATTR_NOSCAN statement attribute to SQL_NOSCAN_ON at the connection
level so that CLI does not perform a scan for vendor escape clauses.

The SQL statement can be COMMIT or ROLLBACK if it is called using
SQLExecDirect(). Doing so yields the same result as calling SQLEndTran() on the
current connection handle.

The SQL statement string can contain parameter markers, however all parameters
must be bound before calling SQLExecDirect().

If the SQL statement is a query, or StatementText is an XQuery expression,
SQLExecDirect() will generate a cursor name, and open the cursor. If the
application has used SQLSetCursorName() to associate a cursor name with the
statement handle, CLI associates the application generated cursor name with the
internally generated one.

If a result set is generated, SQLFetch() or SQLFetchScrol1() will retrieve the next
row (or rows) of data into bound variables, LOB locators, or LOB file references.

If the SQL statement is a positioned DELETE or a positioned UPDATE, the cursor
referenced by the statement must be positioned on a row and must be defined on a
separate statement handle under the same connection handle.

There must not already be an open cursor on the statement handle.

If SQLSetStmtAttr() has been called with the SQL_ATTR_PARAMSET_SIZE
attribute to specify that an array of input parameter values has been bound to each
parameter marker, then the application needs to call SQLExecDirect() only once to
process the entire array of input parameter values.

100 Call Level Interface Guide and Reference Volume 2

SQLExecDirect function (CLI) - Execute a statement directly

If the executed statement returns multiple result sets (one for each set of input
parameters), then SQLMoreResults() must be used to advance to the next result set
when processing on the current result set is completed.

Return codes
+ SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO
e SQL_STILL_EXECUTING

+ SQL_ERROR

* SQL_INVALID_HANDLE

* SQL_NEED_DATA

* SQL_NO_DATA_FOUND

SQL_NEED_DATA is returned when the application has requested to input
data-at-execute parameter values by setting the *StrLen_or_IndPtr value specified
during SQLBindParameter() to SQL_DATA_AT_EXEC for one or more parameters.

SQL_NO_DATA_FOUND is returned if the SQL statement is a Searched UPDATE
or Searched DELETE and no rows satisfy the search condition.

Diagnostics

Table 48. SQLExecDirect SQLSTATEs

SQLSTATE Description Explanation

01504 The UPDATE or DELETE StatementText contained an UPDATE or DELETE statement which

statement does not include a did not contain a WHERE clause. (Function returns
WHERE clause. SQL_SUCCESS_WITH_INFO or SQL_NO_DATA_FOUND if there
were no rows in the table).

01508 Statement disqualified for The statement was disqualified for blocking for reasons other than

blocking. storage.

07001 Wrong number of parameters. The number of parameters bound to application variables using
SQLBindParameter() was less than the number of parameter
markers in the SQL statement contained in the argument
StatementText.

07006 Invalid conversion. Transfer of data between CLI and the application variables would
result in an incompatible data conversion.

21501 Insert value list does not match ~ StatementText contained an INSERT statement and the number of

column list. values to be inserted did not match the degree of the derived
table.

21502 Degrees of derived table does StatementText contained a CREATE VIEW statement and the

not match column list. number of names specified is not the same degree as the derived
table defined by the query specification.

22001 String data right truncation. A character string assigned to a character type column exceeded
the maximum length of the column.

22003 Numeric value out of range. A numeric value assigned to a numeric type column caused

truncation of the whole part of the number, either at the time of
assignment or in computing an intermediate result.

StatementText contained an SQL statement with an arithmetic
expression which caused division by zero.

Note: as a result the cursor state is undefined for DB2 Database
for Linux, UNIX, and Windows (the cursor will remain open for
other RDBMSs).

Chapter 1. CLI and ODBC functions 101

SQLExecDirect function (CLI) - Execute a statement directly

Table 48. SQLExecDirect SQLSTATEs (continued)
SQLSTATE Description Explanation

22005 Error in assignment. StatementText contained an SQL statement with a parameter or
literal and the value or LOB locator was incompatible with the
data type of the associated table column.

The length associated with a parameter value (the contents of the
pcbValue buffer specified on SQLBindParameter()) is not valid.

The argument fSQLType used in SQLBindParameter() or
SQLSetParam(), denoted an SQL graphic data type, but the
deferred length argument (pcbValue) contains an odd length value.
The length value must be even for graphic data types.

22007 Invalid datetime format. StatementText contained an SQL statement with an invalid
datetime format; that is, an invalid string representation or value
was specified, or the value was an invalid date, time, or
timestamp.

22008 Datetime field overflow. Datetime field overflow occurred; for example, an arithmetic
operation on a date or timestamp has a result that is not within
the valid range of dates, or a datetime value cannot be assigned to
a bound variable because it is too small.

22012 Division by zero is invalid. StatementText contained an SQL statement with an arithmetic
expression that caused division by zero.

23000 Integrity constraint violation. The execution of the SQL statement is not permitted because the
execution would cause integrity constraint violation in the DBMS.

24000 Invalid cursor state. A cursor was already opened on the statement handle.

24504 The cursor identified in the Results were pending on the StatementHandle from a previous

UPDATE, DELETE, SET, or GET query or a cursor associated with the hstmt had not been closed.
statement is not positioned on a

TOW.

34000 Invalid cursor name. StatementText contained a Positioned DELETE or a Positioned
UPDATE and the cursor referenced by the statement being
executed was not open.

37xxx ° Invalid SQL syntax. StatementText contained one or more of :
* An SQL statement that the connected database server can not

prepare

* A statement containing a syntax error

40001 Transaction rollback. The transaction to which this SQL statement belonged was rolled
back due to a deadlock or timeout.

40003 08s01 Communication link failure. The communication link between the application and data source
failed before the function completed.

42xxx Syntax Error or Access Rule 425xx indicates the authorization ID does not have permission to

Violation. execute the SQL statement contained in StatementText.

Other 42xxx SQLSTATES indicate a variety of syntax or access
problems with the statement.

102 Call Level Interface Guide and Reference Volume 2

Table 48. SQLExecDirect SQLSTATEs (continued)

SQLExecDirect function (CLI) - Execute a statement directly

SQLSTATE

Description

Explanation

428A1

Unable to access a file referenced
by a host file variable.

This can be raised for any of the listed scenarios. The associated
reason code in the text identifies the particular error:

¢ 01 - The file name length is invalid, or the file name, the path
has an invalid format, or both.

¢ 02 - The file option is invalid. It must have one of the listed
values:
SQL_FILE_READ -read from an existing file
SQL_FILE_CREATE -create a new file for write
SQL_FILE OVERWRITE -overwrite an existing file.
If the file does not exist,
create the file.
SQL_FILE_APPEND -append to an existing file.
If the file does not exist,
create the file.
* 03 - The file cannot be found.

¢ 04 - The SQL_FILE_CREATE option was specified for a file with
the same name as an existing file.

* 05 - Access to the file was denied. The user does not have
permission to open the file.

* 06 - Access to the file was denied. The file is in use with
incompatible modes. Files to be written to are opened in
exclusive mode.

¢ 07 - Disk full was encountered while writing to the file.

* 08 - Unexpected end of file encountered while reading from the
file.

* 09 - A media error was encountered while accessing the file.

42895

The value of a host variable in
the EXECUTE or OPEN
statement cannot be used
because of its data type.

The LOB locator type specified on the bind parameter function
call does not match the LOB data type of the parameter marker.

The argument fSQLType used on the bind parameter function
specified a LOB locator type but the corresponding parameter
marker is not a LOB.

44000

Integrity constraint violation.

StatementText contained an SQL statement which contained a
parameter or literal. This parameter value was NULL for a
column defined as NOT NULL in the associated table column, or
a duplicate value was supplied for a column constrained to
contain only unique values, or some other integrity constraint was
violated.

56084

LOB data is not supported in
DRDA".

LOB columns cannot either be selected or updated when
connecting to host or IBM Power Systems™ servers (using DB2
Connect™).

58004

Unexpected system failure.

Unrecoverable system error.

S0001

Database object already exists.

StatementText contained a CREATE TABLE or CREATE VIEW
statement and the table name or view name specified already
existed.

$0002

Database object does not exist.

StatementText contained an SQL statement that references a table
name or view name which does not exist.

S0011

Index already exists.

StatementText contained a CREATE INDEX statement and the
specified index name already existed.

S0012

Index not found.

StatementText contained a DROP INDEX statement and the
specified index name did not exist.

Chapter 1. CLI and ODBC functions 103

SQLExecDirect function (CLI) - Execute a statement directly

Table 48. SQLExecDirect SQLSTATEs (continued)

SQLSTATE Description Explanation

S0021 Column already exists. StatementText contained an ALTER TABLE statement and the
column specified in the ADD clause was not unique or identified
an existing column in the base table.

S0022 Column not found. StatementText contained an SQL statement that references a column
name which does not exist.

HYO001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY009 Invalid argument value. StatementText was a null pointer.

HY013 Unexpected memory handling DB2 CLI was unable to access memory required to support

error. execution or completion of the function.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource
limitations.

HY090 Invalid string or buffer length. The argument TextLength was less than 1 but not equal to
SQL_NTS.

HY092 Option type out of range. The FileOptions argument of a previous SQLBindFileToParam()
operation was not valid.

HY503 Invalid file name length. The fileNameLength argument value from SQLBindFileToParam()
was less than 0, but not equal to SQL_NTS.

HYTO00 Timeout expired. The timeout period expired before the data source returned the
result set. The timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Note:

a xxx refers to any SQLSTATE with that class code. Example, 37xxx refers to any SQLSTATE in the 37 class.

Restrictions
None.
Example

/% directly execute a statement - end the COMPOUND statement =*/
c1iRC = SQLExecDirect(hstmt, (SQLCHAR =*)"SELECT * FROM ORG", SQL _NTS);

SQLExecute function (CLI) - Execute a statement

Executes a statement that was successfully prepared using SQLPrepare() on the
same statement handle, once or multiple times.

The statement is executed using the current values of any application variables that

were bound to parameter markers by SQLBindParameter() or

SQLBindFileToParam().

Specification:
« CLI1.1

+ ODBC 1.0

+ ISO CLI

104 Call Level Interface Guide and Reference Volume 2

SQLExecute function (CLI) - Execute a statement

Syntax
SQLRETURN SQLExecute (SQLHSTMT StatementHandle); /* hstmt */

Function arguments

Table 49. SQLExecute arguments

Data type

Argument Use Description

SQLHSTMT

StatementHandle input Statement handle. There must not be an open cursor

associated with StatementHandle.

Usage

The SQL statement string previously prepared on StatementHandle using
SQLPrepare() may contain parameter markers. All parameters must be bound
before calling SQLExecute().

Note: For XQuery expressions, you cannot specify parameter markers in the
expression itself. You can, however, use the XMLQUERY function to bind
parameter markers to XQuery variables. The values of the bound parameter
markers will then be passed to the XQuery expression specified in XMLQUERY for
execution.

Once the application has processed the results from the SQLExecute() call, it can
execute the statement again with new (or the same) parameter values.

A statement executed by SQLExecDirect() cannot be re-executed by calling
SQLExecute(). Only statements prepared with SQLPrepare() can be executed and
re-executed with SQLExecute().

If the prepared SQL statement is a query or an XQuery expression, SQLExecute()
will generate a cursor name, and open the cursor. If the application has used
SQLSetCursorName() to associate a cursor name with the statement handle, CLI
associates the application generated cursor name with the internally generated one.

To execute a query more than once on a given statement handle, the application
must close the cursor by calling SQLCloseCursor() or SQLFreeStmt() with the
SQL_CLOSE option. There must not be an open cursor on the statement handle
when calling SQLExecute().

If a result set is generated, SQLFetch() or SQLFetchScroll() will retrieve the next
row (or rows) of data into bound variables, LOB locators or LOB file references.

If the SQL statement is a positioned DELETE or a positioned UPDATE, the cursor
referenced by the statement must be positioned on a row at the time SQLExecute()
is called, and must be defined on a separate statement handle under the same
connection handle.

If SQLSetStmtAttr() has been called with the SQL_ATTR_PARAMSET_SIZE
attribute to specify that an array of input parameter values has been bound to each
parameter marker, the application needs to call SQLExecute() only once to process
the entire array of input parameter values. If the executed statement returns
multiple result sets (one for each set of input parameters), then SQLMoreResults()
should be used to advance to the next result set once processing on the current
result set is complete.

Chapter 1. CLI and ODBC functions 105

SQLExecute function (CLI) - Execute a statement

Return codes

+ SQL_SUCCESS

+ SQL_SUCCESS_WITH_INFO
+ SQL_ERROR

* SQL_INVALID_HANDLE

* SQL_NEED_DATA

+ SQL_NO_DATA_FOUND

SQL_NEED_DATA is returned when the application has requested to input
data-at-execute parameter values by setting the *StrLen_or_IndPtr value specified
during SQLBindParameter() to SQL_DATA_AT EXEC for one or more parameters.

SQL_NO_DATA_FOUND is returned if the SQL statement is a searched UPDATE
or searched DELETE and no rows satisfy the search condition.

Diagnostics

The SQLSTATEs for SQLExecute() include all those for SQLExecDirect() except for
HYO009, HY090 and with the addition of the SQLSTATE in the following table. Any
SQLSTATE that SQLPrepare() could return can also be returned on a call to
SQLExecute() as a result of deferred prepare behavior.

Table 50. SQLExecute SQLSTATEs

SQLSTATE Description

Explanation

HY010 Function sequence error. The specified StatementHandle was not in a prepared state.
SQLExecute() was called without first calling SQLPrepare().
Authorization
None.
Example

SQLHANDLE hstmt; /* statement handle =/
SQLCHAR *stmt = (SQLCHAR *)"DELETE FROM org WHERE deptnumb = ? ";
SQLSMALLINT parameterl = 0;

/* allocate a statement handle */
c1iRC = SQLA11ocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

[* ...

*/

/* prepare the statement */
c1iRC = SQLPrepare(hstmt, stmt, SQL_NTS);

[* ...

*/

/* bind parameterl to the statement */
c1iRC = SQLBindParameter(hstmt,

[* ...

*/

1,
SQL_PARAM_INPUT,
SQL_C_SHORT,
SQL_SMALLINT,

0,

0’

¶meterl,

0,

NULL) ;

106 Call Level Interface Guide and Reference Volume 2

SQLExecute function (CLI) - Execute a statement

parameterl = 15;

/* execute the statement for parameterl = 15 =/
cTiRC = SQLExecute(hstmt);

SQLExtendedBind function (CLI) - Bind an array of columns

Binds an array of columns or parameters instead of using repeated calls to
SQLBindCo1() or SQLBindParameter().

Specification:

« CLI6

Syntax

SQLRETURN SQLExtendedBind (
SQLHSTMT StatementHandle, /* hstmt =/
SQLSMALLINT fBindCol,
SQLSMALLINT cRecords,
SQLSMALLINT = pfCType,
SQLPOINTER =* rgbValue,
SQLINTEGER = cbValueMax,
SQLUINTEGER = puiPrecisionCType,
SQLSMALLINT = psScaleCType,
SQLINTEGER #*=* pchValue,
SQLINTEGER *= pilndicator,
SQLSMALLINT = pfParamType,
SQLSMALLINT =* pfSQLType,
SQLUINTEGER = pcbColDef,
SQLSMALLINT = pibScale) ;

Function arguments

Table 51. SQLExtendedBind() arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLSMALLINT fBindCol input If SQL_TRUE then the result is similar to
SQLBindCo1 (), otherwise, it is similar to
SQLBindParameter().

SQLSMALLINT cRecords input Number of columns or parameters to bind.

SQLSMALLINT * | pfCType input Array of values for the application data type.

SQLPOINTER * rgbValue input Array of pointers to application data area.

SQLINTEGER * cbValueMax input Array of maximum sizes for rgbValue.

SQLUINTEGER * | puiPrecisionCType input Array of decimal precision values. Each value is
used only if the application data type of the
corresponding record is SQL_C_DECIMAL_IBM.

SQLSMALLINT * | psScaleCType input Array of decimal scale values. Each value is used
only if the application data type of the
corresponding record is SQL_C_DECIMAL_IBM.

SQLINTEGER ** pcbValue input Array of pointers to length values.

SQLINTEGER ** pilndicator input Array of pointers to indicator values. The pilndicator
argument allows the constants SQL_UNASSIGNED
and SQL_DEFAULT_PARAM to pass through the
method, when extended indicator feature is enabled
using the SQL_ATTR_EXTENDED_INDICATORS
attribute.

Chapter 1. CLI and ODBC functions 107

SQLExtendedBind function (CLI) - Bind an array of columns

Table 51. SQLExtendedBind() arguments (continued)

Data type Argument Use

Description

SQLSMALLINT * | pfParamType input

Array of parameter types. Only used if fBindCol is
FALSE.

Each row in this array serves the same purpose as
the SQLBindParameter() argument InputOutputType.
It can be set to:

¢ SQL_PARAM_INPUT

* SQL_PARAM_INPUT_OUTPUT

* SQL_PARAM_OUTPUT

SQLSMALLINT * | pfSQLType input

Array of SQL data types. Only used if fBindCol is
FALSE.

Each row in this array serves the same purpose as
the SQLBindParameter() argument ParameterType.

SQLUINTEGER * | pcbColDef input

Array of SQL precision values. Only used if fBindCol
is FALSE.

Each row in this array serves the same purpose as
the SQLBindParameter() argument ColumnSize.

SQLSMALLINT * | pibScale input

Array of SQL scale values. Only used if fBindCol is
FALSE.

Each row in this array serves the same purpose as
the SQLBindParameter() argument DecimalDigits.

Usage

The argument fBindCol determines whether this function call is used to associate

(bind):

* parameter markers in an SQL statement (as with SQLBindParameter()) - fBindCol

= SQL_FALSE

* columns in a result set (as with SQLBindCo1()) - fBindCol = SQL_TRUE

This function can be used to replace multiple calls to SQLBindCo1() or
SQLBindParameter(), however, important differences should be noted. Depending
on how the fBindCol parameter has been set, the input expected by
SQLExtendedBind() is similar to either SQLBindCo1() or SQLBindParameter() with

the following exceptions:

* When SQLExtendedBind() is set to SQLBindCol () mode:
— targetValuePtr must be a positive integer that specifies in bytes, the maximum
length of the data that will be in the returned column.
e When SQLExtendedBind() is set to SQLBindParameter() mode:

— ColumnSize must be a positive integer that specifies the maximum length of
the target column in bytes, where applicable.

— DecimalDigits must be set to the correct scale for the target column, where

applicable.

— ValueType of SQL_C_DEFAULT should not be used.
— If ValueType is a locator type, the corresponding ParameterType should be a

matching locator type.

— All ValueType to ParameterType mappings should be as closely matched as
possible to minimize the conversion that CLI must perform.

108 Call Level Interface Guide and Reference Volume 2

SQLExtendedBind function (CLI) - Bind an array of columns

Each array reference passed to SQLExtendedBind() must contain at least the
number of elements indicated by cRecords. If the calling application fails to pass in
sufficiently large arrays, CLI may attempt to read beyond the end of the arrays
resulting in corrupt data or critical application failure.

Each array passed to SQLExtendedBind() is considered to be a deferred argument,
which means the values in the array are examined and retrieved at the time of
execution. As a result, ensure that each array is in a valid state and contains valid
data when CLI executes using the values in the array. Following a successful
execution, if a statement needs to be executed again, you do not need to call
SQLExtendedBind() a second time if the handles passed to the original call to
SQLExtendedBind() still refer to valid arrays.

Return codes
+ SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO

* SQL_ERROR
* SQL_INVALID_HANDLE
Diagnostics
Table 52. SQLExtendedBind() SQLSTATEs
SQLSTATE Description Explanation
07006 Invalid conversion. The conversion from the data value identified by a row in the
pfCType argument to the data type identified by the pfParamType
argument is not a meaningful conversion. (For example,
conversion from SQL_C_TYPE_DATE to SQL_DOUBLE.)
07009 Invalid descriptor index The value specified for the argument cRecords exceeded the

maximum number of columns in the result set.

40003 08501

Communication link failure.

The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HYO001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY003 Program type out of range. A row in pfParamType or pfSQLType was not a valid data type or
SQL_C_DEFAULT.

HY004 SQL data type out of range. The value specified for the argument pfParamType is not a valid
SQL data type.

HY009 Invalid argument value. The argument rgbValue was a null pointer and the argument
cbValueMax was a null pointer, and pfParamType is not
SQL_PARAM_OUTPUT.

HYO010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling DB2 CLI was unable to access memory required to support

error. execution or completion of the function.

HY021 Inconsistent descriptor The descriptor information checked during a consistency check

information

was not consistent.

Chapter 1. CLI and ODBC functions 109

SQLExtendedBind function (CLI) - Bind an array of columns

Table 52. SQLExtendedBind() SQLSTATEs (continued)

SQLSTATE

Description

Explanation

HY090

Invalid string or buffer length.

The value specified for the argument cbValueMax is less than 1
and the argument the corresponding row in pfParamType or
pfSQLType is either SQL_C_CHAR, SQL_C_BINARY or
SQL_C_DEFAULT.

HY093

Invalid parameter number.

The value specified for a row in the argument pfCType was less
than 1 or greater than the maximum number of parameters
supported by the server.

HY094

Invalid scale value.

The value specified for pfParamType was either SQL_DECIMAL or
SQL_NUMERIC and the value specified for DecimalDigits was less
than 0 or greater than the value for the argument pcbColDef
(precision).

The value specified for pfParamType was
SQL_C_TYPE_TIMESTAMP and the value for pfParamType was
either SQL_CHAR or SQL_VARCHAR and the value for
DecimalDigits was less than 0 or greater than 9.

The value specified for pfParamType was
SQL_C_TIMESTAMP_EXT and the value for DecimalDigits was
less than 0 or greater than 12.

HY104

Invalid precision value.

The value specified for pfParamType was either SQL_DECIMAL or
SQL_NUMERIC and the value specified by pcbColDef was less
than 1.

HY105

Invalid parameter type.

pfParamType is not one of SQL_PARAM_INPUT,
SQL_PARAM_OUTPUT, or SQL_PARAM_INPUT_OUTPUT.

HYCO00

Driver not capable.

CLI recognizes, but does not support the data type specified in
the row in pfParamType or pfSQLType.

A LOB locator C data type was specified, but the connected server
does not support LOB data types.

Restrictions

None

SQLExtendedFetch function (CLI) - Extended fetch (fetch array of

rows)

In ODBC 3.0, SQLExtendedFetch() has been deprecated and replaced with

SQLFetchScroll().

Although this version of CLI continues to support SQLExtendedFetch(), use
SQLFetchScroll() in your CLI programs so that they conform to the latest

standards.

Migrating to the new function

The statement:

SQLExtendedFetch(hstmt, SQL_FETCH_ABSOLUTE, 5, &rowCount, &rowStatus);

for example, would be rewritten using the new function as:
SQLFetchScrol1 (hstmt, SQL_FETCH_ABSOLUTE, 5);

110 Call Level Interface Guide and Reference Volume 2

SQLExtendedFetch function (CLI) - Extended fetch (fetch array of rows)

Note:

The information returned in the rowCount and rowStatus parameters of
SQLExtendedFetch() are handled by SQLFetchScrol1() as follows:

e rowCount: SQLFetchScrol1() returns the number of rows fetched in the buffer
pointed to by the SQL_ATTR_ROWS_FETCHED_PTR statement attribute.

* rowStatus: SQLFetchScrol1() returns the array of statuses for each row in the
buffer pointed to by the SQL_ATTR_ROW_STATUS_PTR statement attribute.

SQLExtendedPrepare function (CLI) - Prepare a statement and set

statement attributes

Prepares a statement and set a group of statement attributes, all in one call.

Specification:
+ CLI 6.0

This function can be used in place of a call to SQLPrepare() followed by a number
of calls to SQLSetStmtAttr().

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLExtendedPrepareW(). See “Unicode

functions (CLI)” on page 5 for information about ANSI to Unicode function

mappings.
Syntax

SQLRETURN SQLExtendedPrepare(

SQLHSTMT StatementHandle, /* hstmt =/
SQLCHAR *StatementText, /* pszSqlStmt =/
SQLINTEGER TextLength, /* cbSq1Stmt */
SQLINTEGER cPars,

SQLSMALLINT sStmtType,

SQLINTEGER cStmtAttrs,

SQLINTEGER *piStmtAttr,

SQLINTEGER *pvParams);

Function arguments
Table 53. SQLExtendedPrepare() arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLCHAR * StatementText Input SQL statement string.

SQLINTEGER TextLength Input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the StatementText argument, or
SQL_NTS if StatementText is null-terminated.

SQLINTEGER cPars Input Number of parameter markers in statement.

SQLSMALLINT cStmtType Input Statement type. For possible values see List of
cStmtType Values.

SQLINTEGER cStmtAttrs Input Number of statement attributes specified on this call.

SQLINTEGER * piStmtAttr Input Array of statement attributes to set.

SQLINTEGER * pvParams Input Array of corresponding statement attributes values
to set.

Chapter 1. CLI and ODBC functions 111

SQLExtendedPrepare function (CLI) - Prepare a statement and set statement attributes

Usage

The first three arguments of this function are exactly the same as the arguments in
SQLPrepare().

There are two requirements when using SQLExtendedPrepare():

1. The SQL statements will not be scanned for ODBC/vendor escape clauses. It
behaves as if the SQL_ATTR_NOSCAN statement attribute is set to
SQL_NOSCAN. If the SQL statement contains ODBC/vendor escape clauses
then SQLExtendedPrepare() cannot be used.

2. You must indicate in advance (through cPars) the number of parameter markers
that are included in the SQL statement.

The cPars argument indicates the number of parameter markers in StatementText.

The argument cStmtType is used to indicate the type of statement that is being
prepared. See List of cStmtType Values for the list of possible values.

The final three arguments are used to indicate a set of statement attributes to use.
Set cStmtAttrs to the number of statement attributes specified on this call. Create
two arrays, one to hold the list of statement attributes, one to hold the value for
each. Use these arrays for piStmtAttr and pvParams.

List of cStmtType Values

The argument cStmtType can be set to one of the following values:
* SQL_CLI_STMT_UNDEFINED

* SQL_CLI_STMT_ALTER_TABLE

¢ SQL_CLI_STMT_CREATE_INDEX

* SQL_CLI_STMT_CREATE TABLE

* SQL_CLI_STMT_CREATE_VIEW

* SQL_CLI_STMT_DELETE_SEARCHED

* SQL_CLI_STMT_DELETE_POSITIONED

* SQL_CLI_STMT_GRANT

¢ SQL_CLI_STMT_INSERT

* SQL_CLI_STMT_INSERT_VALUES

* SQL_CLI_STMT_REVOKE

* SQL_CLI_STMT_SELECT

* SQL_CLI_STMT_UPDATE_SEARCHED

* SQL_CLI_STMT_UPDATE_POSITIONED

* SQL_CLI_STMT_CALL

* SQL_CLI_STMT_SELECT_FOR_UPDATE

* SQL_CLI_STMT_WITH

¢ SQL_CLI_STMT_SELECT_FOR_FETCH

* SQL_CLI_STMT_VALUES

* SQL_CLI_STMT_CREATE_TRIGGER

* SQL_CLI_STMT_SELECT_OPTIMIZE_FOR_NROWS
* SQL_CLI_STMT_SELECT_INTO

* SQL_CLI_STMT_CREATE_PROCEDURE

* SQL_CLI_STMT_CREATE_FUNCTION

* SQL_CLI_STMT_SET_CURRENT_QUERY_OPT

Return codes

* SQL_SUCCESS
* SQL_SUCCESS_WITH_INFO

112 Call Level Interface Guide and Reference Volume 2

SQLExtendedPrepare function (CLI) - Prepare a statement and set statement attributes

* SQL_STILL_EXECUTING

* SQL_ERROR
* SQL_INVALID_HANDLE
Diagnostics

Table 54. SQLExtendedPrepare SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01504 The UPDATE or DELETE StatementText contained an UPDATE or DELETE statement which

statement does not include a did not contain a WHERE clause.
WHERE clause.

01508 Statement disqualified for The statement was disqualified for blocking for reasons other than

blocking. storage.

01502 Option value changed. CLI did not support a value specified in *pvParams, or a value
specified in *pvParams was invalid because of SQL constraints or
requirements, so CLI substituted a similar value. (Function returns
SQL_SUCCESS_WITH_INFO.)

08501 Communication link failure. The communication link between CLI and the data source to
which it was connected failed before the function completed
processing.

21501 Insert value list does not match ~ StatementText contained an INSERT statement and the number of

column list. values to be inserted did not match the degree of the derived
table.

21502 Degrees of derived table does StatementText contained a CREATE VIEW statement and the

not match column list. number of names specified is not the same degree as the derived
table defined by the query specification.

22018 Invalid character value for cast *StatementText contained an SQL statement that contained a literal

specification. or parameter and the value was incompatible with the data type
of the associated table column.

22019 Invalid escape character The argument StatementText contained a LIKE predicate with an
ESCAPE in the WHERE clause, and the length of the escape
character following ESCAPE was not equal to 1.

22025 Invalid escape sequence The argument StatementText contained “LIKE pattern value
ESCAPE escape character” in the WHERE clause, and the character
following the escape character in the pattern value was not one of
"o or " ",

24000 Invalid cursor state. A cursor was already opened on the statement handle.

34000 Invalid cursor name. StatementText contained a positioned DELETE or a positioned
UPDATE and the cursor referenced by the statement being
executed was not open.

37xxx ? Invalid SQL syntax. StatementText contained one or more of the following
complications:

* an SQL statement that the connected database server could not
prepare
* a statement containing a syntax error
40001 Transaction rollback. The transaction to which this SQL statement belonged was rolled

back due to deadlock or timeout.

40003 08501

Communication link failure.

The communication link between the application and data source
failed before the function completed.

Chapter 1. CLI and ODBC functions 113

SQLExtendedPrepare function (CLI) - Prepare a statement and set statement attributes

Table 54. SQLExtendedPrepare SQLSTATEs (continued)

SQLSTATE

Description

Explanation

42xxx *

Syntax Error or Access Rule
Violation.

425xx indicates the authorization ID does not have permission to
execute the SQL statement contained in StatementText.

Other 42xxx SQLSTATES indicate a variety of syntax or access
problems with the statement.

58004

Unexpected system failure.

Unrecoverable system error.

S0001

Database object already exists.

StatementText contained a CREATE TABLE or CREATE VIEW
statement and the table name or view name specified already
existed.

$0002

Database object does not exist.

StatementText contained an SQL statement that references a table
name or a view name which did not exist.

S0011

Index already exists.

StatementText contained a CREATE INDEX statement and the
specified index name already existed.

S0012

Index not found.

StatementText contained a DROP INDEX statement and the
specified index name did not exist.

$0021

Column already exists.

StatementText contained an ALTER TABLE statement and the
column specified in the ADD clause was not unique or identified
an existing column in the base table.

S0022

Column not found.

StatementText contained an SQL statement that references a column
name which did not exist.

HY000

General error.

An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001

Memory allocation failure.

DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY008

Operation was Canceled.

Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY009

Invalid argument value.

StatementText was a null pointer.

HY010

Function sequence error.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY011

Operation invalid at this time.

The Attribute was SQL_ATTR_CONCURRENCY, SQL_
ATTR_CURSOR_TYPE, SQL_ATTR_SIMULATE_CURSOR, or
SQL_ATTR_USE_BOOKMARKS and the statement was prepared.

HY013

Unexpected memory handling
€rror.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY014

No more handles.

DB2 CLI was unable to allocate a handle due to resource
limitations.

HY017

Invalid use of an automatically
allocated descriptor handle.

The Attribute argument was SQL_ATTR_IMP_ROW_DESC or
SQL_ATTR_IMP_PARAM_DESC. The Attribute argument was
SQL_ATTR_APP_ROW_DESC or
SQL_ATTR_APP_PARAM_DESC, and the value in *ValuePtr was
an implicitly allocated descriptor handle.

114 Call Level Interface Guide and Reference Volume 2

SQLExtendedPrepare function (CLI) - Prepare a statement and set statement attributes

Table 54. SQLExtendedPrepare SQLSTATEs (continued)

SQLSTATE Description Explanation

HY024 Invalid attribute value. Given the specified Attribute value, an invalid value was specified
in *ValuePtr. (CLI returns this SQLSTATE only for connection and
statement attributes that accept a discrete set of values, such as
SQL_ATTR_ACCESS_MODE. For all other connection and
statement attributes, the driver must verify the value specified in
*ValuePtr.)

HY090 Invalid string or buffer length. The argument TextLength was less than 1, but not equal to
SQL_NTS.

HY092 Option type out of range. The value specified for the argument Attribute was not valid for
this version of CLI.

HYC00 Driver not capable. The value specified for the argument Attribute was a valid
connection or statement attribute for the version of the CLI driver,
but was not supported by the data source.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. The timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Note:

a xxx refers to any SQLSTATE with that class code. Example, 37xxx refers to any SQLSTATE in the 37 class.

Note: Not all DBMSs report all of the diagnostic messages at prepare time. If
deferred prepare is left on as the default behavior (controlled by the
SQL_ATTR_DEFERRED_PREPARE statement attribute), then these errors could
occur when the PREPARE is flowed to the server. The application must be able to
handle these conditions when calling functions that cause this flow. These
functions include SQLExecute(), SQLDescribeParam(), SQLNumResultCols(),
SQLDescribeCol(), and SQLCoTAttribute().

Restrictions

When accessing IDS data servers, only IDS data server specific
SQLExtendedPrepare() attributes are supported. If any SQLExtendedPrepare()
attributes not supported by the IDS data server are used, a "Driver not capable”
error is returned.

SQLExtendedProcedures function (CLI) - Get list of procedure names

The SQLExtendedProcedures() function returns a list of stored procedure names
that are registered at the server, and which match the specified search pattern.

The information is returned in an SQL result set, which you can retrieve by using
the same functions that you use to process a result set that is generated by a query.

Specification:
+ CLI9.7

Unicode equivalent: You can also use this function with the Unicode character set.
The corresponding Unicode function is SQLExtendedProceduresW(). For information
about ANSI to Unicode function mappings, see “Unicode functions (CLI)” on page
5.

Chapter 1. CLI and ODBC functions 115

SQLExtendedProcedures function (CLI) - Get list of procedure names

Modules are an extension to the concept of schemas. Applications connecting to
DB2 version 9.7 or later data servers can create modules inside their schema and
can create procedures inside the modules. The fully qualified name of a procedure
in a module would be <SCHEMA NAME>.<MODULE NAME>.<PROCEDURE
NAME>. The SQLExtendedProcedures() and SQLExtendedProcedureColumns()
functions provide information about modules. These functions are not part of the
current ODBC specification. For more information, see “Modules” in SQL
Procedural Languages: Application Enablement and Support.

Syntax
SQLRETURN

SQLExtendedProcedures

SQLHSTMT
SQLCHAR
SQLSMALLINT
SQLCHAR
SQLSMALLINT
SQLCHAR
SQLSMALLINT
SQLCHAR
SQLSMALLINT

(

StatementHandle,

*CatalogName,
NamelLengthl,
*SchemaName,
NamelLength2,
*ProcName,
NameLength3),
*ProcModule,
NameLength4;

/*
/*
/*
/*
/*
/*
/*
/*
/*

hstmt =/
szProcCatalog */
cbProcCatalog */
szProcSchema */
cbProcSchema */
szProcName */
cbProcName */
szProcModule */
cbProcModule */

Function arguments
Table 55. SQLExtendedProcedures arguments

Data type
SQLHSTMT
SQLCHAR *

Argument Use Description

StatementHandle Input The statement handle.

CatalogName Input A catalog qualifier of a 3-part table name. If the
target DBMS does not support 3-part naming, and
CatalogName is not a null pointer and does not point
to a zero-length string, then an empty result set and
SQL_SUCCESS is returned. Otherwise, this is a valid

filter for DBMSs that supports 3-part naming.

The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store CatalogName, or SQL_NTS
if CatalogName is null-terminated.

SQLSMALLINT NameLengthl Input

SQLCHAR * SchemaName Input A buffer that can contain a pattern value to qualify

the result set by schema name.

For DB2 for MVS/ESA V 4.1 and later, all the stored
procedures are in one schema; the only acceptable
value for the SchemaName argument is a null pointer.
If a value is specified, an empty result set and
SQL_SUCCESS are returned. For DB2 Database for
Linux, UNIX, and Windows, SchemaName can contain
a valid pattern value. For more information about
valid search patterns, see the catalog functions input
arguments.

The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store SchemaName, or SQL_NTS
if SchemaName is null-terminated.

SQLSMALLINT NameLength?2 Input

SQLCHAR * ProcName Input A buffer that can contain a pattern value to qualify

the result set by table name.

116 Call Level Interface Guide and Reference Volume 2

SQLExtendedProcedures function (CLI) - Get list of procedure names

Table 55. SQLExtendedProcedures arguments (continued)

Data type Argument Use Description

SQLSMALLINT NameLength3 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store ProcName, or SQL_NTS if
ProcName is null-terminated.

SQLCHAR * ProcModule Input A buffer that can contain a pattern value to qualify
the result set by module name.

SQLSMALLINT NameLength4 Input The number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)
that are required to store ProcModule, or SQL_NTS if
ProcModule is null-terminated.

Usage

The result set that is returned by the SQLExtendedProcedures() function contains
the columns that are listed in Columns returned by SQLExtendedProcedures in the
order given. The rows are ordered by PROCEDURE_CAT,
PROCEDURE_SCHEMA, and PROCEDURE_NAME.

In many cases, calls to the SQLExtendedProcedures () function map to a complex
and thus expensive query against the system catalog, so you should use the calls
sparingly, and save the results rather than repeating calls.

Call SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine the actual lengths of the
TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
that are supported by the connected DBMS.

If the SQL_ATTR_LONGDATA_COMPAT connection attribute is set, LOB column
types are reported as LONG VARCHAR, LONG VARBINARY, or LONG
VARGRAPHIC types.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns will not change.

If the stored procedure is at a DB2 for MVS/ESA V4.1 up to V6 server, the name of
the stored procedures must be registered in the server's SYSIBM.SYSPROCEDURES
catalog table. For V8 and later servers, the stored procedure must be registered in
the server's SYSIBM.SYSROUTINES and SYSIBM.SYSPARAMS catalog tables.

For other versions of DB2 servers that do not provide facilities for a stored
procedure catalog, an empty result set is returned.

You can specify *ALL as a value in the SchemaName to resolve unqualified stored
procedure calls or to find libraries in catalog API calls. CLI searches on all existing
schemas in the connected database. You are not required to specify *ALL, as this
behavior is the default in CLI. Alternatively, you can set the SchemaFilter IBM
Data Server Driver configuration keyword or the Schema List CLI/ODBC
configuration keyword to *ALL.

Chapter 1. CLI and ODBC functions 117

SQLExtendedProcedures function (CLI) - Get list of procedure names

Columns returned by SQLExtendedProcedures

Column 1 PROCEDURE_CAT (VARCHAR(128))
The procedure catalog name. The value is NULL if this procedure does not
have catalogs.

Column 2 PROCEDURE_SCHEM (VARCHAR(128))
The name of the schema that contains PROCEDURE_NAME.

Column 3 PROCEDURE_NAME (VARCHAR(128) NOT NULL)
The name of the procedure.

Column 4 NUM_INPUT_PARAMS (INTEGER not NULL)
The number of input parameters. INOUT parameters are not counted as
part of this number.

To determine information regarding INOUT parameters, examine the
COLUMNL_TYPE column that is returned by SQLProcedureColumns ().

Column 5 NUM_OUTPUT_PARAMS (INTEGER not NULL)
The number of output parameters. INOUT parameters are not counted as
part of this number.

To determine information regarding INOUT parameters, examine the
COLUMN_TYPE column that is returned by SQLProcedureColumns ().

Column 6 NUM_RESULT_SETS (INTEGER not NULL)
The number of result sets that are returned by the procedure.

You should not use this column, it is reserved for future use by ODBC.

Column 7 REMARKS (VARCHAR(254))
Contains the descriptive information about the procedure.

Column 8 PROCEDURE_TYPE (SMALLINT)

Defines the procedure type:

* SQL_PT_UNKNOWN: It cannot be determined whether the procedure
returns a value.

* SQL_PT_PROCEDURE: The returned object is a procedure that does not
have a return value

* SQL_PT_FUNCTION: The returned object is a function that has a return
value.

CLI always returns SQL_PT_PROCEDURE.

Column 9 SPECIFIC_NAME (VARCHAR(128))
The unique specific name of PROCEDURE_NAME.

Column 10 PROCEDURE_MODULE (VARCHAR(128))
The name of the module that contains PROCEDURE_NAME within the
schema.

Note:

* The column names that are used by CLI follow the X/Open CLI CAE
specification style. The column types, contents, and order are identical to those
defined for the SQLExtendedProcedures() result set in ODBC.

* If two modules contain procedures that share the same name, the
SQLExtendedProcedures() function returns details about both procedures.

Return codes

+ SQL_ERROR
« SQL_INVALID_HANDLE

118 Call Level Interface Guide and Reference Volume 2

SQLExtendedProcedures function (CLI) - Get list of procedure names

* SQL_STILL_EXECUTING
* SQL_SUCCESS
* SQL_SUCCESS_WITH_INFO
Diagnostics
Table 56. SQLExtendedProcedures SQLSTATEs
SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

HYO001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY008 Operation was Canceled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY010 Function sequence error.
The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

The function was called before a statement was prepared on the
statement handle.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource
limitations.

HY090 Invalid string or buffer length. The value of one of the name-length arguments was less than 0,
but not equal to SQL_NTS.

HYTO00 Timeout expired. The timeout period expired before the data source returned the
result set. You can set the timeout period byt using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

If an application is connected to a DB2 server that does not provide support for a
stored procedure catalog, or does not provide support for stored procedures, the
SQLExtendedProcedures() function returns an empty result set.

SQLExtendedProcedureColumns function (CLI) - Get input/output
parameter information for a procedure

Returns a list of input and output parameters associated with a stored procedure.

The information is returned in an SQL result set, which can be retrieved using the
same functions that are used to process a result set generated by a query.

Chapter 1. CLI and ODBC functions 119

SQLExtendedProcedureColumns function (CLI) - Get input/output parameter information
for a procedure

Specification:
« CLI9.7

SQLExtendedProcedureColumns () returns a list of input and output parameters
associated with a stored procedure. The information is returned in an SQL result
set, which can be retrieved using the same functions that are used to process a
result set generated by a query.

Unicode equivalent: This You can also use this function with the Unicode
character set. The corresponding Unicode function is
SQLExtendedProcedureColumnsW (). For information about ANSI to Unicode function
mappings, see “Unicode functions (CLI)” on page 5.

Modules are an extension to the concept of schemas. Applications that connect to
DB2 version 9.7 or later data servers can create modules inside their schema, and
can create procedures inside the modules. The fully qualified name of a procedure
in a module would be <SCHEMA NAME>.<MODULE NAME>.<PROCEDURE
NAME>. The SQLExtendedProcedures() and SQLExtendedProcedureColumns()
functions provide information about modules. These functions are not part of the
current ODBC specification. See in SQL Procedural Languages: Application Enablement
and Support for more information.

Syntax

SQLRETURN SQLExtendedProcedureColumns (
SQLHSTMT StatementHandle, /* hstmt */
SQLCHAR *CatalogName, /* szProcCatalog */
SQLSMALLINT NameLengthl, /* cbProcCatalog */
SQLCHAR *SchemaName, /* szProcSchema */
SQLSMALLINT NameLength2, /* cbProcSchema */
SQLCHAR *ProcName, /* szProcName =/
SQLSMALLINT NameLength3, /* cbProcName */
SQLCHAR *ColumnName, /* szColumnName */
SQLSMALLINT NameLength4), /* cbColumnName */
SQLCHAR *ProcModule, /* szProcModule =/
SQLSMALLINT NamelLength5; /% cbProcModule */

Function arguments

Table 57. SQLExtendedProcedureColumns arguments

Data type Argument Use Description
SQLHSTMT StatementHandle Input A statement handle.
SQLCHAR * CatalogName Input A catalog qualifier of a 3-part table name. If the

target DBMS does not support 3-part naming, and
CatalogName is not a null pointer and does not point
to a zero-length string, then an empty result set and
SQL_SUCCESS is returned. Otherwise, this is a valid
filter for DBMSs that support 3-part naming.

SQLSMALLINT NameLengthl Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store CatalogName, or SQL_NTS
if CatalogName is null-terminated.

120 Call Level Interface Guide and Reference Volume 2

SQLExtendedProcedureColumns function (CLI) - Get input/output parameter information

for a procedure

Table 57. SQLExtendedProcedureColumns arguments (continued)

Data type

Argument

Use

Description

SQLCHAR *

SchemaName

Input

A buffer that can contain a pattern value to qualify
the result set by schema name.

For DB2 Database for Linux, UNIX, and Windows,
SchemaName can contain a valid pattern value. For
more information about valid search patterns, see the
catalog functions input arguments.

SQLSMALLINT

NameLength2

Input

The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store SchemaName, or SQL_NTS
if SchemaName is null-terminated.

SQLCHAR *

ProcName

Input

A buffer that can contain a pattern value to qualify
the result set by procedure name.

SQLSMALLINT

NameLength3

Input

The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store ProcName, or SQL_NTS if
ProcName is null-terminated.

SQLCHAR *

ColumnName

Input

A buffer that can contain a pattern value to qualify
the result set by parameter name. Use this argument
to further qualify the result set that is already
restricted by specifying a non-empty value for
ProcName, SchemaName, or both.

SQLSMALLINT

NameLength4

Input

The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store ColumnName, or SQL_NTS
if ColumnName is null-terminated.

SQLCHAR *

ProcModule

Input

A buffer that can contain a pattern value to qualify
the result set by parameter name. Use this argument
to further qualify the result set that is already
restricted by specifying a non-empty value for
ProcName, SchemaName, or ColumnName.

SQLSMALLINT

NameLength5

Input

The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store ProcModule, or SQL_NTS if
ProcModule is null-terminated.

Usage

The SQLExtendedProcedureColumns () function returns the information in a result
set, that is ordered by PROCEDURE_CAT, PROCEDURE_SCHEM,
PROCEDURE_NAME, COLUMN_TYPE and PROCEDURE_MODULE. Columns
returned by SQLExtendedProcedureColumns lists the columns in the result set.
Columns that are beyond the last column might be defined in future releases.

In many cases, calls to the SQLExtendedProcedureColumns() function map to a
complex and thus expensive query against the system catalog, therefore you
should use these calls sparingly, and save the results rather than repeating calls.

Call the SQLGetInfo() function with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_SCHEMA_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN to
determine the actual lengths of the TABLE_CAT, TABLE_SCHEM, and
COLUMN_NAME columns that are supported by the connected DBMS.

Chapter 1. CLI and ODBC functions 121

SQLExtendedProcedureColumns function (CLI) - Get input/output parameter information
for a procedure

If the SQL_ATTR_LONGDATA_COMPAT connection attribute is set, LOB column
types are reported as LONG VARCHAR, LONG VARBINARY or LONG
VARGRAPHIC types.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns will not change.

For versions of other DB2 servers that do not provide facilities for a stored
procedure catalog, an empty result set is returned.

CLI returns information about the input, input/output, and output parameters that
are associated with the stored procedure, but cannot return descriptor information
for any result sets that the stored procedure might return.

You can specify *ALL as a value in the SchemaName to resolve unqualified stored
procedure calls or to find libraries in catalog API calls. CLI searches on all existing
schemas in the connected database. You are not required to specify *ALL, as this
behavior is the default in CLI. Alternatively, you can set the SchemaFilter IBM
Data Server Driver configuration keyword or the Schema List CLI/ODBC
configuration keyword to *ALL.

Columns returned by SQLExtendedProcedureColumns

Column 1PROCEDURE_CAT (VARCHAR(128))
The name of the procedure catalog. The value is NULL if this procedure
does not have catalogs.

Column 2PROCEDURE_SCHEM (VARCHAR(128))
The name of the schema containing PROCEDURE_NAME.

Column 3PROCEDURE_NAME (VARCHAR(128))
The name of the procedure.

Column 4COLUMN_NAME (VARCHAR(128))
The name of the parameter.

Column 5COLUMN_TYPE (SMALLINT not NULL)
Identifies the type of information that is associated with this row. The
values can be:

* SQL_PARAM_TYPE_UNKNOWN : The parameter type is unknown.

Note: This is not returned.
* SQL_PARAM_INPUT: This parameter is an input parameter.

¢ SQL_PARAM_INPUT_OUTPUT: This parameter is an input / output
parameter.

* SQL_PARAM_OUTPUT: This parameter is an output parameter.

* SQL_RETURN_VALUE: The procedure column is the return value of the
procedure.

Note: This is not returned.
* SQL_RESULT_COL: This parameter is actually a column in the result set.

Note: This is not returned.

Column 6DATA_TYPE (SMALLINT not NULL)
An SQL data type.

122 Call Level Interface Guide and Reference Volume 2

SQLExtendedProcedureColumns function (CLI) - Get input/output parameter information
for a procedure

Column 7TYPE_NAME (VARCHAR(128) not NULL)
A character string that represents the name of the data type that
corresponds to DATA_TYPE.

Column 8COLUMN_SIZE (INTEGER)
For XML arguments in SQL routines, zero is returned (as XML arguments
have no length). For cataloged external routines, however, XML parameters
are declared as XML AS CLOB(n), in which case COLUMN_SIZE is the
cataloged length, n.

If the DATA_TYPE column value denotes a character or binary string, this
column contains the maximum length in SQLCHAR or SQLWCHAR
elements. If the DATA_TYPE column value is a graphic (DBCS) string,
COLUMNL_SIZE is the number of double byte SQLCHAR or SQLWCHAR
elements for the parameter.

For date, time, and timestamp data types, COLUMN_SIZE is the total
number of SQLCHAR or SQLWCHAR elements that are required to
display the value when converted to character data type.

For numeric data types, this is either the total number of digits, or the total

number of bits that are allowed in the column, depending on the value in
the NUM_PREC_RADIX column in the result set.

See the table of data type precision.

Column 9BUFFER_LENGTH (INTEGER)
The maximum number of bytes for the associated C buffer to store data
from this parameter if SQL_C_DEFAULT is specified on the SQLBindCo1(),
SQLGetData() and SQLBindParameter() calls. This length excludes any
null-terminator. For exact numeric data types, the length accounts for the
decimal and the sign.

For XML arguments in SQL routines, zero is returned (as XML arguments
have no length). For cataloged external routines, however, XML parameters
are declared as XML AS CLOB(n), in which case BUFFER_LENGTH is the
cataloged length, n.

See the table of data type length.

Column 10DECIMAL_DIGITS (SMALLINT)
The scale of the parameter. NULL is returned for data types where scale is
not applicable.

See the table of data type scale.

Column 1INUM_PREC_RADIX (SMALLINT)
Either 10, 2, or NULL. If DATA_TYPE is an approximate numeric data
type, this column contains the value 2, and the COLUMN_SIZE column
contains the number of bits that are allowed in the parameter.

If DATA_TYPE is an exact numeric data type, this column contains the
value 10, and the COLUMN_SIZE and DECIMAL_DIGITS columns contain
the number of decimal digits that are allowed for the parameter.

For numeric data types, the DBMS can return a NUM_PREC_RADIX of
either 10 or 2.

NULL is returned for data types where radix is not applicable.

Column 12NULLABLE (SMALLINT not NULL)
SQL_NO_NULLS if the parameter does not accept NULL values.

SQL_NULLABLE if the parameter accepts NULL values.

Chapter 1. CLI and ODBC functions 123

SQLExtendedProcedureColumns function (CLI) - Get input/output parameter information
for a procedure

Column 13REMARKS (VARCHAR(254))
Might contain descriptive information about the parameter.

Column 14COLUMN_DEF (VARCHAR)
The default value of the column.

If NULL is specified as the default value, this column is the word NULL,
not enclosed in quotation marks. If the default value cannot be represented
without truncation, this column contains TRUNCATED, with no enclosing
single quotation marks. If no default value is specified, this column is
NULL.

You can use the value of COLUMN_DEEF to generate a new column
definition, except when it contains the value TRUNCATED.

Column 15SQL_DATA_TYPE (SMALLINT not NULL)
The value of the SQL data type as it is displayed in the SQL_DESC_TYPE
field of the descriptor. This column is the same as the DATA_TYPE column
except for datetime data types (CLI does not support interval data types).

For datetime data types, the SQL_DATA_TYPE field in the result set is
SQL_DATETIME, and the SQL_DATETIME_SUB field returns the subcode
for the specific datetime data type (SQL_CODE_DATE, SQL_CODE_TIME
or SQL_CODE_TIMESTAMP).

Column 16SQL_DATETIME_SUB (SMALLINT)
The subtype code for datetime data types. For all other data types this
column returns a NULL (including interval data types, which CLI does not

support).
Column 17CHAR_OCTET_LENGTH (INTEGER)

The maximum length in bytes of a character data type column. For all
other data types, this column returns a NULL.

Column 18ORDINAL_POSITION (INTEGER NOT NULL)
Contains the ordinal position of the parameter that is given by
COLUMN_NAME in this result set. The ORDINAL_POSITION is the
ordinal position of the argument to be provided on the CALL statement.
The leftmost argument has an ordinal position of 1.

Column 19IS_NULLABLE (Varchar)
* NO if the column does not include NULLs.
* YES if the column can include NULLs.
* Zero-length string if the nullability is unknown.

ISO rules are followed to determine nullability.
An ISO SQL-compliant DBMS cannot return an empty string.

The value that is returned for this column is different than the value that is
returned for the NULLABLE column. See the description of the
NULLABLE column.

Column 20SPECIFIC_NAME (VARCHAR(128))
The unique specific name of PROCEDURE_NAME.

Column 21PROCEDURE_MODULE (VARCHAR(128))
The name of the module containing PROCEDURE_NAME within the
schema.

Note:

124 Call Level Interface Guide and Reference Volume 2

SQLExtendedProcedureColumns function (CLI) - Get input/output parameter information

for a procedure

¢ The column names that are used by CLI follow the X/Open CLI CAE
specification style. The column types, contents, and order are identical to those
defined for the SQLExtendedProcedureColumns () result set in ODBC.

 If two modules contain procedures that share the same name, the
SQLExtendedProcedureColumns () function returns details about both procedures.

Return codes
+ SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO
* SQL_STILL_EXECUTING

* SQL_ERROR
* SQL_INVALID_HANDLE
Diagnostics
Table 58. SQLExtendedProcedureColumns SQLSTATEs
SQLSTATE Description Explanation
24000 Invalid cursor state. A cursor is already opened on the statement handle.

40003 08501

Communication link failure.

The communication link between the application and data source
failed before the function completed.

42601

PARMLIST syntax error.

The PARMLIST value that is in the stored procedures catalog table
contains a syntax error.

HY001

Memory allocation failure.

DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY008

Operation was Canceled.

Asynchronous processing was enabled for StatementHandle. The
function was called, and before it completed execution,

SQLCancel () was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY010

Function sequence error.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

The function was called before a statement was prepared on the
statement handle.

HY014

No more handles.

DB2 CLI was unable to allocate a handle due to resource
limitations.

HY090

Invalid string or buffer length.

The value of one of the name-length arguments was less than 0,
but not equal to SQL_NTS.

HYTO00

Timeout expired.

The timeout period expired before the data source returned the
result set. You can set the timeout period by using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Chapter 1. CLI and ODBC functions 125

SQLExtendedProcedureColumns function (CLI) - Get input/output parameter information
for a procedure

Restrictions

SQLExtendedProcedureColumns () does not return information about the attributes of
result sets that might be returned from stored procedures.

If an application is connected to a DB2 server that does not provide support for a
stored procedure catalog, or does not provide support for stored procedures,
SQLExtendedProcedureColumns () will return an empty result set.

SQLExtendedProcedureColumns () is currently only supported with DB2 Version 9.7
or later.

Example

/* get input/output parameter information for a procedure including
extended information =/
cTiRC = SQLExtendedProcedureColumns (hstmt,
"CatalogName",

SQL_NTS,

"SchemaName",

SQL_NTS,

"ProcName",

SQL_NTS,

"CoTumnName",

SQL_NTS,

"ModuleName",

SQL_NTS)3

SQLFetch function (CLI) - Fetch next row

Advances the cursor to the next row of the result set, and retrieves any bound
columns.

Specification:
« CLI 1.1

« ODBC 1.0

+ ISO CLI

Columns can be bound to:

* application storage
* LOB locators
* LOB file references

When SQLFetch() is called, the appropriate data transfer is performed, along with
any data conversion if conversion was indicated when the column was bound. The
columns can also be received individually after the fetch, by calling SQLGetData().

SQLFetch() can only be called after a result set has been generated (using the same
statement handle) by either executing a query, calling SQLGetTypelnfo() or calling

a catalog function.

Syntax
SQLRETURN ~ SQLFetch (SQLHSTMT StatementHandle); /* hstmt */

126 Call Level Interface Guide and Reference Volume 2

SQLFetch function (CLI) - Fetch next row

Function arguments

Table 59. SQLFetch arguments

Data type Argument Use Description
SQLHSTMT StatementHandle input Statement handle
Usage

SQLFetch() can only be called after a result set has been generated on the same
statement handle. Before SQLFetch() is called the first time, the cursor is positioned
before the start of the result set.

The number of application variables bound with SQLBindCo1() must not exceed the
number of columns in the result set or SQLFetch() will fail.

If SQLBindCo1() has not been called to bind any columns, then SQLFetch() does not
return data to the application, but just advances the cursor. In this case
SQLGetData() could be called to obtain all of the columns individually. If the cursor
is a multirow cursor (that is, the SQL_ATTR_ROW_ARRAY_SIZE is greater than 1),
SQLGetData() can be called only if SQL_GD_BLOCK is returned when
SQLGetInfo() is called with an InfoType of SQL_GETDATA_EXTENSIONS. (Not all
DB2 data sources support SQL_GD_BLOCK.) Data in unbound columns is
discarded when SQLFetch() advances the cursor to the next row. For fixed length
data types, or small variable length data types, binding columns provides better
performance than using SQLGetData().

If LOB values are too large to be retrieved in one fetch, they can be retrieved in
pieces by either using SQLGetData() (which can be used for any column type), or
by binding a LOB locator, and using SQLGetSubString().

If any bound storage buffer is not large enough to hold the data returned by
SQLPFetch(), the data will be truncated. If character data is truncated,
SQL_SUCCESS_WITH_INFO is returned, and an SQLSTATE is generated
indicating truncation. The SQLBindCo1() deferred output argument pcbValue will
contain the actual length of the column data retrieved from the server. The
application should compare the actual output length to the input buffer length
(pcbValue and cbValueMax arguments from SQLBindCol()) to determine which
character columns have been truncated.

Truncation of numeric data types is reported as a warning if the truncation
involves digits to the right of the decimal point. If truncation occurs to the left of
the decimal point, an error is returned (refer to the diagnostics section).

Truncation of graphic data types is treated the same as character data types, except
that the rgbValue buffer is filled to the nearest multiple of two bytes that is still less
than or equal to the cbValueMax specified in SQLBindCol (). Graphic (DBCS) data
transferred between CLI and the application is not null-terminated if the C buffer
type is SQL_C_CHAR (unless the CLI/ODBC configuration keyword PATCH1
includes the value 64). If the buffer type is SQL_C_DBCHAR, then null-termination
of graphic data does occur.

Truncation is also affected by the SQL_ATTR_MAX_LENGTH statement attribute.
The application can specify that CLI should not report truncation by calling
SQLSetStmtAttr() with SQL_ATTR_MAX_LENGTH and a value for the maximum
length to return for any one column, and by allocating a rgbValue buffer of the

Chapter 1. CLI and ODBC functions 127

SQLFetch function (CLI) - Fetch next row

same size (plus the null-terminator). If the column data is larger than the set
maximum length, SQL_SUCCESS will be returned and the maximum length, not
the actual length will be returned in pcbValue.

When all the rows have been retrieved from the result set, or the remaining rows
are not needed, SQLCloseCursor() or SQLFreeStmt() with an option of SQL_CLOSE
or SQL_DROP should be called to close the cursor and discard the remaining data
and associated resources.

An application cannot mix SQLFetch() with SQLExtendedFetch() calls on the same
statement handle. It can, however, mix SQLFetch() with SQLFetchScro11() calls on
the same statement handle. Note that SQLExtendedFetch() has been deprecated and
replaced with SQLFetchScrol1().

Positioning the cursor

When the result set is created, the cursor is positioned before the start of the result
set. SQLFetch() fetches the next rowset. It is equivalent to calling SQLFetchScrol1()
with FetchOrientation set to SQL_FETCH_NEXT.

The SQL_ATTR_ROW_ARRAY_SIZE statement attribute specifies the number of
rows in the rowset. If the rowset being fetched by SQLFetch() overlaps the end of
the result set, SQLFetch() returns a partial rowset. That is, if S + R-1 is greater than
L, where S is the starting row of the rowset being fetched, R is the rowset size, and
L is the last row in the result set, then only the first L-S+1 rows of the rowset are
valid. The remaining rows are empty and have a status of SQL_ROW_NOROW.

Refer to the cursor positioning rules of SQL_FETCH_NEXT for SQLFetchScrol1()
for more information.

After SQLFetch() returns, the current row is the first row of the rowset.

Row status array

SQLFetch() sets values in the row status array in the same manner as
SQLFetchScrol1() and SQLBulkOperations(). The row status array is used to return
the status of each row in the rowset. The address of this array is specified with the
SQL_ATTR_ROW_STATUS_PTR statement attribute.

Rows fetched buffer

SQLFetch() returns the number of rows fetched in the rows fetched buffer
including those rows for which no data was returned. The address of this buffer is
specified with the SQL_ATTR_ROWSFETCHED_PTR statement attribute. The
buffer is set by SQLFetch() and SQLFetchScrol1().

Error handling

Errors and warnings can apply to individual rows or to the entire function. They
can be retrieved using the SQLGetDiagField() function.

Errors and Warnings on the Entire Function
If an error applies to the entire function, such as SQLSTATE HYT00 (Timeout
expired) or SQLSTATE 24000 (Invalid cursor state), SQLFetch() returns

128 Call Level Interface Guide and Reference Volume 2

SQLFetch function (CLI) - Fetch next row

SQL_ERROR and the applicable SQLSTATE. The contents of the rowset buffers are
undefined and the cursor position is unchanged.

If a warning applies to the entire function, SQLFetch() returns
SQL_SUCCESS_WITH_INFO and the applicable SQLSTATE. The status records for
warnings that apply to the entire function are returned before the status records
that apply to individual rows.

Errors and warnings in individual rows

If an error (such as SQLSTATE 22012 (Division by zero)) or a warning (such as
SQLSTATE 01004 (Data truncated)) applies to a single row, SQLFetch() returns
SQL_SUCCESS_WITH_INFO, unless an error occurs in every row, in which case
SQL_ERROR is returned. SQLFetch() also:

* Sets the corresponding element of the row status array to SQL_ROW_ERROR for
errors or SQL_ROW_SUCCESS_WITH_INFO for warnings.

¢ Adds zero or more status records containing SQLSTATEs for the error or
warning,.

* Sets the row and column number fields in the status records. If SQLFetch()
cannot determine a row or column number, it sets that number to
SQL_ROW_NUMBER_UNKNOWN or SQL_COLUMN_NUMBER_UNKNOWN.
If the status record does not apply to a particular column, SQLFetch() sets the
column number to SQL_NO_COLUMN_NUMBER.

SQLFetch() returns the status records in row number order. That is, it returns all
status records for unknown rows (if any), then all status records for the first row
(if any), then all status records for the second row (if any), and so on. The status
records for each individual row are ordered according to the normal rules for
ordering status records, described in SQLGetDiagField().

Descriptors and SQLFetch

The following sections describe how SQLFetch() interacts with descriptors.

Argument mappings

The driver does not set any descriptor fields based on the arguments of
SQLFetch().

Other descriptor fields

The following descriptor fields are used by SQLFetch():

Table 60. Descriptor fields

Descriptor field

Desc. Location Set through

SQL_DESC_ARRAY_SIZE ARD header SQL_ATTR_ROW_ARRAY_SIZE statement
attribute

SQL_DESC_ARRAY_STATUS_PTR IRD header SQL_ATTR_ROW_STATUS_PTR statement
attribute

SQL_DESC_BIND_OFFSET_PTR ARD header SQL_ATTR_ROW_BIND_OFFSET_PTR
statement attribute

SQL_DESC_BIND_TYPE ARD header SQL_ATTR_ROW_BIND_TYPE statement
attribute

SQL_DESC_COUNT ARD header ColumnNumber argument of SQLBindCo1 ()

Chapter 1. CLI and ODBC functions 129

SQLFetch function (CLI) - Fetch next row

Table 60. Descriptor fields (continued)

Descriptor field

Desc. Location Set through

SQL_DESC_DATA_PTR ARD records TargetValuePtr argument of SQLBindCo1 ()
SQL_DESC_INDICATOR_PTR ARD records StrLen_or_IndPtr argument in SQLBindCo1 ()
SQL_DESC_OCTET_LENGTH ARD records BufferLength argument in SQLBindCo1 ()
SQL_DESC_OCTET_LENGTH_PTR ARD records StrLen_or_IndPtr argument in SQLBindCo1 ()
SQL_DESC_ROWS_PROCESSED_PTR IRD header SQL_ATTR_ROWS_FETCHED_PTR

statement attribute

SQL_DESC_TYPE

ARD records TargetType argument in SQLBindCo1 ()

All descriptor fields can also be set through SQLSetDescField().
Separate length and indicator buffers

Applications can bind a single buffer or two separate buffers to be used to hold
length and indicator values. When an application calls SQLBindCo1(),
SQL_DESC_OCTET_LENGTH_PTR and SQL_DESC_INDICATOR_PTR fields of the
ARD are set to the same address, which is passed in the StrLen_or_IndPtr
argument. When an application calls SQLSetDescField() or SQLSetDescRec(), it can
set these two fields to different addresses.

SQLFetch() determines whether the application has specified separate length and
indicator buffers. In this case, when the data is not NULL, SQLFetch() sets the
indicator buffer to 0 and returns the length in the length buffer. When the data is
NULL, SQLFetch() sets the indicator buffer to SQL_NULL_DATA and does not
modify the length buffer.

Return codes

+ SQL_SUCCESS

+ SQL_SUCCESS_WITH_INFO
+ SQL_STILL_EXECUTING

+ SQL_ERROR

* SQL_INVALID_HANDLE

* SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND is returned if there are no rows in the result set, or
previous SQLFetch() calls have fetched all the rows from the result set.

If all the rows have been fetched, the cursor is positioned after the end of the
result set.

Diagnostics
Table 61. SQLFetch SQLSTATEs
SQLSTATE Description Explanation
01004 Data truncated. The data returned for one or more columns was truncated. String

values or numeric values are right truncated.
(SQL_SUCCESS_WITH_INFO is returned if no error occurred.)

07002 Too many columns. A column number specified in the binding for one or more

columns was greater than the number of columns in the result set.

07006 Invalid conversion. The data value could not be converted in a meaningful manner to

the data type specified by fCType in SQLBindCo1 ()

130 Call Level Interface Guide and Reference Volume 2

Table 61. SQLFetch SQLSTATEs (continued)

SQLFetch function (CLI) - Fetch next row

SQLSTATE

Description

Explanation

07009

Invalid descriptor index

Column 0 was bound but bookmarks are not being used (the
SQL_ATTR_USE_BOOKMARKS statement attribute was set to
SQL_UB_OFF).

22002

Invalid output or indicator
buffer specified.

The pointer value specified for the argument pcbValue in
SQLBindCo1() was a null pointer and the value of the
corresponding column is null. There is no means to report
SQL_NULL_DATA. The pointer specified for the argument
IndicatorValue in SQLBindFileToCol() was a null pointer and the
value of the corresponding LOB column is NULL. There is no
means to report SQL_NULL_DATA.

22003

Numeric value out of range.

Returning the numeric value (as numeric or string) for one or
more columns would have caused the whole part of the number
to be truncated either at the time of assignment or in computing
an intermediate result.

A value from an arithmetic expression was returned which
resulted in division by zero.

Note: The associated cursor is undefined if this error is detected
by DB2 Database for Linux, UNIX, and Windows. If the error was
detected by CLI or by other IBM RDBMSs, the cursor will remain
open and continue to advance on subsequent fetch calls.

22005

Error in assignment.

A returned value was incompatible with the data type of binding.

A returned LOB locator was incompatible with the data type of
the bound column.

22007

Invalid datetime format.

Conversion from character a string to a datetime format was
indicated, but an invalid string representation or value was
specified, or the value was an invalid date.

The value of a date, time, or timestamp does not conform to the
syntax for the specified data type.

22008

Datetime field overflow.

Datetime field overflow occurred; for example, an arithmetic
operation on a date or timestamp has a result that is not within
the valid range of dates, or a datetime value cannot be assigned to
a bound variable because it is too small.

22012

Division by zero is invalid.

A value from an arithmetic expression was returned which
resulted in division by zero.

24000

Invalid cursor state.

The previous SQL statement executed on the statement handle
was not a query.

40003 08501

Communication link failure.

The communication link between the application and data source
failed before the function completed.

Chapter 1. CLI and ODBC functions 131

SQLFetch function (CLI) - Fetch next row

Table 61. SQLFetch SQLSTATEs (continued)

SQLSTATE

Description

Explanation

428A1

Unable to access a file referenced
by a host file variable.

This can be raised for any of the following scenarios. The

associated reason code in the text identifies the particular error:

* 01 - The file name length is invalid, or the file name, the path
or both has an invalid format.

¢ 02 - The file option is invalid. It must have one of the following
values:

SQL_FILE_READ -read from an existing file

SQL_FILE_CREATE -create a new file for write

SQL_FILE OVERWRITE -overwrite an existing file.
If the file does not exist,
create the file.

SQL_FILE_APPEND -append to an existing file.
If the file does not exist,
create the file.

* 03 - The file cannot be found.

* 04 - The SQL_FILE_CREATE option was specified for a file with
the same name as an existing file.

* 05 - Access to the file was denied. The user does not have
permission to open the file.

* 06 - Access to the file was denied. The file is in use with
incompatible modes. Files to be written to are opened in
exclusive mode.

¢ 07 - Disk full was encountered while writing to the file.

* 08 - Unexpected end of file encountered while reading from the
file.

* 09 - A media error was encountered while accessing the file.

54028

The maximum number of
concurrent LOB handles has
been reached.

Maximum LOB locator assigned.

The maximum number of concurrent LOB locators has been
reached. A new locator can not be assigned.

58004

Unexpected system failure.

Unrecoverable system error.

HY001

Memory allocation failure.

DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY008

Operation was Canceled.

Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,

SQLCancel () was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY010

Function sequence error.

SQLFetch() was called for an StatementHandle after
SQLExtendedFetch() was called and before SQLFreeStmt () had
been called with the SQL_CLOSE option.

The function was called before calling SQLPrepare() or
SQLExecDirect() for the StatementHandle.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013

Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

132 Call Level Interface Guide and Reference Volume 2

SQLFetch function (CLI) - Fetch next row

Table 61. SQLFetch SQLSTATEs (continued)
SQLSTATE
HY092

Description Explanation

The FileOptions argument of a previous SQLBindFileToCol ()
operation was not valid.

Option type out of range.

HYC00 CLI or the data source does not support the conversion specified
by the combination of the fCType in SQLBindCo1() or
SQLBindFileToCol() and the SQL data type of the corresponding

column.

Driver not capable.

A call to SQLBindCo1() was made for a column data type which is
not supported by CLL

HYTO00 Timeout expired. The timeout period expired before the data source returned the
result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions
None.

Example

/* fetch each row and display */
c1iRC = SQLFetch(hstmt);
STMT_HANDLE_CHECK(hstmt, hdbc, c1iRC);

if (c1iRC == SQL_NO_DATA_FOUND)
printf("\n Data not found.\n");
v}vhﬂe (c1iRC != SQL_NO_DATA_FOUND)
{ printf("
/* fetch next row */

c1iRC = SQLFetch(hstmt);
STMT_HANDLE_CHECK(hstmt, hdbc, c1iRC);

SQLFetchScroll function (CLI) - Fetch rowset and return data for all
bound columns

Fetches the specified rowset of data from the result set and returns data for all
bound columns.

Rowsets can be specified at an absolute or relative position or by bookmark.

Specification:

e CLI5.0

* ODBC 3.0

* ISO CLI

Syntax

SQLRETURN SQLFetchScroll (SQLHSTMT StatementHandle,
SQLSMALLINT FetchOrientation,
SQLLEN FetchOffset);

Chapter 1. CLI and ODBC functions 133

SQLFetchScroll function (CLI) - Fetch rowset and

Function arguments
Table 62. SQLFetchScroll arguments

return data for all bound columns

Data type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement handle.

SQLUSMALLINT

FetchOrientation

input

Type of fetch:

* SQL_FETCH_NEXT

e SQL_FETCH_PRIOR

* SQL_FETCH_FIRST

* SQL_FETCH_LAST

* SQL_FETCH_ABSOLUTE
* SQL_FETCH_RELATIVE

* SQL_FETCH_BOOKMARK

For more information, see Positioning the Cursor.

SQLLEN

FetchOffset input Number of the row to fetch. The interpretation of

this argument depends on the value of the
FetchOrientation argument. For more information, see
Positioning the Cursor.

Usage
Overview

SQLFetchScroll() returns a specified rowset from the result set. Rowsets can be
specified by absolute or relative position or by bookmark. SQLFetchScroll() can be
called only while a result set exists, that is, after a call that creates a result set and
before the cursor over that result set is closed. If any columns are bound, it returns
the data in those columns. If the application has specified a pointer to a row status
array or a buffer in which to return the number of rows fetched, SQLFetchScroll()
returns this information as well. Calls to SQLFetchScroll() can be mixed with calls
to SQLFetch() but cannot be mixed with calls to SQLExtendedFetch().

Positioning the cursor

When the result set is created, the cursor is positioned before the start of the result
set. SQLFetchScroll() positions the block cursor based on the values of the
FetchOrientation and FetchOffset arguments as shown in the following table. The
exact rules for determining the start of the new rowset are shown in the next
section.

FetchOrientation
Meaning

SQL_FETCH_NEXT
Return the next rowset. This is equivalent to calling SQLFetchy().
SQLFetchScroll() ignores the value of FetchOffset.

SQL_FETCH_PRIOR
Return the prior rowset. SQLFetchScroll() ignores the value of FetchOffset.

SQL_FETCH_RELATIVE
Return the rowset FetchOffset from the start of the current rowset.

SQL_FETCH_ABSOLUTE
Return the rowset starting at row FetchOffset.

134 Call Level Interface Guide and Reference Volume 2

SQLFetchScroll function (CLI) - Fetch rowset and return data for all bound columns

SQL_FETCH_FIRST
Return the first rowset in the result set. SQLFetchScroll() ignores the value
of FetchOffset.

SQL_FETCH_LAST
Return the last complete rowset in the result set. SQLFetchScroll() ignores
the value of FetchOffset.

SQL_FETCH_BOOKMARK
Return the rowset FetchOffset rows from the bookmark specified by the
SQL_ATTR_FETCH_BOOKMARK_PTR statement attribute.

Not all cursors support all of these options. A static forward-only cursor, for
example, will only support SQL_FETCH_NEXT. Scrollable cursors, such as keyset
cursors, will support all of these options. The SQL_ATTR_ROW_ARRAY_SIZE
statement attribute specifies the number of rows in the rowset. If the rowset being
fetched by SQLFetchScroll() overlaps the end of the result set, SQLFetchScroll()
returns a partial rowset. That is, if S + R-1 is greater than L, where S is the starting
row of the rowset being fetched, R is the rowset size, and L is the last row in the
result set, then only the first L-S+1 rows of the rowset are valid. The remaining
rows are empty and have a status of SQL_ROW_NOROW.

After SQLFetchScroll() returns, the rowset cursor is positioned on the first row of
the result set.

Returning data in bound columns
SQLFetchScroll() returns data in bound columns in the same way as SQLFetch().

If no columns are bound, SQLFetchScroll() does not return data but does move the
block cursor to the specified position. As with SQLFetch(), you can use
SQLGetData() to retrieve the information in this case.

Row status array

The row status array is used to return the status of each row in the rowset. The
address of this array is specified with the SQL_ATTR_ROW_STATUS_PTR
statement attribute. The array is allocated by the application and must have as
many elements as are specified by the SQL_ATTR_ROW_ARRAY_SIZE statement
attribute. Its values are set by SQLFetch(), SQLFetchScroll(), or SQLSetPos() (except
when they have been called after the cursor has been positioned by
SQLExtendedFetch()). If the value of the SQL_ATTR_ROW_STATUS_PTR statement
attribute is a null pointer, these functions do not return the row status.

The contents of the row status array buffer are undefined if SQLFetch() or
SQLFetchScroll() does not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO.

The following values are returned in the row status array.

Row status array value
Description

SQL_ROW_SUCCESS
The row was successfully fetched.

SQL_ROW_SUCCESS_WITH_INFO
The row was successfully fetched. However, a warning was returned about
the row.

Chapter 1. CLI and ODBC functions 135

SQLFetchScroll function (CLI) - Fetch rowset and return data for all bound columns

SQL_ROW_ERROR
An error occurred while fetching the row.

SQL_ROW_ADDED
The row was inserted by SQLBulkOperations(). If the row is fetched again,
or is refreshed by SQLSetPos() its status is SQL_ROW_SUCCESS.

This value is not set by SQLFetch() or SQLFetchScroll().

SQL_ROW_UPDATED
The row was successfully fetched and has changed since it was last fetched
from this result set. If the row is fetched again from this result set, or is
refreshed by SQLSetPos(), the status changes to the row's new status.

SQL_ROW_DELETED
The row has been deleted since it was last fetched from this result set.

SQL_ROW_NOROW
The rowset overlapped the end of the result set and no row was returned
that corresponded to this element of the row status array.

Rows fetched buffer

The rows fetched buffer is used to return the number of rows fetched, including
those rows for which no data was returned because an error occurred while they
were being fetched. In other words, it is the number of rows for which the value in
the row status array is not SQL_ROW_NOROW. The address of this buffer is
specified with the SQL_ATTR_ROWS_FETCHED_PTR statement attribute. The
buffer is allocated by the application. It is set by SQLFetch() and SQLFetchScroll().
If the value of the SQL_ATTR_ROWS_FETCHED_PTR statement attribute is a null
pointer, these functions do not return the number of rows fetched. To determine
the number of the current row in the result set, an application can call
SQLGetStmtAttr() with the SQL_ATTR_ROW_NUMBER attribute.

The contents of the rows fetched buffer are undefined if SQLFetch() or
SQLFetchScroll() does not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO,
except when SQL_NO_DATA is returned, in which case the value in the rows
fetched buffer is set to 0.

Error handling

SQLFetchScroll() returns errors and warnings in the same manner as SQLFetch().
Descriptors and SQLFetchScroll()

SQLFetchScroll() interacts with descriptors in the same manner as SQLFetch().

Return codes

+ SQL_SUCCESS

+ SQL_SUCCESS_WITH_INFO
+ SQL_NO_DATA

+ SQL_STILL_EXECUTING

+ SQL_ERROR

* SQL_INVALID_HANDLE

136 Call Level Interface Guide and Reference Volume 2

SQLFetchScroll function (CLI) - Fetch rowset and return data for all bound columns

Diagnostics

The return code associated with each SQLSTATE value is SQL_ERROR, unless
noted otherwise. If an error occurs on a single column, SQLGetDiagField() can be
called with a Diagldentifier of SQL_DIAG_COLUMN_NUMBER to determine the
column the error occurred on; and SQLGetDiagField() can be called with a
Diagldentifier of SQL_DIAG_ROW_NUMBER to determine the row containing that

column.

Table 63. SQLFetchScroll SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004

Data truncated.

String or binary data returned for a column resulted in the
truncation of non-blank character or non-NULL binary data.
String values are right truncated. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S01

Error in row.

An error occurred while fetching one or more rows. (Function
returns SQL_SUCCESS_WITH_INFO.) (This SQLSTATE is only
returned when connected to CLI v2.)

01S06

Attempt to fetch before the result

set returned the first rowset.

The requested rowset overlapped the start of the result set when
the current position was beyond the first row, and either
FetchOrientation was SQL_PRIOR, or FetchOrientation was
SQL_RELATIVE with a negative FetchOffset whose absolute value
was less than or equal to the current
SQL_ATTR_ROW_ARRAY_SIZE. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S07

Fractional truncation.

The data returned for a column was truncated. For numeric data
types, the fractional part of the number was truncated. For time or
timestamp data types, the fractional portion of the time was
truncated.

07002

Too many columns.

A column number specified in the binding for one or more
columns was greater than the number of columns in the result set.

07006

Invalid conversion.

A data value of a column in the result set could not be converted
to the C data type specified by TargetType in SQLBindCol().

07009

Invalid descriptor index.

Column 0 was bound and the SQL_USE_BOOKMARKS statement
attribute was set to SQL_UB_OFFE.

08501

Communication link failure.

The communication link between CLI and the data source to
which it was connected failed before the function completed
processing.

22001

String data right truncation.

A variable-length bookmark returned for a row was truncated.

22002

Invalid output or indicator
buffer specified.

NULL data was fetched into a column whose StrLen_or_IndPtr set
by SQLBindCol() (or SQL_DESC_INDICATOR_PTR set by
SQLSetDescField() or SQLSetDescRec()) was a null pointer.

22003

Numeric value out of range.

Returning the numeric value (as numeric or string) for one or
more bound columns would have caused the whole (as opposed
to fractional) part of the number to be truncated.

22007

Invalid datetime format.

A character column in the result set was bound to a date, time, or
timestamp C structure, and a value in the column was an invalid
date, time, or timestamp.

22012

Division by zero is invalid.

A value from an arithmetic expression was returned which
resulted in division by zero.

Chapter 1. CLI and ODBC functions 137

SQLFetchScroll function (CLI) - Fetch rowset and return data for all bound columns

Table 63. SQLFetchScroll SQLSTATEs (continued)

SQLSTATE

Description

Explanation

22018

Invalid character value for cast

specification.

A character column in the result set was bound to a character C
buffer and the column contained a character for which there was
no representation in the character set of the buffer. A character
column in the result set was bound to an approximate numeric C
buffer and a value in the column could not be cast to a valid
approximate numeric value. A character column in the result set
was bound to an exact numeric C buffer and a value in the
column could not be cast to a valid exact numeric value. A
character column in the result set was bound to a datetime C
buffer and a value in the column could not be cast to a valid
datetime value.

24000

Invalid cursor state.

The StatementHandle was in an executed state but no result set was
associated with the StatementHandle.

40001

Transaction rollback.

The transaction in which the fetch was executed was terminated
to prevent deadlock.

HY000

General error.

An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001

Memory allocation failure.

DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY008

Operation was Canceled.

Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY010

Function sequence error.

The specified StatementHandle was not in an executed state. The
function was called without first calling SQLExecDirect(),
SQLExecute(), or a catalog function.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

SQLExecute() or SQLExecDirect() was called for the
StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution
parameters or columns.

SQLFetchScroll() was called for a StatementHandle after
SQLExtendedFetch() was called and before SQLFreeStmt() with
SQL_CLOSE was called.

HY106

Fetch type out of range.

The value specified for the argument FetchOrientation was invalid.

The argument FetchOrientation was SQL_FETCH_BOOKMARK,
and the SQL_ATTR_USE_BOOKMARKS statement attribute was
set to SQL_UB_OFFE.

The value of the SQL_CURSOR_TYPE statement attribute was
SQL_CURSOR_FORWARD_ONLY and the value of argument
FetchOrientation was not SQL_FETCH_NEXT.

138 Call Level Interface Guide and Reference Volume 2

SQLFetchScroll function (CLI) - Fetch rowset and return data for all bound columns

Table 63. SQLFetchScroll SQLSTATEs (continued)

SQLSTATE

Description Explanation

HY107

Row value out of range. The value specified with the SQL_ATTR_CURSOR_TYPE

statement attribute was SQL_CURSOR_KEYSET_DRIVEN, but the
value specified with the SQL_ATTR_KEYSET_SIZE statement
attribute was greater than 0 and less than the value specified with
the SQL_ATTR_ROW_ARRAY_SIZE statement attribute.

HY111

Invalid bookmark value. The argument FetchOrientation was SQL_FETCH_BOOKMARK

and the bookmark pointed to by the value in the
SQL_ATTR_FETCH_BOOKMARK_PTR statement attribute was
not valid or was a null pointer.

HYC00

Driver not capable. The specified fetch type is not supported.

The conversion specified by the combination of the TargetType in
SQLBindCol() and the SQL data type of the corresponding column
is not supported.

Restrictions
None.

Example

/* fetch the rowset: rowl5, rowl6, rowl7, rowl8, rowl9 =*/
printf("\n Fetch the rowset: rowl5, rowl6, rowl7, rowl8, rowl9.\n");

/* fetch the rowset and return data for all bound columns x/
c1iRC = SQLFetchScroll(hstmt, SQL_FETCH_ABSOLUTE, 15);
STMT_HANDLE_CHECK(hstmt, hdbc, c1iRC);

/* call SQLFetchScroll with SQL _FETCH RELATIVE offset 3 =*/
printf(" SQLFetchScroll with SQL_FETCH_RELATIVE offset 3.\n");
printf(" coL1 coL2 \n");

printf(" meemmmmmmeee e \n");

/* fetch the rowset and return data for all bound columns =/
c1iRC = SQLFetchScroll(hstmt, SQL_FETCH_RELATIVE, 3);

Cursor positioning rules for SQLFetchScroll() (CLI)

The following sections describe the exact rules for each value of FetchOrientation.
These rules use the following notation:

FetchOrientation
Meaning

Before start
The block cursor is positioned before the start of the result set. If the first
row of the new rowset is before the start of the result set,
SQLFetchScrol1() returns SQL_NO_DATA.

After end
The block cursor is positioned after the end of the result set. If the first row
of the new rowset is after the end of the result set, SQLFetchScrol11()
returns SQL_NO_DATA.

CurrRowsetStart
The number of the first row in the current rowset.

Chapter 1. CLI and ODBC functions 139

Cursor positioning rules for SQLFetchScroll() (CLI)

LastResultRow
The number of the last row in the result set.

RowsetSize
The rowset size.

FetchOffset
The value of the FetchOffset argument.

BookmarkRow
The row corresponding to the bookmark specified by the
SQL_ATTR_FETCH_BOOKMARK_PTR statement attribute.
SQL_FETCH_NEXT rules:

Table 64. SQL_FETCH_NEXT rules:

Condition First row of new rowset

Before start 1

CurrRowsetStart + RowsetSize <= LastResultRow CurrRowsetStart + RowsetSize

CurrRowsetStart + RowsetSize > LastResultRow After end

After end After end

SQL_FETCH_PRIOR rules:
Table 65. SQL_FETCH_PRIOR rules:

Condition First row of new rowset

Before start Before start

CurrRowsetStart = 1 Before start

1 < CurrRowsetStart <= RowsetSize 1°

CurrRowsetStart > RowsetSize CurrRowsetStart - RowsetSize
After end AND LastResultRow < RowsetSize 1°

After end AND LastResultRow >= RowsetSize LastResultRow - RowsetSize + 1

* a SQLFetchScrol1() returns SQLSTATE 01S06 (Attempt to fetch before the result
set returned the first rowset.) and SQL_SUCCESS_WITH_INFO.

SQL_FETCH_RELATIVE rules:
Table 66. SQL_FETCH_RELATIVE rules:

Condition First row of new rowset
(Before start AND FetchOffset > 0) OR (After end -2

AND FetchOffset 0)

Before start AND FetchOffset <=0 Before start
CurrRowsetStart = 1 AND FetchOffset < 0 Before start
CurrRowsetStart > 1 AND CurrRowsetStart + Before start

FetchOffset <1 AND | FetchOffset| > RowsetSize

CurrRowsetStart > 1 AND CurrRowsetStart + 1°

FetchOffset <1 AND | FetchOffset| <= RowsetSize

1 <= CurrRowsetStart + FetchOffset <= CurrRowsetStart + FetchOffset
LastResultRow

CurrRowsetStart + FetchOffset > LastResultRow After end

140 Call Level Interface Guide and Reference Volume 2

Cursor positioning rules for SQLFetchScroll() (CLI)

Table 66. SQL_FETCH_RELATIVE rules: (continued)

Condition First row of new rowset

After end AND FetchOffset >= 0 After end

* a SQLFetchScrol1() returns the same rowset as if it was called with
FetchOrientation set to SQL_FETCH_ABSOLUTE. For more information, see the
SQL_FETCH_ABSOLUTE section.

* b SQLFetchScrol1() returns SQLSTATE 01S06 (Attempt to fetch before the result
set returned the first rowset.) and SQL_SUCCESS_WITH_INFO.

SQL_FETCH_ABSOLUTE rules:
Table 67. SQL_FETCH_ABSOLUTE rules:

Condition First row of new rowset
FetchOffset <0 AND | FetchOffset| <= LastResultRow LastResultRow + FetchOffset + 1

FetchOffset <0 AND | FetchOffset| > LastResultRow Before start
AND |FetchOffset| > RowsetSize

FetchOffset <0 AND | FetchOffset| > LastResultRow 1°
AND | FetchOffset | <= RowsetSize

FetchOffset = 0 Before start
1 <= FetchOffset <= LastResultRow FetchOffset
FetchOffset > LastResultRow After end

* a SQLFetchScrol1() returns SQLSTATE 01S06 (Attempt to fetch before the result
set returned the first rowset.) and SQL_SUCCESS_WITH_INFO.

SQL_FETCH_FIRST rules:

Table 68. SQL_FETCH_FIRST rules:

Condition First row of new rowset

Any 1

SQL_FETCH_LAST rules:
Table 69. SQL_FETCH_LAST rules:

Condition First row of new rowset
RowsetSize = LastResultRow LastResultRow - RowsetSize + 1
RowsetSize > LastResultRow 1

SQL_FETCH_BOOKMARK rules:
Table 70. SQL_FETCH_BOOKMARK rules:

Condition First row of new rowset
BookmarkRow + FetchOffset <1 Before start

1 <= BookmarkRow + FetchOffset <= LastResultRow BookmarkRow +FetchOffset
BookmarkRow + FetchOffset > LastResultRow After end

Chapter 1. CLI and ODBC functions 141

SQLForeignKeys function (CLI) - Get the list of foreign key columns

SQLForeignKeys function (CLI) - Get the list of foreign key columns

Returns information about foreign keys for the specified table.

The information is returned in an SQL result set which can be processed using the
same functions that are used to retrieve a result generated by a query.

Specification:
« CLI21
+ ODBC 1.0

The SQLForeignKeys() function returns information about foreign keys for the
specified table. The information is returned in an SQL result set which you can
process by using the same functions that you use to retrieve a result that is

generated by a query.

Unicode equivalent: You can also use this function with the Unicode character set.
The corresponding Unicode function is SQLForeignKeysW(). See “Unicode functions
(CLI)” on page 5 for information about ANSI to Unicode function mappings.

Syntax

SQLRETURN SQLForeignKeys
SQLHSTMT
SQLCHAR
SQLSMALLINT
SQLCHAR
SQLSMALLINT
SQLCHAR
SQLSMALLINT
SQLCHAR
SQLSMALLINT
SQLCHAR
SQLSMALLINT
SQLCHAR
SQLSMALLINT

Function arguments
Table 71. SQLForeignKeys arguments

StatementHandle, /* hstmt */
PKCatalogName, / szPkCatalogName */

NamelLengthl, /* cbhPkCatalogName =/
PKSchemaName, / szPkSchemaName =/
NameLength2, /* cbPkSchemaName =/
PKTab1eName, / szPkTableName +*/

NameLength3, /* cbPkTableName =/

FKCatalogName, / szFkCatalogName =*/
NameLength4, /* chFkCatalogName =/
FKSchemaName, / szFkSchemaName x/
NameLength5, /* cbFkSchemaName =/

FKTableName, / szFkTableName */
NamelLength6) ; /* cbFkTableName */

Data type Argument Use

Description

SQLHSTMT StatementHandle Input

The statement handle.

SQLCHAR * PKCatalogName Input

The catalog qualifier of the 3-part primary key table
name. If the target DBMS does not support 3-part
naming, and PKCatalogName is not a null pointer and
does not point to a zero-length string, then an empty
result set and SQL_SUCCESS is returned. Otherwise,
this is a valid filter for DBMSs that support 3-part
naming.

SQLSMALLINT NameLengthl Input

The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store PKCatalogName, or
SQL_NTS if PKCatalogName is null-terminated.

SQLCHAR *

PKSchemaName Input

The schema qualifier of the primary key table.

142 Call Level Interface Guide and Reference Volume 2

SQLForeignKeys function (CLI) - Get the list of foreign key columns

Table 71. SQLForeignKeys arguments (continued)

Data type

Argument

Use

Description

SQLSMALLINT

NameLength?2

Input

The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store PKSchemaName, or
SQL_NTS if PKSchemaName is null-terminated.

SQLCHAR *

PKTableName

Input

The name of the table name that contains the
primary key.

SQLSMALLINT

NameLength3

Input

The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store PKTableName, or SQL_NTS
if PKTableName is null-terminated.

SQLCHAR *

FKCatalogName

Input

The catalog qualifier of the 3-part foreign key table
name. If the target DBMS does not support 3-part
naming, and FKCatalogName is not a null pointer and
does not point to a zero-length string, then an empty
result set and SQL_SUCCESS is returned. Otherwise,
this is a valid filter for DBMSs that support 3-part
naming.

SQLSMALLINT

NameLength4

Input

The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store FKCatalogName, or
SQL_NTS if FKCatalogName is null-terminated.

SQLCHAR *

FKSchemaName

Input

The schema qualifier of the table that contains the
foreign key.

SQLSMALLINT

NameLength5

Input

The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store FKSchemaName, or
SQL_NTS if FKSchemaName is null-terminated.

SQLCHAR *

FKTableName

Input

The name of the table that contains the foreign key.

SQLSMALLINT

NameLength6

Input

The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store FKTableName, or SQL_NTS
if FKTableName is null-terminated.

Usage

If PKTableName contains a table name, and FKTableName is an empty string, the
SQLForeignKeys () function returns a result set that contains the primary key of the
specified table and all of the foreign keys (in other tables) that refer to it.

If FKTableName contains a table name, and PKTableName is an empty string, the
SQLForeignKeys () function returns a result set that contains all of the foreign keys
in the specified table and the primary keys (in other tables) to which they refer.

If both PKTableName and FKTableName contain table names, the SQLForeignKeys ()
function returns the foreign keys in the table that are specified in FKTableName,

which refer to the primary key of the table that is specified in PKTableName. There
should be one key at the most.

If the schema qualifier argument that is associated with a table name is not

specified, the schema name defaults to the table name that is currently in effect for
the current connection.

Chapter 1. CLI and ODBC functions 143

SQLForeignKeys function (CLI) - Get the list of foreign key columns

Columns Returned by SQLForeignKeys lists the columns of the result set that is
generated by the SQLForeignKeys () call. If the foreign keys that are associated with
a primary key are requested, the result set is ordered by FKTABLE_CAT,
FKTABLE_SCHEM, FKTABLE_NAME, and ORDINAL_POSITION. If the primary
keys that are associated with a foreign key are requested, the result set is ordered
by PKTABLE_CAT, PKTABLE_SCHEM, PKTABLE_NAME, and
ORDINAL_POSITION.

Call SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine the actual lengths of the
associated TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME
columns that are supported by the connected DBMS.

You can specify *ALL as a value in the SchemaName to resolve unqualified stored
procedure calls or to find libraries in catalog API calls. CLI searches on all existing
schemas in the connected database. You are not required to specify *ALL, as this
behavior is the default in CLI. Alternatively, you can set the SchemaFilter IBM
Data Server Driver configuration keyword or the Schema List CLI/ODBC
configuration keyword to *ALL.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns will not change.

Columns that are returned by SQLForeignKeys

Column 1 PKTABLE_CAT (VARCHAR(128))
Name of the catalog for PKTABLE_NAME. The value is NULL if this table
does not have catalogs.

Column 2 PKTABLE_SCHEM (VARCHAR(128))
Name of the schema containing PKTABLE_NAME.

Column 3 PKTABLE_NAME (VARCHAR(128) not NULL)
Name of the table containing the primary key.

Column 4 PKCOLUMN_NAME (VARCHAR(128) not NULL)
Primary key column name.

Column 5 FKTABLE_CAT (VARCHAR(128))
Name of the catalog for FKTABLE_NAME. The value is NULL if this table
does not have catalogs.

Column 6 FKTABLE_SCHEM (VARCHAR(128))
Name of the schema containing FKTABLE_NAME.

Column 7 FKTABLE_NAME (VARCHAR(128) not NULL)
Name of the table containing the foreign key.

Column 8 FKCOLUMN_NAME (VARCHAR(128) not NULL)
Foreign key column name.

Column 9 KEY_SEQ (SMALLINT not NULL)
Ordinal position of the column in the key, starting at 1.

Column 10 UPDATE_RULE (SMALLINT)
Action to be applied to the foreign key when the SQL operation is
UPDATE:
¢ SQL_RESTRICT
* SQL_NO_ACTION

144 Call Level Interface Guide and Reference Volume 2

SQLForeignKeys function (CLI) - Get the list of foreign key columns

The update rule for IBM DB2 DBMSs is always either RESTRICT or
SQL_NO_ACTION. However, ODBC applications might encounter the
listed UPDATE_RULE values when connected to RDBMSs that are not
provided by IBM:

* SQL_CASCADE

* SQL_SET_NULL

Column 11 DELETE_RULE (SMALLINT)
Action to be applied to the foreign key when the SQL operation is

DELETE:

* SQL_CASCADE

* SQL_NO_ACTION
e SQL_RESTRICT

* SQL_SET_DEFAULT
* SQL_SET_NULL

Column 12 FK_NAME (VARCHAR(128))
Foreign key identifier. NULL if not applicable to the data source.

Column 13 PK_NAME (VARCHAR(128))
Primary key identifier. NULL if not applicable to the data source.

Column 14 DEFERRABILITY (SMALLINT)

One of:

e SQL_INITTALLY_DEFERRED
* SQL_INITIALLY_IMMEDIATE
* SQL_NOT_DEFERRABLE

Note: The column names that are used by CLI follow the X/Open CLI CAE
specification style. The column types, contents, and order are identical to those
defined for the SQLForeignKeys () result set in ODBC.

Return codes
+ SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO
* SQL_STILL_EXECUTING

 SQL_ERROR

* SQL_INVALID_HANDLE

Diagnostics
Table 72. SQLForeignKeys SQLSTATEs

SQLSTATE Description

Explanation

24000 Invalid cursor state.

A cursor is already opened on the statement handle.

40003 08501 Communication link failure.

The communication link between the application and data source
failed before the function completed.

HYO001 Memory allocation failure.

DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY009 Invalid argument value.

The arguments PKTableName and FKTableName were both NULL
pointers.

Chapter 1. CLI and ODBC functions 145

SQLForeignKeys function (CLI) - Get the list of foreign key columns

Table 72. SQLForeignKeys SQLSTATEs (continued)

SQLSTATE Description

Explanation

HY010 Function sequence error.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while in a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

The function was called before a statement was prepared on the
statement handle.

HY014 No more handles.

DB2 CLI was unable to allocate a handle due to resource
limitations.

HY090

Invalid string or buffer length.

The value of one of the name length arguments was less than 0,
but not equal to SQL_NTS.

The length of the table or owner name is greater than the
maximum length that is supported by the server.

HYTO00 Timeout expired.

The timeout period expired before the data source returned the
result set. You can set the timeout period by using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions
None.

Example

/* get the 1ist of foreign key columns */
cTiRC = SQLForeignKeys (hstmt,

NULL,

05
tbSchema,
SQL_NTS,
tbName,
SQL_NTS,
NULL,

0,
NULL,
SQL_NTS,
NULL,
SQL_NTS);

SQLFreeConnect function (CLI) - Free connection handle
In ODBC 3.0, SQLFreeConnect() has been deprecated and replaced with

SQLFreeHandle().

Although this version of CLI continues to support SQLFreeConnect(), use
SQLFreeHandle() in your CLI programs so that they conform to the latest

standards.

146 Call Level Interface Guide and Reference Volume 2

SQLFreeConnect function (CLI) - Free connection handle

Migrating to the new function

The statement:
SQLFreeConnect (hdbc) ;

for example, would be rewritten using the new function as:
SQLFreeHand1e(SQL_HANDLE DBC, hdbc);

SQLFreeEnv function (CLI) - Free environment handle

In ODBC 3.0, SQLFreeEnv() has been deprecated and replaced with
SQLFreeHandle().

Although this version of CLI continues to support SQLFreeEnv(), use
SQLFreeHandle() in your CLI programs so that they conform to the latest
standards.

Migrating to the new function

The statement:
SQLFreeEnv (henv);

for example, would be rewritten using the new function as:
SQLFreeHandle(SQL_HANDLE_ENV, henv);

SQLFreeHandle function (CLI) - Free handle resources

Frees resources associated with a specific environment, connection, statement, or
descriptor handle.

Specification:
+ CLI5.0

+ ODBC 3.0

« ISO CLI

Note: This function is a generic function for freeing resources. It replaces the
ODBC 2.0 functions SQLFreeConnect() (for freeing a connection handle), and
SQLFreeEnv() (for freeing an environment handle). SQLFreeHandle() also replaces
the ODBC 2.0 function SQLFreeStmt() (with the SQL_DROP Option) for freeing a
statement handle.

Syntax

SQLRETURN SQLFreeHandle (
SQLSMALLINT HandleType, /* fHandleType */
SQLHANDLE Handle) /* hHandle =/

Chapter 1. CLI and ODBC functions 147

SQLFreeHandle function (CLI) - Free handle resources

Function arguments
Table 73. SQLFreeHandle arguments

Data type Argument Use Description

SQLSMALLINT HandleType input The type of handle to be freed by SQLFreeHandle().
Must be one of the following values:
* SQL_HANDLE_ENV
* SQL_HANDLE_DBC
* SQL_HANDLE_STMT
* SQL_HANDLE_DESC
If HandleType is not one of SQL_HANDLE_ENYV,
SQL_HANDLE_DBC, SQL_HANDLE_STMT, or
SQL_HANDLE_DESC value, SQLFreeHandle()
returns SQL_INVALID_HANDLE.

SQLHANDLE Handle input The handle to be freed.

Usage

SQLFreeHandle() is used to free handles for environments, connections, statements,
and descriptors.

An application should not use a handle after it has been freed; CLI does not check
the validity of a handle in a function call.

Return codes

* SQL_SUCCESS

* SQL_ERROR

* SQL_INVALID_HANDLE

If SQLFreeHandle() returns SQL_ERROR, the handle is still valid.

Diagnostics

Table 74. SQLFreeHandle SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

08501 Communication link failure. The HandleType argument was SQL_HANDLE_DBC, and the
communication link between CLI and the data source to which it
was trying to connect failed before the function completed
processing.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HYO001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

148 Call Level Interface Guide and Reference Volume 2

SQLFreeHandle function (CLI) - Free handle resources

Table 74. SQLFreeHandle SQLSTATEs (continued)
SQLSTATE Description Explanation

HY010 Function sequence error. The HandleType argument was SQL_HANDLE_ENYV, and at least
one connection was in an allocated or connected state.
SQLDisconnect() and SQLFreeHandle() with a HandleType of
SQL_HANDLE_DBC must be called for each connection before
calling SQLFreeHandle() with a HandleType of
SQL_HANDLE_ENV. The HandleType argument was
SQL_HANDLE_DBC, and the function was called before calling
SQLDisconnect() for the connection.

The HandleType argument was SQL_HANDLE_STMT; an
asynchronously executing function was called on the statement
handle; and the function was still executing when this function
was called.

The HandleType argument was SQL_HANDLE_STMT;
SQLExecute() or SQLExecDirect() was called with the statement
handle, and returned SQL_NEED_DATA. This function was called
before data was sent for all data-at-execution parameters or
columns. (DM) All subsidiary handles and other resources were
not released before SQLFreeHandle() was called.

HY013 Unexpected memory handling The HandleType argument was SQL_HANDLE_STMT or
error. SQL_HANDLE_DESC, and the function call could not be
processed because the underlying memory objects could not be
accessed, possibly because of low memory conditions.

HY017 Invalid use of an automatically =~ The Handle argument was set to the handle for an automatically
allocated descriptor handle. allocated descriptor or an implementation descriptor.
Restrictions
None.
Example

/* free the statement handle =/
c1iRC = SQLFreeHandle(SQL_HANDLE STMT, hstmt2);
SRV_HANDLE_CHECK_SETTING_SQLRC_AND_MSG(SQL_HANDLE_STMT,
hstmt2,
cliRC,
henv,
hdbc,
pOutSqlrc,
outMsg,
"SQLFreeHandle");
JEREY
/* free the database handle */
c1iRC = SQLFreeHandle(SQL_HANDLE_DBC, hdbc);
SRV_HANDLE_CHECK_SETTING_SQLRC_AND_MSG(SQL_HANDLE_DBC,
hdbc,
cTiRC,
henv,
hdbc,
pOutSqlrc,
outMsg,
"SQLFreeHandle");

/* free the environment handle */

c1iRC = SQLFreeHandle(SQL_HANDLE_ENV, henv);

SRV_HANDLE_CHECK_SETTING_SQLRC_AND_MSG(SQL_HANDLE_ENV,
henv,

Chapter 1. CLI and ODBC functions 149

SQLFreeHandle function (CLI) - Free handle resources

cliRC,

henv,

hdbc,

pOutSqlrc,
outMsg,
"SQLFreeHandle");

SQLFreeStmt function (CLI) - Free (or reset) a statement handle

Ends processing on the statement referenced by the statement handle.

Specification:
« CLI 1.1

+ ODBC 1.0

« 1SO CLI

Use this function to:
* Close a cursor and discard all pending results

 Disassociate (reset) parameters from application variables and LOB file
references

* Unbind columns from application variables and LOB file references

* Drop the statement handle and free the CLI resources associated with the
statement handle.

SQLFreeStmt() is called after executing an SQL statement and processing the
results.

Syntax
SQLRETURN SQLFreeStmt (SQLHSTMT StatementHandle, /* hstmt */
SQLUSMALLINT Option); /* fOption =/

Function arguments

Table 75. SQLFreeStmt arguments

Data type Argument Use Description
SQLHSTMT StatementHandle input Statement handle
SQLUSMALLINT | Option input Option which specifies the manner of freeing the

statement handle. The option must have one of the
following values:

* SQL_CLOSE

¢ SQL_DROP

* SQL_UNBIND

¢ SQL_RESET_PARAMS

Usage

SQLFreeStmt() can be called with the following options:

SQL_CLOSE
The cursor (if any) associated with the statement handle (StatementHandle)
is closed and all pending results are discarded. The application can reopen
the cursor by calling SQLExecute() with the same or different values in the
application variables (if any) that are bound to StatementHandle. The cursor
name is retained until the statement handle is dropped or a subsequent call

150 Call Level Interface Guide and Reference Volume 2

SQLFreeStmt function (CLI) - Free (or reset) a statement handle

to SQLGetCursorName() is successful. If no cursor has been associated with
the statement handle, this option has no effect (no warning or error is
generated).

SQLCloseCursor() can also be used to close a cursor.

SQL_DROP
CLI resources associated with the input statement handle are freed, and the
handle is invalidated. The open cursor, if any, is closed and all pending
results are discarded.

This option has been replaced with a call to SQLFreeHandle() with the
HandleType set to SQL_HANDLE_STMT. Although this version of CLI
continues to support this option, begin using SQLFreeHandle() in your CLI
programs so that they conform to the latest standards.

SQL_UNBIND
Sets the SQL_DESC_COUNT field of the ARD (Application Row
Descriptor) to 0, releasing all column buffers bound by SQLBindCol() or
SQLBindFileToCol() for the given StatementHandle. This does not unbind
the bookmark column; to do that, the SQL_DESC_DATA_PTR field of the
ARD for the bookmark column is set to NULL. Note that if this operation
is performed on an explicitly allocated descriptor that is shared by more
than one statement, the operation will affect the bindings of all statements
that share the descriptor.

SQL_RESET_PARAMS
Sets the SQL_DESC_COUNT field of the APD (Application Parameter
Descriptor) to 0, releasing all parameter buffers set by SQLBindParameter()
or SQLBindFileToParam() for the given StatementHandle. Note that if this
operation is performed on an explicitly allocated descriptor that is shared
by more than one statement, this operation will affect the bindings of all
the statements that share the descriptor.

SQLFreeStmt() has no effect on LOB locators, call SQLExecDirect() with the FREE
LOCATOR statement to free a locator.

It is possible to reuse a statement handle to execute a different statement:

e If the handle was associated with a query, catalog function or SQLGetTypelnfo(),
you must close the cursor.

e If the handle was bound with a different number or type of parameters, the
parameters must be reset.

¢ If the handle was bound with a different number or type of column bindings,
the columns must be unbound.

Alternatively you may drop the statement handle and allocate a new one.

Return codes

+ SQL_SUCCESS

+ SQL_SUCCESS_WITH_INFO
+ SQL_ERROR

+ SQL_INVALID_HANDLE

SQL_SUCCESS_WITH_INFO is not returned if Option is set to SQL_DROP, as there

would be no statement handle to use when SQLGetDiagRec() or SQLGetDiagField()
is called.

Chapter 1. CLI and ODBC functions 151

SQLFreeStmt function (CLI) - Free (or reset) a statement handle

Diagnostics
Table 76. SQLFreeStmt SQLSTATEs

SQLSTATE Description

Explanation

40003 08501 Communication link failure.

The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

HY092 Option type out of range. The value specified for the argument Option was not SQL_CLOSE,
SQL_DROP, SQL_UNBIND, or SQL_RESET_PARAMS.

HY506 Error closing a file. Error encountered while trying to close a temporary file.

Authorization
None.
Example

/* free the statement handle =*/
c1iRC = SQLFreeStmt(hstmt, SQL_UNBIND);
rc = HandleInfoPrint(SQL_HANDLE STMT, hstmt, c1iRC, _ LINE , FILE);

if (rc !'=0)
{

return 1;

}

/* free the statement handle */
c1iRC = SQLFreeStmt(hstmt, SQL_RESET PARAMS);
rc = HandleInfoPrint(SQL_HANDLE_STMT, hstmt, c1iRC, _ LINE_ , _ FILE_);

if (rc !=0)
{

return 1;

}

/* free the statement handle =/
c1iRC = SQLFreeStmt (hstmt, SQL_CLOSE);
rc = HandleInfoPrint(SQL_HANDLE_STMT, hstmt, c1iRC, _ LINE_, _FILE);

if (rc 1= 0)
{

return 1;

}

SQLGetConnectAttr function (CLI) - Get current attribute setting

Returns the current setting of a connection attribute.

Specification:

« CLI5.0
* ODBC 3.0
* ISO CLI

152 Call Level Interface Guide and Reference Volume 2

SQLGetConnectAttr function (CLI) - Get current attribute setting

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLGetConnectAttrW(). See “Unicode
functions (CLI)” on page 5 for information about ANSI to Unicode function

mappings.

Syntax
SQLRETURN SQLGetConnectAttr(SQLHDBC ConnectionHandle,
SQLINTEGER Attribute,
SQLPOINTER ValuePtr,
SQLINTEGER BufferLength,
SQLINTEGER *StringlLengthPtr);
Function arguments
Table 77. SQLGetConnectAttr arguments
Data type Argument Use Description
SQLHDBC ConnectionHandle input Connection handle.
SQLINTEGER Attribute input Attribute to retrieve.
SQLPOINTER ValuePtr output A pointer to memory in which to return the current
value of the attribute specified by Attribute.
SQLINTEGER BufferLength input e If ValuePtr points to a character string, this

argument should be the length of *ValuePtr.
 If ValuePtr is a pointer, but not to a string, then
BufferLength should have the value
SQL_IS_POINTER.
e If the value in *ValuePtr is a Unicode string the
BufferLength argument must be an even number.

SQLINTEGER *

StringLengthPtr output A pointer to a buffer in which to return the total

number of bytes (excluding the null-termination
character) available to return in *ValuePtr. If ValuePtr
is a null pointer, no length is returned. If the
attribute value is a character string, and the number
of bytes available to return is greater than
BufferLength minus the length of the
null-termination character, the data in *ValuePtr is
truncated to BufferLength minus the length of the
null-termination character and is null-terminated by
CLL

Usage

If Attribute specifies an attribute that returns a string, ValuePtr must be a pointer to
a buffer for the string. The maximum length of the string, including the null
termination character, will be BufferLength bytes.

Depending on the attribute, an application does not need to establish a connection
before calling SQLGetConnectAttr(). However, if SQLGetConnectAttr() is called
and the specified attribute does not have a default and has not been set by a prior
call to SQLSetConnectAttr(), SQLGetConnectAttr() will return SQL_NO_DATA.

If Attribute is SQL_ATTR_TRACE or SQL_ATTR_TRACEFILE, ConnectionHandle
does not have to be valid, and SQLGetConnectAttr() will not return SQIL_ERROR if
ConnectionHandle is invalid. These attributes apply to all connections.
SQLGetConnectAttr() will return SQL_ERROR if another argument is invalid.

Chapter 1. CLI and ODBC functions 153

SQLGetConnectAttr function (CLI) - Get current attribute setting

While an application can set statement attributes using SQLSetConnectAttr(), an
application cannot use SQLGetConnectAttr() to retrieve statement attribute values;
it must call SQLGetStmtAttr() to retrieve the setting of statement attributes.

The SQL_ATTR_AUTO_IPD connection attribute can be returned by a call to
SQLGetConnectAttr(), but cannot be set by a call to SQLSetConnectAttr().

Return codes
+ SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO

* SQOL_NO_DATA

* SQL_ERROR
* SQL_INVALID_HANDLE
Diagnostics

Table 78. SQLGetConnectAttr SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The data returned in *ValuePtr was truncated to be BufferLength
minus the length of a null termination character. The length of the
untruncated string value is returned in *StringLengthPtr. (Function
returns SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed. An Attribute value was specified that required an open connection.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HYO001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HYO010 Function sequence error. SQLBrowseConnect() was called for the ConnectionHandle and
returned SQL_NEED_DATA. This function was called before
SQLBrowseConnect() returned SQL_SUCCESS_WITH_INFO or
SQL_SUCCESS.

HY090 Invalid string or buffer length. The value specified for the argument BufferLength was less than 0.

HY092 Option type out of range. The value specified for the argument Attribute was not valid.

HYCO00 Driver not capable. The value specified for the argument Attribute was a valid

connection or statement attribute for the version of the CLI driver,
but was not supported by the data source.

Restrictions
None.

Example

SQLINTEGER autocommit;

[* oo %/

/* get the current setting for the AUTOCOMMIT attribute =*/
c1iRC = SQLGetConnectAttr(hdbc, SQL_ATTR_AUTOCOMMIT, &autocommit, 0, NULL);

154 Call Level Interface Guide and Reference Volume 2

SQLGetConnectOption function (CLI) - Return current setting of a connect option

SQLGetConnectOption function (CLI) - Return current setting of a

connect option

In ODBC version 3, SQLGetConnectOption() has been deprecated and replaced
with SQLGetConnectAttr().

Although this version of CLI continues to support SQLGetConnectOption(), use
SQLGetConnectAttr() in your CLI programs so that they conform to the latest
standards.

Migrating to the new function

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLGetConnectOptionW(). See
“Unicode functions (CLI)” on page 5 for information about ANSI to Unicode
function mappings.

The statement:
SQLGetConnectOption(hdbc, SQL_ATTR AUTOCOMMIT, pvAutoCommit);

for example, would be rewritten using the new function as:

SQLGetConnectAttr(hdbc, SQL_ATTR AUTOCOMMIT, pvAutoCommit,
SQL_IS POINTER, NULL);

SQLGetCursorName function (CLI) - Get cursor name

Returns the cursor name associated with the input statement handle.

If a cursor name was explicitly set by calling SQLSetCursorName(), this name will
be returned; otherwise, an implicitly generated name will be returned.

Specification:
« CLI 1.1

+ ODBC 1.0

+ ISO CLI

Unicode Equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLGetCursorNameW(). See “Unicode
functions (CLI)” on page 5 for information about ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLGetCursorName (
SQLHSTMT StatementHandle, /* hstmt */
SQLCHAR *CursorName, /* szCursor =/
SQLSMALLINT BufferLength, /* cbCursorMax =/
SQLSMALLINT *NameLengthPtr); /* pcbCursor */

Function arguments

Table 79. SQLGetCursorName arguments

Data type Argument Use Description
SQLHSTMT StatementHandle input Statement handle
SQLCHAR * CursorName output Cursor name

Chapter 1. CLI and ODBC functions

155

SQLGetCursorName function (CLI) - Get cursor name

Table 79. SQLGetCursorName arguments (continued)

Data type

Argument Use Description

SQLSMALLINT

BufferLength input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)
needed to store CursorName.

SQLSMALLINT *

NameLengthPtr output Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function),
excluding the null-termination character, available to
return for CursorName.

Usage

SQLGetCursorName() will return the cursor name set explicitly with
SQLSetCursorName(), or if no name was set, it will return the cursor name
internally generated by CLI. If SQLGetCursorName() is called before a statement
has been prepared on the input statement handle, an error will result. The internal
cursor name is generated on a statement handle the first time dynamic SQL is
prepared on the statement handle, not when the handle is allocated.

If a name is set explicitly using SQLSetCursorName(), this name will be returned
until the statement is dropped, or until another explicit name is set.

Internally generated cursor names always begin with SQLCUR or SQL_CUR.
Cursor names are always 128 SQLCHAR or SQLWCHAR elements or less, and are
always unique within a connection.

Return codes

+ SQL_SUCCESS

+ SQL_SUCCESS_WITH_INFO
+ SQL_ERROR

+ SQL_INVALID_HANDLE

Diagnostics
Table 80. SQLGetCursorName SQLSTATEs
SQLSTATE Description Explanation
01004 Data truncated. The cursor name returned in CursorName was longer than the

value in BufferLength, and is truncated to BufferLength - 1 bytes.
The argument NameLengthPtr contains the length of the full cursor
name available for return. The function returns
SQL_SUCCESS_WITH_INFO.

40003 08501 Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

156 Call Level Interface Guide and Reference Volume 2

SQLGetCursorName function (CLI) - Get cursor name

Table 80. SQLGetCursorName SQLSTATEs (continued)
SQLSTATE Description Explanation

HY010 Function sequence error.
The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
For the StatementHandle and was still executing when this function
was called.

The function was called before a statement was prepared on the
statement handle.

HY013 Unexpected memory handling DB2 CLI was unable to access memory required to support
error. execution or completion of the function.
HY090 Invalid string or buffer length. The value specified for the argument BufferLength is less than 0.
Restrictions

ODBC generated cursor names start with SQL_CUR, CLI generated cursor names
start with SQLCUR, and X/Open CLI generated cursor names begin with either
SQLCUR or SQL_CUR.

Example
SQLCHAR cursorName[20] ;
[* ... %/

/* get the cursor name of the SELECT statement =/
c1iRC = SQLGetCursorName(hstmtSelect, cursorName, 20, &cursorLen);

SQLGetData function (CLI) - Get data from a column

Retrieves data for a single column in the current row of the result set.

This function is an alternative to SQLBindCol(), which is used to transfer data
directly into application variables or LOB locators on each SQLFetch() or
SQLFetchScroll() call. An application can either bind LOBs with SQLBindCo1() or
use SQLGetData() to retrieve LOBs, but both methods cannot be used together.
SQLGetData() can also be used to retrieve large data values in pieces.

Specification:
« CLI 1.1

+ ODBC 1.0

« ISO CLI

SQLFetch() or SQLFetchScrol11() must be called before SQLGetData().

After calling SQLGetData() for each column, SQLFetch() or SQLFetchScroll() is
called to retrieve the next row.

Chapter 1. CLI and ODBC functions 157

SQLGetData function (CLI) - Get data from a column

Syntax
SQLRETURN

SQLHSTMT
SQLUSMALLINT
SQLSMALLINT
SQLPOINTER

Function arguments

Table 81. SQLGetData arguments

StatementHandle, /* hstmt =/
ColumnNumber, /* icol =/
TargetType, /* fCType */
TargetValuePtr, /* rgbValue =/
BufferLength, /* chValueMax */

StrLen_or_IndPtr); / pcbValue */

Data type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement handle

SQLUSMALLINT

ColumnNumber

input

Column number for which the data retrieval is
requested. Result set columns are numbered
sequentially from left to right.

Column numbers start at 1 if bookmarks are not
used (SQL_ATTR_USE_BOOKMARKS statement
attribute set to SQL_UB_OFF).

Column numbers start at 0 if bookmarks are used
(the statement attribute set to SQL_UB_ON or
SQL_UB_VARIABLE).

SQLSMALLINT

TargetType

input

The C data type of the column identifier by
ColumnNumber. The following types are supported:

SQL_C_BINARY
SQL_C_BIT
SQL_C_BLOB_LOCATOR
SQL_C_CHAR
SQL_C_CLOB_LOCATOR
SQL_C_DBCHAR
SQL_C_DBCLOB_LOCATOR
SQL_C_DECIMAL_IBM
SQL_C_DOUBLE
SQL_C_FLOAT
SQL_C_LONG
SQL_C_NUMERIC *
SQL_C_SBIGINT
SQL_C_SHORT
SQL_C_TYPE_DATE
SQL_C_TYPE_TIME
SQL_C_TYPE_TIMESTAMP
SQL_C_TYPE_TIMESTAMP_EXT
SQL_C_TINYINT
SQL_C_UBIGINT
SQL_C_UTINYINT
SQL_C_WCHAR

Specifying SQL_ARD_TYPE results in the data being
converted to the data type specified in the
SQL_DESC_CONCISE_TYPE field of the ARD.

Specifying SQL_C_DEFAULT results in the data
being converted to its default C data type.

SQLPOINTER

TargetValuePtr

output

Pointer to buffer where the retrieved column data is
to be stored.

SQLLEN

BufferLength

input

Maximum size of the buffer pointed to by
TargetValuePtr. This value is ignored when the driver
returns fixed-length data.

158 Call Level Interface Guide and Reference Volume 2

SQLGetData function (CLI) - Get data from a column

Table 81. SQLGetData arguments (continued)

Data type

Argument Use Description

SQLLEN *

StrLen_or_IndPtr output Pointer to value which indicates the number of bytes

CLI has available to return in the TargetValuePtr
buffer. If the data is being retrieved in pieces, this
contains the number of bytes still remaining.

The value is SQL_NULL_DATA if the data value of
the column is null. If this pointer is NULL and
SQLFetch() has obtained a column containing null
data, then this function will fail because it has no
means of reporting this.

If SQLFetch() has fetched a column containing binary
data, then the pointer to StrLen_or_IndPtr must not
be NULL or this function will fail because it has no
other means of informing the application about the
length of the data retrieved in the TargetValuePtr
buffer.

Note: CLI will provide some performance enhancement if TargetValuePtr is placed consecutively in memory after

StrLen_or_IndPtr

Usage

Different DB2 data sources have different restrictions on how SQLGetData() can be
used. For an application to be sure about the functional capabilities of this
function, it should call SQLGetInfo() with any of the following
SQL_GETDATA_EXTENSIONS options:

* SQL_GD_ANY_COLUMN: If this option is returned, SQLGetData() can be called
for any unbound column, including those before the last bound column. All DB2
data sources support this feature.

* SQL_GD_ANY_ORDER: If this option is returned, SQLGetData() can be called
for unbound columns in any order. All DB2 data sources support this feature.

* SQL_GD_BLOCK: If this option if returned by SQLGetInfo() for the
SQL_GETDATA_EXTENSIONS InfoType argument, then the driver will support
calls to SQLGetData() when the rowset size is greater than 1. The application can
also call SQLSetPos () with the SQL_POSITION option to position the cursor on
the correct row before calling SQLGetData(). At least DB2 for UNIX and
Windows data sources support this feature.

* SQL_GD_BOUND: If this option is returned, SQLGetData() can be called for
bound columns as well as unbound columns. DB2 Database for Linux, UNIX,
and Windows does not currently support this feature.

SQLGetData() can also be used to retrieve long columns if the C data type
(TargetType) is SQL_C_CHAR, SQL_C_BINARY, SQL_C_DBCHAR,
SQL_C_WCHAR, or if TargetType is SQL_C_DEFAULT and the column type
denotes a binary or character string.

Upon each SQLGetData() call, if the data available for return is greater than or
equal to BufferLength, truncation occurs. Truncation is indicated by a function
return code of SQL_SUCCESS_WITH_INFO coupled with a SQLSTATE denoting
data truncation. The application can call SQLGetData() again, with the same
ColumnNumber value, to get subsequent data from the same unbound column
starting at the point of truncation. To obtain the entire column, the application

Chapter 1. CLI and ODBC functions 159

SQLGetData function (CLI) - Get data from a column

repeats such calls until the function returns SQL_SUCCESS. The next call to
SQLGetData() returns SQL_NO_DATA_FOUND.

When the application calls the function SQLGetData() to retrieve the actual LOB
data it will, by default, make one request to the server and will store the entire
LOB in memory provided BufferLength is large enough. If BufferLength is not large
enough to hold the requested LOB data, it will be retrieved in pieces.

Although SQLGetData() can be used for the sequential retrieval of LOB column
data, use the CLI LOB functions if only a portion of the LOB data or a few sections
of the LOB column data are needed:

1. Bind the column to a LOB locator.
2. Fetch the row.

3. Use the locator in a SQLGetSubString() call, to retrieve the data in pieces
(SQLGetLength() and SQLGetPosition() might also be required in order to
determine the values of some of the arguments).

4. Repeat step 2.

Truncation is also affected by the SQL_ATTR_MAX_LENGTH statement attribute.
The application can specify that truncation is not to be reported by calling
SQLSetStmtAttr() with SQL_ATTR_MAX_LENGTH and a value for the maximum
length to return for any one column, and by allocating a TargetValuePtr buffer of
the same size (plus the null-terminator). If the column data is larger than the set
maximum length, SQL_SUCCESS will be returned and the maximum length, not
the actual length will be returned in StrLen_or_IndPtr.

To discard the column data part way through the retrieval, the application can call
SQLGetData() with ColumnNumber set to the next column position of interest. To
discard data that has not been retrieved for the entire row, the application should
call SQLFetch() to advance the cursor to the next row; or, if it does not want any
more data from the result set, the application can close the cursor by calling
SQLCTloseCursor() or SQLFreeStmt () with the SQL_CLOSE or SQL_DROP option.

The TargetType input argument determines the type of data conversion (if any)
needed before the column data is placed into the storage area pointed to by
TargetValuePtr.

For SQL graphic column data:

¢ The length of the TargetValuePtr buffer (BufferLength) should be a multiple of 2.
The application can determine the SQL data type of the column by first calling
SQLDescribeCol() or SQLColAttribute().

* The pointer to StrLen_or_IndPtr must not be NULL since CLI will be storing the
number of octets stored in TargetValuePtr.

* If the data is to be retrieved in piecewise fashion, CLI will attempt to fill
TargetValuePtr to the nearest multiple of two octets that is still less than or equal
to BufferLength. This means if BufferLength is not a multiple of two, the last byte
in that buffer will be untouched; CLI will not split a double-byte character.

The content returned in TargetValuePtr is always null-terminated unless the column
data to be retrieved is binary, or if the SQL data type of the column is graphic
(DBCS) and the C buffer type is SQL_C_CHAR. If the application is retrieving the
data in multiple chunks, it should make the proper adjustments (for example, strip
off the null-terminator before concatenating the pieces back together assuming the
null termination environment attribute is in effect).

160 Call Level Interface Guide and Reference Volume 2

SQLGetData function (CLI) - Get data from a column

Truncation of numeric data types is reported as a warning if the truncation
involves digits to the right of the decimal point. If truncation occurs to the left of
the decimal point, an error is returned (refer to the diagnostics section).

With the exception of scrollable cursors, applications that use SQLFetchScroll() to
retrieve data should call SQLGetData() only when the rowset size is 1 (equivalent
to issuing SQLFetch()). SQOLGetData() can only retrieve column data for a row
where the cursor is currently positioned.

Using SQLGetData() with Scrollable Cursors

SQLGetData() can also be used with scrollable cursors. You can save a pointer to
any row in the result set with a bookmark. The application can then use that
bookmark as a relative position to retrieve a rowset of information.

Once you have positioned the cursor to a row in a rowset using SQLSetPos(), you
can obtain the bookmark value from column 0 using SQLGetData(). In most cases
you will not want to bind column 0 and retrieve the bookmark value for every
row, but use SQLGetData() to retrieve the bookmark value for the specific row you
require.

Return codes

+ SQL_SUCCESS

+ SQL_SUCCESS_WITH_INFO
+ SQL_STILL_EXECUTING

+ SQL_ERROR

+ SQL_INVALID_HANDLE

+ SQL_NO_DATA_FOUND

+ SQL_NO_TOTAL

SQL_NO_DATA_FOUND is returned when the preceding SQLGetData() call has
retrieved all of the data for this column.

SQL_SUCCESS is returned if a zero-length string is retrieved by SQLGetData(). If
this is the case, StrLen_or_IndPtr will contain 0, and TargetValuePtr will contain a
null terminator.

SQL_NO_TOTAL is returned as the length when truncation occurs if the CLI
configuration keyword StreamGetData is set to 1 and CLI cannot determine the
number of bytes still available to return in the output buffer.

If the preceding call to SQLFetch() failed, SQLGetData() should not be called since
the result is undefined.

Diagnostics
Table 82. SQLGetData SQLSTATEs
SQLSTATE Description Explanation
01004 Data truncated. Data returned for the specified column (ColumnNumber) was
truncated. String or numeric values are right truncated.
SQL_SUCCESS_WITH_INFO is returned.
07006 Invalid conversion. The data value cannot be converted to the C data type specified

by the argument TargetType.

The function has been called before for the same ColumnNumber
value but with a different TargetType value.

Chapter 1. CLI and ODBC functions 161

SQLGetData function (CLI) - Get data from a column

Table 82. SQLGetData SQLSTATEs (continued)

SQLSTATE

Description

Explanation

07009

Invalid descriptor index.

The value specified for ColumnNumber was equal to 0, and the
SQL_ATTR_USE_BOOKMARKS statement attribute was
SQL_UB_OFF. The value specified for the argument
ColumnNumber was greater than the number of columns in the
result set.

22002

Invalid output or indicator
buffer specified.

The pointer value specified for the argument StrLen_or_IndPtr
was a null pointer and the value of the column is null. There is no
means to report SQL_NULL_DATA.

22003

Numeric value out of range.

Returning the numeric value (as numeric or string) for the column
would have caused the whole part of the number to be truncated.

22005

Error in assignment.

A returned value was incompatible with the data type denoted by
the argument TargetType.

22007

Invalid datetime format.

Conversion from character a string to a datetime format was
indicated, but an invalid string representation or value was
specified, or the value was an invalid date.

22008

Datetime field overflow.

Datetime field overflow occurred; for example, an arithmetic
operation on a date or timestamp has a result that is not within
the valid range of dates, or a datetime value cannot be assigned to
a bound variable because it is too small.

24000

Invalid cursor state.

The previous SQLFetch() resulted in SQL_ERROR or
SQL_NO_DATA found; as a result, the cursor is not positioned on
a row.

40003 08501

Communication link failure.

The communication link between the application and data source
failed before the function completed.

58004

Unexpected system failure.

Unrecoverable system error.

HY001

Memory allocation failure.

DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY003

Program type out of range.

TargetType was not a valid data type or SQL_C_DEFAULT.

HY010

Function sequence error.

The specified StatementHandle was not in a cursor positioned state.
The function was called without first calling SQLFetch().

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
For the StatementHandle and was still executing when this function
was called.

The function was called before a statement was prepared on the
statement handle.

HYO011

Operation invalid at this time.

Calls to SQLGetData() for previously accessed LOB columns are
not allowed. Refer to “AllowGetDataLOBReaccess CLI/ODBC
configuration keyword” on page 327 for more information.

HY013

Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

162 Call Level Interface Guide and Reference Volume 2

Table 82. SQLGetData SQLSTATEs (continued)

SQLGetData function (CLI) - Get data from a column

SQLSTATE Description Explanation
HY090 Invalid string or buffer length. The value of the argument BufferLength is less than 0 and the
argument TargetType is SQL_C_CHAR, SQL_C_BINARY,
SQL_C_DBCHAR or (SQL_C_DEFAULT and the default type is
one of SQL_C_CHAR, SQL_C_BINARY, or SQL_C_DBCHAR).
HYCO00 Driver not capable. The SQL data type for the specified data type is recognized but
not supported by CLIL
The requested conversion from the SQL data type to the
application data TargetType cannot be performed by CLI or the
data source.
The column was bound using SQLBindFileToCol().
HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. The timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().
Restrictions
None.
Example

/* use SQLGetData to get the results =/
/* get data from column 1 x/
cTiRC = SQLGetData(hstmt,

1,

SQL_C_SHORT,
&deptnumb.val,
0,
&deptnumb.ind);

STMT_HANDLE_CHECK (hstmt, hdbc, c1iRC);

/* get data from column 2 x/
cTiRC = SQLGetData(hstmt,

2,

SQL_C_CHAR,
location.val,
15,
&location.ind);

SQLGetDescField function (CLI) - Get single field settings of descriptor

record

Returns the current settings of a single field of a descriptor record.

Specification:
+ CLI5.0

+ ODBC 3.0

+ ISO CLI

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLGetDescFieldW(). See “Unicode
functions (CLI)” on page 5 for information about ANSI to Unicode function

mappings.

Chapter 1. CLI and ODBC functions 163

SQLGetDescField function (CLI) - Get single field settings of descriptor record

Syntax
SQLRETURN SQLGetDescField (
SQLHDESC DescriptorHandle,
SQLSMALLINT RecNumber,
SQLSMALLINT FieldIdentifier,
SQLPOINTER ValuePtr, /* Value */
SQLINTEGER BufferlLength,
SQLINTEGER *StringlengthPtr); /* *StringlLength */

Function arguments

Table 83. SQLGetDescField arguments

Data type

Argument

Use

Description

SQLHDESC

DescriptorHandle

input

Descriptor handle.

SQLSMALLINT

RecNumber input Indicates the descriptor record from which the

application seeks information. Descriptor records are
numbered from 0, with record number 0 being the
bookmark record. If the Fieldldentifier argument
indicates a field of the descriptor header record,
RecNumber must be 0. If RecNumber is less than
SQL_DESC_COUNT, but the row does not contain
data for a column or parameter, a call to
SQLGetDescField() will return the default values of
the fields.

SQLSMALLINT

Fieldldentifier input Indicates the field of the descriptor whose value is to

be returned.

SQLPOINTER

ValuePtr output Pointer to a buffer in which to return the descriptor

information. The data type depends on the value of
Fieldldentifier.

SQLINTEGER

BufferLength input s If ValuePtr points to a character string, this

argument should be the length of *ValuePtr.

e If ValuePtr is a pointer, but not to a string, then
BufferLength should have the value
SQL_IS_POINTER.

e If the value in *ValuePtr is of a Unicode data type
the BufferLength argument must be an even
number.

SQLSMALLINT *

StringLengthPtr output Pointer to the total number of bytes (excluding the

number of bytes required for the null termination
character) available to return in *ValuePtr.

Usage

An application can call SQLGetDescField() to return the value of a single field of a
descriptor record. A call to SQLGetDescField() can return the setting of any field in
any descriptor type, including header fields, record fields, and bookmark fields. An
application can obtain the settings of multiple fields in the same or different
descriptors, in arbitrary order, by making repeated calls to SQLGetDescField().
SQLGetDescField() can also be called to return CLI defined descriptor fields.

For performance reasons, an application should not call SQLGetDescField() for an
IRD before executing a statement. Calling SQLGetDescField() in this case causes
the CLI driver to describe the statement, resulting in an extra network flow. When
deferred prepare is on and SQLGetDescField() is called, you lose the benefit of
deferred prepare because the statement must be prepared at the server to obtain
describe information.

164 Call Level Interface Guide and Reference Volume 2

SQLGetDescField function (CLI) - Get single field settings of descriptor record

The settings of multiple fields that describe the name, data type, and storage of
column or parameter data can also be retrieved in a single call to SQLGetDescRec().
SQLGetStmtAttr() can be called to return the value of a single field in the
descriptor header that has an associated statement attribute.

When an application calls SQLGetDescField() to retrieve the value of a field that is
undefined for a particular descriptor type, the function returns SQLSTATE HY091
(Invalid descriptor field identifier). When an application calls SQLGetDescField() to
retrieve the value of a field that is defined for a particular descriptor type, but has
no default value and has not been set yet, the function returns SQL_SUCCESS but
the value returned for the field is undefined. Refer to the list of initialization
values of descriptor fields for any default values which may exist.

The SQL_DESC_ALLOC_TYPE header field is available as read-only. This field is
defined for all types of descriptors.

Each of these fields is defined either for the IRD only, or for both the IRD and the
IPD.

SQL_DESC_AUTO_UNIQUE_VALUE SQL_DESC_LITERAL_SUFFIX
SQL_DESC_BASE_COLUMN_NAME SQL_DESC_LOCAL_TYPE_NAME

SQL_DESC_CASE_SENSITIVE SQL_DESC_SCHEMA_NAME
SQL_DESC_CATALOG_NAME SQL_DESC_SEARCHABLE
SQL_DESC_DISPLAY SIZE SQL_DESC_TABLE_NAME
SQL_DESC_FIXED_PREC_SCALE SQL_DESC_TYPE_NAME
SQL_DESC_LABEL SQL_DESC_UNSIGNED
SQL_DESC_LITERAL_PREFIX SQL_DESC_UPDATABLE

Refer to the list of descriptor Fieldldentifier values for more information about the
listed fields.

Return codes

+ SQL_SUCCESS

+ SQL_SUCCESS_WITH_INFO
+ SQL_ERROR

+ SQL_NO_DATA

+ SQL_INVALID_HANDLE

SQL_NO_DATA is returned if RecNumber is greater than the number of descriptor
records.

SQL_NO_DATA is returned if DescriptorHandle is an IRD handle and the statement
is in the prepared or executed state, but there was no open cursor associated with

it.
Diagnostics
Table 84. SQLGetDescField SQLSTATEs
SQLSTATE Description Explanation
01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)
01004 Data truncated. The buffer *ValuePtr was not large enough to return the entire

descriptor field, so the field was truncated. The length of the
untruncated descriptor field is returned in *StringLengthPtr.
(Function returns SQL_SUCCESS_WITH_INFO.)

Chapter 1. CLI and ODBC functions 165

SQLGetDescField function (CLI) - Get single field settings of descriptor record

Table 84. SQLGetDescField SQLSTATEs (continued)

SQLSTATE

Description

Explanation

07009

Invalid descriptor index.

The value specified for the RecNumber argument was less than 1,
the SQL_ATTR_USE_BOOKMARKS statement attribute was
SQL_UB_OFF, and the field was not a header field or a CLI
defined field.

The Fieldldentifier argument was a record field, and the RecNumber
argument was 0.

The RecNumber argument was less than 0, and the field was not a
header field or a CLI defined field.

08501

Communication link failure.

The communication link between CLI and the data source to
which it was connected failed before the function completed
processing.

HYO000

General error.

An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001

Memory allocation failure.

DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY007

Associated statement is not
prepared.

DescriptorHandle was associated with an IRD, and the associated
statement handle was not in the prepared or executed state.

HY010

Function sequence error.

DescriptorHandle was associated with a StatementHandle for which
an asynchronously executing function (not this one) was called
and was still executing when this function was called.

DescriptorHandle was associated with a StatementHandle for which
SQLExecute() or SQLExecDirect() was called and returned
SQL_NEED_DATA. This function was called before data was sent
for all data-at-execution parameters or columns.

HY013

Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY021

Inconsistent descriptor
information.

The descriptor information checked during a consistency check
was not consistent.

HY090

Invalid string or buffer length.

The value of one of the name length arguments was less than 0,
but not equal to SQL_NTS.

HY091

Invalid descriptor field identifier.

Fieldldentifier was undefined for the DescriptorHandle.

The value specified for the RecNumber argument was greater than
the value in the SQL_DESC_COUNT field.

Restrictions
None.

Example

/* see how the field SQL_DESC_PARAMETER_TYPE is set =/
c1iRC = SQLGetDescField(hIPD,

1, /* look at the parameter */
SQL_DESC_PARAMETER_TYPE,
&descFieldParameterType, /* result */
SQL_IS_ SMALLINT,

166 Call Level Interface Guide and Reference Volume 2

SQLGetDescField function (CLI) - Get single field settings of descriptor record

NULL) ;
/% .. %/

/* see how the descriptor record field SQL_DESC_TYPE_NAME is set */
rc = SQLGetDescField(hIRD,
(SQLSMALLINT)colCount,
SQL_DESC_TYPE_NAME, /* record field */
descFieldTypeName, /* result =/
25,
NULL) ;
[* oo %/

/* see how the descriptor record field SQL_DESC_LABEL is set =/
rc = SQLGetDescField(hIRD,
(SQLSMALLINT)colCount,
SQL_DESC_LABEL, /* record field =*/
descFieldLabel, /* result */
25,
NULL) ;

SQLGetDescRec function (CLI) - Get multiple field settings of
descriptor record

Returns the current settings of multiple fields of a descriptor record.

The fields returned describe the name, data type, and storage of column or
parameter data.

Specification:
+ CLI5.0

+ ODBC 3.0

+ ISO CLI

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLGetDescRecW(). See “Unicode
functions (CLI)” on page 5 for information about ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLGetDescRec (
SQLHDESC DescriptorHandle, /* hDesc */
SQLSMALLINT RecNumber,
SQLCHAR *Name,
SQLSMALLINT BufferlLength,
SQLSMALLINT *StringlLengthPtr, /* xStringlLength */
SQLSMALLINT *TypePtr, /x *Type */
SQLSMALLINT *SubTypePtr, /* *SubType */
SQLLEN *LengthPtr, /* *Length */
SQLSMALLINT *PrecisionPtr, /* *Precision */
SQLSMALLINT xScalePtr, /* *Scale =/
SQLSMALLINT *NullablePtr); /* *Nullable */

Function arguments

Table 85. SQLGetDescRec arguments

Data type

Argument Use Description

SQLHDESC

DescriptorHandle input Descriptor handle.

Chapter 1. CLI and ODBC functions

167

SQLGetDescRec function (CLI) - Get multiple field settings of descriptor record

Table 85. SQLGetDescRec arguments (continued)

Data type

Argument

Use

Description

SQLSMALLINT

RecNumber

input

Indicates the descriptor record from which the
application seeks information. Descriptor records are
numbered from 0, with record number 0 being the
bookmark record. The RecNumber argument must be
less than or equal to the value of
SQL_DESC_COUNT. If RecNumber is less than
SQL_DESC_COUNT, but the row does not contain
data for a column or parameter, a call to
SQLGetDescRec() will return the default values of
the fields.

SQLCHAR *

Name

output

A pointer to a buffer in which to return the
SQL_DESC_NAME field for the descriptor record.

SQLINTEGER

BufferLength

input

Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the *Name buffer.

SQLSMALLINT *

StringLengthPtr

output

A pointer to a buffer in which to return the number
of SQLCHAR elements (or SQLWCHAR elements for
the Unicode variant of this function) available to
return in the Name buffer, excluding the
null-termination character. If the number of
SQLCHAR or SQLWCHAR elements was greater
than or equal to BufferLength, the data in *Name is
truncated to BufferLength minus the length of a
null-termination character, and is null terminated by
CLL

SQLSMALLINT *

TypePtr

output

A pointer to a buffer in which to return the value of
the SQL_DESC_TYPE field for the descriptor record.

SQLSMALLINT *

SubTypePtr

output

For records whose type is SQL_DATETIME, this is a
pointer to a buffer in which to return the value of
the SQL_DESC_DATETIME_INTERVAL_CODE field.

SQLLEN *

LengthPtr

output

A pointer to a buffer in which to return the value of
the SQL_DESC_OCTET_LENGTH field for the
descriptor record.

SQLSMALLINT *

PrecisionPtr

output

A pointer to a buffer in which to return the value of
the SQL_DESC_PRECISION field for the descriptor
record.

SQLSMALLINT *

ScalePtr

output

A pointer to a buffer in which to return the value of
the SQL_DESC_SCALE field for the descriptor
record.

SQLSMALLINT *

NullablePtr

output

A pointer to a buffer in which to return the value of
the SQL_DESC_NULLABLE field for the descriptor
record.

Usage

An application can call SQLGetDescRec() to retrieve the values of the following
fields for a single column or parameter:

* SQL_DESC_NAME
* SQL_DESC_TYPE

* SQL_DESC_DATETIME_INTERVAL_CODE (for records whose type is

SQL_DATETIME)

* SQL_DESC_OCTET_LENGTH

168 Call Level Interface Guide and Reference Volume 2

SQLGetDescRec function (CLI) - Get multiple field settings of descriptor record

* SQL_DESC_PRECISION
* SQL_DESC_SCALE
* SQL_DESC_NULLABLE

SQLGetDescRec() does not retrieve the values for header fields.

An application can inhibit the return of a field's setting by setting the argument
corresponding to the field to a null pointer. When an application calls
SQLGetDescRec() to retrieve the value of a field that is undefined for a particular
descriptor type, the function returns SQL_SUCCESS but the value returned for the
field is undefined. For example, calling SQLGetDescRec() for the
SQL_DESC_NAME or SQL_DESC_NULLABLE field of an APD or ARD will return
SQL_SUCCESS but an undefined value for the field.

When an application calls SQLGetDescRec() to retrieve the value of a field that is
defined for a particular descriptor type, but has no default value and has not been
set yet, the function returns SQL_SUCCESS but the value returned for the field is
undefined.

The values of fields can also be retrieved individually by a call to
SQLGetDescField().

Return codes

+ SQL_SUCCESS

+ SQL_SUCCESS_WITH_INFO
+ SQL_ERROR

+ SQL_NO_DATA

+ SQL_INVALID_HANDLE

SQL_NO_DATA is returned if RecNumber is greater than the number of descriptor
records.

SQL_NO_DATA is returned if DescriptorHandle is an IRD handle and the statement
in the prepared or executed state, but there was no open cursor associated with it.

Diagnostics

Table 86. SQLGetDescRec SQLSTATEs

SQLSTATE Description

Explanation

01000 Warning.

Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated.

The buffer *Name was not large enough to return the entire
descriptor field, so the field was truncated. The length of the
untruncated descriptor field is returned in *StringLengthPtr.
(Function returns SQL_SUCCESS_WITH_INFO.)

07009 Invalid descriptor index.

The RecNumber argument was set to 0 and the DescriptorHandle
argument was an IPD handle.

The RecNumber argument was set to 0, and the
SQL_ATTR_USE_BOOKMARKS statement attribute was set to
SQL_UB_OFF.

The RecNumber argument was less than 0.

08501 Communication link failure.

The communication link between CLI and the data source to
which it was connected failed before the function completed
processing.

Chapter 1. CLI and ODBC functions 169

SQLGetDescRec function (CLI) - Get multiple field settings of descriptor record

Table 86. SQLGetDescRec SQLSTATEs (continued)

SQLSTATE

Description

Explanation

HY000

General error.

An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001

Memory allocation failure.

DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY007

Associated statement is not
prepared.

DescriptorHandle was associated with an IRD, and the associated
statement handle was not in the prepared or executed state.

HY010

Function sequence error.

DescriptorHandle was associated with a StatementHandle for which
an asynchronously executing function (not this one) was called
and was still executing when this function was called.

DescriptorHandle was associated with a StatementHandle for which
SQLExecute() or SQLExecDirect() was called and returned
SQL_NEED_DATA. This function was called before data was sent
for all data-at-execution parameters or columns.

HY013

Unexpected memory handling
€rror.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

Restrictions
None.

Example

/* get multiple field settings of descriptor record =/
rc = SQLGetDescRec(hIRD,

[* oo %/

T,

colname,
sizeof(colname),
&namelen,

&type,

&subtype,
&width,
&precision,
&scale,
&nullable);

/* get the record/column value after setting */
rc = SQLGetDescRec (hARD,

1 k]

colname,
sizeof(colname),
&namelen,

&type,

&subtype,
&width,
&precision,
&scale,
&nullable);

170 Call Level Interface Guide and Reference Volume 2

SQLGetDiagField function (CLI) - Get a field of diagnostic data

SQLGetDiagField function (CLI) - Get a field of diagnostic data

Returns the current value of a field of a diagnostic data structure, associated with a
specific handle, that contains error, warning, and status information.

Specification:
+ CLI5.0

+ ODBC 3.0

+ ISO CLI

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLGetDiagFieldW(). See “Unicode
functions (CLI)” on page 5 for information about ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLGetDiagField (

SQLSMALLINT
SQLHANDLE
SQLSMALLINT
SQLSMALLINT
SQLPOINTER
SQLSMALLINT

HandleType, /* fHandleType */
Handle, /* hHandle =/
RecNumber, /* iRecNumber =*/
Diagldentifier, /* fDiagldentifier =/
DiagInfoPtr, /* pDiagInfo */
BufferLength, /* cbDiagInfoMax */

SQLSMALLINT

Function arguments
Table 87. SQLGetDiagField arguments

StringlengthPtr); / *pcgDiagInfo */

Data type Argument Use

Description

SQLSMALLINT HandleType input

A handle type identifier that describes the type of
handle for which diagnostics are required. The
handle type identifier include:

* SQL_HANDLE_ENV

* SQL_HANDLE_DBC

* SQL_HANDLE_STMT

* SQL_HANDLE_DESC

SQLHANDLE Handle input

A handle for the diagnostic data structure, of the
type indicated by HandleType.

SQLSMALLINT RecNumber input

Indicates the status record from which the
application seeks information. Status records are
numbered from 1. If the Diagldentifier argument
indicates any field of the diagnostics header record,
RecNumber must be 0. If not, it should be greater
than 0.

SQLSMALLINT Diagldentifier input

Indicates the field of the diagnostic data structure
whose value is to be returned. For more information,
see Diagldentifier argument.

SQLPOINTER

DiagInfoPtr output

Pointer to a buffer in which to return the diagnostic
information. The data type depends on the value of
Diagldentifier.

Chapter 1. CLI and ODBC functions 171

SQLGetDiagField function (CLI) - Get a field of diagnostic data

Table 87. SQLGetDiagField arguments (continued)

Data type Argument Use

Description

SQLINTEGER BufferLength input

If Diagldentifier is ODBC-defined diagnostic:

s If DiaglnfoPtr points to a character string or binary
buffer, BufferLength should be the length of
*DiagInfoPtr.

e If *DiagInfoPtr is an integer, BufferLength is
ignored.

e If *DiagInfoPtr is a Unicode string, BufferLength
must be an even number.

If Diagldentifier is a CLI diagnostic:

* If *DiagInfoPtr is a pointer to a character string,
BufferLength is the number of bytes needed to store
the string, or SQL_NTS.

s If *DiagInfoPtr is a pointer to a binary buffer, then
the application places the result of the
SQL_LEN_BINARY_ATTR(length) macro in
BufferLength. This places a negative value in
BufferLength.

o If *DiagInfoPtr is a pointer to a value other than a
character string or binary string, then BufferLength
should have the value SQL_IS_POINTER.

e If *DiagInfoPtr contains a fixed-length data type,
then BufferLength is SQL_IS_INTEGER,
SQL_IS_UINTEGER, SQL_IS_SMALLINT, or
SQL_IS_USMALLINT, as appropriate.

SQLSMALLINT * StringLengthPtr output

Pointer to a buffer in which to return the total
number of SQLCHAR elements (or SQOLWCHAR
elements for the Unicode variant of this function),
excluding the number of bytes required for the
null-termination character, available to return in
*DiagInfoPtr, for character data. If the number of
bytes available to return is greater than BufferLength,
then the text in *DiaglnfoPtr is truncated to
BufferLength minus the length of a null-termination
character. This argument is ignored for non-character
data.

Usage

An application typically calls SQLGetDiagField() to accomplish one of three goals:

1. To obtain specific error or warning information when a function call has
returned the SQL_ERROR or SQL_SUCCESS_WITH_INFO (or
SQL_NEED_DATA for the SQLBrowseConnect () function) return codes.

2. To find out the number of rows in the data source that were affected when
insert, delete, or update operations were performed with a call to SQLExecute(),
SQLExecDirect(), SQLBulkOperations(), or SQLSetPos() (from the
SQL_DIAG_ROW_COUNT header field), or to find out the number of rows
that exist in the current open static scrollable cursor (from the
SQL_DIAG_CURSOR_ROW_COUNT header field).

3. To determine which function was executed by a call to SQLExecDirect() or
SQLExecute() (from the SQL_DIAG_DYNAMIC_FUNCTION and
SQL_DIAG_DYNAMIC_FUNCTION_CODE header fields).

172 Call Level Interface Guide and Reference Volume 2

SQLGetDiagField function (CLI) - Get a field of diagnostic data

Any CLI function can post zero or more errors each time it is called, so an
application can call SQLGetDiagField() after any function call. SQLGetDiagField()
retrieves only the diagnostic information most recently associated with the
diagnostic data structure specified in the Handle argument. If the application calls
another function, any diagnostic information from a previous call with the same
handle is lost.

An application can scan all diagnostic records by incrementing RecNumber, as long
as SQLGetDiagField() returns SQL_SUCCESS. The number of status records is
indicated in the SQL_DIAG_NUMBER header field. Calls to SQLGetDiagField() are
non-destructive as far as the header and status records are concerned. The
application can call SQLGetDiagField() again at a later time to retrieve a field from
a record, as long as another function other than SQLGetDiagField(),
SQLGetDiagRec(), or SQLError() has not been called in the interim, which would
post records on the same handle.

An application can call SQLGetDiagField() to return any diagnostic field at any
time, with the exception of SQL_DIAG_ROW_COUNT, which will return
SQL_ERROR if Handle was not a statement handle on which an SQL statement had
been executed. If any other diagnostic field is undefined, the call to
SQLGetDiagField() will return SQL_SUCCESS (provided no other error is
encountered), and an undefined value is returned for the field.

HandleType argument

Each handle type can have diagnostic information associated with it. The
HandleType argument denotes the handle type of Handle.

Some header and record fields cannot be returned for all types of handles:
environment, connection, statement, and descriptor. Those handles for which a
field is not applicable are indicated in the Header Field and Record Fields sections.

No CLI-specific header diagnostic field should be associated with an environment
handle.

Diagldentifier argument

This argument indicates the identifier of the field required from the diagnostic data
structure. If RecNumber is greater than or equal to 1, the data in the field describes
the diagnostic information returned by a function. If RecNumber is 0, the field is in
the header of the diagnostic data structure, so it contains data pertaining to the
function call that returned the diagnostic information, not the specific information.
Refer to the list of header and record fields for the Diagldentifier argument for
further information.

Sequence of status records

Status records are placed in a sequence based upon row number and the type of
the diagnostic.

If there are two or more status records, the sequence of the records is determined
first by row number. The following rules apply to determining the sequence of
errors by row:

* Records that do not correspond to any row appear in front of records that
correspond to a particular row, since SQL_NO_ROW_NUMBER is defined to be
-1.

Chapter 1. CLI and ODBC functions 173

SQLGetDiagField function (CLI) - Get a field of diagnostic data

* Records for which the row number is unknown appear in front of all other
records, since SQL_ROW_NUMBER_UNKNOWN is defined to be -2.

* For all records that pertain to specific rows, records are sorted by the value in
the SQL_DIAG_ROW_NUMBER field. All errors and warnings of the first row
affected are listed, then all errors and warnings of the next row affected, and so
on.

Within each row, or for all those records that do not correspond to a row or for
which the row number is unknown, the first record listed is determined using a set
of sorting rules. After the first record, the order of the other records affecting a row
is undefined. An application cannot assume that errors precede warnings after the
first record. Applications should scan the entire diagnostic data structure to obtain
complete information about an unsuccessful call to a function.

The following rules are followed to determine the first record within a row. The
record with the highest rank is the first record.

¢ Errors. Status records that describe errors have the highest rank. The following
rules are followed to sort errors:

— Records that indicate a transaction failure or possible transaction failure
outrank all other records.

— If two or more records describe the same error condition, then SQLSTATEs
defined by the X/Open CLI specification (classes 03 through HZ) outrank
ODBC- and driver-defined SQLSTATEs.

¢ Implementation-defined No Data values. Status records that describe CLI No
Data values (class 02) have the second highest rank.

* Warnings. Status records that describe warnings (class 01) have the lowest rank.
If two or more records describe the same warning condition, then warning
SQLSTATEs defined by the X/Open CLI specification outrank ODBC- and
driver-defined SQLSTATEs.

Return codes

+ SQL_SUCCESS

+ SQL_SUCCESS_WITH_INFO
+ SQL_ERROR

+ SQL_INVALID_HANDLE

+ SQL_NO_DATA

Diagnostics

SQLGetDiagField() does not post error values for itself. It uses the following return
values to report the outcome of its own execution:

* SQL_SUCCESS: The function successfully returned diagnostic information.

* SQL_SUCCESS_WITH_INFO: *DiagInfoPtr was too small to hold the requested
diagnostic field so the data in the diagnostic field was truncated. To determine
that a truncation occurred, the application must compare BufferLength to the
actual number of bytes available, which is written to *StringLengthPtr.

* SQL_INVALID_HANDLE: The handle indicated by HandleType and Handle was
not a valid handle.

* SQL_ERROR: Possible causes are:
— The Diagldentifier argument was not one of the valid values.

— The Diagldentifier argument was SQL_DIAG_CURSOR_ROW_COUNT,
SQL_DIAG_DYNAMIC_FUNCTION,

174 Call Level Interface Guide and Reference Volume 2

SQLGetDiagField function (CLI) - Get a field of diagnostic data

SQL_DIAG_DYNAMIC_FUNCTION_CODE, or SQL_DIAG_ROW_COUNT,
but Handle was not a statement handle.

— The RecNumber argument was negative or 0 when Diagldentifier indicated a
field from a diagnostic record. RecNumber is ignored for header fields.

— The value requested was a character string and BufferLength was less than
Zero.

* SQL_NO_DATA: RecNumber was greater than the number of diagnostic records
that existed for the handle specified in Handle. The function also returns
SQL_NO_DATA for any positive RecNumber if there are no diagnostic records for
Handle.

Restrictions

None.

SQLGetDiagRec function (CLI) - Get multiple fields settings of
diagnostic record

Returns the current values of multiple fields of a diagnostic record that contains
error, warning, and status information.

Unlike SQLGetDiagField(), which returns one diagnostic field per call,
SQLGetDiagRec() returns several commonly used fields of a diagnostic record: the
SQLSTATE, native error code, and error message text.

Specification:
+ CLI5.0

+ ODBC 3.0

+ ISO CLI

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLGetDiagRecW(). See “Unicode
functions (CLI)” on page 5 for information about ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLGetDiagRec (
SQLSMALLINT HandleType, /* fHandleType */
SQLHANDLE Handle, /* hHandle =/
SQLSMALLINT RecNumber, /* iRecNumber =/
SQLCHAR *SQLState, /* *pszSqlState */
SQLINTEGER *NativeErrorPtr, /* xpfNativeError */
SQLCHAR *MessageText, /* *pszErrorMsg */
SQLSMALLINT BufferLength, /* cbErrorMsgMax */
SQLSMALLINT *xTextLengthPtr); /* *pcbErrorMsg =*/

Chapter 1. CLI and ODBC functions 175

SQLGetDiagRec function (CLI) - Get multiple fields settings of diagnostic record

Function arguments
Table 88. SQLGetDiagRec arguments

Data type Argument Use Description

SQLSMALLINT HandleType input A handle type identifier that describes the type of
handle for which diagnostics are desired. The handle
type identifier include:

* SQL_HANDLE_ENV

* SQL_HANDLE_DBC

* SQL_HANDLE_STMT

¢ SQL_HANDLE_DESC

SQLHANDLE Handle input A handle for the diagnostic data structure, of the
type indicated by HandleType.
SQLSMALLINT RecNumber input Indicates the status record from which the

application seeks information. Status records are
numbered from 1.

SQLCHAR * SQLState output Pointer to a buffer in which to return 5 characters
P

plus a NULL terminator for the SQLSTATE code

pertaining to the diagnostic record RecNumber. The

first two characters indicate the class; the next three

indicate the subclass.

SQLINTEGER * NativeErrorPtr output Pointer to a buffer in which to return the native error
code, specific to the data source.

SQLCHAR * MessageText output Pointer to a buffer in which to return the error
message text. The fields returned by
SQLGetDiagRec() are contained in a text string.

SQLINTEGER BufferLength input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the MessageText buffer.

SQLSMALLINT * | TextLengthPtr output Pointer to a buffer in which to return the total
number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function),
excluding the null-termination character, available to
return in *MessageText. If the number of SQLCHAR
or SQLWCHAR elements available to return is
greater than BufferLength, then the error message text
in *MessageText is truncated to BufferLength minus the
length of a null-termination character.

Usage

An application typically calls SQLGetDiagRec() when a previous call to a CLI
function has returned anything other than SQL_SUCCESS. However, any function
can post zero or more errors each time it is called, so an application can call
SQLGetDiagRec() after any function call. An application can call SQLGetDiagRec()
multiple times to return some or all of the records in the diagnostic data structure.

SQLGetDiagRec() returns a character string containing the following fields of the
diagnostic data structure record:

SOL_DIAG_MESSAGE_TEXT (return type CHAR *)
An informational message on the error or warning.

SQL_DIAG_NATIVE (return type SQLINTEGER)
A driver/data-source-specific native error code. If there is no native error
code, the driver returns 0.

176 Call Level Interface Guide and Reference Volume 2

SQLGetDiagRec function (CLI) - Get multiple fields settings of diagnostic record

SQL_DIAG_SQLSTATE (return type CHAR *)
A five-character SQLSTATE diagnostic code.

SQLGetDiagRec() cannot be used to return fields from the header of the diagnostic
data structure (the RecNumber argument must be greater than 0). The application
should call SQLGetDiagField() for this purpose.

SQLGetDiagRec() retrieves only the diagnostic information most recently
associated with the handle specified in the Handle argument. If the application calls
another function, except SQLGetDiagRec() or SQLGetDiagField(), any diagnostic
information from the previous calls on the same handle is lost.

An application can scan all diagnostic records by looping, incrementing RecNumber,
as long as SQLGetDiagRec() returns SQL_SUCCESS. Calls to SQLGetDiagRec() are
non-destructive to the header and record fields. The application can call
SQLGetDiagRec() again at a later time to retrieve a field from a record, as long as
no other function, except SQLGetDiagRec() or SQLGetDiagField(), has been called
in the interim. The application can call SQLGetDiagField() to retrieve the value of
the SQL_DIAG_NUMBER field, which is the total number of diagnostic records
available. SQLGetDiagRec() should then be called that many times.

HandleType argument

Each handle type can have diagnostic information associated with it. The
HandleType argument denotes the handle type of Handle.

Some header and record fields cannot be returned for all types of handles:
environment, connection, statement, and descriptor. Those handles for which a
field is not applicable are indicated in the list of header and record fields for the
Diagldentifier argument.

Return codes

+ SQL_SUCCESS

+ SQL_SUCCESS_WITH_INFO
+ SQL_ERROR

+ SQL_INVALID_HANDLE

Diagnostics

SQLGetDiagRec() does not post error values for itself. It uses the following return

values to report the outcome of its own execution:

* SQL_SUCCESS: The function successfully returned diagnostic information.

¢ SQL_SUCCESS_WITH_INFO: The *MessageText buffer was too small to hold the
requested diagnostic message. No diagnostic records were generated. To
determine that a truncation occurred, the application must compare BufferLength
to the actual number of bytes available, which is written to *StringLengthPtr.

¢ SQL_INVALID_HANDLE: The handle indicated by HandleType and Handle was
not a valid handle.

* SQL_ERROR: Possible causes are:
— RecNumber was negative or 0.
— BufferLength was less than zero.

* SQL_NO_DATA: RecNumber was greater than the number of diagnostic records
that existed for the handle specified in Handle. The function also returns

SQL_NO_DATA for any positive RecNumber if there are no diagnostic records for
Handle.

Chapter 1. CLI and ODBC functions 177

SQLGetDiagRec function (CLI) - Get multiple fields settings of diagnostic record

Example

/* get multiple fields settings of diagnostic record */

SQLGetDiagRec(SQL_HANDLE_STMT,

hstmt,

1,
sqlstate,
&sqlcode,
message,
200,
&length);

SQLGetEnvAtir function (CLI) - Retrieve current environment attribute

value

Returns the current setting for the specified environment attribute.

These options are set using the SQLSetEnvAttr() function.

Specification:

* CLI21
« ISO CLI

Syntax

SQLRETURN SQLGetEnvAttr

SQLHENV

SQLINTEGER
SQLPOINTER
SQLINTEGER
SQLINTEGER

Function arguments
Table 89. SQLGetEnvAttr arguments

EnvironmentHandle, /* henv %/
Attribute,

ValuePtr, /* Value =/
BufferlLength,

xStringlengthPtr); /* StringlLength */

Data type Argument Use Description

SQLHENV EnvironmentHandle input Environment handle.

SQLINTEGER Attribute input Attribute to receive. Refer to the list of environment
attributes and their descriptions.

SQLPOINTER ValuePtr output A pointer to memory in which to return the current
value of the attribute specified by Attribute.

SQLINTEGER BufferLength input Maximum size of buffer pointed to by ValuePtr, if
the attribute value is a character string; otherwise,
ignored.

SQLINTEGER * StringLengthPtr output Pointer to a buffer in which to return the total

number of bytes (excluding the number of bytes
returned for the null-termination character) available
to return in ValuePtr. If ValuePtr is a null pointer, no
length is returned. If the attribute value is a
character string, and the number of bytes available
to return is greater than or equal to BufferLength, the
data in ValuePtr is truncated to BufferLength minus
the length of a null-termination character and is
null-terminated by CLIL

If Attribute does not denote a string, then CLI ignores BufferLength and does not set
StringLengthPtr.

178 Call Level Interface Guide and Reference Volume 2

SQLGetEnvAttr function (CLI) - Retrieve current environment attribute value

Usage

SQLGetEnvAttr() can be called at any time between the allocation and freeing of
the environment handle. It obtains the current value of the environment attribute.

Return codes

+ SQL_SUCCESS

+ SQL_ERROR

+ SQL_INVALID_HANDLE

Diagnostics
Table 90. SQLGetEnvAttr SQLSTATEs
SQLSTATE Description Explanation
HYO001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.
HY092 Option type out of range. An invalid Attribute value was specified.
Restrictions
None.
Example

/* retrieve the current environment attribute value */
c1iRC = SQLGetEnvAttr(henv, SQL_ATTR_OUTPUT_NTS, &output_nts, 0, NULL);

SQLGetFunctions function (CLI) - Get functions

Determines whether a specific CLI or ODBC function is supported.

This allows applications to adapt to varying levels of support when connecting to
different database servers.

Specification:
« CLI21

+ ODBC 1.0

+ ISO CLI

A connection to a database server must exist before calling this function.

Syntax

SQLRETURN SQLGetFunctions (
SQLHDBC ConnectionHandle, /* hdbc */
SQLUSMALLINT Functionld, /* fFunction */
SQLUSMALLINT *SupportedPtr); /* pfExists =/

Chapter 1. CLI and ODBC functions 179

SQLGetFunctions function (CLI) - Get functions

Function arguments

Table 91. SQLGetFunctions arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Database connection handle.

SQLUSMALLINT Functionld input The function being queried.

SQLUSMALLINT * | SupportedPtr output Pointer to location where this function will return
SQL_TRUE or SQL_FALSE depending on whether
the function being queried is supported.

Usage

If Functionld is set to SQL_API_ALL_FUNCTIONS, then SupportedPtr must point to
an SQLSMALLINT array of 100 elements. The array is indexed by the Functionld
values used to identify many of the functions. Some elements of the array are
unused and reserved. Since some Functionld values are greater than 100, the array
method can not be used to obtain a list of functions. The SQLGetFunctions() call
must be explicitly issued for all Functionld values equal to or above 100. The
complete set of Functionld values is defined in sqlclil.h.

Note: The LOB support functions (SQLGetLength(), SQLGetPosition(),
SQLGetSubString(), SQLBindFileToCol(), SQLBindFileToCol()) are not supported
when connected to IBM RDBMSs that do not support LOB data types.

Return codes

+ SQL_SUCCESS

+ SQL_SUCCESS_WITH_INFO
+ SQL_ERROR

+ SQL_INVALID_HANDLE

Diagnostics
Table 92. SQLGetFunctions SQLSTATEs
SQLSTATE Description Explanation
40003 08501 Communication link failure. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY010 Function sequence error. SQLGetFunctions() was called before a database connection was
established.

HY013 Unexpected memory handling DB2 CLI was unable to access memory required to support

error. execution or completion of the function.

Authorization

None.

180 cCall Level Interface Guide and Reference Volume 2

SQLGetFunctions function (CLI) - Get functions

Example

/* check to see if SQLGetInfo() is supported */

c1iRC = SQLGetFunctions(hdbc, SQL_API_SQLGETINFO, &supported);
References

None.

SQLGetInfo function (CLI) - Get general information

Returns general information about the DBMS that the application is currently
connected to.

Specification:
« CLI1.1

+ ODBC 1.0

+ ISO CLI

SQLGetInfo() returns general information about the database management system
(DBMS) that the application is currently connected to.

Unicode equivalent: You can also use this function with the Unicode character
set. The corresponding Unicode function is SQLGetInfol(). See “Unicode functions
(CLI)” on page 5 for information about ANSI to Unicode function mappings.

Syntax

SQLRETURN SQLGetInfo (
SQLHDBC ConnectionHandle, /* hdbc */
SQLUSMALLINT InfoType, /* fInfoType */
SQLPOINTER InfoValuePtr, /* rgbInfoValue */
SQLSMALLINT BufferLength, /* cbInfoValueMax */
SQLSMALLINT *StringlengthPtr); /* pcbInfoValue */

Function arguments

Table 93. SQLGetInfo arguments

Data type Argument Use Description
SQLHDBC ConnectionHandle Input The database connection handle.
SQLUSMALLINT | InfoType Input The type of information that is required. The
possible values for this argument are described in
Information returned by SQLGetInfo().
SQLPOINTER InfoValuePtr Output and | Pointer to buffer where this function stores the
input information that you want. Depending on the type

of information that is being retrieved, 5 types of
information can be returned:

* 16-bit integer value

* 32-bit integer value

* 32-bit binary value

* 32-bit mask

* Null-terminated character string

If the InfoType argument is SQL_DRIVER_HDESC or
SQL_DRIVER_HSTMT, InfoValuePtr is both input and
output argument.

Chapter 1. CLI and ODBC functions 181

SQLGetInfo function (CLI) - Get general information

Table 93. SQLGetInfo arguments (continued)

Data type Argument Use Description

SQLSMALLINT BufferLength Input The maximum length of the buffer pointed by
InfoValuePtr pointer. If *InfoValuePtr is a Unicode
string, the BufferLength argument must be an even
number.

SQLSMALLINT * StringLengthPtr Output Pointer to location where this function returns the

total number of bytes of information that is available
to return. For string output, the length does not
include the null terminating character.

If the value in the location pointed by
StringLengthPtr is greater than the size specified in
BufferLength, the string output information would be
truncated to BufferLength - 1 bytes and the function
returns with SQL_SUCCESS_WITH_INFO.

Usage

See Information returned by SQLGetInfo() for a list of the possible values of the
InfoType argument and a description of the information that the SQLGetInfo()
function would return for that value.

Return codes
+ SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO

* SQL_ERROR
* SQL_INVALID_HANDLE
Diagnostics
Table 94. SQLGetInfo SQLSTATEs
SQLSTATE Description Explanation
01004 Data truncated. The requested information is returned as a string, and its length
exceeded the length of the application buffer as specified in the
BufferLength argument. The StringLengthPtr argument contains the
actual (not truncated) length of the requested information.
(Function returns SQL_SUCCESS_WITH_INFO return code.)
08003 Connection is closed. The type of information that is requested in the InfoType argument

requires an open connection. Only the SQL_ODBC_VER
information does not require an open connection.

40003 08501

Communication link failure.

The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY090 Invalid string or buffer length. The value specified for the BufferLength argument is less than 0.

HY096 Information type out of range. An invalid InfoType argument is specified.

HYCO00 Driver not capable. The value specified in the InfoType argument is not supported by

either CLI or the data source.

182 Call Level Interface Guide and Reference Volume 2

SQLGetInfo function (CLI) - Get general information

Restrictions
None.

Example

/* get server name information */
cl1iRC = SQLGetInfo(hdbc, SQL_DBMS NAME, imageInfoBuf, 255, &outlen);

[* o0 %/

/* get client driver name information =/
c1iRC = SQLGetInfo(hdbc, SQL_DRIVER_NAME, imageInfoBuf, 255, &outlen);

Information returned by SQLGetInfo()

Note: CLI returns a value for each InfoType argument in this table. If the InfoType
argument does not apply or is not supported, the result is dependent on the return
type. If the return type is a:

* Character string ("Y" or "N"), "N" is returned.

¢ Character string (not "Y" or "N"), an empty string is returned.

* 32-bit integer, 0 (zero) is returned.

* 32-bit mask, 0 (zero) is returned.

SQL_ACCESSIBLE_PROCEDURES (string)
A character string of "Y" indicates that you can run all procedures that are
returned by the function SQLProcedures(). "N" indicates there might be
procedures returned that you cannot run.

SQL_ACCESSIBLE_TABLES (string)
A character string of "Y" indicates that you are guaranteed SELECT
privilege to all tables that are returned by the function SQLTables(). "N"
indicates that there might be tables returned that you cannot access.

SQL_AGGREGATE_FUNCTIONS (32-bit mask)
A bit mask that enumerates support for the listed aggregation functions:
* SQL_AF_ALL
* SQL_AF_AVG
* SQL_AF_COUNT
* SQL_AF_DISTINCT
* SQL_AF_MAX
* SQL_AF_MIN
* SQL_AF_SUM

SQL_ALTER_DOMAIN (32-bit mask)
CLI returns 0 that indicates that the ALTER DOMAIN statement is not
supported.

ODBC also defines the listed values that are not returned by CLI:
* SQL_AD_ADD_CONSTRAINT_DEFERRABLE

* SQL_AD_ADD_CONSTRAINT_NON_DEFERRABLE

* SQL_AD_ADD_CONSTRAINT_INITIALLY_DEFERRED

* SQL_AD_ADD_CONSTRAINT_INITIALLY_IMMEDIATE

* SQL_AD_ADD_DOMAIN_CONSTRAINT

* SQL_AD_ADD_DOMAIN_DEFAULT

* SQL_AD_CONSTRAINT_NAME_DEFINITION

* SQL_AD_DROP_DOMAIN_CONSTRAINT

* SQL_AD_DROP_DOMAIN_DEFAULT

Chapter 1. CLI and ODBC functions 183

SQLGetInfo function (CLI) - Get general information

SOL_ALTER_TABLE (32-bit mask)
Indicates which clauses in the ALTER TABLE statement are supported by
the DBMS.
* SQL_AT_ADD_COLUMN_COLLATION
* SQL_AT_ADD_COLUMN_DEFAULT
* SQL_AT_ADD_COLUMN_SINGLE
* SQL_AT_ADD_CONSTRAINT
* SQL_AT_ADD_TABLE_CONSTRAINT
* SQL_AT_CONSTRAINT_NAME_DEFINITION
* SQL_AT_DROP_COLUMN_CASCADE
* SQL_AT_DROP_COLUMN_DEFAULT
* SQL_AT _DROP_COLUMN_RESTRICT
* SQL_AT DROP_TABLE_CONSTRAINT_CASCADE
* SQL_AT DROP_TABLE_CONSTRAINT_RESTRICT
* SQL_AT SET_COLUMN_DEFAULT
* SQL_AT_CONSTRAINT_INITIALLY_DEFERRED
* SQL_AT_CONSTRAINT_INITIALLY_IMMEDIATE
* SQL_AT_CONSTRAINT_DEFERRABLE
* SQL_AT_CONSTRAINT_NON_DEFERRABLE

SQL_APPLICATION_CODEPAGE (32-bit unsigned integer)
Indicates the application code page.

SQL_ASYNC_MODE (32-bit unsigned integer)

Indicates the level of asynchronous support in the driver:

* SQL_AM_CONNECTION : Connection level asynchronous execution is
supported. Either all statement handles that are associated with a given
connection handle are in asynchronous mode, or all are in synchronous
mode. A statement handle that is on a connection cannot be in
asynchronous mode while another statement handle on the same
connection is in synchronous mode, and vice versa.

* SQL_AM_STATEMENT : Statement level asynchronous execution is
supported. Some statement handles that are associated with a connection
handle can be in asynchronous mode, while other statement handles on
the same connection are in synchronous mode.

* SQL_AM_NONE : Asynchronous mode is not supported.

This value is also returned if the CLI/ODBC configuration keyword
ASYNCENABLE is set to disable asynchronous execution.

SQL_BATCH_ROW_COUNT (32-bit mask)
Indicates how row counts are dealt with. CLI always returns
SQL_BRC_ROLLED_UP, which indicates that row counts for consecutive
INSERT, DELETE, or UPDATE statements are rolled into one.

ODBC also defines the values that are not returned by CLI:
* SQL_BRC_PROCEDURES
* SQL_BRC_EXPLICIT

SQL_BATCH_SUPPORT (32-bit mask)

Indicates which levels of batches are supported:

* SQL_BS_SELECT_EXPLICIT : Supports explicit batches that can have
result-set generating statements.

¢ SQL_BS_ROW_COUNT_EXPLICIT : Supports explicit batches that can
have row-count generating statements.

¢ SQL_BS_SELECT_PROC : Supports explicit procedures that can have
result-set generating statements.

* SQL_BS_ROW_COUNT_PROC : Supports explicit procedures that can
have row-count generating statements.

184 Call Level Interface Guide and Reference Volume 2

SQLGetInfo function (CLI) - Get general information

SQL_BOOKMARK_PERSISTENCE (32-bit mask)

Indicates when bookmarks remain valid after an operation:

* SQL_BP_CLOSE : After an application calls SQLFreeStmt () with the
SQL_CLOSE option, or SQLCloseCursor() to close the cursor associated
with a statement.

* SQL_BP_DELETE : After that row has been deleted.

* SQL_BP_DROP : Bookmarks are valid after an application calls
SQLFreeHandle() with a HandleType of SQL_HANDLE_STMT to drop a
statement.

¢ SQL_BP_TRANSACTION : After an application commits or rolls back a
transaction.

* SQL_BP_UPDATE : After any column in that row has been updated,
including key columns.

* SQL_BP_OTHER_HSTMT : A bookmark that is associated with one
statement can be used with another statement. Unless SQL_BP_CLOSE
or SQL_BP_DROP is specified, the cursor on the first statement must be
open.

SQL_CATALOG_LOCATION (16-bit integer)
A 16-bit integer value that indicates the position of the qualifier in a
qualified table name. CLI always returns SQL_CL_START for this
information type. ODBC also defines the value SQL_CL_END which is not
returned by CLL

In previous versions of CLI this InfoType was
SQL_QUALIFIER_LOCATION.

SQL_CATALOG_NAME (string)
A character string of "Y" indicates that the server supports catalog names.
"N" indicates that catalog names are not supported.

SQL_CATALOG_NAME_SEPARATOR (string)
The character(s) used as a separator between a catalog name and the
qualified name element that follows or precedes it.

In previous versions of CLI this InfoType was
SQL_QUALIFIER_NAME_SEPARATOR.

SQL_CATALOG_TERM (string)
The terminology of the database vendor for a qualifier (catalog).

The name that the vendor uses for the high-order part of a three part
name.

If the target DBMS does not support three-part naming, a zero-length
string is returned.

In previous versions of CLI this InfoType was SQL_QUALIFIER_TERM.
SQL_CATALOG_USAGE (32-bit mask)

A 32-bit mask enumerating the statements in which you can use catalogs.
The SQL_CATALOG_USAGE is similar to SQL_SCHEMA_USAGE, except
that SQL_CATALOG_USAGE is specific for catalogs.

¢ SQL_CU_DML_STATEMENTS : All data manipulation language (DML)
statements.

* SQL_CU_INDEX_DEFINITION : All index definition statements.
¢ SQL_CU_PRIVILEGE_DEFINITION : All privilege definition statements.

* SQL_CU_PROCEDURE_INVOCATION : The ODBC procedure
invocation statement.

Chapter 1. CLI and ODBC functions 185

SQLGetInfo function (CLI) - Get general information

* SQL_CU_TABLE_DEFINITION : All table definition statements.
A value of 0 is returned if catalogs are not supported by the data source.

In previous versions of CLI, this InfoType argument was
SQL_QUALIFIER_USAGE.

SQL_COLLATION_SEQ (string)
Indicates the name of the default collation sequence for the default
character set for this server (for example ISO 8859-1 or EBCDIC). If the
collation sequence is unknown, an empty string is returned.

SQL_COLUMN_ALIAS (string)
Returns "Y" if column aliases are supported, or "N" if they are not.

SQL_CONCAT_NULL_BEHAVIOR (16-bit integer)
Indicates how the concatenation of NULL valued character data type
columns with non-NULL valued character data type columns is handled.
* SQL_CB_NULL : A NULL value (this behavior is the case for IBM
RDBMS).
* SQL_CB_NON_NULL : A concatenation of non-NULL column values.

SQL_CONVERT_* (32-bit masks)
SQL_CONVERT_BIGINT (32-bit mask)
SQL_CONVERT_BINARY (32-bit mask)
SQL_CONVERT_BIT (32-bit mask)
SQL_CONVERT_CHAR (32-bit mask)
SQL_CONVERT_DATE (32-bit mask)
SQL_CONVERT_DECIMAL (32-bit mask)
SQL_CONVERT_DOUBLE (32-bit mask)
SQL_CONVERT_FLOAT (32-bit mask)
SQL_CONVERT_INTEGER (32-bit mask)
SQL_CONVERT_INTERVAL_YEAR_MONTH (32-bit mask)
SQL_CONVERT_INTERVAL_DAY_TIME (32-bit mask)
SQL_CONVERT_LONGVARBINARY (32-bit mask)
SQL_CONVERT_LONGVARCHAR (32-bit mask)
SQL_CONVERT_NUMERIC (32-bit mask)
SQL_CONVERT_REAL (32-bit mask)
SQL_CONVERT_SMALLINT (32-bit mask)
SQL_CONVERT_TIME (32-bit mask)
SQL_CONVERT_TIMESTAMP (32-bit mask)
SQL_CONVERT_TINYINT (32-bit mask)
SQL_CONVERT_VARBINARY (32-bit mask)
SQL_CONVERT_VARCHAR (32-bit mask)
SQL_CONVERT_WCHAR (32-bit mask)
SQL_CONVERT_WLONGVARCHAR (32-bit mask)
SQL_CONVERT_WVARCHAR (32-bit mask)

Indicates the conversions that are supported by the data source with the
CONVERT scalar function for data of the type named in the InfoType. If the
bit mask equals zero, the data source does not support any conversions for
the named data type, including conversions to the same data type.

For example, to find out if a data source supports the conversion of
SQL_INTEGER data to the SQL_DECIMAL data type, an application calls
SQLGetInfo() function with the InfoType argument of
SQL_CONVERT_INTEGER. The application then performs AND operation
on the returned bit mask with SQL_CVT_DECIMAL. If the resulting value

186 Call Level Interface Guide and Reference Volume 2

SQLGetInfo function (CLI) - Get general information

is nonzero, the conversion is supported.
The listed bit masks are used to determine which conversions are
supported:

* SQL_CVT_BIGINT

* SQL_CVT_BINARY

* SQL_CVT_BIT

* SQL_CVT_CHAR

* SQL_CVT_DATE

* SQL_CVT_DECIMAL

* SQL_CVT_DOUBLE

* SQL_CVT_FLOAT

* SQL_CVT_INTEGER

* SQL_CVT_INTERVAL_YEAR_MONTH
* SQL_CVT_INTERVAL_DAY_TIME

* SQL_CVT_LONGVARBINARY

* SQL_CVT_LONGVARCHAR

* SQL_CVT_NUMERIC

* SQL_CVT_REAL

* SQL_CVT_SMALLINT

* SQL_CVT_TIME

* SQL_CVT_TIMESTAMP

* SQL_CVT_TINYINT

* SQL_CVT_VARBINARY

* SQL_CVT_VARCHAR

* SQL_CVT_WCHAR

* SQL_CVT_WLONGVARCHAR

* SQL_CVT_WVARCHAR

SQL_CONNECT_CODEPAGE (32-bit unsigned integer)
Indicates the code page of the current connection.

SQL_CONVERT_FUNCTIONS (32-bit mask)
Indicates the scalar conversion functions that are supported by the driver
and associated data source.

CLI Version 2.1.1 and later supports ODBC scalar conversions between

char variables (CHAR, VARCHAR, LONG VARCHAR, and CLOB) and

DOUBLE (or FLOAT).

* SQL_FN_CVT_CONVERT : Used to determine which conversion
functions are supported.

SQL_CORRELATION_NAME (16-bit integer)
Indicates the degree of correlation name support by the server:
* SQL_CN_ANY : Any valid user-defined name is supported.
* SQL_CN_NONE : Correlation name is not supported.
¢ SQL_CN_DIFFERENT : Correlation name is supported, but it must be
different than the name of the table that it represents.

SQL_CREATE_ASSERTION (32-bit mask)
Indicates which clauses in the CREATE ASSERTION statement are
supported by the DBMS. CLI always returns zero; the CREATE
ASSERTION statement is not supported.

ODBC also defines the listed values that are not returned by CLI:
* SQL_CA_CREATE_ASSERTION

* SQL_CA_CONSTRAINT_INITIALLY_DEFERRED

* SQL_CA_CONSTRAINT_INITIALLY_IMMEDIATE

* SQL_CA_CONSTRAINT_DEFERRABLE

* SQL_CA_CONSTRAINT _NON_DEFERRABLE

Chapter 1. CLI and ODBC functions 187

SQLGetInfo function (CLI) - Get general information

SOL_CREATE_CHARACTER_SET (32-bit mask)
Indicates which clauses in the CREATE CHARACTER SET statement are
supported by the DBMS. CLI always returns zero; the CREATE
CHARACTER SET statement is not supported.

ODBC also defines the listed values that are not returned by CLI:
* SQL_CCS_CREATE_CHARACTER_SET

* SQL_CCS_COLLATE_CLAUSE

* SQL_CCS_LIMITED_COLLATION

SQL_CREATE_COLLATION (32-bit mask)
Indicates which clauses in the CREATE COLLATION statement are
supported by the DBMS. CLI always returns zero; the CREATE
COLLATION statement is not supported.

ODBC also defines the listed values that are not returned by CLI:
* SQL_CCOL_CREATE_COLLATION

SQL_CREATE_DOMAIN (32-bit mask)
Indicates which clauses in the CREATE DOMAIN statement are supported
by the DBMS. CLI always returns zero; the CREATE DOMAIN statement is
not supported.

ODBC also defines the listed values that are not returned by CLI:
* SQL_CDO_CREATE_DOMAIN

* SQL_CDO_CONSTRAINT_NAME_DEFINITION

* SQL_CDO_DEFAULT

* SQL_CDO_CONSTRAINT

* SQL_CDO_COLLATION

* SQL_CDO_CONSTRAINT_INITIALLY_DEFERRED

* SQL_CDO_CONSTRAINT_INITIALLY_IMMEDIATE

* SQL_CDO_CONSTRAINT_DEFERRABLE

* SQL_CDO_CONSTRAINT_NON_DEFERRABLE

SOQL_CREATE_MODULE (32-bit mask)
Indicates which clauses in the CREATE MODULE statement are supported
by the DBMS.CLI always returns zero for DB2 for z/OS.

CLI returns the listed values:

* SQL_CM_CREATE_MODULE

* SQL_CM_AUTHORIZATION

* SQL_CM_DEFAULT CHARACTER_SET

SQL_CREATE_SCHEMA (32-bit mask)
Indicates which clauses in the CREATE SCHEMA statement are supported
by the DBMS:
* SQL_CS_CREATE_SCHEMA
* SQL_CS_AUTHORIZATION
* SQL_CS_DEFAULT_CHARACTER_SET

SQL_CREATE_TABLE (32-bit mask)
Indicates which clauses in the CREATE TABLE statement are supported by
the DBMS.

The lilsted bit masks are used to determine which clauses are supported:
* SQL_CT_CREATE_TABLE

* SQL_CT_TABLE_CONSTRAINT

* SQL_CT_CONSTRAINT_NAME_DEFINITION

The listed bits specify the ability to create temporary tables:
¢ SQL_CT_COMMIT_PRESERVE : Deleted rows are preserved on commit.

188 Call Level Interface Guide and Reference Volume 2

SQLGetInfo function (CLI) - Get general information

* SQL_CT_COMMIT_DELETE : Deleted rows are deleted on commit.

¢ SQL_CT_GLOBAL_TEMPORARY : Global temporary tables can be
created.

* SQL_CT_LOCAL_TEMPORARY : Local temporary tables can be created.

The listed bits specify the ability to create column constraints:

* SQL_CT_COLUMN_CONSTRAINT : Specifying column constraints is
supported.

¢ SQL_CT_COLUMN_DEFAULT : Specifying column defaults is
supported.

¢ SQL_CT_COLUMN_COLLATION : Specifying column collation is
supported.

The listed bits specify the supported constraint attributes, if specifying
column or table constraints is supported:

* SQL_CT_CONSTRAINT_INITIALLY_DEFERRED

* SQL_CT_CONSTRAINT_INITIALLY_IMMEDIATE

* SQL_CT_CONSTRAINT_DEFERRABLE

* SQL_CT_CONSTRAINT_NON_DEFERRABLE

SOL_CREATE_TRANSLATION (32-bit mask)
Indicates which clauses in the CREATE TRANSLATION statement are
supported by the DBMS. CLI always returns zero; the CREATE
TRANSLATION statement is not supported.

ODBC also defines the listed value that is not returned by CLI:
* SQL_CTR_CREATE_TRANSLATION

SQL_CREATE_VIEW (32-bit mask)
Indicates which clauses in the CREATE VIEW statement are supported by
the DBMS:
* SQL_CV_CREATE_VIEW
* SQL_CV_CHECK_OPTION
* SQL_CV_CASCADED
* SQL_CV_LOCAL

A return value of 0 means that the CREATE VIEW statement is not
supported.

SQL_CURSOR_COMMIT_BEHAVIOR (16-bit integer)

Indicates how a COMMIT operation affects cursors. A value of:

¢ SQL_CB_DELETE, deletes cursors and drops access plans for dynamic
SQL statements.

* SQL_CB_CLOSE, deletes cursors, but retains access plans for dynamic
SQL statements (including non-query statements)

* SQL_CB_PRESERVE, retains cursors and access plans for dynamic
statements (including non-query statements). Applications can continue
to fetch data, or close the cursor and re-execute the query without
preparing again the statement.

Note: After COMMIT, a FETCH must be issued to reposition the cursor
before actions such as positioned updates or deletes can be taken.

SQL_CURSOR_ROLLBACK_BEHAVIOR (16-bit integer)
Indicates how a ROLLBACK operation affects cursors. A value of:
* SQL_CB_DELETE, deletes cursors and drops access plans for dynamic
SQL statements.
* SQL_CB_CLOSE, deletes cursors, but retains access plans for dynamic
SQL statements (including non-query statements)

Chapter 1. CLI and ODBC functions 189

SQLGetInfo function (CLI) - Get general information

¢ SQL_CB_PRESERVE, retains cursors and access plans for dynamic
statements (including non-query statements). Applications can continue
to fetch data, or close the cursor and re-execute the query without
preparing again the statement.

Note: DB2 servers do not have the SQL_CB_PRESERVE property.

SQL_CURSOR_SENSITIVITY (32-bit unsigned integer)
Indicates support for cursor sensitivity:

* SQL_INSENSITIVE, all cursors on the statement handle show the result
set without reflecting any changes made to it by any other cursor within
the same transaction.

* SQL_UNSPECIFIED, it is unspecified whether cursors on the statement
handle make visible the changes made to a result set by another cursor
within the same transaction. Cursors on the statement handle might
make visible none, some, or all such changes.

* SQL_SENSITIVE, cursors are sensitive to changes made by other cursors
within the same transaction.

SQL_DATA_SOURCE_NAME (string)
Indicates the data source name used during connection. If the application
called SQLConnect (), this character string is the value of the szDSN
argument. If the application called SQLDriverConnect() or
SQLBrowseConnect (), this character string is the value of the DSN keyword
in the connection string passed to the driver. If the connection string did
not contain the DSN keyword, this character string is an empty string.

SOL_DATA_SOURCE_READ_ONLY (string)
A character string of "Y" indicates that the database is set to READ ONLY
mode, "N" indicates that is not set to READ ONLY mode. This
characteristic pertains only to the data source itself; it is not characteristic
of the driver that enables access to the data source.

SQL_DATABASE_CODEPAGE (32-bit unsigned integer)
Indicates the code page of the database that the application is currently
connected to.

SQOL_DATABASE_NAME (string)
The name of the current database in use

Note: This string is the same as that returned by the SELECT CURRENT
SERVER statement on non-host systems. For host databases, such as DB2
for z/OS or DB2 for i, the string returned is the DCS database name. This
database name was provided when the CATALOG DCS DATABASE
DIRECTORY command was issued at the DB2 Connect gateway.

SQL_DATETIME_LITERALS (32-bit unsigned integer)
Indicates the datetime literals that are supported by the DBMS. CLI always
returns zero; datetime literals are not supported.

ODBC also defines the listed values that are not returned by CLI:
* SQL_DL_SQIL92 _DATE

* SQL_DL_SQL92_TIME

* SQL_DL_SQL92_TIMESTAMP

* SQL_DL_SQL92_INTERVAL_YEAR

* SQL_DL_SQL92_INTERVAL_MONTH

* SQL_DL_SQL92 INTERVAL_DAY

* SQL_DL_SQL92 INTERVAL_HOUR

* SQL_DL_SQL92_INTERVAL_MINUTE

190 Call Level Interface Guide and Reference Volume 2

SQLGetInfo function (CLI) - Get general information

* SQL_DL_SQL92_INTERVAL_SECOND

* SQL_DL_SQL92_INTERVAL_YEAR TO_MONTH

* SQL_DL_SQL92_INTERVAL_DAY_TO_HOUR

* SQL_DL_SQL92_INTERVAL_DAY_TO_MINUTE

* SQL_DL_SQL92_INTERVAL_DAY_TO_SECOND

* SQL_DL_SQL92_INTERVAL_HOUR_TO_MINUTE

e SQL_DL_SQL92_INTERVAL_HOUR_TO_SECOND
e SQL_DL_SQL92_INTERVAL_MINUTE_TO_SECOND

SQL_DBMS_NAME (string)
The name of the DBMS product being accessed

For example:
* "DB2/6000"
- "DB2/2"

SQL_DBMS_VER (string)
The Version of the DBMS product accessed. A string of the form
‘mm.vv.rrrr’ where mm is the major version, vv is the minor version, and
rrrr is the release number. For example, "0r.01.0000" translates to major
version r, minor version 1, release 0.

SQL_DDL_INDEX (32-bit unsigned integer)
Indicates support for the creation and dropping of indexes:
* SQL_DI_CREATE_INDEX
* SQL_DI_DROP_INDEX

SQOL_DEFAULT_TXN_ISOLATION (32-bit mask)
The default transaction isolation level supported

One of the lilsted masks are returned:

¢ SQL_TXN_READ_UNCOMMITTED : Changes are immediately
perceived by all transactions (dirty read, non-repeatable read, and
phantoms are possible).

This behavior is equivalent to Uncommitted Read level for IBM
databases.

¢ SQL_TXN_READ_COMMITTED : Row read by transaction 1 can be
altered and committed by transaction 2 (non-repeatable read and
phantoms are possible)
This behavior is equivalent to Cursor Stability level in IBM databases.

* SQL_TXN_REPEATABLE_READ : A transaction can add or remove rows
matching the search condition or a pending transaction (repeatable read,
but phantoms are possible)

This behavior is equivalent to Read Stability level in IBM databases.

* SQL_TXN_SERIALIZABLE : Data affected by pending transaction is not
available to other transactions (repeatable read, phantoms are not
possible)

This behavior is equivalent to Repeatable Read level in IBM databases.

* SQL_TXN_VERSIONING : Not applicable to IBM DBMSs.

¢ SQL_TXN_NOCOMMIT : Any changes are effectively committed at the
end of a successful operation; no explicit commit or rollback is allowed.

This is a IBM DB2 for IBM i isolation level.
In IBM terminology,
* SQL_TXN_READ_UNCOMMITTED is Uncommitted Read;

¢ SQL_TXN_READ_COMMITTED is Cursor Stability;
* SQL_TXN_REPEATABLE_READ is Read Stability;

Chapter 1. CLI and ODBC functions 191

SQLGetInfo function (CLI) - Get general information

¢ SQL_TXN_SERIALIZABLE is Repeatable Read.

SQL_DESCRIBE_PARAMETER (string)
"Y" if parameters can be described; "N" if not.

SQL_DM_VER (string)
Reserved.

SQL_DRIVER_BLDLEVEL
Build level information about the current version of CLI.

The information is in the listed format: sYYMMDD, where YY is the year
of the build, MM is the month and DD is the day. For example, s100610.

For special builds, the format is: special_JOBID, where JOBID is the special
build's job identification. For example, special_39899.

For full version information, use SQL_DRIVER_BLDLEVEL with
SQL_DRIVER_VER.

SQL_DRIVER_HDBC (32 bits)
CLI's database handle

SQL_DRIVER_HDESC (32 bits)
CLI's descriptor handle

SQL_DRIVER_HENYV (32 bits)
CLI's environment handle

SQL_DRIVER_HLIB (32 bits)
Reserved.

SQL_DRIVER_HSTMT (32 bits)
CLI's statement handle

In an ODBC environment with an ODBC Driver Manager, if InfoType is set
to SQL_DRIVER_HSTMT, the Driver Manager statement handle (the one
returned from SQLATTocStmt ()) must be passed on input in rgblnfoValue
from the application. In this case rgblnfoValue is both an input and an
output argument. The ODBC Driver Manager is responsible for returning
the mapped value. ODBC applications wishing to call CLI specific
functions (such as the LOB functions) can access them, by passing these
handle values to the functions after loading the CLI library and issuing an
operating system function call to invoke the required functions.

SQL_DRIVER_NAME (string)
The file name of the CLI implementation.

SQL_DRIVER_ODBC_VER (string)
The version number of ODBC that CLI supports. By Default CLI returns
“03.51”. You can call the SQLSetEnvAttr() function to change the ODBC
driver version. If you set the SQL_ATTR_ODBC_VERSION attribute to
SQL_OV_ODBC3_80 (value 380), CLI returns “03.80".

SQL_DRIVER_VER (string)
The version of the IBM Data Server Driver for ODBC and CLI. A string of
the form 'mm.vv.rrrr' where mm is the major version, vv is the minor
version, and rrrr is the release. For example, "05.01.0000" translates to
major version 5, minor version 1, release 0. For full version information,
use SQL_DRIVER_VER with SQL_DRIVER_BLDLEVEL.

192 Call Level Interface Guide and Reference Volume 2

SQLGetInfo function (CLI) - Get general information

SQL_DROP_ASSERTION (32-bit unsigned integer)
Indicates which clause in the DROP ASSERTION statement is supported by
the DBMS. CLI always returns zero; the DROP ASSERTION statement is
not supported.

ODBC also defines the SQL_DA_DROP_ASSERTION value that is not returned
by CLIL

SQL_DROP_CHARACTER_SET (32-bit unsigned integer)
Indicates which clause in the DROP CHARACTER SET statement is
supported by the DBMS. CLI always returns zero; the DROP CHARACTER
SET statement is not supported.

ODBC also defines the SQL_DCS_DROP_CHARACTER_SET value that is not
returned by CLL

SQL_DROP_COLLATION (32-bit unsigned integer)
Indicates which clause in the DROP COLLATION statement is supported
by the DBMS. CLI always returns zero; the DROP COLLATION statement
is not supported.

ODBC also defines the SQL_DC_DROP_COLLATION value that is not returned
by CLL

SQL_DROP_DOMAIN (32-bit unsigned integer)
Indicates which clauses in the DROP DOMAIN statement are supported by
the DBMS. CLI always returns zero; the DROP DOMAIN statement is not
supported.

ODBC also defines the listed values that are not returned by CLI:
* SQL_DD_DROP_DOMAIN

* SQL_DD_CASCADE

* SQL_DD_RESTRICT

SQL_DROP_MODULE (32-bit unsigned integer)
Indicates which clauses in the DROP MODULE statement are supported by
the DBMS. CLI always returns zero for DB2 for z/OS.

CLI returns the listed values:
* SQL_DM_DROP_MODULE
* SQL_DM_RESTRICT

SQL_DROP_SCHEMA (32-bit unsigned integer)
Indicates which clauses in the DROP SCHEMA statement are supported by
the DBMS. CLI always returns zero; the DROP SCHEMA statement is not
supported.

ODBC also defines the listed values that are not returned by CLI:
* SQL_DS_CASCADE
* SQL_DS_RESTRICT

SQL_DROP_TABLE (32-bit unsigned integer)
Indicates which clauses in the DROP TABLE statement are supported by
the DBMS. Valid returned values are:
* SQL_DT_DROP_TABLE
* SQL_DT_CASCADE
* SQL_DT_RESTRICT

SQL_DROP_TRANSLATION (32-bit unsigned integer)
Indicates which clauses in the DROP TRANSLATION statement are
supported by the DBMS. CLI always returns zero; the DROP
TRANSLATION statement is not supported.

Chapter 1. CLI and ODBC functions 193

SQLGetInfo function (CLI) - Get general information

ODBC also defines the listed value that is not returned by CLI:

* SQL_DTR_DROP_TRANSLATION
SQL_DROP_VIEW (32-bit unsigned integer)

Indicates which clauses in the DROP VIEW statement are supported by the
DBMS. CLI always returns zero; the DROP VIEW statement is not

supported.

ODBC also defines the listed values that are not returned by CLI:

* SQL_DV_CASCADE
* SQL_DV_RESTRICT

SQL_DTC_TRANSITION_COST (32-bit unsigned mask)
Used by Microsoft Transaction Server to determine whether the enlistment
process for a connection is expensive. CLI returns:

* SQL_DTC_ENLIST_EXPENSIVE
* SQL_DTC_UNENLIST_EXPENSIVE

SQL_DYNAMIC_CURSOR_ATTRIBUTES1 (32-bit mask)
Indicates the attributes of a dynamic cursor that are supported by CLI

(subset 1 of 2). Valid returned values are:
* SQL_CA1_NEXT

* SQL_CA1_ABSOLUTE

* SQL_CA1_RELATIVE

* SQL_CA1_BOOKMARK

* SQL_CA1_LOCK_EXCLUSIVE

* SQL_CA1_LOCK_NO_CHANGE
* SQL_CA1_LOCK_UNLOCK

* SQL_CA1_POS_POSITION

* SQL_CA1_POS_UPDATE

* SQL_CA1_POS_DELETE

* SQL_CA1_POS_REFRESH

* SQL_CA1_POSITIONED_UPDATE
* SQL_CA1_POSITIONED_DELETE
* SQL_CA1_SELECT_FOR_UPDATE
* SQL_CA1_BULK_ADD

SQL_CA1_BULK_UPDATE_BY_BOOKMARK
SQL_CA1 BULK _DELETE_BY BOOKMARK
SQL_CA1 _BULK_FETCH_BY_BOOKMARK

SQL_DYNAMIC_CURSOR_ATTRIBUTES2 (32-bit mask)
Indicates the attributes of a dynamic cursor that are supported by CLI
(subset 2 of 2). Valid returned values are:

SQL_CA2_READ_ONLY_CONCURRENCY
SQL_CA2_LOCK_CONCURRENCY
SQL_CA2_OPT_ROWVER_CONCURRENCY
SQL_CA2_OPT_VALUES_CONCURRENCY
SQL_CA2 SENSITIVITY_ADDITIONS
SQL_CA2_SENSITIVITY_DELETIONS
SQL_CA2 SENSITIVITY_UPDATES
SQL_CA2 MAX_ROWS_SELECT
SQL_CA2_MAX_ROWS_INSERT
SQL_CA2_MAX_ROWS_DELETE
SQL_CA2_MAX_ROWS_UPDATE
SQL_CA2_MAX_ROWS_CATALOG
SQL_CA2_MAX_ROWS_AFFECTS_ALL
SQL_CA2 CRC_EXACT
SQL_CA2_CRC_APPROXIMATE

194 Call Level Interface Guide and Reference Volume 2

SQLGetInfo function (CLI) - Get general information

* SQL_CA2 SIMULATE_NON_UNIQUE
* SQL_CA2 SIMULATE_TRY_UNIQUE
* SQL_CA2 SIMULATE_UNIQUE

SQL_EXPRESSIONS_IN_ORDERBY (string)
The character string "Y" indicates that the database server supports the
DIRECT specification of expressions in the ORDER BY list, "N" indicates
that it does not.

SQL_FETCH_DIRECTION (32-bit mask)
The supported fetch directions.

The listed bit masks are used with the flag to determine which options are
supported:

* SQL_FD_FETCH_NEXT

* SQL_FD_FETCH_FIRST

* SQL_FD_FETCH_LAST

* SQL_FD_FETCH_PREV

* SQL_FD_FETCH_ABSOLUTE

* SQL_FD_FETCH_RELATIVE

* SQL_FD_FETCH_RESUME

SQL_FILE_USAGE (16-bit integer)
Indicates how a single-tier driver directly treats files in a data source. The
IBM Data Server Driver for ODBC and CLI driver is not a single-tier
driver, and therefore always returns SQL_FILE_NOT_SUPPORTED.

ODBC also defines the listed values that are not returned by CLI:
* SQL_FILE_TABLE
* SQL_FILE_CATALOG

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1 (32-bit mask)
Indicates the attributes of a forward-only cursor that are supported by CLI.
Valid returned values are (subset 1 of 2):

* SQL_CA1_NEXT

* SQL_CA1_POSITIONED_UPDATE

* SQL_CA1_POSITIONED_DELETE

* SQL_CA1_SELECT_FOR_UPDATE

* SQL_CA1_LOCK_EXCLUSIVE

* SQL_CA1_LOCK_NO_CHANGE

* SQL_CA1_LOCK_UNLOCK

* SQL_CA1_POS_POSITION

* SQL_CA1_POS_UPDATE

* SQL_CA1_POS_DELETE

* SQL_CA1_POS_REFRESH

* SQL_CA1_BULK_ADD

* SQL_CA1_BULK_UPDATE_BY_BOOKMARK
* SQL_CA1_BULK_DELETE_BY_BOOKMARK
* SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2 (32-bit mask)
Indicates the attributes of a forward-only cursor that are supported by CLIL
Valid returned values are (subset 2 of 2):
* SQL_CA2_READ_ONLY_CONCURRENCY
* SQL_CA2_LOCK_CONCURRENCY
* SQL_CA2_MAX_ROWS_SELECT
* SQL_CA2_MAX_ROWS_CATALOG
* SQL_CA2_OPT_ROWVER_CONCURRENCY
* SQL_CA2_OPT_VALUES_CONCURRENCY

Chapter 1. CLI and ODBC functions 195

SQLGetInfo function (CLI) - Get general information

* SQL_CA2 SENSITIVITY_ADDITIONS
* SQL_CA2 SENSITIVITY_DELETIONS
* SQL_CA2 SENSITIVITY_UPDATES

* SQL_CA2 MAX_ROWS_INSERT

* SQL_CA2 MAX_ROWS_DELETE

* SQL_CA2_MAX_ROWS_UPDATE

* SQL_CA2_ MAX_ROWS_AFFECTS_ALL
* SQL_CA2_CRC_EXACT

* SQL_CA2 CRC_APPROXIMATE

* SQL_CA2 SIMULATE_NON_UNIQUE
* SQL_CA2 SIMULATE_TRY_UNIQUE
* SQL_CA2 SIMULATE_UNIQUE

SQL_GETDATA_EXTENSIONS (32-bit mask)
Indicates whether extensions to the SQLGetData() function are supported.
The listed extensions are currently identified and supported by CLL
* SQL_GD_ANY_COLUMN, SQLGetData() can be called for unbound
columns that precede the last bound column.
* SQL_GD_ANY_ORDER, SQLGetData() can be called for columns in any
order.

ODBC also defines the listed extensions which are not returned by CLI:
* SQL_GD_BLOCK
* SQL_GD_BOUND

SQL_GROUP_BY (16-bit integer)

Indicates the degree of support for the GROUP BY clause by the server.

Valid returned values are:

* SQL_GB_NO_RELATION - No relationship between the columns in the
GROUP BY clause and in the SELECT list.

* SQL_GB_NOT_SUPPORTED - GROUP BY clause not supported.

* SQL_GB_GROUP_BY_EQUALS_SELECT - GROUP BY clause must
include all non-aggregated columns in the SELECT list.

* SQL_GB_GROUP_BY_CONTAINS_SELECT - GROUP BY clause must
contain all non-aggregated columns in the SELECT list.

* SQL_GB_COLLATE - COLLATE clause can be specified at the end of
each grouping column.

SQL_IDENTIFIER_CASE (16-bit integer)
Indicates the case sensitivity of object names (such as table-name).

Valid returned values are:

* SQL_IC_UPPER : Stored in uppercase.

* SQL_IC_LOWER : Stored in lowercase.

e SQL_IC_SENSITIVE : Case sensitive, stored in mixed-case.
* SQL_IC_MIXED : Not case sensitive, stored in mixed-case.

Note: Identifier names in IBM DBMSs are not case sensitive.

SQL_IDENTIFIER_QUOTE_CHAR (string)
Indicates the character that is used to surround a delimited identifier.

SQL_INDEX_KEYWORDS (32-bit mask)
Indicates the supported keywords for the CREATE INDEX statement. Valid
returned values are:
* SQL_IK_NONE - None of the keywords are supported.
* SQL_IK_ASC - ASC keyword is supported.
¢ SQL_IK_DESC - DESC keyword is supported.
¢ SQL_IK_ALL - All keywords are supported.

196 Call Level Interface Guide and Reference Volume 2

SQLGetInfo function (CLI) - Get general information

To see if the CREATE INDEX statement is supported, an application can
call the SQLGetInfo() function with the SQL_DLL_INDEX InfoType
argument.

SQL_INFO_SCHEMA_VIEWS (32-bit mask)
Indicates the views in the INFORMATION_SCHEMA that are supported.
CLI always returns zero; no views in the INFORMATION_SCHEMA are
supported.

ODBC also defines the listed values that are not returned by CLI:
* SQL_ISV_ASSERTIONS

* SQL_ISV_CHARACTER_SETS

* SQL_ISV_CHECK_CONSTRAINTS

* SQL_ISV_COLLATIONS

* SQL_ISV_COLUMN_DOMAIN_USAGE
* SQL_ISV_COLUMN_PRIVILEGES

* SQL_ISV_COLUMNS

* SQL_ISV_CONSTRAINT_COLUMN_USAGE
* SQL_ISV_CONSTRAINT_TABLE_USAGE
* SQL_ISV_DOMAIN_CONSTRAINTS

* SQL_ISV_DOMAINS

* SQL_ISV_KEY_COLUMN_USAGE

» SQL_ISV_REFERENTIAL_CONSTRAINTS
* SQL_ISV_SCHEMATA

* SQL_ISV_SQL_LANGUAGES

* SQL_ISV_TABLE_CONSTRAINTS

* SQL_ISV_TABLE_PRIVILEGES

* SQL_ISV_TABLES

* SQL_ISV_TRANSLATIONS

* SQL_ISV_USAGE_PRIVILEGES

* SQL_ISV_VIEW_COLUMN_USAGE

* SQL_ISV_VIEW_TABLE_USAGE

* SQL_ISV_VIEWS

SQL_INSERT_STATEMENT (32-bit mask)
Indicates support for INSERT statements. Valid returned values are:
¢ SQL_IS_INSERT_LITERALS
* SQL_IS_INSERT_SEARCHED
¢ SQL_IS_SELECT_INTO

SQL_INTEGRITY (string)
The "Y" character string indicates that the data source supports Integrity
Enhanced Facility (IEF) in SQL89 and in X/Open XPG4 Embedded SQL, an
"N" indicates it does not.

In previous versions of CLI this InfoType argument was
SQL_ODBC_SQL_OPT_IEF.

SQL_KEYSET_CURSOR_ATTRIBUTES1 (32-bit mask)
Indicates the attributes of a keyset-driven cursor that are supported by
CLI Valid returned values are (subset 1 of 2):

* SQL_CA1_NEXT

* SQL_CA1_ABSOLUTE

* SQL_CA1_RELATIVE

* SQL_CA1_BOOKMARK

* SQL_CA1_LOCK_EXCLUSIVE
* SQL_CA1_LOCK_NO_CHANGE
* SQL_CA1_LOCK_UNLOCK

* SQL_CA1_POS_POSITION

Chapter 1. CLI and ODBC functions 197

SQLGetInfo function (CLI) - Get general information

* SQL_CA1_POS_UPDATE

* SQL_CA1 _POS_DELETE

* SQL_CA1_POS_REFRESH

* SQL_CA1_POSITIONED_UPDATE

* SQL_CA1_POSITIONED_DELETE

* SQL_CA1_SELECT_FOR_UPDATE

* SQL_CA1_BULK_ADD

* SQL_CA1_BULK_UPDATE_BY_BOOKMARK
* SQL_CA1l BULK_DELETE_BY BOOKMARK
* SQL_CA1 BULK_FETCH_BY_BOOKMARK

SQL_KEYSET_CURSOR_ATTRIBUTES2 (32-bit mask)
Indicates the attributes of a keyset-driven cursor that are supported by
CLIL Valid returned values are (subset 2 of 2):

* SQL_CA2_READ_ONLY_CONCURRENCY
* SQL_CA2_LOCK_CONCURRENCY

* SQL_CA2_OPT_ROWVER_CONCURRENCY
* SQL_CA2_OPT_VALUES_CONCURRENCY
* SQL_CA2_SENSITIVITY_ADDITIONS

* SQL_CA2_SENSITIVITY_DELETIONS

* SQL_CA2_SENSITIVITY_UPDATES

* SQL_CA2_MAX_ROWS_SELECT

* SQL_CA2_MAX_ROWS_INSERT

* SQL_CA2_MAX_ROWS_DELETE

* SQL_CA2_MAX_ROWS_UPDATE

* SQL_CA2_MAX_ROWS_CATALOG

¢ SQL_CA2_MAX_ROWS_AFFECTS_ALL

* SQL_CA2_CRC_EXACT

* SQL_CA2_CRC_APPROXIMATE

* SQL_CA2_SIMULATE_NON_UNIQUE

* SQL_CA2_SIMULATE_TRY_UNIQUE

* SQL_CA2_SIMULATE_UNIQUE

SQL_KEYWORDS (string)
Indicates a comma-separated list of all data source-specific keywords. This
character string is a list of all reserved keywords. Interoperable
applications should not use these keywords in object names. This list does
not contain keywords specific to ODBC or keywords that are used by both
the data source and ODBC.

SQL_LIKE_ESCAPE_CLAUSE (string)
Indicates whether the data source supports an escape character for the
percent character (%) and underscore (_) character in a LIKE predicate.
Also, it indicates that the driver supports the ODBC syntax for defining a
LIKE predicate escape character.

* "Y" indicates that there is support for escape characters in a LIKE
predicate.

¢ "N" indicates that there is no support for escape characters in a LIKE
predicate.

SQL_LOCK_TYPES (32-bit mask)
Reserved option, zero is returned for the bit-mask.

SQL_MAX_ASYNC_CONCURRENT_STATEMENTS (32-bit unsigned integer)
The maximum number of active concurrent statements in asynchronous
mode that CLI can support on a given connection. This value is zero if
there is no specific limit, or the limit is unknown.

198 Call Level Interface Guide and Reference Volume 2

SQLGetInfo function (CLI) - Get general information

SQL_MAX_BINARY_LITERAL_LEN (32-bit unsigned integer)
A 32-bit unsigned integer value specifying the maximum length (number
of hexadecimal characters, excluding the literal prefix and suffix returned
by SQLGetTypeInfo()) of a binary literal in an SQL statement. For example,
the binary literal OXFFAA has a length of 4. If there is no maximum length
or the length is unknown, this value is set to zero.

SQL_MAX_CATALOG_NAME_LEN (16-bit integer)
The maximum length of a catalog name in the data source. This value is
zero if there is no maximum length, or the length is unknown.

In previous versions of CLI this fInfoType argument was
SQL_MAX_QUALIFIER_ NAME_LEN.

SQL_MAX_CHAR_LITERAL_LEN (32-bit unsigned integer)
The maximum length of a character literal in an SQL statement (in bytes).
Zero if there is no limit.

SQL_MAX_COLUMN_NAME_LEN (16-bit integer)
The maximum length of a column name (in bytes). Zero if there is no limit.
SQL_MAX_COLUMNS_IN_GROUP_BY (16-bit integer)

Indicates the maximum number of columns that the server supports in a
GROUP BY clause. Zero if there is no limit.

SQL_MAX_COLUMNS_IN_INDEX (16-bit integer)
Indicates the maximum number of columns that the server supports in an
index. Zero if there is no limit.

SQL_MAX_COLUMNS_IN_ORDER_BY (16-bit integer)
Indicates the maximum number of columns that the server supports in an
ORDER BY clause. Zero if there is no limit.

SQL_MAX_COLUMNS_IN_SELECT (16-bit integer)
Indicates the maximum number of columns that the server supports in a
SELECT list. Zero if there no limit.

SQL_MAX_COLUMNS_IN_TABLE (16-bit integer)
Indicates the maximum number of columns that the server supports in a
base table. Zero if there is no limit.

SQL_MAX_CONCURRENT_ACTIVITIES (16-bit integer)
The maximum number of active environments that CLI can support. If
there is no specified limit or the limit is unknown, this value is set to zero.

In previous versions of CLI this InfoType argument was
SQL_ACTIVE_ENVIRONMENTS.

SQOL_MAX_CURSOR_NAME_LEN (16-bit integer)
The maximum length of a cursor name (in bytes). This value is zero if
there is no maximum length, or the length is unknown.

SQL_MAX_DRIVER_CONNECTIONS (16-bit integer)
The maximum number of active connections that are supported per
application.

If the limit is dependent on system resources, zero is returned.

In previous versions of CLI this InfoType argument was
SQL_ACTIVE_CONNECTIONS.

SQL_MAX_IDENTIFIER_LEN (16-bit integer)
The maximum size (in characters) that the data source supports for
user-defined names.

Chapter 1. CLI and ODBC functions 199

SQLGetInfo function (CLI) - Get general information

SQL_MAX_INDEX_SIZE (32-bit unsigned integer)
Indicates the maximum size in bytes that the server supports for the
combined columns in an index. Zero if no limit.

SQL_MAX_MODULE_NAME_LEN (16-bit integer)
Indicates the maximum length in bytes of a module qualifier name.

SQL_MAX_PROCEDURE_NAME_LEN (16-bit integer)
The maximum length of a procedure name (in bytes).

SQL_MAX_ROW_SIZE (32-bit unsigned integer)
Specifies the maximum length in bytes that the server supports in single
row of a base table. Zero if there is no limit.

SQL_MAX_ROW_SIZE_INCLUDES_LONG (string)
Set to "Y" to indicate that the value that is returned by
SQL_MAX_ROW_SIZE InfoType argument includes the length of
product-specific long string data types. Otherwise, set to "N".

SQL_MAX_SCHEMA_NAME_LEN (16-bit integer)
The maximum length of a schema qualifier name (in bytes).

In previous versions of CLI this fInfoType argument was
SQL_MAX_OWNER_NAME_LEN.

SQL_MAX_STATEMENT_LEN (32-bit unsigned integer)
Indicates the maximum length of an SQL statement string in bytes,
including the number of white spaces in the statement.

SQL_MAX _TABLE_NAME_LEN (16-bit integer)
The maximum length of a table name (in bytes).
SOL_MAX_TABLES_IN_SELECT (16-bit integer)
Indicates the maximum number of table names in a FROM clause in a
<query specification>.
SQL_MAX_USER_NAME_LEN (16-bit integer)
Indicates the maximum size for a <user identifier> (in bytes).

SQOL_MODULE_USAGE (32-bit mask)
Indicates the type of SQL statements that have a module associated with
them when these statements are executed. CLI always returns zero for DB2
for z/OS.

SQL_MU_PROCEDURE_INVOCATION is supported in the procedure
invocation statement.

SOL_MULT_RESULT_SETS (string)
The character string "Y" indicates that the database supports multiple result
sets, "N" indicates that it does not.

SQL_MULTIPLE_ACTIVE_TXN (string)

Indicates whether active transactions on multiple connections are

permitted.

* "Y" indicates that multiple connections can have active transactions.

* "N" indicates that only one connection at a time can have an active
transaction.CLI returns "N" for coordinated distributed unit of work
(CONNECT TYPE 2) connections, (since the transaction or Unit Of Work
spans all connections), and returns "Y" for all other connections.

SQL_NEED_LONG_DATA_LEN (string)
Indicates that a character string is reserved for the use of ODBC. “N” is
always returned.

200 Call Level Interface Guide and Reference Volume 2

SQLGetInfo function (CLI) - Get general information

SQL_NON_NULLABLE_COLUMNS (16-bit integer)
Indicates whether non-nullable columns are supported. Valid returned
values are:
* SQL_NNC_NON_NULL - Can be defined as NOT NULL.
* SQL_NNC_NULL - Cannot be defined as NOT NULL.

SQL_NULL_COLLATION (16-bit integer)
Indicates where NULLs are sorted in a result set. Valid returned values are:
¢ SQL_NC_HIGH - Null values sort high.
* SQL_NC_LOW - Null values sort low.

SQL_NUMERIC_FUNCTIONS (32-bit mask)
Indicates that the ODBC scalar numeric functions are supported. These
functions are intended to be used with the ODBC vendor escape sequence.

The listed bit-masks are used to determine which numeric functions are
supported:

* SQL_FN_NUM_ABS

* SQL_FN_NUM_ACOS

* SQL_FN_NUM_ASIN

* SQL_FN_NUM_ATAN

* SQL_FN_NUM_ATAN2

* SQL_FN_NUM_CEILING
* SQL_FN_NUM_COS

* SQL_FN_NUM_COT

* SQL_FN_NUM_DEGREES
* SQL_FN_NUM_EXP

* SQL_FN_NUM_FLOOR

* SQL_FN_NUM_LOG

* SQL_FN_NUM_LOGI10

* SQL_FN_NUM_MOD

* SQL_FN_NUM_PI

* SQL_FN_NUM_POWER
* SQL_FN_NUM_RADIANS
* SQL_FN_NUM_RAND

* SQL_FN_NUM_ROUND
* SQL_FN_NUM_SIGN

* SQL_FN_NUM_SIN

* SQL_FN_NUM_SQRT

* SQL_FN_NUM_TAN

* SQL_FN_NUM_TRUNCATE

SQL_ODBC_API_CONFORMANCE (16-bit integer)
Indicates the level of ODBC conformance. Valid returned values are:
* SQL_OAC_NONE
* SQL_OAC_LEVEL1
* SQL_OAC_LEVEL2

SOL_ODBC_INTERFACE_CONFORMANCE (32-bit unsigned integer)

Indicates the level of the ODBC 3.0 interface that CLI conforms to:

* SQL_OIC_CORE : The minimum level that all ODBC drivers are
expected to conform to. This level includes basic interface elements such
as connection functions; functions for preparing and executing an SQL
statement; basic result set metadata functions; basic catalog functions;
and so on.

* SQL_OIC_LEVELL1 : A level that includes the core standards compliance
level functionality, plus scrollable cursors, bookmarks, positioned
updates and deletes; and so on.

Chapter 1. CLI and ODBC functions 201

SQLGetInfo function (CLI) - Get general information

* SQL_OIC_LEVEL2 : A level that includes the level 1 standards
compliance level functionality, plus advanced features such as sensitive
cursors; update, delete, and refresh by bookmarks; stored procedure
support; catalog functions for primary and foreign keys; multi-catalog
support; and so on.

SQL_ODBC_SAG_CLI_CONFORMANCE (16-bit integer)
The compliance to the functions of the SQL Access Group (SAG) CLI
specification.

Valid returned values are:
¢ SQL_OSCC_NOT_COMPLIANT : The driver is not SAG-compliant.
¢ SQL_OSCC_COMPLIANT : The driver is SAG-compliant.

SQL_ODBC_SQL_CONFORMANCE (16-bit integer)
Valid returned values are:
* SQL_OSC_MINIMUM : Minimum ODBC SQL grammar supported
* SQL_OSC_CORE : Core ODBC SQL Grammar supported
¢ SQL_OSC_EXTENDED : Extended ODBC SQL Grammar supported

SQL_ODBC_VER (string)
The ODBC version number that the driver manager supports.

CLI returns the string “03.01.0000”. CLI returns the string "03.01.0000". For
Windows 7 and Windows Server 2008 R2 operating systems, CLI returns
the string “03.80.0000”.

SQL_OJ_CAPABILITIES (32-bit mask)
A 32-bit bit-mask enumerating the types of outer join supported.

The bitmasks are:

¢ SQL_OJ_LEFT : Left outer join is supported.

* SQL_OJ_RIGHT : Right outer join is supported.

* SQL_OJ_FULL : Full outer join is supported.

* SQL_OJ_NESTED : Nested outer join is supported.

* SQL_OJ_ORDERED : The order of the tables underlying the columns in
the outer join ON clause do not have to be in the same order as the
tables in the JOIN clause.

* SQL_OJ_INNER : The inner table of an outer join can also be an inner
join.

¢ SQL_OJ_ALL_COMPARISONS_OPS : Any predicate can be used in the
outer join ON clause. If this bit is not set, only the equality (=)
comparison operator can be used in outer joins.

SQL_ORDER_BY_COLUMNS_IN_SELECT (string)
Set to "Y" if columns in the ORDER BY clauses must be in the select list;
otherwise set to "N".

SQL_OUTER_JOINS (string)
The character string:
* "Y" indicates that outer joins are supported, and CLI supports the ODBC
outer join request syntax.
* "N" indicates tha touter joins are not supported.

SQL_PARAM_ARRAY_ROW_COUNTS (32-bit unsigned integer)
Indicates the availability of row counts in a parameterized execution:
* SQL_PARC_BATCH, Individual row counts are available for each set of
parameters. This behavior is conceptually equivalent to CLI generating a
batch of SQL statements, one for each parameter set in the array.

Extended error information can be retrieved by using the
SQL_PARAM_STATUS_PTR descriptor field. To enable this behavior for

202 Call Level Interface Guide and Reference Volume 2

SQLGetInfo function (CLI) - Get general information

non-atomic operations, set the SQL_ATTR_PARC_BATCH connection
attribute to SQL_PARC_BATCH_ENABLE and
SQL_ATTR_PARAMOPT_ATOMIC to SQL_ATOMIC_NO. If
SQL_ATTR_PARAMOPT_ATOMIC is set to SQL_ATOMIC_YES, the
CLIO150E error message is returned.

* SQL_PARC_NO_BATCH : Only one row count is available, which is the
cumulative row count resulting from the execution of the statement for
the entire array of parameters. This behavior is conceptually equivalent
to treating the statement along with the entire parameter array as one
atomic unit. Errors are handled the same as if one statement was issued.

SQOL_PARAM_ARRAY_SELECTS (32-bit unsigned integer)

Indicates the availability of result sets in a parameterized execution. Valid

returned values are:

* SQL_PAS_BATCH : One result set is available per set of parameters. The
SQL_PAS_BATCH is conceptually equivalent to CLI generating a batch
of SQL statements, one for each parameter set in the array.

¢ SQL_PAS_NO_BATCH : Only one result set is available, which
represents the cumulative result set resulting from the execution of the
statement for the entire array of parameters. The SQL_PAS_NO_BATCH
is conceptually equivalent to treating the statement along with the entire
parameter array as one atomic unit.

* SQL_PAS_NO_SELECT : CLI does not allow a result-set generating
statement to be executed with an array of parameters.

SQL_POS_OPERATIONS (32-bit mask)
Reserved option, zero is returned for the bit-mask.

SQL_POSITIONED_STATEMENTS (32-bit mask)

Indicates the degree of support for positioned UPDATE and positioned

DELETE statements:

* SQL_PS_POSITIONED_DELETE

* SQL_PS_POSITIONED_UPDATE

* SQL_PS_SELECT_FOR_UPDATE - Indicates whether the server requires
the FOR UPDATE clause to be specified on a <query expression> in
order for a column to be updateable by using a cursor.

SQL_PROCEDURE_TERM (string)
The name a database vendor uses for a procedure

SQL_PROCEDURES (string)
A character string of "Y" indicates that the data source supports procedures
and CLI supports the ODBC procedure invocation syntax specified by the
CALL statement. "N" indicates that it does not.

SOL_QUOTED_IDENTIFIER_CASE (16-bit integer)
Valid returned values are:
* SQL_IC_UPPER : Not case sensitive and are stored in uppercase.
* SQL_IC_LOWER : Not case sensitive and are stored in lowercase.
* SQL_IC_SENSITIVE : Quoted identifiers (delimited identifiers) in SQL
are case sensitive and are stored in mixed case in the system catalog.
* SQL_IC_MIXED - Not case sensitive and are stored in mixed case.

The SQL_QUOTED_ IDENTIFIER_CASE integer should be contrasted with
the SQL_IDENTIFIER_CASE InfoType argument, which is used to
determine how (unquoted) identifiers are stored in the system catalog.

SQL_ROW_UPDATES (string)
A character string of "Y" indicates a keyset-driven cursor or mixed cursor
that maintains row versions or values for all fetched rows, and therefore

Chapter 1. CLI and ODBC functions 203

SQLGetInfo function (CLI) - Get general information

can detect any updates made to a row since the row was last fetched. This
character string only applies to updates, not to deletions or insertions. CLI
can return the SQL_ROW_UPDATED flag to the row status array when
SQLFetchScrol1() is called. Otherwise, "N" is returned.

SQL_SCHEMA_TERM (string)
The terminology of the database vendor for a schema (owner).

In previous versions of CLI this InfoType was SQL_OWNER_TERM.

SQL_SCHEMA_USAGE (32-bit mask)

Indicates the type of SQL statements that have schema (owners) associated

with them when these statements are executed. Valid returned schema

qualifiers (owners) are:

* SQL_SU_DML_STATEMENTS - All DML statements.

* SQL_SU_PROCEDURE_INVOCATION - The procedure invocation
statement.

* SQL_SU_TABLE_DEFINITION - All table definition statements.

* SQL_SU_INDEX_DEFINITION - All index definition statements.

¢ SQL_SU_PRIVILEGE_DEFINITION - All privilege definition statements
(grant and revoke statements).

In previous versions of CLI this InfoType argument was
SQL_OWNER_USAGE.

SQL_SCROLL_CONCURRENCY (32-bit mask)
Indicates the concurrency options that are supported for the cursor.

The listed bit masks are used with the flag to determine which options are
supported:

* SQL_SCCO_LOCK

* SQL_SCCO_READ_ONLY

* SQL_SCCO_TIMESTAMP

* SQL_SCCO_VALUES

CLI returns SQL_SCCO_LOCK, which indicates that the lowest level of
locking that is sufficient to make an update.

SQL_SCROLL_OPTIONS (32-bit mask)
Indicates the scroll options that are supported for scrollable cursors.

The listed bit masks are used with the flag to determine which options are

supported:

¢ SQL_SO_FORWARD_ONLY : The cursor scrolls only forward.

* SQL_SO_KEYSET_DRIVEN : CLI saves and uses the keys for every row
in the result set.

* SQL_SO_STATIC : The data in the result set is static.

* SQL_SO_DYNAMIC : CLI keeps the keys for every row in the rowset
(the keyset size is the same as the rowset size).

¢ SQL_SO_MIXED: CLI keeps the keys for every row in the keyset, and
the keyset size is greater than the rowset size. The cursor is
keyset-driven inside the keyset and dynamic outside the keyset.

SQL_SEARCH_PATTERN_ESCAPE (string)
Used to specify what the driver supports as an escape character for catalog
functions, such as the SQLTables() function, and the SQLCoTumns ()
function.

SQL_SERVER_NAME (string)
Indicates the name of the DB2 instance. In contrast to the
SQL_DATA_SOURCE_NAME character string, this character string is the

204 Call Level Interface Guide and Reference Volume 2

SQLGetInfo function (CLI) - Get general information

actual name of the database server. Some DBMSs provide a different name
upon establishing a connection than the real server-name of the database.

SQL_SPECIAL_CHARACTERS (string)
A character string that contains only special characters (all characters
except a...z, A...Z, 0...9, and underscore) that can be used in an identifier
name, such as table, column, or index name, on the data source. For
example, "@#". If an identifier contains special characters, the identifier
must be a delimited identifier.

SQL_SQL_CONFORMANCE (32-bit unsigned integer)

Indicates the level of SQL-92 that is supported:

¢ SQL_SC_SQL92_ENTRY : Entry level SQL-92 compliant.

* SQL_SC_FIPS127_2_TRANSITIONAL : FIPS 127-2 transitional-level
compliant.

¢ SQL_SC_SQL92_FULL : Full-level SQL-92 compliant.

* SQL_SC_ SQL92_INTERMEDIATE : Intermediate level SQL-92
compliant.

SQL_SQL92_DATETIME_FUNCTIONS (32-bit mask)
Indicates the datetime scalar functions that are supported by CLI and the
data source. Valid returned values are:
* SQL_SDF_CURRENT_DATE
* SQL_SDF_CURRENT_TIME
* SQL_SDF_CURRENT_TIMESTAMP

SQL_SQL92_FOREIGN_KEY_DELETE_RULE (32-bit mask)
Indicates the rules that are supported for a foreign key in a DELETE
statement, as defined by SQL-92. Valid returned values are:
SQL_SFKD_CASCADE
SQL_SFKD_NO_ACTION
SQL_SFKD_SET_DEFAULT
* SQL_SFKD_SET_NULL

SQL_SQL92_FOREIGN_KEY_UPDATE_RULE (32-bit mask)
Indicates the rules that are supported for a foreign key in an UPDATE
statement, as defined by SQL-92. Valid returned values are:
SQL_SFKU_CASCADE
SQL_SFKU_NO_ACTION
SQL_SFKU_SET_DEFAULT
* SQL_SFKU_SET_NULL

SQL_SQL92_GRANT (32-bit mask)
Indicates the clauses that are supported in a GRANT statement, as defined
by SQL-92. Valid returned values are:
* SQL_SG_DELETE_TABLE
¢ SQL_SG_INSERT_COLUMN
* SQL_SG_INSERT_TABLE
* SQL_SG_REFERENCES_TABLE
* SQL_SG_REFERENCES_COLUMN
* SQL_SG_SELECT_TABLE
* SQL_SG_UPDATE_COLUMN
* SQL_SG_UPDATE_TABLE
* SQL_SG_USAGE_ON_DOMAIN
* SQL_SG_USAGE_ON_CHARACTER_SET
* SQL_SG_USAGE_ON_COLLATION
* SQL_SG_USAGE_ON_TRANSLATION
* SQL_SG_WITH_GRANT_OPTION

Chapter 1. CLI and ODBC functions 205

SQLGetInfo function (CLI) - Get general information

SQL_SQL92_NUMERIC_VALUE_FUNCTIONS (32-bit mask)
Indicates the numeric value scalar functions that are supported by CLI and
the data source, as defined in SQL-92. Valid returned values are:
* SQL_SNVF_BIT_LENGTH
* SQL_SNVF_CHAR_LENGTH
* SQL_SNVF_CHARACTER_LENGTH
* SQL_SNVF_EXTRACT
* SQL_SNVF_OCTET_LENGTH
* SQL_SNVF_POSITION

SQL_SQL92_PREDICATES (32-bit mask)
Indicates the predicates that are supported in a SELECT statement, as
defined by SQL-92. Valid returned values are:
* SQL_SP_BETWEEN
* SQL_SP_COMPARISON
* SQL_SP_EXISTS
* SQL_SP_IN
* SQL_SP_ISNOTNULL
* SQL_SP_ISNULL
* SQL_SP_LIKE
* SQL_SP_MATCH_FULL
* SQL_SP_MATCH_PARTIAL
* SQL_SP_MATCH_UNIQUE_FULL
* SQL_SP_MATCH_UNIQUE_PARTIAL
* SQL_SP_OVERLAPS
* SQL_SP_QUANTIFIED_COMPARISON
* SQL_SP_UNIQUE

SOL_SQL92_RELATIONAL_JOIN_OPERATORS (32-bit mask)

Indicates the relational join operators that are supported in a SELECT

statement, as defined by SQL-92. Valid returned values are:

* SQL_SRJO_CORRESPONDING_CLAUSE

* SQL_SRJO_CROSS_JOIN

* SQL_SRJO_EXCEPT_JOIN

* SQL_SRJO_FULL_OUTER_JOIN

* SQL_SRJO_INNER_JOIN (indicates support for the INNER JOIN syntax,
not for the inner join capability)

* SQL_SRJO_INTERSECT_JOIN

* SQL_SRJO_LEFT_OUTER_JOIN

* SQL_SRJO_NATURAL_JOIN

* SQL_SRJO_RIGHT_OUTER_JOIN

* SQL_SRJO_UNION_JOIN

SQL_SQL92_REVOKE (32-bit mask)
Indicates which clauses the data source supports in the REVOKE
statement, as defined by SQL-92. Valid returned values are:
¢ SQL_SR_CASCADE
¢ SQL_SR_DELETE_TABLE
¢ SQL_SR_GRANT_OPTION_FOR
* SQL_SR_INSERT_COLUMN
* SQL_SR_INSERT_TABLE
* SQL_SR_REFERENCES_COLUMN
* SQL_SR_REFERENCES_TABLE
e SQL_SR_RESTRICT
* SQL_SR_SELECT_TABLE
¢ SQL_SR_UPDATE_COLUMN
¢ SQL_SR_UPDATE_TABLE

206 Call Level Interface Guide and Reference Volume 2

SQLGetInfo function (CLI) - Get general information

* SQL_SR_USAGE_ON_DOMAIN

* SQL_SR_USAGE_ON_CHARACTER_SET
* SQL_SR_USAGE_ON_COLLATION

* SQL_SR_USAGE_ON_TRANSLATION

SQL_SQL92_ROW_VALUE_CONSTRUCTOR (32-bit mask)
Indicates the row value constructor expressions that are supported in a
SELECT statement, as defined by SQL-92. Valid returned values are:
* SQL_SRVC_DEFAULT
* SQL_SRVC_NULL
* SQL_SRVC_ROW_SUBQUERY
* SQL_SRVC_VALUE_EXPRESSION

SQL_SQL92_STRING_FUNCTIONS (32-bit mask)
Indicates the string scalar functions that are supported by CLI and the data
source, as defined by SQL-92. Valid returned values are:
* SQL_SSF_CONVERT
¢ SQL_SSF_LOWER
* SQL_SSF_SUBSTRING
* SQL_SSF_TRANSLATE
* SQL_SSF_TRIM_BOTH
* SQL_SSF_TRIM_LEADING
* SQL_SSF_TRIM_TRAILING
* SQL_SSF_UPPER

SQL_SQL92_VALUE_EXPRESSIONS (32-bit mask)
Indicates the value expressions that are supported, as defined by SQL-92.
Valid returned values are:
* SQL_SVE_CASE
* SQL_SVE_CAST
* SQL_SVE_COALESCE
¢ SQL_SVE_NULLIF

SQL_STANDARD_CLI_CONFORMANCE (32-bit mask)
Indicates the CLI standard or standards to which CLI conforms. Valid
returned values are:
* SQL_SCC_IS092_CLI
* SQL_SCC_XOPEN_CLI_VERSION1

SQL_STATIC_CURSOR_ATTRIBUTES1 (32-bit mask)
Indicates the attributes of a static cursor that are supported by CLI. Valid
returned values are (subset 1 of 2):

* SQL_CA1_ABSOLUTE

* SQL_CA1_BOOKMARK

* SQL_CA1_BULK_ADD

* SQL_CA1_BULK_DELETE_BY_BOOKMARK
* SQL_CA1_BULK_FETCH_BY_BOOKMARK
* SQL_CA1_BULK_UPDATE_BY_BOOKMARK
* SQL_CA1_LOCK_EXCLUSIVE

* SQL_CA1_LOCK_NO_CHANGE

* SQL_CA1_LOCK_UNLOCK

* SQL_CA1_NEXT

* SQL_CA1_POS_DELETE

* SQL_CA1_POS_POSITION

* SQL_CA1_POS_REFRESH

* SQL_CA1_POS_UPDATE

+ SQL_CA1_POSITIONED_UPDATE

* SQL_CA1_POSITIONED_DELETE

Chapter 1. CLI and ODBC functions 207

SQLGetInfo function (CLI) -

Get general information

SQL_CA1_RELATIVE
SQL_CA1 SELECT_FOR_UPDATE

SQL_STATIC_CURSOR_ATTRIBUTES2 (32-bit mask)
Indicates the attributes of a static cursor that are supported by CLI (subset
2 of 2):

SQL_CA2_READ_ONLY_CONCURRENCY
SQL_CA2_LOCK_CONCURRENCY
SQL_CA2_OPT_ROWVER_CONCURRENCY
SQL_CA2_OPT_VALUES_CONCURRENCY
SQL_CA2_SENSITIVITY_ADDITIONS
SQL_CA2_SENSITIVITY_DELETIONS
SQL_CA2_SENSITIVITY_UPDATES
SQL_CA2 MAX_ROWS_SELECT
SQL_CA2_MAX_ROWS_INSERT
SQL_CA2_MAX_ROWS_DELETE
SQL_CA2_MAX_ROWS_UPDATE
SQL_CA2_MAX_ROWS_CATALOG
SQL_CA2 MAX_ROWS_AFFECTS_ALL
SQL_CA2_CRC_EXACT
SQL_CA2_CRC_APPROXIMATE

SQL_CA2 SIMULATE_NON_UNIQUE
SQL_CA2 SIMULATE_TRY_UNIQUE
SQL_CA2_SIMULATE_UNIQUE

SQL_STATIC_SENSITIVITY (32-bit mask)
Indicates whether changes that are made by an application with a
positioned update or delete statement can be detected by that application.
Valid returned values are:

SQL_SS_ADDITIONS : Added rows are visible to the cursor, and the
cursor can scroll to these rows. All DB2 servers see added rows.
SQL_SS_DELETIONS : Deleted rows are no longer available to the
cursor, and do not leave a hole in the result set. After the cursor scrolls
from a deleted row, it cannot return to that row.

SQL_SS_UPDATES : Updated rows are visible to the cursor. If the cursor
scrolls from and returns to an updated row, the data that is returned by
the cursor is the updated data, not the original data.

SQL_STRING_FUNCTIONS (32-bit mask)
Indicates which string functions are supported.

The listed bit masks are used to determine which string functions are

su
.

pported:

SQL_FN_STR_ASCII
SQL_FN_STR_BIT_LENGTH
SQL_FN_STR_CHAR
SQL_FN_STR_CHAR_LENGTH
SQL_FN_STR_CHARACTER_LENGTH
SQL_FN_STR_CONCAT
SQL_FN_STR_DIFFERENCE
SQL_EN_STR_INSERT
SQL_FN_STR_LCASE
SQL_FN_STR_LEFT
SQL_FN_STR_LENGTH
SQL_FN_STR_LOCATE
SQL_FN_STR_LOCATE_2
SQL_FN_STR_LTRIM
SQL_FN_STR_OCTET_LENGTH

208 Call Level Interface Guide and Reference Volume 2

SQLGetInfo function (CLI) - Get general information

* SQL_FN_STR_POSITION
* SQL_FN_STR_REPEAT

* SQL_FN_STR_REPLACE
e SQL_FN_STR_RIGHT

* SQL_FN_STR_RTRIM

* SQL_EN_STR_SOUNDEX
* SQL_EN_STR_SPACE

e SQL_EN_STR_SUBSTRING
* SQL_FN_STR UCASE

If an application can call the LOCATE scalar function with the string_exp1,
string_exp2, and start arguments, the SQL_FN_STR_LOCATE bit mask is
returned. If an application can call the LOCATE scalar function only with
the string_expl and string_exp2, the SQL_FN_STR_LOCATE_2 bit mask is
returned. If the LOCATE scalar function is fully supported, both bit masks
are returned.

SQL_SUBQUERIES (32-bit mask)

Indicates which predicates support subqueries. Valid returned values are:

¢ SQL_SQ_COMPARISION : The comparison predicate.

¢ SQL_SQ CORRELATE_SUBQUERIES : All predicates that support
subqueries also support correlated subqueries.

* SQL_SQ_EXISTS : The exists predicate.

* SQL_SQ_IN : The in predicate.

¢ SQL_SQ _QUANTIFIED : The predicates that contains a quantification
scalar function.

SQL_SYSTEM_FUNCTIONS (32-bit mask)
Indicates which scalar system functions are supported.

The listed bit masks are used to determine which scalar system functions
are supported:

* SQL_FN_SYS_DBNAME

* SQL_FN_SYS_IFNULL

* SQL_FN_SYS_USERNAME

Note: These functions are intended to be used with the escape sequence in
ODBC.

SQL_TABLE_TERM (string)
The terminology of a database vendor for a table.

SQL_TIMEDATE_ADD_INTERVALS (32-bit mask)
Indicates whether or not the special ODBC system function
TIMESTAMPADD is supported, and, if it is, which intervals are supported.

The listed bit masks are used to determine which intervals are supported:
¢ SQL_FN_TSI_FRAC_SECOND

* SQL_FN_TSI_SECOND

* SQL_FN_TSI_MINUTE

* SQL_FN_TSI_HOUR

* SQL_FEN_TSI_DAY

* SQL_FN_TSI_WEEK

* SQL_FN_TSI_MONTH

* SQL_FN_TSI_QUARTER

* SQL_FN_TSI_YEAR

SQL_TIMEDATE_DIFF_INTERVALS (32-bit mask)
Indicates whether or not the special ODBC system function
TIMESTAMPDIFF is supported, and, if it is, which intervals are supported.

Chapter 1. CLI and ODBC functions 209

SQLGetInfo function (CLI) - Get general information

The listed bit masks are used to determine which intervals are supported:

SQL_FN_TSI_FRAC_SECOND
SQL_FN_TSIL_SECOND
SQL_FN_TSI_ MINUTE
SQL_FN_TSI_ HOUR
SQL_FN_TSI_DAY
SQL_FN_TSL WEEK
SQL_FN_TSI MONTH
SQL_FN_TSI_QUARTER
SQL_FN_TSL YEAR

SQL_TIMEDATE_FUNCTIONS (32-bit mask)
Indicates which time and date functions are supported.

The listed bit masks are used to determine which date functions are
supported:

SQL_FN_TD_CURRENT_DATE
SQL_FN_TD_CURRENT_TIME
SQL_FN_TD_CURRENT_TIMESTAMP
SQL_FN_TD_CURDATE
SQL_FN_TD_CURTIME
SQL_FN_TD_DAYNAME
SQL_FN_TD_DAYOFMONTH
SQL_FN_TD_DAYOFWEEK
SQL_FN_TD_DAYOFYEAR
SQL_FN_TD_EXTRACT
SQL_FN_TD_HOUR
SQL_FN_TD_JULIAN_DAY
SQL_FN_TD_MINUTE
SQL_FN_TD_MONTH
SQL_FN_TD_MONTHNAME
SQL_FN_TD_NOW
SQL_FN_TD_QUARTER
SQL_FN_TD_SECOND
SQL_FN_TD_SECONDS_SINCE_MIDNIGHT
SQL_FN_TD_TIMESTAMPADD
SQL_FN_TD_TIMESTAMPDIFF
SQL_FN_TD_WEEK
SQL_FN_TD_YEAR

Note: These functions are intended to be used with the escape sequence in

ODBC.
SQL_TXN_CAPABLE (16-bit integer)

Indicates whether transactions can contain DDL, DML, or both. Valid

returned values are:

¢ SQL_TC_NONE : Transactions not supported.
¢ SQL_TC_DML : Transactions can contain only DML statements (for

example, SELECT, INSERT, UPDATE and DELETE). DDL statements,
such as CREATE TABLE and DROP INDEX, that are encountered in a
transaction cause an error.

SQL_TC_DDL_COMMIT : Transactions can only contain DML
statements. DDL statements that are encountered in a transaction cause
the transaction to be committed.

SQL_TC_DDL_IGNORE : Transactions can only contain DML statements.
DDL statements that are encountered in a transaction are ignored.

210 Call Level Interface Guide and Reference Volume 2

SQLGetInfo function (CLI) - Get general information

* SQL_TC_ALL : Transactions can contain DDL and DML statements in
any order.

SQL_TXN_ISOLATION_OPTION (32-bit mask)
The transaction isolation levels that are available at the currently connected
database server.

The listed masks are used in conjunction with the flag to determine which
options are supported:

* SQL_TXN_READ_UNCOMMITTED

* SQL_TXN_READ_COMMITTED

* SQL_TXN_REPEATABLE_READ

* SQL_TXN_SERIALIZABLE

* SQL_TXN_NOCOMMIT

* SQL_TXN_VERSIONING

For descriptions of each level, see SQL_DEFAULT_TXN_ISOLATION.

SQL_UNION (32-bit mask)
Indicates if the server supports the UNION operator. Valid returned values
are:
¢ SQL_U_UNION : Supports the UNION clause.
¢ SQL_U_UNION_ALL : Supports the ALL keyword in the UNION clause.

If SQL_U_UNION_ALL is set, so is SQL_U_UNION.

SQL_USER_NAME (string)
Indicates the user name that is used in a particular database. This character
string is the identifier that is specified on the SQLConnect () call.

SQL_XOPEN_CLI_YEAR (string)
Indicates the year of publication of the X/Open specification with which
the version of the driver fully complies.

SQLGetLength function (CLI) - Retrieve length of a string value

Retrieves the length of a large object value, referenced by a large object locator that
has been returned from the server (as a result of a fetch, or an SQLGetSubString()
call) during the current transaction.

Specification:

e CLI21
Syntax
SQLRETURN SQLGetLength (SQLHSTMT StatementHandle, /* hstmt =/
SQLSMALLINT LocatorCType,
SQLINTEGER Locator,
SQLINTEGER *Stringlength,
SQLINTEGER *IndicatorValue);
Function arguments
Table 95. SQLGetLength arguments
Data type Argument Use Description
SQLHSTMT StatementHandle input Statement handle. This can be any statement handle

which has been allocated but which does not
currently have a prepared statement assigned to it.

Chapter 1. CLI and ODBC functions 211

SQLGetLength function (CLI) - Retrieve length of a string value

Table 95. SQLGetLength arguments (continued)

Data type Argument Use Description

SQLSMALLINT LocatorCType input The C type of the source LOB locator. This may be:
¢ SQL_C_BLOB_LOCATOR

* SQL_C_CLOB_LOCATOR

* SQL_C_DBCLOB_LOCATOR

SQLINTEGER Locator input Must be set to the LOB locator value.

SQLINTEGER * StringLength output The length of the returned information in rgbValue in
bytes® if the target C buffer type is intended for a
binary or character string variable and not a locator
value.

If the pointer is set to NULL then the SQLSTATE
HY009 is returned.

SQLINTEGER * IndicatorValue output Always set to zero.
Note:
a This is in characters for DBCLOB data.

Usage

SQLGetLength() can be used to determine the length of the data value represented
by a LOB locator. It is used by applications to determine the overall length of the
referenced LOB value so that the appropriate strategy to obtain some or all of the
LOB value can be chosen. The length is calculated by the database server using the
server code page, and so if the application code page is different from the server
code page, then there may be some complexity in calculating space requirements
on the client. The application will need to allow for code page expansion if any is
needed.

The Locator argument can contain any valid LOB locator which has not been
explicitly freed using a FREE LOCATOR statement nor implicitly freed because the
transaction during which it was created has ended.

The statement handle must not have been associated with any prepared statements
or catalog function calls.

Return codes

+ SQL_SUCCESS

+ SQL_SUCCESS_WITH_INFO
+ SQL_STILL_EXECUTING

* SQL_ERROR

* SQL_INVALID_HANDLE

Diagnostics
Table 96. SQLGetLength SQLSTATEs
SQLSTATE Description Explanation
07006 Invalid conversion. The combination of LocatorCType and Locator is not valid.
40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.
58004 Unexpected system failure. Unrecoverable system error.

212 Call Level Interface Guide and Reference Volume 2

SQLGetLength function (CLI) - Retrieve length of a string value

Table 96. SQLGetLength SQLSTATEs (continued)

SQLSTATE

Description Explanation

HY001

Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information about process-level memory limitations.

HY003

Program type out of range. LocatorCType is not one of SQL_C_CLOB_LOCATOR,

SQL_C_BLOB_LOCATOR, or SQL_C_DBCLOB_LOCATOR.

HY009

Invalid argument value. Pointer to StringLength was NULL.

HY010

Function sequence error. The specified StatementHandle is not in an allocated state.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

HY013

Unexpected memory handling DB2 CLI was unable to access memory required to support

error.

execution or completion of the function.

HYCO00

Driver not capable. The application is currently connected to a data source that does

not support large objects.

0F001

The LOB token variable does not The value specified for Locator has not been associated with a LOB
currently represent any value. locator.

Restrictions

This function is not available when connected to a DB2 server that does not
support large objects. Call SQLGetFunctions() with the function type set to
SQL_API_SQLGETLENGTH and check the fExists output argument to determine if
the function is supported for the current connection.

Example

/* get the length of the whole CLOB data */
cTiRC = SQLGetLength(hstmtLocUse,
SQL_C_CLOB_LOCATOR,
clobloc,
&cloblLen,
&ind);

SQLGetPosition function (CLI) - Return starting position of string

Returns the starting position of one string within a LOB value (the source).

The source value must be a LOB locator, the search string can be a LOB locator or
a literal string.

Specification:
« CLI2.1

The source and search LOB locators can be any that have been returned from the
database from a fetch or a SQLGetSubString() call during the current transaction.

Chapter 1. CLI and ODBC functions 213

SQLGetPosition function (CLI) - Return starting position of string

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLGetPositionW(). For information
about ANSI to Unicode function mappings, refer to “Unicode functions (CLI)” on

page 5.

Syntax
SQLRETURN

SQLGetPosition

Function arguments
Table 97. SQLGetPosition arguments

(SQLHSTMT

SQLSMALLINT
SQLINTEGER
SQLINTEGER
SQLCHAR
SQLINTEGER
SQLUINTEGER
SQLUINTEGER
SQLINTEGER

StatementHandle, /* hstmt */
LocatorCType,

Sourcelocator,

SearchlLocator,

*SearchLiteral,
SearchLiterallength,
FromPosition,

*LocatedAt,

xIndicatorValue);

Data type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement handle. This can be any statement handle
which has been allocated but which does not
currently have a prepared statement assigned to it.

SQLSMALLINT

LocatorCType

input

The C type of the source LOB locator. This can be:
* SQL_C_BLOB_LOCATOR

* SQL_C_CLOB_LOCATOR

* SQL_C_DBCLOB_LOCATOR

SQLINTEGER

Locator

input

Locator must be set to the source LOB locator.

SQLINTEGER

SearchLocator

input

If the SearchLiteral pointer is NULL and if
SearchLiteralLength is set to 0, then SearchLocator must
be set to the LOB locator associated with the search
string; otherwise, this argument is ignored.

SQLCHAR *

SearchLiteral

input

This arg