IBM DB2 10.1
for Linux, UNIX, and Windows

Database Monitoring Guide and
Reference

<||I

IBM DB2 10.1
for Linux, UNIX, and Windows

Database Monitoring Guide and
Reference

..ll

Note
Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on
page 1557.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
¢ To order publications online, go to the IBM Publications Center at http://www.ibm.com/shop/publications/
order

* To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at http://www.ibm.com/
planetwide/

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2012.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

Contents

About this book

. XXV

Part 1. Interfaces for database
monitoring1
Chapter 1. Database monitoring . 3
Chapter 2. Table functions for
monitoring5
Monitoring system 1nformat10n using table functlons 5
Monitoring activities using table functions .6
Monitoring data objects using table functions .7
Object usage . .8
Monitoring locking using table functlons .12
Monitoring system memory using table functrons .12
Other monitoring table functions . .13
Interfaces that return monitor data in XML
documents. . .13
Interfaces for v1ew1ng XML monrtor 1nformat10n
as formatted text .17
Chapter 3. Event monitors . 27
Types of events for which event monitors capture
data . .27
Working with event monltors .32
Creating event monitors . . .33
Displaying a list of event momtors created in
your database . 113
Event monitors for part1t10ned databases and
databases in a DB2 pureScale environment . 114
Enabling event monitor data collection . . 116
Methods for accessing event monitor
information . S . 118
Altering an event monitor . . 128
Monitoring different types of events. . 129
Lock and deadlock event monitoring . 129
Unit of work event monitoring . . 163
Package cache statement eviction event
monitoring . e . 216
Activity event monitoring . . . 253
Capturing system metrics using the statlstlcs
event monitor . .o . 272
Database event monitoring . . . 334
Threshold violation event monitoring . 342
Statement event monitoring . 343
Table event monitoring . . 348
Buffer pool event monitoring . . 350
Table space event monitoring . . 352
Connection event monitoring . . 354
Transaction event monitoring . . 360
Deadlock event monitoring. . 362
Change history event monitoring . . . 366
Event monitor data retention from release to
release. . 403

© Copyright IBM Corp. 2012

Chapter 4. Other monitoring interfaces 405
Reports generated using the MONREPORT module 405

Customizing the MONREPORT module reports 408
Snapshot monitor . .. 410
Access to system mon1tor data SYSMON
authority . .41
Capturing database system snapshots by usmg
snapshot administrative views and table
functions . . 411
Capturing database system snapshot
information to a file using the
SNAP_WRITE_FILE stored procedure . . 414
Accessing database system snapshots using
snapshot table functions in SQL queries (with
file access) . . 416
Snapshot monitor SQL Admrnrstratrve Vrews 417
SQL access to database system snapshots . . 420
Capturing a database snapshot from the CLP 421
Snapshot monitor CLP commands . 422
Capturing a database snapshot from a client
application . . 424
Snapshot monitor API request types . 425
Snapshot monitor sample output . . 428
Subsection snapshots . . . 429
Global snapshots on partitioned database
systems . .. 430
Snapshot monitor self descrlbrng data stream 431
Monitoring with db2top in interactive mode
commands .o . 433
Switch-based monitoring concepts . 438
System monitor switches . . 438
Database system monitor data organlzatron . 444
Counter status and visibility . 445
System monitor output: the self- descrlbmg data
stream. . 446
Memory requlrements for mon1tor data . 447
Monitoring buffer pool activity . 449
Database system monitor interfaces . . 451
Determining the date a database object was last
used . 453
Chapter 5. Deprecated monitoring
tools . . . 455
Introduction to the health monitor . 455
Health indicators . . 455
Enabling health alert notrfrcatron . 488
Health monitor . . 490
Introduction to Windows Management
Instrumentation (WMI) . . . 510
DB2 database system integration wrth Wrndows
Management Instrumentation . . 511

Performance monitoring on Windows platforms 512

Part 2. Monitor elements 517

iii

Chapter 6. Request monitor elements 519
Activity monitor elements . . 520
Chapter 7. Data object monitor
elements . 523
Chapter 8. Monitor element collection
levels. . 525
Chapter 9. Time-spent monitor
elements C e e . 529
Time-spent monitor element h1erarchy . 530
Wait times for FCM communications . 537
Retrieving and working with time- spent monltor
element data . 539
Seeing where time is spent across the system 539
Determining where time is spent during SQL
statement execution . 543
Chapter 10. Logical data groups
overview 547
Event monitor loglcal data groups and monitor
elements . . . 547
Event type mapplngs to loglcal data groups . . 596
Logical data groups affected by COLLECT
ACTIVITY DATA settings . . 598
Snapshot monitor interface mappmgs to loglcal
data groups . . . 599
Snapshot monitor loglcal data groups and monltor
elements . . 603
Chapter 11. Monitor element reference 635
acc_curs_blk - Accepted Block Cursor Requests . . 636
act_aborted_total - Total aborted activities monitor
element .o . . 636
act_completed_total - Total completed act1v1t1es
monitor element . 637
act_cpu_time_top — Act1v1ty CPU t1me top monltor
element . . . 638
act_exec_time - Act1v1ty executlon t1me momtor
element . . 639
act_rejected_total - Total re]ected act1v1t1es monltor
element .o . 640
act_remapped_in — Act1v1t1es remapped n monrtor
element . . 641
act_remapped_ out - Act1v1t1es remapped out
monitor element .o . . 641
act_rows_read_top — Activity rows read top
monitor element . . . 641
act_rqsts_total - Total act1V1ty requests monltor
elements . . 642
act_throughput - Act1v1ty throughput mon1tor
element .o . . 643
act_total - Activities total monltor element . 643
activate_timestamp - Activate tlmestamp monitor
element . . 644
active_hash_joins - Actlve hash]oms . 644
active_olap_funcs - Active OLAP Functions
monitor element . 644

1V Database Monitoring Guide and Reference

active_sorts - Active Sorts .
activity_collected - Activity collected momtor
element . .
activity_id - Act1V1ty ID monltor element .
activity_secondary_id - Activity secondary ID
monitor element

activity_state - Activity state monltor element
activity_type - Activity type monitor element.
activitytotaltime_threshold_id - Activity total time
threshold ID monitor element .
activitytotaltime_threshold_value - Act1v1ty total
time threshold value monitor element . .
activitytotaltime_threshold_violated - Activity total
time threshold violated monitor element
adapter_name - Adapter name monitor element
address - IP address from which the connection
was initiated

agent_id - Application handle (agent ID) mon1tor
element

agent_id holdlng lock Agent ID Holdmg Lock
agent_pid - Engine dispatchable unit (EDU)
identifier monitor element . . .
agent_status - DCS Application Agents
agent_sys_cpu_time - System CPU Time used by
Agent . .

agent_tid - Agent thread ID mon1tor element
agent_usr_cpu_time - User CPU Time used by
Agent .

agent_wait_time - Agent wa1t t1me mon1tor
element . .
agent_waits_total - Total agent walts monltor
element

agents_created empty pool Agents Created Due
to Empty Agent Pool . .o
agents_from_pool - Agents A551gned From Pool
agents_registered - Agents Registered
agents_registered_top - Maximum Number of
Agents Registered . .o

agents_stolen - Stolen Agents .

agents_top - Number of Agents Created
agents_waiting_on_token - Agents Waiting for a
Token .

agents_waiting_ top Max1mum Number of Agents

Waiting monitor element
agg_temp_tablespace_top - Aggregate temporary
table space top monitor element . .
aggsqltempspace_threshold_id - Aggregate SQL
temporary space threshold ID monitor element .
aggsqltempspace_threshold_value - AggSQL
temporary space threshold value monitor element
aggsqltempspace_threshold_violated - AggSQL
temporary space threshold violated monitor
element

app_act_ aborted total Total fa1led external
coordinator activities monitor element .

app_act_completed_total - Total successful external

coordinator activities monitor element .
app_act_rejected_total - Total rejected external
coordinator activities monitor element .
appl_action - Application action monitor element

. 644

. 645
. 645

. 646
. 647
. 647

. 648

. 648

. 649

649

. 649

. 650

651

. 652
. 652

. 653
. 653

. 653

. 654

. 655

. 656

657

. 657

. 658
. 658
. 658

. 659

. 659

. 660

. 660

. 661

. 661

. 661

. 662

. 664

665

app_rqsts_completed_total - Total application
requests completed monitor element.
appl_con_time - Connection Request Start
Timestamp

appl_id - Apphcatlon ID mon1tor element

. 665

. 666
. 666

appl_id_holding_lk - Application ID Holding Lock 668

appl_id_oldest_xact - Application with Oldest
Transaction . . .
appl_idle_time - Appllcatlon ldle T1me
appl_name - Application name monitor element
appl_priority - Application Agent Priority .
appl_priority_type - Application Priority Type
appl_section_inserts - Section Inserts monitor
element .

appl_section lookups - Sectlon Lookups
appl_status - Application status monitor element
application_handle - Application handle monitor
element

appls_cur_cons - Appl1cat1ons Connected Currently

appls_in_db2 - Applications Executmg in the
Database Currently .o
arm_correlator - Application response
measurement correlator monitor element .
associated_agents_top - Maximum Number of
Associated Agents.

async_read_time - Asynchronous read t1me
monitor element - -
async_write_time - Asynchronous wr1te time
monitor element .. .
async_runstats — Total number of asynchronous
RUNSTATS requests monitor element .
audit_events_total - Total audit events monitor
element .

audit_file_write wa1t t1me Aud1t flle wr1te wa1t
time monitor element. .
audit_file_writes_total - Total audlt flles ertten
monitor element

audit_subsystem_wait_ tlme Aud1t subsystem wa1t
. 683

time monitor element. .
audit_subsystem_waits_total - Total aud1t
subsystem waits monitor element

auth_id - Authorization ID .

authority_bitmap - User authorization level
monitor element . .
authority_lvl - User author1zat1on level mon1tor
element

auto_storage_ hybrld Hybrld automatlc storage
table space indicator monitor element .

automatic - Buffer pool automatic monitor element

backup_timestamp - Backup timestamp .
bin_id - Histogram bin identifier monitor element

binds_precompiles - Binds/Precompiles Attempted

block_ios - Number of block I/O requests monitor
element -

blocking_cursor - Blocl(mg Cursor
blocks_pending_cleanup - Pending cleanup
rolled-out blocks monitor element

bottom - Histogram bin bottom monitor element
boundary_leaf_node_splits - Boundary leaf node
splits monitor element

bp_cur_buffsz - Current Size of Buffer Pool

. 669
. 670

670

. 671
. 672

. 672
. 673

673

. 675
677

. 677

. 677

. 678

. 678

. 678

. 678

. 679

. 680

. 682

. 685
. 686

. 687

. 688

. 689
689

. 689

690
690

. 690
. 691

. 692

692

. 693
. 693

bp_id - Buffer pool identifier monitor element
bp_name - Buffer pool name monitor element
bp_new_buffsz - New Buffer Pool Size .
bp_pages_left_to_remove - Number of Pages Left
to Remove

bp_tbsp_use_ count Number of Table Spaces
Mapped to Buffer Pool .

buff_auto_tuning - FCM buffer auto tun1ng
indicator monitor element .

buff_free - FCM Bulffers Currently Free .
buff_free_bottom - Minimum FCM Buffers Free
buff_max - Maximum possible number of FCM
buffers monitor element . .
buff_total - Number of currently allocated FCM
buffers monitor element . . .
byte_order - Byte Order of Event Data .
cached_timestamp - Cached timestamp monitor
element . ..
cat_cache_inserts - Catalog cache 1nserts m0n1tor
element

cat_cache_lookups - Catalog cache lookups momtor
. 699

element .
cat_cache_ overﬂows Catalog Cache Overflows

cat_cache_size_top - Catalog cache high watermark

monitor element .
catalog_node - Catalog Node Number .
catalog_node_name - Catalog Node Network
Name .

cf_waits - Number of cluster cachmg fac1lrty wa1ts
monitor element .

cf_wait_time - cluster cachmg fac1l1ty wa1t t1me
monitor element .

cfg_collection_type - Conf1gurat1on collect1on type
cfg_name - Configuration name . .
cfg_old_value - Configuration old value

cfg_old_value_flags - Configuration old value flags

cfg_value - Configuration value .
cfg_value_flags - Configuration value flags
ch_auto_tuning - FCM channel auto-tuning
indicator monitor element .

ch_free - Channels Currently Free
ch_free_bottom - Minimum Channels Free.
ch_max - Maximum possible number of FCM
channels monitor element . .

ch_total - Number of currently allocated FCM
channels monitor element . . .
client_acctng - Client accounting strmg monltor
element

client applname Cl1ent appl1cat10n name monltor

element .
client_db_alias - Database Al1as Used by
Application .

client_hostname - Cl1ent hostname mon1tor element

client_idle_wait_time - Client idle wait time
monitor element .. .
client_nname - Client name monrtor element
client_pid - Client process ID monitor element

element .
client_port_number - Chent port number momtor
element

Contents

. 693
. 693
. 694
. 694
. 694

. 695
. 695

695

. 696

. 696
. 697

. 697

. 698

700

. 701
. 702

. 702

. 703

. 703
704

. 704

. 705
705

. 706
. 706

. 707
. 707
. 707
. 708
. 708
. 709
. 710

.71

711

. 712
. 713
. 713
client_platform - Client operating platform monitor

. 714

. 715

A\

client_prdid - Client product and version ID
monitor element .o

client_protocol - Client communlcatlon protocol
monitor element -

client_userid - Client user ID rnonltor element
client_wrkstnname - Client workstation name
monitor element

codepage_id - ID of Code Page Used by
Application .

comm_exit_wait_ trme Communrcatron buffer ex1t
wait time monitor element .

comm_exit_waits - Communication buffer ex1t
number of waits monitor element .
comm_private_mem - Committed Private Memory
commit_sql_stmts - Commit Statements Attempted
comp_env_desc - Compilation environment
monitor element .. .
completion_status - Completron status momtor
element . .
configured_cf gbp size - Conflgured cluster
caching facility group buffer pool size monitor
element . .
configured_cf lock size - Conf1gured cluster
caching facility lock size monitor element .
configured_cf_sca_size - Configured cluster caching
facility shared communications area size monitor
element -

configured_cf_mem_size - Conflgured cluster
caching facility memory size monitor element
con_elapsed_time - Most Recent Connection
Elapsed Time

con_local_dbases - Local Databases w1th Current
Connects . . .
con_response_time - Most Recent Response Tlme
for Connect . .
concurrent_act_top - Concurrent act1V1ty top
monitor element . .
concurrent_connection_top - Concurrent connect1on
top monitor element . .
concurrent_wlo_act_top - Concurrent WLO actlvrty
top monitor element . .
concurrent_wlo_top - Concurrent workload
occurrences top monitor element . . .
concurrentdbcoordactivities_db_ threshold 1d -
Concurrent database coordinator activities database
threshold ID monitor element . .
concurrentdbcoordactivities_db_threshold queued
- Concurrent database coordinator activities
database threshold queued monitor element .
concurrentdbcoordactivities_db_ threshold_value -
Concurrent database coordinator activities database
threshold value monitor element . .
concurrentdbcoordactivities_db_ threshold V1olated
- Concurrent database coordinator activities
database threshold violated monitor element .
concurrentdbcoordactivities_subclass_ threshold_id
- Concurrent database coordinator activities service
subclass threshold ID monitor element .

Vi Database Monitoring Guide and Reference

. 715

. 716
. 717

. 717

. 718

. 719

. 720

721
721

. 722

. 722

. 723

. 723

. 723

. 724

. 724

. 724

. 725

. 725

. 726

. 726

. 727

. 727

. 728

. 728

. 729

. 729

concurrentdbcoordactivities_subclass_
threshold_queued - Concurrent database
coordinator activities service subclass threshold
queued monitor element .
concurrentdbcoordactivities_: subclass
threshold_value - Concurrent database coordinator
activities service subclass threshold value monitor
element -

concurrentdbcoordact1V1t1es subclass
threshold_violated - Concurrent database
coordinator activities service subclass threshold
violated monitor element .
concurrentdbcoordactivities_superclass_
threshold_id - Concurrent database coordinator
activities service superclass threshold ID monitor
element

concurrentdbcoordact1v1t1es superclass
threshold_queued - Concurrent database
coordinator activities service superclass threshold
queued monitor element .
concurrentdbcoordactivities superclass
threshold_value - Concurrent database coordinator
activities service superclass threshold value
monitor element .. .
concurrentdbcoordactivities superclass
threshold_violated - Concurrent database
coordinator activities service superclass threshold
violated monitor element . .
concurrentdbcoordactivities_wl_was_ threshold _id
- Concurrent database coordinator activities
workload work action set threshold ID monitor
element

concurrentdbcoordact1v1t1es wl _was_ threshold
_queued - Concurrent database coordinator
activities workload work action set threshold
queued monitor element .
concurrentdbcoordactivities_wl_was threshold
_value - Concurrent database coordinator activities
workload work action set threshold value monitor
element .

concurrentdbcoordact1v1t1es wl _was_ threshold
_violated - Concurrent database coordinator
activities workload work action set threshold
violated monitor element .
concurrentdbcoordactivities_work_. actlon set
threshold_id - Concurrent database coordinator
activities work action set threshold ID monitor
element .

concurrentdbcoordact1v1t1es work act1on set
threshold_queued - Concurrent database
coordinator activities work action set threshold
queued monitor element .
concurrentdbcoordactivities_work_. act1on set
threshold_value - Concurrent database coordinator
activities work action set threshold value monitor
element .

concurrentdbcoordact1V1t1es work actlon set
threshold_violated - Concurrent database
coordinator activities work action set threshold
violated monitor element

. 729

. 730

. 730

. 731

. 731

. 731

. 732

. 732

. 733

. 733

. 734

. 734

. 734

. 735

. 735

conn_complete_time - Connection Request
Completion Timestamp . S
conn_time - Time of database connect1on monitor
element

connection_start_ t1me Connectlon start t1me
monitor element .. .
connection_status - Connect1on Status .
connections_top - Maximum Number of
Concurrent Connections .

consistency_token - Package cons1stency token
monitor element . .
container_accessible - Access1b111ty of contamer
monitor element .. .
container_id - Container 1dent1f1cat10n monrtor
element

container_name - Contamer name mon1tor element

container_stripe_set - Container strlpe set monitor
element . ..
container total_pages Total pages in contamer
monitor element

container_type - Container type monltor element

container_usable_pages - Usable pages in container

monitor element .o
coord_act_aborted_total - Coordmator actrvrtres
aborted total monitor element . .
coord_act_completed_total - Coordinator act1v1t1es
completed total monitor element .
coord_act_est_cost_avg - Coordinator act1V1ty
estimated cost average monitor element
coord_act_exec_time_avg - Coordinator activities
execution time average monitor element
coord_act_interarrival_time_avg - Coordinator
activity arrival time average monitor element
coord_act_lifetime_avg - Coordinator activity
lifetime average monitor element. .
coord_act_lifetime_top - Coordinator activity
lifetime top monitor element .
coord_agent_tid - Coordinator agent engine
dispatchable unit ID monitor element
coord_act_queue_time_avg - Coordinator activity
queue time average monitor element .
coord_act_rejected_total - Coordinator activities
rejected total monitor element . . .
coord_agent_pid - Coordinator agent 1dent1f1er
monitor element .

coord_agents_top - Max1mum Number of
Coordinating Agents . .

coord_member - Coordinator member monrtor
element

coord_node - Coordinating Node.
coord_partition_num - Coordinator partition
number monitor element .
coord_stmt_exec_time - Execution t1me for
statement by coordinator agent monitor element
corr_token - DRDA Correlation Token .
cost_estimate_top - Cost estimate top monitor
element
count - Number of Event Monitor Overflows.
cpu_configured - Number of configured CPUs
monitor element

. 735

. 736

. 736
. 736

. 737

. 738

. 738

. 739
739

. 739

. 740

740

. 741

. 741

. 742

. 742

. 743

. 744

. 745

. 746

. 747

. 747

. 748

. 748

. 749

. 749
. 750

. 750

. 751
. 751

. 752
. 752

. 753

cpu_cores_per_socket - Number of CPU cores per
socket monitor element . .

cpu_hmt_degree - Number of loglcal CPUs
monitor element .
cpu_idle - Processor idle t1me monrtor element .
cpu_iowait - IO Wait time monitor element
cpu_limit - WLM dispatcher CPU limit monitor
element .o

cpu_load_long - Processor load (long trmeframe)
monitor element .

cpu_load_medium - Processor load (med1um
timeframe) monitor element .
cpu_load_short - Processor load (short tlmeframe)
monitor element .

cpu_online - Number of CPUs onlme mon1tor
element

cpu_share type WLM drspatcher CPU share type
monitor element

cpu_shares - WLM d1spatcher CPU shares m0n1tor
element .
cpu_speed - CPU clock speed monrtor element .
cpu_system - Kernel time monitor element
cpu_timebase - Frequency of timebase register
increment monitor element .

cpu_total - Number of CPUs monrtor element

cpu_usage_total - Processor usage monitor element

cpu_user - Non-kernel processing time monitor
element ..

cpu_utilization - CPU utrhzatron monltor element
cpu_velocity - CPU velocity monitor element.
cputime_threshold_id - CPU time threshold ID
monitor element

cputime_threshold Value CPU t1me threshold
value monitor element
cputime_threshold_violated - CPU t1me threshold
violated monitor element .
cputimeinsc_threshold_id - CPU t1me in service
class threshold ID monitor element .

cputimeinsc_threshold_value - CPU time in service

class threshold value monitor element .
cputimeinsc_threshold_violated - CPU time in
service class threshold violated monitor element.
create_nickname - Create Nicknames

create_nickname_time - Create Nickname Response
. 763
. 763

Time

creator - Appl1cat10n Creator
current_cf_gbp_size - Current cluster cachmg
facility group buffer pool size monitor element .
current_cf_lock_size - Current cluster caching
facility lock size monitor element. .
current_cf_sca_size - Current cluster caching
facility shared communications area size monitor
element .

current_cf_mem_size - Current cluster cachmg
facility memory size monitor element
current_active_log - Current Active Log File
Number . . .
current_archive_log - Current Arch1ve Log Flle
Number . .

current_extent - Extent currently be1ng moved
monitor element

Contents

. 753
. 753
. 753
. 754
. 755

. 755

. 755

. 756

. 756

. 756

. 756
. 756
. 757

. 757
. 758

758

. 758

759

. 760

. 760

. 761

. 761

. 761

. 762

. 762

. 762

. 764

. 764

. 764

. 764

. 765

. 765

. 766

vii

current_request - Current operation request
monitor element

cursor_name - Cursor Name .
data_object_pages - Data Object Pages .
data_object_l_pages - Table data logical pages
monitor element .o

data_partition_id - Data part1t1on 1dent1f1er mon1tor
element .o .
datasource_name - Data Source Name .
datataginsc_threshold_id - Data tag in service class
threshold (IN condition) ID.
datataginsc_threshold_value - Data tag in service
class threshold (IN condition) value .
datataginsc_threshold_violated - Data tag in service
class threshold (IN condition) violated .
datatagnotinsc_threshold_id - Data tag in service
class threshold (NOT IN condition) ID .
datatagnotinsc_threshold_value - Data tag in
service class threshold (NOT IN condition) value
datatagnotinsc_threshold_violated - Data tag in
service class threshold (NOT IN condition) violated
db2_process_id - DB2 process ID monitor element
db2_process_name - DB2 process name monitor
element .

db2_status - Status of DBZ 1nstance momtor
element

db2start_time - Start Database Manager T1mestamp
db_conn_time - Database activation timestamp
monitor element

db_heap_top - Max1mum Database Heap Allocated
db_location - Database Location . .o
db_name - Database name monitor element .
db_path - Database Path. . .
db_status - Status of database monitor element .
db_storage_path - Automatic storage path monitor
element .

db storage_path 1d Storage path 1dent1f1er .
db_storage_path_state - Storage path state monitor
element

db_storage_; path w1th dpe Storage path
including database partition expression monitor
element .

db_work_action_ set 1d Database work actlon set
ID monitor element

db_work_class_id - Database work class ID
monitor element .o .
dbpartitionnum - Database part1t10n number
monitor element

dcs_appl_status - DCS appllcatlon status mon1tor
element

dcs_db_name - DCS Database Name
ddl_classification - DDL classification .
ddl_sql_stmts - Data Definition Language (DDL)
SQL Statements. .o
deadlock_id - Deadlock Event ldent1f1er
deadlock_member - Deadlock member monitor
element L.
deadlock_node - Partition Number Where
Deadlock Occurred .
deadlock_type - Deadlock type mon1tor element
deadlocks - Deadlocks detected monitor element

viili Database Monitoring Guide and Reference

. 766
. 766
. 766

. 767

. 767
. 768

. 769

. 769

. 769

. 770

. 770

770
771

. 771

. 771
772

. 772
773

. 773
. 773
. 774
. 775

. 775
. 776

. 776

. 777
. 777
. 778
. 778
. 780
. 780
. 780

. 781
. 782

. 782

. 783

783
783

deferred - Deferred ..
degree_parallelism - Degree of Parallehsm
del_keys_cleaned - Pseudo deleted keys cleaned
monitor element

delete_sql_stmts - Deletes .

delete_time - Delete Response Time . ..
destination_service_class_id — Destination service
class ID monitor element

device_type - Device type . . .
diaglog_write_wait_time - D1agnost1c log ﬁle wr1te
wait time monitor element . .
diaglog_writes_total - Total dlagnostlc log flle
writes monitor element . . .
direct_read_reqs - Direct read requests mon1tor
element .

direct_read_time - D1rect read t1me monltor
element
direct_reads -
element ..
direct_write _reqs - D1rect wr1te requests monitor
element .
direct_write_time - D1rect wr1te t1me mon1tor
element .

direct_writes - Direct ertes to database mon1tor
element .
disabled_peds - D1sabled part1al early d1st1ncts
monitor element -

disconn_time - Database Deactlvatlon T1mestamp
disconnects - Disconnects

dl_conns - Connections involved in deadlock
monitor element

dynamic_sql_stmts - Dynamlc SQL Statements
Attempted

edu_ID - Engine d1spatchable un1t ID momtor
element -

eff_stmt_text - Effectrve statement text momtor
element . .
effective_isolation - Effect1ve 1solat1on mon1tor
element ..

effective_lock_ trmeout Effectwe lock trmeout
monitor element . R
effective_query_degree - Effect1ve query degree
monitor element ..

elapsed_exec_time - Statement Executlon Elapsed
Time

empty_ pages deleted Empty pages deleted
monitor element .
empty_pages_reused - Empty pages reused
monitor element

entry_time - Entry time mon1tor element .
estimated_cpu_entitlement - Estimated CPU
entitlement monitor element
estimatedsqlcost_threshold_id - Est1mated SQL cost
threshold ID monitor element .
estimatedsqlcost_threshold_value - Estlmated SQL
cost threshold value monitor element .
estimatedsqlcost_threshold_violated - Est1mated
SQL cost threshold violated monitor element.
event_id - Event ID monitor element
event_monitor_name - Event Monitor Name .
event_time - Event Time.

Direct reads from database monitor

. 785
. 785

. 786
. 786
. 786

. 787
. 787

. 788

. 789

. 790

. 792

. 794

. 796

. 798

. 800

. 802

803

. 803

. 804

. 804

. 805

. 805

. 805

. 806

. 806

. 806

. 807

. 807
. 808

. 808

. 808

. 809

. 809
. 810
. 811
. 811

event_timestamp - Event timestamp monitor
element ..
event_type - Event Type monrtor element
evmon_activates - Number of event monitor
activations
evmon_wait_time - Event monrtor wa1t t1me
monitor element .
evmon_waits_total - Event mon1t0r total wa1ts
monitor element .. .
executable_id - Executable ID monrtor element .
executable_list_size - Size of executable list monitor
element -
executable_list_ truncated Executable llst truncated
monitor element .
evmon_flushes - Number of Event Mon1tor Flushes
executable_id - Executable ID monitor element .
execution_id - User Login ID .
failed_sql_stmts - Failed Statement Operatrons
fem_congested_sends - FCM congested sends
monitor element .o .
fem_congestion_time - FCM congest10n t1me
monitor element .
fem_num_congestion_ t1meouts FCM congest10n
timeouts monitor element ..
fcm_num_conn_lost - FCM lost connectlons
monitor element .
fcm_num_conn_timeouts - FCM connect10n
timeouts monitor element .
fcm_message_recv_volume - FCM message
received volume monitor element .
fcm_message_recv_wait_time - FCM message
received wait time monitor element . ..
fcm_message_recvs_total - Total FCM message
receives monitor element .
fcm_message_send_volume - FCM message send
volume monitor element
fcm_message_send_wait_time - FCM message send
wait time monitor element . . .
fem_message_sends_total - Total FCM message
sends monitor element ..
fcm_recv_volume - FCM received Volume monltor
element -
fcm_recv_wait_time - FCM recelved walt t1me
monitor element
fecm_recvs_total - FCM receives total mon1tor
element -
fcm_send_volume - FCM send Volume monltor
element ..
fcm_send_wait_time - FCM send wa1t t1me monrtor
element -
fcm_sends_total - FCM sends total monltor element
fcm_tq_recv_volume - FCM table queue received
volume monitor element .
fem_tq_recv_wait_time - FCM table queue recelved
wait time monitor element . .
fem_tq_recvs_total - FCM table queue receives total
monitor element .
fem_tq_send_volume - FCM table queue send
volume monitor element .
fem_tq_send_wait_time - FCM table queue send
wait time monitor element .

. 811
. 812

. 813

. 814

. 816
. 818

. 819

. 819
819

. 820
. 820
. 821
. 821
. 822
. 822
. 822
. 823
. 823

. 824

. 826

. 827

. 828

. 830

. 831

. 832

. 834

. 835

. 836
838

. 839

. 840

. 842

. 843

. 844

fem_tq_sends_total - FCM table queue send total

monitor element

fetch_count - Number of Successful Fetches

files_closed - Database files closed monitor element
. 848

first_active_log - First Active Log File Number .
first_overflow_time - Time of First Event Overflow

fs_caching - File system

caching monitor element

fs_id - Unique file system identification number

monitor element
fs_total_size - Total size
element

of a frle system mon1tor

fs_used_size - Amount of space used on a flle

system monitor element .

global_transaction_id - Global transactron 1dent1f1er

monitor element

gw_comm_error_time - Communlcatlon Error Tlme
. 852

gw_comm_errors - Communication Errors.
gw_con_time - DB2 Connect Gateway First

Connect Initiated .

gw_connections_top - Max1mum Number of

Concurrent Connections

to Host Database.

gw_cons_wait_client - Number of Connections
Waiting for the Client to Send Request .
gw_cons_wait_host - Number of Connections
Waiting for the Host to Reply .

gw_cur_cons - Current Number of Connect1ons for

DB2 Connect
gw_db_alias - Database
gw_exec_time - Elapsed

Alras at the Gateway
Time Spent on DB2

Connect Gateway Processing .

gw_total_cons - Total Number of Attempted
Connections for DB2 Connect .
hadr_connect_status - HADR Connectron Status

monitor element

hadr_connect_time - HADR Connectlon T1me

monitor element

hadr_heartbeat - HADR Heartbeat monrtor element

hadr_local_host - HADR Local Host monitor

element

hadr_local_service - HADR Local Servrce momtor

element

hadr_log_gap - HADR Log Gap . .
hadr_peer_window - HADR peer window monltor

element

hadr_peer_ wmdow end HADR peer w1ndow end
. 859

monitor element
hadr_primary_log_file -
monitor element
hadr_primary_log_Isn -
monitor element

hadr_primary_log_page - HADR Prrmary Log Page

monitor element

HADR Prlmary Log Flle

HADR Pr1mary Log LSN

hadr_remote_host - HADR Remote Host m0n1t0r

element

hadr_remote_ 1nstance HADR Remote Instance

monitor element

hadr_remote_service - HADR Remote Serv1ce

monitor element

hadr_role - HADR Role .

hadr_standby_log_file -
monitor element

HADR Standby Log F1le

Contents

. 846
. 847

848

849
849

. 850

. 850

. 851

. 851
852

. 852

. 852

. 853

. 853

. 854
. 854

. 854

. 855

. 855

. 856
857

. 857

. 858

. 858

. 859

. 860

. 860

. 861

. 861

. 862

. 862
. 863

. 863

ix

hadr_standby_log_Isn - HADR Standby Log LSN
monitor element
hadr_standby_log_page - HADR Standby Log Page
monitor element
hadr_state - HADR State monltor element
hadr_syncmode - HADR Synchronization Mode
monitor element .
hadr_timeout - HADR Timeout mon1tor element
hash_join_overflows - Hash Join Overflows
hash_join_small_overflows - Hash Join Small
Overflows
histogram_type - Hlstogram type monltor element
hld_application_handle - Identifier for the
application holding the lock monitor element.
hld_member - Database member for application
holding lock.
host_ccsid - Host Coded Character Set ID
host_db_name - Host Database Name .
hostname - Host name monitor element
host_name - Host name monitor element .
host_prdid - Host Product/Version ID .
host_response_time - Host Response Time.

- cluster caching facility identification monitor
element
idle_agents - Number of Idle Agents
iid - Index identifier monitor element .
inbound_bytes_received - Inbound Number of
Bytes Received . .
inbound_bytes_sent - Inbound Number of Bytes
Sent
inbound_comm_ address Inbound Communicatlon
Address . .
include_col updates Include column updates
monitor element .
incremental_bind - Incremental bmd monltor
element ..
index_jump_scans - Index]ump scans monitor
element .
index_name - Index name monltor element
index_schema - Index schema monitor element .
index_object_pages - Index Object Pages
index_object_l_pages - Index data logical pages
monitor element - .
index_only_scans - Index- only scans monltor
element .
index_scans - Index scans monitor element
index_tbsp_id - Index table space ID monitor
element .
input_db_alias - Input Database Alias .
insert_sql_stmts - Inserts
insert_time - Insert Response Time .
insert_timestamp - Insert timestamp monitor
element .
int_auto_rebinds - Internal Automatic Reblnds
int_commits - Internal commits monitor element
int_deadlock_rollbacks - Internal Rollbacks Due To
Deadlock . ..
int_node_splits - Intermediate node splits momtor
element ..
int_rollbacks - Internal rollbacks monitor element
int_rows_deleted - Internal Rows Deleted .

X Database Monitoring Guide and Reference

. 864

. 864

. 864

. 865

866

. 867

. 867

868

. 869

. 869
. 869
. 870
. 870
. 871
. 871
. 871

. 872
. 872
. 873
. 873
. 873
. 874
. 874
. 874
. 874
. 875
. 875
. 875
. 876

. 876
. 876

. 877
. 877
. 877
. 878

. 878
. 879

880

. 881

. 882

882

. 884

int_rows_inserted - Internal Rows Inserted
int_rows_updated - Internal Rows Updated
intra_parallel_state - Current state of intrapartition
parallelism monitor element .
invocation_id - Invocation ID monitor element .
ipc_recv_volume - Interprocess communication
received volume monitor element
ipc_recv_wait_time - Interprocess commumcat1on
received wait time monitor element .
ipc_recvs_total - Interprocess communication
receives total monitor element. .
ipc_send_volume - Interprocess commumcation
send volume monitor element. L.
ipc_send_wait_time - Interprocess communication
send wait time monitor element . .
ipc_sends_total - Interprocess communicatlon send
total monitor element. . .
is_system_appl - Is System Application monitor
element . .
key_updates - Key updates monitor element
last_active_log - Last Active Log File Number
last_backup - Last Backup Timestamp .
last_executable_id - Last executable 1dent1f1er
monitor element R

last_extent - Last extent moved monitor element
last_metrics_update - Metrics last update
timestamp monitor element .
last_overflow_time - Time of Last Event Overflow
last_reference_time - Last reference time monitor
element .
last_request_type - Last request type monltor
element ..

last_reset - Last Reset Timestamp .o
last_updated - Last update time stamp monitor
element -

last_wlm_reset - Time of last reset monitor element
lob_object_pages - LOB Object Pages .
lob_object_l_pages - LOB data loglcal pages
monitor element - .
local_cons - Local Connections
local_cons_in_exec - Local Connections Executing
in the Database Manager .
local_start_time - Local start time momtor element
local_transaction_id - Local transaction identifier
monitor element

location - Location. .

location, _type - Location type .

lock_attributes - Lock attributes monitor element
lock_count - Lock count monitor element .
lock_current_mode - Original lock mode before
conversion monitor element .
lock_escalation - Lock escalation monitor element
lock_escals - Number of lock escalations monitor
element

lock escals_global Number of global lock
escalations monitor element

lock_escals_locklist - Number of locl(list locl(
escalations monitor element .
lock_escals_maxlocks - Number of maxlocks lock
escalations monitor element

. 884
. 885

. 886
. 886

. 887
. 888
. 889
. 890
. 891
. 892
. 893
. 893
. 893
. 894

. 894

894

. 895

895

. 895

. 895
. 896

. 897
897

. 898

. 898
. 899

. 899

900

. 900
. 900
. 901

901

. 902

. 903

904

. 905

. 907

. 909

. 910

lock_hold_count - Lock hold count monitor
element .. -
lock_list_in_use - Total lock l1st memory in use
monitor element -

lock_mode - Lock mode mon1t0r element
lock_mode_requested - Lock mode requested
monitor element . .
lock_name - Lock name mon1t0r element .
lock_node - Lock Node . . .
lock_object_name - Lock Object Name .
lock_object_type - Lock object type waited on
monitor element .

lock_release_flags - Lock release flags monrtor
element . .
lock_status - Lock status monrtor element
lock_timeout_val - Lock timeout value monitor
element - -
lock_timeouts - Number of lock t1meouts monltor
element .

lock_timeouts global Lock t1meouts global
monitor element .o .
lock_wait_end_time - Lock walt end t1mestamp
monitor element -
lock_wait_start_time - Lock wa1t start trmestamp
monitor element .. .
lock_wait_time - Time wa1ted on locks mon1tor
element -

lock_wait_time global - Lock wart t1me global
monitor element

lock_wait_time_global top Top global lock wart
time monitor element. . .o
lock_wait_time_top — Lock wait t1me top mon1tor
element .

lock_wait_val - Lock wa1t Value mon1tor element
lock_waits - Lock waits monitor element .
lock_waits_global - Lock waits global monitor
element . .
locks_held - Locks held mon1t0r element .
locks_held_top - Maximum number of locks held
monitor element

locks_in_list - Number of Locks Reported
locks_waiting - Current agents waiting on locks
monitor element -
log_buffer_wait_time - Log buffer wart t1me
monitor element . .
log_disk_wait_time - Log d1sk wa1t t1me m0n1t0r
element ..

log_disk_waits_total - Total log drsk warts monrtor
element

log_held by_d1rty pages Amount of Log Space
Accounted for by Dirty Pages .

log_read_time - Log Read Time .
log_reads - Number of Log Pages Read .
log_to_redo_for_recovery - Amount of Log to be
Redone for Recovery . .
log_write_time - Log Write T1me

log_writes - Number of Log Pages Wr1tten
long_object_pages - Long Object Pages .
long_object_I_pages - Long object data log1cal
pages monitor element . .

. 911

. 912
. 912

. 913
. 914
. 915
. 915
. 916

. 918
. 919

. 920

. 920

. 922

. 923

. 923

. 924

. 926

. 928

. 928

928

. 928

. 930
. 932

. 932
. 933

. 933
. 933
. 935
. 936
. 937
. 938
. 938
. 939
. 940
. 940
. 941

. 941

long_tbsp_id - Long table space ID monitor
element .

machine 1dent1f1cat10n Host hardware
identification monitor element.
max_agent_overflows - Maximum Agent
Overflows . ..
max_coord_stmt_exec_ t1me Max1mum
coordinator statement execution time monitor
element . .o
max_coord_stmt_exec t1me args - Maxrmum
coordinator statement execution time arguments
monitor element

max_coord_stmt_exec tlmestamp Maxrmum
coordinator statement execution tlmestamp
monitor element .
max_data_received_1024 - Number of Statements
with Outbound Bytes Received Between 513 and
1024 Bytes

max_data_received_ 128 Number of Statements
with Outbound Bytes Received Between 1 and 128
Bytes .
max_data rece1ved 16384 Number of Statements
with Outbound Bytes Received Between 8193 and
16384 Bytes .

max_data_received_ 2048 Number of Statements
with Outbound Bytes Received Between 1025 and
2048 Bytes

max_data_received_ 256 Number of Statements
with Outbound Bytes Received Between 129 and
256 Bytes.

max_data_ recelved 31999 Number of Statements

with Outbound Bytes Received Between 16385 and

31999 Bytes monitor element . .o
max_data_received_4096 - Number of Statements
with Outbound Bytes Received Between 2049 and
4096 Bytes

max_data_received_ 512 Number of Statements
with Outbound Bytes Received Between 257 and
512 Bytes.

max_data recerved 64000 Number of Statements

with Outbound Bytes Received Between 32000 and

64000 Bytes monitor element . .o
max_data_received_8192 - Number of Statements
with Outbound Bytes Received Between 4097 and
8192 Bytes .

max_data rece1ved_gt64000 Number of
Statements with Outbound Bytes Received Greater
than 64000 Bytes

max_data_sent_1024 - Number of Statements w1th

Outbound Bytes Sent Between 513 and 1024 Bytes .

max_data_sent_128 - Number of Statements with
Outbound Bytes Sent Between 1 and 128 Bytes .

Outbound Bytes Sent Between 8193 and 16384
Bytes .
max_data_sent 2048 Number of Statements w1th

Outbound Bytes Sent Between 1025 and 2048 Bytes

max_data_sent_256 - Number of Statements with
Outbound Bytes Sent Between 129 and 256 Bytes

Contents

. 942

. 942

. 942

. 943

. 943

. 945

. 945

. 946

. 946

. 947

. 947

. 948

. 948

. 948

. 949

. 949

. 950

950

. 950
max_data_sent_16384 - Number of Statements with

. 951

951

. 952

xi

max_data_sent_31999 - Number of Statements with mon_interval_id - Monitor interval identifier

Outbound Bytes Sent Between 16385 and 31999 monitor element 967
Bytes 952 nesting_level - Nesting level mon1tor element .. 967
max_data_sent_. 4096 Number of Statements w1th network_time_bottom - Minimum Network Time
Outbound Bytes Sent Between 2049 and 4096 Bytes 953 for Statement 968
max_data_sent_512 - Number of Statements with network_time_top - Max1mum Network T1me for
Outbound Bytes Sent Between 257 and 512 Bytes . 953 Statement 969
max_data_sent_64000 - Number of Statements with nleaf - Number of leaf pages momtor element .. 969
Outbound Bytes Sent Between 32000 and 64000 nlevels - Number of index levels monitor element 970
Bytes 954 no_change_updates - Number of no change row
max_data_sent_ 8192 Number of Statements w1th updates monitor element970
Outbound Bytes Sent Between 4097 and 8192 Bytes 954 node_number - Node Number 970
max_data_sent_gt64000 - Number of Statements nonboundary_leaf _node_splits - Non—boundary leaf
with Outbound Bytes Sent Greater than 64000 node splits monitor element 971
Bytes94 num_agents - Number of Agents Workmg on a
max_network_ t1me 100 _ms - Number of Statement 971
Statements with Network Time between 16 and 100 num_assoc_agents - Number of Assoc1ated Agents 971
ms.95 num_compilations - Statement Compilations . . . 972
max_network_time_16_ms - Number of Statements num_coord_exec - Number of executions by

with Network Time between 4 and 16 ms 955 coordinator agent monitor element 972
max_network_time_1_ms - Number of Statements num_coord_exec_with_metrics - Number of

with Network Time of upto 1ms 956 executions by coordinator agent with metrics
max_network_time_4_ms - Number of Statements monitor element972
with Network Time between 1 and 4ms 956 num_db_storage_paths - Number of automatic
max_network_time_500_ms - Number of storage paths 973
Statements with Network Time between 100 and num_executions - Statement execut1ons monltor

500 ms97 element 973
max_network_ t1me gt500 ms - Number of num_exec_with metr1cs Number of execut1ons
Statements with Network Time greater than 500 ms 957 with metrics collected monitor element. 974
member - Database member monitor element . . 957 num_extents_left - Number of extents left to
memory_free - Amount of free physical memory process monitor element. 974
monitor element . . . 961 num_extents_moved - Number of extents moved
memory_pool_used_ hwm Memory pool hrgh monitor element 974
water mark monitor element 961 num_gw_conn_switches - Connect1on Sw1tches . . 974
memory_pool_id - Memory pool 1dent1f1er monltor num_indoubt_trans - Number of Indoubt

element 961 Transactions. . . . 975
memory_pool_type - Memory pool name mon1tor num_log_buffer_full - Number of t1mes full log

element 962 buffer caused agents to wait monitor element . . 975
memory_pool_used - Amount of memory pool in num_log_data_found_in_buffer - Number of Log

use monitor element93 Data Found In Buffer. 977
memory_set_committed - Memory currently num_log_part_page_io - Number of Part1al Log
committed monitor element 964 Page Writes 977
memory_set_id - Memory set identifier momtor num_log_read_io - Number of Log Reads .. . 978
element94 num_log_write_io - Number of Log Writes . . . 978
memory_set_size - Memory set size mon1tor num_lw_thresh_exceeded - Number of lock wait
element94 thresholds exceeded monitor element 979
memory_set_type - Memory set type momtor num_nodes_in_db2_instance - Number of Nodes in
element 964 Partition980
memory_set_ used Memory in use by thls set num_page_dict_ bullt Number of page level

monitor element 965 compression dictionaries created or recreated. . . 980
memory_set_used_hwm - Memory set hlgh water num_ref_with_metrics - Number of references with
mark monitor element 965 metrics monitor element.980
memory_swap_free - Total free swap space mon1tor num_references - Number of references monltor
element 965 element 981
memory_swap_total - Total swap space monltor num_remaps - Number of remaps momtor element 981
element 966 num_tbsps - Number of table spaces monitor
memory_total - Total phys1cal memory mon1tor element 981
element 966 num_threshold Vlolatlons Number of threshold
message - Control Table Message .o . 966 violations monitor element. 981
message_time - Timestamp Control Table Message 967 num_transmissions - Number of Transmlss1ons .. 982

xil Database Monitoring Guide and Reference

num_transmissions_group - Number of
Transmissions Group .

number_in_bin - Number in b1n mon1tor element
object_data_gbp_indep_pages_found_in_lbp -
Group buffer pool independent data pages found
in local buffer pool monitor element.
object_data_gbp_invalid_pages - GBP invalid data
pages for a table monitor element
object_data_gbp_l_reads - GBP data loglcal reads
for a table monitor element.
object_data_gbp_p_reads -
for a table monitor element. .
object_data_lbp_pages_found - LBP data pages
found for a table monitor element
object_data_l_reads - Buffer pool data log1cal reads
for a table monitor element. .
object_data_p_reads - Buffer pool physrcal data
reads for a table monitor element. .
object_index_gbp_indep_pages_found_in lbp -
Group buffer pool independent index pages found
in local buffer pool monitor element. .
object_index_gbp_invalid_pages - GBP 1nval1d
index pages for an index monitor element.
object_index_gbp_1_reads -
for an index monitor element . .
object_index_gbp_p_reads - GBP index phys1cal
reads for an index monitor element .
object_index_lbp_pages_found - LBP index pages
found for an index monitor element.
object_index_l_reads - Buffer pool index loglcal
reads for an index monitor element .
object_index_p_reads - Buffer pool index phys1cal
reads for an index. .

object_name - Object name mon1tor element
object_requested - Requested object monitor
element

object_schema - Ob]ect schema mon1tor element
object_xda_gbp_indep_pages_found_in_lbp -
Group buffer pool XDA independent pages found
in local buffer pool monitor element.
object_xda_gbp_invalid_pages - GBP invalid XDA
data pages for a table monitor element . .
object_xda_gbp_l_reads - GBP XDA data logrcal
read requests for a table monitor element . .
object_xda_gbp_p_reads - GBP XDA data physical
read requests for a table monitor element .
object_xda_lbp_pages_found - LBP XDA data
pages found for a table monitor element
object_xda_l_reads - Buffer pool XDA data log1cal
reads for a table monitor element.
object_xda_p_reads - Buffer pool XDA data
physical reads for a table monitor element.
objtype - Object type monitor element . .
olap_func_overflows - OLAP Function Overflows
monitor element . .
open_cursors - Number of Open Cursors .
open_loc_curs - Open Local Cursors.
open_loc_curs_blk - Open Local Cursors w1th
Blocking .

open_rem_curs - Open Remote Cursors

GBP data phys1cal reads
. 985

GBP index logical reads
. 988

. 983

983

. 983

. 984

. 984

. 986

. 986

. 987

. 987

. 988

. 989

. 989

. 990

. 991
. 991

. 992

992

. 992

. 993

. 993

. 994

. 995

. 995

. 996
. 996

. 997
. 998
. 998

. 998
. 999

open_rem_curs_blk - Open Remote Cursors with
Blocking .

os_level - Operatmg system level mon1tor element
os_name - Operating system name monitor
element . .

os_release - Operatmg system release momtor
element . .

os_version - Operatmg system version mon1tor
element . .

outbound_appl_ 1d Outbound Apphcatlon ID
outbound_bytes_received - Outbound Number of
Bytes Received .
outbound_bytes_received bottom M1n1mum
Outbound Number of Bytes Received .
outbound_bytes_received_top - Maximum
Outbound Number of Bytes Received . .
outbound_bytes_sent - Outbound Number of
Bytes Sent . . .o
outbound_bytes_sent_ bottom M1n1mum
Outbound Number of Bytes Sent
outbound_bytes_sent_top - Maximum Outbound
Number of Bytes Sent . .
outbound_comm_address - Outbound
Communication Address .
outbound_comm_protocol - Outbound
Communication Protocol . . .
outbound_sequence_no - Outbound Sequence
Number .

overflow_accesses - Accesses to overflowed
records monitor element . .
overflow_creates - Overflow creates monltor
element .

package_id - Package 1dent1f1er mon1tor element
package_elapsed_time - Package elapsed time
monitor element . . .
package_list_count - Package llst count momtor
element . .

package_list_ exceeded Package l1st exceeded
monitor element . .

package_list_size - Size of package llst momtor
element . .

package_name - Package name m0n1t0r element
package_schema - Package schema monitor
element . . .
package_version_id - Package version mon1tor
element . . .
packet_receive_errors - Packet receive errors
monitor element . .

packets_received - Packets rece1ved monltor
element . . .
packet_send_errors - Packet send errors monltor
element . .

packets_sent - Packets sent mon1tor element
page_allocations - Page allocations monitor
element . o .
page_reorgs - Page reorgan1zat1ons mon1tor
element . . .
page_reclaims_x - Page reclalms excluswe access
monitor element . . .
page_reclaims_s - Page reclalms shared access
monitor element .

Contents

. 999

1000

. 1000

. 1000

. 1001

1001

. 1001

. 1002

. 1002

. 1002

. 1003

. 1003

. 1003

. 1004

. 1004

. 1004

. 1005

1005

. 1005

. 1006

. 1006

. 1006

1006

. 1007

. 1007

. 1008

. 1008

. 1009
. 1009

. 1009

. 1009

. 1010

. 1010

xiii

page_reclaims_initiated_x - Page reclaims initiated
exclusive access monitor element .
page_reclaims_initiated_s - Page reclaims 1n1t1ated
shared access monitor element . .
pages_from_block_ios - Total number of pages
read by block I/O monitor element. .
pages_from_vectored_ios - Total number of pages
read by vectored I/O monitor element
pages_merged - Pages merged monitor element
pages_read - Number of pages read monitor
element .
pages_written -
element . .
parent_activity_id - Parent act1v1ty ID monltor
element .

parent_uow_id - Parent unlt of work ID monltor
element . .

partial_record - Part1a1 Record monltor element
participant_no - Participant within Deadlock
participant_no_holding_lk - Participant Holding a
Lock on the Object Required by Application.
participant_type - Participant type monitor
element . .

partition_key - Partltlonlng key monltor element
partition_number - Partition Number .
passthru_time - Pass-Through Time

passthrus - Pass-Through . . .
past_activities_wrapped - Past activities hst
wrapped monitor element. .
phase_start_event_id - Phase start event ID
phase_start_event_timestamp - Phase start event
timestamp .

piped_sorts accepted Plped Sorts Accepted
piped_sorts_requested - Piped Sorts Requested
pkg_cache_inserts - Package cache inserts monitor
element .

pkg_cache lookups Package cache lookups
monitor element . .
pkg_cache_num_overflows - Package Cache
Overflows .

pkg_cache_size_top - Package cache hlgh
watermark . .

pool_async_data gbp 1ndep pages found in lbp
- Group buffer pool independent data pages
found by asynchronous EDUs in a local buffer
pool monitor element monitor element
pool_async_data_gbp_invalid_pages -
Asynchronous group buffer pool invalid data
pages monitor element . .
pool_async_data_gbp_I_reads - Asynchronous
group buffer pool data loglcal reads monitor
element . e
pool_async_data gbp p reads Asynchronous
group buffer pool data phy51ca1 reads monitor
element . .

pool_async_data lbp pages found -
Asynchronous local buffer pool data pages found
monitor element . .
pool_async_data_read_reqs - Buffer pool
asynchronous read requests monitor element

Number of pages written monitor

Xiv Database Monitoring Guide and Reference

. 1011

. 1011

. 1011

. 1012

1012

. 1013

. 1013

. 1013

. 1014

1014

. 1015

. 1015

. 1016

1016

. 1017
. 1017
. 1017

. 1018
. 1018

. 1018
. 1019

1019

. 1020

. 1021

. 1023

. 1023

. 1024

. 1024

. 1025

. 1025

. 1026

. 1026

pool_async_data_reads - Buffer pool
asynchronous data reads monitor element
pool_async_data_writes - Buffer pool
asynchronous data writes monitor element .
pool_async_index_gbp_indep_pages_found_in_Ibp
- Group buffer pool independent index pages
found by asynchronous EDUs in a local buffer
pool monitor element monitor element
pool_async_index_gbp_invalid_pages -
Asynchronous group buffer pool invalid index
pages monitor element . .
pool_async_index_gbp_I_reads - Asynchronous
group buffer pool index logical reads monitor
element . .

pool_async_index gbp p reads Asynchronous
group buffer pool index phy51ca1 reads monitor
element . .

pool_async_ 1ndex lbp pages found -
Asynchronous local buffer pool index pages
found monitor element. .
pool_async_index_read_reqs - Buffer pool
asynchronous index read requests monitor
element . .

pool_async_index_ reads - Buffer pool
asynchronous index reads monitor element .
pool_async_index_writes - Buffer pool
asynchronous index writes monitor element.
pool_async_read_time - Buffer Pool Asynchronous
Read Time .

pool_async_write t1me Buffer pool
asynchronous write time monitor element
pool_async_xda_gbp_indep_pages_found_in_Ibp -
Group buffer pool independent XML storage
object(XDA) pages found by asynchronous EDUs
in a local buffer pool monitor element monitor
element . .
pool_async_. xda gbp 1nvahd pages -
Asynchronous group buffer pool invalid XDA
data pages monitor element . S
pool_async_xda_gbp_I_reads - Group buffer pool
XDA data asynchronous logical read requests
monitor element . .

pool_async_xda_gbp_p_ reads - Group buffer pool
XDA data asynchronous phy51ca1 read requests
monitor element . .

pool_async_xda_lbp_; pages found Asynchronous
local buffer pool XDA data pages found monitor
element . . .
pool_async_xda_. read reqs - Buffer pool
asynchronous XDA read requests monitor element
pool_async_xda_reads - Buffer pool asynchronous
XDA data reads monitor element
pool_async_xda_writes - Buffer pool
asynchronous XDA data writes monitor element
pool_config_size - Configured Size of Memory
Pool . .

pool_cur_size - Current Slze of Memory Pool
pool_data_gbp_indep_pages_found

_in_lbp - Group buffer pool independent data
pages found in local buffer pool monitor element .

. 1027

. 1028

. 1029

. 1029

. 1030

. 1030

. 1031

. 1031

. 1032

. 1033

. 1033

. 1034

. 1035

. 1036

. 1036

. 1037

. 1037

1038

. 1038

. 1039

. 1040

1041

1041

pool_data_gbp_invalid_pages - Group buffer pool
invalid data pages monitor element
pool_data_gbp_l_reads - Group buffer pool data
logical reads monitor element
pool_data_gbp_p_reads - Group buffer pool data
physical reads monitor element . .
pool_data_lbp_pages_found - Local buffer pool
found data pages monitor element .
pool_data_I_reads - Buffer pool data logical reads
monitor element . .
pool_data_p_reads - Buffer pool data physmal
reads monitor element . . .
pool_data_writes - Buffer pool data wrltes
monitor element .

pool_drty_pg_steal_clns - Buffer pool v1ct1m page
cleaners triggered monitor element.
pool_drty_pg_thrsh_clns - Buffer pool threshold
cleaners triggered monitor element.
pool_failed_async_data_reqs - Failed data prefetch
requests monitor element . . .
pool_failed_async_index_reqs - Farled mdex
prefetch requests monitor element .
pool_failed_async_other_reqs - Failed
non-prefetch requests monitor element
pool_failed_async_temp_data_reqs - Failed data
prefetch requests for temporary table spaces
monitor element .

pool_failed_async_temp_: mdex reqs Falled 1ndex
prefetch requests for temporary table spaces
monitor element . .

pool_failed_async_temp_: xda reqs Falled XDA
prefetch requests for temporary table spaces
monitor element . .

pool_failed_async_xda reqs - Falled XDA prefetch
requests monitor element . . .
pool_id - Memory Pool Identifier
pool_index_gbp_indep_pages

_found_in_lbp - Group buffer pool independent
index pages found in local buffer pool monitor
element . . .
pool_index_gbp 1nval1d_pages Group buffer
pool invalid index pages monitor element
pool_index_gbp_l_reads - Group buffer pool
index logical reads monitor element
pool_index_gbp_p_reads - Group buffer pool
index physical reads monitor elements
pool_index_Ibp_pages_found - Local buffer pool
index pages found monitor element .
pool_index_1_reads - Buffer pool index logical
reads monitor element .

pool_index_p_reads - Buffer pool 1ndex physlcal
reads monitor element .

pool_index_writes - Buffer pool 1ndex wrltes
monitor element . . .
pool_lsn_gap_clns - Buffer pool log space cleaners
triggered monitor element. .
pool_no_victim_buffer - Buffer pool no V1ct1m
buffers monitor element
pool_queued_async_data_pages - Data pages
prefetch requests monitor element . .

. 1042

. 1044

. 1045

. 1047

. 1048

. 1050

. 1052

. 1055

. 1056

. 1057

. 1059

. 1061

. 1063

. 1065

. 1067

. 1069
. 1071

. 1073

. 1074

. 1075

. 1077

. 1078

. 1080

. 1082

. 1084

. 1086

. 1087

. 1087

pool_queued_async_data_reqs - Data prefetch
requests monitor element . .
pool_queued_async_index_pages - Index pages
prefetch requests monitor element . .
pool_queued_async_index_reqs - Index prefetch
requests monitor element . .
pool_queued_async_other_reqs - Other requests
handled by prefetchers monitor element .
pool_queued_async_temp_data_pages - Data
pages prefetch requests for temporary table spaces
monitor element . . .
pool_queued_async_temp_ data reqs - Data
prefetch requests for temporary table spaces
monitor element .

pool_queued_async_temp_ 1ndex pages - Index
pages prefetch requests for temporary table spaces
monitor element .

pool_queued_async_temp_. 1ndex reqs - Index
prefetch requests for temporary table spaces
monitor element .

pool_queued_async_ temp xda_pages XDA data
pages prefetch requests for temporary table spaces
monitor element . .
pool_queued_async_temp_. Xda reqs XDA data
prefetch requests for temporary table spaces
monitor element . .

pool_queued_async_xda pages - XDA pages
prefetch requests monitor element .
pool_queued_async_xda_reqs - XDA prefetch
requests monitor element . .
pool_read_time - Total buffer pool physmal read
time monitor element .
pool_secondary_id - Memory Pool Secondary
Identifier .
pool_sync_data gbp reads Synchronous group
buffer pool data reads monitor element
pool_sync_data_reads - Synchronous buffer pool
data reads monitor element
pool_sync_index_gbp_reads - Synchronous group
buffer pool index reads monitor element .
pool_sync_index_reads - Synchronous buffer pool
index reads monitor element .
pool_sync_xda_gbp_reads - Synchronous group
buffer pool XDA data reads monitor element
pool_sync_xda_reads - Synchronous buffer pool
XDA data reads monitor element
pool_temp_data_l_reads - Buffer pool temporary
data logical reads monitor element .
pool_temp_data_p_reads - Buffer pool temporary
data physical reads monitor element
pool_temp_index_l_reads - Buffer pool temporary
index logical reads monitor element .
pool_temp_index_p_reads - Buffer pool temporary
index physical reads monitor element .
pool_temp_xda_l_reads - Buffer pool temporary
XDA data logical reads monitor element .
pool_temp_xda_p_reads - Buffer pool temporary
XDA data physical reads monitor element
pool_watermark - Memory Pool Watermark .
pool_write_time - Total buffer pool physical write
time monitor element

Contents

. 1089

. 1091

. 1093

. 1095

. 1097

. 1099

. 1101

. 1103

. 1105

. 1107

. 1109

L1111

. 1113

. 1114

. 1115

. 1115

. 1115

. 1116

. 1116

. 1116

. 1116

. 1118

. 1120

. 1121

. 1123

. 1125
. 1127

. 1128

XV

pool_xda_gbp_indep_pages

_found_in_lbp - Group buffer pool XDA
independent pages found in local buffer pool
monitor element . .

pool_xda_gbp_ 1nvalld_pages - Group buffer pool
invalid XDA data pages monitor element.
pool_xda_gbp_I_reads - Group buffer pool XDA
data logical read requests monitor element .
pool_xda_gbp_p_reads - Group buffer pool XDA
data physical read requests monitor element
pool_xda_l_reads - Buffer pool XDA data logical
reads monitor element . .
pool_xda_lbp_pages_found - Local buffer pool
XDA data pages found monitor element .
pool_xda_p_reads - Buffer pool XDA data
physical reads monitor element .
pool_xda_writes - Buffer pool XDA data wrltes
monitor element . .

port_number - Port number mon1tor element
post_shrthreshold_hash_joins - Post threshold
hash joins

post_ shrthreshold sorts Post shared threshold
sorts monitor element . .
post_threshold_hash_joins - Hash]om Threshold
post_threshold_olap_funcs - OLAP Function
Threshold monitor element

post_threshold_peas - Partial early aggregat10n
threshold monitor element. .
post_threshold_peds - Partial early drstrncts
threshold monitor element.
post_threshold_sorts - Post threshold sorts
monitor element . .

prefetch_wait_time - Time warted for prefetch
monitor element . . .
prefetch_waits - Prefetcher wa1t count mon1t0r
element . .
prep_time - Preparat1on t1me monrtor element
prep_time_best - Statement best preparation time
monitor element . Lo
prep_time_worst - Statement worst preparatlon
time monitor element .
prev_uow_stop_time - Previous Un1t of Work
Completion Timestamp. . .
priority - Priority value monitor element
priv_workspace_num_overflows - Private
Workspace Overflows .
priv_workspace_section_inserts - Pr1vate
Workspace Section Inserts . .
priv_workspace_section_lookups - Pr1vate
Workspace Section Lookups .
priv_workspace_size_top - Maximum Prrvate
Workspace Size .
product_name - Product Name .
progress_completed_units - Completed Progress
Work Units. . .
progress_description - Progress Descrrptron .
progress_list_attr - Current Progress List
Attributes .

progress_list_cur seq num - Current Progress L1st
Sequence Number .

progress_seq_num - Progress Sequence Number

XVl Database Monitoring Guide and Reference

. 1130

. 1131

. 1132

. 1134

. 1136

. 1138

. 1139

. 1141
. 1143

. 1143

. 1144

1145

. 1146

. 1146

. 1148

. 1150

. 1151

. 1153

1154

. 1155

. 1155

. 1155
. 1156

. 1156

. 1157

. 1158

. 1158
. 1159

. 1159
. 1160

. 1160

. 1160

1160

progress_start_time - Progress Start Time .
progress_total_units - Total Progress Work Units
progress_work_metric - Progress Work Metric
pseudo_deletes - Pseudo deletes monitor element
pseudo_empty_pages - Pseudo empty pages
monitor element . .
query_actual_degree - Actual runtlme degree of
intrapartition parallelism monitor element
query_card_estimate - Query Number of Rows
Estimate. .

query_cost_estimate - Query cost estlmate monrtor
element .

query_data_ tag_hst Est1mated query data tag llst
monitor element . .
queue_assignments_total - Queue ass1gnments
total monitor element

queue_start_time - Queue start trmestamp monrtor
element .

queue_size_top - Queue size top mon1tor element
queue_time_total - Queue time total monitor
element .

queued_agents - Queued threshold agents
monitor element . .

quiescer_agent_id - Quiescer Agent Identlflcatron
quiescer_auth_id - Quiescer User Authorization
Identification .

quiescer_obj_id - Qu1escer Ob]ect Ident1f1cat1on
quiescer_state - Quiescer State

quiescer_ts_id - Quiescer Table Space
Identification .

range_adjustment - Range Ad]ustment
range_container_id - Range Container .
range_end_stripe - End Stripe
range_max_extent - Maximum Extent in Range
range_ max_page_number - Maximum Page in
Range

range_num_ contalners Number of Conta1ners in
Range . .

range_number - Range Number

range_offset - Range Offset

range_start_stripe - Start Stripe . .
range_stripe_set_number - Stripe Set Number
reclaim_wait_time - Reclaim wait time monitor
element . .

reclaimable_space_ enabled Recla1mable space
enabled indicator monitor element .
regvar_collection_type - Registry variable
collection type. .
regvar_level - Registry Var1able level .
regvar_name - Registry variable name. .
regvar_old_value - Registry variable old value
regvar_value - Registry variable value.
rej_curs_blk - Rejected Block Cursor Requests
rem_cons_in - Remote Connections To Database
Manager. .
rem_cons_in_exec - Remote Connectrons
Executing in the Database Manager
remote_lock_time - Remote Lock Time
remote_locks - Remote Locks. .
remote_member - Remote member mon1tor
element .

. 1161

1161
1161
1162

. 1162

. 1162

. 1163

. 1163

. 1164

. 1165

. 1165
1165

. 1166

. 1166

1166

. 1167

1167

. 1167

. 1168
. 1168
. 1168
. 1168

1169

. 1169

. 1169
. 1169
. 1169
. 1170

1170

. 1170
. 1171
. 1172

. 1172
. 1172

1173

. 1173

1173

. 1174
. 1174
. 1175
. 1175

. 1175

reopt - Reopt bind option monitor element .
reorg_completion - Reorganization Completion
Flag .

reorg_current_ counter - Reorganlze Progress
reorg_end - Table Reorganize End Time .
reorg_index_id - Index Used to Reorganize the
Table . .

reorg_long_tbspc_ 1d Table Space Where Long
Objects are Reorganized monitor element.
reorg_max_counter - Total Amount of
Reorganization

reorg_max_phase - Max1mum Reorganlze Phase
reorg_phase - Table reorganization phase monitor
element . .

reorg_phase_start - Reorgamze Phase Start T1me
reorg_rows_compressed - Rows Compressed
reorg_rows_rejected_for_compression - Rows
Rejected for Compression .

reorg_start - Table Reorganize Start T1me
reorg_status - Table Reorganize Status.
reorg_tbspc_id - Table Space Where Table or Data
partition is Reorganized .o
reorg_type - Table Reorganize Attr1butes
reorg_xml_regions_compressed — XML regions
compressed monitor element . .
reorg_xml_regions_rejected_for_compression —
XML regions rejected for compression monitor
element .

req_agent_tid - Thread 1dent1f1er for agent wa1t1ng
to acquire lock monitor element . .
req_application_handle - Identifier for appllcat10n
waiting to acquire lock monitor element .
req_executable_id - Identifier for statement section
waiting to acquire lock monitor element .
req_member - Member of application waiting to
acquire lock monitor element.
request_exec_time_avg - Request execut1on t1me
average monitor element . .
rf_log_num - Log being rolled forward monltor
element .

rf_status - Log Phase

rf_timestamp - Rollforward T1mestamp

rf_type - Rollforward Type

rollback_sql_stmts - Rollback Statements
Attempted .

rolled_back_agent_ 1d Rolled Back Agent
rolled_back_appl_id - Rolled Back Application
rolled_back_participant_no - Rolled back
application participant monitor element .
rolled_back_sequence_no - Rolled Back Sequence
Number .
root_node_splits -
element . . .
routine_id - Routine ID monltor element
rows_deleted - Rows deleted monitor element
rows_fetched - Rows fetched monitor element
rows_inserted - Rows inserted monitor element
rows_modified - Rows modified monitor element
rows_read - Rows read monitor element .
rows_returned - Rows returned monitor element

Root node splits monitor

. 1176
. 1176
. 1176
. 1177
. 1177
. 1177

. 1177

1178

. 1178

1179

. 1179
. 1179
. 1179
. 1180

. 1180
. 1180

. 1181

. 1181

. 1182
. 1182
. 1182
. 1182
. 1183
. 1183
. 1184
. 1184
. 1184

. 1184
. 1185

1186

. 1186

. 1186

. 1187
. 1187

1188
1188
1189
1190

. 1191

1193

rows_returned_top - Actual rows returned top
monitor element . .

rows_selected - Rows Selected

rows_updated - Rows updated monitor element
rows_written - Rows Written .
rgsts_completed_total - Total requests completed
monitor element . .

savepoint_id - Savepoint ID . .
sc_work_action_set_id - Service class work actlon
set ID monitor element . .

sc_work_class_id - Service class work class ID
monitor element . .

sec_log_used_top - Max1mum Secondary Log
Space Used.

sec_logs_allocated - Secondary Logs Allocated
Currently .
section_actuals - Section actuals monitor element
section_env - Section environment monitor
element .

section_number - Sectlon number monrtor
element . .

section_type - Sectron type 1nd1cator mon1tor
element .

select_sql_stmts - Select SQL Statements Executed
select_time - Query Response Time.
sequence_no - Sequence number monitor element
sequence_no_holding_lk - Sequence Number
Holding Lock .

server_db2_type - Database Manager Type at
Monitored (Server) Node . .
server_instance_name - Server Instance Name
server_platform - Server Operating System .
server_prdid - Server Product/Version ID
server_version - Server Version . .
service_class_id - Service class ID monltor
element . . .

service_level - Servrce Level . . .
service_subclass_name - Service subclass name
monitor element . .
service_superclass_name - Servrce superclass
name monitor element . . .
session_auth_id - Session author1zat1on ID
monitor element . .o

shr_workspace_num_ overflows Shared
Workspace Overflows
shr_workspace_section_inserts - Shared
Workspace Section Inserts . .
shr_workspace_section_lookups - Shared
Workspace Section Lookups .
shr_workspace_size_top - Maximum Shared
Workspace Size .
skipped_prefetch_data_p_ reads
data physical reads monitor element .
skipped_prefetch_index_p_reads - Skipped
prefetch index physical reads monitor element .
skipped_prefetch_temp_data_p_reads - Skipped
prefetch temporary data physical reads monitor
element . .
skipped_prefetch_ temp mdex _p_ reads Skipped
prefetch temporary index physical reads monitor
element .

Skipped prefetch

Contents

. 1194
. 1195

1196

. 1196

. 1197
. 1198

. 1198

. 1199

. 1199

. 1200

1200

. 1201

. 1201

. 1202

1203

. 1203

1204

. 1204

. 1205

1205

. 1206
. 1206
. 1207

. 1207
. 1208

. 1208

. 1209

. 1211

L1211

. 1212

. 1213

. 1213

. 1214

. 1215

. 1216

. 1217

xvii

skipped_prefetch_temp_xda_p_reads - Skipped
prefetch temporary XDA data physical reads
monitor element .
skipped_prefetch_uow_ data p reads - Sk1pped
prefetch unit of work data physical reads monitor
element .
skipped_; prefetch uow. 1ndex _p_ reads - Sk1pped
prefetch unit of work index phys1cal reads
monitor element . .
skipped_prefetch_uow temp data p reads -
Skipped prefetch unit of work temporary data
physical reads monitor element . .
skipped_prefetch_uow_temp_index_p_ reads -
Skipped prefetch unit of work temporary index
physical reads monitor element . .
skipped_prefetch_uow_temp_xda_p_ reads -
Skipped prefetch unit of work temporary XDA
data physical reads monitor element .o
skipped_prefetch_uow_xda_p_reads - Skipped
prefetch unit of work XDA data physical reads
monitor element . . e
skipped_prefetch_xda_p_ reads Sl(ipped prefetch
XDA physical reads monitor element . .
smallest_log_avail_node - Node with Least
Available Log Space.
sort_heap_allocated - Total Sort Heap Allocated
sort_heap_top - Sort private heap high watermark
sort_overflows - Sort overflows monitor element
sort_shrheap_allocated - Sort Share Heap
Currently Allocated .
sort_shrheap_top - Sort share heap h1gh
watermark . .
source_service_class_ 1d Source service class ID
monitor element . .
sp_rows_selected - Rows Returned by Stored
Procedures .

sql_chains - Number of SQL Chams Attempted
sql_req_id - Request Identifier for SQL Statement
sql_regs_since_commit - SQL Requests Since Last
Commit .
sql_stmts - Number of SQL Statements Attempted
sqlca - SQL Communications Area (SQLCA).
sqlrowsread_threshold_id - SQL rows read
threshold ID monitor element
sqlrowsread_threshold_value - SQL rows read
threshold value monitor element
sqlrowsread_threshold_violated - SQL rows read
threshold violated monitor element.
sqlrowsreadinsc_threshold_id - SQL rows read in
service class threshold ID monitor element .
sqlrowsreadinsc_threshold_value - SQL rows read
in service class threshold value monitor element
sqlrowsreadinsc_threshold_violated - SQL rows
read in service class threshold violated monitor
element . .
sqlrowsreturned_ threshold 1d SQL rows read
returned threshold ID monitor element .
sqlrowsreturned_threshold_value - SQL rows read
returned threshold value monitor element
sqlrowsreturned_threshold_violated - SQL rows

read returned threshold violated monitor element .

Xxviil Database Monitoring Guide and Reference

. 1218

. 1219

. 1219

. 1220

. 1221

. 1221

. 1221

. 1222

. 1223

1223
1224
1224

. 1226

. 1226

. 1227

. 1227

1228
1228

. 1228
1229

. 1229

. 1230

. 1230

. 1230

. 1231

. 1231

. 1231

. 1232

. 1232

1232

sqltempspace_threshold_id - SQL temporary space
threshold ID monitor element
sqltempspace_threshold_value - SQL temporary
space threshold value monitor element
sqltempspace_threshold_violated - SQL temporary
space threshold violated monitor element
spacemappage_page_reclaims_x - Space map page
reclaims exclusive access monitor element
spacemappage_page_reclaims_s - Space map page
reclaims shared access monitor element .
spacemappage_page_reclaims_initiated_x - Space
map page reclaims initiated exclusive access
monitor element . .

spacemappage_page._ recla1ms 1n1t1ated S - Space
map page reclaims initiated shared access monitor
element .

spacemappage_ reclalm wa1t t1me Space map
page reclaim wait time monitor element .
ss_exec_time - Subsection Execution Elapsed Time
ss_node_number - Subsection Node Number
ss_number - Subsection number monitor element
ss_status - Subsection status monitor element
ss_sys_cpu_time - System CPU Time used by
Subsection . .
ss_usr_cpu_time - User CPU Trme used by
Subsection .

ssl_port_number - SSL port number m0n1tor
element .

start_event_id - Start event ID .
start_event_timestamp - Start event t1mestamp
start_time - Event Start Time .

static_sql_stmts - Static SQL Statements
Attempted . . .
statistics_timestamp - Stat1st1cs t1mestamp monitor
element . .

stats_cache_size — Slze of statlst1cs cache monltor
element . .

stats_fabricate_time — Total t1me spent on stat1st1cs
fabrication activities monitor element .
stats_fabrications — Total number of statistics
fabrications monitor elements
status_change_time - Application Status Change
Time .

stmt_elapsed_ t1me Most Recent Statement
Elapsed Time . .
stmt_exec_time - Statement execut1on t1me
monitor element . . .
stmt_first_use_time - Statement f1rst use
timestamp monitor element . .o
stmt_history_id - Statement history 1dent1f1er
inact_stmthist_sz - Statement history list size
stmt_invocation_id - Statement invocation
identifier monitor element.

stmt_isolation - Statement isolation. .
stmt_last_use_time - Statement last use tlmestamp
monitor element . .

stmt_lock_timeout - Statement lock t1meout
monitor element . .

stmt_nest_level - Statement nestmg level momtor
element . .

stmt_node_number - Statement Node

. 1233

. 1233

. 1233

. 1234

. 1234

. 1235

. 1235

. 1236

1237

. 1238

1238
1238

. 1239

. 1239

. 1240
. 1240

1240

. 1241

. 1241

. 1241

. 1242

. 1243
. 1244
. 1244
. 1245
. 1245
. 1246
. 1246
. 1247

. 1247
. 1248

. 1248

. 1249

. 1249
. 1250

stmt_operation/operation - Statement operation
monitor element .

stmt_pkgcache_id - Statement package Cache
identifier monitor element. .
stmt_query_id - Statement query 1dent1f1er
monitor element . .o

stmt_sorts - Statement Sorts .

stmt_source_id - Statement source 1dent1f1er
stmt_start - Statement Operation Start Timestamp
stmt_stop - Statement Operation Stop Timestamp
stmt_sys_cpu_time - System CPU Time used by
Statement .o

stmt_text - SQL statement text momtor element
stmt_type - Statement type monitor element.
stmt_type_id - Statement type identifier monitor
element . .

stmt_unicode - Statement unlcode flag monrtor
element .

stmt_usr_cpu_ t1me User CPU T1me used by
Statement .

stmt_value_data - Value data
stmt_value_index - Value index . .
stmt_value_isnull - Value has null value mon1tor
element .

stmt_value 1sreopt Varlable used for statement
reoptimization monitor element . .
stmt_value_type - Value type monitor element
sto_path_free_sz - Automatic storage path free
space monitor element .

stop_time - Event Stop Time . .
storage_group_id - Storage group 1dent1f1er
storage_group_name - Storage group name .
stored_proc_time - Stored Procedure Time
stored_procs - Stored Procedures .
swap_pages_in - Pages swapped in from d1sk
monitor element . .

swap_pages_out - Pages swapped out to drsk
monitor element . e
swap_page_size - Swap page size monitor
element .

sync_runstats — Total number of synchronous
RUNSTATS activities monitor element.
sync_runstats_time — Total time spent on
synchronous RUNSTATS activities monitor
element . .

system_auth_id - System author1zat1on 1dent1f1er
monitor element . .

system_cpu_time - System CPU trme monrtor
element . .

tab_file_id - Table f1le ID monltor element
tab_type - Table type monitor element.
table_file_id - Table file ID monitor element.
table_name - Table name monitor element
table_scans - Table scans monitor element
table_schema - Table schema name monitor
element . . .
table_type - Table type mon1tor element .
tablespace_auto_resize_enabled - Table space
automatic resizing enabled monitor element.
tablespace_content_type - Table space content
type monitor element

. 1250
. 1251
. 1252

. 1253
. 1253

1254
1254

. 1255

1255

. 1256
. 1257
. 1258
. 1258
. 1259
. 1259
. 1260

. 1261

1261

. 1262
. 1262
. 1263
. 1263
. 1263
. 1264

. 1264

. 1264

. 1265

. 1265

. 1266

. 1267

. 1267
. 1268
. 1268
. 1268
. 1269
. 1271

. 1271
. 1273

. 1273

. 1274

tablespace_cur_pool_id - Buffer pool currently
being used monitor element . .
tablespace_current_size - Current table space size
tablespace_extent_size - Table space extent size
monitor element .

tablespace_free_pages - Free pages in table space
monitor element . .

tablespace_id - Table space 1dent1f1cat10n monltor
element . .
tablespace_increase_size - Increase size in bytes
tablespace_increase_size_percent - Increase size by
percent monitor element .
tablespace_initial_size - Initial table space size
tablespace_last_re51ze_fa1led Last resize attempt
failed. .

tablespace_last_resize t1me T1me of last
successful resize . .

tablespace_max_size - Maxrmum table space size
tablespace_min_recovery_time - Minimum
recovery time for rollforward monitor element .
tablespace_name - Table space name monitor
element .

tablespace_next pool 1d Buffer pool that w1ll be
used at next startup monitor element .
tablespace_num_containers - Number of
Containers in Table Space .
tablespace_num_quiescers - Number of Qulescers
tablespace_num_ranges - Number of Ranges in
the Table Space Map .
tablespace_page_size - Table space page size
monitor element . .

tablespace_page_top - Table space hlgh
watermark monitor element . .
tablespace_paths_dropped - Table space us1ng
dropped path monitor element . .
tablespace_pending_free_pages - Pendmg free
pages in table space monitor element .
tablespace_prefetch_size - Table space prefetch
size monitor element .
tablespace_rebalancer_extents processed -
Number of extents the rebalancer has processed
tablespace_rebalancer_extents_remaining - Total
number of extents to be processed by the
rebalancer .

tablespace_ rebalancer last extent moved Last
extent moved by the rebalancer .
tablespace_rebalancer_mode - Rebalancer mode
monitor element . . .
tablespace_. rebalancer_pr10r1ty Current
rebalancer priority .
tablespace_rebalancer_restart_ tlme Rebalancer
restart time.

tablespace_ rebalancer source storage group 1d -
Rebalancer source storage group identifier
tablespace_rebalancer_source_storage_group_name
- Rebalancer source storage group name .
tablespace_rebalancer_start_time - Rebalancer start
time .

tablespace_ rebalancer status Rebalancer status
monitor element .

Contents

. 1274

1275

. 1275

. 1275

. 1276

1277

. 1277

1277

. 1278

. 1278

1278

. 1279

. 1279

. 1280

. 1281

1281

. 1281

. 1281

. 1282

. 1282

. 1283

. 1283

. 1284

. 1284

. 1285

. 1285

. 1286

. 1287

. 1287

. 1287

. 1288

. 1288

Xix

tablespace_rebalancer_target_storage_group_id -
Rebalancer target storage group identifier

tablespace_rebalancer_target_storage_group_name

- Rebalancer target storage group name .
tablespace_state - Table space state monitor
element .

tablespace_state change ob]ect 1d State Change
Object Identification .

tablespace_state_change_ts_ 1d State Change
Table Space Identification .

tablespace_total_pages - Total pages in table space
. 1292

monitor element . . .
tablespace_type - Table space type momtor
element . .

tablespace_ usable_pages - Usable pages in table
space monitor element . .
tablespace_used_pages - Used pages in table
space monitor element . .
tablespace_using_auto_storage - Table space
enabled for automatic storage monitor element.
target_cf_gbp_size - Target cluster caching facility
group buffer pool size monitor element

target_cf_lock_size - Target cluster caching facility

lock size monitor element .
target_cf_sca_size - Target cluster cachmg fac1hty

shared communications area size monitor element

tbsp_datatag - Table space data tag. .
tbsp_last_consec_page - Last consecutive ob]ect
table page monitor element .
tbsp_max_page_top - Maximum table space page
high watermark monitor element

tbsp_names - Table space names
tbsp_trackmod_state - Table space trackmod state
monitor element . . .
tepip_recv_volume - TCP/IP rece1ved Volume
monitor element .

tcpip_recv_wait_time - TCP/ IP rece1ved wa1t t1me

monitor element . .

tepip_recvs_total - TCP/IP receives total mon1tor
element . .
tepip_send Volume TCP/ P send Volume
monitor element .

tepip_send_wait_time - TCP / IP send walt t1me
monitor element . .

tcpip_sends_total - TCP/ IP sends total mon1tor
element .

temp_tablespace_ top Temporary table space top
monitor element . .o
territory_code - Database Terrltory Code

monitor element . . .
threshold_action - Threshold act1on monrtor
element . . .
threshold_domain - Threshold domam monltor
element . .

threshold_ maxvalue Threshold maximum value
monitor element . .
threshold_name - Threshold name momtor
element .

threshold_predrcate Threshold pred1cate mon1tor
- . 1307

element .

XX Database Monitoring Guide and Reference

. 1288

. 1289

. 1289

. 1291

. 1291

. 1292

. 1293

. 1293

. 1294

. 1294

. 1295

1295

. 1295

. 1296

. 1296

. 1296

. 1296

. 1297

. 1298

. 1299

. 1300

. 1301

. 1302

. 1303
. 1303
thresh_violations - Number of threshold violations

. 1304
. 1305
. 1305

. 1306

. 1306

threshold_queuesize - Threshold queue size
monitor element .

thresholdid - Threshold ID monltor element
time_completed - Time completed monitor
element . .

time_created - Time created momtor element
time_of_violation - Time of violation monitor
element . . .

time_stamp - Snapshot T1me .

time_started - Time started monitor element
time_zone_disp - Time Zone Displacement .
top - Histogram bin top monitor element. .
tot_log_used_top - Maximum Total Log Space
Used . - .
total_act_time - Total act1v1ty t1me mon1tor
element . .

total_act_wait_time - Total actrvrty wa1t trme
monitor element . . .
total_app_commits - Total appl1cat1on comm1ts
monitor elements.

total_app_rollbacks - Total apphcatlon rollbacks
monitor element .

total_app_rgst_time - Total appllcat10n request
time monitor element .
total_app_section_executions - Total apphcat1on
section executions monitor element.
total_buffers_rcvd - Total FCM Buffers Rece1ved
total_buffers_sent - Total FCM Buffers Sent .
total_bytes_received - Bytes received monitor
element . .

total_bytes_sent - Bytes sent m0n1tor element
total_commit_proc_time - Total commits
processing time monitor element .
total_commit_time - Total commit time mon1tor
element . . .
total_compilations - Total Comp1lat10ns momtor
element . . .
total_compile_proc_ t1me Total comp1le
processing time monitor element .
total_compile_time - Total compile time momtor
element . .

total_cons - Connects S1nce Database Act1vat1on
total_connect_authentication_proc_time - Total

connection authentication processing time monitor
. 1325

element . . .
total_connect_ authent1cat10ns Connect1ons or
switch user authentications performed monitor
element . .

total_connect_. authent1cat1on t1me Total
connection or switch user authentication request
time monitor element ..
total_connect_request_proc_time - Total

connection or switch user request processing time

monitor element . .
total_connect_requests - Connectron or sw1tch
user requests monitor element .
total_connect_request_time - Total connect1on or
switch user request time monitor element
total_cpu_time - Total CPU time monitor element
total_disp_run_queue_time - Total dispatcher run
queue time monitor element .

. 1308
. 1308

. 1308
. 1309

. 1309
. 1309
. 1310
. 1310
. 1310
. 1310
. 1311
. 1312
. 1314
. 1315
. 1316

. 1317

1318

. 1318

. 1319

1319

. 1319

. 1320

. 1321

. 1322

. 1323

1324

. 1326

. 1327

. 1328

. 1329

. 1330

1330

. 1332

total_exec_time - Elapsed statement execution
time monitor element ..
total_extended_latch_wait_time - Total extended
latch wait time monitor element.
total_extended_latch_waits - Total extended latch
waits monitor element . .o
total_move_time - Total extent move t1me mon1tor
element . Lo
total_hash_joins - Total Hash Joins .
total_hash_loops - Total Hash Loops
total_implicit_compilations - Total implicit
complications monitor element . .
total_implicit_compile_proc_time - Total 1mphc1t
compile processing time monitor element
total_implicit_compile_time - Total implicit
compile time monitor element .
total_load_proc_time - Total load processing t1me
monitor element . .

total_load_time - Total load t1me mon1tor element
total_loads - Total loads monitor element.
total_log_available - Total Log Available .
total_log_used - Total Log Space Used.
total_move_time - Total extent move time monitor
element . .

total_olap_funcs - Total OLAP Functrons momtor
element . .
total_peas - Total part1al early aggregat1ons
monitor element .

total_peds - Total partial early dlstmcts monltor
element . . .
total_reorg_proc_ t1me Total reorgan1zat1on
processing time monitor element .
total_reorg_time - Total reorganization time
monitor element
total_reorgs - Total reorgan1zat1ons mon1tor
element . .

total_rollback proc t1me Total rollback
processing time monitor element .
total_rollback_time - Total rollback time monltor
element . .
total_routine_ 1nvocat1ons Total rout1ne
invocations monitor elements
total_routine_non_sect _proc_time - Non- sectlon
processing time monitor element
total_routine_non_sect_time - Non-section rout1ne
execution time monitor elements
total_routine_time - Total routine time mon1tor
element .

total_routine_user_ code proc t1me Total rout1ne
user code processing time monitor element .
total_routine_user_code_time - Total routine user
code time monitor element
total_rgst_mapped_in - Total request mapped in
monitor element .

total_rqst_mapped_out - Total request
mapped-out monitor element. .
total_rqst_time - Total request time mon1tor
element .
total_runstats -
element .

Total runtime statistics monitor

. 1334

. 1335

. 1336
. 1338
. 1338
. 1338
. 1339
. 1340

. 1341

. 1342
1343

. 1344

. 1345

. 1345

. 1346

. 1346

. 1346

. 1349

. 1350

. 1351

. 1352

. 1353

. 1354

. 1355

. 1356

. 1356

. 1357

. 1359

. 1360

. 1362

. 1362

. 1362

. 1363

total_runstats_proc_time - Total runtime statistics
processing time monitor element
total_runstats_time - Total runtime statistics t1me
monitor element . .

total_sec_cons - Secondary Connect1ons
total_section_proc_time - Total section processing
time monitor element .
total_section_sort_proc_time - Total sect10n sort
processing time monitor element .
total_section_sort_time - Total section sort t1me
monitor element . .

total_section_sorts - Total sectlon sorts monltor
element
total_section_time - Total sect1on t1me mon1tor
element . .

total_sort_time - Total sort t1me monltor element
total_sorts - Total sorts monitor element .
total_stats_fabrication_proc_time - Total statistics
fabrication processing time monitor element.
total_stats_fabrication_time - Total statistics
fabrication time monitor element
total_stats_fabrications - Total statistics
fabrications monitor elements . .
total_sync_runstats_time - Total synchronous
RUNSTATS time monitor elements . .
total_sync_runstats_proc_time - Total synchronous
RUNSTATS processing time monitor element
total_sync_runstats - Total synchronous
RUNSTATS activities monitor element. .
total_sys_cpu_time - Total system CPU time for a
statement monitor element .
total_sorts - Total sorts monitor element .
total_usr_cpu_time - Total user CPU time for a
statement monitor element .
total_wait_time - Total wait time monltor element
tpmon_acc_str - TP monitor client accounting
string monitor element . .
tpmon_client_app - TP monitor cl1ent appl1cat1on
name monitor element . .
tpmon_client_userid - TP monitor chent user ID
monitor element . .
tpmon_client_wkstn - TP mon1tor cl1ent
workstation name monitor element. .
tq_cur_send_spills - Current number of table
queue buffers overflowed monitor element .
tq_id_waiting_on - Waited on node on a table
queue monitor element. .
tq_max_send_spills - Maximum number of table
queue buffers overflows

tq_node_waited_for - Waited for node on a table
queue

tq_rows_read - Number of Rows Read from table
queues .

tq_rows_written - Number of rows wr1tten to
table queues .

tq_sort_heap re]ect1ons Table queue sort heap
rejections monitor element . .
tq_sort_heap_requests - Table queue sort heap
requests monitor element . .
tq_tot_send_spills - Total number of table queue
buffers overflowed monitor element

Contents

. 1364

. 1365
. 1366

. 1367

. 1368

. 1370

. 1371

. 1373

1374

. 1375

. 1377

. 1378

. 1379

. 1380

. 1381

. 1382

. 1383
. 1384

. 1385

1386

. 1387

. 1388

. 1388

. 1389

. 1389

. 1390

. 1390

. 1391

. 1391

. 1391

. 1392

. 1394

. 1396

xxi

tq_wait_for_any - Waiting for any node to send
on a table queue .

ts_name - Table space be1ng rolled forward
monitor element .

txn, completlon status - Transact1on completlon
status .
uid_sql_stmts - Update/ Insert/ Delete SQL
Statements Executed.

unread_prefetch_pages - Unread prefetch pages
monitor element . .

uow_comp_status - Unit of Work Complet1on
Status

uow completed total - Total Completed un1ts of
work monitor element . .
uow_elapsed_time - Most Recent Un1t of Work
Elapsed Time . .
uow_id - Unit of work ID monltor element
uow_lifetime_avg - Unit of work lifetime average
monitor element . .
uow_lock_wait_time - Total tlme un1t of work
waited on locks monitor element . .
uow_log_space_used - Unit of work log space
used monitor element . . .
uow_start_time - Unit of work start tlmestamp
monitor element . .

uow_status - Unit of Work Status .
uow_stop_time - Unit of work stop timestamp
monitor element . .

uow_throughput - Unit of work throughput
monitor element . . .
uow_total_time top Uuow total t1me top m0n1t0r
element . . .

update_sql_ stmts Updates .

update_time - Update Response T1me
usage_list_last_state_change - Last state change
monitor element . .
usage_list_last_updated - Usage lrst last updated
monitor element . . .
usage_list_mem_size - Usage hst memory size
monitor element . .

usage_list_name - Usage llst name momtor
element .

usage_list_num_; references - Number of references
monitor element . .

usage_list_ num_ref with metr1cs Number of
references with metrics monitor element .
usage_list_schema - Usage list schema monitor
element . .

usage_list_size - Usage llSt size mon1tor element
usage_list_state - Usage list state monitor element
usage_list_used_entries - Usage list used entries
monitor element . .
usage_list_wrapped - Usage llst wrap 1nd1cator
monitor element . .

user_cpu_time - User CPU t1me monltor element
utility_dbname - Database Operated on by Utility
utility_description - Utility Description
utility_detail - Utility detail

utility_id - Utility ID .
utility_invocation_id - Utility 1nvocat1on ID
utility_invoker_type - Utility Invoker Type .

xxil Database Monitoring Guide and Reference

. 1397

. 1397

. 1398

. 1398

. 1399

. 1399

. 1400

. 1400
. 1401

. 1402

. 1403

. 1403

. 1404
. 1405

. 1405
. 1406
. 1406

. 1407
. 1407

. 1408

. 1408

. 1408

. 1409

. 1409

. 1409

. 1410

1410
1410

. 1410

. 1411

1411
1411
. 1412

. 1412
. 1412
. 1413
. 1413

utility_operation_type - Utility operation type
utility_phase_detail - Utility phase detail .
utility_phase_type - Utility phase type
utility_priority - Utility Priority .
utility_start_time - Utility Start Time
utility_start_type - Utility start type

utility_state - Utility State .

utility_stop_type - Utility stop type .
valid - Section validity indicator monitor element
utility_type - Utility Type . .

valid - Section validity indicator mon1t0r element
vectored_ios - Number of vectored I1/O requests
monitor element . . .

version - Version of Monitor Data . .o
virtual_mem_free - Free virtual memory monitor
element . .

virtual_mem_: reserved Reserved V1rtual memory
monitor element . .

virtual_mem_total - Total V1rtual memory m0n1tor
element .

wl_work_action_ set 1d Workload work act1on
set identifier monitor element .
wl_work_class_id - Workload work class 1dent1f1er
monitor element .
wlm_queue_assignments_ total Workload
manager total queue assignments monitor element
wlm_queue_time_total - Workload manager total

1414

. 1415
. 1415
. 1415
. 1416
. 1416
. 1416
. 1417

1417

. 1417

1418

. 1419
. 1419

. 1419

. 1420

. 1420

. 1420

. 1421

1421

queue time monitor element . . 1422
wlo_completed_total - Workload occurrences

completed total monitor element . . 1424
work_action_set_id - Work action set ID monltor
element 1424
work_action_set_name - Work actron set name

monitor element . . . 1424
work_class_id - Work class ID m0n1tor element 1425
work_class_name - Work class name monitor

element . . . 1425
workload_id - Workload ID momtor element . 1426
workload_name - Workload name monitor

element . . 1427
workload_occurrence_ 1d Workload occurrence
identifier monitor element. . . 1428
workload_occurrence_state - Workload occurrence

state monitor element . - . 1428
x_lock_escals - Exclusive lock escalat1ons mon1tor
element . . 1429
xda_object_ pages XDA Ob]ect Pages . 1430
xda_object_l_pages - XML storage object (XDA)

data logical pages monitor element. . . 1430
xid - Transaction ID . . 1431
xmlid - XML ID monitor element . 1431
xquery_stmts - XQuery Statements Attempted 1431
Part 3. Monitoring in a DB2

pureScale environment 1433
Chapter 12. Status monitoring of a

DB2 pureScale instance . 1435
Interfaces for retrieving status information for

DB2 pureScale instances . 1435

Values for member and cluster caching facility

states and alerts . . 1437
Interpretation of status mformat1on . 1439
Examples: Viewing the status of hosts, members
and cluster caching facilities . . 1444
Viewing status information for hosts in a DB2
pureScale instance . . 1445
Viewing status information for members and
cluster caching facilities in a DB2 pureScale
instance . . 1446
Checking restart status for members . 1450
Viewing details for an alert . 1452
Chapter 13. Event and real-time
database and system monitoring in a
DB2 pureScale environment . 1455
Cluster caching facility memory and CPU usage
monitoring overview . 1457
Monitor elements for v1ewmg cluster cachmg
facility memory usage 1458
Retrieving information from cluster cachmg
facility memory usage monitor elements . . 1459
Viewing cluster caching facility processor load 1461
Buffer pool monitoring in a DB2 pureScale
environment . . 1463
Monitor elements for v1ewmg DB2 pureScale
buffer pool activity . . 1463
Buffer pool hit rates and hlt rat1os in a DBZ
pureScale environment . . . 1465
Lock monitoring in a DB2 pureScale env1ronment
overview . . 1473
Lock requests between members . . 1473
Monitor elements for viewing locks between
members . 1475
Page reclaiming . Lo . 1476
Monitor elements for page reclalmmg . 1476
Monitoring page reclaiming between members 1477
Chapter 14. Using deprecated
monitoring features in a DB2
pureScale environment. . 1481
Chapter 15. New and changed
monitor elements . . 1487
cf_wait_time - cluster caching facility wait time
monitor element . . . 1487
cf_waits - Number of cluster cachmg fac111ty walts
monitor element . . 1487
configured_cf_gbp_size - Conﬁgured cluster
caching facility group buffer pool size monitor
element . . 1488
configured_cf_ lock size - Conﬁgured cluster
caching facility lock size monitor element . 1488
configured_cf_mem_size - Configured cluster
caching facility memory size monitor element . . 1489
configured_cf_sca_size - Configured cluster
caching facility shared communications area size
monitor element . . 1489

current_cf_gbp_size - Current cluster caching
facility group buffer pool size monitor element.
current_cf_lock_size - Current cluster caching
facility lock size monitor element .
current_cf_mem_size - Current cluster cachmg
facility memory size monitor element .
current_cf_sca_size - Current cluster caching
facility shared communications area size monitor
element . .

db_name - Database name momtor element
dbpartitionnum - Database partition number
monitor element . .

host_name - Host name momtor element

id - cluster caching facility identification monitor
element . .

lock_escals - Number of lock escalatlons m0n1tor
element .
lock_escals_global - Number of global lock
escalations monitor element . .
lock_escals_locklist - Number of locklist lock
escalations monitor element . .
lock_escals_maxlocks - Number of maxlocks lock
escalations monitor element . .
lock_timeouts_global - Lock timeouts global
monitor element . .
lock_wait_time_global - Lock wa1t t1me global
monitor element . .

lock_wait_time_global top Top global lock wa1t
time monitor element .
lock_waits_global - Lock wa1ts global momtor
element . .

member - Database member monltor element
objtype - Object type monitor element. .
page_reclaims_initiated_s - Page reclaims 1n1t1ated
shared access monitor element . -
page_reclaims_initiated_x - Page reclaims 1n1t1ated
exclusive access monitor element .
page_reclaims_s - Page reclaims shared access
monitor element . . A
page_reclaims_x - Page reclalms excluswe access
monitor element .

pool_async_data_gbp_. 1nval1d pages -
Asynchronous group buffer pool invalid data
pages monitor element . o
pool_async_data_gbp_l_reads - Asynchronous
group buffer pool data logical reads monitor
element .

pool_async_data gbp p reads Asynchronous
group buffer pool data phys1cal reads monitor
element .

pool_async_data lbp pages found -
Asynchronous local buffer pool data pages found
monitor element . .
pool_async_index_gbp_: 1nva11d_pages -
Asynchronous group buffer pool invalid index
pages monitor element . .
pool_async_index_gbp_l_reads - Asynchronous
group buffer pool index logical reads monitor
element .

Contents

. 1489

. 1489

. 1490

. 1490

. 1490

. 1491
. 1493

. 1493

. 1494

. 1496

. 1497

. 1498

. 1500

. 1501

. 1502

. 1503

1504
. 1508

. 1509

. 1509

. 1509

. 1510

. 1510

. 1510

. 1511

. 1511

. 1512

. 1512

xxiii

pool_async_index_gbp_p_reads - Asynchronous
group buffer pool index physical reads monitor
element .

pool_async_ 1ndex lbp pages found -
Asynchronous local buffer pool index pages
found monitor element. .
pool_async_xda_gbp_invalid pages -
Asynchronous group buffer pool invalid XDA
data pages monitor element . e
pool_async_xda_gbp_l_reads - Group buffer pool
XDA data asynchronous logical read requests
monitor element . . e
pool_async_xda_gbp_p_ reads Group buffer pool
XDA data asynchronous phys1ca1 read requests
monitor element . .

pool_async_xda_lbp_ pages found Asynchronous
local buffer pool XDA data pages found monitor
element .

pool_data_gbp_ 1nva11d pages Group buffer pool
invalid data pages monitor element
pool_data_gbp_l_reads - Group buffer pool data
logical reads monitor element
pool_data_gbp_p_reads - Group buffer pool data
physical reads monitor element .
pool_data_lbp_pages_found - Local buffer pool
found data pages monitor element . .
pool_index_gbp_invalid_pages - Group buffer
pool invalid index pages monitor element
pool_index_gbp_l_reads - Group buffer pool
index logical reads monitor element
pool_index_gbp_p_reads - Group buffer pool
index physical reads monitor elements
pool_index_lbp_pages_found - Local buffer pool
index pages found monitor element
pool_xda_gbp_invalid_pages - Group buffer pool
invalid XDA data pages monitor element.
pool_xda_gbp_l_reads - Group buffer pool XDA
data logical read requests monitor element .
pool_xda_gbp_p_reads - Group buffer pool XDA
data physical read requests monitor element
reclaim_wait_time - Reclaim wait time monitor
element . .

spacemappage_page_ reclalrns 1n1t1ated _5- Space
map page reclaims initiated shared access monitor
element .

XXiV Database Monitoring Guide and Reference

. 1513

. 1513

. 1514

. 1514

. 1515

. 1515

. 1516

. 1517

. 1519

. 1520

. 1522

. 1523

. 1525

. 1526

. 1528

. 1529

. 1531

. 1534

. 1535

spacemappage_page_reclaims_initiated_x - Space
map page reclaims initiated exclusive access
monitor element . .

spacemappage_page_ reclalms s - Space map page
reclaims shared access monitor element . . 1536
spacemappage_page_reclaims_x - Space map page

. 1536

reclaims exclusive access monitor element . 1537
spacemappage_reclaim_wait_time - Space map

page reclaim wait time monitor element . . 1537
table_name - Table name monitor element . 1539
table_schema - Table schema name monitor

element . . 1540
tablespace_min recovery_tlme Mlnrmum

recovery time for rollfforward monitor element . . 1542
target_cf_gbp_size - Target cluster caching facility
group buffer pool size monitor element . . 1543
target_cf_lock_size - Target cluster caching fac111ty

lock size monitor element . . 1543

target_cf_sca_size - Target cluster cachlng fac111ty
shared communications area size monitor element 1543

Part 4. Appendixes . 1545
Appendix A. Overview of the DB2
technical information . 1547

DB2 technical library in hardcopy or PDF format 1547

Displaying SQL state help from the command line

processor . . 1550
Accessing different versions of the DBZ
Information Center . . 1550

Updating the DB2 Inforrnatlon Center 1nstalled on

your computer or intranet server . 1550
Manually updating the DB2 Information Center

installed on your computer or intranet server . . 1552
DB2 tutorials . . 1553
DB2 troubleshooting 1nformat1on . 1554
Terms and conditions . 1554
Appendix B. Notices . . 1557
Index . 1561

About this book

The System Monitor Guide and Reference describes how to collect different kinds of
information about your database and the database manager.

It also explains how you can use the information you collected to understand
database activity, improve performance, and determine the cause of problems.

© Copyright IBM Corp. 2012 XXV

XXVl Database Monitoring Guide and Reference

Part 1. Interfaces for database monitoring

There are two ways to monitor operations in your database. You can view
information that shows the state of various aspects of the database at a specific
point in time. Or, you can set up event monitors to capture historical information
as specific types of database events take place.

You can monitor your database operations in real-time using monitoring table
functions. For example, you can use a monitoring table function to examine the
total amount of space used in a table space. These table functions let you examine
monitor elements and metrics that report on virtually all aspects of database
operations using SQL. The monitoring table functions use the newer, lightweight,
high-speed monitoring infrastructure that was introduced in Version 9.7. In
addition to the table functions, snapshot monitoring routines are also available.
The snapshot monitoring facilities in DB2® use monitoring infrastructure that
existed before Version 9.7. Generally speaking, snapshot monitoring facilities are no
longer being enhanced in the product; where possible, use the monitoring table
functions to retrieve the data you want to see.

Event monitors capture information about database operations over time, as
specific types of events occur. For example, you can create an event monitor to
capture information about locks and deadlocks as they occur in the system. Or you
might create an event monitor to record when a threshold that you specify (for
example the total processor time used by an application or workload) is exceeded.
Event monitors generate output in different formats; all of them can write event
data to regular tables; some event monitors have additional output options.

IBM® InfoSphere® Optim™ Performance Manager provides a Web interface that you
can use to isolate and analyze typical database performance problems. You can also
view a summary of the health of your databases and drill down. For more details,
see Monitoring with Optim Performance Manager at http://
publib.boulder.ibm.com/infocenter/idm/docv3/topic/
com.ibm.datatools.perfmgmt.monitor.doc/p_monitor.html.

© Copyright IBM Corp. 2012 1

http://publib.boulder.ibm.com/infocenter/idm/docv3/topic/com.ibm.datatools.perfmgmt.monitor.doc/p_monitor.html
http://publib.boulder.ibm.com/infocenter/idm/docv3/topic/com.ibm.datatools.perfmgmt.monitor.doc/p_monitor.html
http://publib.boulder.ibm.com/infocenter/idm/docv3/topic/com.ibm.datatools.perfmgmt.monitor.doc/p_monitor.html

2 Database Monitoring Guide and Reference

Chapter 1. Database monitoring

The term database monitoring refers to the tasks associated with examining the
operational status of your database.

Database monitoring is a vital activity for the maintenance of the performance and
health of your database management system. To facilitate monitoring, DB2 collects
information from the database manager, its databases, and any connected
applications. With this information you can perform the following types of tasks,
and more:

* Forecast hardware requirements based on database usage patterns.
* Analyze the performance of individual applications or SQL queries.
* Track the usage of indexes and tables.

 Pinpoint the cause of poor system performance.

* Assess the impact of optimization activities (for example, altering database
manager configuration parameters, adding indexes, or modifying SQL queries).

© Copyright IBM Corp. 2012 3

4 Database Monitoring Guide and Reference

Chapter 2. Table functions for monitoring

Starting with DB2 Version 9.7, you can access monitor data through a light-weight
alternative to the traditional system monitor. Use monitor table functions to collect
and view data for systems, activities, or data objects.

Data for monitored elements are continually accumulated in memory and available
for querying. You can choose to receive data for a single object (for example,
service class A or table TABLE1) or for all objects.

When using these table functions in a database partitioned environment, you can
choose to receive data for a single partition or for all partitions. If you choose to
receive data for all partitions, the table functions return one row for each partition.
Using SQL, you can sum the values across partitions to obtain the value of a
monitor element across partitions.

Monitoring system information using table functions

The system monitoring perspective encompasses the complete volume of work and
effort expended by the data server to process application requests. From this
perspective, you can determine what the data server is doing as a whole as well as
for particular subsets of application requests.

Monitor elements for this perspective, referred to as request monitor elements,
cover the entire range of data server operations associated with processing
requests.

Request monitor elements are continually accumulated and aggregated in memory
so they are immediately available for querying. Request monitor elements are
aggregated across requests at various levels of the workload management (WLM)
object hierarchy: by unit of work, by workload, by service class. They are also
aggregated by connection.

Use the following table functions for accessing current system monitoring
information:

* MON_GET_SERVICE_SUBCLASS and
MON_GET_SERVICE_SUBCLASS_DETAILS

* MON_GET_WORKLOAD and MON_GET_WORKLOAD_DETAILS
* MON_GET_CONNECTION and MON_GET_CONNECTION_DETAILS
* MON_GET_UNIT_OF_WORK and MON_GET_UNIT_OF_WORK_DETAILS

This set of table functions enables you to drill down or focus on request monitor
elements at a particular level of aggregation. Table functions are provided in pairs:
one for relational access to commonly used data and the other for XML access to
the complete set of available monitor elements.

The system monitoring information is collected by these table functions by default
for a new database. You can change default settings using one or both of the
following settings:

* The database configuration parameter mon_req_metrics specifies the minimum
level of collection in all service classes.

© Copyright IBM Corp. 2012 5

* The COLLECT REQUEST METRICS clause of the CREATE/ALTER SERVICE
CLASS statement specifies the level of collection for a service superclass. Use
this setting to increase the level of collection for a given service class over the
minimum level of collection set for all service classes.

The possible values for each setting are the following:
None No request monitor elements are collected
Base All request monitor elements are collected

For example, to collect system monitoring information for only a subset of service
classes, do the following;:

1. Set the database configuration parameter mon_req_metrics to NONE.

2. For each required service class, set the COLLECT REQUEST METRICS clause
of the CREATE/ALTER SERVICE CLASS statement to BASE.

Monitoring activities using table functions

The activity monitoring perspective focuses on the subset of data server processing
related to executing activities. In the context of SQL statements, the term activity
refers to the execution of the section for a SQL statement.

Monitor elements for this perspective, referred to as activity monitor elements, are
a subset of the request monitor elements. Activity monitor elements measure
aspects of work done for statement section execution. Activity monitoring includes
other information such as SQL statement text for the activity.

For activities in progress, activity metrics are accumulated in memory. For activities
that are SQL statements, activity metrics are also accumulated in the package
cache. In the package cache activity metrics are aggregated over all executions of
each SQL statement section.

Use the following table functions to access current data for activities:

MON_GET_ACTIVITY_DETAILS
Returns data about the individual activities in progress when the table
function is called. Data is returned in a relational form, however, the
detailed metrics are returned in an XML document in the DETAILS column
of the results table.

MON_GET_PKG_CACHE_STMT
Returns a point-in-time view of both static and dynamic SQL statements in
the database package cache. Data is returned in a relational form.

MON_GET_PKG_CACHE_STMT_DETAILS
Returns detailed metrics for one or more package cache entries. Data is
returned in a relational form, however, the detailed metrics are returned in
an XML document in the DETAILS column of the results table.

Activity monitoring information is collected by default for a new database. You can
change default settings using one or both of the following settings:

* The mon_act_metrics database configuration parameter specifies the minimum
level of collection in all workloads.

* The COLLECT ACTIVITY METRICS clause of the CREATE/ALTER
WORKLOAD statement specifies the level of collection for a given workload
over the minimum level of collection set for all workloads.

6 Database Monitoring Guide and Reference

The possible values for each setting are the following:
None No activity monitor elements are collected

Base All activity monitor elements are collected

For example, to collect activity monitor elements for only selected workloads, do
the following:

1. Set the mon_act_metrics database configuration parameter to NONE.
2. Set the COLLECT ACTIVITY METRICS clause of the CREATE/ALTER

WORKLOAD statement to BASE. By default, the values for other workloads is
NONE.

Monitoring data objects using table functions

The data object monitoring perspective provides information about operations
performed on data objects, that is tables, indexes, buffer pools, table spaces, and
containers.

A different set of monitor elements is available for each object type. Monitor
elements for a data object are incremented each time a request involves processing
that object. For example, when processing a request that involves reading rows
from a particular table, the metric for rows read is incremented for that table.

Use the following table functions to access current details for data objects:
* MON_GET_BUFFERPOOL

* MON_GET_TABLESPACE

* MON_GET_CONTAINER

* MON_GET_TABLE

* MON_GET_INDEX

These table functions return data in a relational form.
You cannot access historical data for data objects.

Data object monitor elements are collected by default for new databases. You can
use the mon_obj_metrics database configuration parameter to reduce the amount of
data collected by the table functions.

The possible values for this configuration parameter are the following:
None No data object monitor elements are collected

Base Some data object monitor elements are collected

Extended

All data object monitor elements are collected

To stop collecting data object monitor elements reported by the following table
functions, set the mon_obj_metrics configuration parameter to NONE.

* MON_GET_BUFFERPOOL
* MON_GET_TABLESPACE
* MON_GET_CONTAINER

Chapter 2. Table functions for monitoring 7

Object usage

When SQL statements are executed, they use various database objects, such as
tables and indexes. Knowing which database objects a statement accesses and how
the statement affects them can help you identify targets for monitoring or

performance tuning.

The following table shows the entities that you can use to explore the relationship
between database objects and statements.

Table 1. Ways to identify object usage

Mechanism

Definition

Usage

Usage list

A usage list is a database
object that records each DML
statement section that
references a particular table
or index and captures
statistics about that section
as it executes.

Identify the statements that
affected a table or index. If
you notice an unusual value
for a metric when
monitoring a database object,
use a usage list to determine
whether a particular
statement contributed to that
metric. You can also view
statistics for each statement
that affected the object.

Section explain with actuals

A section explain is a set of
information about the access
plan that the optimizer chose
for an SQL statement. You
can capture section actuals as
part of the explain. Section
actuals are runtime statistics
that are collected when a
section executes.

Identify the tables or indexes
that a statement affects. You
can view statistics for each
table or index and use these
statistics to determine how
the statement affects each
object and where tuning
might be required.

You can use the information in a usage list or section explain with actuals as
baseline data for performance tuning. Collect information about object usage before
tuning statements or database configuration parameters. After tuning, collect the
information again to verify that tuning improved performance.

Identifying the statements that affect a table

Use usage lists to identify DML statement sections that affect a particular table
when the statement sections execute. You can view statistics for each statement and
use these statistics to determine where additional monitoring or tuning might be

required.
Before you begin

Do the following tasks:

* Identify a table for which you want to view object usage statistics. You can use
the MON_GET_TABLE table function to view monitor metrics for one or more

tables.

* To issue the required statements, ensure that the privileges that are held by the
authorization ID of each statement include DBADM authority or SQLADM

authority.

* Ensure that you have EXECUTE privilege on the
MON_GET_TABLE_USAGE_LIST and MON_GET_USAGE_LIST_STATUS table

functions.

8 Database Monitoring Guide and Reference

About this task

When you view the output of the MON_GET_TABLE table function, you might see
an unusual value for a monitor element. You can use usage lists to determine
whether any DML statements contributed to this value.

Usage lists contain statistics about factors like locks and buffer pool usage for each
statement that affected a table during a particular time frame. If you determine
that a statement affected a table negatively, use these statistics to determine where
further monitoring might be required or how the statement can be tuned.

Procedure

To identify the statements that affect a table:

1. Set the mon_obj_metrics configuration parameter to EXTENDED by issuing the
following command:

DB2 UPDATE DATABASE CONFIGURATION USING MON_OBJ_METRICS EXTENDED

Setting this configuration parameter to EXTENDED ensures that statistics are
collected for each entry in the usage list.

2. Create a usage list for the table by using the CREATE USAGE LIST statement.
For example, to create the INVENTORYUL usage list for the
SALES.INVENTORY table, issue the following command:

CREATE USAGE LIST INVENTORYUL FOR TABLE SALES.INVENTORY

3. Activate the collection of object usage statistics by using the SET USAGE LIST
STATE statement. For example, to activate collection for the INVENTORYUL
usage list, issue the following command:

SET USAGE LIST INVENTORYUL STATE = ACTIVE

4. During the collection of object statistics, ensure that the usage list is active and
that sufficient memory is allocated for the usage list by using the
MON_GET_USAGE_LIST_STATUS table function. For example, to check the
status of the INVENTORYUL usage list, issue the following command:
SELECT MEMBER,

STATE,
LIST SIZE,
USED_ENTRIES,
WRAPPED
FROM TABLE(MON_GET_USAGE_LIST_STATUS('SALES', 'INVENTORYUL', -2))

5. When the time period for which you want to collect object usage statistics is
elapsed, deactivate the collection of usage list data by using the SET USAGE
LIST STATE statement. For example, to deactivate collection for the
INVENTORYUL usage list, issue the following command:

SET USAGE LIST SALES.INVENTORYUL STATE = INACTIVE

6. View the information that you collected by using the
MON_GET_TABLE_USAGE_LIST function. You can view statistics for a subset
or for all of the statements that affected the table during the time period for
which you collected statistics. For example, to see only the 10 statements that
read the most rows of the table, issue the following command:

SELECT MEMBER,
EXECUTABLE_ID,
NUM_REFERENCES,
NUM_REF_WITH_METRICS,
ROWS_READ,
ROWS_INSERTED,
ROWS_UPDATED,

Chapter 2. Table functions for monitoring 9

ROWS_DELETED
FROM TABLE(MON_GET_TABLE_USAGE_LIST('SALES', 'INVENTORYUL', -2))
ORDER BY ROWS_READ DESC
FETCH FIRST 10 ROWS ONLY

7. If you want to view the text of a statement that affected the table, use the value
of the executable_id element in the MON_GET_TABLE_USAGE_LIST output
as input for the MON_GET_PKG_CACHE_STMT table function. For example,
issue the following command to view the text of a particular statement:

SELECT STMT_TEXT

FROM TABLE

(MON_GET_PKG_CACHE_STMT (NULL,
x'01000000000000007C0000000000000000000000020020081126171720728997",
NULL, -2))

8. Use the list of statements and the statistics that are provided for the statements
to determine where additional monitoring or tuning, if any, is required. For
example, a statement that has a low value for the pool_writes monitor element
compared to the direct_writes monitor element value might have buffer pool
issues that require attention.

What to do next

When you do not require the information in the usage list, free the memory that is
associated with the usage list by using the SET USAGE LIST STATE statement. For
example, to free the memory that is associated with the INVENTORYUL usage list,
issue the following command:

SET USAGE LIST SALES.INVENTORYUL STATE = RELEASED

Identifying how a statement affects database objects

Use a section explain that includes section actuals information to identify how a
statement affects database objects. You can use statistics about how the statement
section affected each table or index to determine whether additional monitoring or
tuning is required.

Before you begin

Do the following tasks:

* Identify a statement for which you want to view object usage statistics.
* Ensure that you migrated your explain tables to DB2 Version 10.1.

* Ensure that automatic statistics profile generation is not enabled.

* Ensure that you have the privileges that are required to call the
EXPLAIN_FROM_ACTIVITY procedure.

About this task

After you identify a statement for which you want to view object usage statistics,
you can get a section explain that includes section actuals information. Section
actuals information indicates how the statement affected each table or index that
the statement used when it executed.

Actuals information includes runtime statistics about factors like locks and buffer
pool usage for each table or index. You can compare these statistics to baseline
data and use them to determine where additional monitoring or tuning might be
required.

10 Database Monitoring Guide and Reference

Procedure

To determine how database objects are affected by a statement:

1.

Enable the collection of section actuals at the database level by issuing the
following command:

DB2 UPDATE DATABASE CONFIGURATION USING SECTION_ACTUALS BASE

Create a workload to collect section actuals information for activities that are
submitted by the application that issues the statement. For example, to create
the ACTWORKLOAD workload for activities that are submitted by the TEST
application and enable collection for those activities, issue the following
command:

CREATE WORKLOAD ACTWORKLOAD APPLNAME ('TEST')

COLLECT ACTIVITY DATA ON ALL WITH DETAILS,SECTION INCLUDE ACTUALS BASE
Enabling collection of section actuals can also be accomplished in the
following ways:

* The CREATE SERVICE CLASS or ALTER SERVICE CLASS statement

* The CREATE WORK ACTION SET or ALTER WORK ACTION SET
statement

¢ The WLM_SET_CONN_ENV procedure
* The section_actuals configuration parameter

Create an activity event monitor by using the CREATE EVENT MONITOR
statement. For example, to create the ACTEVMON activity event monitor,
issue the following command:
CREATE EVENT MONITOR ACTEVMON

FOR ACTIVITIES

WRITE TO TABLE

CONTROL (TABLE CONTROL_ACTEVMON),

ACTIVITY (TABLE ACTIVITY_ACTEVMON),

ACTIVITYSTMT (TABLE ACTIVITYSTMT_ACTEVMON),

ACTIVITYVALS (TABLE ACTIVITYVALS_ACTEVMON),

ACTIVITYMETRICS (TABLE ACTIVITYMETRICS_ACTEVMON)
Activate the activity event monitor that you created by using the SET EVENT
MONITOR STATE statement. For example, to activate the ACTEVMON
activity event monitor, issue the following command:

SET EVENT MONITOR ACTEVMON STATE 1

Run the application that issues the statement for which you want to view
object statistics.

Find identifier information for the statement section by using the following
command to query the activity event monitor tables:
SELECT APPL_ID,

UOW_ID,

ACTIVITY_ID,

STMT_TEXT
FROM ACTIVITYSTMT_ACTEVMON
Obtain a section explain with actuals by using the activity identifier
information as input for the EXPLAIN_FROM_ACTIVITY procedure. For
example, to obtain a section explain for a section with an application ID of
*N2.DB2INST1.0B5A12222841, a unit of work ID of 16, and an activity ID of 4,
issue the following command:

CALL EXPLAIN_FROM ACTIVITY('#N2.DB2INST1.0B5A12222841', 16, 4, 'ACTEVMON',
"MYSCHEMA', ?, 2, 7, 2, 7)

You get output that looks like the following sample output:

Chapter 2. Table functions for monitoring 11

Value of output parameters

Parameter Name : EXPLAIN_SCHEMA
Parameter Value : MYSCHEMA

Parameter Name : EXPLAIN_REQUESTER
Parameter Value : GSDBUSER3

Parameter Name : EXPLAIN_TIME
Parameter Value : 2010-11-23-10.51.09.631945

Parameter Name : SOURCE_NAME
Parameter Value : SQLC2J21

Parameter Name : SOURCE_SCHEMA
Parameter Value : NULLID

Parameter Name : SOURCE_VERSION
Parameter Value :

Return Status = 0

8. Format the explain data by using the db2exfmt command. Use the values of
the explain_requester, explain_time, source_name, source_schema, and
source_version parameters in the output from the
EXPLAIN_FROM_ACTIVITY procedure as input for the command.

9. View the explain output to determine how the section affected the database
objects that it used when it executed. Statistics in the output might indicate
that additional monitoring or tuning is required. For example, if a table that
the section uses has a high value for the Tock_wait monitor element, lock
management might be required.

10. If you tune the statement, repeat steps 5 on page 11 through 9 to verify that
performance is improved.

What to do next

Deactivate the activity event monitor by using the SET EVENT MONITOR STATE
statement. For example, to deactivate the ACTEVMON activity event monitor,
issue the following command:

SET EVENT MONITOR ACTEVMON STATE 0

Monitoring locking using table functions

You can retrieve information about locks using table functions. Unlike request,
activity or data object monitor elements, information about locks is always
available from the database manager. You do not need to enable the collection of
this information.

Use the following monitor table functions to access current information for locks in
the system:

* MON_GET_LOCKS
* MON_GET_APPL_LOCKWAIT

Both table functions return data in relational form.

Monitoring system memory using table functions

You can retrieve information about system memory usage using table functions.

12 Database Monitoring Guide and Reference

You can examine memory usage at the level of memory sets, which are allocations
of memory from the operating system. You can also examine memory usage by
specific memory pools within a given memory set. Use the following monitor
functions to access current information about memory usage:

e MON_GET_MEMORY_SET
* MON_GET_MEMORY_POOL

Other monitoring table functions

Besides table functions that return information about the system, activities, locks,
or data objects there are also table functions that return various types of
miscellaneous information. These functions include ones that return information
related to the fast communications manager (FCM), and about the status of table
space extent movement.

Each of the table functions that follow can be used at any time. Unlike the table
functions that return request metrics (the system monitoring perspective), activity
metrics (the activity monitoring perspective) or metrics related to data objects (the
data object monitoring perspective), it is not necessary to first enable the collection
of the monitor elements returned by these functions.

* MON_GET_FCM
* MON_GET_FCM_CONNECTION_LIST
* MON_GET_EXTENT _MOVEMENT_STATUS

Interfaces that return monitor data in XML documents

Starting in DB2 Version 9.7, some monitor data is reported as elements in XML
documents.

Using XML to report monitor information provides improved extensibility and
flexibility. New monitor elements can be added to the product without having to
add new columns to an output table. Also, XML documents can be processed in a
number of ways, depending on your needs. For example:

* You can use XQuery to run queries against the XML document.

* You can use the XSLTRANSFORM scalar function to transform the document
into other formats.

* You can view their contents as formatted text using built-in
MON_FORMAT_XML_* formatting functions, or the XMLTABLE table function.

XML documents containing monitor elements are produced by several monitoring
interfaces. The sections that follow describe how results are returned as XML
documents.

e “Monitor table functions with names that end with _DETAILS”
* “XML data returned by event monitors” on page 15.

Monitor table functions with names that end with “ DETAILS”

Examples of these table functions include:

* MON_GET_PKG_CACHE_STMT_DETAILS
MON_GET_WORKLOAD_DETAILS
MON_GET_CONNECTION_DETAILS
MON_GET_SERVICE_SUBCLASS_DETAILS

Chapter 2. Table functions for monitoring 13

* MON_GET_ACTIVITY_DETAILS
* MON_GET_UNIT_OF_WORK_DETAILS

These table functions return monitor elements from the system and the activity
monitoring perspectives. Most of the monitor elements returned by these functions
are contained in an XML document. For example, the
MON_GET_CONNECTION_DETAILS table function returns the following
columns:

* APPLICATION_HANDLE
* MEMBER
* DETAILS

The DETAILS column of each row contains an XML document that contains
monitor element data. This XML document is composed of several document
elements that correspond to monitor elements. Figure 1 illustrates the DETAILS
column containing the XML documents. In addition, it show monitor elements
returned in the XML documents in the DETAILS column.

APPLICATION_HANDLE MEMBER DETAILS

Legend

Other content

H <?xml version="1.0" encoding="windows-1252" ?=
- «db2_connection xmins="http:/ fwww.ibm.com/xmlns/prod/db2/mon" release="907nnnn":
<application_handle>=52</application_handle>
<member=0</member=
- «<system_metrics release="9070100">

<wim_gueue_time_total=0</wim_queue_time_total>
<wlm_queue_assignments_total=0</wlm_queue_assignments_total>
<fcm_tq_recv_wait_time=0</fcm_tq_recv_wait_time>
<fcm_message_recv_wait_time=0</fcm_message_recv_wait_time=>
<fcm_tq_send_wait_time>=0</fcm_tg_send_wait_time>
<fcm_message_send_wait_time=0</fcm_message_send_wait_time=
<agent_wait_time>0</agent_wait_time=>

Figure 1. Table returned by MON_GET_CONNECTION_DETAILS, showing the DETAILS
column containing XML documents. The contents of the XML document in the third row ()
are shown following the table.

14 Database Monitoring Guide and Reference

In the preceding example, the <agent_wait_time> XML document element
corresponds to agent_wait_time monitor element.

The schema for the XML document that is returned in the DETAILS column is
available in the file sq11ib/misc/DB2MonRoutines.xsd. Further details can be found
in the file sq11ib/misc/DB2MonCommon.xsd.

Some of the monitor elements contained in the document in the DETAILS column
might be grouped into higher-level document elements. For example, monitor
elements that report on activity-related metrics are part of the activity_metrics
element. Similarly, system-level metrics are part of the system_metrics element.

XML data returned by event monitors

Several event monitors return data in XML format. They are summarized in
Table 2. Details about the XML documents returned by the various event monitor
are described in the sections that follow.

Table 2. XML documents returned by various event monitors

Event monitor output

Event monitor format XML document returned
“Statistics event « Relational table DETAILS_XML
monitor” . File

* Named pipe

“Activity event « Relational table DETAILS_XML
;r;onitor” on page . File
* Named pipe
“Package cache Unformatted event (UE) | METRICS
event monitor” on |table
page 17 This document can be viewed only after

the UE table has been transformed to either
XML or relational tables.

“Unit of work event | Unformatted event (UE) | METRICS

monitor” on page table
17 This document can be viewed only after

the UE table has been transformed to either
XML or relational tables.

Statistics event monitor

When you create a statistics event monitor to report on monitor elements in either
the event_scstats and event_wlstats logical data groups (see “event_scstats logical
data group” on page 62, “event_wlstats logical data group” on page 69), one of the
columns produced is DETAILS_XML. If the event monitor is written to a table,
DETAILS_XML is a column. If it is written to a file or named pipe, DETAILS_XML
is part of the self-describing data stream. The document contains the
system_metrics monitor element, which, in turn, contains a number of monitor
elements that report on metrics related to system. Figure 2 on page 16 shows the
XML documents in the DETAILS_XML column of the table produced by the
statistics event monitor:

Chapter 2. Table functions for monitoring 15

PARTITION_KEY | ACT_CPU_TIME_TOP | ACT_ROWS_READ_TOP | CONCURRENT_WLO_ACT_TOP | --- | DETAILS_XML | LAST_WLM_RESET

Legend

Other content

H <?xml version="1.0" encoding="windows-1252" ?>
- <activity_metrics release="907nnnn" xmins="http:/ fwww.ibm.com/xmins/prod/db2/mon">

<wlm_gqueue_time_total=0</wim_queue_time_total>
<wlm_gueue_assignments_total=0</wlm_gueue_assignments_total>
<fcm_tq_recv_wait_time=0</fcm_tg_recv_wait_time=>
<fcm_message_recv_wait_time=0</fcm_message_recv_wait_time>
<fcm_tq_send_wait_time>0</fcm_tq_send_wait_time=>
<fcm_message_send_wait_time=0</fcm_message_send_wait_time=>
<lock_wait_time=0</lock_wait_time>
<lock_waits=0</lock_waits>
<direct_read_time=0</direct_read_time=

Figure 2. Output of statistics event monitor (when written to a table), showing the
DETAILS_XML column. The contents of the XML document in the third row ([l) are shown
following the table.

See “Information written to XML for system_metrics and activity_metrics monitor
elements” on page 279 for the schema for the XML output from a statistics event
monitor.

Note: system_metrics as reported in the XML document in the DETAILS_XML
column produced by the statistics event monitor is also a part of the XML
document contained in the DETAILS column returned by the
MON_GET_SERVICE_SUBCLASS_DETAILS and

MON_GET WORKLOAD_DETAILS table functions.

Activity event monitor

When you create an activity event monitor to report on monitor elements in the
event_activity logical data group (see “event_activity logical data group” on page
43), one of the columns produced is DETAILS_XML. If the event monitor is written
to a table, DETAILS_XML is a column. If it is written to a file or named pipe,
DETAILS_XML is part of the self-describing data stream. Either way, the document
contains the activity_metrics monitor element, which, in turn, contains a number
of monitor elements that report on metrics related to activities. See “Information
written to XML for system_metrics and activity_metrics monitor elements” on page
279 for the schema for the XML output from an activity event monitor.

Note: activity_metrics as reported in the XML document in the DETAILS_XML
column produced by the activity event monitor is also a part of the XML document
contained in the DETAILS column returned by the
MON_GET_ACTIVITY_DETAILS table function.

16 Database Monitoring Guide and Reference

Package cache event monitor

The package cache event monitor writes its output to an unformatted event (UE)
table. If you convert the data in this table using the
EVMON_FORMAT_UE_TO_TABLES table function, one of the tables produced is
PKGCACHE_EVENT. This table contains a METRICS column. In each row, this
column contains an XML document with elements associated with package cache
event monitor elements.

Note: Starting in DB2 Version 9.7 Fix Pack 1, EVMON_FORMAT_UE_TO_TABLES
also creates a separate table for the metrics collected by this event monitor called
PKGCACHE_METRICS. This table contains the same information reported in the
METRICS column of the PKGCACHE_EVENT table. So, you can retrieve metrics
from the columns of the PKGCACHE_METRICS table, or you can use the use the
XML document contained in the METRICS column of the PKGCACHE_EVENT
table. See “Information written to relational tables by
EVMON_FORMAT_UE_TO_TABLES for a package cache event monitor” on page
226 for details.

The EVMON_FORMAT_UE_TO_XML function also produces an XML document
with elements associated with package cache event monitor elements. For example,
the XML document element <num_executions> corresponds to the num_executions
monitor element. See “Information written to XML for a package cache event
monitor” on page 235 for the schema for the XML output from a package cache
event monitor.

Unit of work event monitor

The unit of work event monitor writes its output to an unformatted event (UE)
table. If you convert the data in this table using the
EVMON_FORMAT_UE_TO_TABLES table function, one of the tables produced is
UOW_EVENT. This table contains a METRICS column, which contains an XML
document with elements associated with unit of work event monitor elements.

Note: Starting in DB2 Version 9.7 Fix Pack 1, EVMON_FORMAT_UE_TO_TABLES
also creates a separate table for the metrics collected by this event monitor called
UOW_METRICS. This table contains the same information reported in the
METRICS column of the UOW_EVENT table. So, you can retrieve metrics from the
columns of the UOW_METRICS table, or you can use the use the XML document
contained in the METRICS column of the UOW_EVENT table. See “Information
written to relational tables by EVMON_FORMAT_UE_TO_TABLES for a unit of
work event monitor” on page 177 for details.

The EVMON_FORMAT_UE_TO_XML function also produces an XML document
with elements associated with unit of work event monitor elements. For example,
the XML document element <workload_name> corresponds to the workload_name
monitor element. See “Information written to XML by
EVMON_FORMAT_UE_TO_XML for a unit of work event monitor” on page 188
for the schema for the XML output from a unit of work event monitor.

Interfaces for viewing XML monitor information as formatted
text

You can view the data contained in the XML documents produced by monitor
interfaces in several ways, depending on how you want to view or use the data.

Chapter 2. Table functions for monitoring 17

You can use XQuery to query and manipulate the XML documents returned by
monitoring interfaces. You can also use table functions to format the XML
documents for easier reading.

XQuery provides a powerful and flexible interface for querying and manipulating
XML data. However, there are times where you might want to view element data
in a text-based format. Depending on your needs, you can view monitor elements
contained in an XML document in column- or row-oriented format. The former is
useful if you know which monitor elements you want to see. The latter is useful if
you do not know ahead of time which monitor elements you want to examine,
such as when you want to see the top five types of wait times. The sections that
follow describe two ways that you can view monitor data contained in XML
documents as formatted text.

* “Viewing monitor elements in column-oriented format”
* “Viewing monitor elements in row-oriented format” on page 19

Viewing monitor elements in column-oriented format

The XMLTABLE table function takes an XML document as input and coverts it
into a relational table such that each of the selected XML document elements
appears as a column. This approach is useful if you know which monitor elements
you want to display. For example, assume that you have created a statistics event
monitor called DBSTATS to collect information from the event_scstats logical data
group. (See “event_scstats logical data group” on page 62 for more information
about the monitor elements associated with this logical data group.) The monitor
elements in this logical group include details_xml,! which is actually an XML
document that itself contains the metrics that comprise the system_metrics monitor
element. (See “system_metrics” on page 280 for more information about the
monitor elements associated with the system_metrics monitor element.) To view
specific system_metrics monitor elements contained in details_xml, such as
rows_returned, total_section_time, or total cpu_time, you can use the XMLTABLE
table function to format selected monitor elements from the details_xml documents
returned by the statistics event monitor. The example that follows illustrates this.
(For presentation purposes, the SQL returns results only for a specific service
class.)

SELECT partition_number,
service_class_id,
statistics_timestamp,
event.rows_returned,
event.total section_time,
event.total_cpu_time

FROM SCSTATS_DBSTATS as DBSTATS,
XMLTABLE(XMLNAMESPACES(DEFAULT 'http://www.ibm.com/xmlins/prod/db2/mon'),
"$metrics/system_metrics' PASSING XMLPARSE(DOCUMENT DBSTATS.details.xml) as "metrics"

COLUMNS

rows_returned BIGINT PATH 'rows_returned',
total_section_time BIGINT PATH 'total section_time',
total_cpu_time BIGINT PATH 'total_cpu_time'

) AS EVENT

WHERE service class_id = 12;

The following output shows the results for this query:

1. Note: In these topics, when details_xml appears in lower-case letters, it refers to the XML document details_xml. DETAILS_XML,
in upper-letters, refers to a column in a relational table called DETAILS_XML that contains the details_xml documents.

18 Database Monitoring Guide and Reference

PARTITION_NUMBER SERVICE_CLASS_ID STATISTICS_TIMESTAMP ROWS_RETURNED TOTAL_SECTION_TIME TOTAL_CPU_TIME

[cNooNoRoNoRoRoNolol

10 record(s) selected.

12 2010-01-05-12.14.37.001717 402 990 1531250
12 2010-01-05-12.15.00.035409 402 990 1531250
12 2010-01-05-12.20.00.021884 412 1064 1609375
12 2010-01-05-12.25.00.039175 422 1075 1687500
12 2010-01-05-12.29.59.950137 432 1104 1765625
12 2010-01-05-12.34.59.948979 442 1130 1796875
12 2010-01-05-12.39.59.903928 452 1149 1890625
12 2010-01-05-12.44.59.953596 462 1178 1953125
12 2010-01-05-12.49.59.970059 473 1207 2062500
12 2010-01-05-12.54.59.971990 483 1230 2109375

In this case, the first three columns are displayed directly from the table
SCSTATS_DBSTATS table produced by the statistics event monitor. The last three
columns are metrics monitor elements extracted from the XML document in the
DETAILS XML column of the table.

For more information about using XMLTABLE, refer to the documentation for that
function. You can also see examples of using XMLTABLE to view monitor elements
in the documentation for the various MON_GET_* DETAILS functions.

Viewing monitor elements in row-oriented format

The table functions with names of the form MON_FORMAT XML_* BY_ROW
introduced in DB2 Version 9.7 Fix Pack 1 provide a quick way to display the
metrics monitor elements contained in an XML document. They report metrics in a
row-based format, with each monitor element appearing in a row by itself. The
following functions are included in this group:

* MON_FORMAT_XML_COMPONENT_TIMES_BY_ROW

* MON_FORMAT_XML_TIMES_BY_ROW

* MON_FORMAT_XML_WAIT_TIMES_BY_ROW

* MON_FORMAT_XML_METRICS_BY_ROW

For example, the XML document returned by the statistics event monitor,
DETAILS_XML, might look something like the one shown in the first part of
Figure 3 on page 20. If you use the MON_FORMAT_XML_WAIT_TIMES_BY_ROW
function to format the content of DETAILS_XML, the output would look like the
table at the bottom of the diagram.

Chapter 2. Table functions for monitoring 19

<?xml version="1.0" encoding="windows-1252" ?=

- <system_metrics xmins="http:/ /www._ibm.com/xmlins/prod/db2/mon" release="907nnnn">
<wlm_gueue_time_total=0</wim_gqueue_time_total=
<wlm_gueue_assignments_total=0</wlm_gueue_assignments_total=
=fcm_tq_recv_wait_time=0</fcm_tq_recv_wait_time:=
=fcm_message_recv_wait_time=0</fcm_message_recv_wait_time:=
=fcm_tg_send_wait_time=0</fcm_tq_send_wait_time=
<fcm_message_send_wait_time=0</fcm_message_send_wait_time:=
<agent_wait_time:=0</agent_wait_time:
<agent_waits_total=0</agent_waits_total=
<lock_wait_time:»0</lock_wait_time:

| :
v

MON_FORMAT_XML_WAIT_TIMES_BY_ROW(DETAILS_XML) |

v

METRIC_NAME TOTAL_TIME_VALUE COUNT PARENT_METRIC_NAME
WLM_QUEUE_TIME_TOTAL 0 0 TOTAL_WAIT_TIME
FCM_TQ_RECV_WAIT TIME 0 0 FCM_RECV_WAIT_TIME
FCM_MESSAGE_RECV_WAIT_TIME 0 0 FCM_RECV_WAIT_TIME
FCM_TQ_SEND_WAIT_TIME 0 0 FCM_SEND_WAIT_TIME
FCM_MESSAGE_SEND_WAIT_TIME 0 0 FCM_SEND_WAIT_TIME
AGENT_WAIT_TIME 0 0 TOTAL_WAIT TIME
LOCK_WAIT TIME 0 0 TOTAL WAIT TIME
DIRECT READ_TIME 0 0 TOTAL_WAIT_TIME
DIRECT WRITE_TIME 0 0 TOTAL_WAIT_TIME
LOG_BUFFER WAIT TIME 0 0 TOTAL_WAIT_TIME
LOG_DISK_WAIT_TIME 0 0 TOTAL_WAIT_TIME

Figure 3. An XML file containing monitoring data, processed by one of the MON_FORMAT_XML_* functions. This
example shows the use of the MON_FORMAT_XML_WAIT_TIMES_BY_ROW function. Only wait times are returned;
other metrics contained in the XML file, such as wim_queue_assignments_total are excluded by this particular
function.

The number of columns returned varies by the specific function that you use. For
example MON_FORMAT_XML_METRICS_BY_ROW returns two columns, one for
the metric name, and one for its corresponding value:

METRIC_NAME VALUE
WLM_QUEUE_TIME_TOTAL 0
WLM_QUEUE_ASSIGNMENTS_TOT 0
FCM_TQ_RECV_WAIT_TIME 0
FCM_MESSAGE_RECV_WAIT TIM 0
FCM_TQ_SEND_WAIT TIME 0

By comparison, MON_FORMAT_XML_TIMES_BY_ROW returns four columns:
METRIC_NAME TOTAL_TIME_VALUE ~ COUNT PARENT_METRIC_NAME

WLM_QUEUE_TIME_TOTAL 0 0 TOTAL_WAIT_TIME

FCM_TQ_RECV_WAIT_TIME 0 O FCM_RECV_WAIT_TIME
FCM_MESSAGE_RECV_WAIT_TIME 0 0 FCM_RECV_WAIT_TIME
FCM_TQ_SEND_WAIT_TIME 0 0 FCM_SEND_WAIT_TIME
FCM_MESSAGE_SEND_WAIT_TIME 0 0 FCM_SEND_WAIT_TIME

The MON_FORMAT_XML_* _BY_ROW functions are useful when you do not
know which elements you want to view. For example, you might want to see the

20 Database Monitoring Guide and Reference

top 10 wait-time monitor elements for the workload named CLPWORKLOAD. To
collect this information, you can create a statistics event monitor called DBSTATS
(event_wlstats logical data group). Assuming you set up this event monitor to
write to a table, it records metrics in a column called DETAILS_XML. Once the
output table from the event monitor is populated with monitor data, you can
construct a query that uses the MON_FORMAT_XML_WAIT_TIMES_BY_ROW
function to extract the monitor elements you want to see:

SELECT SUBSTR(STATS.WORKLOAD_NAME,1,15) AS WORKLOAD_NAME,
SUBSTR(METRICS.METRIC_NAME,1,30) AS METRIC_NAME,
SUM(METRICS.TOTAL_TIME_VALUE) AS TOTAL_TIME_VALUE

FROM WLSTATS_DBSTATS AS STATS,

TABLE (MON_FORMAT_XML_WAIT_TIMES_BY_ROW(STATS.DETAILS_XML)) AS METRICS

WHERE WORKLOAD_NAME="'CLPWORKLOAD' AND (PARENT_METRIC_NAME='TOTAL_WAIT_TIME')

GROUP BY WORKLOAD_NAME,METRIC_NAME

ORDER BY TOTAL_TIME_VALUE DESC

FETCH FIRST 10 ROWS ONLY

Remember: Time spent monitor elements are organized into hierarchies. In this
example, to avoid double-counting wait times, only the monitor elements that
roll-up to total_wait_time are included (see the WHERE clause in the preceding
SQL statement). Otherwise, total_wait_time itself would be included in the
results, which includes several individual wait times.

The output that follows shows what the results of the preceding query might look
like:

WORKLOAD_NAME ~ METRIC_NAME TOTAL_TIME_VALUE

CLPWORKLOAD LOCK_WAIT_TIME 15138541
CLPWORKLOAD DIRECT_READ_TIME 6116231
CLPWORKLOAD POOL_READ_TIME 6079458
CLPWORKLOAD DIRECT_WRITE_TIME 452627
CLPWORKLOAD POOL_WRITE_TIME 386208
CLPWORKLOAD IPC_SEND_WAIT TIME 283172
CLPWORKLOAD LOG_DISK WAIT TIME 103888
CLPWORKLOAD DIAGLOG_WRITE WAIT TIME 78198
CLPWORKLOAD IPC_RECV WAIT TIME 15612
CLPWORKLOAD TCPIP_SEND_WAIT TIME 3291

10 record(s) selected.

Note: The MON_FORMAT_XML_* BY_ROW functions return only monitor
elements that track measurements or metrics. These include monitor elements that
track wait and component times, as well as counters. They do not return
non-metrics monitor elements contained in the XML document, such as uow_id, or
activity_id.

You can use the XMLTABLE function to view any of the elements (including
non-metrics elements) contained in the XML document. However, the most
frequently used, non-metrics monitor elements are returned as columns by the
monitor functions that begin with MON_GET_*, such as
MON_GET_UNIT_OF_WORK, or MON_GET_CONNECTION. If you are not
familiar with XML, you might find it faster and easier to create queries using these
functions than using the XMLTABLE function to extract monitor elements from an
XML document.

To summarize: if you are interested in viewing non-metrics monitor elements, the
MON_GET_* series of table functions might be a good alternative to the
XMLTABLE function. If you are interested in viewing metrics monitor elements,
the MON_FORMAT_XML_*_BY_ROW table functions might suit your needs.

Chapter 2. Table functions for monitoring 21

Viewing metrics monitor elements from XML documents as rows
in a table

One way to view metrics-related information contained in an XML document
returned from an event monitor is to convert it into a format where each monitor
element appears in a row by itself. This format is useful if you want to view the
information in a text-based format, but do not know specifically which monitor
elements you want to examine.

About this task

To view metrics information in row-based format from the XML documents
returned by various monitoring interfaces, use the MON_FORMAT_XML_* _BY
ROW table functions. These functions were introduced in DB2 Version 9.7 Fix Pack
1.

Procedure

The example shown in this task uses the MON_FORMAT_XML_TIMES_BY_ROW
table function to view component times for a statement as tracked by the package
cache event monitor. It assumes that a package cache event monitor called
PKGCACHEEVENTS has been created and activated. The package cache event
monitor writes its output to an unformatted event (UE) table. Before it can be
used, the data in the UE table must be converted to either relational tables using
the EVMON_FORMAT_UE_TO_TABLES stored procedure, or to XML using the
EVMON_FORMAT_UE_TO_XML table function. This task shows the first of these
two approaches.

1. First, convert the unformatted event (UE) table that the package cache event

monitor writes to into relational tables using the
EVMON_FORMAT_UE_TO_TABLES procedure

call EVMON_FORMAT UE_TO TABLES ('PkgCache',NULL,NULL,NULL,NULL,NULL,
NULL,O, 'SELECT * FROM PKGCACHEEVENTS')

This procedure creates two tables:

* One is called PKGCACHE_EVENT, which contains a column called
METRICS. This column, in turn, contains XML documents with metrics
monitor elements.

e The other is called PKGCACHE_METRICS.

Note: You could view the metrics directly from the columns in
PKGCACHE_METRICS, rather than extract metrics from the METRICS
column of the PKGCACHE_EVENT table. However, when you examine
PKGCACHE_METRICS, the metrics appear in columns, rather than rows; it
is not as easy to get a ranking of, say, the metrics with the highest values.

2. Query the two tables produced in the preceding step to determine which
statement is the most expensive in terms of execution times:

SELECT EVENTS.EXECUTABLE_ID,
SUM(METRICS.STMT_EXEC_TIME) AS TOTAL_STMT_EXEC_TIME
FROM PKGCACHE_EVENT AS EVENTS,
PKGCACHE_METRICS AS METRICS
WHERE EVENTS.XMLID = METRICS.XMLID
GROUP BY EVENTS.EXECUTABLE_ID
ORDER BY TOTAL_STMT_EXEC_TIME DESC
FETCH FIRST 5 ROWS ONLY

22 Database Monitoring Guide and Reference

In the preceding query, the two tables produced in step 1 on page 22 are joined
so that the statement IDs from the PKGCACHE_EVENT table can be associated
with their execution times in the PKGCACHE_METRICS table:

EXECUTABLE_ID TOTAL_STMT_EXEC_TIME
x'01000000000000001A0300000000000000000000020020091215115933859000" 250
x' 0100000000000000150300000000000000000000020020091215115850328000' 191
x'0100000000000000210200000000000000000000020020091215115818343001 " 129
x' 0100000000000000C40200000000000000000000020020091215115838578000" 41
x' 0100000000000000B00200000000000000000000020020091215115838203000" 38

5 record(s) selected.

The first item in the results represents the statement with the largest overall
execution time.

Optional: If you like, you can display the text for the statement using the
following SQL:
SELECT SUBSTR(STMT_TEXT,1,60) AS STMT_TEXT

FROM PKGCACHE_EVENT
WHERE EXECUTABLE_ID = x'01000000000000001A0300000000000000000000020020091215115933859000'

Results:
STMT_TEXT

DROP XSROBJECT MYSCHEMA.EVMON_PKGCACHE_SCHEMA_SQL09070

1 record(s) selected.

Use the MON_FORMAT_XML_TIMES_BY_ROW table function to view a listing
of the time-spent monitor elements for the statement you identified in step 2 on
page 22:
SELECT SUBSTR(XMLMETRICS.METRIC_NAME,1,30) AS METRIC_NAME,

XMLMETRICS.TOTAL TIME_VALUE,

SUBSTR(XMLMETRICS.PARENT_METRIC_NAME,1,30) AS PARENT_METRIC_NAME
FROM PKGCACHE_EVENT AS EVENTS,

TABLE(MON_FORMAT_XML_TIMES_BY_ROW(EVENTS.METRICS)) AS XMLMETRICS

WHERE EVENTS.EXECUTABLE_ID=
x'01000000000000001A0300000000000000000000020020091215115933859000"
AND PARENT_METRIC_NAME='STMT_EXEC_TIME'
ORDER BY XMLMETRICS.TOTAL_TIME_VALUE DESC

Notes:

* Remember that time-spent monitor elements are organized into hierarchies.
To eliminate double-counting, only those metrics that roll-up to
stmt_exec_time are included in the results. Otherwise, stmt_exec_time itself
would be included in the results, which includes several individual
component times.

¢ PARENT_METRIC_NAME, one of the columns returned by
MON_FORMAT_XML_TIMES_BY_ROW is included for illustrative purposes.

When run, the following results are returned by this query:

METRIC_NAME TOTAL_TIME_VALUE PARENT METRIC_NAME
TOTAL_ACT WAIT_ TIME 234 STMT_EXEC_TIME
TOTAL_SECTION_PROC_TIME 15 STMT_EXEC_TIME

Here, you can see that the total processing time adds up to 249 ms. Compare
this time to the total time of 250 shown in step 2 on page 22; the extra
millisecond is accounted for by other times (for example, waits) not included in
stmt_exec_time.

Chapter 2. Table functions for monitoring 23

Results

In the results from the preceding example, you can see the arrangement of the
metrics: they appear in row-oriented format, one metric per row. The advantage of
using this approach is that you do not need to know ahead of time which metrics
or monitor elements you want to see. If you want to see which of the time-spent
metrics have the five highest values, or which metrics fall within a specific range
of values, you can easily create a query to return the results you are interested in.
By contrast, if you use the XMLTABLE function to display the monitor elements as
columns, you need to specify which monitor elements to display (or display them
all).

Example

Viewing the contents of the DETAILS column produced by a MON_GET_*_DETAILS
table function

You can also use the MON_FORMAT_XML_*_BY_ROW functions to view
the contents of the DETAILS column returned by any of the
MON_GET_*_DETAILS functions. For example,
MON_GET_CONNECTION_DETAILS returns a DETAILS column that
contains an XML document with metrics that pertain to a database
connection.

For example, to view the non-zero component times for each connection
across all members, you could use the following query:

SELECT CONDETAILS.APPLICATION_HANDLE,
SUBSTR(XMLMETRICS .METRIC_NAME,1,30) AS METRIC_NAME,
SUM(XMLMETRICS.TOTAL_TIME_VALUE) AS TOTAL_TIME_VALUE,
SUBSTR (XMLMETRICS.PARENT_METRIC_NAME,1,30) AS PARENT_METRIC_NAME
FROM TABLE(MON_GET_CONNECTION_DETAILS(NULL,-1)) AS CONDETAILS,

TABLE (MON_FORMAT_XML_COMPONENT_TIMES_BY_ROW(CONDETAILS.DETAILS))AS XMLMETRICS
WHERE TOTAL_TIME_VALUE > O AND XMLMETRICS.PARENT_METRIC_NAME='TOTAL_RQST_TIME'
GROUP BY CONDETAILS.APPLICATION_HANDLE,

XMLMETRICS.PARENT_METRIC_NAME,
XMLMETRICS .METRIC_NAME
ORDER BY CONDETAILS.APPLICATION_HANDLE ASC, TOTAL_TIME_VALUE DESC

Notes:

¢ To eliminate double-counting, only those metrics that roll-up to
total_rqgst_time are included in the results (WHERE
XMLMETRICS.PARENT_METRIC_NAME='TOTAL_RQST_TIME'). Otherwise,
total_rgst_time itself would be included in the results, which includes
several individual component times.

¢ PARENT_METRIC_NAME, one of the columns returned by
MON_FORMAT_XML_COMPONENT_TIMES BY_ROW is included for
illustrative purposes.

The preceding query returns the following results:
APPLICATION_HANDLE METRIC_NAME TOTAL_TIME_VALUE PARENT_METRIC_NAME

52 TOTAL_SECTION_TIME 3936 TOTAL_RQST_TIME
52 TOTAL_COMPILE_TIME 482 TOTAL_RQST_TIME
52 TOTAL_COMMIT_TIME 15 TOTAL_RQST_TIME
52 TOTAL_ROLLBACK_TIME 1 TOTAL_RQST_TIME
496 TOTAL_COMPILE_TIME 251 TOTAL_RQST_TIME
496 TOTAL_SECTION_TIME 46 TOTAL_RQST_TIME
496 TOTAL_IMPLICIT_COMPILE_TIME 5 TOTAL_RQST_TIME

7 record(s) selected.

24 Database Monitoring Guide and Reference

As this example shows, only metrics that comprise total_rqst_time are
included. Had the WHERE
XMLMETRICS.PARENT_METRIC_NAME='TOTAL_RQST_TIME' clause not been
included in the query, the results would look like those that follow:

APPLICATION_HANDLE ~ METRIC_NAME TOTAL_TIME_VALUE PARENT_METRIC_NAME

52 TOTAL_RQST_TIME 4603 -

52 TOTAL_SECTION_TIME 3942 TOTAL_RQST_TIME

52 TOTAL_COMPILE_TIME 537 TOTAL_RQST_TIME

52 TOTAL_SECTION_SORT TIME 299 TOTAL_SECTION_TIME
52 TOTAL_COMMIT TIME 15 TOTAL_RQST_TIME

52 TOTAL_ROLLBACK_TIME 1 TOTAL_RQST_TIME
496 TOTAL_RQST_TIME 341 -

496 TOTAL_COMPILE_TIME 251 TOTAL_RQST_TIME
496 TOTAL_SECTION_TIME 46 TOTAL_RQST_TIME
496 TOTAL_IMPLICIT COMPILE_TIME 5 TOTAL_RQST_TIME
496 TOTAL_SECTION_SORT_TIME 2 TOTAL_SECTION_TIME

11 record(s) selected.

In this case, the values for total_rqst_time for each connection are
included in the results, which includes the values for all other elements for
which it is the parent. Similarly, the values for items in italics roll up to the
total_section_time. Had they not been excluded in the WHERE clause,
they would have been triple-counted in the results, as total_section_time
itself rolls up to total_rqst_time.

Chapter 2. Table functions for monitoring 25

26 Database Monitoring Guide and Reference

Chapter 3. Event monitors

Monitoring table functions and snapshot routines return the values of monitor
elements at the specific point in time the routine is run, which is useful when you
want to check the current state of your system. However, there are many times
when you need to capture information about the state of your system at exactly
the time that a specific event occurs. Event monitors serve this purpose.

Event monitors can be created to capture point-in-time information related to
different kinds of events that take place in your system. For example, you can
create an event monitor to capture information when a specific threshold that you
define is exceeded. The information captured includes such things as the ID of the
application that was running when the threshold was exceeded. Or, you might
create an event monitor to determine what statement was running when a lock
event occurred.

Types of events for which event monitors capture data

Table 3. Event Types

You can use event monitors to capture information related to many different kinds
of events that take place on your system.

The following tables lists the types of events that occur in the system that you can
monitor with an event monitor. It also describes the type of data collected for
different events, as well as when the monitoring data is collected. The names of the
event monitors shown in column two correspond to the keywords used to create
that type of event monitor using the CREATE EVENT MONITOR statement.

Type of event to

monitor Event monitor name Event monitor properties Details
Locks and LOCKING Uses of this event monitor ~ To determine when locks or deadlocks occur, and the
deadlocks applications that are involved. The advantages of using

the LOCKING event monitor instead of the deprecated
DEADLOCKS event monitor include consolidated
reporting of both lock and deadlock events, as well as the
inclusion of information about lock waits and lock
time-outs.

Data collected Comprehensive information regarding applications
involved, including the identification of participating
statements (and statement text) and a list of locks being

held.
When the event data is Upon detection of any of the following event types,
generated' depending on how you configure the event monitor:

¢ lock timeout
e deadlock

* lock wait beyond a specified duration

© Copyright IBM Corp. 2012 27

Table 3. Event Types (continued)

Type of event to

monitor Event monitor name Event monitor properties Details

Execution of a ACTIVITIES Uses of this event monitor ~ To track the execution of individual statements and other
SQL statements activities to understand what activities are running in the
or other system. Also to capture activities for diagnostic reasons,
operation that and to study the resource consumption of SQL.

Spawns a Data collected Activity level data, generally for activities involving

database activity. workload management objects.

« If WITH DETAILS was specified as part of COLLECT
ACTIVITY DATA clause on the CREATE or ALTER
statements for a workload management object, then
information collected includes statement and
compilation environment information for those
activities that have it. If WITH SECTION is also
specified, then statement, compilation environment,
section environment data, and section actuals are also
captured.

» If AND VALUES was also specified on the CREATE
OR ALTER statement for the workload management
object, the information collected will also include input
data values for those activities that have it.

When event data is .

; Upon completion of an activity that executed in a
generated

service class, workload or work class that had its
COLLECT ACTIVITY DATA option turned on.

* When an activity violates a threshold that has the
COLLECT ACTIVITY DATA option enabled.

* At the instant the
WLM_CAPTURE_ACTIVITY_IN_PROGRESS stored
procedure is executed.

* When an activity is executed by a connection for

which activity collection has been enabled using the
WLM_SET_CONN_ENYV stored procedure.

Execution of an ~ STATEMENTS Uses of this event monitor ~ To see what requests are being made to the database as a
SQL statement result of the execution of SQL statements.
Data collected Statement start or stop time, CPU used, text of dynamic

SQL, SQLCA (return code of SQL statement), and other
metrics such as fetch count. For partitioned databases:
CPU used, execution time, table and table queue
information.

Notes:

* When monitoring the execution of SQL procedures
using statement event monitors, data manipulation
language (DML) statements, such as INSERT, SELECT,
DELETE, and UPDATE, generate events. Procedural
statements, such as variable assignments and control
structures (for example, WHILE or IF), do not generate
events in a deterministic fashion.

» Statement start or stop time is unavailable when the
Timestamp switch is off.

When event data is End of SQL statement’; for partitioned databases, End of
generated subsection?

28 Database Monitoring Guide and Reference

Table 3. Event Types (continued)

Type of event to
monitor

Event monitor name

Event monitor properties

Details

Completion of a
unit of work
(transaction)

UNIT OF WORK

Uses of this event monitor

To gather resource usage information and performance
metrics for units of work that run on the system. This
information can be used for purposes ranging from
generating reports for billing or charge-back purposes of
system resources used by an application, to
troubleshooting performance problems caused by
slow-running routines.

Recommended over the TRANSACTIONS event monitor.

Data collected

Information about units of work (transactions), such as
start and stop time, the workload and service class under
which they ran. Option to include information about
packages or executable IDs for statements run as part of
the unit of work, as well as request metrics.

When event data is
generated"

Upon completion of a unit of work

Eviction of
sections from the
package cache

PACKAGE CACHE

Uses of this event monitor

To capture a history of statements (and related metrics)
that are no longer in the package cache. This information
can be used if you need to examine performance metrics
for statements that are no longer available in memory.

Data collected

Includes statement text and metrics aggregated over all
executions of the section.

When event data is

As entries are evicted from the package cache.

generated'

Connections to CONNECTIONS Uses of this event monitor ~ To capture metrics and other monitor elements for each

the database by connection to the database by an application.

applications Data collected All application-level counters. For example, the time that
the application connected to or disconnected from the
database, or number of lock escalations that the
application was involved with.

When event data is End of connection®

generated

Deactivation of =~ DATABASE Uses of this event monitor ~ To capture metrics and other monitor elements that
database reflect information about the database as whole, since
activation.

Data collected All database level counters. For example, the number of
connections made to a database, time spent waiting on
locks, or rows of data inserted since its activation.

When event data is Database deactivation®

generated

Uses of this event monitor ~ To capture metrics related to buffer pools and table
spaces.

BUFFERPOOLS Data collected Counters for buffer pools, prefetchers, page cleaners and
TABLESPACES direct I/O for each buffer pool.

When event data is Database deactivation®

generated
TABLES Uses of this event monitor ~ To capture metrics related to tables that have changed

since database activation.

Data collected

Table level counters, such as rows read or written, or
disk pages used by data,LOB or index objects.

When event data is
generated

Database deactivation?

Chapter 3. Event monitors 29

Table 3. Event Types (continued)

Type of event to

monitor Event monitor name

Event monitor properties

Details

Statistics and STATISTICS
metrics on

workload

management

objects

Uses of this event monitor

To capture processing metrics related to workload
management objects (for example service superclasses, or
workloads) in the database. For example, you could use a
statistics event monitor to check on CPU utilization over
time for a given workload.

Data collected

Statistics computed from the activities that executed
within each service class, workload, or work class that
exists on the system.

When event data is
generated

Statistics can be collected automatically at regular
intervals. This interval is defined with the
wim_collect_int database configuration parameter.

Data can also collected manually, using the
WLM_COLLECT_STATS stored procedure.

Note: With either collection mechanism, the values of
statistics monitor elements are reset to 0 after collection
has taken place.

THRESHOLD
VIOLATIONS

Exceeding a
workload
manager
threshold

Uses of this event monitor

To determine when specific thresholds that you set are
exceeded during database operations. Thresholds can be
set for a variety of things, ranging from CPU time to the
number of database connections, to the execution of
specific statements. Data collected can be used for a
variety of purposes, including monitoring for potential
problems (such as approaching limits on temporary table
space).

Data collected

Threshold violation information.

When event data is
generated

Upon detection of a threshold violation. Thresholds are
defined using the CREATE THRESHOLD statement.

Changes to CHANGE HISTORY
database or

database

manager

configuration

Uses of this event monitor

To captures change to database and database manager
configuration and registry settings, execution of DDL
statements, and execution of utilities

Data collected

Database and database manager configuration parameter
changes, registry variable changes, execution of DDL
statements, execution of certain DB2 utilities and
commands, and change history event monitor startup.
Note: Generally, information related to events that occur
while the change history event monitor is inactive or the
database is offline are not captured. However, changes to
registry variables and configuration parameters are
recorded.

When event data is
generated'

Upon monitor startup, when a parameter or variable
changes, or when a command, DDL, or utility completes.

Notes:

1. If a database is deactivated while an activity event monitor is active, backlogged activity records in the queue are discarded. To
ensure that you obtain all activities event monitor records and that none are discarded, deactivate the activities event monitor
before deactivating the database. When an activities event monitor is explicitly deactivated, all backlogged activity records in
the queue are processed before the event monitor deactivates.

2. In addition to the defined times where data collection automatically occurs, you can use the FLUSH EVENT MONITOR SQL
statement to generate events. The events generated by this method are written with the current database monitor values for all
the monitor types (except for DEADLOCKS and DEADLOCKS WITH DETAILS) associated with the flushed event monitor.

30 Database Monitoring Guide and Reference

Table 4. Event Types For Deprecated Event Monitors

Type of event to

monitor Event monitor name

Event monitor properties

Details

Deadlocks DEADLOCKS?

Uses of this event monitor

To determine when deadlocks occur, and the applications
that are involved.

Data collected

Applications involved, and locks in contention.

When event data is
generated

Detection of a deadlock

DEADLOCKS WITH
DETAILS?

Uses of this event monitor

To determine when deadlocks occur, and the applications
that are involved.

Data collected

Comprehensive information regarding applications
involved, including the identification of participating
statements (and statement text) and a list of locks being
held. Using a DEADLOCKS WITH DETAILS event
monitor instead of a DEADLOCKS event monitor will
incur a performance cost when deadlocks occur, due to
the extra information that is collected.

When event data is
generated

Detection of a deadlock

DEADLOCKS WITH
DETAILS HISTORY?

Uses of this event monitor

To determine when deadlocks occur, and the applications
that are involved.

Data collected

All information reported in a DEADLOCKS WITH
DETAILS event monitor, along with the statement history
for the current unit of work of each application owning a
lock participating in a deadlock scenario for the database
partition where that lock is held. Using a DEADLOCKS
WITH DETAILS HISTORY event monitor will incur a
minor performance cost when activated due to statement
history tracking.

When event data is
generated

Detection of a deadlock

DEADLOCKS WITH
DETAILS HISTORY
VALUES?

Uses of this event monitor

Data collected

All information reported in a deadlock with details and
history, along with the values provided for any
parameter markers at the time of execution of a
statement. Using a DEADLOCKS WITH DETAILS
HISTORY VALUES event monitor will incur a more
significant performance cost when activated due to extra
copying of data values.

When event data is
generated

Detection of a deadlock

Completion of a TRANSACTIONS?

unit of work

Uses of this event monitor

Data collected

UOW work start or stop time, previous UOW time, CPU

(transaction) consumed, locking and logging metrics. Transaction
records are not generated if running with XA.
When event data is Upon completion of a unit of work’
generated
Notes:

1. In addition to the defined times where data collection automatically occurs, you can use the FLUSH EVENT MONITOR SQL
statement to generate events. The events generated by this method are written with the current database monitor values for all
the monitor types (except for DEADLOCKS and DEADLOCKS WITH DETAILS) associated with the flushed event monitor.

2. This event monitor has been deprecated. Its use is no longer recommended and might be removed in a future release. Use the
CREATE EVENT MONITOR FOR LOCKING statement to monitor lock-related events, such as lock timeouts, lock waits, and

deadlocks.

3. This event monitor has been deprecated. Its use is no longer recommended and might be removed in a future release. Use the
CREATE EVENT MONITOR FOR UNIT OF WORK statement to monitor transaction events.

Chapter 3. Event monitors 31

Note: A detailed deadlock event monitor is created for each newly created
database. This event monitor, named DB2DETAILDEADLOCK, starts when the
database is activated and will write to files in the database directory. You can avoid
the additional processor time this event monitor requires by dropping it. The
DB2DETAILDEADLOCK event monitor is deprecated. Its use is no longer
recommended and might be removed in a future release. Use the CREATE EVENT
MONITOR FOR LOCKING statement to monitor lock-related events, such as lock
timeouts, lock waits, and deadlocks.

Working with event monitors

Generally, the process of creating and using event monitors to capture information
about the system when certain events occur is similar for all event monitor types.
First you create the event monitor, then you enable data collection, and finally, you
access the data gathered.

About this task

This topic provides an outline of the general steps to follow when working with
event monitors.

Procedure

To use an event monitor to capture event information:

1. Create the event monitor. To create an event monitor, use the appropriate
version of the CREATE EVENT MONITOR statement. When you create an
event monitor, you must choose how to record the data the event monitor
collects. All event monitors can write their output to relational tables; however,
depending on your specific purposes, there are different options that might be
more appropriate.

2. Activate the event monitor. To activate the event monitor, use the SET EVENT
MONITOR STATE statement. For example, for an event monitor called
capturestats, use the following command:

SET EVENT MONITOR capturestats STATE 1

To turn off data collection by the event monitor, use the following statement:
SET EVENT MONITOR capturestats STATE 0O

By default, some event monitors activate automatically upon database
activation; others require that you activate them manually. However, an event
monitor created with the AUTOSTART option will not automatically be
activated until the next database activation. Use the SET EVENT MONITOR
STATE statement to force a recently-created event monitor into the active state.
To determine whether an event monitor starts automatically, refer to the
reference information for the relevant CREATE EVENT MONITOR statement.

3. Enable the collection of data. (Only for LOCKING, ACTIVITIES, STATISTICS,
UNIT OF WORK and PACKAGE CACHE event monitors) Enabling data
collection involves configuring the database manager to gather specific types of
data to be recorded by event monitors.

Not all event monitors require data collection to be enabled; for those that do
not, such as the TABLE event monitor, creating and activating them is sufficient
to cause data to be collected. The threshold violations event monitor also starts
data collection automatically; however, in this case, you must also define the
thresholds for which you want data captured using the CREATE THRESHOLD
statement.

32 Database Monitoring Guide and Reference

For those event monitors that require data collection to be enabled, there are
different options available to you. Depending on the type of event monitor you
are working with, you might set a database configuration parameter to enable
data collection across the entire database. Alternatively, you might choose to
enable the collection of specific kinds of data for specific types of workload
objects. For example, to configure the collection of basic information for a unit
of work event monitor when any unit of work in the system finishes, you can
set the mon_uow_data parameter to BASE. Alternatively, to capture unit of work
information only for a specific workload, you can specify the COLLECT UNIT
OF WORK DATA BASE clause as part of the CREATE WORKLOAD or ALTER
WORKLOAD statements.

4. Run your applications or queries. After the event monitor has been created, and
activated, and you have enabled data collection, run the applications or queries
for which you want to collect data.

5. Optional: Deactivate the event monitor. After you run the applications or
queries for which you want data collected, you can deactivate the event
monitor using the SET EVENT MONITOR STATE statement. (see step 2 on
page 32). Deactivating the event monitor is not necessary before proceeding to
the next step, however leaving the event monitor active will result in disk
space being used for data that you might not be interested in looking at.

6. Examine the data collected by the event monitor. Depending on the type of
output the event monitor creates, there are different options for accessing the
data collected. If the data is written directly to a relational table, you can use
SQL to access the data contained in the table columns. On the other hand, if the
event monitor writes to an unformatted event (UE) table, you must
post-process the UE table using a command like db2evmonfmt or a procedure
like EVMON_FORMAT_UE_TO_TABLES before you can view the event data.

7. Optional: Prune data that is no longer needed from the event monitor tables.
For event monitors that you use on a regular basis, you might want to prune
unneeded data from the tables. For example, if you use a unit of work event
monitor to generate daily accounting reports about the system resources used
by different applications, you might want to delete the current day's data from
the event monitor tables once the reports have been generated.

Tip: If you need to prune event monitor output regularly, consider using an
unformatted event (UE) table to record event monitor output. Starting in DB2
Version 10.1, UE tables can be pruned automatically after data is transferred to
regular tables.

Creating event monitors

You create different types of event monitors by using variations on the CREATE
EVENT MONITOR statement. You can use the options for that statement to specify
the type of data that event monitors collect and how the event monitors produce
their output. The sections that follow describe the different output options and
how to create event monitors that produce these types of output.

Before you begin
Before creating an event monitor, it is important to understand the different
options for the output that event monitors can produce. Most event monitors can

produce output in at least two formats; some let you choose from up to four
formats.

Chapter 3. Event monitors 33

Procedure

To create an event monitor:
1. Determine what kind of event monitor you need.

2. Decide what type of output you want from the event monitor. Do you want
data to be written to a regular table, an unformatted event table, a file, or a
pipe?

3. Issue a CREATE EVENT MONITOR statement.

4. Optional: If the type of event monitor that you created requires activation,
activate it by issuing the SET EVENT MONITOR STATE statement.

Output options for event monitors

Event monitors can report the data they collect in a number of ways. All event
monitors can write the data they collect to tables; some write to unformatted event
(UE) tables, which can help improve performance. Others can also write directly to
a file or named pipe.

Depending on how you want to use the information collected by event monitors,
and on the type of event monitor, you can choose to have the output that the event
monitors collect produced in different ways. The output types available include:

Regular tables
As of DB2 Version 10.1, all event monitors can write to regular tables that
can be queried directly using SQL. For a given event, each of the monitor
elements or metrics collected for the event is written to its own column in
the table. This makes it possible to use a SELECT statement query the
output to examine the values for a specific monitor element.

To create an event monitor that writes to tables, specify the WRITE TO
TABLE clause in the CREATE EVENT MONITOR statement. Depending on
the event monitor, one or more tables are created to contain the ouput,
each table containing monitor elements that belong to a single logical
group. See “Target tables, control tables, and event monitor table
management” on page 88 for details about the specific table produced for
each logical group.

Tables can be stored in a table space of your choosing; however the target
table of a CREATE EVENT MONITOR statement must be a non-partitioned
table.

Note: There are two types of event monitors that write to tables. The first
type includes event monitors created in Version 9.7 and later releases.
These include the unit of work, package cache, locking and change history
event monitor. As of DB2 Version 10.1, the first three of these event
monitors can write their output to regular tables as an alternative to UE
tables. The change history event monitor writes only to regular tables.

The second type are the event monitors implemented before DB2 Version
9.7. These include all other event monitors.

Generally, after an event monitor of either type has been created, they
work in much the same way. That is, you can use SQL to directly access
the data in the tables that they produce. However, the older event monitors
in the second category have additional options that you can specify when
creating the event monitor. In addition, only event monitors in the second
category are capable of writing also to files and named pipes.

34 Database Monitoring Guide and Reference

Unformatted event (UE) tables

Files

UE tables were introduced in DB2 Version 9.7 for the new event monitors
added in that release. UE tables are relational tables, however, they have
only a limited number of columns. Most of the data associated with each
event is written to a column containing an inline binary (BLOB) object.
Writing event data in binary format reduces the time it takes to write each
record to the table. For this reason, UE tables are particularly useful where
event monitor performance is important, which might be the case on
highly I/0O or CPU-bound systems.

However, because the event data is written in binary format, you cannot
use SQL to extract legible data. You must perform post-processing on the
UE table to extract the data stored in binary format. Another benefit of
using UE tables is that you can have UE table data pruned automatically
during post-processing. The EVMON_FORMAT_UE_TO_TABLES
procedure has an option to delete data from the UE table after it has been
successfully extracted.

To create an event monitor that writers to an unformatted event table,
specify the WRITE TO UNFORMATTED EVENT TABLE clause in the
CREATE EVENT MONITOR statement. Only one UE table is created per
event monitor.

Some event monitors support sending their output directly to files
maintained by the file system. This type of output is useful if you do not
want the event monitor output to be subject to the additional processing
time caused when being managed within the database, or if you want to
look at the data while the database is offline. To create an event monitor
that writes to files, specify the WRITE TO FILE clause in the CREATE
EVENT MONITOR statement.

Named pipes

If you want to have an application process event data as it is generated,
you can use a named pipe event monitor. These types of event monitors
send their output directly to a named pipe so that the data can be used by
another application immediately. This might be useful if you need to
manipulate event data in real time.

To create an event monitor that writers to a named pipe, specify the
WRITE TO PIPE clause in the CREATE EVENT MONITOR statement.

Depending on your needs, one type of event monitor output might be more
appropriate than another. Table 5 provides an summary of when specific output
types are particularly useful.

Table 5. Summary of different event monitor output types

Output type Scenarios where this output type is useful

Regular tables .

When you want to examine monitoring data at a later point in time

* In systems that are not approaching the maximum capacity for CPU,
log file or disk storage

¢ Where immediate access to data using SQL is desirable

Unformatted .
event (UE) tables

When you want to examine monitoring data at a later point in time

¢ In systems where event monitor performance is a priority, or where
there are constraints on CPU, log file or disk usage

* Where the added step of post-processing of data is not an issue

Chapter 3. Event monitors 35

Table 5. Summary of different event monitor output types (continued)

Output type Scenarios where this output type is useful

Files * In systems where you do not want or need to manage monitor data
as part of the database. (Eliminates the additional processing time of
logging, inserts, maintaining consistency)

* When you want to store the data outside of the database being
monitored

* When you want to examine the data offline at later point in time

Pipes * Streaming event data to an application that processes it immediately.

* When there is no need to access event data at a later point in time.

Not all event monitors support all output types. For example, only the unit of
work, package cache and locking event monitor can produce a UE table. Table 6
shows what output options are available for different types of event monitors:

Table 6. Output options for event monitors

Event monitor Unformatted

type Regular table event table File Named pipe
Activity Yes Yes Yes
Buffer pool Yes Yes Yes
Change history Yes

Connections Yes Yes Yes
Database Yes Yes Yes
Deadlocks (all Yes Yes Yes
variations)

Locking Yes Yes

Package cache Yes Yes

Statement Yes Yes Yes
Statistics Yes Yes Yes
Table space Yes Yes Yes
Table Yes Yes Yes
Threshold Yes Yes Yes
violations

Transaction’ Yes Yes Yes
Unit of work Yes Yes

" Deprecated event monitor.

Event monitors that write to tables
Starting in DB2 Version 10.1, all event monitors can write output to regular tables
that can be queried directly using SQL.

In addition, starting with DB2 Version 10.1, you can use the procedure
EVMON_UPGRADE_TABLES to upgrade the tables produced by event monitors in
earlier releases. This capability lets you more easily retain event monitor data as
you upgrade your DB2 product.

Creating event monitors that write to tables:

36 Database Monitoring Guide and Reference

To create an event monitor, use the CREATE EVENT MONITOR STATEMENT.
There are different forms of this statement that you use, depending on the type of
events that you intend to monitor.

Before you begin
* You need SQLADM or DBADM authority to create a table event monitor.

* The target table of a CREATE EVENT MONITOR statement - that is, the table to
which the event monitor writes its output - must be a non-partitioned table.

About this task

The various options for table event monitors are set in the CREATE EVENT
MONITOR statement. For further assistance in generating CREATE EVENT
MONITOR SQL statements for write-to-table event monitors, you can use the
db2evtbl command. Simply provide the name of the event monitor and the
required event type (or types), and the CREATE EVENT MONITOR statement is
generated, complete with listings of all the target tables. You can then copy the
generated statement, make modifications, and then execute the statement from the
command line processor.

Procedure

To create an event monitor that writes its output to a regular table, perform the
following steps:

1. Formulate a CREATE EVENT MONITOR statement using the WRITE TO
TABLE clause to indicate that event monitor data is to be collected in a table
(or set of tables).

CREATE EVENT MONITOR evmon-name FOR eventtype
WRITE TO TABLE

Where evmon-name is the name of the event monitor, and eventtype is one of
the following values:

+ ACTIVITIES

* BUFFERPOOLS

* CHANGE HISTORY

+ CONNECTIONS

+ DATABASE

+ DEADLOCKS

* LOCKING

+ PACKAGE CACHE

* STATEMENTS

» STATISTICS

* TABLE

» TABLESPACE

+ THRESHOLD VIOLATIONS
*+ TRANSACTIONS

« UNIT OF WORK

For example, to create a unit of work event monitor called myevmon, use a
statement like the one that follows:

CREATE EVENT MONITOR myevmon FOR UNIT OF WORK
WRITE TO TABLE

The preceding statement creates a unit of work event monitor that uses defaults
for the logical groups of monitor elements collected, the corresponding output

Chapter 3. Event monitors 37

table names, and the target table spaces for the tables. For more information on
these defaults, refer to the documentation for the appropriate CREATE EVENT
MONITOR statement.

2. Optional: Specify the logical groups for which you want data collected. By
default, event data is collected for all logical data groups for the event monitor
type. (See “Target tables, control tables, and event monitor table management”
on page 88 for details.) If you want only data for selected logical groups
collected, you can specify the names of the logical groups to include in the
CREATE EVENT MONITOR statement. For example, with a locking event
monitor, you might want to collect only the information associated with the
LOCK and PARTICIPANT logical groups. To include only these logical groups,
you can use a statement like the one that follows:

CREATE EVENT MONITOR mylocks FOR LOCKING
WRITE TO TABLE
LOCK, PARTICIPANTS

3. Optional: Specify the table names to use for the output tables. Unless you
specify otherwise, default names are used for the tables for each logical group
of monitor elements. The default name used is derived by concatenating the
logical group name with the name of the event monitor. For example, for the
locking event monitor created by the statement in the preceding step, the
unqualified names for the tables produced are LOCK_MYLOCKS and
PARTICIPANTS _MYLOCKS. To override the default names, include the table
names to use when specifying the logical groups:

CREATE EVENT MONITOR mylocks FOR LOCKING

WRITE TO TABLE
LOCK(TABLE LOCKDATA), PARTICIPANTS(TABLE PARTICIP)

In the preceding example, the names used for the tables for the LOCK and
PARTICIPANTS logical groups are LOCKDATA_MYLOCKS and
PARTICIP_MYLOCKS.

You can also override the table space to be used for each table by including the
name of the table space to use:
CREATE EVENT MONITOR mylocks FOR LOCKING

WRITE TO TABLE
LOCK(TABLE LOCKDATA IN EVMONSPACE), PARTICIPANTS(TABLE PARTICIP IN EVMONSPACE)

In the preceding example, the EVMONSPACE table space is used for both
output tables.

Additional options

Different event monitors provide different configuration options. For details on the
options available for a specific type of event monitor, refer to the documentation
for the CREATE EVENT MONITOR statement for the type of event monitor you
want to use. The examples that follow show some of the configuration options you
can choose for different event monitors:

Capturing multiple event types with a single event monitor
Some types” of event monitors can capture different types of events with a
single event monitor. If you want to capture multiple types of events with
this event monitor, specify additional values for eventtype, separated by a
comma. For example, you might want to combine bufferpool and table
space monitoring in a single event monitor:

2. Event monitors for BUFFERPOOLS, CONNECTIONS, DATABASE, DEADLOCKS, STATEMENTS, TABLES, and TABLESPACES
support this option.

38 Database Monitoring Guide and Reference

CREATE EVENT MONITOR myevmon FOR BUFFERPOOLS, TABLESPACES
WRITE TO TABLE

This event monitor will monitor for the BUFFERPOOL and TABLESPACE
event types. Assuming that the previously listed statement was issued by
the user dbadmin, the derived names and table spaces of the target tables
are as follows:

* DBADMIN.BUFFERPOOL_MYEVMON
 DBADMIN.TABLESPACE_MYEVMON
 DBADMIN.CONTROL_MYEVMON

Adjusting the size of event monitor output buffers
You can alter the size of the table event monitor buffers (in 4K pages) for
some types® of event monitors by adjusting the BUFFERSIZE value. For
example, in the following statement:

CREATE EVENT MONITOR myevmon FOR BUFFERPOOLS, TABLESPACES
WRITE TO TABLE BUFFERSIZE 8

8 is the combined capacity (in 4K pages) of the two event table buffers.
This adds up to 32K of buffer space; 16K for each buffer.

The default size of each buffer is 4 pages (two 16K buffers are allocated).
The minimum size is 1 page. The maximum size of the buffers is limited
by the size of the monitor heap, because the buffers are allocated from that
heap. For performance reasons, highly active event monitors should have
larger buffers than relatively inactive event monitors.

Controlling whether event monitor output is blocked or non-blocked
Some event monitors® let you control how to proceed when event monitor
output buffers are full. For blocked event monitors, each agent that
generates an event will wait for the event buffers to be written to table if
they are full. This can degrade database performance, as the suspended
agent and any dependent agents cannot run until the buffers are clear. Use
the BLOCKED clause to ensure no losses of event data:

CREATE EVENT MONITOR myevmon FOR BUFFERPOOLS, TABLESPACES
WRITE TO TABLE BUFFERSIZE 8 BLOCKED

If database performance is of greater importance than collecting every
single event record, use non-blocked event monitors. In this case, each
agent that generates an event will not wait for the event buffers to be
written to table if they are full. As a result, non-blocked event monitors are
subject to data loss on highly active systems. Use the NONBLOCKED
clause to minimize the additional processing time caused by event
monitoring:
CREATE EVENT MONITOR myevmon FOR BUFFERPOOLS, TABLESPACES

WRITE TO TABLE BUFFERSIZE 8 NONBLOCKED

Note: See “Target tables, control tables, and event monitor table
management” on page 88 and “Write-to-table and file event monitor
buffering” on page 107 for additional information about how information
about discarded events is written to the control table for the event monitor.

Controlling what monitor elements for which data is collected
Which monitor elements to collect data for. If you are interested in only a
few monitor elements, you can specify which ones you want to collect for
some event monitors® by specifying the element name in the CREATE
EVENT MONITOR statement:

Chapter 3. Event monitors 39

CREATE EVENT MONITOR myevmon FOR DATABASE, BUFFERPOOLS, TABLESPACES
WRITE TO TABLE DB, DBMEMUSE,
BUFFERPOOL (EXCLUDES(db_path, files closed)),
TABLESPACE (INCLUDES
(tablespace_name, direct_reads, direct_writes))
BUFFERSIZE 8 NONBLOCKED

All the monitor elements for the DB and DBMEMUSE logical data groups
are captured (this is the default behavior). For BUFFERPOOL, all monitor
elements except db_path and files_closed are captured. And finally, for
TABLESPACE, tablespace_name, direct_reads and direct_writes are the
only monitor elements captured.

Setting a threshold for deactivating an event monitor based on table space used
All event monitors provide the option to specify how full the table space
can get before the event monitor automatically deactivates:

CREATE EVENT MONITOR myevmon FOR BUFFERPOOLS, TABLESPACES
PCTDEACTIVATE 90

When the table space reaches 90% capacity, the myevmon event monitor
automatically shuts off. The PCTDEACTIVATE clause can only be used for
DMS table spaces. If the target table space has auto-resize enabled, set the
PCTDEACTIVATE clause to 100.

What to do next

By default, event monitors that were introduced in Version 9.7 or later are created
as AUTOSTART event monitors. They are activated automatically when the
database is next activated, and on subsequent database activations thereafter. If
you want to activate the event monitor immediately, before the next database
activation, use the SET EVENT MONITOR STATE statement to manually start the
event monitor. In addition for each of the locking, unit of work and package cache
event monitors, you must also enable data collection.

Event monitor logical data groups and monitor elements:

Monitor elements that are often useful to examine together are grouped in logical
data groups.

All event monitors use logical data groups in one way or another. For some event
monitor types, you can specify what information you want to collect by specifying
the logical data groups for which you want information recorded. Logical data
groups are also used to group data together in the output event monitors generate;
for example, event monitors that write to tables generally create one table for each
logical data group of monitor elements.

The following table lists the logical data groupings and monitor elements that can
be returned by event monitoring.

¢ “changesummary logical data group” on page 42

* “dbdbmcfg logical data group” on page 42

* “ddlstmtexec logical data group” on page 42

* “dllock logical data group” on page 43

* “event_activity logical data group” on page 43

* “event_activitymetrics logical data group” on page 45
* “event_activitystmt logical data group” on page 48

* “event_activityvals logical data group” on page 49

40 Database Monitoring Guide and Reference

“event_bufferpool logical data group” on page 49
“event_conn logical data group” on page 51
“event_connheader logical data group” on page 53
“event_connmemuse logical data group” on page 54
“event_data_value logical data group” on page 54
“event_db logical data group” on page 54
“event_dbheader logical data group” on page 58
“event_dbmemuse logical data group” on page 58
“event_deadlock logical data group” on page 59
“event_detailed_dlconn logical data group” on page 59
“event_dlconn logical data group” on page 60
“event_histogrambin logical data group” on page 61
“event_log_header logical data group” on page 61
“event_overflow logical data group” on page 61
“event_gstats logical data group” on page 61
“event_scstats logical data group” on page 62
“event_start logical data group” on page 63
“event_stmt logical data group” on page 63
“event_stmt_history logical data group” on page 65
“event_subsection logical data group” on page 65
“event_table logical data group” on page 66
“event_tablespace logical data group” on page 66
“event_thresholdviolations logical data group” on page 68
“event_wlstats logical data group” on page 69
“event_wecstats logical data group” on page 68
“event_xact logical data group” on page 70
“evmonstart logical data group” on page 71

“lock logical data group” on page 71
“lock_participants logical data group” on page 72
“lock_participant_activities logical data group” on page 71
“lock_activity_values logical data group” on page 71
“pkgcache logical data group” on page 74
“pkgcache_metrics logical data group” on page 75
“pkgcache_stmt_args logical data group” on page 79
“regvar logical data group” on page 79

“sqlca logical data group” on page 79
“txncompletion logical data group” on page 79
“uow logical data group” on page 80

“uow_metrics logical data group” on page 81
“uow_package_list logical data group” on page 87
“uow_executable_list logical data group” on page 81
“utillocation logical data group” on page 87
“utilphase logical data group” on page 88

“utilstart logical data group” on page 88

“utilstop logical data group” on page 88

Chapter 3. Event monitors

41

changesummary logical data group
“event_id - Event ID monitor element” on page 810
“event_type - Event Type monitor element” on page 812
“event_timestamp - Event timestamp monitor element” on page 811
“member - Database member monitor element” on page 957
“coord_member - Coordinator member monitor element” on page 749
“utility_invocation_id - Utility invocation ID” on page 1413
“utility_type - Utility Type” on page 1417
“appl_id - Application ID monitor element” on page 666
“appl_name - Application name monitor element” on page 670
“application_handle - Application handle monitor element” on page 675

“system_auth_id - System authorization identifier monitor element” on page
1267

“session_auth_id - Session authorization ID monitor element” on page 1211
“client_platform - Client operating platform monitor element” on page 714
“client_protocol - Client communication protocol monitor element” on page 716
“client_port_number - Client port number monitor element” on page 715
“client_pid - Client process ID monitor element” on page 713

“client_hostname - Client hostname monitor element” on page 711
“client_wrkstnname - Client workstation name monitor element” on page 717
“client_acctng - Client accounting string monitor element” on page 709
“client_userid - Client user ID monitor element” on page 717

“client_applname - Client application name monitor element” on page 710

“backup_timestamp - Backup timestamp” on page 689

dbdbmcfg logical data group
“event_id - Event ID monitor element” on page 810
“event_timestamp - Event timestamp monitor element” on page 811
“member - Database member monitor element” on page 957
“event_type - Event Type monitor element” on page 812
“cfg_name - Configuration name” on page 704
“cfg_value - Configuration value” on page 706
“cfg_value_flags - Configuration value flags” on page 706
“cfg_old_value - Configuration old value” on page 705
“cfg_old_value_flags - Configuration old value flags” on page 705
“cfg_collection_type - Configuration collection type” on page 704
“deferred - Deferred” on page 785

ddlstmtexec logical data group
“event_id - Event ID monitor element” on page 810
“event_timestamp - Event timestamp monitor element” on page 811
“member - Database member monitor element” on page 957
“event_type - Event Type monitor element” on page 812

“global_transaction_id - Global transaction identifier monitor element” on page
851

42 Database Monitoring Guide and Reference

“local_transaction_id - Local transaction identifier monitor element” on page
900

“savepoint_id - Savepoint ID” on page 1198

“uow_id - Unit of work ID monitor element” on page 1401
“ddl_classification - DDL classification” on page 780

“stmt_text - SQL statement text monitor element” on page 1255

dllock logical data group
“data_partition_id - Data partition identifier monitor element” on page 767
“lock_attributes - Lock attributes monitor element” on page 901
“lock_count - Lock count monitor element” on page 902
“lock_current_mode - Original lock mode before conversion monitor element”
on page 903
“lock_escalation - Lock escalation monitor element” on page 904
“lock_hold_count - Lock hold count monitor element” on page 911
“lock_mode - Lock mode monitor element” on page 912
“lock_name - Lock name monitor element” on page 914
“lock_object_name - Lock Object Name” on page 915
“lock_object_type - Lock object type waited on monitor element” on page 916
“lock_release_flags - Lock release flags monitor element” on page 918
“lock_status - Lock status monitor element” on page 919
“node_number - Node Number” on page 970
“table_file_id - Table file ID monitor element” on page 1268
“table_name - Table name monitor element” on page 1269
“table_schema - Table schema name monitor element” on page 1271
“tablespace_name - Table space name monitor element” on page 1279

Note: The underlying implementation for this logical data group is the snapshot
monitor LOCK logical data group. If you examine the output for this logical group
in the self-describing stream used for the file and pipe output options, you can see
that the LOCK group is used to generate the output.

event_activity logical data group
“act_exec_time - Activity execution time monitor element” on page 639
“activate_timestamp - Activate timestamp monitor element” on page 644
“activity_id - Activity ID monitor element” on page 645
“activity_secondary_id - Activity secondary ID monitor element” on page 646
“activity_type - Activity type monitor element” on page 647
“address - IP address from which the connection was initiated” on page 649
“agent_id - Application handle (agent ID) monitor element” on page 650
“appl_id - Application ID monitor element” on page 666
“appl_name - Application name monitor element” on page 670

“arm_correlator - Application response measurement correlator monitor
element” on page 677

“coord_partition_num - Coordinator partition number monitor element” on
page 750

“db_work_action_set_id - Database work action set ID monitor element” on
page 777

Chapter 3. Event monitors 43

“db_work_class_id - Database work class ID monitor element” on page 778

details_xml (This XML document is a metrics document of type
activity_metrics, as described in the XML schema document
sq11ib/misc/DB2MonCommon.xsd.) You can also access the metrics reported in this
document through the event_activitymetrics logical data group.

“intra_parallel_state - Current state of intrapartition parallelism monitor
element” on page 886

“num_remaps - Number of remaps monitor element” on page 981
“parent_activity_id - Parent activity ID monitor element” on page 1013
“parent_uow_id - Parent unit of work ID monitor element” on page 1014
“partial_record - Partial Record monitor element” on page 1014

“pool_data_l_reads - Buffer pool data logical reads monitor element” on page
1048

“pool_data_p_reads - Buffer pool data physical reads monitor element” on page
1050

“query_actual_degree - Actual runtime degree of intrapartition parallelism
monitor element” on page 1162

“sc_work_action_set_id - Service class work action set ID monitor element” on
page 1198

“sc_work_class_id - Service class work class ID monitor element” on page 1199
“section_actuals - Section actuals monitor element” on page 1200
“service_subclass_name - Service subclass name monitor element” on page 1208

“service_superclass_name - Service superclass name monitor element” on page
1209

“session_auth_id - Session authorization ID monitor element” on page 1211
“sort_overflows - Sort overflows monitor element” on page 1224

“sqlca - SQL Communications Area (SQLCA)” on page 1229
“time_completed - Time completed monitor element” on page 1308
“time_created - Time created monitor element” on page 1309

“time_started - Time started monitor element” on page 1310
“total_sort_time - Total sort time monitor element” on page 1374
“total_sorts - Total sorts monitor element” on page 1375

“tpmon_acc_str - TP monitor client accounting string monitor element” on page
1387

“tpmon_client_app - TP monitor client application name monitor element” on
page 1388

“tpmon_client_userid - TP monitor client user ID monitor element” on page
1388

“tpmon_client_wkstn - TP monitor client workstation name monitor element”
on page 1389

“uow_id - Unit of work ID monitor element” on page 1401
“workload_id - Workload ID monitor element” on page 1426
“workload_occurrence_id - Workload occurrence identifier monitor element” on

page 1428

“pool_index_l_reads - Buffer pool index logical reads monitor element” on page
1080

“pool_index_p_reads - Buffer pool index physical reads monitor element” on
page 1082

44 Database Monitoring Guide and Reference

“pool_temp_data_l_reads - Buffer pool temporary data logical reads monitor
element” on page 1116

“pool_temp_data_p_reads - Buffer pool temporary data physical reads monitor
element” on page 1118

“pool_temp_index_I_reads - Buffer pool temporary index logical reads monitor
element” on page 1120

“pool_temp_index_p_reads - Buffer pool temporary index physical reads
monitor element” on page 1121

“pool_temp_xda_l_reads - Buffer pool temporary XDA data logical reads
monitor element” on page 1123

“pool_temp_xda_p_reads - Buffer pool temporary XDA data physical reads
monitor element” on page 1125

“pool_xda_l_reads - Buffer pool XDA data logical reads monitor element” on
page 1136

“pool_xda_p_reads - Buffer pool XDA data physical reads monitor element” on
page 1139

“prep_time - Preparation time monitor element” on page 1154
“query_card_estimate - Query Number of Rows Estimate” on page 1163
“query_cost_estimate - Query cost estimate monitor element” on page 1163
“rows_fetched - Rows fetched monitor element” on page 1188
“rows_modified - Rows modified monitor element” on page 1190
“rows_returned - Rows returned monitor element” on page 1193
“system_cpu_time - System CPU time monitor element” on page 1267
“user_cpu_time - User CPU time monitor element” on page 1411

“wl_work_action_set_id - Workload work action set identifier monitor element”
on page 1420

“wl_work_class_id - Workload work class identifier monitor element” on page
1421

“mon_interval_id - Monitor interval identifier monitor element” on page 967
“member - Database member monitor element” on page 957

“query_data_tag_list - Estimated query data tag list monitor element” on page
1164

“total_stats_fabrication_time - Total statistics fabrication time monitor element”
on page 1378

“total_stats_fabrications - Total statistics fabrications monitor elements” on page
1379

“total_sync_runstats - Total synchronous RUNSTATS activities monitor element”
on page 1382

“total_sync_runstats_time - Total synchronous RUNSTATS time monitor
elements” on page 1380

event_activitymetrics logical data group
“audit_events_total - Total audit events monitor element” on page 679
“audit_file_writes_total - Total audit files written monitor element” on page 682

“audit_subsystem_wait_time - Audit subsystem wait time monitor element” on
page 683

“audit_subsystem_waits_total - Total audit subsystem waits monitor element”
on page 685

Chapter 3. Event monitors 45

“coord_stmt_exec_time - Execution time for statement by coordinator agent
monitor element” on page 751

“deadlocks - Deadlocks detected monitor element” on page 783

“diaglog_write_wait_time - Diagnostic log file write wait time monitor element”
on page 788

“diaglog_writes_total - Total diagnostic log file writes monitor element” on
page 789

“direct_read_reqs - Direct read requests monitor element” on page 790
“direct_read_time - Direct read time monitor element” on page 792
“direct_reads - Direct reads from database monitor element” on page 794
“direct_write_reqs - Direct write requests monitor element” on page 796
“direct_write_time - Direct write time monitor element” on page 798
“direct_writes - Direct writes to database monitor element” on page 800

“fcm_message_recv_volume - FCM message received volume monitor element”
on page 823

“fcm_message_recv_wait_time - FCM message received wait time monitor
element” on page 824

“fcm_message_recvs_total - Total FCM message receives monitor element” on
page 826

“fcm_message_send_volume - FCM message send volume monitor element” on
page 827

“fcm_message_send_wait_time - FCM message send wait time monitor
element” on page 828

“fcm_message_sends_total - Total FCM message sends monitor element” on
page 830

“fcm_recv_volume - FCM received volume monitor element” on page 831
“fcm_recv_wait_time - FCM received wait time monitor element” on page 832
“fcm_recvs_total - FCM receives total monitor element” on page 834
“fcm_send_volume - FCM send volume monitor element” on page 835
“fcm_send_wait_time - FCM send wait time monitor element” on page 836
“fcm_sends_total - FCM sends total monitor element” on page 838

“fcm_tq_recv_volume - FCM table queue received volume monitor element” on
page 839

“fcm_tq_recv_wait_time - FCM table queue received wait time monitor
element” on page 840

“fcm_tq_recvs_total - FCM table queue receives total monitor element” on page
842

“fcm_tq_send_volume - FCM table queue send volume monitor element” on
page 843

“fcm_tq_send_wait_time - FCM table queue send wait time monitor element”
on page 844

“fcm_tq_sends_total - FCM table queue send total monitor element” on page
846

“lock_escals - Number of lock escalations monitor element” on page 905
“lock_timeouts - Number of lock timeouts monitor element” on page 920
“lock_wait_time - Time waited on locks monitor element” on page 924
“lock_waits - Lock waits monitor element” on page 928

“log_buffer_wait_time - Log buffer wait time monitor element” on page 933

46 Database Monitoring Guide and Reference

“log_disk_wait_time - Log disk wait time monitor element” on page 935
“log_disk_waits_total - Total log disk waits monitor element” on page 936

“num_log_buffer_full - Number of times full log buffer caused agents to wait
monitor element” on page 975

“num_lw_thresh_exceeded - Number of lock wait thresholds exceeded monitor
element” on page 979

“pool_data_l_reads - Buffer pool data logical reads monitor element” on page
1048

“pool_data_p_reads - Buffer pool data physical reads monitor element” on page
1050

“pool_data_writes - Buffer pool data writes monitor element” on page 1052

“pool_index_l_reads - Buffer pool index logical reads monitor element” on page
1080

“pool_index_p_reads - Buffer pool index physical reads monitor element” on
page 1082

“pool_index_writes - Buffer pool index writes monitor element” on page 1084

“pool_read_time - Total buffer pool physical read time monitor element” on
page 1113

“pool_temp_data_l_reads - Buffer pool temporary data logical reads monitor
element” on page 1116

“pool_temp_data_p_reads - Buffer pool temporary data physical reads monitor
element” on page 1118

“pool_temp_index_I_reads - Buffer pool temporary index logical reads monitor
element” on page 1120

“pool_temp_index_p_reads - Buffer pool temporary index physical reads
monitor element” on page 1121

“pool_temp_xda_l_reads - Buffer pool temporary XDA data logical reads
monitor element” on page 1123

“pool_temp_xda_p_reads - Buffer pool temporary XDA data physical reads
monitor element” on page 1125

“pool_write_time - Total buffer pool physical write time monitor element” on
page 1128

“pool_xda_l_reads - Buffer pool XDA data logical reads monitor element” on
page 1136

“pool_xda_p_reads - Buffer pool XDA data physical reads monitor element” on
page 1139

“pool_xda_writes - Buffer pool XDA data writes monitor element” on page 1141

“post_shrthreshold_sorts - Post shared threshold sorts monitor element” on
page 1144

“post_threshold_sorts - Post threshold sorts monitor element” on page 1150
“rows_modified - Rows modified monitor element” on page 1190
“rows_read - Rows read monitor element” on page 1191

“rows_returned - Rows returned monitor element” on page 1193
“sort_overflows - Sort overflows monitor element” on page 1224
“stmt_exec_time - Statement execution time monitor element” on page 1245

“thresh_violations - Number of threshold violations monitor element” on page
1304

“total_act_time - Total activity time monitor element” on page 1311

Chapter 3. Event monitors 47

“total_act_wait_time - Total activity wait time monitor element” on page 1312

“total_app_section_executions - Total application section executions monitor
element” on page 1317

“total_cpu_time - Total CPU time monitor element” on page 1330

“total_routine_invocations - Total routine invocations monitor elements” on
page 1355

“total_routine_non_sect_proc_time - Non-section processing time monitor
element” on page 1356

“total_routine_non_sect_time - Non-section routine execution time monitor
elements” on page 1356

“total_routine_time - Total routine time monitor element” on page 1357

“total_routine_user_code_proc_time - Total routine user code processing time
monitor element” on page 1359

“total_routine_user_code_time - Total routine user code time monitor element”
on page 1360

“total_section_proc_time - Total section processing time monitor element” on
page 1367

“total_section_sort_proc_time - Total section sort processing time monitor
element” on page 1368

“total_section_sort_time - Total section sort time monitor element” on page 1370
“total_section_sorts - Total section sorts monitor element” on page 1371
“total_section_time - Total section time monitor element” on page 1373
“total_sorts - Total sorts monitor element” on page 1375

“tq_tot_send_spills - Total number of table queue buffers overflowed monitor
element” on page 1396

“wlm_queue_assignments_total - Workload manager total queue assignments
monitor element” on page 1421

77

“wlm_queue_time_total - Workload manager total queue time monitor element
on page 1422

event_activitystmt logical data group
“activate_timestamp - Activate timestamp monitor element” on page 644
“activity_id - Activity ID monitor element” on page 645
“activity_secondary_id - Activity secondary ID monitor element” on page 646
“appl_id - Application ID monitor element” on page 666
“comp_env_desc - Compilation environment monitor element” on page 722
“creator - Application Creator” on page 763
“eff stmt_text - Effective statement text monitor element” on page 805
“executable_id - Executable ID monitor element” on page 818

“intra_parallel_state - Current state of intrapartition parallelism monitor
element” on page 886

“package_name - Package name monitor element” on page 1006
“package_version_id - Package version monitor element” on page 1007

“query_actual_degree - Actual runtime degree of intrapartition parallelism
monitor element” on page 1162

“routine_id - Routine ID monitor element” on page 1187
“section_env - Section environment monitor element” on page 1201

“section_number - Section number monitor element” on page 1201

48 Database Monitoring Guide and Reference

“stmt_first_use_time - Statement first use timestamp monitor element” on page
1246

“stmt_invocation_id - Statement invocation identifier monitor element” on page
1247

“stmt_isolation - Statement isolation” on page 1248

“stmt_last_use_time - Statement last use timestamp monitor element” on page
1248

“stmt_lock_timeout - Statement lock timeout monitor element” on page 1249
“stmt_nest_level - Statement nesting level monitor element” on page 1249

“stmt_pkgcache_id - Statement package cache identifier monitor element” on
page 1251

“stmt_query_id - Statement query identifier monitor element” on page 1252
“stmt_source_id - Statement source identifier” on page 1253

“stmt_text - SQL statement text monitor element” on page 1255

“stmt_type - Statement type monitor element” on page 1256

“uow_id - Unit of work ID monitor element” on page 1401

“member - Database member monitor element” on page 957

event_activityvals logical data group
“activate_timestamp - Activate timestamp monitor element” on page 644
“activity_id - Activity ID monitor element” on page 645
“activity_secondary_id - Activity secondary ID monitor element” on page 646
“appl_id - Application ID monitor element” on page 666

“intra_parallel_state - Current state of intrapartition parallelism monitor
element” on page 886

“query_actual_degree - Actual runtime degree of intrapartition parallelism
monitor element” on page 1162

“stmt_value_data - Value data” on page 1259
“stmt_value_index - Value index” on page 1259
“stmt_value_isnull - Value has null value monitor element” on page 1260

“stmt_value_isreopt - Variable used for statement reoptimization monitor
element” on page 1261

“stmt_value_type - Value type monitor element” on page 1261
“uow_id - Unit of work ID monitor element” on page 1401

“member - Database member monitor element” on page 957

event_bufferpool logical data group
“bp_id - Buffer pool identifier monitor element” on page 693
“bp_name - Buffer pool name monitor element” on page 693
“db_name - Database name monitor element” on page 773
“db_path - Database Path” on page 774
“direct_read_reqs - Direct read requests monitor element” on page 790
“direct_read_time - Direct read time monitor element” on page 792
“direct_reads - Direct reads from database monitor element” on page 794
“direct_write_reqs - Direct write requests monitor element” on page 796
“direct_write_time - Direct write time monitor element” on page 798
“direct_writes - Direct writes to database monitor element” on page 800

Chapter 3. Event monitors 49

“event_time - Event Time” on page 811

“evmon_activates - Number of event monitor activations” on page 813
“evmon_flushes - Number of Event Monitor Flushes” on page 819
“files_closed - Database files closed monitor element” on page 848
“partial_record - Partial Record monitor element” on page 1014

“pool_async_data_read_reqs - Buffer pool asynchronous read requests monitor
element” on page 1026

“pool_async_data_reads - Buffer pool asynchronous data reads monitor
element” on page 1027

“pool_async_data_writes - Buffer pool asynchronous data writes monitor
element” on page 1028

“pool_async_index_reads - Buffer pool asynchronous index reads monitor
element” on page 1032

“pool_async_index_writes - Buffer pool asynchronous index writes monitor
element” on page 1033

“pool_async_read_time - Buffer Pool Asynchronous Read Time” on page 1033

“pool_async_write_time - Buffer pool asynchronous write time monitor
element” on page 1034

“pool_data_l_reads - Buffer pool data logical reads monitor element” on page
1048

“pool_data_p_reads - Buffer pool data physical reads monitor element” on page
1050

“pool_data_writes - Buffer pool data writes monitor element” on page 1052

“pool_index_I_reads - Buffer pool index logical reads monitor element” on page
1080

“pool_index_p_reads - Buffer pool index physical reads monitor element” on
page 1082

“pool_index_writes - Buffer pool index writes monitor element” on page 1084

“pool_read_time - Total buffer pool physical read time monitor element” on
page 1113

“pool_write_time - Total buffer pool physical write time monitor element” on
page 1128

“block_ios - Number of block I/O requests monitor element” on page 690

“pages_from_block_ios - Total number of pages read by block I/O monitor
element” on page 1011

“pages_from_vectored_ios - Total number of pages read by vectored 1/O
monitor element” on page 1012

“pool_async_index_read_reqs - Buffer pool asynchronous index read requests
monitor element” on page 1031

“pool_async_xda_read_reqs - Buffer pool asynchronous XDA read requests
monitor element” on page 1038

“pool_async_xda_reads - Buffer pool asynchronous XDA data reads monitor
element” on page 1038

“pool_async_xda_writes - Buffer pool asynchronous XDA data writes monitor
element” on page 1039

“pool_no_victim_buffer - Buffer pool no victim buffers monitor element” on
page 1087

“pool_xda_l_reads - Buffer pool XDA data logical reads monitor element” on
page 1136

50 Database Monitoring Guide and Reference

“pool_xda_p_reads - Buffer pool XDA data physical reads monitor element” on
page 1139

“pool_xda_writes - Buffer pool XDA data writes monitor element” on page 1141

“unread_prefetch_pages - Unread prefetch pages monitor element” on page
1399

“vectored_ios - Number of vectored I/O requests monitor element” on page
1419

event_conn logical data group
“acc_curs_blk - Accepted Block Cursor Requests” on page 636
“agent_id - Application handle (agent ID) monitor element” on page 650
“appl_id - Application ID monitor element” on page 666
“appl_priority - Application Agent Priority” on page 671
“appl_priority_type - Application Priority Type” on page 672
“appl_section_inserts - Section Inserts monitor element” on page 672
“appl_section_lookups - Section Lookups” on page 673
“authority_bitmap - User authorization level monitor element” on page 687
“authority_lvl - User authorization level monitor element” on page 688
“binds_precompiles - Binds/Precompiles Attempted” on page 690
“cat_cache_inserts - Catalog cache inserts monitor element” on page 698
“cat_cache_lookups - Catalog cache lookups monitor element” on page 699
“cat_cache_overflows - Catalog Cache Overflows” on page 700
“commit_sql_stmts - Commit Statements Attempted” on page 721
“ddl_sql_stmts - Data Definition Language (DDL) SQL Statements” on page 781
“deadlocks - Deadlocks detected monitor element” on page 783
“direct_read_reqs - Direct read requests monitor element” on page 790
“direct_read_time - Direct read time monitor element” on page 792
“direct_reads - Direct reads from database monitor element” on page 794
“direct_write_reqs - Direct write requests monitor element” on page 796
“direct_write_time - Direct write time monitor element” on page 798
“direct_writes - Direct writes to database monitor element” on page 800
“disconn_time - Database Deactivation Timestamp” on page 803
“dynamic_sql_stmts - Dynamic SQL Statements Attempted” on page 804
“failed_sql_stmts - Failed Statement Operations” on page 821
“hash_join_overflows - Hash Join Overflows” on page 867
“hash_join_small_overflows - Hash Join Small Overflows” on page 867
“int_auto_rebinds - Internal Automatic Rebinds” on page 879
“int_commits - Internal commits monitor element” on page 880
“int_deadlock_rollbacks - Internal Rollbacks Due To Deadlock” on page 881
“int_rollbacks - Internal rollbacks monitor element” on page 882
“int_rows_deleted - Internal Rows Deleted” on page 884
“int_rows_inserted - Internal Rows Inserted” on page 884
“int_rows_updated - Internal Rows Updated” on page 885
“lock_escalation - Lock escalation monitor element” on page 904
“lock_timeouts - Number of lock timeouts monitor element” on page 920

“lock_wait_time - Time waited on locks monitor element” on page 924

Chapter 3. Event monitors 51

“lock_waits - Lock waits monitor element” on page 928

“olap_func_overflows - OLAP Function Overflows monitor element” on page
997

“partial_record - Partial Record monitor element” on page 1014
“int_rows_updated - Internal Rows Updated” on page 885
“pkg_cache_inserts - Package cache inserts monitor element” on page 1020
“pkg_cache_lookups - Package cache lookups monitor element” on page 1021

“pool_data_l_reads - Buffer pool data logical reads monitor element” on page
1048

“pool_data_p_reads - Buffer pool data physical reads monitor element” on page
1050

“pool_data_writes - Buffer pool data writes monitor element” on page 1052

“pool_index_I_reads - Buffer pool index logical reads monitor element” on page
1080

“pool_index_p_reads - Buffer pool index physical reads monitor element” on
page 1082

“pool_index_writes - Buffer pool index writes monitor element” on page 1084

“pool_read_time - Total buffer pool physical read time monitor element” on
page 1113

“pool_temp_data_l_reads - Buffer pool temporary data logical reads monitor
element” on page 1116

“pool_temp_data_p_reads - Buffer pool temporary data physical reads monitor
element” on page 1118

“pool_temp_index_I_reads - Buffer pool temporary index logical reads monitor
element” on page 1120

“pool_temp_index_p_reads - Buffer pool temporary index physical reads
monitor element” on page 1121

“pool_write_time - Total buffer pool physical write time monitor element” on
page 1128

“prefetch_wait_time - Time waited for prefetch monitor element” on page 1151
“priv_workspace_num_overflows - Private Workspace Overflows” on page 1156

“priv_workspace_section_inserts - Private Workspace Section Inserts” on page
1157

“priv_workspace_section_lookups - Private Workspace Section Lookups” on
page 1158

“priv_workspace_size_top - Maximum Private Workspace Size” on page 1158
“rej_curs_blk - Rejected Block Cursor Requests” on page 1173
“rollback_sql_stmts - Rollback Statements Attempted” on page 1184
“rows_read - Rows read monitor element” on page 1191

“rows_selected - Rows Selected” on page 1195

“rows_written - Rows Written” on page 1196

“select_sql_stmts - Select SQL Statements Executed” on page 1203
“sequence_no - Sequence number monitor element” on page 1204
“shr_workspace_num_overflows - Shared Workspace Overflows” on page 1211

“shr_workspace_section_inserts - Shared Workspace Section Inserts” on page
1212

“shr_workspace_section_lookups - Shared Workspace Section Lookups” on page
1213

52 Database Monitoring Guide and Reference

“shr_workspace_size_top - Maximum Shared Workspace Size” on page 1213
“sort_overflows - Sort overflows monitor element” on page 1224
“static_sql_stmts - Static SQL Statements Attempted” on page 1241
“system_cpu_time - System CPU time monitor element” on page 1267
“total_hash_joins - Total Hash Joins” on page 1338

“total_hash_loops - Total Hash Loops” on page 1338

“total_olap_funcs - Total OLAP Functions monitor element” on page 1346
“total_sec_cons - Secondary Connections” on page 1366

“total_sort_time - Total sort time monitor element” on page 1374
“total_sorts - Total sorts monitor element” on page 1375

“uid_sql_stmts - Update/Insert/Delete SQL Statements Executed” on page 1398

“unread_prefetch_pages - Unread prefetch pages monitor element” on page
1399

“user_cpu_time - User CPU time monitor element” on page 1411
“x_lock_escals - Exclusive lock escalations monitor element” on page 1429
“xquery_stmts - XQuery Statements Attempted” on page 1431
“appl_status - Application status monitor element” on page 673

“cat_cache_size_top - Catalog cache high watermark monitor element” on page
701

“coord_node - Coordinating Node” on page 750

“elapsed_exec_time - Statement Execution Elapsed Time” on page 806
“evmon_flushes - Number of Event Monitor Flushes” on page 819
“lock_escals - Number of lock escalations monitor element” on page 905

“pool_temp_xda_l_reads - Buffer pool temporary XDA data logical reads
monitor element” on page 1123

“pool_temp_xda_p_reads - Buffer pool temporary XDA data physical reads
monitor element” on page 1125

“pool_xda_l_reads - Buffer pool XDA data logical reads monitor element” on
page 1136

“pool_xda_p_reads - Buffer pool XDA data physical reads monitor element” on
page 1139

“pool_xda_writes - Buffer pool XDA data writes monitor element” on page 1141
“rows_deleted - Rows deleted monitor element” on page 1188

“rows_inserted - Rows inserted monitor element” on page 1189

“rows_updated - Rows updated monitor element” on page 1196
CAT_CACHE_HEAP_FULL

event_connheader logical data group
“agent_id - Application handle (agent ID) monitor element” on page 650
“appl_id - Application ID monitor element” on page 666
“appl_name - Application name monitor element” on page 670
“auth_id - Authorization ID” on page 686
“client_db_alias - Database Alias Used by Application” on page 711
“client_pid - Client process ID monitor element” on page 713
“client_platform - Client operating platform monitor element” on page 714
“client_prdid - Client product and version ID monitor element” on page 715

Chapter 3. Event monitors 53

“client_protocol - Client communication protocol monitor element” on page 716
“codepage_id - ID of Code Page Used by Application” on page 718

“conn_time - Time of database connection monitor element” on page 736
“corr_token - DRDA Correlation Token” on page 751

“execution_id - User Login ID” on page 820

“node_number - Node Number” on page 970

“sequence_no - Sequence number monitor element” on page 1204
“territory_code - Database Territory Code” on page 1303

“client_nname - Client name monitor element” on page 713

event_connmemuse logical data group
“node_number - Node Number” on page 970
“pool_config_size - Configured Size of Memory Pool” on page 1040
“pool_cur_size - Current Size of Memory Pool” on page 1041
“pool_id - Memory Pool Identifier” on page 1071
“pool_secondary_id - Memory Pool Secondary Identifier” on page 1114
“pool_watermark - Memory Pool Watermark” on page 1127
“appl_id - Application ID monitor element” on page 666
“evmon_flushes - Number of Event Monitor Flushes” on page 819
POOL_LIST_ID
POOL_MAX_SIZE

event_data_value logical data group
“deadlock_id - Deadlock Event Identifier” on page 782
“deadlock_node - Partition Number Where Deadlock Occurred” on page 783
“evmon_activates - Number of event monitor activations” on page 813
“participant_no - Participant within Deadlock” on page 1015
“stmt_history_id - Statement history identifier” on page 1246
“stmt_value_data - Value data” on page 1259
“stmt_value_index - Value index” on page 1259
“stmt_value_isnull - Value has null value monitor element” on page 1260

“stmt_value_isreopt - Variable used for statement reoptimization monitor
element” on page 1261

“stmt_value_type - Value type monitor element” on page 1261

event_db logical data group
“active_hash_joins - Active hash joins” on page 644
“appl_section_inserts - Section Inserts monitor element” on page 672
“appl_section_lookups - Section Lookups” on page 673

“async_runstats — Total number of asynchronous RUNSTATS requests monitor
element” on page 678

“binds_precompiles - Binds/Precompiles Attempted” on page 690

“blocks_pending_cleanup - Pending cleanup rolled-out blocks monitor element”
on page 692

“cat_cache_inserts - Catalog cache inserts monitor element” on page 698
“cat_cache_lookups - Catalog cache lookups monitor element” on page 699
“cat_cache_overflows - Catalog Cache Overflows” on page 700

54 Database Monitoring Guide and Reference

“cat_cache_size_top - Catalog cache high watermark monitor element” on page
701

“catalog_node - Catalog Node Number” on page 702
“catalog_node_name - Catalog Node Network Name” on page 702
“commit_sql_stmts - Commit Statements Attempted” on page 721
“connections_top - Maximum Number of Concurrent Connections” on page 737
“db_heap_top - Maximum Database Heap Allocated” on page 773
“ddl_sql_stmts - Data Definition Language (DDL) SQL Statements” on page 781
“deadlocks - Deadlocks detected monitor element” on page 783
“direct_read_reqs - Direct read requests monitor element” on page 790
“direct_read_time - Direct read time monitor element” on page 792
“direct_reads - Direct reads from database monitor element” on page 794
“direct_write_reqs - Direct write requests monitor element” on page 796
“direct_write_time - Direct write time monitor element” on page 798
“direct_writes - Direct writes to database monitor element” on page 800
“disconn_time - Database Deactivation Timestamp” on page 803
“dynamic_sql_stmts - Dynamic SQL Statements Attempted” on page 804
“evmon_activates - Number of event monitor activations” on page 813
“evmon_flushes - Number of Event Monitor Flushes” on page 819
“failed_sql_stmts - Failed Statement Operations” on page 821
“files_closed - Database files closed monitor element” on page 848
“hash_join_overflows - Hash Join Overflows” on page 867
“hash_join_small_overflows - Hash Join Small Overflows” on page 867
“int_auto_rebinds - Internal Automatic Rebinds” on page 879
“int_commits - Internal commits monitor element” on page 880
“int_rollbacks - Internal rollbacks monitor element” on page 882
“int_rows_deleted - Internal Rows Deleted” on page 884
“int_rows_inserted - Internal Rows Inserted” on page 884
“int_rows_updated - Internal Rows Updated” on page 885

“lock_escals - Number of lock escalations monitor element” on page 905
“lock_timeouts - Number of lock timeouts monitor element” on page 920
“lock_wait_time - Time waited on locks monitor element” on page 924
“lock_waits - Lock waits monitor element” on page 928
“log_held_by_dirty_pages - Amount of Log Space Accounted for by Dirty
Pages” on page 937

“log_read_time - Log Read Time” on page 938

“log_reads - Number of Log Pages Read” on page 938
“log_to_redo_for_recovery - Amount of Log to be Redone for Recovery” on
page 939

“log_write_time - Log Write Time” on page 940

“log_writes - Number of Log Pages Written” on page 940
“num_log_read_io - Number of Log Reads” on page 978
“num_log_write_io - Number of Log Writes” on page 978

“num_threshold_violations - Number of threshold violations monitor element”
on page 981

Chapter 3. Event monitors 55

“olap_func_overflows - OLAP Function Overflows monitor element” on page
997

“partial_record - Partial Record monitor element” on page 1014
“pkg_cache_inserts - Package cache inserts monitor element” on page 1020
“pkg_cache_lookups - Package cache lookups monitor element” on page 1021
“pkg_cache_num_overflows - Package Cache Overflows” on page 1023
“pkg_cache_size_top - Package cache high watermark” on page 1023

“pool_async_data_read_reqs - Buffer pool asynchronous read requests monitor
element” on page 1026

“pool_async_data_reads - Buffer pool asynchronous data reads monitor
element” on page 1027

“pool_async_data_writes - Buffer pool asynchronous data writes monitor
element” on page 1028

“pool_async_index_read_reqs - Buffer pool asynchronous index read requests
monitor element” on page 1031

“pool_async_index_reads - Buffer pool asynchronous index reads monitor
element” on page 1032

“pool_async_index_writes - Buffer pool asynchronous index writes monitor
element” on page 1033

“pool_async_read_time - Buffer Pool Asynchronous Read Time” on page 1033

“pool_async_write_time - Buffer pool asynchronous write time monitor
element” on page 1034

“pool_data_l_reads - Buffer pool data logical reads monitor element” on page
1048

“pool_data_p_reads - Buffer pool data physical reads monitor element” on page
1050

“pool_data_writes - Buffer pool data writes monitor element” on page 1052
“pool_drty_pg_steal_clns - Buffer pool victim page cleaners triggered monitor
element” on page 1055

“pool_drty_pg_thrsh_clns - Buffer pool threshold cleaners triggered monitor
element” on page 1056

“pool_index_I_reads - Buffer pool index logical reads monitor element” on page
1080

“pool_index_p_reads - Buffer pool index physical reads monitor element” on
page 1082

“pool_index_writes - Buffer pool index writes monitor element” on page 1084
“pool_lsn_gap_clns - Buffer pool log space cleaners triggered monitor element”
on page 1086

“pool_no_victim_buffer - Buffer pool no victim buffers monitor element” on
page 1087

“pool_read_time - Total buffer pool physical read time monitor element” on
page 1113

“pool_temp_data_l_reads - Buffer pool temporary data logical reads monitor
element” on page 1116

“pool_temp_data_p_reads - Buffer pool temporary data physical reads monitor
element” on page 1118

“pool_temp_index_I_reads - Buffer pool temporary index logical reads monitor
element” on page 1120

56 Database Monitoring Guide and Reference

“pool_temp_index_p_reads - Buffer pool temporary index physical reads
monitor element” on page 1121

“pool_write_time - Total buffer pool physical write time monitor element” on
page 1128

“post_shrthreshold_hash_joins - Post threshold hash joins” on page 1143

“post_shrthreshold_sorts - Post shared threshold sorts monitor element” on
page 1144

“prefetch_wait_time - Time waited for prefetch monitor element” on page 1151
“priv_workspace_num_overflows - Private Workspace Overflows” on page 1156

“priv_workspace_section_inserts - Private Workspace Section Inserts” on page
1157

“priv_workspace_section_lookups - Private Workspace Section Lookups” on
page 1158

“priv_workspace_size_top - Maximum Private Workspace Size” on page 1158
“rollback_sql_stmts - Rollback Statements Attempted” on page 1184
“rows_deleted - Rows deleted monitor element” on page 1188
“rows_inserted - Rows inserted monitor element” on page 1189

“rows_read - Rows read monitor element” on page 1191

“rows_selected - Rows Selected” on page 1195

“rows_updated - Rows updated monitor element” on page 1196
“sec_log_used_top - Maximum Secondary Log Space Used” on page 1199
“select_sql_stmts - Select SQL Statements Executed” on page 1203
“server_platform - Server Operating System” on page 1206
“shr_workspace_num_overflows - Shared Workspace Overflows” on page 1211

“shr_workspace_section_inserts - Shared Workspace Section Inserts” on page
1212

“shr_workspace_section_lookups - Shared Workspace Section Lookups” on page
1213

“shr_workspace_size_top - Maximum Shared Workspace Size” on page 1213
“sort_overflows - Sort overflows monitor element” on page 1224
“static_sql_stmts - Static SQL Statements Attempted” on page 1241
“stats_cache_size — Size of statistics cache monitor element” on page 1242

“stats_fabricate_time — Total time spent on statistics fabrication activities
monitor element” on page 1243

“stats_fabrications — Total number of statistics fabrications monitor elements”
on page 1244

“sync_runstats — Total number of synchronous RUNSTATS activities monitor
element” on page 1265

“sync_runstats_time — Total time spent on synchronous RUNSTATS activities
monitor element” on page 1266

“tot_log_used_top - Maximum Total Log Space Used” on page 1310
“total_cons - Connects Since Database Activation” on page 1324
“total_hash_joins - Total Hash Joins” on page 1338

“total_hash_loops - Total Hash Loops” on page 1338

“total_olap_funcs - Total OLAP Functions monitor element” on page 1346
“total_sort_time - Total sort time monitor element” on page 1374
“total_sorts - Total sorts monitor element” on page 1375

Chapter 3. Event monitors 57

“uid_sql_stmts - Update/Insert/Delete SQL Statements Executed” on page 1398

“unread_prefetch_pages - Unread prefetch pages monitor element” on page
1399

“x_lock_escals - Exclusive lock escalations monitor element” on page 1429
“xquery_stmts - XQuery Statements Attempted” on page 1431
“elapsed_exec_time - Statement Execution Elapsed Time” on page 806
“num_log_part_page_io - Number of Partial Log Page Writes” on page 977

“pool_async_xda_read_reqs - Buffer pool asynchronous XDA read requests
monitor element” on page 1038

“pool_async_xda_reads - Buffer pool asynchronous XDA data reads monitor
element” on page 1038

“pool_async_xda_writes - Buffer pool asynchronous XDA data writes monitor
element” on page 1039

“pool_temp_xda_l_reads - Buffer pool temporary XDA data logical reads
monitor element” on page 1123

“pool_temp_xda_p_reads - Buffer pool temporary XDA data physical reads
monitor element” on page 1125

“pool_xda_l_reads - Buffer pool XDA data logical reads monitor element” on
page 1136

“pool_xda_p_reads - Buffer pool XDA data physical reads monitor element” on
page 1139

“pool_xda_writes - Buffer pool XDA data writes monitor element” on page 1141
“sort_shrheap_top - Sort share heap high watermark” on page 1226
CAT_CACHE_HEAP_FULL

LOG_FILE_ARCHIVE

LOG_FILE_NUM_CURR

LOG_FILE_NUM_FIRST

LOG_FILE_NUM_LAST

NUM_LOG_BUFF_FULL

NUM_LOG_DATA_IN_BUFF

event_dbheader logical data group
“conn_time - Time of database connection monitor element” on page 736
“db_name - Database name monitor element” on page 773
“db_path - Database Path” on page 774

event_dbmemuse logical data group
“node_number - Node Number” on page 970
“pool_config_size - Configured Size of Memory Pool” on page 1040
“pool_cur_size - Current Size of Memory Pool” on page 1041
“pool_id - Memory Pool Identifier” on page 1071
“pool_watermark - Memory Pool Watermark” on page 1127
“evmon_activates - Number of event monitor activations” on page 813
“evmon_flushes - Number of Event Monitor Flushes” on page 819
“pool_secondary_id - Memory Pool Secondary Identifier” on page 1114
POOL_MAX_SIZE

58 Database Monitoring Guide and Reference

event_deadlock logical data group
“deadlock_id - Deadlock Event Identifier” on page 782
“deadlock_node - Partition Number Where Deadlock Occurred” on page 783
“dl_conns - Connections involved in deadlock monitor element” on page 804
“evmon_activates - Number of event monitor activations” on page 813
“rolled_back_agent_id - Rolled Back Agent” on page 1185
“rolled_back_appl_id - Rolled Back Application” on page 1186

“rolled_back_participant_no - Rolled back application participant monitor
element” on page 1186

“rolled_back_sequence_no - Rolled Back Sequence Number” on page 1186

“start_time - Event Start Time” on page 1241

event_detailed_dlconn logical data group
“agent_id - Application handle (agent ID) monitor element” on page 650
“appl_id - Application ID monitor element” on page 666
“appl_id_holding_lk - Application ID Holding Lock” on page 668
“blocking_cursor - Blocking Cursor” on page 691
“consistency_token - Package consistency token monitor element” on page 738
“creator - Application Creator” on page 763
“cursor_name - Cursor Name” on page 766
“data_partition_id - Data partition identifier monitor element” on page 767
“deadlock_id - Deadlock Event Identifier” on page 782
“deadlock_node - Partition Number Where Deadlock Occurred” on page 783
“evmon_activates - Number of event monitor activations” on page 813
“lock_escalation - Lock escalation monitor element” on page 904
“lock_mode - Lock mode monitor element” on page 912
“lock_mode_requested - Lock mode requested monitor element” on page 913
“lock_node - Lock Node” on page 915
“lock_object_name - Lock Object Name” on page 915
“lock_object_type - Lock object type waited on monitor element” on page 916

“lock_wait_start_time - Lock wait start timestamp monitor element” on page
923

“locks_held - Locks held monitor element” on page 932

“locks_in_list - Number of Locks Reported” on page 933
“package_name - Package name monitor element” on page 1006
“package_version_id - Package version monitor element” on page 1007
“participant_no - Participant within Deadlock” on page 1015
“participant_no_holding_lk - Participant Holding a Lock on the Object Required
by Application” on page 1015

“section_number - Section number monitor element” on page 1201
“sequence_no - Sequence number monitor element” on page 1204
“sequence_no_holding_lk - Sequence Number Holding Lock” on page 1204
“start_time - Event Start Time” on page 1241

“stmt_operation/operation - Statement operation monitor element” on page
1250

“stmt_text - SQL statement text monitor element” on page 1255

Chapter 3. Event monitors 59

“stmt_type - Statement type monitor element” on page 1256
“table_name - Table name monitor element” on page 1269
“table_schema - Table schema name monitor element” on page 1271
“tablespace_name - Table space name monitor element” on page 1279
“lock_attributes - Lock attributes monitor element” on page 901
“lock_count - Lock count monitor element” on page 902

“lock_current_mode - Original lock mode before conversion monitor element”
on page 903

“lock_hold_count - Lock hold count monitor element” on page 911
“lock_name - Lock name monitor element” on page 914
“lock_release_flags - Lock release flags monitor element” on page 918

“tpmon_acc_str - TP monitor client accounting string monitor element” on page

1387

“tpmon_client_app - TP monitor client application name monitor element” on
page 1388

“tpmon_client_userid - TP monitor client user ID monitor element” on page
1388

“tpmon_client_wkstn - TP monitor client workstation name monitor element”
on page 1389

event_dlconn logical data group
“agent_id - Application handle (agent ID) monitor element” on page 650
“appl_id - Application ID monitor element” on page 666
“appl_id_holding_lk - Application ID Holding Lock” on page 668
“data_partition_id - Data partition identifier monitor element” on page 767
“deadlock_id - Deadlock Event Identifier” on page 782
“deadlock_node - Partition Number Where Deadlock Occurred” on page 783
“evmon_activates - Number of event monitor activations” on page 813
“lock_attributes - Lock attributes monitor element” on page 901
“lock_count - Lock count monitor element” on page 902

“lock_current_mode - Original lock mode before conversion monitor element”
on page 903

“lock_escalation - Lock escalation monitor element” on page 904
“lock_hold_count - Lock hold count monitor element” on page 911
“lock_mode - Lock mode monitor element” on page 912
“lock_mode_requested - Lock mode requested monitor element” on page 913
“lock_name - Lock name monitor element” on page 914

“lock_node - Lock Node” on page 915

“lock_object_name - Lock Object Name” on page 915

“lock_object_type - Lock object type waited on monitor element” on page 916
“lock_release_flags - Lock release flags monitor element” on page 918

“lock_wait_start_time - Lock wait start timestamp monitor element” on page
923

“participant_no - Participant within Deadlock” on page 1015

“participant_no_holding_lk - Participant Holding a Lock on the Object Required
by Application” on page 1015
“sequence_no - Sequence number monitor element” on page 1204

60 Database Monitoring Guide and Reference

“sequence_no_holding_lk - Sequence Number Holding Lock” on page 1204
“start_time - Event Start Time” on page 1241

“table_name - Table name monitor element” on page 1269

“table_schema - Table schema name monitor element” on page 1271
“tablespace_name - Table space name monitor element” on page 1279

“tpmon_acc_str - TP monitor client accounting string monitor element” on page
1387

“tpmon_client_app - TP monitor client application name monitor element” on
page 1388

“tpmon_client_userid - TP monitor client user ID monitor element” on page
1388

“tpmon_client_wkstn - TP monitor client workstation name monitor element”
on page 1389

event_histogrambin logical data group
“bin_id - Histogram bin identifier monitor element” on page 690
“bottom - Histogram bin bottom monitor element” on page 692
“histogram_type - Histogram type monitor element” on page 868
“number_in_bin - Number in bin monitor element” on page 983
“service_class_id - Service class ID monitor element” on page 1207
“statistics_timestamp - Statistics timestamp monitor element” on page 1241
“top - Histogram bin top monitor element” on page 1310
“work_action_set_id - Work action set ID monitor element” on page 1424
“work_class_id - Work class ID monitor element” on page 1425
“workload_id - Workload ID monitor element” on page 1426
“mon_interval_id - Monitor interval identifier monitor element” on page 967
“member - Database member monitor element” on page 957

event_log_header logical data group
“byte_order - Byte Order of Event Data” on page 697
“codepage_id - ID of Code Page Used by Application” on page 718
“event_monitor_name - Event Monitor Name” on page 811
“num_nodes_in_db2_instance - Number of Nodes in Partition” on page 980
“server_instance_name - Server Instance Name” on page 1205
“server_prdid - Server Product/Version ID” on page 1206
“territory_code - Database Territory Code” on page 1303
“version - Version of Monitor Data” on page 1419

event_overflow logical data group
“count - Number of Event Monitor Overflows” on page 752
“first_overflow_time - Time of First Event Overflow” on page 849
“last_overflow_time - Time of Last Event Overflow” on page 895
“node_number - Node Number” on page 970

event_gstats logical data group
“last_wlm_reset - Time of last reset monitor element” on page 897

Chapter 3. Event monitors 61

“queue_assignments_total - Queue assignments total monitor element” on page
1165

“queue_size_top - Queue size top monitor element” on page 1165
“queue_time_total - Queue time total monitor element” on page 1166
“service_subclass_name - Service subclass name monitor element” on page 1208

“service_superclass_name - Service superclass name monitor element” on page
1209

“statistics_timestamp - Statistics timestamp monitor element” on page 1241
“threshold_domain - Threshold domain monitor element” on page 1305
“threshold_name - Threshold name monitor element” on page 1306
“threshold_predicate - Threshold predicate monitor element” on page 1307
“thresholdid - Threshold ID monitor element” on page 1308
“work_action_set_name - Work action set name monitor element” on page 1424
“work_class_name - Work class name monitor element” on page 1425
“mon_interval_id - Monitor interval identifier monitor element” on page 967

“member - Database member monitor element” on page 957

event_scstats logical data group
“act_cpu_time_top — Activity CPU time top monitor element” on page 638
“act_remapped_in — Activities remapped in monitor element” on page 641
“act_remapped_out — Activities remapped out monitor element” on page 641
“act_rows_read_top — Activity rows read top monitor element” on page 641
“act_throughput - Activity throughput monitor element” on page 643

“agg_temp_tablespace_top - Aggregate temporary table space top monitor
element” on page 660

“concurrent_act_top - Concurrent activity top monitor element” on page 725

“concurrent_wlo_top - Concurrent workload occurrences top monitor element”
on page 727

“concurrent_connection_top - Concurrent connection top monitor element” on
page 726

“coord_act_aborted_total - Coordinator activities aborted total monitor element”
on page 741

“coord_act_completed_total - Coordinator activities completed total monitor
element” on page 742

“coord_act_est_cost_avg - Coordinator activity estimated cost average monitor
element” on page 742

“coord_act_exec_time_avg - Coordinator activities execution time average
monitor element” on page 743

“coord_act_interarrival_time_avg - Coordinator activity arrival time average
monitor element” on page 744

“coord_act_lifetime_avg - Coordinator activity lifetime average monitor
element” on page 745

“coord_act_lifetime_top - Coordinator activity lifetime top monitor element” on
page 746

“coord_act_queue_time_avg - Coordinator activity queue time average monitor
element” on page 747

“coord_act_rejected_total - Coordinator activities rejected total monitor element”
on page 748

62 Database Monitoring Guide and Reference

“cost_estimate_top - Cost estimate top monitor element” on page 752
“cpu_utilization - CPU utilization monitor element” on page 759

details_xml (This XML document is a metrics document of type system_metrics,
as described in the XML schema document sq11ib/misc/DB2MonCommon. xsd.
Metrics reported for the default subclass SYSDEFAULTSUBCLASS under the
superclass SYSDEFAULTSYSTEMCLASS have a value of 0.)

“last_wlm_reset - Time of last reset monitor element” on page 897

“request_exec_time_avg - Request execution time average monitor element” on
page 1183

“rows_returned_top - Actual rows returned top monitor element” on page 1194
“service_class_id - Service class ID monitor element” on page 1207
“service_subclass_name - Service subclass name monitor element” on page 1208

“service_superclass_name - Service superclass name monitor element” on page
1209

“statistics_timestamp - Statistics timestamp monitor element” on page 1241

“temp_tablespace_top - Temporary table space top monitor element” on page
1303

“total_cpu_time - Total CPU time monitor element” on page 1330

“total_disp_run_queue_time - Total dispatcher run queue time monitor
element” on page 1332

“uow_completed_total - Total completed units of work monitor element” on
page 1400

“uow_lifetime_avg - Unit of work lifetime average monitor element” on page
1402

“uow_throughput - Unit of work throughput monitor element” on page 1406
“uow_total_time_top - UOW total time top monitor element” on page 1406

“app_act_aborted_total - Total failed external coordinator activities monitor
element” on page 661

“app_act_completed_total - Total successful external coordinator activities
monitor element” on page 662

“app_act_rejected_total - Total rejected external coordinator activities monitor
element” on page 664

“mon_interval_id - Monitor interval identifier monitor element” on page 967
“member - Database member monitor element” on page 957

event_start logical data group
“start_time - Event Start Time” on page 1241

event_stmt logical data group
“agent_id - Application handle (agent ID) monitor element” on page 650
“agents_top - Number of Agents Created” on page 658
“appl_id - Application ID monitor element” on page 666
“blocking_cursor - Blocking Cursor” on page 691
“consistency_token - Package consistency token monitor element” on page 738
“creator - Application Creator” on page 763
“cursor_name - Cursor Name” on page 766
“fetch_count - Number of Successful Fetches” on page 847
“int_rows_deleted - Internal Rows Deleted” on page 884

Chapter 3. Event monitors 63

“int_rows_inserted - Internal Rows Inserted” on page 884
“int_rows_updated - Internal Rows Updated” on page 885
“package_name - Package name monitor element” on page 1006
“package_version_id - Package version monitor element” on page 1007
“partial_record - Partial Record monitor element” on page 1014

“pool_data_l_reads - Buffer pool data logical reads monitor element” on page
1048

“pool_data_p_reads - Buffer pool data physical reads monitor element” on page
1050

“pool_index_l_reads - Buffer pool index logical reads monitor element” on page
1080

“pool_index_p_reads - Buffer pool index physical reads monitor element” on
page 1082

“pool_temp_data_l_reads - Buffer pool temporary data logical reads monitor
element” on page 1116

“pool_temp_data_p_reads - Buffer pool temporary data physical reads monitor
element” on page 1118

“pool_temp_index_l_reads - Buffer pool temporary index logical reads monitor
element” on page 1120

“pool_temp_index_p_reads - Buffer pool temporary index physical reads
monitor element” on page 1121

“rows_read - Rows read monitor element” on page 1191
“rows_written - Rows Written” on page 1196

“section_number - Section number monitor element” on page 1201
“sequence_no - Sequence number monitor element” on page 1204
“sort_overflows - Sort overflows monitor element” on page 1224
“sql_req_id - Request Identifier for SQL Statement” on page 1228
“sqlca - SQL Communications Area (SQLCA)” on page 1229
“start_time - Event Start Time” on page 1241

“stats_fabricate_time — Total time spent on statistics fabrication activities
monitor element” on page 1243

“stmt_operation/operation - Statement operation monitor element” on page
1250

“stmt_text - SQL statement text monitor element” on page 1255
“stmt_type - Statement type monitor element” on page 1256
“stop_time - Event Stop Time” on page 1262

“sync_runstats_time — Total time spent on synchronous RUNSTATS activities
monitor element” on page 1266

“system_cpu_time - System CPU time monitor element” on page 1267
“total_sort_time - Total sort time monitor element” on page 1374
“total_sorts - Total sorts monitor element” on page 1375
“user_cpu_time - User CPU time monitor element” on page 1411
“evmon_flushes - Number of Event Monitor Flushes” on page 819

“pool_temp_xda_l_reads - Buffer pool temporary XDA data logical reads
monitor element” on page 1123

“pool_temp_xda_p_reads - Buffer pool temporary XDA data physical reads
monitor element” on page 1125

64 Database Monitoring Guide and Reference

“pool_xda_l_reads - Buffer pool XDA data logical reads monitor element” on
page 1136

“pool_xda_p_reads - Buffer pool XDA data physical reads monitor element” on
page 1139

event_stmt_history logical data group

“comp_env_desc - Compilation environment monitor element” on page 722
“creator - Application Creator” on page 763

“deadlock_id - Deadlock Event Identifier” on page 782

“deadlock_node - Partition Number Where Deadlock Occurred” on page 783
“evmon_activates - Number of event monitor activations” on page 813
“package_name - Package name monitor element” on page 1006
“package_version_id - Package version monitor element” on page 1007
“participant_no - Participant within Deadlock” on page 1015
“section_number - Section number monitor element” on page 1201
“sequence_no - Sequence number monitor element” on page 1204

“stmt_first_use_time - Statement first use timestamp monitor element” on page
1246

“stmt_history_id - Statement history identifier” on page 1246

“stmt_invocation_id - Statement invocation identifier monitor element” on page
1247

“stmt_isolation - Statement isolation” on page 1248

“stmt_last_use_time - Statement last use timestamp monitor element” on page
1248

“stmt_lock_timeout - Statement lock timeout monitor element” on page 1249
“stmt_nest_level - Statement nesting level monitor element” on page 1249

“stmt_pkgcache_id - Statement package cache identifier monitor element” on
page 1251

“stmt_query_id - Statement query identifier monitor element” on page 1252
“stmt_source_id - Statement source identifier” on page 1253

“stmt_text - SQL statement text monitor element” on page 1255

“stmt_type - Statement type monitor element” on page 1256

“appl_id - Application ID monitor element” on page 666

event_subsection logical data group

“agent_id - Application handle (agent ID) monitor element” on page 650
“num_agents - Number of Agents Working on a Statement” on page 971
“partial_record - Partial Record monitor element” on page 1014
“ss_exec_time - Subsection Execution Elapsed Time” on page 1237
“ss_node_number - Subsection Node Number” on page 1238
“ss_number - Subsection number monitor element” on page 1238
“ss_sys_cpu_time - System CPU Time used by Subsection” on page 1239
“ss_usr_cpu_time - User CPU Time used by Subsection” on page 1239

“tq_max_send_spills - Maximum number of table queue buffers overflows” on
page 1390

“tq_rows_read - Number of Rows Read from table queues” on page 1391
“tq_rows_written - Number of rows written to table queues” on page 1391

Chapter 3. Event monitors 65

“tq_tot_send_spills - Total number of table queue buffers overflowed monitor
element” on page 1396

“appl_id - Application ID monitor element” on page 666
“evmon_flushes - Number of Event Monitor Flushes” on page 819
“sql_req_id - Request Identifier for SQL Statement” on page 1228

event_table logical data group
“data_object_pages - Data Object Pages” on page 766
“data_partition_id - Data partition identifier monitor element” on page 767
“event_time - Event Time” on page 811
“evmon_activates - Number of event monitor activations” on page 813
“evmon_flushes - Number of Event Monitor Flushes” on page 819
“index_object_pages - Index Object Pages” on page 875
“lob_object_pages - LOB Object Pages” on page 898
“long_object_pages - Long Object Pages” on page 941

“overflow_accesses - Accesses to overflowed records monitor element” on page
1004

“page_reorgs - Page reorganizations monitor element” on page 1009
“partial_record - Partial Record monitor element” on page 1014
“rows_read - Rows read monitor element” on page 1191

“rows_written - Rows Written” on page 1196

“table_name - Table name monitor element” on page 1269

“table_schema - Table schema name monitor element” on page 1271
“table_type - Table type monitor element” on page 1273

“tablespace_id - Table space identification monitor element” on page 1276
“xda_object_pages - XDA Object Pages” on page 1430

event_tablespace logical data group
“direct_read_reqs - Direct read requests monitor element” on page 790
“direct_read_time - Direct read time monitor element” on page 792
“direct_reads - Direct reads from database monitor element” on page 794
“direct_write_reqs - Direct write requests monitor element” on page 796
“direct_write_time - Direct write time monitor element” on page 798
“direct_writes - Direct writes to database monitor element” on page 800
“event_time - Event Time” on page 811
“evmon_activates - Number of event monitor activations” on page 813
“evmon_flushes - Number of Event Monitor Flushes” on page 819
“files_closed - Database files closed monitor element” on page 848
“partial_record - Partial Record monitor element” on page 1014

“pool_async_data_read_regs - Buffer pool asynchronous read requests monitor
element” on page 1026

“pool_async_data_reads - Buffer pool asynchronous data reads monitor
element” on page 1027

“pool_async_data_writes - Buffer pool asynchronous data writes monitor
element” on page 1028

“pool_async_index_read_reqs - Buffer pool asynchronous index read requests
monitor element” on page 1031

66 Database Monitoring Guide and Reference

“pool_async_index_reads - Buffer pool asynchronous index reads monitor
element” on page 1032

“pool_async_index_writes - Buffer pool asynchronous index writes monitor
element” on page 1033

“pool_async_read_time - Buffer Pool Asynchronous Read Time” on page 1033

“pool_async_write_time - Buffer pool asynchronous write time monitor
element” on page 1034

“pool_data_l_reads - Buffer pool data logical reads monitor element” on page
1048

“pool_data_p_reads - Buffer pool data physical reads monitor element” on page
1050

“pool_data_writes - Buffer pool data writes monitor element” on page 1052

“pool_index_I_reads - Buffer pool index logical reads monitor element” on page
1080

“pool_index_p_reads - Buffer pool index physical reads monitor element” on
page 1082

“pool_index_writes - Buffer pool index writes monitor element” on page 1084

“pool_no_victim_buffer - Buffer pool no victim buffers monitor element” on
page 1087

“pool_read_time - Total buffer pool physical read time monitor element” on
page 1113

“pool_temp_data_l_reads - Buffer pool temporary data logical reads monitor
element” on page 1116

“pool_temp_data_p_reads - Buffer pool temporary data physical reads monitor
element” on page 1118

“pool_temp_index_l_reads - Buffer pool temporary index logical reads monitor
element” on page 1120

“pool_temp_index_p_reads - Buffer pool temporary index physical reads
monitor element” on page 1121

“pool_write_time - Total buffer pool physical write time monitor element” on
page 1128

“tablespace_name - Table space name monitor element” on page 1279

“pool_async_xda_read_reqs - Buffer pool asynchronous XDA read requests
monitor element” on page 1038

“pool_async_xda_reads - Buffer pool asynchronous XDA data reads monitor
element” on page 1038

“pool_async_xda_writes - Buffer pool asynchronous XDA data writes monitor
element” on page 1039

“pool_xda_l_reads - Buffer pool XDA data logical reads monitor element” on
page 1136

“pool_xda_p_reads - Buffer pool XDA data physical reads monitor element” on
page 1139

“pool_xda_writes - Buffer pool XDA data writes monitor element” on page 1141
TABLESPACE_FS_CACHING

“unread_prefetch_pages - Unread prefetch pages monitor element” on page
1399

Chapter 3. Event monitors 67

event_thresholdviolations logical data group
“activate_timestamp - Activate timestamp monitor element” on page 644
“activity_collected - Activity collected monitor element” on page 645
“activity_id - Activity ID monitor element” on page 645
“agent_id - Application handle (agent ID) monitor element” on page 650
“appl_id - Application ID monitor element” on page 666

“coord_partition_num - Coordinator partition number monitor element” on
page 750

“destination_service_class_id — Destination service class ID monitor element” on
page 787

“source_service_class_id - Source service class ID monitor element” on page
1227

“threshold_action - Threshold action monitor element” on page 1305

“threshold_maxvalue - Threshold maximum value monitor element” on page
1306

“threshold_predicate - Threshold predicate monitor element” on page 1307
“threshold_queuesize - Threshold queue size monitor element” on page 1308
“thresholdid - Threshold ID monitor element” on page 1308
“time_of_violation - Time of violation monitor element” on page 1309
“uow_id - Unit of work ID monitor element” on page 1401

“member - Database member monitor element” on page 957

event_wcstats logical data group
“act_cpu_time_top — Activity CPU time top monitor element” on page 638
“act_rows_read_top — Activity rows read top monitor element” on page 641
“act_total - Activities total monitor element” on page 643

“coord_act_est_cost_avg - Coordinator activity estimated cost average monitor
element” on page 742

“coord_act_exec_time_avg - Coordinator activities execution time average
monitor element” on page 743

“coord_act_interarrival_time_avg - Coordinator activity arrival time average
monitor element” on page 744

“coord_act_lifetime_avg - Coordinator activity lifetime average monitor
element” on page 745

“coord_act_lifetime_top - Coordinator activity lifetime top monitor element” on
page 746

“coord_act_queue_time_avg - Coordinator activity queue time average monitor
element” on page 747

“cost_estimate_top - Cost estimate top monitor element” on page 752
“last_wlm_reset - Time of last reset monitor element” on page 897
“rows_returned_top - Actual rows returned top monitor element” on page 1194
“statistics_timestamp - Statistics timestamp monitor element” on page 1241

“temp_tablespace_top - Temporary table space top monitor element” on page
1303

“work_action_set_id - Work action set ID monitor element” on page 1424
“work_action_set_name - Work action set name monitor element” on page 1424
“work_class_id - Work class ID monitor element” on page 1425

68 Database Monitoring Guide and Reference

“work_class_name - Work class name monitor element” on page 1425
“mon_interval_id - Monitor interval identifier monitor element” on page 967

“member - Database member monitor element” on page 957

event_wlstats logical data group
“act_cpu_time_top — Activity CPU time top monitor element” on page 638
“act_rows_read_top — Activity rows read top monitor element” on page 641
“act_throughput - Activity throughput monitor element” on page 643

“concurrent_wlo_act_top - Concurrent WLO activity top monitor element” on
page 726

“concurrent_wlo_top - Concurrent workload occurrences top monitor element”
on page 727

“coord_act_aborted_total - Coordinator activities aborted total monitor element”
on page 741

“coord_act_completed_total - Coordinator activities completed total monitor
element” on page 742

“coord_act_est_cost_avg - Coordinator activity estimated cost average monitor
element” on page 742

“coord_act_exec_time_avg - Coordinator activities execution time average
monitor element” on page 743

“coord_act_interarrival_time_avg - Coordinator activity arrival time average
monitor element” on page 744

“coord_act_lifetime_avg - Coordinator activity lifetime average monitor
element” on page 745

“coord_act_lifetime_top - Coordinator activity lifetime top monitor element” on
page 746

“coord_act_queue_time_avg - Coordinator activity queue time average monitor
element” on page 747

“coord_act_rejected_total - Coordinator activities rejected total monitor element”
on page 748

“cost_estimate_top - Cost estimate top monitor element” on page 752
“cpu_utilization - CPU utilization monitor element” on page 759

details_xml (This XML document is a metrics document of type system_metrics,
as described in the XML schema document sq11ib/misc/DB2MonCommon.xsd.)

“last_wlm_reset - Time of last reset monitor element” on page 897
“lock_wait_time_top — Lock wait time top monitor element” on page 928
“rows_returned_top - Actual rows returned top monitor element” on page 1194
“statistics_timestamp - Statistics timestamp monitor element” on page 1241

“temp_tablespace_top - Temporary table space top monitor element” on page
1303

“total_cpu_time - Total CPU time monitor element” on page 1330

“total_disp_run_queue_time - Total dispatcher run queue time monitor
element” on page 1332

“uow_completed_total - Total completed units of work monitor element” on
page 1400

“uow_lifetime_avg - Unit of work lifetime average monitor element” on page
1402

“uow_throughput - Unit of work throughput monitor element” on page 1406

Chapter 3. Event monitors 69

“uow_total_time_top - UOW total time top monitor element” on page 1406

“wlo_completed_total - Workload occurrences completed total monitor element”
on page 1424

“workload_id - Workload ID monitor element” on page 1426
“workload_name - Workload name monitor element” on page 1427

“app_act_aborted_total - Total failed external coordinator activities monitor
element” on page 661

“app_act_completed_total - Total successful external coordinator activities
monitor element” on page 662

“app_act_rejected_total - Total rejected external coordinator activities monitor
element” on page 664

“lock_wait_time_global_top - Top global lock wait time monitor element” on
page 928

“mon_interval_id - Monitor interval identifier monitor element” on page 967

“member - Database member monitor element” on page 957

event_xact logical data group
“agent_id - Application handle (agent ID) monitor element” on page 650
“appl_id - Application ID monitor element” on page 666
“lock_escals - Number of lock escalations monitor element” on page 905
“lock_wait_time - Time waited on locks monitor element” on page 924

“locks_held_top - Maximum number of locks held monitor element” on page
932

“partial_record - Partial Record monitor element” on page 1014

“prev_uow_stop_time - Previous Unit of Work Completion Timestamp” on
page 1155

“rows_read - Rows read monitor element” on page 1191
“rows_written - Rows Written” on page 1196

“sequence_no - Sequence number monitor element” on page 1204
“system_cpu_time - System CPU time monitor element” on page 1267

“tpmon_acc_str - TP monitor client accounting string monitor element” on page
1387

“tpmon_client_app - TP monitor client application name monitor element” on
page 1388

“tpmon_client_userid - TP monitor client user ID monitor element” on page
1388

“tpmon_client_wkstn - TP monitor client workstation name monitor element”
on page 1389

“uow_log_space_used - Unit of work log space used monitor element” on page
1403

“uow_start_time - Unit of work start timestamp monitor element” on page 1404
“uow_status - Unit of Work Status” on page 1405

“stop_time - Event Stop Time” on page 1262

“user_cpu_time - User CPU time monitor element” on page 1411

“x_lock_escals - Exclusive lock escalations monitor element” on page 1429
“evmon_flushes - Number of Event Monitor Flushes” on page 819

70 Database Monitoring Guide and Reference

evmonstart logical data group
“event_id - Event ID monitor element” on page 810
“event_timestamp - Event timestamp monitor element” on page 811
“member - Database member monitor element” on page 957
“event_type - Event Type monitor element” on page 812
“db2start_time - Start Database Manager Timestamp” on page 772
“db_conn_time - Database activation timestamp monitor element” on page 772

lock logical data group
“partition_key - Partitioning key monitor element” on page 1016
“dl_conns - Connections involved in deadlock monitor element” on page 804
“event_id - Event ID monitor element” on page 810
“event_timestamp - Event timestamp monitor element” on page 811
“event_type - Event Type monitor element” on page 812
“partition_number - Partition Number” on page 1017

“rolled_back_participant_no - Rolled back application participant monitor
element” on page 1186

“deadlock_type - Deadlock type monitor element” on page 783

lock_activity_values logical data group
“partition_key - Partitioning key monitor element” on page 1016
“activity_id - Activity ID monitor element” on page 645
“event_id - Event ID monitor element” on page 810
“event_timestamp - Event timestamp monitor element” on page 811
“event_type - Event Type monitor element” on page 812
“participant_no - Participant within Deadlock” on page 1015
“partition_number - Partition Number” on page 1017
“stmt_value_index - Value index” on page 1259
“stmt_value_isnull - Value has null value monitor element” on page 1260

“stmt_value_isreopt - Variable used for statement reoptimization monitor
element” on page 1261

“stmt_value_type - Value type monitor element” on page 1261
“uow_id - Unit of work ID monitor element” on page 1401
“stmt_value_data - Value data” on page 1259

“event_id - Event ID monitor element” on page 810

lock_participant_activities logical data group
“partition_key - Partitioning key monitor element” on page 1016
“activity_id - Activity ID monitor element” on page 645
“activity_type - Activity type monitor element” on page 647
“consistency_token - Package consistency token monitor element” on page 738
“effective_isolation - Effective isolation monitor element” on page 805
“effective_query_degree - Effective query degree monitor element” on page 806
“event_id - Event ID monitor element” on page 810
“event_timestamp - Event timestamp monitor element” on page 811
“event_type - Event Type monitor element” on page 812

Chapter 3. Event monitors 71

“incremental_bind - Incremental bind monitor element” on page 874
“package_name - Package name monitor element” on page 1006
“package_schema - Package schema monitor element” on page 1007
“package_version_id - Package version monitor element” on page 1007
“participant_no - Participant within Deadlock” on page 1015
“partition_number - Partition Number” on page 1017

“query_actual_degree - Actual runtime degree of intrapartition parallelism
monitor element” on page 1162

“reopt - Reopt bind option monitor element” on page 1176
“section_number - Section number monitor element” on page 1201

“stmt_first_use_time - Statement first use timestamp monitor element” on page

1246

“stmt_invocation_id - Statement invocation identifier monitor element” on page
1247

“stmt_last_use_time - Statement last use timestamp monitor element” on page
1248

“stmt_lock_timeout - Statement lock timeout monitor element” on page 1249
“stmt_nest_level - Statement nesting level monitor element” on page 1249

“stmt_pkgcache_id - Statement package cache identifier monitor element” on
page 1251

“stmt_query_id - Statement query identifier monitor element” on page 1252
“stmt_source_id - Statement source identifier” on page 1253

“stmt_type - Statement type monitor element” on page 1256

“uow_id - Unit of work ID monitor element” on page 1401

“stmt_text - SQL statement text monitor element” on page 1255
“stmt_unicode - Statement unicode flag monitor element” on page 1258

“stmt_operation/operation - Statement operation monitor element” on page
1250

lock_participants logical data group
“partition_key - Partitioning key monitor element” on page 1016
“agent_status - DCS Application Agents” on page 652
“agent_id - Application handle (agent ID) monitor element” on page 650
“appl_id - Application ID monitor element” on page 666
“appl_name - Application name monitor element” on page 670
“application_handle - Application handle monitor element” on page 675
“auth_id - Authorization ID” on page 686
“client_acctng - Client accounting string monitor element” on page 709
“client_applname - Client application name monitor element” on page 710
“client_userid - Client user ID monitor element” on page 717
“client_wrkstnname - Client workstation name monitor element” on page 717

“coord_agent_tid - Coordinator agent engine dispatchable unit ID monitor
element” on page 747

“current_request - Current operation request monitor element” on page 766
“event_id - Event ID monitor element” on page 810

“event_timestamp - Event timestamp monitor element” on page 811
“event_type - Event Type monitor element” on page 812

72 Database Monitoring Guide and Reference

“lock_attributes - Lock attributes monitor element” on page 901
“lock_count - Lock count monitor element” on page 902

“lock_current_mode - Original lock mode before conversion monitor element”
on page 903

“lock_escalation - Lock escalation monitor element” on page 904
“lock_hold_count - Lock hold count monitor element” on page 911
“lock_mode - Lock mode monitor element” on page 912
“lock_mode_requested - Lock mode requested monitor element” on page 913
“lock_name - Lock name monitor element” on page 914

“lock_object_type - Lock object type waited on monitor element” on page 916
LOCK_OBJECT_TYPE_ID

“lock_release_flags - Lock release flags monitor element” on page 918
LOCK_RRIID

“lock_status - Lock status monitor element” on page 919

“lock_timeout_val - Lock timeout value monitor element” on page 920
“lock_wait_end_time - Lock wait end timestamp monitor element” on page 923

“lock_wait_start_time - Lock wait start timestamp monitor element” on page
923

“lock_wait_val - Lock wait value monitor element” on page 928

“member - Database member monitor element” on page 957

“object_requested - Requested object monitor element” on page 992
“participant_no - Participant within Deadlock” on page 1015
“participant_no_holding_lk - Participant Holding a Lock on the Object Required
by Application” on page 1015

“participant_type - Participant type monitor element” on page 1016

“past_activities_wrapped - Past activities list wrapped monitor element” on
page 1018

“service_class_id - Service class ID monitor element” on page 1207
“service_subclass_name - Service subclass name monitor element” on page 1208
“table_file_id - Table file ID monitor element” on page 1268

“table_name - Table name monitor element” on page 1269

“table_schema - Table schema name monitor element” on page 1271
“thresholdid - Threshold ID monitor element” on page 1308
“threshold_name - Threshold name monitor element” on page 1306
“workload_id - Workload ID monitor element” on page 1426
“workload_name - Workload name monitor element” on page 1427
“agent_tid - Agent thread ID monitor element” on page 653

“appl_action - Application action monitor element” on page 665
“deadlock_member - Deadlock member monitor element” on page 782
“queue_start_time - Queue start timestamp monitor element” on page 1165
“queued_agents - Queued threshold agents monitor element” on page 1166

“service_superclass_name - Service superclass name monitor element” on page
1209

“tablespace_name - Table space name monitor element” on page 1279
“xid - Transaction ID” on page 1431

“utility_invocation_id - Utility invocation ID” on page 1413

Chapter 3. Event monitors 73

pkgcache logical data group
“partition_key - Partitioning key monitor element” on page 1016
“comp_env_desc - Compilation environment monitor element” on page 722
“effective_isolation - Effective isolation monitor element” on page 805
“event_id - Event ID monitor element” on page 810
“event_timestamp - Event timestamp monitor element” on page 811
“executable_id - Executable ID monitor element” on page 818
“insert_timestamp - Insert timestamp monitor element” on page 878

“last_metrics_update - Metrics last update timestamp monitor element” on page
895

“member - Database member monitor element” on page 957

“num_coord_exec - Number of executions by coordinator agent monitor
element” on page 972

“num_coord_exec_with_metrics - Number of executions by coordinator agent
with metrics monitor element” on page 972

“num_exec_with_metrics - Number of executions with metrics collected
monitor element” on page 974

“num_executions - Statement executions monitor element” on page 973
“package_name - Package name monitor element” on page 1006
“package_schema - Package schema monitor element” on page 1007
“package_version_id - Package version monitor element” on page 1007
“partition_number - Partition Number” on page 1017

“prep_time - Preparation time monitor element” on page 1154
“query_cost_estimate - Query cost estimate monitor element” on page 1163

“query_data_tag_list - Estimated query data tag list monitor element” on page
1164

“routine_id - Routine ID monitor element” on page 1187

“section_env - Section environment monitor element” on page 1201
“section_number - Section number monitor element” on page 1201
“section_type - Section type indicator monitor element” on page 1202
“stmt_pkgcache_id - Statement package cache identifier monitor element” on
page 1251

“stmt_type_id - Statement type identifier monitor element” on page 1257
“total_stats_fabrication_time - Total statistics fabrication time monitor element”
on page 1378

“total_stats_fabrications - Total statistics fabrications monitor elements” on page
1379

“total_sync_runstats - Total synchronous RUNSTATS activities monitor element”
on page 1382

“total_sync_runstats_time - Total synchronous RUNSTATS time monitor
elements” on page 1380

“stmt_text - SQL statement text monitor element” on page 1255

“max_coord_stmt_exec_time - Maximum coordinator statement execution time
monitor element” on page 943

“max_coord_stmt_exec_timestamp - Maximum coordinator statement execution
timestamp monitor element” on page 945

74 Database Monitoring Guide and Reference

pkgcache_metrics logical data group
“partition_key - Partitioning key monitor element” on page 1016
“event_id - Event ID monitor element” on page 810
“event_timestamp - Event timestamp monitor element” on page 811
“partition_number - Partition Number” on page 1017

“wlm_queue_time_total - Workload manager total queue time monitor element”
on page 1422

“wlm_queue_assignments_total - Workload manager total queue assignments
monitor element” on page 1421

“fcm_tq_recv_wait_time - FCM table queue received wait time monitor
element” on page 840

“fcm_message_recv_wait_time - FCM message received wait time monitor
element” on page 824

“fcm_tq_send_wait_time - FCM table queue send wait time monitor element”
on page 844

“fcm_message_send_wait_time - FCM message send wait time monitor
element” on page 828

“lock_wait_time - Time waited on locks monitor element” on page 924
“lock_waits - Lock waits monitor element” on page 928

“direct_read_time - Direct read time monitor element” on page 792
“direct_read_reqs - Direct read requests monitor element” on page 790
“direct_write_time - Direct write time monitor element” on page 798
“direct_write_reqs - Direct write requests monitor element” on page 796
“log_buffer_wait_time - Log buffer wait time monitor element” on page 933

“num_log_buffer_full - Number of times full log buffer caused agents to wait
monitor element” on page 975

“log_disk_wait_time - Log disk wait time monitor element” on page 935
“log_disk_waits_total - Total log disk waits monitor element” on page 936

“pool_write_time - Total buffer pool physical write time monitor element” on
page 1128

“pool_read_time - Total buffer pool physical read time monitor element” on
page 1113

“audit_file_write_wait_time - Audit file write wait time monitor element” on
page 680

“audit_file_writes_total - Total audit files written monitor element” on page 682

“audit_subsystem_wait_time - Audit subsystem wait time monitor element” on
page 683

“audit_subsystem_waits_total - Total audit subsystem waits monitor element”
on page 685

“diaglog_write_wait_time - Diagnostic log file write wait time monitor element”
on page 788

“diaglog_writes_total - Total diagnostic log file writes monitor element” on
page 789

“fcm_send_wait_time - FCM send wait time monitor element” on page 836
“fcm_recv_wait_time - FCM received wait time monitor element” on page 832
“total_act_wait_time - Total activity wait time monitor element” on page 1312

“total_section_sort_proc_time - Total section sort processing time monitor
element” on page 1368

Chapter 3. Event monitors 75

“total_section_sorts - Total section sorts monitor element” on page 1371
“total_section_sort_time - Total section sort time monitor element” on page 1370
“total_act_time - Total activity time monitor element” on page 1311

“rows_read - Rows read monitor element” on page 1191

“rows_modified - Rows modified monitor element” on page 1190

“pool_data_l_reads - Buffer pool data logical reads monitor element” on page
1048

“pool_index_l_reads - Buffer pool index logical reads monitor element” on page
1080

“pool_temp_data_l_reads - Buffer pool temporary data logical reads monitor
element” on page 1116

“pool_temp_index_I_reads - Buffer pool temporary index logical reads monitor
element” on page 1120

“pool_xda_l_reads - Buffer pool XDA data logical reads monitor element” on
page 1136

“pool_temp_xda_l_reads - Buffer pool temporary XDA data logical reads
monitor element” on page 1123

“total_cpu_time - Total CPU time monitor element” on page 1330

“pool_data_p_reads - Buffer pool data physical reads monitor element” on page
1050

“pool_temp_data_p_reads - Buffer pool temporary data physical reads monitor
element” on page 1118

“pool_xda_p_reads - Buffer pool XDA data physical reads monitor element” on
page 1139

“pool_temp_xda_p_reads - Buffer pool temporary XDA data physical reads
monitor element” on page 1125

“pool_index_p_reads - Buffer pool index physical reads monitor element” on
page 1082

“pool_temp_index_p_reads - Buffer pool temporary index physical reads
monitor element” on page 1121

“pool_data_writes - Buffer pool data writes monitor element” on page 1052
“pool_xda_writes - Buffer pool XDA data writes monitor element” on page 1141
“pool_index_writes - Buffer pool index writes monitor element” on page 1084
“direct_reads - Direct reads from database monitor element” on page 794
“direct_writes - Direct writes to database monitor element” on page 800
“rows_returned - Rows returned monitor element” on page 1193

“deadlocks - Deadlocks detected monitor element” on page 783
“lock_timeouts - Number of lock timeouts monitor element” on page 920
“lock_escals - Number of lock escalations monitor element” on page 905
“fcm_sends_total - FCM sends total monitor element” on page 838
“fcm_recvs_total - FCM receives total monitor element” on page 834
“fcm_send_volume - FCM send volume monitor element” on page 835
“fcm_recv_volume - FCM received volume monitor element” on page 831
“fcm_message_sends_total - Total FCM message sends monitor element” on
page 830

“fcm_message_recvs_total - Total FCM message receives monitor element” on
page 826

76 Database Monitoring Guide and Reference

“fcm_message_send_volume - FCM message send volume monitor element” on
page 827

“fcm_message_recv_volume - FCM message received volume monitor element”
on page 823

“fcm_tq_sends_total - FCM table queue send total monitor element” on page
846

“fcm_tq_recvs_total - FCM table queue receives total monitor element” on page
842

“fcm_tq_send_volume - FCM table queue send volume monitor element” on
page 843

“fcm_tq_recv_volume - FCM table queue received volume monitor element” on
page 839

“tq_tot_send_spills - Total number of table queue buffers overflowed monitor
element” on page 1396

“post_threshold_sorts - Post threshold sorts monitor element” on page 1150

“post_shrthreshold_sorts - Post shared threshold sorts monitor element” on
page 1144

“sort_overflows - Sort overflows monitor element” on page 1224
“audit_events_total - Total audit events monitor element” on page 679
“total_sorts - Total sorts monitor element” on page 1375

“stmt_exec_time - Statement execution time monitor element” on page 1245

“coord_stmt_exec_time - Execution time for statement by coordinator agent
monitor element” on page 751

“total_routine_non_sect_proc_time - Non-section processing time monitor
element” on page 1356

“total_routine_non_sect_time - Non-section routine execution time monitor
elements” on page 1356

“total_section_proc_time - Total section processing time monitor element” on
page 1367

“total_app_section_executions - Total application section executions monitor
element” on page 1317

“total_section_time - Total section time monitor element” on page 1373

“total_routine_user_code_proc_time - Total routine user code processing time
monitor element” on page 1359

“total_routine_user_code_time - Total routine user code time monitor element”
on page 1360

“total_routine_time - Total routine time monitor element” on page 1357

“thresh_violations - Number of threshold violations monitor element” on page
1304

“num_lw_thresh_exceeded - Number of lock wait thresholds exceeded monitor
element” on page 979

“total_routine_invocations - Total routine invocations monitor elements” on
page 1355

“lock_wait_time_global - Lock wait time global monitor element” on page 926
“lock_waits_global - Lock waits global monitor element” on page 930
“reclaim_wait_time - Reclaim wait time monitor element” on page 1170

“spacemappage_reclaim_wait_time - Space map page reclaim wait time monitor
element” on page 1236

“lock_timeouts_global - Lock timeouts global monitor element” on page 922

Chapter 3. Event monitors 77

“lock_escals_maxlocks - Number of maxlocks lock escalations monitor element”
on page 910

“lock_escals_locklist - Number of locklist lock escalations monitor element” on
page 909

“lock_escals_global - Number of global lock escalations monitor element” on
page 907
“cf_wait_time - cluster caching facility wait time monitor element” on page 703

“cf_waits - Number of cluster caching facility waits monitor element” on page
703

“pool_data_gbp_Il_reads - Group buffer pool data logical reads monitor
element” on page 1044

“pool_data_gbp_p_reads - Group buffer pool data physical reads monitor
element” on page 1045

“pool_data_lbp_pages_found - Local buffer pool found data pages monitor
element” on page 1047

“pool_data_gbp_invalid_pages - Group buffer pool invalid data pages monitor
element” on page 1042

“pool_index_gbp_l_reads - Group buffer pool index logical reads monitor
element” on page 1075

“pool_index_gbp_p_reads - Group buffer pool index physical reads monitor
elements” on page 1077

“pool_index_Ibp_pages_found - Local buffer pool index pages found monitor
element” on page 1078

“pool_index_gbp_invalid_pages - Group buffer pool invalid index pages
monitor element” on page 1074

“pool_xda_gbp_I_reads - Group buffer pool XDA data logical read requests
monitor element” on page 1132

“pool_xda_gbp_p_reads - Group buffer pool XDA data physical read requests
monitor element” on page 1134

“pool_xda_lbp_pages_found - Local buffer pool XDA data pages found monitor
element” on page 1138

“pool_xda_gbp_invalid_pages - Group buffer pool invalid XDA data pages
monitor element” on page 1131

“evmon_wait_time - Event monitor wait time monitor element” on page 814
“evmon_waits_total - Event monitor total waits monitor element” on page 816

“total_extended_latch_wait_time - Total extended latch wait time monitor
element” on page 1335

“total_extended_latch_waits - Total extended latch waits monitor element” on
page 1336

“total_disp_run_queue_time - Total dispatcher run queue time monitor
element” on page 1332

“pool_queued_async_data_reqs - Data prefetch requests monitor element” on
page 1089

“pool_queued_async_index_reqs - Index prefetch requests monitor element” on
page 1093

“pool_queued_async_xda_reqs - XDA prefetch requests monitor element” on
page 1111

“pool_queued_async_data_pages - Data pages prefetch requests monitor
element” on page 1087

78 Database Monitoring Guide and Reference

“pool_queued_async_index_pages - Index pages prefetch requests monitor
element” on page 1091

“pool_queued_async_xda_pages - XDA pages prefetch requests monitor
element” on page 1109

pkgcache_stmt_args logical data group
“event_id - Event ID monitor element” on page 810
“event_timestamp - Event timestamp monitor element” on page 811
“stmt_value_index - Value index” on page 1259

“stmt_value_isreopt - Variable used for statement reoptimization monitor
element” on page 1261

“stmt_value_isnull - Value has null value monitor element” on page 1260
“stmt_value_type - Value type monitor element” on page 1261
“stmt_value_data - Value data” on page 1259

“member - Database member monitor element” on page 957

regvar logical data group
“event_id - Event ID monitor element” on page 810
“event_timestamp - Event timestamp monitor element” on page 811
“member - Database member monitor element” on page 957
“event_type - Event Type monitor element” on page 812
“regvar_name - Registry variable name” on page 1172
“regvar_value - Registry variable value” on page 1173
“regvar_old_value - Registry variable old value” on page 1173
“regvar_level - Registry variable level” on page 1172
“regvar_collection_type - Registry variable collection type” on page 1172

sqlca logical data group
sqlcabc
sqlcaid
sqlcode
sqlerrd
sqlerrmc
sqlerrml
sqlerrp
sqlstate
sqlwarn

txncompletion logical data group
“event_id - Event ID monitor element” on page 810
“event_timestamp - Event timestamp monitor element” on page 811
“member - Database member monitor element” on page 957
“event_type - Event Type monitor element” on page 812

“global_transaction_id - Global transaction identifier monitor element” on page
851

“local_transaction_id - Local transaction identifier monitor element” on page
900

Chapter 3. Event monitors 79

“savepoint_id - Savepoint ID” on page 1198
“uow_id - Unit of work ID monitor element” on page 1401
“ddl_classification - DDL classification” on page 780

“txn_completion_status - Transaction completion status” on page 1398

uow logical data group
“partition_key - Partitioning key monitor element” on page 1016
“application_handle - Application handle monitor element” on page 675
“appl_id - Application ID monitor element” on page 666
“appl_name - Application name monitor element” on page 670
“client_acctng - Client accounting string monitor element” on page 709
“client_applname - Client application name monitor element” on page 710
“client_hostname - Client hostname monitor element” on page 711
“client_pid - Client process ID monitor element” on page 713
“client_port_number - Client port number monitor element” on page 715
“client_prdid - Client product and version ID monitor element” on page 715
“client_userid - Client user ID monitor element” on page 717
“client_wrkstnname - Client workstation name monitor element” on page 717
“completion_status - Completion status monitor element” on page 722
“conn_time - Time of database connection monitor element” on page 736
“coord_member - Coordinator member monitor element” on page 749
“event_id - Event ID monitor element” on page 810
“event_timestamp - Event timestamp monitor element” on page 811
“executable_list_size - Size of executable list monitor element” on page 819

“global_transaction_id - Global transaction identifier monitor element” on page
851

“intra_parallel_state - Current state of intrapartition parallelism monitor
element” on page 886

“local_transaction_id - Local transaction identifier monitor element” on page
900

“member - Database member monitor element” on page 957

“db_conn_time - Database activation timestamp monitor element” on page 772
“mon_interval_id - Monitor interval identifier monitor element” on page 967
“package_list_exceeded - Package list exceeded monitor element” on page 1006
“package_list_size - Size of package list monitor element” on page 1006
service_class_id - Service class ID

service_subclass_name - Service subclass name

service_superclass_name - Service superclass name

“session_auth_id - Session authorization ID monitor element” on page 1211
start_time - Event start time

stop_time - Event stop time

“system_auth_id - System authorization identifier monitor element” on page
1267

UOW_CLIENT_PLATFORM
UOW_CLIENT_PROTOCOL
uow_id - Unit of work ID

80 Database Monitoring Guide and Reference

“uow_log_space_used - Unit of work log space used monitor element” on page
1403

workload_id - Workload ID

workload_name - Workload name

workload_occurrence_id - Workload occurrence identifier

“client_platform - Client operating platform monitor element” on page 714
“client_protocol - Client communication protocol monitor element” on page 716

“executable_list_truncated - Executable list truncated monitor element” on page
819

“connection_start_time - Connection start time monitor element” on page 736

uow_executable_list logical data group
“partition_key - Partitioning key monitor element” on page 1016
“appl_id - Application ID monitor element” on page 666
“executable_id - Executable ID monitor element” on page 818
“lock_wait_time - Time waited on locks monitor element” on page 924
“lock_waits - Lock waits monitor element” on page 928
“num_executions - Statement executions monitor element” on page 973
“partition_number - Partition Number” on page 1017

“post_shrthreshold_sorts - Post shared threshold sorts monitor element” on
page 1144

“post_threshold_sorts - Post threshold sorts monitor element” on page 1150
“rows_read - Rows read monitor element” on page 1191

“sort_overflows - Sort overflows monitor element” on page 1224
“total_act_time - Total activity time monitor element” on page 1311
“total_act_wait_time - Total activity wait time monitor element” on page 1312
“total_cpu_time - Total CPU time monitor element” on page 1330

“total_sorts - Total sorts monitor element” on page 1375

uow_id - Unit of work ID

uow_metrics logical data group
“partition_key - Partitioning key monitor element” on page 1016
“appl_id - Application ID monitor element” on page 666
“partition_number - Partition Number” on page 1017
“uow_id - Unit of work ID monitor element” on page 1401

“wlm_queue_time_total - Workload manager total queue time monitor element”
on page 1422

“wlm_queue_assignments_total - Workload manager total queue assignments
monitor element” on page 1421

“fcm_tq_recv_wait_time - FCM table queue received wait time monitor
element” on page 840

“fcm_message_recv_wait_time - FCM message received wait time monitor
element” on page 824

“fcm_tq_send_wait_time - FCM table queue send wait time monitor element”
on page 844

“fcm_message_send_wait_time - FCM message send wait time monitor
element” on page 828

Chapter 3. Event monitors 81

“agent_wait_time - Agent wait time monitor element” on page 654
“agent_waits_total - Total agent waits monitor element” on page 655
“lock_wait_time - Time waited on locks monitor element” on page 924
“lock_waits - Lock waits monitor element” on page 928

“direct_read_time - Direct read time monitor element” on page 792
“direct_read_reqs - Direct read requests monitor element” on page 790
“direct_write_time - Direct write time monitor element” on page 798
“direct_write_reqs - Direct write requests monitor element” on page 796
“log_buffer_wait_time - Log buffer wait time monitor element” on page 933

“num_log_buffer_full - Number of times full log buffer caused agents to wait
monitor element” on page 975

“log_disk_wait_time - Log disk wait time monitor element” on page 935
“log_disk_waits_total - Total log disk waits monitor element” on page 936

“tcpip_recv_wait_time - TCP/IP received wait time monitor element” on page
1298

“tcpip_recvs_total - TCP/IP receives total monitor element” on page 1299
“client_idle_wait_time - Client idle wait time monitor element” on page 712

“ipc_recv_wait_time - Interprocess communication received wait time monitor
element” on page 888

“ipc_recvs_total - Interprocess communication receives total monitor element”
on page 889

“ipc_send_wait_time - Interprocess communication send wait time monitor
element” on page 891

“ipc_sends_total - Interprocess communication send total monitor element” on
page 892

“tcpip_send_wait_time - TCP/IP send wait time monitor element” on page 1301
“tcpip_sends_total - TCP/IP sends total monitor element” on page 1302

“pool_write_time - Total buffer pool physical write time monitor element” on
page 1128

“pool_read_time - Total buffer pool physical read time monitor element” on
page 1113

“audit_file_write_wait_time - Audit file write wait time monitor element” on
page 680

“audit_file_writes_total - Total audit files written monitor element” on page 682
“audit_subsystem_wait_time - Audit subsystem wait time monitor element” on
page 683

“audit_subsystem_waits_total - Total audit subsystem waits monitor element”
on page 685

“diaglog_write_wait_time - Diagnostic log file write wait time monitor element”
on page 788

“diaglog_writes_total - Total diagnostic log file writes monitor element” on
page 789

“fcm_send_wait_time - FCM send wait time monitor element” on page 836
“fcm_recv_wait_time - FCM received wait time monitor element” on page 832
“total_wait_time - Total wait time monitor element” on page 1386

“rqgsts_completed_total - Total requests completed monitor element” on page
1197

“total_rqst_time - Total request time monitor element” on page 1362

82 Database Monitoring Guide and Reference

“app_rqsts_completed_total - Total application requests completed monitor
element” on page 665

“total_app_rqst_time - Total application request time monitor element” on page
1316

“total_section_sort_proc_time - Total section sort processing time monitor
element” on page 1368

“total_section_sorts - Total section sorts monitor element” on page 1371
“total_section_sort_time - Total section sort time monitor element” on page 1370
“rows_read - Rows read monitor element” on page 1191

“rows_modified - Rows modified monitor element” on page 1190

“pool_data_l_reads - Buffer pool data logical reads monitor element” on page
1048

“pool_index_l_reads - Buffer pool index logical reads monitor element” on page
1080

“pool_temp_data_l_reads - Buffer pool temporary data logical reads monitor
element” on page 1116

“pool_temp_index_l_reads - Buffer pool temporary index logical reads monitor
element” on page 1120

“pool_xda_l_reads - Buffer pool XDA data logical reads monitor element” on
page 1136

“pool_temp_xda_l_reads - Buffer pool temporary XDA data logical reads
monitor element” on page 1123

“total_cpu_time - Total CPU time monitor element” on page 1330
“act_completed_total - Total completed activities monitor element” on page 637

“pool_data_p_reads - Buffer pool data physical reads monitor element” on page
1050

“pool_temp_data_p_reads - Buffer pool temporary data physical reads monitor
element” on page 1118

“pool_xda_p_reads - Buffer pool XDA data physical reads monitor element” on
page 1139

“pool_temp_xda_p_reads - Buffer pool temporary XDA data physical reads
monitor element” on page 1125

“pool_index_p_reads - Buffer pool index physical reads monitor element” on
page 1082

“pool_temp_index_p_reads - Buffer pool temporary index physical reads
monitor element” on page 1121

“pool_data_writes - Buffer pool data writes monitor element” on page 1052
“pool_xda_writes - Buffer pool XDA data writes monitor element” on page 1141
“pool_index_writes - Buffer pool index writes monitor element” on page 1084
“direct_reads - Direct reads from database monitor element” on page 794
“direct_writes - Direct writes to database monitor element” on page 800
“rows_returned - Rows returned monitor element” on page 1193

“deadlocks - Deadlocks detected monitor element” on page 783
“lock_timeouts - Number of lock timeouts monitor element” on page 920
“lock_escals - Number of lock escalations monitor element” on page 905
“fcm_sends_total - FCM sends total monitor element” on page 838
“fcm_recvs_total - FCM receives total monitor element” on page 834

“fcm_send_volume - FCM send volume monitor element” on page 835

Chapter 3. Event monitors 83

“fcm_recv_volume - FCM received volume monitor element” on page 831
“fcm_message_sends_total - Total FCM message sends monitor element” on

page 830

“fcm_message_recvs_total - Total FCM message receives monitor element” on
page 826

“fcm_message_send_volume - FCM message send volume monitor element” on
page 827

“fcm_message_recv_volume - FCM message received volume monitor element”
on page 823

“fcm_tq_sends_total - FCM table queue send total monitor element” on page
846

“fcm_tq_recvs_total - FCM table queue receives total monitor element” on page
842

“fcm_tq_send_volume - FCM table queue send volume monitor element” on
page 843

“fcm_tq_recv_volume - FCM table queue received volume monitor element” on
page 839

“tq_tot_send_spills - Total number of table queue buffers overflowed monitor
element” on page 1396

“tcpip_send_volume - TCP/IP send volume monitor element” on page 1300
“tcpip_recv_volume - TCP/IP received volume monitor element” on page 1297

“ipc_send_volume - Interprocess communication send volume monitor
element” on page 890

“ipc_recv_volume - Interprocess communication received volume monitor
element” on page 887

“post_threshold_sorts - Post threshold sorts monitor element” on page 1150

“post_shrthreshold_sorts - Post shared threshold sorts monitor element” on
page 1144

“sort_overflows - Sort overflows monitor element” on page 1224
“audit_events_total - Total audit events monitor element” on page 679
“act_rejected_total - Total rejected activities monitor element” on page 640
“act_aborted_total - Total aborted activities monitor element” on page 636
“total_sorts - Total sorts monitor element” on page 1375
“total_routine_time - Total routine time monitor element” on page 1357

“total_compile_proc_time - Total compile processing time monitor element” on
page 1322

“total_compilations - Total compilations monitor element” on page 1321
“total_compile_time - Total compile time monitor element” on page 1323

“total_implicit_compile_proc_time - Total implicit compile processing time
monitor element” on page 1340

“total_implicit_compilations - Total implicit complications monitor element” on
page 1339

“total_implicit_compile_time - Total implicit compile time monitor element” on
page 1341

“total_runstats_proc_time - Total runtime statistics processing time monitor
element” on page 1364

“total_runstats - Total runtime statistics monitor element” on page 1363

84 Database Monitoring Guide and Reference

“total_runstats_time - Total runtime statistics time monitor element” on page
1365

“total_reorg_proc_time - Total reorganization processing time monitor element”
on page 1350

“total_reorgs - Total reorganizations monitor element” on page 1352
“total_reorg_time - Total reorganization time monitor element” on page 1351

“total_load_proc_time - Total load processing time monitor element” on page
1342

“total_loads - Total loads monitor element” on page 1344
“total_load_time - Total load time monitor element” on page 1343

“total_section_proc_time - Total section processing time monitor element” on
page 1367

“total_app_section_executions - Total application section executions monitor
element” on page 1317

“total_section_time - Total section time monitor element” on page 1373

“total_commit_proc_time - Total commits processing time monitor element” on
page 1319

“total_app_commits - Total application commits monitor elements” on page
1314

“total_commit_time - Total commit time monitor element” on page 1320

“total_rollback_proc_time - Total rollback processing time monitor element” on
page 1353

“total_app_rollbacks - Total application rollbacks monitor element” on page
1315

“total_rollback_time - Total rollback time monitor element” on page 1354

“total_routine_user_code_proc_time - Total routine user code processing time
monitor element” on page 1359

“total_routine_user_code_time - Total routine user code time monitor element”
on page 1360

“thresh_violations - Number of threshold violations monitor element” on page
1304

“num_lw_thresh_exceeded - Number of lock wait thresholds exceeded monitor
element” on page 979

“total_routine_invocations - Total routine invocations monitor elements” on

page 1355

“int_commits - Internal commits monitor element” on page 880
“int_rollbacks - Internal rollbacks monitor element” on page 882
“cat_cache_inserts - Catalog cache inserts monitor element” on page 698
“cat_cache_lookups - Catalog cache lookups monitor element” on page 699
“pkg_cache_inserts - Package cache inserts monitor element” on page 1020
“pkg_cache_lookups - Package cache lookups monitor element” on page 1021
“act_rqsts_total - Total activity requests monitor elements” on page 642
“total_act_wait_time - Total activity wait time monitor element” on page 1312
“total_act_time - Total activity time monitor element” on page 1311
“lock_wait_time_global - Lock wait time global monitor element” on page 926
“lock_waits_global - Lock waits global monitor element” on page 930

“reclaim_wait_time - Reclaim wait time monitor element” on page 1170

Chapter 3. Event monitors 85

“spacemappage_reclaim_wait_time - Space map page reclaim wait time monitor
element” on page 1236

“lock_timeouts_global - Lock timeouts global monitor element” on page 922
“lock_escals_maxlocks - Number of maxlocks lock escalations monitor element”
on page 910

“lock_escals_locklist - Number of locklist lock escalations monitor element” on
page 909

“lock_escals_global - Number of global lock escalations monitor element” on
page 907

“cf_wait_time - cluster caching facility wait time monitor element” on page 703

“cf_waits - Number of cluster caching facility waits monitor element” on page
703

“pool_data_gbp_l_reads - Group buffer pool data logical reads monitor
element” on page 1044

“pool_data_gbp_p_reads - Group buffer pool data physical reads monitor
element” on page 1045

“pool_data_lbp_pages_found - Local buffer pool found data pages monitor
element” on page 1047

“pool_data_gbp_invalid_pages - Group buffer pool invalid data pages monitor
element” on page 1042

“pool_index_gbp_l_reads - Group buffer pool index logical reads monitor
element” on page 1075

“pool_index_gbp_p_reads - Group buffer pool index physical reads monitor
elements” on page 1077

“pool_index_Ibp_pages_found - Local buffer pool index pages found monitor
element” on page 1078

“pool_index_gbp_invalid_pages - Group buffer pool invalid index pages
monitor element” on page 1074

“pool_xda_gbp_l_reads - Group buffer pool XDA data logical read requests
monitor element” on page 1132

“pool_xda_gbp_p_reads - Group buffer pool XDA data physical read requests
monitor element” on page 1134

“pool_xda_lbp_pages_found - Local buffer pool XDA data pages found monitor
element” on page 1138

“pool_xda_gbp_invalid_pages - Group buffer pool invalid XDA data pages
monitor element” on page 1131

“evmon_wait_time - Event monitor wait time monitor element” on page 814
“evmon_waits_total - Event monitor total waits monitor element” on page 816

“total_extended_latch_wait_time - Total extended latch wait time monitor
element” on page 1335

“total_extended_latch_waits - Total extended latch waits monitor element” on
page 1336

“total_stats_fabrication_proc_time - Total statistics fabrication processing time
monitor element” on page 1377

“total_stats_fabrications - Total statistics fabrications monitor elements” on page
1379

“total_stats_fabrication_time - Total statistics fabrication time monitor element”
on page 1378

86 Database Monitoring Guide and Reference

“total_sync_runstats_proc_time - Total synchronous RUNSTATS processing time
monitor element” on page 1381

“total_sync_runstats - Total synchronous RUNSTATS activities monitor element”
on page 1382

“total_sync_runstats_time - Total synchronous RUNSTATS time monitor
elements” on page 1380

“total_disp_run_queue_time - Total dispatcher run queue time monitor
element” on page 1332

“pool_queued_async_data_reqs - Data prefetch requests monitor element” on
page 1089

“pool_queued_async_index_reqs - Index prefetch requests monitor element” on
page 1093

“pool_queued_async_xda_reqs - XDA prefetch requests monitor element” on
page 1111

“pool_queued_async_data_pages - Data pages prefetch requests monitor
element” on page 1087

“pool_queued_async_index_pages - Index pages prefetch requests monitor
element” on page 1091

“pool_queued_async_xda_pages - XDA pages prefetch requests monitor
element” on page 1109

“app_act_completed_total - Total successful external coordinator activities
monitor element” on page 662

“app_act_aborted_total - Total failed external coordinator activities monitor
element” on page 661

“app_act_rejected_total - Total rejected external coordinator activities monitor
element” on page 664

uow_package_list logical data group
“partition_key - Partitioning key monitor element” on page 1016
“appl_id - Application ID monitor element” on page 666
“invocation_id - Invocation ID monitor element” on page 886
“nesting_level - Nesting level monitor element” on page 967
“package_elapsed_time - Package elapsed time monitor element” on page 1005
“package_id - Package identifier monitor element” on page 1005
“routine_id - Routine ID monitor element” on page 1187
“uow_id - Unit of work ID monitor element” on page 1401

“member - Database member monitor element” on page 957

utillocation logical data group
“event_id - Event ID monitor element” on page 810
“event_timestamp - Event timestamp monitor element” on page 811
“member - Database member monitor element” on page 957
“event_type - Event Type monitor element” on page 812
“utility_invocation_id - Utility invocation ID” on page 1413
“utility_type - Utility Type” on page 1417
“device_type - Device type” on page 787
“location_type - Location type” on page 901
“location - Location” on page 900

Chapter 3. Event monitors 87

utilphase logical data group
“event_id - Event ID monitor element” on page 810
“event_timestamp - Event timestamp monitor element” on page 811
“member - Database member monitor element” on page 957
“event_type - Event Type monitor element” on page 812
“utility_invocation_id - Utility invocation ID” on page 1413
“utility_type - Utility Type” on page 1417
“utility_phase_type - Utility phase type” on page 1415
“phase_start_event_id - Phase start event ID” on page 1018
“phase_start_event_timestamp - Phase start event timestamp” on page 1018
“objtype - Object type monitor element” on page 996
“object_schema - Object schema monitor element” on page 992
“object_name - Object name monitor element” on page 991
“utility_phase_detail - Utility phase detail” on page 1415

utilstart logical data group
“event_id - Event ID monitor element” on page 810
“event_timestamp - Event timestamp monitor element” on page 811
“member - Database member monitor element” on page 957
“event_type - Event Type monitor element” on page 812
“utility_invocation_id - Utility invocation ID” on page 1413
“utility_type - Utility Type” on page 1417
“utility_operation_type - Utility operation type” on page 1414
“utility_invoker_type - Utility Invoker Type” on page 1413
“utility_priority - Utility Priority” on page 1415
“utility_start_type - Utility start type” on page 1416
“objtype - Object type monitor element” on page 996
“object_schema - Object schema monitor element” on page 992
“object_name - Object name monitor element” on page 991
“num_tbsps - Number of table spaces monitor element” on page 981
“tbsp_names - Table space names” on page 1296
“utility_detail - Utility detail” on page 1412

utilstop logical data group
“event_id - Event ID monitor element” on page 810
“event_timestamp - Event timestamp monitor element” on page 811
“member - Database member monitor element” on page 957
“event_type - Event Type monitor element” on page 812
“utility_invocation_id - Utility invocation ID” on page 1413
“utility_type - Utility Type” on page 1417
“utility_stop_type - Utility stop type” on page 1417
“start_event_id - Start event ID” on page 1240
“start_event_timestamp - Start event timestamp” on page 1240
“sqlca - SQL Communications Area (SQLCA)” on page 1229

Target tables, control tables, and event monitor table management:

88 Database Monitoring Guide and Reference

You can define an event monitor so that it stores its event records in SQL tables. To
do this, use the CREATE EVENT MONITOR statement with the WRITE TO TABLE
clause.

When you create a write-to-table event monitor, the event monitor creates target
tables to store records for each of the logical data groups returning data. In each
table, the column names match the monitor element names that they represent. By
default, the event monitor creates the tables in the event monitor creator's schema
and names the tables by concatenating their corresponding logical data group
name to the event monitor name.

For example, consider the following statement, which creates an event monitor that
captures STATEMENTS events:

CREATE EVENT MONITOR test FOR STATEMENTS WRITE TO TABLE

Event monitors using the STATEMENTS event type collect data from the
event_connheader, event_stmt, and event_subsection logical data groups. Tables
representing logical data groups that are specific to individual event types are
created, along with a control table for every write-to-table event monitor. For the
event monitor test, created by user riihi, the database manager creates the
following tables:

e riihi.connheader_test
e riihi.stmt_test
* rijhi.subsection_test

e riihi.control_test

The first three tables correspond to each of the logical data groups
event_connheader, event_stmt, and event_subsection. The last table,
riihi.control_test, is the control table. The control table contains event monitor
metadata, specifically, from the event_start, event_dbheader (conn_time monitor
element only), and event_overflow logical data groups.

Monitor elements are written to the overflow group only for non-blocked event
monitors. With non-blocked event monitors, agents that generate events do not
wait for the event buffers to be written to the table if the buffers are full. Instead,
they discard monitor data coming from agents when data is coming faster than the
event monitor can write the data. In this case, the event monitor records
information in the control table to indicate that an overflow has taken place.
Included in this information is the monitor element message, which in the event of
an overflow contains the text OVERFLOW:n, where n represents the number of event
records that were discarded because the event buffers were full.

Whenever a write-to-table event monitor is activated, it acquires an IN or IX table
lock on each target table to prevent the table from being modified while the event
monitor is active. Table locks are maintained on all tables while the event monitor
is active. If exclusive access is required on any of the target tables (for example, to
run a utility), deactivate the event monitor to release the table locks before
attempting such access.

Each column name in a target table matches an event monitor element identifier.
Any event monitor element that does not have a corresponding target table column

is ignored.

You must manually prune write-to-table event monitor target tables, including the
unformatted event (UE) tables. On highly active systems, event monitors can

Chapter 3. Event monitors 89

quickly fill disk space because of the high volume of data that they record. Unlike
defining event monitors that write to files or named pipes, you can define
write-to-table event monitors to record information fromonly certain logical data
groups or monitor elements. You can use this feature to collect only the data that is
relevant to your purposes and reduce the volume of data that event monitors
generate. For example, the following statement defines an event monitor that
captures connection events only from the event_conn logical data group and
includes only the Tock_waits monitor element:

CREATE EVENT MONITOR conn_monitor FOR CONNECTIONS WRITE TO TABLE
CONN(INCLUDES(Tock_waits))

You might not want to have the target tables for an event monitor in the default
schema, with default table names, in the default table space. If you anticipate high
volumes of monitoring data, you might want the target tables to exist in their own
table space. You can specify the schema, table, and table space names for the
CREATE EVENT MONITOR statement. The schema name and table name form a
derived name for the table. You can add the table space name after the table name
by using the optional IN clause. Unlike the target tables, which the DB2 database
manager automatically creates, a table space must exist if it you include it in an
event monitor definition. If you do not specify a table space, a table space for
which you have USE privileges is assigned.

A target table can be used by only a single event monitor. If you define a target
table for another event monitor or if it cannot be created for any other reason, the
CREATE EVENT MONITOR statement fails.

The table space name can be added after the table name with the optional IN
clause. Unlike the target tables, which the DB2 database manager automatically
creates, a table space must already exist if it is included in an event monitor
definition. If no table space is specified, then a table space over which the definer
has USE privileges will be assigned.

In a partitioned database environment, a write-to-table event monitor is active only
on database partitions where the table space containing the event monitor table
exists. If the target table space for an active event monitor does not exist on a
particular database partition, the event monitor will be deactivated on that
database partition, and an error is written to the db2diag command log file.

For increased performance in retrieving event monitor data, you can create indexes
for the event tables. If you add table attributes such as triggers, relational integrity,
and constraints, the event monitor ignores them.

For example, the following statement defines an event monitor that captures
STATEMENTS events, using the event_connheader, event_stmt, and
event_subsection logical data groups. Each of the three target tables has different
schema, table and table space combinations:

CREATE EVENT MONITOR test FOR STATEMENTS

WRITE TO TABLE CONNHEADER,

STMT (TABLE mydept.statements),

SUBSECTION (TABLE subsections, IN mytablespace)

Assuming that the user riihi issued the previous statement, the derived names
and table spaces of the target tables are as follows:

¢ CONNHEADER: riihi.connheader_test in the default table space
* STMT: mydept.statements in the default table space
¢ SUBSECTION: riihi.subsections in the mytablespace table space

90 Database Monitoring Guide and Reference

If a target table does not exist when the event monitor activates, activation
continues and data that would otherwise be inserted into the target table is
ignored. Correspondingly, if a monitor element does not have a dedicated column
in the target table, it is ignored.

For active write-to-table event monitors, there is a risk that the table spaces storing
event records can reach their capacity. To control this risk for DMS table spaces,
you can define the percentage of table space capacity at which the event monitor is
deactivated. You can specify this value in the PCTDEACTIVATE clause for the
CREATE EVENT MONITOR statement. For SMS table spaces, the value is set to
100. If you enabled the autoresize feature for the target table space, you should set
the PCTDEACTIVATE value to 100.

In a non-partitioned database environment, all write-to-table event monitors are
deactivated when the last application terminates (and the database has not been
explicitly activated). In a partitioned database environment, write-to-table event
monitors are deactivated when the catalog partition deactivates.

Logical data groups and event monitor output tables:
Monitor elements that are frequently used together are grouped into logical data
groups. Event monitors that write to tables generally produce one output table for

each logical data group of monitor elements that they capture.

The following table presents the default target table names by event type.

Table 7. Write-to-table event monitor logical data groups

Event type

Logical data group

Information in
logical group

Name of table to which elements
belonging to logical group are written

DEADLOCKS!

event_connheader

Connection metadata.

CONNHEADER_evmon-name

event_deadlock

Deadlock data.

DEADLOCK _evmon-name

event_dlconn

Applications and
locks that are

involved in deadlock.

DLCONN_evmon-name

CONTROL?

Event monitor
metadata.

CONTROL_evmon-name

DEADLOCKS WITH

event_connheader

Connection metadata.

CONNHEADER_evmon-name

1
DETAILS event_deadlock

Deadlock data.

DEADLOCK _evmon-name

event_detailed_dlconn

Applications that are

involved in deadlock.

DLCONN_evmon-name

dllock Locks that are DLLOCK_evmon-name
involved in deadlock.
CONTROL? Event monitor CONTROL_evmon-name

metadata.

Chapter 3. Event monitors

91

Table 7. Write-to-table event monitor logical data groups (continued)

Event type

Logical data group

Information in
logical group

Name of table to which elements
belonging to logical group are written

DEADLOCKS WITH
DETAILS HISTORY'

event_connheader

Connection metadata.

CONNHEADER_evmon-name

event_deadlock

Deadlock data.

DEADLOCK_evmon-name

event_detailed_dlconn

Applications that are
involved in deadlock.

DLCONN_evmon-name

dllock Locks that are DLLOCK _evmon-name
involved in deadlock.

event_stmt List of the previous STMTHIST _evmon-name
statements in the unit
of work.

CONTROL? Event monitor CONTROL_evmon-name

metadata.

DEADLOCKS WITH
DETAILS HISTORY
VALUES!

event_connheader

Connection metadata.

CONNHEADER_evmon-name

event_deadlock

Deadlock data.

DEADLOCK _evmon-name

event_detailed_dlconn

Applications that are
involved in deadlock.

DLCONN_evmon-name

dllock

Locks that are
involved in deadlock.

DLLOCK _evmon-name

event_stmt_history

List of the previous
statements in the unit
of work.

STMTHIST _evmon-name

STMTVALS Input data values of =~ STMTVALS_evmon-name
statements in
STMTHIST table.

CONTROL? Event monitor CONTROL_evmon-name
metadata.

STATEMENT event_connheader Connection metadata. CONNHEADER_evmon-name
event_stmt Statement data. STMT _evmon-name
event_subsection Statement data that is SUBSECTION_evmon-name

specific to subsection.
CONTROL? Event monitor CONTROL_evmon-name
metadata.

TRANSACTIONS® event_connheader Connection metadata. CONNHEADER_evmon-name
event_xact Transaction data. XACT_evmon-name
CONTROL? Event monitor CONTROL_evmon-name

metadata.

CONNECTIONS event_connheader Connection metadata. CONNHEADER_evmon-name

event_conn

Connection data.

CONN_evmon-name

CONTROL?

Event monitor
metadata.

CONTROL _evmon-name

event_connmemuse

Memory pool
metadata.

CONNMEMUSE_evmon-name

92 Database Monitoring Guide and Reference

Table 7. Write-to-table event monitor logical data groups (continued)

Information in

Name of table to which elements

Event type Logical data group logical group belonging to logical group are written
DATABASE event_db Database manager DB_evmon-name
data.
CONTROL? Event monitor CONTROL_evmon-name
metadata.
event_dbmemuse Memory pool DBMEMUSE_evmon-name
metadata.
BUFFERPOOLS event_bufferpool Buffer pool data. BUFFERPOOL _evmon-name
CONTROL? Event monitor CONTROL_evmon-name
metadata.
TABLESPACES event_tablespace Table space data. TABLESPACE_evmon-name
CONTROL? Event monitor CONTROL_evmon-name
metadata.
TABLES event_table Table data. TABLE_evmon-name
CONTROL? Event monitor CONTROL_evmon-name
metadata.
ACTIVITIES event_activity Activities that ACTIVITY_evmon-name
completed executing
or were captured in
progress.
event_activitystmt Statement information ACTIVITYSTMT _evmon-name
for activities that are
statements.
event_activityvals Input data values for ~ACTIVITYVALS_evmon-name
activities that have
them. The following
data types are not
reported: CLOB, REF,
BOOLEAN, STRUCT,
DATALINK, LONG
VARGRAPHIC,
LONG, XMLLOB, and
DBCLOB.
activity_metrics Activities metrics. ACTIVITYMETRICS_evmon-name
CONTROL? Event monitor CONTROL_evmon-name
metadata.
STATISTICS event_scstats Statistics that are SCSTATS_evmon-name
event_wecstats corppgted from the WCSTATS_evmon-name
activities that
event_wlstats executed within each ~WLSTATS_evmon-name
event_histogrambin ScrVi¢€ €lass, work "ynaroGRAMBIN eomon-name
class, or workload in
event_gstats the system. QSTATS_evmon-name
CONTROL? Event monitor CONTROL_evmon-name
metadata.
THRESHOLD event_ List of thresholds that THRESHOLDVIOLATIONS_evmon-name
VIOLATIONS thresholdviolations were violated and the
times of violations.
CONTROL? Event monitor CONTROL_evmon-name

metadata.

Chapter 3. Event monitors

93

Table 7. Write-to-table event monitor logical data groups (continued)

Event type

Logical data group

Information in
logical group

Name of table to which elements
belonging to logical group are written

LOCKING

lock

Summary lock wait,
lock timeout or
deadlock event
information.

LOCK_EVENTevmon-name

lock_participants

Information about
lock participants.

LOCK_PARTICIPANTS_evmon-name

lock_participant
_activities

Activity data for each
lock participant.

LOCK_PARTICIPANT_ACTIVITIES_evmon-
name

lock_activity_values

Details about the
specific data being
processed by a
specific activity.

LOCK_ACTIVITY_VALUES_evmon-name

cache event
information. This
information includes
detailed metrics in
XML format in the
METRICS column.

CONTROL? Event monitor CONTROL_evmon-name
metadata.
PACKAGE CACHE pkgcache Summary package PKGCACHE_EVENTevmon-name

pkgcache_metrics

Table containing the
same metrics that are
included in the
METRICS column of
the PKGCACHE
table.

PKGCACHE_METRICS_evmon-name

work event
information. This
information includes
detailed metrics in
XML format in the
METRICS column.

CONTROL? Event monitor CONTROL_evmon-name
metadata.
UNIT OF WORK uow Summary unit of UOW_EVENTevmon-name

uow_metrics

Table containing the
same metrics that are
included in the
METRICS column of
the PKGCACHE
table.

UOW_METRICS_evmon-name

uow_package_list

Package list detail
information. *

UOW_PACKAGE_LIST_evmon-name

uow_executable_list

Executable list
information.*

UOW_EXECUTABLE_LIST_evmon-name

CONTROL?

Event monitor
metadata.

CONTROL_evmon-name

94 Database Monitoring Guide and Reference

Table 7. Write-to-table event monitor logical data groups (continued)

Information in

Name of table to which elements

Event type Logical data group logical group belonging to logical group are written

1 This option has been deprecated and might be removed in a future release. Use the CREATE EVENT
MONITOR FOR LOCKING statement to monitor lock-related events, such as lock timeouts, lock waits, and
deadlocks.

2 The CONTROL logical group consists of selected elements from one or more of the event_dbheader,

event_start and event_overflow logical data groups.

3 This option has been deprecated and might be removed in a future release. Use the CREATE EVENT
MONITOR FOR UNIT OF WORK statement to monitor transaction events.

4 Unless you explicitly specify which output tables to create for the unit of work event monitor, this table is
included by default. If you do not set the configuration parameter for collecting the related information
(mon_uow_pkglist or mon_uow_execlist) to ON, the table is created, but it contains no data.

The following logical data groups are not collected for write-to-table event

monitors:

* log_stream_header

* log_header

 dbheader (only the conn_time monitor element is collected)

The data type of each column in an event monitor table corresponds to the data
type of the monitor element represented by the column. The following table
contains a set of data type mappings that correspond the original system monitor
data types of the monitor elements (found in sqlmon.h file) to the SQL data types

of the table columns.

Table 8. System Monitor Data Type Mappings

System monitor data type

SQL data type

SQLM_TYPE_STRING

CHAR[n], VARCHARIn], CLOB[n]

SQLM_TYPE_USBIT and SQLM_TYPE_8BIT

SMALLINT, INTEGER, or BIGINT

SQLM_TYPE_U16BIT and SQLM_TYPE_16BIT

SMALLINT, INTEGER, or BIGINT

SQLM_TYPE_U32BIT and SQLM_TYPE_32BIT

INTEGER or BIGINT

SQLM_TYPE_U64BIT and SQLM_TYPE_64BIT BIGINT
SQLM_TIMESTAMP TIMESTAMP
SQLM_TIME BIGINT

SQLCA: SQLERRMC VARCHAR][72]
SQLCA: SQLSTATE CHAR[5]

SQLCA: SQLWARN CHAR[11]

SQLCA: other fields INTEGER or BIGINT
SQLM_TYPE_HANDLE BLOB|n]

Note:

1. All columns are NOT NULL.

2. Because the performance of tables with CLOB columns is inferior to tables that
have VARCHAR columns, consider using the TRUNC keyword when
specifying the stmt evmGroup (or dlconn evmGroup, when using deadlocks

with details).

Chapter 3. Event monitors 95

3. SQLM_TYPE_HANDLE is used to represent the compilation environment
handle object.

Creating event monitors that write to unformatted event (UE)
tables

If the performance of event monitor data collection is particularly important, you
might choose to have your event monitor write its output to an unformatted event
(UE) table. Most of the data written to a UE table is written as inline binary data,
which allows for faster I/O as data is collected.

Another advantage of UE tables over regular tables for event monitors is that you
generally do not have to be concerned at event monitor creation time with
different options such as what buffer size to use, whether the event monitor is
blocked or unblocked, or what types of data (logical groups) must be collected.
However, because most of the data collected is in binary format, you must
post-process the UE table to be able to examine the event data.

Note: Starting in IBM DB2 10.1 Version 10.1, the following features related to the
UE tables are available:

* You can use the procedure EVMON_UPGRADE_TABLES to upgrade the UE
tables produced by event monitors in earlier releases. This capability lets you
more easily retain event monitor data as you upgrade your DB2 product.

* All event monitors that can write their output to UE tables can also write to
regular tables.

* You can prune unneeded data from UE tables using the option
PRUNE_UE_TABLE of the procedure EVMON_FORMAT_UE_TO_TABLES.

Before you begin

Keep the following considerations in mind when creating an event monitor that
writes to an unformatted event table:

* You need SQLADM or DBADM authority to create an event monitor that writes
to a UE table.

* Use a table space for your unformatted event tables that is optimized for
performance. When you create the table space, keep the following guidelines in
mind:

— Specify a page size (PAGESIZE) as large as possible, up to 32KB. A large page
size ensures that the BLOB containing the event data can be written inline
with the table row. If the page size is too small to allow the BLOB to be
inlined, performance of the event monitor might be diminished. The database
manager attempts to inline the event_data BLOB column in the unformatted
event table, but this is not always possible. To check that the rows in the
unformatted event table have been inlined, use the ADMIN_IS_INLINED
function. If the rows have not been inlined, use the
ADMIN_EST_INLINE_LENGTH functions to determine how much space the
rows need.

— Specify the NO FILE CACHING SYSTEM option.

* In a partitioned database environment, consider on which partitions the table
space exists. If a table space for a target unformatted event table does not exist
on some database partition, data for that target unformatted event table is
ignored. This behavior allows users to choose a subset of database partitions for
monitoring to be chosen, by creating a table space that exists only on certain
database partitions.

96 Database Monitoring Guide and Reference

About this task

The following event monitor types support the use of UE tables:
* Unit of work

* Package Cache

* Locking

Note: Despite their name, unformatted event tables are still relational tables. The
main difference between a UE table produced by, say, a locking event monitor and
a regular table produced by a locking event monitor is that most of the data in a
UE table is written in binary format in the EVENT_DATA column. See
“Unformatted event table column definitions” on page 98 for more information
about the structure of UE tables.

Procedure

To create an event monitor that writes to a UE table:

¢ Formulate a CREATE EVENT MONITOR statement, using the WRITE TO
UNFORMATTED EVENT TABLE clause. For example, to create a unit of work
event monitor called uowmon, you might use a statement like the one that
follows:

CREATE EVENT MONITOR uowmon FOR UNIT OF WORK
WRITE TO UNFORMATTED EVENT TABLE

By default, the name of the UE table that the event monitor creates is the same
as the name of the event monitor.

* To specify an alternative to the default table name, use the TABLE clause. For
example, if you want to have the UE table called myunitsofwork, construct the
statement as follows:

CREATE EVENT MONITOR uowmon FOR UNIT OF WORK

WRITE TO UNFORMATTED EVENT TABLE
TABLE myunitsofwork

You can also specify the table space in which to store the UE table using the IN
tablespace-name clause:
CREATE EVENT MONITOR uowmon FOR UNIT OF WORK

WRITE TO UNFORMATTED EVENT TABLE

TABLE myunitsofwork
IN mytablespace

or

CREATE EVENT MONITOR uowmon FOR UNIT OF WORK
WRITE TO UNFORMATTED EVENT TABLE
IN mytablespace

The first example places the UE table myunitsofwork in table space
mytablespace; the second example places a UE table named uowmon (the default,
as no table name is specified) in table space mytablespace.

* By default, any event monitor that writes to a UE table is created to activate

automatically on database activation. You can override this behaviour using the
MANUALSTART clause:

CREATE EVENT MONITOR uowmon FOR UNIT OF WORK
WRITE TO UNFORMATTED EVENT TABLE
MANUALSTART

Chapter 3. Event monitors 97

In the preceding example, the event monitor uowmon must always be activated
manually, using the SET EVENT MONITOR STATE statement.

What to do next

By default, event monitors that were introduced in Version 9.7 or later are created
as AUTOSTART event monitors. They are activated automatically when the
database is next activated, and on subsequent database activations thereafter. If
you want to activate the event monitor immediately, before the next database
activation, use the SET EVENT MONITOR STATE statement to manually start the
event monitor. In addition for each of the locking, unit of work and package cache
event monitors, you must also enable data collection.

Unformatted event table column definitions:

An unformatted event table is created when you issue a CREATE EVENT
MONITOR statement that includes the clause WRITE TO UNFORMATTED EVENT
TABLE. The column definitions are useful when you want to extract data to
analyze or prune a table of unneeded data.

The column definitions for the unformatted event table are useful when you want
to extract data from an unformatted event table using one of the following
routines:

¢ EVMON_FORMAT UE_TO_XML - extracts data from an unformatted event
table into an XML document.

¢ EVMON_FORMAT UE_TO_TABLES - extracts data from an unformatted event
table into a set of relational tables.

The call to these routines accepts a SELECT statement that specifies the rows that
you want to extract. Use the unformatted event table column definitions to assist
with composing your SELECT statement.

There is no automatic purging of the event data written to an unformatted event
table. You must manually purge data from the table. The column definitions for the
unformatted event table are useful when you want to purge a targeted set of
records. Another option is to remove all the table rows using the TRUNCATE
TABLE statement.

As part of the CREATE EVENT MONITOR statement, you can specify what to
name the associated unformatted event table. If not specified, the name defaults to
the same name as the event monitor. The SYSCAT.EVENTTABLES catalog view
lists event monitors, their associated unformatted table, and other details.

The following table describes the columns in the unformatted event table. The key
column is the event_data column. The other columns represent identifiers that you
can use to locate events of interest. For further attributes of table columns, issue a
DESCRIBE statement.

Table 9. Unformatted event table column definitions

Column name Column data type Column description

appl_id VARCHAR appl_id - Application ID
monitor element

appl_name VARCHAR appl_name - Application
name monitor element

98 Database Monitoring Guide and Reference

Table 9. Unformatted event table column definitions (continued)

Column name

Column data type

Column description

event_correlation_id

BIT DATA

An optional event correlation
ID. A NULL value indicates
that the event correlation ID
was not available.

The value is based on the
event monitor type:

* LOCKING - Reserved for
future use

* UOW- Reserved for future
use

event_data

BLOB

The entire event record data
for an event captured by the
event monitor, stored in its
original binary form.

event_id

INTEGER

event_id - Event ID monitor
element

event_timestamp

TIMESTAMP

event_timestamp - Event
timestamp monitor element

event_type

VARCHAR

event_type - Event Type
monitor element monitor
element

member

SMALLINT

member - Database member
monitor element

partitioning_key

INTEGER

The partitioning key for the
table, so that insert
operations are performed
locally on the database
partition where the event
monitor is running.

record_seq_num

INTEGER

The sequence number of the
record that is stored within
the event_data column.

record_type

INTEGER

The type of record that is
stored within the event_data
column.

service_subclass_name

VARCHAR

service_subclass_name -
Service subclass name
monitor element

service_superclass_name

VARCHAR

service_superclass_name -
Service superclass name
monitor element

workload_name

VARCHAR

workload_name - Workload
name monitor element

mon_interval_id

BIGINT

mon_interval_id - Monitor
interval identifier monitor
element

Differences between regular and UE table output:

Chapter 3. Event monitors 99

Generally speaking, the event monitors that can write to both regular and
unformatted event (UE) tables capture the same data. However, there are some
minor differences to be aware of.

Order of columns

The first difference pertains to the order of the columns of the tables. When the
event monitor generates regular tables, compared to the output produced by
running EVMON_FORMAT_UE_TO_TABLES against a UE table, columns are
generally presented in alphabetical order, with two exceptions:

* If a PARTITION_KEY column is included in the output, it is the first column.

* For tables that report metrics, related columns are grouped together. For
example, columns that report time spent in the system are grouped together.

Columns returned

The other pertains to data types of columns. In most cases, the columns in
write-to-table event monitors are the same as the columns produced by running
EVMON_FORMAT_UE_TO_TABLES against a UE table. There are some differences
however. These differences are summarized in Table 10.

Table 10.
Columns returned from

Columns returned in regular EVMON_FORMAT_UE_TO

Logical data group tables _TABLES

All groups PARTITION_KEY column
included

uow TYPE column included TYPE column excluded

uow_package_list ROUTINE_ID data type is ROUTINE_ID data type is
BIGINT INTEGER

pkgcache XMLID column excluded XMLID column included

lock DL_CONNS data type is DL_CONNS data type is
BIGINT INTEGER
ROLLED_BACK_PARTICIPANT | ROLLED_BACK_PARTICIPANT
_NO data type is SMALLINT _NO data type is INTEGER
XMLID column excluded XMLID column included

lock_participants AGENT_STATUS data type is AGENT_STATUS data type is
BIGINT INTEGER
APPL_ID data type is APPL_ID data type is
VARCHAR(64) VARCHAR(128)
APPL_NAME data type is APPL_NAME data type is
VARCHAR(255) VARCHAR(128)
CLIENT_ACCTING data type is | CLIENT_ACCTNG data type is
VARCHAR(200) VARCHAR(255)
TABLESPACE_NAME data type | TABLESPACE_NAME data type
is VARCHAR(18) is VARCHAR(128)
XMLID column excluded XMLID column included
INTERNAL_DATA column Data contained in
included INTERNAL_DATA is not

included.

100 Database Monitoring Guide and Reference

Table 10. (continued)

Logical data group

Columns returned in regular
tables

Columns returned from
EVMON_FORMAT _UE_TO
_TABLES

lock_participant
_activities

ACTIVITY_ID data type is
BIGINT

ACTIVITY_ID data type is
INTEGER

Includes EVENT_ID,
EVENT_TYPE and
EVENT_TIMESTAMP rather
than XMLID'

XMLID column included

CONSISTENCY_TOKEN is
CHAR(8)

CONSISTENCY_TOKEN is
VARCHAR(S)

lock_activity_values

ACTIVITY_ID data type is
BIGINT

ACTIVITY_ID data type is
INTEGER

PARTICIPANT_NO data type is
SMALLINT

PARTICIPANT_NO data type is
INTEGER

Includes EVENT_ID,

XMLID column included

EVENT_TYPE and
EVENT_TIMESTAMP instead of
XMLID.!

1. The XMLID column represents a compound monitor element made up of the
concatenation of the event_header, event_id, event_type, event_timestamp and partition
monitor elements.

Creating a file event monitor

When creating an event monitor you must determine where the information it
collects is to be stored. File event monitors store event records in files. File event
monitors and their options are defined by the CREATE EVENT MONITOR statement.

Before you begin
You will need SQLADM or DBADM authority to create a file event monitor.

About this task

A file event monitor streams event records to a series of 8-character numbered files
with the extension "evt" (for example, 00000000.evt, 00000001.evt, and
00000002.evt). The data should be considered to be one logical file even though the
data is broken up into smaller pieces (that is, the start of the data stream is the first
byte in the file 00000000.evt; the end of the data stream is the last byte in the file
nnnnnnnn.evt). An event monitor will never span a single event record across two
files.

Procedure

1. Indicate that event monitor data is to be collected in a file (or set of files), and
provide a directory location where event files are to be stored.

CREATE EVENT MONITOR dlmon FOR eventtype
WRITE TO FILE '/tmp/dlevents'

d1mon is the name of the event monitor.

/tmp/dlevents is the name of the directory path (on UNIX systems) where the
event monitor is to write the event files.

101

Chapter 3. Event monitors

2. Specify the types of events to be monitored. You can monitor one or more
event types with a single event monitor.

CREATE EVENT MONITOR dlmon FOR CONNECTIONS, DEADLOCKS WITH DETAILS
WRITE TO FILE '/tmp/dlevents'

This event monitor will monitor for the CONNECTIONS and DEADLOCKS
WITH DETAILS event types.

3. Specify the size of the file event monitor buffers (in 4K pages) by adjusting the
BUFFERSIZE value:

CREATE EVENT MONITOR dlmon FOR CONNECTIONS, DEADLOCKS WITH DETAILS
WRITE TO FILE '/tmp/dlevents' BUFFERSIZE 8

8 is the capacity in 4K pages of the two event file buffers.

The default size of each buffer is 4 pages (two 16K buffers are allocated). The
minimum size is 1 page. The maximum size of the buffers is limited by the size
of the monitor heap, because the buffers are allocated from that heap. For
performance reasons, highly active event monitors should have larger buffers
than relatively inactive event monitors.

4. Indicate if you need the event monitor to be blocked or non-blocked. For
blocked event monitors, each agent that generates an event will wait for the
event buffers to be written to file if they are full. This can degrade database
performance, as the suspended agent and any dependent agents cannot run
until the buffers are clear. Use the BLOCKED clause to ensure no losses of
event data:

CREATE EVENT MONITOR dlmon FOR CONNECTIONS, DEADLOCKS WITH DETAILS

WRITE TO FILE '/tmp/dlevents' BUFFERSIZE 8
BLOCKED

Event monitors are blocked by default. If database performance is of greater
importance than collecting every single event record, use non-blocked event
monitors. In this case, each agent that generates an event will not wait for the
event buffers to be written to file if they are full. As a result, non-blocked event
monitors are subject to data loss on highly active systems. Use the
NONBLOCKED clause to minimize the additional processing time caused by
event monitoring:
CREATE EVENT MONITOR dTmon FOR CONNECTIONS, DEADLOCKS WITH DETAILS

WRITE TO FILE '/tmp/dlevents' BUFFERSIZE 8

NONBLOCKED

5. Specify the maximum number of event files that can be collected for an event

monitor. If this limit is reached, the event monitor will deactivate itself.
CREATE EVENT MONITOR dTmon FOR CONNECTIONS, DEADLOCKS WITH DETAILS

WRITE TO FILE '/tmp/dlevents' BUFFERSIZE 8
NONBLOCKED MAXFILES 5

5 is the maximum number of event files that will be created.

You can also specify that there is no limit to the number of event files that the
event monitor can create:
CREATE EVENT MONITOR dlmon FOR CONNECTIONS, DEADLOCKS WITH DETAILS
WRITE TO FILE '/tmp/dlevents' BUFFERSIZE 8
NONBLOCKED MAXFILES NONE
6. Specify the maximum size (in 4K pages) for each event file created by an event
monitor. If this limit is reached, a new file is created.
CREATE EVENT MONITOR dlmon FOR CONNECTIONS, DEADLOCKS WITH DETAILS

WRITE TO FILE '/tmp/dlevents' BUFFERSIZE 8
NONBLOCKED MAXFILES 5 MAXFILESIZE 32

102 Database Monitoring Guide and Reference

32 is the maximum number of 4K pages that an event file can contain.

This value must be greater than the value specified by the BUFFERSIZE
parameter. You can also specify that there is to be no limit on an event file's
size:
CREATE EVENT MONITOR dlmon FOR CONNECTIONS, DEADLOCKS WITH DETAILS

WRITE TO FILE '/tmp/dlevents' BUFFERSIZE 8

NONBLOCKED MAXFILES NONE MAXFILESIZE NONE

7. Specify if the event monitor is to be activated automatically each time the

database starts. By default, event monitors (with the exception of the WLM
event monitors) are not activated automatically when the database starts.

* To create an event monitor that starts automatically when the database starts,
issue the following statement:
CREATE EVENT MONITOR dlmon FOR CONNECTIONS, DEADLOCKS WITH DETAILS
WRITE TO FILE '/tmp/dlevents' BUFFERSIZE 8
NONBLOCKED AUTOSTART
* To create an event monitor that does not start automatically when the
database starts, issue the following statement:
CREATE EVENT MONITOR dTmon FOR CONNECTIONS, DEADLOCKS WITH DETAILS
WRITE TO FILE '/tmp/dlevents' BUFFERSIZE 8
NONBLOCKED MANUALSTART
8. To activate or deactivate an event monitor, use the SET EVENT MONITOR STATE
statement.

Results

Once a file event monitor is created and activated, it will record monitoring data as
its specified events occur.

Event monitor file management:

With some event monitors, you can have event data written to text files. You can
configure some upper bounds on the number of files created, as well as their size
with options on the CREATE or ALTER EVENT MONITOR statements.

A file event monitor enables the event monitor to store its event records in files.
All the output of the event monitor goes in the directory supplied in the FILE
parameter for the CREATE EVENT MONITOR statement. Before the monitor is
activated, the directory must exist, or the SET EVENT MONITOR command will
return an error; the directory will not be created by the database manager if it does
not already exist.

Important: When a file event monitor is first activated, a control file named
db2event.ctl is created in this directory. Do not remove or modify this file.

By default, an event monitor writes its trace to a single file, called 00000000.evt.
This file keeps growing as long as there is space on the file system. If you specified
a file size limit with the MAXFILESIZE parameter of the CREATE EVENT MONITOR
statement, then when a file is full, output is directed to a new file. The number
that makes up the file name is increased by 1 each time a new file is created.
Hence, the active file is the file with the highest number.

You can limit the maximum size of the entire event monitor trace by also using the
MAXFILES parameter of the CREATE EVENT MONITOR statement. When the

Chapter 3. Event monitors 103

number of files reaches the maximum defined by MAXFILES, the event monitor
deactivates itself and the following message is written to the administration
notification log.

DIA1601I Event Monitor monitor-name was deactivated when it reached
its preset MAXFILES and MAXFILESIZE T1imit.

If you receive this message, do not delete any of the event monitor files. If you do,
you will not be able to view any of the event monitor information (even that
contained in any remaining files) using the db2evmon command. Instead take one of
the following actions:

¢ Recreate the event monitor without the MAXFILES and MAXFILESIZE limits.

* Leave the limits imposed by the MAXFILES and MAXFILESIZE parameters in place,
but move all but the most recent *.evt files in the directory to another directory
or file system. You can then view the event monitor information from the files in
the new directory. You can create a script to do this automatically if you want.

Either way, you must reactivate the event monitor using the statement SET EVENT
MONITOR event-monitor-name STATE 1 to start collecting information again after you
receive the DIA16011 message.

When a file event monitor is restarted, it can either erase any existing data or
append new data to it. This option is specified in the CREATE EVENT MONITOR
statement, where either an APPEND monitor or a REPLACE monitor can be
created. APPEND is the default option. An APPEND event monitor starts writing
at the end of the file it was last using. If you have removed that file, the next file
number in sequence is used. When an append event monitor is restarted, only a
start_event is generated. The event log header and database header are generated
only for the first activation. A REPLACE event monitor always deletes existing
event files and starts writing at 00000000.evt.

Note: If you did not use the REPLACE option for the event monitor, you can
perform the following steps to force the event monitor to start collecting a new set
of data:

1. Deactivate the event monitor using the SET EVENT MONITOR cvent-monitor-name
STATE 0 command.

2. Delete all files in the directory that was specified by the FILE option of the
CREATE EVENT MONITOR statement.

3. Reactivate the event monitor using the SET EVENT MONITOR event-monitor-name
STATE 1 command.

If a file event monitor runs out of disk space, it shuts itself down after logging a
system-error-level message in the administration notification log.

You might want to process monitor data while the event monitor is active. This is
possible, and furthermore, when you are finished processing a file, you can delete
it, freeing up space for further monitoring data. An event monitor cannot be forced
to switch to the next file unless you stop and restart it. It must also be in APPEND
mode. To track which events have been processed in the active file, you can create
an application that simply tracks the file number and location of the last record
processed. When processing the trace the next time around, the application can
seek to that file location.

104 Database Monitoring Guide and Reference

Creating a pipe event monitor

When creating an event monitor you must determine where the information it
collects is to be stored. A pipe event monitor streams event records directly from
the event monitor, to a named pipe.

Before you begin
* You need SQLADM or DBADM authority to create a pipe event monitor.

* This task assumes the named pipe is already created. To create a named pipe on
UNIX or Linux systems, use the mkfife command provided on those systems.

About this task

It is the responsibility of the monitoring application to promptly read the data
from the pipe as the event monitor writes the event data. If the event monitor is
unable to write data to the pipe (for example, if it is full), monitor data will be lost.

Pipe event monitors are defined with the CREATE EVENT MONITOR statement.

Procedure

1. Indicate that event monitor data is to be directed to a named pipe.

CREATE EVENT MONITOR myevmon FOR eventtype
WRITE TO PIPE '/home/dbadmin/dlevents'

myevmon is the name of the event monitor.

/home/dbadmin/dlevents is the name of the named pipe (on UNIX) to where
the event monitor will direct the event records. The CREATE EVENT MONITOR
statement supports UNIX and Windows pipe naming syntax.

The named pipe specified in the CREATE EVENT MONITOR statement must be
present and open when you activate the event monitor. If you specify that the
event monitor is to start automatically, the named pipe must exist before the
event monitor's creation.

2. Specify the types of events to be monitored. You can monitor one or more
event types with a single event monitor.

CREATE EVENT MONITOR myevmon FOR BUFFERPOOLS, TABLESPACES
WRITE TO PIPE '/home/dbadmin/myevents'

This event monitor will monitor for the BUFFERPOOLS and TABLESPACES
event types.

3. Specify if the event monitor is to be activated automatically each time the
database starts. By default, event monitors are not activated automatically
when the database starts.

 To create an event monitor that starts automatically when the database starts,
issue the following statement:
CREATE EVENT MONITOR myevmon FOR BUFFERPOOLS, TABLESPACES
WRITE TO PIPE '/home/dbadmin/myevents'
AUTOSTART
¢ To create an event monitor that does not start automatically when the
database starts, issue the following statement:
CREATE EVENT MONITOR myevmon FOR BUFFERPOOLS, TABLESPACES
WRITE TO PIPE '/home/dbadmin/myevents
MANUALSTART
4. Start the client application that reads from the named pipe. For example, you
can start the db2evmon tool to process the data as it is delivered to the pipe.

Chapter 3. Event monitors 105

5. To activate or deactivate an event monitor, use the SET EVENT MONITOR STATE
statement.

Results

After a pipe event monitor is created and activated, it will record monitoring data
as its specified events occur.

Event monitor named pipe management:

With some event monitors, you can have event data written to named pipes. What
follows are some guidelines on how to use named pipe event monitors more
effectively.

A pipe event monitor enables the processing of the event monitor data stream
through a named pipe. Using a pipe event monitor is desirable if you need to
process event records in real time. Another important advantage is that your
application can ignore unwanted data as it is read off the pipe, giving the
opportunity to considerably reduce storage requirements.

On AIX®, you can create named pipes by using the mkfifo command. On Linux
and other UNIX types (such as the Solaris operating system) use the pipe() routine.
On Windows, you can create named pipes by using the CreateNamedPipe()
routine.

When you direct data to a pipe, I/O is always blocked and the only buffering is
that performed by the pipe. It is the responsibility of the monitoring application to
promptly read the data from the pipe as the event monitor writes the event data. If
the event monitor is unable to write the data to the pipe (for example, because the
pipe is full), monitor data will be lost.

In addition, there must be enough space in the named pipe to handle incoming
event records. If the application does not read the data from the named pipe fast
enough, the pipe will fill up and overflow. The smaller the pipe buffer, the greater
the chance of an overflow.

When a pipe overflow occurs, the monitor creates overflow event records
indicating that an overflow has occurred. The event monitor is not turned off, but
monitor data is lost. If there are outstanding overflow event records when the
monitor is deactivated, a diagnostic message will be logged. Otherwise, the
overflow event records will be written to the pipe when possible.

The amount of data that can be written to a pipe at any one time is determined by
the underlying operating system. If your operating system allows you to define the
size of the pipe buffer, use a pipe buffer of at least 32K. For high-volume event
monitors, you should set the monitoring application's process priority equal to or
higher than the agent process priority.

It is possible for the data stream coming from a single write operation of an
activities or statistics event monitor to contain more data than can be written to the
named pipe. In these situations, the data stream is split into blocks that can fit into
the buffer, and each block is identified with a header: The first block is identified
by a logical header with the element ID SQLM_ELM_EVENT_STARTPIPEBLOCK.
The last block is identified by a logical header with element ID
SQLM_ELM_EVENT_ENDPIPEBLOCK. All blocks in between are identified by
logical headers with element ID SQLM_ELM_EVENT_MIDPIPEBLOCK. The

106 Database Monitoring Guide and Reference

monitoring application that is reading the pipe must be aware of these headers,
and reassemble the blocks back into the complete data stream, stripping off the
block headers as needed and reassembling the blocks to form a complete, valid
data stream. The db2evmon tool provides this capability; it provides formatted
output for all events generated by an event monitor that writes to a named pipe,
reassembling the blocks as needed. If you want to process only selected events or
monitor elements, you can write your own application to do so.

Write-to-table and file event monitor buffering

For some write-to-table and file event monitors, the event monitor stores output in
a buffer before writing it to a file or table. Table 11 shows which event monitors
use such output buffers.

Table 11. Event monitors and output buffers

Event monitor type Writes output to buffers before writing to disk?
Activities No
Bufferpools Yes
Change history No
Connections Yes
Database Yes
Deadlocks (all versions) Yes
Locking No
Package cache No
Statements Yes
Statistics Yes
Tablespaces Yes
Tables Yes
Transactions Yes
Unit of work No

Event monitors that do not use buffers use a newer, faster mechanism for writing
output to disk, eliminating the need for buffers.

For those event monitors that use buffers, records are written to disk automatically
when a bulffer is full. Therefore, you can improve monitoring performance for
event monitors with high amounts of throughput by specifying larger buffers to
reduce the number of disk accesses. To force an event monitor to flush its buffers,
you must either deactivate it or empty the buffers by using the FLUSH EVENT
MONITOR statement.

Event monitors that use buffers let you specify whether the event monitor output
is to be blocked or non-blocked. A blocked event monitor suspends the database
process that is sending monitor data when both of its buffers are full. This is to
ensure that no event records are discarded while the blocked event monitor is
active. The suspended database process and consequently, any dependent database
processes cannot run until a buffer has been written. This can introduce a
significant performance consumption, depending on the type of workload and the
speed of the I/O device. Event monitors are blocked by default.

Chapter 3. Event monitors 107

A non-blocked event monitor discards monitor data coming from agents when
data is coming faster than the event monitor can write the data. This prevents
event monitoring from becoming a performance burden on other database
activities.

An event monitor that has discarded event records generates an overflow event. It
specifies the start and stop time during which the monitor was discarding events
and the number of events that were discarded during that period. It is possible for
an event monitor to terminate or be deactivated with a pending overflow to report.
If this occurs, the following message is written to the admin log:

DIA25031 Event Monitor monitor-name had a pending overflow record
when it was deactivated.

Loss of event monitoring data can also occur for individual event records. If the
length of an event record exceeds the event buffer size, the data that does not fit in
the buffer is truncated. For example, this situation might occur if you are capturing
the stmt_text monitor element and applications attached to the database being
monitored issue lengthy SQL statements. If you must capture all of the event
record information, specify larger buffers. Keep in mind that larger buffers result in
less frequent writes to file or table.

Event monitor self-describing data stream

An event monitor that writes to a pipe or file outputs a binary stream of logical
data groupings that are exactly the same for both pipe and file event monitors. You
can format the data stream either by using the db2evmon command or by
developing a client application. This data stream is presented in a self-describing
format. Figure 4 shows the structure of the data stream and Table 12 on page 109
provides some examples of the logical data groups and monitor elements that
could be returned.

Note: In the examples and tables descriptive names are used for the identifiers.
These names are prefixed by SQLM_ELM_ in the actual data stream. For example,
db_event would appear as SQLM_ELM_DB_EVENT in the event monitor output.
Types are prefixed with SQLM_TYPE_ in the actual data stream. For example,
headers appear as SQLM_TYPE_HEADER in the data stream.

event_log_stream_header byte order
size }
version

log_header_event size
type
element

—» size

> type }

> element

—> data ®

db_event size
type
element
—» size

> type
> element
—> data

Figure 4. Pipe or File Event Monitor Data Stream

108 Database Monitoring Guide and Reference

The structure of the sqlm_event_log data_stream_header is different than the
other headers in the data stream. The version field determines if the output can
be processed as a self-describing data stream.

This header has the same size and type as pre-Version 6 event monitor streams.
This allows applications to determine if the event monitor output is
self-describing or is in the pre-Version 6 static format.

Note: This monitor element is extracted by reading
sizeof(sqlm_event_log_data_stream) bytes from the data stream.

Each logical data group begins with a header that indicates its size and element
name. This does not apply event_log_stream_header, as its size element
contains a dummy value to maintain backwards compatibility.

The size element in the header indicates the size of all the data in that logical
data group.

Monitor element information follows its logical data group header and is also
self-describing.

Table 12. Sample event data stream

Logical Data Group Data Stream Description
event_log_stream_header sqlm_little_endian Not used (for compatibility with previous releases).

200 Not used (for compatibility with previous releases).

b>s5qlm_dbmon_version9 The version of the database manager that returned the

data. Event monitors write data in the self-describing
format.
log_header_event 7100 Size of the logical data group.

pheader Indicates the start of a logical data group.

plog_header Name of the logical data group.

Fo—»>4 Size of the data stored in this monitor element.

| bu32bit Monitor element type - 32 bit numeric.

| pbyte_order The name of the monitor element collected.

| blittle_endian The collected value for this element.

L 2 Size of the data stored in this monitor element.
Pul6bit Monitor element type - unsigned 16 bit numeric.
pcodepage_id The name of the monitor element collected.
>850 The collected value for this element.

db_event 7100 Size of the logical data group.

pheader Indicates the start of a logical data group.

bdb_event Name of the logical data group.

L 4 Size of the data stored in this monitor element
pu32bit Monitor element type - unsigned 32 bit numeric.
|->lock_waits The name of the monitor element collected.

2 The collected value for this element.

The event_log_stream_header identifies the version of the database manager that
returned the data. Event monitors write their data in the self-describing format. An
event monitor, unlike a snapshot monitor, does not have a size element that
returns the total size of the trace. The number present in event_log_stream_header
is a dummy value present for backwards compatibility. The total size of an event
trace is not known when the event_log_stream_header is written. You typically
read an event monitor trace until you reach an end of file or pipe.

The log header describes the characteristics of the trace, containing information
such as the memory model (for example little endian) of the server where the trace

Chapter 3. Event monitors 109

was collected, and the code page of the database. You might have to do byte
swapping on numeric values, if the system where you read the trace has a
different memory model than the server (for example, if you are reading a trace
from a UNIX server on a Windows 2000 system). Code page translation might also
need to be done if the database is configured in a different language than the
machine from which you read the trace. When reading the trace, you can use the
size element to skip a logical data group in the trace.

Event type mappings to logical data groups

For file and pipe event monitors, event monitor output consists of an ordered
series of logical data groupings. Regardless of the event monitor type, the output
records always contain the same starting logical data groups. These frame the
logical data groups whose presence varies depending on the event types recorded
by the event monitor.

For file and pipe event monitors, event records may be generated for any
connection and may therefore appear in mixed order in the stream. This means
that you may get a transaction event for Connection 1, immediately followed by a
connection event for Connection 2. However, records belonging to a single
connection or a single event will appear in their logical order. For example, a
statement record (end of statement) always precedes a transaction record (end of
UOW), if any. Similarly, a deadlock event record always precedes the deadlocked
connection event records for each connection involved in the deadlock. The
application id or application handle (agent_id) can be used to match records with
a connection.

Connection header events are normally written for each connection to the database.
For deadlocks with details event monitors, they are only written when the
deadlock occurs. In this case, connection header events are only written for
participants in the deadlock and not for all connections to the database.

The logical data groupings are ordered according to four different levels: Monitor,
Prolog, Contents, and Epilog. Following are detailed descriptions for each level,
including the corresponding event types and logical data groups.

Monitor

Information at the Monitor level is generated for all event monitors. It consists of
event monitor metadata.

Table 13. Event Monitor Data Stream: Monitor Section

Event type Logical data group Available information

Monitor Level event_log_stream_header Identifies the version level and
byte order of the event monitor.
Applications can use this header to
determine whether they can handle
the evmon output stream.

110 Database Monitoring Guide and Reference

Prolog

The Prolog information is generated when the event monitor is activated.

Table 14. Event Monitor Data Stream: Prolog Section

Event type

Logical data group

Available information

Log Header

event_log_header

Characteristics of the trace, for
example server type and memory
layout.

Database Header

event_db_header

Database name, path and
activation time.

Event Monitor
Start

event_start

Time when the monitor was
started or restarted.

Connection
Header

event_connheader

One for each current connection,
includes connection time and
application name. Event
connection headers are only
generated for connection,
statement, transaction, and
deadlock event monitors.
Deadlocks with details event
monitors produce connection
headers only when a deadlock
occurs.

Contents

Information specific to the event monitor's specified event types is presented in the

Contents section.

Table 15. Event Monitor Data Stream: Contents Section

Event type

Logical data group

Available information

Statement Event

event_stmt

Statement level data, including text
for dynamic statements. Statement
event monitors do not log fetches.

Subsection Event

event_subsection

Subsection level data.

Transaction event_xact Transaction level data.
Event!
Connection Event | event_conn Connection level data.

Deadlock Event

event_deadlock

Deadlock level data.

Deadlocked
Connection Event

event_dlconn

One for each connection involved
in the deadlock, includes
applications involved and locks in
contention.

Deadlocked
Connection Event
with Details

event_detailed_dlconn, lock

One for each connection involved
in the deadlock, includes
applications involved, locks in
contention, current statement
information, and other locks held
by the application contention.

Overflow

event_overflow

Number of records lost - generated
when writer cannot keep up with a
(non-blocked) event monitor.

Chapter 3. Event monitors 111

Table 15. Event Monitor Data Stream: Contents Section (continued)

Event type Logical data group Available information

Deadlocks with | event_stmt_history List of statements executed in any

details history” unit of work that was involved in
a deadlock.

Deadlocks with |event_data_value Parameter markers for a statement

details history in the event_stmt_history list.

values®

Activities event_activity List of activities that completed

executing on the system or were
captured before completion.

event_activitystmt Information about the statement
the activity was executing if the
activity type was a statement.

event_activityvals The data values used as input
variables for each activity that is
an SQL statement. These data
values do not include LOB data,
long data, or structured type data.

Statistics event_scstats Statistics computed from the
activities that executed within each
service class, work class, or
event_wlstats workload in the system, as well as
statistics computed from the
threshold queues.

event_wcstats

event_gstats

event_histogrambin

Threshold event_thresholdviolations Information identifying the
violations threshold violated and the time of
violation.

This option has been deprecated. Its use is no longer recommended and
might be removed in a future release. Use the CREATE EVENT MONITOR
FOR UNIT OF WORK statement to monitor transaction events.

This option has been deprecated. Its use is no longer recommended and
might be removed in a future release. Use the CREATE EVENT MONITOR
FOR LOCKING statement to monitor lock-related events, such as lock
timeouts, lock waits, and deadlocks.

Epilog

The Epilog information is generated during database deactivation (last application
finished disconnecting):

Table 16. Event Monitor Data Stream: Epilog Section

Event type Logical data group Available information
Database Event |event_db Database manager level data.
Buffer Pool Event | event_bufferpool Buffer pool level data.

Table Space event_tablespace Table space level data.

Event

Table Event event_table Table level data.

112 Database Monitoring Guide and Reference

Displaying a list of event monitors created in your database

You can see what event monitors are already defined in your database by using
the catalog view SYSCAT.EVENTMONITORS.

Procedure

To view a list of the event monitors that you defined on your system, query the
catalog view SYSCAT.EVENTMONITORS. For example, to see a list of event
monitors that includes the event monitor name, the target output type (that is, a
regular table, file, named pipe, or unformatted event table), and the owner, you
can use a query such as the following one:

SELECT SUBSTR(EVMONNAME,1,20) AS EVMON_NAME, TARGET_TYPE, OWNER
FROM SYSCAT.EVENTMONITORS

The preceding query returns results similar to those that follow:
EVMON_NAME TARGET_TYPE OWNER

DB2DETAILDEADLOCK
CACHEEVMON
INVTLOCK

INVTUOW

INVTACT

INVTSTATS
INVTTHRESHOLD
TABLE_INVTTABLE
BUFFER_INVT DBADMIN1
TABLESPACES_INVT DBADMIN1

F DBADMIN1
T
T
T
T
T
T
T
T
» T
CONNECTIONS_INVT T DBADMIN1
T
T
U
U
U
u
U
T
T
T

DBADMIN1
DBADMIN1
DBADMIN1
DBADMIN1
DBADMIN1
DBADMIN1
DBADMIN1

TRANSAC_INVT DBADMIN1
DEADLOCK_INVT DBADMIN1

QUINNJN_LOC_UNF DBADMIN1
UNFORM DBADMIN1
RM DBADMIN1
UOWINVT DBADMIN1
LOCK_UP_STAFF DBADMIN1
INVTLOCK2 DBADMIN1
STAFF_UOW DBADMIN1

STAFFSTATS DBADMIN1

21 record(s) selected.
Examples

You can also use a catalog view to see which event monitors exist for monitoring a
specific type of event. The SYSCAT.EVENTS view returns a list of event monitors
and the type of events for which they record data.
SELECT SUBSTR(TYPE,1,20) AS EVENT_TYPE,

SUBSTR(EVMONNAME,1,20) AS EVENT_MONITOR_NAME

FROM SYSCAT.EVENTS
ORDER BY TYPE

EVENT_TYPE EVENT_MONITOR_NAME
ACTIVITIES INVTACT
BUFFERPOOLS BUFFER_INVT
CONNECTIONS CONNECTIONS_INVT
DEADLOCKS DEADLOCK_INVT
DETAILDEADLOCKS DB2DETAILDEADLOCK
LOCKING INVTLOCK

LOCKING QUINNJN_LOC_UNF
LOCKING UNFORM

LOCKING RM

Chapter 3. Event monitors 113

LOCKING LOCK_UP_STAFF

LOCKING INVTLOCK2
PKGCACHEBASE CACHEEVMON
STATISTICS INVTSTATS
STATISTICS STAFFSTATS
TABLES TABLE_INVTTABLE
TABLESPACES TABLESPACES_INVT
THRESHOLDVIOLATIONS INVTTHRESHOLD
TRANSACTIONS TRANSAC_INVT
UOW INVTUOW

uow UOWINVT

UOW STAFF_UOW

21 record(s) selected.

Event monitors for partitioned databases and databases in a
DB2 pureScale environment

Generally, event monitors on partitioned database systems or in a DB2 pureScale®
environment work similarly to event monitors that run on nonpartitioned,
single-member databases. However, there are some differences to be aware of.

Partitioned database environments
Event monitors that write to regular tables and unformatted event (UE) tables

You cannot create event monitors that write to regular tables and UE tables
on a specific partition. Instead, for a partitioned database environment, an
event monitor process runs on each of the partitions. More specifically, the
event monitor process runs on the members for each partition that belong
to the database partition groups in which the target tables exist.

Each partition where the event monitor process runs has the same set of
target tables for a specific event monitor. The data in these tables is
different from partition to partition because the data for a specific partition
reflects only events that take place on that partition. For table event
monitors, you can retrieve aggregate values from all the partitions by
issuing SQL statements to collect data from event monitor tables from each
partition. For UE table event monitors, you can aggregate data across
partitions by using the SQL statement that you specify for the
EVMON_FORMAT_UE_TO_TABLE stored procedure or by using the
EVMON_FORMAT UE_TO_XML table function.

The first column of each event monitor table is named PARTITION_KEY
and is used as the partitioning key for the table. The value of this column
is chosen so that each event monitor process inserts data into the database
partition on which the process is running. That is, insert operations are
performed locally on the database partition where the event monitor
process is running. On any database partition, the PARTITION_KEY field
contains the same value. As a result, if you drop a data partition and data
redistribution is performed, all data on the dropped database partition
goes to one other database partition instead of being evenly distributed.
Therefore, before dropping a database partition, consider deleting all table
rows on that database partition.

In addition, in partitioned database environments, a column named
PARTITION_NUMBER, or MEMBER is defined for each table. This column
contains the number of the partition or member on which the data was
inserted.

114 Database Monitoring Guide and Reference

Events are written to the event monitor target tables on those partitions
where the table space for the target tables exists. If the table space for the
event monitor target tables does not exist on any partition where the event
monitor runs, no data is collected on those partitions, and no error is
returned. Moreover, no log records for these events are written where the
table space does not exist. This behavior means that you can choose a
subset of partitions for monitoring by creating a table space that exists only
on certain partitions.

During write-to-table event monitor activation, the CONTROL table rows
for FIRST CONNECT and EVMON_START are inserted on all database
partitions where the table space for target tables exists.

If a partition is not yet active when an event monitor is activated, the
event monitor is activated when that partition is next activated.

Event monitors that write to files and named pipes

File and pipe event monitors, with one exception, capture only events that
take place on the database partition on which they are running (the monitor
partition). Such an event monitor is known as a local event monitor. The
exception is the DEADLOCK event monitor; you can create it as a local or
a global event monitor. When you create it as a global event monitor,
deadlock information is collected on all database partitions and is reported
to the specific database partition where the event monitor process runs.’

When you create a file or pipe event monitor in a partitioned database
environment, you can specify the partition that you want it to run on as
part of the CREATE EVENT MONITOR statement. If you omit the
partition number, the event monitor runs on the database partition that
was connected when you created the event monitor.

An event monitor can be activated only if the monitor partition is active. If
you use the SET EVENT MONITOR statement to activate an event monitor
but the monitor partition is not yet active, event monitor activation occurs
when the monitor partition is next started. Furthermore, the event monitor
is activated automatically until you explicitly deactivate the event monitor
or the instance. For example, consider the following sequence of
statements:

DB2 CONNECT TO PAYROLL

DB2 CREATE EVENT MONITOR ABC ... ON DBPARTITIONNUM 2
DB2 SET EVENT MONITOR ABC STATE 1

After these statements are run, event monitor ABC activates automatically
whenever the database PAYROLL is activated on database partition 2. This
automatic activation occurs until the statement DB2 SET EVENT MONITOR ABC
STATE 0 is issued or partition 2 is stopped.

If you add database partitions, the existing global, table, or UE table event
monitors do not automatically start collecting data for the newly created partitions.
To collect and record data about the new partitions, you must take one of the
following steps:

* For global event monitors (that is, a DEADLOCKS event monitor), restart the
event monitors.

3. This event monitor is deprecated. The LOCKING event monitor is the preferred event monitor for capturing lock and deadlock
event information.

Chapter 3. Event monitors 115

* For table or UE table event monitors, drop, re-create, and restart the event
monitors.

DB2 pureScale environments

In DB2 pureScale environments, there is effectively one data partition, with two or
more members that process data. Thus, when you create an event monitor, event
monitor processes run on all members, regardless of whether they write to a file,
pipe, tables, or a UE table.

Event data is reported on a per-member basis. As a result, monitor elements or
metrics that are associated with a member, such as the total_cpu_time monitor
element, report data that is specific to that member. However, other monitor
elements related to the data itself, such as the tablespace_total_pages monitor
element, reflect the same values regardless of what member reports them.

Examples

Example 1: Creating a write-to-file event monitor in a partitioned database
environment
The example that follows shows how to create an event monitor that runs
and collects data for buffer pool-related events on partition 3, writing its
output to a file:
CREATE EVENT MONITOR bpmon FOR BUFFERPOOLS

WRITE TO FILE '/tmp/dlevents'
ON DBPARTITION 3

Example 2: Creating a table event monitor in a partitioned database
environment
The example that follows shows how to create a table monitor that runs
and collects data for activities-related events and writes its output to a
table:

CREATE EVENT MONITOR myacts FOR ACTIVITIES
WRITE TO TABLE

In this example, because no logical data groups are specified for the event
monitor, tables are created for all logical data groups associated with this
type of event monitor. Each of these tables is created on each partition in
the default table space if the default table space exists on each partition.
The data that is collected in the tables on each database partition pertains
to events that take place on that partition.

To view event monitor data from selected partitions, issue a SELECT
statement that queries those partitions:

SELECT TOTAL_CPU_TIME FROM myacts WHERE PARTITION_NUMBER = 3

Enabling event monitor data collection

Depending on the type of event monitor you are using, you might need to
configure collection after you create the event monitor. By default, some event
monitors collect certain data immediately when activated. Other event monitors
require that you explicitly configure data collection independently of creating the
event monitor. These types of event monitors are sometimes referred to as passive
event monitors.

116 Database Monitoring Guide and Reference

Before you begin

All event monitors must be activated before any data is written its target output
table or tables (regular or UE), file or pipe. Some event monitors are configured by
default as AUTOSTART event monitors. This means they are activated
automatically when the database is activated. Others are configured by default to
required that you activate them manually. Either way, you can override the default
startup options. However, to start an automatic event monitor after you create it,
but before the next database activation, you must use the SET EVENT MONITOR
STATE statement to activate it manually.

About this task

Some event monitors support the use of a WHERE clause on the CREATE or
ALTER EVENT MONITOR statement to capture event information selectively. The
following event monitors, however, provide the ability to control what event data
is collected independently of the event monitor definition:

* Activities

¢ Change history
* Locking

* Statistics

* Unit of work

Some of the event monitors listed collect certain types of data by default after the
event monitor is activated; others require that you explicitly enable data collection.
Either way, you can enable data collection in one of two ways, depending on the
scope of activities for which you want data collected:

All activities in the database
To have monitor data collected across all activities in the database, you
modify the appropriate configuration parameter for the type of data you
are interested in. For example, to have unit of work data collected for all
units of work that run in the database, set mon_uow_data to BASE. In some
cases, the default settings for configuration parameters are such that some
type of data is always collected if there is an appropriate event monitor
active to receive the date. For example, the default setting for
mon_req_metrics is BASE; unless you override this setting, any active
statistics or unit of work event monitor will record the values for the BASE
set of request monitor elements.

Remember: Event monitors that support the use of the WHERE predicate
collect only the data that satisfies the conditions specified in that predicate,
regardless of the settings for any relevant configuration parameters.

Selected activities
Some event monitors - in particular, the workload management event
monitors (threshold violations, statistics and activities) - provide the ability
to control data collection for specific workload management objects. For
example, you might choose to collect activity information for activities
running in a specific service superclass. Configuring collection at this level
generally involves adding a COLLECT clause to the CREATE or ALTER
WORKLOAD (or SERVICE CLASS or WORK ACTION) statements to
specify what type of information to collect for activities running under the
auspices of that WLM object. For example, to enable the collection of
extended statistics information for the service class urgent, you might use
the following statement:

Chapter 3. Event monitors 117

ALTER SERVICE CLASS urgent
COLLECT AGGREGATE ACTIVITY DATA EXTENDED

Note: If a COLLECT clause is specified in a WLM CREATE or ALTER statement,
the settings specified in the clause take precedence for that WLM object over any
database-wide setting configured using a configuration parameter. For example, if
mon_req_metrics is set to EXTENDED, and if workload payrol1 was configured to
collect BASErequest metrics (for example, CREATE WORKLOAD payroll
COLLECT REQUEST METRICS BASE), then extended request metrics are collected
for all activities in the database except for the payrol1l workload.

Procedure

To enable collection of data for one of the types of event monitors shown at the
beginning of this section, perform the following steps:

1. Determine what, if any data is already collected by default. The data you are
interested in might be collected without you having to change any settings.

2. Decide on the scope of activities for which you want to collect data. Do you
want to collect data for the entire database, or only for specific workloads,
service class or work actions?

3. Decide what types of monitor elements you want to collect. Some event
monitors support the collection of different types of monitor data, such as
request monitor elements, activity data, and so on.

4. For the different sets of monitor data collected, decide the scope of data to be
collected within each set. You generally have the choice of collecting no data
(NONE), basic data (BASE), or extended data (EXTENDED). See to determine
what data is collected for each setting.

5. Based on the decisions made in the preceding steps, configure data collection
using either a configuration parameter or a COLLECT clause.

a. To configure collection across the entire database, set the appropriate
configuration parameter. For example, to enable the collection of lock wait
information with history by the locking event monitor on the database
SALES, run the following command.

UPDATE DATABASE CONFIGURATION for SALES USING mon_lockwait HISTORY

b. To configure collection for a specific workload, create or modify the
workload, including the appropriate COLLECT clause. For example, to
configure the collection of lock wait data with statement history for locks
waiting longer than 5 seconds in the MANAGERS workload, run a
statement like the one that follows:

ALTER WORKLOAD MANAGERS
COLLECT LOCK WAIT DATA FOR LOCKS WAITING MORE THAN 5 SECONDS
WITH HISTORY

What to do next

Now that the event monitor is created and active, and data collection is enabled,
run your applications or workload.

Methods for accessing event monitor information
Depending on the type of event monitor that you are using and the type of output
it generates, there are different options for accessing and viewing event monitor
data.

For example:

118 Database Monitoring Guide and Reference

* Data produced by table event monitors can be queried directly using SQL.
* Data from event monitors that write to pipes can be viewed as it is produced.

¢ Data from file event monitors can be viewed by opening the output file after the
event monitor is deactivated.

¢ Data from both file and pipe event monitors can also be formatted into a report
using the db2evmon command.

* Data written to UE tables must be post-processed before it can be examined. UE
event monitor data can be converted to tables or to XML, which makes it
possible to query the data using SQL or XML query techniques. Alternatively,
you can format the data in a UE table into a formatted report without going
through a conversion process.

The sections that follow describe the different ways you can access information
produced by event monitors.

Accessing event monitor data in regular tables
You can use SQL to directly access event monitor data that is written to regular
relational tables.

Before you begin

Before accessing data, you must perform the following tasks:
* Create and activate the event monitor

* Enable data collection if required for the type of event monitor that you are
using and the type of data that you want to collect

* Run the workload or applications for which you want to collect monitoring data

Optionally, depending on how you are using the event monitor data, deactivate
data collection before you start examining the event data. If the event monitor
remains active, it continues to write data to the output tables. Therefore, the results
from one query might differ from the results that you obtain by running the same
query later on.

About this task

Accessing event monitor data from relational tables involves using SQL to
formulate queries to retrieve data from the tables produced by the event monitor.

Procedure

To retrieve information from the tables that are produced by an event monitor that
writes to tables:

1. Formulate a SELECT statement to display the monitor element data you want
to see. For example, to request lock data for the payroll workload from a
locking event monitor named mylocks, you might use a query such as the
following one:

SELECT DISTINCT CAST(STMT_TEXT AS VARCHAR(25)) STMT, LP.PARTICIPANT_NO,
VARCHAR (LP.APPL_NAME,10) APPL_NAME, LP.LOCK_MODE_REQUESTED,
LP.PARTICIPANT_TYPE
FROM LOCK_PARTICIPANT_ACTIVITIES_LOCK_MYLOCKS AS LPA
JOIN LOCK_PARTICIPANTS_LOCK MYLOCKS AS LP
ON LPA.EVENT_ID = LP.EVENT_ID
WHERE LP.WORKLOAD_NAME = 'PAYROLL'

Chapter 3. Event monitors 119

In this example, data from the LOCK_PARTICIPANTS table from the event
monitor myTocks is joined with information from the
LOCK_PARTICIPANTS_ACTIVITIES table to return the following results.

2. Run the SQL statement.

Results

STMT PARTICIPANT NO APPL_NAME LOCK WAIT VAL
select * from staff 2 db2bp 0
select * from staff 1 db2bp 1000

LOCK_MODE_REQUESTED PARTICIPANT_TYPE

0 OWNER
1 REQUESTER

2 record(s) selected.

Methods for accessing information in unformatted event tables
There are different ways to access the information in unformatted event (UE)
tables. You can generate a text report intended to be read. Alternatively, you can

extract the data into relational tables or XML; this approach lets you query the data
using SQL or pureXML®.

Event monitors that write to UE tables write event data in a binary format. You
can access this data using the db2evmonfmt command or routines provided for
this purpose.

With the db2evmonfmt command you can:

* select events of interest based on the following attributes: event ID, event type,
time period, application, workload, or service class.

* choose whether to receive the output in the form of a text report or a formatted
XML document.

* completely control the output format by creating your own XSLT style sheets
instead of using the ones provided with db2evmonfmt.

You can also extract data from an unformatted event table using the following

routines:

e EVMON_FORMAT_UE_TO_XML - extracts data from an unformatted event
table into an XML document.

¢ EVMON_FORMAT UE_TO_TABLES - extracts data from an unformatted event
table into a set of relational tables.

With these two routines, you can use a SELECT statement to specify the exact rows
from the unformatted event table that you want to extract.

db2evmonfmt tool for reading event monitor data:

The Java-based, generic XML parser tool, db2evmonfmt, produces a readable flat-text
output (text version) or a formatted XML output from the data generated by an
event monitor that uses the unformatted event table. Based on the parameters that
you specify, the db2evmonfmt tool determines how to parse the event monitor data
and the type of output to create.

The db2evmonfmt tool is provided as Java source code. You must setup and compile
this tool, before you can use it, by performing the following steps:

120 Database Monitoring Guide and Reference

1. Locate the source code in the sq11ib/samples/java/jdbc directory
2. Follow the instructions embedded in the Java source file to setup and compile
the tool

You can modify the source code to change the output to your liking.

The tool uses XSLT style sheets to transform the event data into formatted text.
You do not need to understand these style sheets. The tool will automatically load
the correct style sheet, based on the event monitor type, and transform the event
data. Each event monitor will provide default style sheets within the
sql1ib/samples/xml/data directory. The tool will also provide the following
filtering options:

* Event ID

* Event timestamp

¢ Event type

* Workload name

* Service class name

* Application name

Tool syntax

»»—java—db2evmonfmt connect filter options i > <
Izl XML file ’:l
-h

connect:

|—-d—db_name—-ue—table_name B 2 i
-u—user_id—-p—password-

XML file:

f—-f—xml_filename }

filter options:

v

[fxm1
[
|——ftext | |——1'd—even1,“_id—|
l—— ss—styleshee t_name—l

I——type—event‘_type—| |——hour‘s—num_hours—| I——w—workload_name—I

\

l—- a—app Z_name—| l—- s—srvc_subcl ass_name—|

Tool parameters

java
To run the db2evmonfmt Java-based tool successfully, the java keyword must
precede the tool name. The proper Java version to successfully run this tool is
installed from the sqllib/java/jdk64 directory during the DB2 product
installation.

Chapter 3. Event monitors 121

-d db_name
Specifies the database name to which a connection is made

-ue table name
Specifies the name of the unformatted event table

-u user_id
Specifies the user ID

-p password
Specifies the password

-f xml_filename
Specifies the name of the input XML file to format

-fxml
Produces a formatted XML document (pipe to stdout)

-ftext
Formats an XML document to a text document (pipe to stdout)

-ss stylesheet name
Specifies the XSLT style sheet to use to transform the XML document

-id event_id
Displays all events matching the specified event ID

-type event_type
Displays all events matching the specified event type

-hours num_hours
Displays all events that have occurred within the specified last number of
hours

-w workload _name
Displays all events that are part of the specified workload

-a appl_name
Displays all events that are part of the specified application

-s srvc_subclass_name
Displays all events that are part of the specified service subclass

XSLT style sheets

The DB2 database manager provides default XSLT style sheets (see Table 1) which
can be found in the sqllib/samples/java/jdbc directory. You can change these
style sheets to produce the required output.

Table 17. Default XSLT style sheets for event monitors

Event monitor Default XSLT style sheet
Locking DB2EvmonLocking.xsl
Unit of work DB2EvmonUOW.xsl
Package cache DB2EvmonPkgCache.xsl

You can create your own XSLT style sheet to transform XML documents. You can
pass these style sheets into the Java-based tool using the -ss stylesheet_name
option.

122 Database Monitoring Guide and Reference

Examples

Example 1

To obtain a formatted text output for all events that have occurred in the

last 32 hours from the package cache unformatted event table PKG in

database SAMPLE, issue the following command:

java db2evmonfmt -d sample -ue pkg -ftext -hours 32

Example 2

To obtain a formatted text output for all events of type LOCKTIMEOUT
that have occurred in the last 24 hours from unformatted event table
LOCK in database SAMPLE, issue the following command:

java db2evmonfmt -d sample -ue LOCK -ftext -hours 24 —type locktimeout

Example 3

To obtain a formatted text output from the XML source file LOCK. XML,

extracting all events that match the event type LOCKWAIT in the last 5

hours, issue the following command:

java db2evmonfmt -f Tock.xml -ftext -type lockwait -hours 5

Example 4

To obtain a formatted text output using the created XSLT style sheet

SUMMARY.XSL for all events in the unformatted event table UOW in

database SAMPLE, issue the following command:

java db2evmonfmt -d sample -ue uow -ftext -ss summary.xsl

Sample formatted flat-text output

The following sample of formatted flat-text output was generated from the locking
event monitor XSLT style sheet:

Event Entry
Event ID

Event Type
Event Timestamp :

Type
Lock Attributes :
Lock Count
Hold Count :
rrllD

Status

Cursor Bitmap
Tablespace Name :
Table Name

Attributes
Application Handle
Application ID
Application Name
Authentication ID
Requesting Agent
Coordinating Agent
Application Status
Lock Timeout
Workload Name
Service Subclass

: NEWTON

: Locktimeout

2008-05-23-12.00.14.132329000

: 02000401000000000000000054
: Table

00000000

1

0

: 0
: Waiting
: 00000000

USERSPACE1
. SARAH

Requestor

[0-35]
*LOCAL.horton.080523160016
xapTus0001
NEWTON

65

65
SQLM_CONNECTPEND
5000
XAPLUS0010_WLO2
XAPLUS0010_SC02

[0-16]
«LOCAL . horton. 080523155938
db2bp

HORTON

21

21

SQLM_CONNECTPEND

0

SYSDEFAULTUSERWORKLOAD
SYSDEFAULTSUBCLASS

Chapter 3. Event monitors

123

Current Request Execute Execute Immediate
Lock Mode Intent Exclusive Exclusive

tpmon Userid

tpmon Wkstn

tpmon App

tpmon Accstring

Lock Requestor Current Activities

Activity ID H

Uow ID 1

Package ID : 65426E4D4B584659
Package SectNo : 3

Package Name : NEWTON

Package Schema : AKINTERF
Package Version :

Reopt : always

Eff Isolation : Cursor Stability

Eff Locktimeout : 5

Eff Degree : 0

Nesting Level : 0

Stmt Unicode : No

Stmt Flag : Dynamic

Stmt Type : DML, Insert/Update/Delete

Stmt Text : INSERT INTO SARAH VALUES(:HO0008, :HO0013, :HO0014)

Lock Requestor Past Activities

Activity ID 1

Uow ID N

Package ID : 65426E4D4B584659
Package SectNo : 2

Package Name : NEWTON

Package Schema : AKINTERF

Package Version :

Reopt . always

Eff Isolation : Cursor Stability
Eff Locktimeout : 5

Eff Degree : 0

Nesting Level : 0

Stmt Unicode : No

Stmt Flag : Dynamic

Stmt Type : DML, Insert/Update/Delete

Stmt Text : INSERT INTO NADIA VALUES(:H00007)

Lock Holder Current Activities

Activity ID 01

Uow ID : 2

Package ID : 41414141414E4758
Package SectNo : 201

Package Name : NULLID

Package Schema : SQLC2G13
Package Version :

Reopt : none

Eff Isolation : Cursor Stability

Eff Locktimeout : 5

Eff Degree : 0

Nesting Level : 0

Stmt Unicode : No

Stmt Flag : Dynamic

Stmt Type : DML, Select (blockable)

124 Database Monitoring Guide and Reference

Stmt Text : select * from newton.sarah
Activity ID H

Uow ID 1 2

Package ID : 41414141414E4758

Package SectNo : 203

Package Name : NULLID

Package Schema : SQLC2G13

Package Version :

Reopt : none

Eff Isolation

: Cursor Stability

Eff Locktimeout : 5

Eff Degree : 0

Nesting Level : 0

Stmt Unicode : No

Stmt Flag : Dynamic

Stmt Type : DML, Lock Table

Stmt Text : Tock table newton.sarah in exclusive mode

Event Entry
Event ID
Event Type

Event Timestamp :

Usage notes

: Locktimeout

2008-05-23-12.04.42.144896000

The db2evmonfmt utility is a Java-based tool which must be preceded by the java
keyword in order to run successfully. The Java version required is that which is
installed with the DB2 product from the sql1ib/java/jdk64 directory.

Note: You can also use the EVMON_FORMAT_UE_TO_XML table function to
format the binary events, contained in the unformatted event table BLOB column,
into an XML document.

Routines for extracting data from unformatted event tables:

If you want to perform queries on the data collected by an event monitor that
writes to a unformatted event (UE) table, you must first extract the data from UE

table using one of the two routines provided for this purpose. The
EVMON_FORMAT_UE_TO_TABLES procedure extracts data from the UE table to
create relational tables. The EVMON_FORMAT_UE_TO_XML table function creates
an XML document.

EVMON_FORMAT_UE_TO_TABLES
The EVMON_FORMAT_UE_TO_TABLES procedure examines the UE table
produced by an event monitor, and extracts the data it contains into
relational tables that you can query. The number of tables produced
depends on the type of event monitor; and the logical data groups for
which that event monitor collects data. Generally speaking, the data from
each logical data group is written to a separate table. For example, the
package cache event monitor collects event data from three logical data
groups: pkgcache and pkgcache_metrics, and pkgcache_stmt_args. Thus,
three tables are produced by EVMON_FORMAT_UE_TO_TABLES.

125

Chapter 3. Event monitors

Note: EVMON_FORMAT UE_TO_TABLES does not create a table for the
control logical data group.

In addition to creating relational tables from UE tables, as of Version 10.1
the EVMON_FORMAT_UE_TO_TABLES procedure provides the capability
to prune data from UE tables. When you use the PRUNE_UE_TABLES option
for EVMON_FORMAT_UE_TO_TABLES, data that is successfully inserted
into relational tables is deleted from the unformated event (UE) table.

EVMON_FORMAT_UE_TO_XML
The EVMON_FORMAT _UE_TO_XML table function examines the UE table
produced by an event monitor, and extracts the data it contains into an
XML document. This document can then be queried as often as needed
using pureXML.

Notes:
* This table function works similarly to the db2evmonfmt utility when that

utility is used with the -fxml option. The differences between using
EVMON_FORMAT_UE_TO_XML instead of db2evmonfmt are as follows:

— EVMON_FORMAT_UE_TO_XML is a table function. As such, it is
invoked as part of an SQL statement. db2evmonfmt runs as a separate
utility.

- EVMON_FORMAT_UE_TO_XML lets you specify a SELECT
statement with a WHERE clause to filter events from the UE table.
db2evmonfmt has only limited capabilities for filtering event data.

* The output XML document from EVMON_FORMAT_UE_TO_XML can
be formatted by db2evmonfmt to create a flat text file.

With both routines, you must include a SELECT statement in the call to the routine
to specify conditions for which data to extract.

Pruning data from UE tables:

If you use the EVMON_FORMAT_UE_TO_TABLES procedure to extract data from
UE tables, you can use the PRUNE_UE_TABLE option to remove data that you no
longer need.

Before you begin

Before you can extract data from a UE table, you must have created, activated, and
enabled data collection for an event monitor that writes to a UE table.

About this task

In addition to the performance advantages that UE tables offer, using UE tables as
output for an event monitor lets you take advantage of the automatic pruning
feature of the EVMON_FORMAT_UE_TO_TABLES procedure. When you use this
procedure, any data that is extracted from the UE table and written to a regular
table can be automatically removed from the UE table. This procedure makes it
easier to manage a UE table. For example, assume that you want to use a unit of
work event monitor to capture information to generate daily reports for accounting
purposes, such as charging departments for CPU time that is used by an
application or query. In that case, you might want to prune that data after
producing the reports.

126 Database Monitoring Guide and Reference

Procedure
To extract and then prune data from a UE table:

Issue an SQL statement that calls the EVMON_FORMAT_UE_TO_TABLES
procedure with the PRUNE_UE_TABLE option to extract data into a regular table.
For example, if you have a unit of work event monitor called TRACKWORK, you
might create a statement such as the one that follows:

CALL EVMON_FORMAT UE_TO_TABLES
("UOW', NULL, NULL, NULL, NULL, NULL, 'PRUNE_UE_TABLE', -1,
'SELECT * FROM TRACKWORK')

All event data is copied from the UE table to the UOW_EVENT_TRACKWORK
and UOW_METRICS_ TRACKWORK tables. In addition, all records that were
copied are removed from the UE table.

Formatting file or pipe event monitor output from a command
line

The output of a file or pipe event monitor is a binary stream of logical data
groupings. You can format this data stream from a command line by using the
db2evmon command. This productivity tool reads in event records from an event
monitor's files or pipe, then writes them to the screen (standard output).

Before you begin

No authorization is required unless you are connecting to the database, in which
case one of the following authorities is required:

* SYSADM
* SYSCTRL
* SYSMAINT
« DBADM

About this task

You can indicate which event monitor output to format by either providing the
path of the event files, or providing the name of the database and the event
monitor name.

Procedure

To format event monitor output:
* Specify the directory containing the event monitor files:
db2evmon -path '/tmp/dlevents'

/tmp/dlevents represents a (UNIX) path.
* Specify the database and event monitor name:
db2evmon -db 'sample' -evm 'dimon'

sample represents the database the event monitor belongs to.
dlmon represents an event monitor.

Chapter 3. Event monitors 127

Altering an event monitor

You cannot change an event monitor, with one exception: you can add one or more
logical data groups to the set of logical data groups that the event monitor collects.
You use the ALTER EVENT MONITOR statement to add logical groups.

About this task

When you create an event monitor that writes to tables, by default, all logical data
groups of monitor elements that are associated with that event monitor are
captured. However, if you include the names of logical data groups in the CREATE
EVENT MONITOR statement, only those groups are captured. For example, you
might create an activities event monitor that captures data only from the
event_activity and event_activity_metrics logical data groups, as shown in the
following example:

CREATE EVENT MONITOR myacts FOR ACTIVITIES

WRITE TO TABLE
event_activity, event_activity metrics

The preceding DDL statement creates an event monitor that writes to two tables:
ACTIVITY_myacts and ACTIVITY_METRICS_myacts.

Restrictions

You can use the ALTER EVENT MONITOR statement only to add logical data
groups to an event monitor. You cannot remove a logical data group. You also
cannot change the name, the target table space, or the value for PCTDEACTIVATE
that is associated with the table that is used to capture the data in monitor
elements that belong to a data group.

Procedure

To add additional logical data groups to an event monitor:

1. Decide which logical data group you want to add. Using the preceding
example of a locking event monitor where only two logical data groups are
being captured, assume that you want to add the event_activitystmt and
event_activityvals logical data groups.

2. Formulate an ALTER EVENT MONITOR statement to add these new logical
data groups.

ALTER EVENT MONITOR mylacts
ADD LOGICAL GROUP event_activitystmt
ADD LOGICAL GROUP event_activityvals

3. Execute the statement.
Results

When the ALTER EVENT MONITOR statement completes execution, two
additional tables are created for the event monitor myacts:

ACTIVITYSTMT _myacts
ACTIVITYVALS_myacts

The next time the event monitor is activated, these tables are populated with data
from their corresponding logical data groups.

Remember: If you add new logical data groups to an event monitor, any data that
existed for the logical data groups that were originally part of the table will not

128 Database Monitoring Guide and Reference

have any corresponding rows in the tables for the newly added logical group.
Adjust your queries as needed, or consider pruning old data from the table after
adding the logical groups.

Example

A database administrator creates a locking event monitor called mylocks by using
the following SQL statement:

CREATE EVENT MONITOR mylocks FOR LOCKING WRITE TO TABLE LOCK, LOCK_PARTICIPANTS

This statement collects information for monitor elements in the lock and
lock_participants logical data groups. The tables to which the monitor element data
is written are created with the default table names LOCK_MYLOCKS and
LOCK_PARTICIPANTS_MYLOCKS.

Later on, the database administrator decides that she wants to collect information
in the LOCK_PARTICIPANT_ACTIVITIES logical data group. She uses the
following statement to modify the event monitor:

ALTER EVENT MONITOR myTocks ADD LOGICAL GROUP LOCK_PARTICIPANT_ACTIVITIES

This statement causes the monitor elements in the lock_participant_activities to be
collected in addition to the other elements that already were collected. This new
set of monitor elements are written to the table
LOCK_PARTICIPANT_ACTIVITIES_MYLOCKS.

Later, the database administrator decides that she also needs the data from the
control logical data group. However, she wants this data to be written to a table
with a name other than the default name, and to a table space other than the
default table space. She uses the following statement:

ALTER EVENT MONITOR myTocks ADD LOGICAL GROUP CONTROL TABLE ctl_mylocks IN mytbsp3

This statement adds the control logical data group to the output of the event
monitor. This statement adds the control logical data group to the output of the
event monitor. The data is written to the CTL_MYLOCKS table, and the table is
written to the table space mytbsp3, instead of the default table space.

Monitoring different types of events

Lock and deadlock event monitoring

Diagnosing and correcting lock contention situations in large DB2 environments
can be complex and time-consuming. The locking event monitor designed to
simplify this task by collecting locking data.

Note: The deadlocks event monitor has been deprecated, and the function it
provided is included in the locking event monitor. In addition, the
DB2DETAILDEADLOCK event monitor is also deprecated. See “Deprecated lock
monitoring functionality” on page 132 for important usage information about this
event monitor.

The locking event monitor is used to capture descriptive information about lock
events at the time that they occur. The information captured identifies the key
applications involved in the lock contention that resulted in the lock event.
Information is captured for both the lock requester (the application that received

Chapter 3. Event monitors 129

the deadlock or lock timeout error, or waited for a lock for more than the specified
amount of time) and the current lock owner.

The information collected by the lock event monitor can be written in binary
format to an unformatted event table in the database, in which case the captured
data must be processed in a post-capture step. Alternatively, the lock event
information can be written to a set of regular tables. See “Output options for event
monitors” on page 34 for more information about how to choose the most
appropriate output format.

You can also directly access DB2 relational monitoring interfaces (table functions)
to collect lock event information by using either dynamic or static SQL.

Determining if a deadlock or lock timeout has occurred is also simplified.
Messages are written to the administration notification log when either of these
events occurs; this supplements the SQL0911IN (sqlcode -911) error returned to the
application. In addition, a notification of lock escalations is also written to the
administration notification log; this information can be useful in adjusting the size
of the lock table and the amount of the table an application can use. There are also
counters for lock timeouts (Tock_timeouts), lock waits (lock_waits), and deadlocks
(deadlocks) that can be checked.

The types of activities for which locking data can be captured are as follows:
* SQL statements, such as:
- DML
- DDL
- CALL
* LOAD command
* REORG command
* BACKUP DATABASE command
» Utility requests

The lock event monitor replaces the deprecated deadlock event monitors (CREATE
EVENT MONITOR FOR DEADLOCKS statement and DB2DETAILDEADLOCK)
and the deprecated lock timeout reporting feature
(DB2_CAPTURE_LOCKTIMEOUT registry variable) with a simplified and
consistent interface for gathering locking event data, and adds the ability to
capture data on lock waits.

Functional overview

Two steps are required to enable the capturing of lock event data using the locking
event monitor:

1. You must create a LOCK EVENT monitor using the CREATE EVENT
MONITOR FOR LOCKING statement. You provide a name for the monitor
and, if you are using UE tables as the output format, the name of an
unformatted event table into which the lock event data is written.

Note: If you choose to use regular tables for event monitor output, default
table names are assigned. You can override the defaults from the CREATE
EVENT MONITOR statement, if you prefer.

2. You must specify the level for which you want lock event data captured by
using one of the following methods:

130 Database Monitoring Guide and Reference

* You can specify particular workloads by either altering an existing workload,
or by creating a new workload using the CREATE or ALTER WORKLOAD
statements. At the workload level you must specify the type of lock event
data you want captured (deadlock, lock timeout or lock wait), and whether
you want the SQL statement history and input values for the applications
involved in the locking. For lock waits you must also specify the amount of
time that an application will wait for a lock, after which data is captured for
the lock wait.

* You can collect data at the database level and affect all DB2 workloads by
setting the appropriate database configuration parameter:

mon_lockwait
This parameter controls the generation of lock wait events

Best practice is to enable lock wait data collection at the workload
level.

mon_locktimeout
This parameter controls the generation of lock timeout events

Best practice is to enable lock timeout data collection at the database
level if they are unexpected by the application. Otherwise enable at
workload level.

mon_deadlock
This parameter controls the generation of deadlock events

Best practice is to enable deadlock data collection at the database
level.

mon_lw_thresh
This parameter controls the amount of time spent in lock wait before
an event for mon_lockwait is generated

Capturing of SQL statement history and input values uses additional processor
time, memory and storage, but this level of detail is often needed to successfully
debug a locking problem.

After a locking event has occurred, you can view the event data in the output
produced by the event monitor. If you used UE tables, the binary data in the
unformatted event table can be transformed into an XML or a text document using
a supplied Java-based application called db2evmonfmt. In addition, you can format
the binary event data in the unformatted event table BLOB column into either an
XML report document, using the EVMON_FORMAT_UE_TO_XML table function,
or into a relational table, using the EVMON_FORMAT_UE_TO_TABLES procedure.

If you used regular tables as the output format, you can query the data directly
using SQL.

To aid in the determination of what workloads should be monitored for locking
events, the administration notification log can be reviewed. Each time a deadlock
or lock timeout is encountered, a message is written to the log. These messages
identify the workload in which the lock requester and lock owner or owners are
running, and the type of locking event. There are also counters at the workload
level for lock timeouts (Tock_timeouts), lock waits (Tock_waits), and deadlocks
(deadlocks) that can be checked.

Chapter 3. Event monitors 131

Information collected for a locking event

Some of the information for lock events collected by the lock event monitor

include the following:

* The lock that resulted in an event

* The application holding the lock that resulted in the lock event

* The applications that were waiting for or requesting the lock that result in the
lock event

* What the applications were doing during the lock event
Deprecated lock monitoring functionality

The deprecated detailed deadlock event monitor, DB2DETAILDEADLOCK, is
created by default for each database and starts when the database is activated. If
you use the locking event monitor to detect deadlocks, consider disabling the
DB2DETAILDEADLOCK event monitor. If the DB2DETAILDEADLOCK event
monitor remains active while the locking event monitor also collects deadlock
information, both event monitors will be collecting data, which can significantly
affect performance.

To remove the DB2DETAILDEADLOCK event monitor, issue the following SQL
statements:

SET EVENT MONITOR DB2DETAILDEADLOCK state 0O
DROP EVENT MONITOR DB2DETAILDEADLOCK

Data generated by locking event monitors

Locking event monitors produce data about locks and deadlocks in the system.
You can choose to have the output from a locking event monitor to regular tables,
or to an unformatted event (UE) table. If data is written to a UE table, you must
perform post-processing on it to view the data.

Regardless of the output format you choose, locking event data comes from one of
four logical groups:

* lock

* lock_participants

* lock_participant_activities

* lock_activity_values

If you choose to have the locking event data written to regular tables, data from an

additional group (CONTROL) is used to generate meta-data about the event
monitor itself.

Note: By default, only deadlock information is generated for locking event
monitors. To have other types of locking data generated, you must enable
collection of that data explicitly.

Information written to tables for a locking event monitor:

Information written by the locking event monitor when the WRITE TO TABLE
option is specified.

When you choose WRITE TO TABLE as the output type for the locking event

monitor, by default, five tables are produced, each containing monitor elements
from one or more logical data groups:

132 Database Monitoring Guide and Reference

Table 18. Tables produced by locking write-to-table event monitors

Default table name

Logical data groups reported

LOCK_evmon-name

lock

LOCK_PARTICIPANTS_evmon-name

lock_participants

LOCK_PARTICIPANT_ACTIVITIES_evmon-
name

lock_participant_activities

LOCK_ACTIVITY_VALUES_evmon-name

lock_activity_values

CONTROL_evmon-name

The CONTROL logical group consists of
selected elements from one or more of the
event_dbheader, event_start and
event_overflow logical data groups.

Important: Even though all five tables are produced by default, you must still
ensure that data collection is enabled for the kind of lock information that you
want to gather. Otherwise, some of the columns contain null values.

To restrict the output of the event monitor to specific tables, specify the names of
the logical groups for which you want tables produced for the CREATE EVENT
MONITOR or ALTER EVENT MONITOR statement. Refer to the reference topics

for those statements for details.

Tables produced

Table 19. Information returned for a locking event monitor: Default table name: LOCK_evmon-name

Column name Data type Description
PARTITION_KEY INTEGER “partition_key - Partitioning key
monitor element” on page 1016
DEADLOCK_TYPE VARCHAR(10) “deadlock_type - Deadlock type
monitor element” on page 783
DL_CONNS INTEGER dl_conns - Connections involved in
deadlock
EVENT_ID BIGINT NOT NULL |event_id - Event ID monitor element
EVENT_TIMESTAMP TIMESTAMP NOT event_timestamp - Event timestamp
NULL monitor element
EVENT_TYPE VARCHAR(128) NOT |event_type - Event Type monitor
NULL element monitor element
MEMBER SMALLINT NOT member - Database member
NULL
ROLLED_BACK_PARTICIPANT_NO INTEGER rolled_back_participant_no - Rolled
back application participant

Table 20. Information returned for a locking event monitor: Default table name: LOCK_PARTICIPANTS_evmon-name

Column name Data type Description

PARTITION_KEY INTEGER “partition_key - Partitioning key monitor
element” on page 1016

AGENT_STATUS INTEGER agent_status - DCS application agents

AGENT_TID BIGINT “agent_tid - Agent thread ID monitor
element” on page 653

133

Chapter 3. Event monitors

Table 20. Information returned for a locking event monitor: Default table name: LOCK_PARTICIPANTS_evmon-

name (continued)

Column name Data type Description

APPL_ACTION VARCHAR(64) “appl_action - Application action
monitor element” on page 665

APPL_ID VARCHAR(128) appl_id - Application ID

APPL_NAME VARCHAR(128) appl_name - Application name

APPLICATION_HANDLE BIGINT application_handle - Application handle

AUTH_ID VARCHAR(128) auth_id - Authorization ID

CLIENT_ACCTNG VARCHAR(255) client_acctng - Client accounting string

CLIENT_APPLNAME VARCHAR(255) client_applname - Client application
name

CLIENT_USERID VARCHAR(255) client_userid - Client user ID

CLIENT_WRKSTNNAME VARCHAR(255) client_wrkstnname - Client workstation
name

COORD_AGENT_TID BIGINT “coord_agent_tid - Coordinator agent
engine dispatchable unit ID monitor
element” on page 747

CURRENT_REQUEST VARCHAR(32) “current_request - Current operation
request monitor element” on page 766

DEADLOCK_MEMBER SMALLINT “deadlock_member - Deadlock member
monitor element” on page 782

EVENT_ID BIGINT event_id - Event ID monitor element

EVENT_TIMESTAMP TIMESTAMP event_timestamp - Event timestamp
monitor element

EVENT_TYPE VARCHAR(128) event_type - Event Type monitor element
monitor element

INTERNAL_DATA VARCHAR(255)

LOCK_ATTRIBUTES CHAR(8) lock_attributes - Lock attributes

LOCK_COUNT BIGINT lock_count - Lock count

LOCK_CURRENT_MODE BIGINT lock_current_mode - Original lock mode
before conversion

LOCK_ESCALATION CHAR(3) lock_escalation - Lock escalation

LOCK_HOLD_COUNT BIGINT lock_hold_count - Lock hold count

LOCK_MODE BIGINT lock_mode - Lock mode

LOCK_MODE_REQUESTED BIGINT lock_mode_requested - Lock mode
requested

LOCK_NAME CHAR(32) lock_name - Lock name

LOCK_OBJECT_TYPE BIGINT lock_object_type - Lock object type
waited on

LOCK_OBJECT_TYPE_ID CHAR(1) Reserved for future use

LOCK_RELEASE_FLAGS CHAR(8) lock_release_flags - Lock release flags

LOCK_RRIID BIGINT

LOCK_STATUS BIGINT lock_status - Lock status

LOCK_TIMEOUT_VAL BIGINT lock_timeout_val - Lock timeout value

134 Database Monitoring Guide and Reference

Table 20. Information returned for a locking event monitor: Default table name: LOCK_PARTICIPANTS_evmon-

name (continued)

Column name Data type Description

LOCK_WAIT_END_TIME TIMESTAMP “lock_wait_end_time - Lock wait end
timestamp monitor element” on page 923

LOCK_WAIT_START_TIME TIMESTAMP lock_wait_start_time - Lock wait start
timestamp

LOCK_WAIT_VAL BIGINT “lock_wait_val - Lock wait value monitor
element” on page 928

MEMBER SMALLINT member - Database member

OBJECT_REQUESTED VARCHAR(10) “object_requested - Requested object
monitor element” on page 992

PARTICIPANT_NO INTEGER participant_no - Participant within
deadlock

PARTICIPANT_NO_HOLDING_LK INTEGER participant_no_holding_lk - Participant
holding a lock on the object required by
application

PARTICIPANT_TYPE VARCHAR(10) “participant_type - Participant type
monitor element” on page 1016

PAST_ACTIVITIES_WRAPPED CHAR(3) “past_activities_wrapped - Past activities
list wrapped monitor element” on page
1018

QUEUE_START_TIME TIMESTAMP “queue_start_time - Queue start
timestamp monitor element” on page
1165

QUEUED_AGENTS BIGINT “queued_agents - Queued threshold
agents monitor element” on page 1166

SERVICE_CLASS_ID INTEGER service_class_id - Service class ID

SERVICE_SUBCLASS_NAME VARCHAR(128) service_subclass_name - Service subclass
name

SERVICE_SUPERCLASS_NAME VARCHAR(128) service_superclass_name - Service
superclass name

TABLE_FILE_ID BIGINT table_file_id - Table file identification

TABLE_NAME VARCHAR(128) table_name - Table name

TABLE_SCHEMA VARCHAR(128) table_schema - Table schema name

TABLESPACE_NAME VARCHAR(128) tablespace_name - Table space name

THRESHOLD_ID INTEGER “thresholdid - Threshold ID monitor
element” on page 1308

THRESHOLD_NAME VARCHAR(128) threshold_name - Threshold name

UTILITY_INVOCATION_ID VARCHAR(32) FOR

BIT DATA

WORKLOAD_ID INTEGER workload_id - Workload 1D

WORKLOAD_NAME VARCHAR(128) workload_name - Workload name

XID VARCHAR(140) xid - Transaction ID

Chapter 3. Event monitors 135

Table 21. Information returned for a locking event monitor: Default table name:
LOCK_PARTICIPANT_ACTIVITIES_evmon-name

Column name Data type Description

PARTITION_KEY INTEGER “partition_key - Partitioning key monitor element”
on page 1016

ACTIVITY_ID BIGINT activity_id - Activity ID

ACTIVITY_TYPE VARCHAR(10) activity_type - Activity type

CONSISTENCY_TOKEN CHARACTER(8) consistency_token - Package consistency token

EFFECTIVE_ISOLATION CHARACTER(2) effective_isolation - Effective isolation

EFFECTIVE_QUERY_DEGREE BIGINT effective_query_degree - Effective query degree

EVENT_ID BIGINT event_id - Event ID monitor element

EVENT_TIMESTAMP TIMESTAMP event_timestamp - Event timestamp monitor
element

EVENT_TYPE VARCHAR(128) event_type - Event Type monitor element monitor
element

INCREMENTAL_BIND CHARACTER(3) “incremental_bind - Incremental bind monitor
element” on page 874

MEMBER SMALLINT member - Database member

PACKAGE_NAME VARCHAR(128) package_name - Package name

PACKAGE_SCHEMA VARCHAR(128) package_schema - Package schema

PACKAGE_VERSION_ID VARCHAR(64) package_version_id - Package version

PARTICIPANT_NO SMALLINT participant_no - Participant within deadlock

QUERY_ACTUAL_DEGREE INTEGER query_actual_degree - Actual runtime degree of
intrapartition parallelism

REOPT VARCHAR(10) “reopt - Reopt bind option monitor element” on
page 1176

SECTION_NUMBER BIGINT section_number - Section number

STMT_FIRST_USE_TIME TIMESTAMP stmt_first_use_time - Statement first use timestamp

STMT_INVOCATION_ID BIGINT stmt_invocation_id - Statement invocation
identifier

STMT_LAST_USE_TIME TIMESTAMP stmt_last_use_time - Statement last use timestamp

STMT_LOCK_TIMEOUT INTEGER stmt_lock_timeout - Statement lock timeout

STMT_NEST_LEVEL BIGINT stmt_nest_level - Statement nesting level

STMT_OPERATION VARCHAR(128) “stmt_operation/operation - Statement operation
monitor element” on page 1250

STMT_PKGCACHE_ID BIGINT stmt_pkgcache_id - Statement package cache
identifier

STMT_QUERY_ID BIGINT stmt_query_id - Statement query identifier

STMT_SOURCE_ID BIGINT stmt_source_id - Statement source identifier

STMT_TEXT CLOB stmt_text - SQL statement text

STMT_TYPE BIGINT stmt_type - Statement type

STMT_UNICODE CHARACTER(3) “stmt_unicode - Statement unicode flag monitor
element” on page 1258

UOW_ID INTEGER uow_id - Unit of work ID

136 Database Monitoring Guide and Reference

Table 22. Information returned for a locking event monitor: Default table name: LOCK_ACTIVITY_VALUES_evmon-

name

Column name Data type Description

PARTITION_KEY INTEGER “partition_key - Partitioning key monitor element”
on page 1016

ACTIVITY_ID BIGINT activity_id - Activity ID

EVENT_ID BIGINT event_id - Event ID monitor element

EVENT_TIMESTAMP TIMESTAMP event_timestamp - Event timestamp monitor
element

EVENT_TYPE VARCHAR(128) event_type - Event Type monitor element monitor
element

MEMBER SMALLINT member - Database member

PARTICIPANT_NO SMALLINT participant_no - Participant within deadlock

STMT_VALUE_DATA CLOB stmt_value_data - Value data

STMT_VALUE_INDEX INTEGER stmt_value_index - Value index

STMT_VALUE_ISNULL INTEGER stmt_value_isnull - Value has null value

STMT_VALUE_ISREOPT INTEGER stmt_value_isreopt - Variable used for statement
reoptimization

STMT_VALUE_TYPE CHARACTER(16) stmt_value_type - Value type

UOW_ID INTEGER uow_id - Unit of work ID

Table 23. Information returned for a locking event monitor: Default table name: CONTROL_evmon-name

Column name Data type Description

PARTITION_KEY INTEGER “partition_key - Partitioning key
monitor element” on page 1016

EVENT_MONITOR_NAME VARCHAR(128) event_monitor_name - Event monitor
name

MESSAGE VARCHAR(128) message - Control table message

MESSAGE_TIME TIMESTAMP message_time - Timestamp control
table message

PARTITION_NUMBER SMALLINT partition_number - Partition number

Information written to relational tables by EVMON_FORMAT_UE_TO_TABLES

for a locking event monitor:

Information written for a locking event monitor from the
EVMON_FORMAT UE_TO_TABLES table function. This is also documented in the
sq11ib/misc/DB2EvmonLocking.xsd file.

Table 24. Information returned for a locking event monitor: Table name: LOCK_EVENT

Column Name

Data Type

Description

XMLID

VARCHAR(256) NOT NULL

“xmlid - XML ID monitor
element” on page 1431

DEADLOCK_TYPE VARCHAR(10) “deadlock_type - Deadlock type
monitor element” on page 783
EVENT_ID BIGINT NOT NULL event_id - Event ID monitor

element

137

Chapter 3. Event monitors

Table 24. Information returned for a locking event monitor: Table name: LOCK_EVENT (continued)

Column Name

Data Type

Description

EVENT_TYPE

VARCHAR(128) NOT NULL

event_type - Event Type
monitor element monitor
element

EVENT_TIMESTAMP

TIMESTAMP NOT NULL

event_timestamp - Event
timestamp monitor element

MEMBER SMALLINT NOT NULL member - Database member

DL_CONNS INTEGER dl_conns - Connections
involved in deadlock

ROLLED_BACK_PARTICIPANT_NO INTEGER rolled_back_participant_no -

Rolled back application
participant

Table 25. Information returned for a locking event monitor: Table name: LOCK_PARTICIPANTS

Column Name

Data Type

Description

XMLID

VARCHAR(256) NOT NULL

“xmlid - XML ID monitor
element” on page 1431

PARTICIPANT_NO

INTEGER

participant_no - Participant
within deadlock

PARTICIPANT_TYPE

VARCHAR(10)

“participant_type - Participant
type monitor element” on page
1016

PARTICIPANT_NO_HOLDING_LK

INTEGER

participant_no_holding_lk -
Participant holding a lock on
the object required by
application

APPLICATION_HANDLE

BIGINT

application_handle -
Application handle

APPL_ACTION

VARCHAR(64)

“appl_action - Application
action monitor element” on
page 665

APPL_ID

VARCHAR(128)

appl_id - Application ID

APPL_NAME

VARCHAR(128)

appl_name - Application name

AUTH_ID

VARCHAR(128)

auth_id - Authorization ID

AGENT_TID

BIGINT

“agent_tid - Agent thread ID
monitor element” on page 653

COORD_AGENT_TID

BIGINT

“coord_agent_tid - Coordinator
agent engine dispatchable unit
ID monitor element” on page
747

AGENT_STATUS

INTEGER

agent_status - DCS application
agents

DEADLOCK_MEMBER

SMALLINT

“deadlock_member - Deadlock
member monitor element” on
page 782

LOCK_TIMEOUT_VAL

BIGINT

lock_timeout_val - Lock timeout
value

138 Database Monitoring Guide and Reference

Table 25. Information returned for a locking event monitor: Table name: LOCK_PARTICIPANTS (continued)

Column Name Data Type Description

LOCK_WAIT_VAL BIGINT “lock_wait_val - Lock wait
value monitor element” on page
928

WORKLOAD_ID INTEGER workload_id - Workload ID

WORKLOAD_NAME VARCHAR(128) workload_name - Workload
name

SERVICE_CLASS_ID INTEGER service_class_id - Service class
1D

SERVICE_SUPERCLASS_NAME VARCHAR(128) service_superclass_name -
Service superclass name

SERVICE_SUBCLASS_NAME VARCHAR(128) service_subclass_name - Service
subclass name

CURRENT_REQUEST VARCHAR(32) “current_request - Current
operation request monitor
element” on page 766

LOCK_ESCALATION CHAR(3) lock_escalation - Lock escalation

PAST_ACTIVITIES_WRAPPED CHAR(3) “past_activities_wrapped - Past
activities list wrapped monitor
element” on page 1018

CLIENT_USERID VARCHAR(255) client_userid - Client user ID

CLIENT_WRKSTNNAME VARCHAR(255) client_wrkstnname - Client
workstation name

CLIENT_APPLNAME VARCHAR(255) client_applname - Client
application name

CLIENT_ACCTNG VARCHAR(255) client_acctng - Client accounting
string

OBJECT_REQUESTED VARCHAR(10) “object_requested - Requested
object monitor element” on
page 992

LOCK_NAME CHAR(32) lock_name - Lock name

LOCK_OBJECT_TYPE VARCHAR(32) lock_object_type - Lock object

type waited on

LOCK_OBJECT_TYPE_ID

CHAR(1) FOR BIT DATA

Reserved for future use

LOCK_ATTRIBUTES CHAR(8) lock_attributes - Lock attributes

LOCK_CURRENT_MODE BIGINT lock_current_mode - Original
lock mode before conversion

LOCK_MODE_REQUESTED BIGINT lock_mode_requested - Lock
mode requested

LOCK_MODE BIGINT lock_mode - Lock mode

LOCK_COUNT BIGINT lock_count - Lock count

LOCK_HOLD_COUNT BIGINT lock_hold_count - Lock hold
count

LOCK_RRIID BIGINT

LOCK_STATUS BIGINT lock_status - Lock status

LOCK_RELEASE_FLAGS CHAR(8) lock_release_flags - Lock release

flags

Chapter 3. Event monitors 139

Table 25. Information returned for a locking event monitor: Table name: LOCK_PARTICIPANTS (continued)

Column Name Data Type Description

LOCK_WAIT_START_TIME TIMESTAMP lock_wait_start_time - Lock wait
start timestamp

LOCK_WAIT_END_TIME TIMESTAMP “lock_wait_end_time - Lock
wait end timestamp monitor
element” on page 923

QUEUED_AGENTS BIGINT “queued_agents - Queued
threshold agents monitor
element” on page 1166

QUEUE_START_TIME TIMESTAMP “queue_start_time - Queue start
timestamp monitor element” on
page 1165

TABLE_FILE_ID BIGINT table_file_id - Table file
identification

TABLE_NAME VARCHAR(128) table_name - Table name

TABLE_SCHEMA VARCHAR(128) table_schema - Table schema
name

TABLESPACE_NAME VARCHAR(128) tablespace_name - Table space
name

THRESHOLD_ID INTEGER “thresholdid - Threshold ID
monitor element” on page 1308

THRESHOLD_NAME VARCHAR(128) threshold_name - Threshold

name

UTILITY_INVOCATION_ID

VARCHAR(32) FOR BIT DATA

XID

VARCHAR(140) FOR BIT
DATA)

xid - Transaction ID

Table 26. Information returned for a locking event monitor: Table name: LOCK_PARTICIPANT_ACTIVITIES

Column Name

Data Type

Description

XMLID

VARCHAR(256) NOT NULL

“xmlid - XML ID monitor
element” on page 1431

PARTICIPANT_NO INTEGER participant_no - Participant
within deadlock
ACTIVITY_ID INTEGER activity_id - Activity ID
ACTIVITY_TYPE VARCHAR(10) activity_type - Activity type
UOW_ID INTEGER uow_id - Unit of work ID
PACKAGE_NAME VARCHAR(128) package_name - Package name
PACKAGE_SCHEMA VARCHAR(128) package_schema - Package
schema
PACKAGE_VERSION_ID VARCHAR(64) package_version_id - Package
version
CONSISTENCY_TOKEN VARCHAR(8) consistency_token - Package
consistency token
SECTION_NUMBER BIGINT section_number - Section
number
REOPT VARCHAR(10) “reopt - Reopt bind option

monitor element” on page 1176

140 Database Monitoring Guide and Reference

Table 26. Information returned for a locking event monitor: Table name:

LOCK_PARTICIPANT_ACTIVITIES (continued)

Column Name Data Type Description
INCREMENTAL_BIND CHAR(3) “incremental_bind - Incremental
bind monitor element” on page
874
EFFECTIVE_ISOLATION CHAR(2) effective_isolation - Effective
isolation
EFFECTIVE_QUERY_DEGREE BIGINT effective_query_degree -
Effective query degree
STMT_LOCK_TIMEOUT INTEGER stmt_lock_timeout - Statement
lock timeout
STMT_TYPE BIGINT stmt_type - Statement type
STMT_QUERY_ID BIGINT stmt_query_id - Statement
query identifier
STMT_NEST_LEVEL BIGINT stmt_nest_level - Statement
nesting level
STMT_INVOCATION_ID BIGINT stmt_invocation_id - Statement
invocation identifier
STMT_OPERATION VARCHAR(128) “stmt_operation/operation -
Statement operation monitor
element” on page 1250
STMT_SOURCE_ID BIGINT stmt_source_id - Statement
source identifier
STMT_PKGCACHE_ID BIGINT stmt_pkgcache_id - Statement
package cache identifier
STMT_FIRST_USE_TIME TIMESTAMP stmt_first_use_time - Statement
first use timestamp
STMT_LAST_USE_TIME TIMESTAMP stmt_last_use_time - Statement
last use timestamp
STMT_TEXT CLOB(2097152) stmt_text - SQL statement text
STMT_UNICODE CHAR(3) “stmt_unicode - Statement
unicode flag monitor element”
on page 1258
QUERY_ACTUAL_DEGREE INTEGER query_actual_degree - Actual

runtime degree of intrapartition
parallelism

Table 27. Information returned for a locking event

monitor: Table name: LOCK_ACTIVITY_VALUES

Column Name

Data Type

Description

XMLID

VARCHAR(256) NOT NULL

“xmlid - XML ID monitor
element” on page 1431

PARTICIPANT_NO INTEGER participant_no - Participant
within deadlock

ACTIVITY_ID INTEGER activity_id - Activity ID

UOW_ID INTEGER uow_id - Unit of work ID

STMT_VALUE_INDEX INTEGER stmt_value_index - Value index

Chapter 3. Event monitors 141

Table 27. Information returned for a locking event monitor: Table name: LOCK_ACTIVITY_VALUES (continued)

Column Name Data Type Description
STMT_VALUE_ISREOPT INTEGER stmt_value_isreopt - Variable
used for statement
reoptimization
STMT_VALUE_ISNULL INTEGER stmt_value_isnull - Value has
null value
STMT_VALUE_TYPE CHAR(16) stmt_value_type - Value type
STMT_VALUE_DATA CLOB(32K) stmt_value_data - Value data

Information written to XML by EVMON_FORMAT_UE_TO_XML for a locking
event monitor:

Information written for a locking event monitor from the
EVMON_FORMAT_UE_TO_XML table function. This is also documented in the
sql1ib/misc/DB2EvmonLocking.xsd file.

db2_lock_event

The main schema that describes a lock timeout, lock wait or deadlock event in
details.

Element content: ((“db2_deadlock_graph” {zero or one times (?)},
“db2_participant” on page 143 {one or more (+)}) | (“db2_message” on page 143,
“db2_event_file” on page 143))

Attributes:
OName Type Fixed Default Use Annotation
id xs:long required
type required
timestamp xs:dateTime required
member required
release xs:long required
ANY attribute
from ANY
namespace
db2_deadlock_graph
Schema element represents the DB2 Deadlock Graph. The graph outlines all the
participants involved in the deadlock.
Contained by: “db2_lock_event”
Element content: (“db2_participant” on page 153 {one or more (+)})
Attributes:
OName Type Fixed Default Use Annotation
dl_conns xs:int required

142 Database Monitoring Guide and Reference

QName Type Fixed Default Use Annotation

rolled_back xs:int required
_participant_no

type required

ANY attribute from
ANY namespace

db2_participant

Schema element represents the application information of the all the participants
involved in a lock event.

Contained by: “db2_lock_event” on page 142 “db2_deadlock_graph” on page 142

Element content: (“db2_object_requested” on page 148 {zero or one times (?)} ,
“db2_app_details” on page 148, “db2_activity” on page 148 {zero or more (¥)})

Attributes:
QName Type Fixed Default Use Annotation
no xs:int required
type required
participant_no xs:int optional
_holding_lk
deadlock_member | xs:int optional
ANY attribute from
ANY namespace

db2_message

Error message

Contained by: “db2_lock_event” on page 142
db2_event_file

Fully qualified path to file where event has been written.
Contained by: “db2_lock_event” on page 142
application_handle

A system-wide unique ID for the application. See monitor element “agent_id -
Application handle (agent ID) monitor element” on page 650for more details.

Contained by: “db2_app_details” on page 148
appl_id
This identifier is generated when the application connects to the database at the

database manager. See monitor element “appl_id - Application ID monitor
element” on page 666for more details.

Chapter 3. Event monitors 143

Contained by: “db2_app_details” on page 148

appl_name

The name of the application running at the client, as known to the database. See
monitor element “appl_name - Application name monitor element” on page 670for
more details.

Contained by: “db2_app_details” on page 148

auth_id

The authorization ID of the user who invoked the application that is being
monitored. See monitor element “auth_id - Authorization ID” on page 686for more
details.

Contained by: “db2_app_details” on page 148

agent_tid

Contained by: “db2_app_details” on page 148

Element content:

Type Facet
xs:long
coord_agent_tid
Contained by: “db2_app_details” on page 148
Element content:
Type Facet
xs:long
agent_status
The current status of the application. See monitor element “appl_status -
Application status monitor element” on page 673for more details.
Contained by: “db2_app_details” on page 148
Attributes:
OName Type Fixed Default Use Annotation
id xs:int optional

appl_action
The action/request that the client application is performing

Contained by: “db2_app_details” on page 148

144 Database Monitoring Guide and Reference

Attributes:

QName Type Fixed Default Use Annotation
id xs:int optional
lock_timeout_val
The database configuration parameter lock timeout. Value in seconds. See monitor
element “lock_timeout_val - Lock timeout value monitor element” on page 920for
more details.
Contained by: “db2_app_details” on page 148
Element content:
Type Facet
xs:long
lock_wait_val
The lock wait parameter in effect during the lock event. This is either the database
configuration parameter MON_LKWAIT_THRSH or the COLLECT LOCK WAIT
DATA setting specified at the workload level. Value in milliseconds.
Contained by: “db2_app_details” on page 148
Element content:
Type Facet
xs:long
tentry_state
TEntry state. Internal use only.
Contained by: “db2_app_details” on page 148
Attributes:
QName Type Fixed Default Use Annotation
id xs:int optional

tentry_flagl

TEntry flagsl. Internal use only.

Contained by: “db2_app_details” on page 148

Chapter 3. Event monitors

145

tentry_flag?2

TEntry flags2. Internal use only.

Contained by: “db2_app_details” on page 148
xid

XID - Global transaction identifier

Contained by: “db2_app_details” on page 148
workload_id

ID of the workload to which this application belongs. See monitor element
“workload_id - Workload ID monitor element” on page 1426for more details.

Contained by: “db2_app_details” on page 148
workload_name

Name of the workload to which this application belongs. See monitor element
“workload_name - Workload name monitor element” on page 1427for more details.

Contained by: “db2_app_details” on page 148
service_class_id

ID of the service subclass to which this application belongs. See monitor element
“service_class_id - Service class ID monitor element” on page 1207for more details.

Contained by: “db2_app_details” on page 148

service_subclass_name

Name of the service subclass to which this application belongs. See monitor
element “service_subclass_name - Service subclass name monitor element” on page
1208for more details.

Contained by: “db2_app_details” on page 148

current_request

The operation currently being processed or most recently processed.

Contained by: “db2_app_details” on page 148

lock_escalation

Indicates whether a lock request was made as part of a lock escalation. See monitor
element “lock_escalation - Lock escalation monitor element” on page 904for more

details. Possible values: Yes or No.

Contained by: “db2_app_details” on page 148

146 Database Monitoring Guide and Reference

past_activities_wrapped

Indicates whether the activities list has wrapped. The default limit on the number
of past activities to be kept by any one application is 250. This default can be
overridden using the registry variable DB2_MAX_INACT_STMTS. Users may want
to choose a different value for the limit to increase or reduce the amount of system
monitor heap used for inactive statement information.

Contained by: “db2_app_details” on page 148

client_userid

The client user ID generated by a transaction manager and provided to the server.
See monitor element “client_userid - Client user ID monitor element” on page
717for more details.

Contained by: “db2_app_details” on page 148

client_wrkstnname

Identifies the client system or workstation, if the sqleseti API was issued in this
connection. See monitor element “client_wrkstnname - Client workstation name
monitor element” on page 717for more details.

Contained by: “db2_app_details” on page 148

client_applname

Identifies the server transaction program performing the transaction, if the sqleseti
API was issued in this connection. See monitor element “client_applname - Client
application name monitor element” on page 710for more details.

Contained by: “db2_app_details” on page 148

client_acctng

The data passed to the target database for logging and diagnostic purposes, if the
sqleseti API was issued in this connection. See monitor element “client_acctng -
Client accounting string monitor element” on page 709for more details.
Contained by: “db2_app_details” on page 148

utility_invocation_id

Contained by: “db2_app_details” on page 148

service_superclass_name

Name of the service superclass to which this application belongs. See monitor
element “service_superclass_name - Service superclass name monitor element” on

page 1209for more details.

Contained by: “db2_app_details” on page 148

Chapter 3. Event monitors 147

db2_object_requested

Schema element represents the DB2 lock that the Requestor is attempting to
acquire, which is being held by the Owner.

Contained by: “db2_participant” on page 143

Element content: ((“lock_name” on page 149, “lock_object_type” on page 149,
“lock_specifics” on page 149, “lock_attributes” on page 149, “lock_current_mode”
on page 149, “lock_mode_requested” on page 150, “lock_mode” on page 150,
“lock_count” on page 150, “lock_hold_count” on page 150, “lock_rriid” on page
151, “lock_status” on page 151, “lock_release_flags” on page 151,
“tablespace_name” on page 151, “table_name” on page 151, “table_schema” on
page 152, “lock_object_type_id” on page 152, “lock_wait_start_time” on page 152,
“lock_wait_end_time” on page 152, ANY content (skip) {zero or more (*)}) | (
“threshold_name” on page 153, “threshold_id” on page 153, “queued_agents” on
page 153, “queue_start_time” on page 153, ANY content (skip) {zero or more (*)})

)

Attributes:

OName

Type Fixed Default Use Annotation

type

required

db2_app_details
Schema element represents the details regarding this participant.
Contained by: “db2_participant” on page 143

Element content: (“application_handle” on page 143, “appl_id” on page 143,
“appl_name” on page 144, “auth_id” on page 144, “agent_tid” on page 144,
“coord_agent_tid” on page 144, “agent_status” on page 144, “appl_action” on page
144, “lock_timeout_val” on page 145, “lock_wait_val” on page 145, “tentry_state”
on page 145, “tentry_flagl” on page 145, “tentry_flag2” on page 146, “xid” on page
146, “workload_id” on page 146, “workload_name” on page 146, “service_class_id”
on page 146, “service_subclass_name” on page 146, “current_request” on page 146,
“lock_escalation” on page 146, “past_activities_wrapped” on page 147,
“client_userid” on page 147, “client_wrkstnname” on page 147, “client_applname”
on page 147, “client_acctng” on page 147, “utility_invocation_id” on page 147,
“service_superclass_name” on page 147, ANY content (skip) {zero or more (*)})

db2_activity
List of all DB2 activities the application is currently executing or has executed.
Contained by: “db2_participant” on page 143

Element content: (“db2_activity_details” on page 158, “db2_input_variable” on
page 159 {zero or more (*)})

Attributes:

QOName

Type Fixed Default Use Annotation

type

required

148 Database Monitoring Guide and Reference

QName

Type Fixed Default Use

Annotation

ANY attribute
from ANY
namespace

lock_name

Internal binary lock name. This element serves as a unique identifier for locks. See
monitor element “lock_name - Lock name monitor element” on page 914for more
details.

Contained by: “db2_object_requested” on page 148

lock_object_type

The type of object the application is waiting to obtain a lock. See monitor element
“lock_object_type - Lock object type waited on monitor element” on page 916for
more details.

Contained by: “db2_object_requested” on page 148

Attributes:

QName

Type Fixed Default Use

Annotation

id

xs:long optional

lock_specifics

Internal specifics about the lock. For information use only.
Contained by: “db2_object_requested” on page 148
lock_attributes

Lock attributes. See monitor element “lock_attributes - Lock attributes monitor
element” on page 901for more details.

Contained by: “db2_object_requested” on page 148
lock_current_mode

Orginal lock before conversion. See monitor element “lock_current_mode - Original
lock mode before conversion monitor element” on page 903for more details.

Contained by: “db2_object_requested” on page 148

Attributes:

QName

Type Fixed Default Use

Annotation

id

xs:long optional

mode

optional

Chapter 3. Event monitors 149

lock_mode_requested
The lock mode being requested by this participant. See monitor element
“lock_mode_requested - Lock mode requested monitor element” on page 913for

more details.

Contained by: “db2_object_requested” on page 148

Attributes:
QName Type Fixed Default Use Annotation
id xs:long optional
mode optional
lock_mode
The type of lock being held. See monitor element “lock_mode - Lock mode
monitor element” on page 912for more details.
Contained by: “db2_object_requested” on page 148
Attributes:
QName Type Fixed Default Use Annotation
id xs:long optional
mode optional
lock_count
The number of locks on the lock being held. See monitor element “lock_count -
Lock count monitor element” on page 902for more details.
Contained by: “db2_object_requested” on page 148
Element content:
Type Facet
xs:long
lock_hold_count
The number of holds placed on the lock. See monitor element “lock_hold_count -
Lock hold count monitor element” on page 911for more details.
Contained by: “db2_object_requested” on page 148
Element content:
Type Facet
xs:long

150 Database Monitoring Guide and Reference

lock_rriid
IID for Row locking. Internal use only.
Contained by: “db2_object_requested” on page 148

Element content:

Type Facet
xs:long
lock_status
Indicates the internal status of the lock. See monitor element “lock_status - Lock
status monitor element” on page 919for more details.
Contained by: “db2_object_requested” on page 148
Attributes:
QName Type Fixed Default Use Annotation
id xs:int optional
lock_release_flags
Lock release flags. See monitor element “lock_release_flags - Lock release flags
monitor element” on page 918for more details.
Contained by: “db2_object_requested” on page 148
tablespace_name
The name of the table space where the lock is held. See monitor element
“tablespace_name - Table space name monitor element” on page 1279for more
details.
Contained by: “db2_object_requested” on page 148
Attributes:
QName Type Fixed Default Use Annotation
id xs:long optional

table_name

The name of the table where the lock is held. See monitor element “table_name -
Table name monitor element” on page 1269for more details.

Contained by: “db2_object_requested” on page 148

Attributes:

Chapter 3. Event monitors 151

QName Type Fixed Default Use Annotation
id xs:long optional
data_member_id optional

The identifier of
the data member
for which
information is
returned.

table_schema

The schema of the table. See monitor element “table_schema - Table schema name
monitor element” on page 1271for more details.

Contained by: “db2_object_requested” on page 148

lock_object_type_id

The type of object the application is waiting to obtain a lock. See monitor element
“lock_object_type - Lock object type waited on monitor element” on page 916for
more details.

Contained by: “db2_object_requested” on page 148

lock_wait_start_time

The data and time the application started waiting to obtain a lock on the object
that is currently locked by the lock owner. See monitor element
“lock_wait_start_time - Lock wait start timestamp monitor element” on page
923for more details.

Contained by: “db2_object_requested” on page 148

Element content:

Type

Facet

xs:dateTime

lock_wait_end_time

The data and time the application stopped waiting to obtain a lock on the object
that is currently locked by the lock owner.

Contained by: “db2_object_requested” on page 148

Element content:

Type

Facet

xs:dateTime

152 Database Monitoring Guide and Reference

threshold_name

The name of the threshold queue.

Contained by: “db2_object_requested” on page 148
threshold_id

The ID of the threshold queue.

Contained by: “db2_object_requested” on page 148
queued_agents

The total number of agents currently queued in the threshold.
Contained by: “db2_object_requested” on page 148

Element content:

Type Facet
xs:long
queue_start_time
The data and time the application started waiting in the queue to to obtain a
threshold ticket.
Contained by: “db2_object_requested” on page 148
Element content:
Type Facet

xs:dateTime

db2_participant
Schema element represents a single stack entry in a deadlock graph.

Contained by: “db2_lock_event” on page 142 “db2_deadlock_graph” on page 142

Attributes:
QName Type Fixed Default Use Annotation
no xs:int required
deadlock_member required
participant_no xs:int required
_holding_lk
application_handle required
ANY attribute from
ANY namespace

Chapter 3. Event monitors 153

activity_id

Counter which uniquely identifies an activity for an application within a given
unit of work. See monitor element “activity_id - Activity ID monitor element” on
page 645for more details.

Contained by: “db2_activity_details” on page 158

uow_id

The unit of work ID to which this activity record applies. See monitor element
“uow_id - Unit of work ID monitor element” on page 1401for more details.

Contained by: “db2_activity_details” on page 158

package_name

The name of the package that contains the SQL statement currently executing. See
monitor element “package_name - Package name monitor element” on page
1006for more details.

Contained by: “db2_activity_details” on page 158

package_schema

The schema name of the package associated with an SQL statement. See monitor
element “package_schema - Package schema monitor element” on page 1007for
more details.

Contained by: “db2_activity_details” on page 158

package_version_id

The package version identifies the version identifier of the package that contains
the SQL statement currently executing. See monitor element “package_version_id -
Package version monitor element” on page 1007for more details.

Contained by: “db2_activity_details” on page 158

consistency_token

The package consistency token helps to identify the version of the package that
contains the SQL statement currently executing. See monitor element
“consistency_token - Package consistency token monitor element” on page 738for
more details.

Contained by: “db2_activity_details” on page 158

section_number

The internal section number in the package for the SQL statement currently
processing or most recently processed. See monitor element “section_number -

Section number monitor element” on page 1201for more details.

Contained by: “db2_activity_details” on page 158

154 Database Monitoring Guide and Reference

Element content:

Type

Facet

xs:long

reopt

The REOPT bind option used to precompile this package. Possible values are:
NONE, ONCE, and ALWAYS. See the REOPT bind options for more details.

Contained by: “db2_activity_details” on page 158
incremental_bind

The package was incrementally bound at execution time. Possible values: Yes or
No.

Contained by: “db2_activity_details” on page 158

effective_isolation

The isolation value in effect for the SQL statement while it was being run. See
monitor element “effective_isolation - Effective isolation monitor element” on page
805for more details.

Contained by: “db2_activity_details” on page 158

Attributes:

QName

Type Fixed Default Use Annotation

id

xs:long optional

effective_query_degree

The degree value in effect for the SQL statement while it was being run. See
monitor element “effective_query_degree - Effective query degree monitor
element” on page 806for more details.

Contained by: “db2_activity_details” on page 158

Element content:

Type

Facet

xs:long

stmt_unicode
The SQL statement unicode flag. Possible values: Yes or No.

Contained by: “db2_activity_details” on page 158

Chapter 3. Event monitors 155

stmt_lock_timeout

The locktimeout value in effect for the SQL statement while it was being run. See
monitor element “stmt_lock_timeout - Statement lock timeout monitor element” on
page 1249for more details

Contained by: “db2_activity_details” on page 158

Element content:

Type Facet
xs:int
stmt_type
The type of SQL statement processed. Possible values: Dynamic or Static. See
monitor element “stmt_type - Statement type monitor element” on page 1256for
more details.
Contained by: “db2_activity_details” on page 158
Attributes:
OName Type Fixed Default Use Annotation
id xs:long required
stmt_operation
Contained by: “db2_activity_details” on page 158
stmt_query_id
Internal query identifier given to any SQL statement. See monitor element
“stmt_query_id - Statement query identifier monitor element” on page 1252for
more details.
Contained by: “db2_activity_details” on page 158
Element content:
Type Facet
xs:long

stmt_nest_level

This element shows the level of nesting or recursion in effect when the statement
was run. See monitor element “stmt_nest_level - Statement nesting level monitor
element” on page 1249for more details.

Contained by: “db2_activity_details” on page 158

Element content:

156 Database Monitoring Guide and Reference

Type Facet

xs:long

stmt_invocation_id

This element shows the identifier of the routine invocation in which the SQL
statement was run. See monitor element “stmt_invocation_id - Statement
invocation identifier monitor element” on page 1247for more details.

Contained by: “db2_activity_details” on page 158

Element content:

Type Facet

xs:long

stmt_source_id

This element shows the internal identifier given to the source of the the SQL
statement that was run. See monitor element “stmt_source_id - Statement source
identifier” on page 1253for more details.

Contained by: “db2_activity_details” on page 158

Element content:

Type Facet

xs:long

stmt_pkgcache_id

This element shows the internal package cahce identifier of a dynamic SQL
statement. See monitor element “stmt_pkgcache_id - Statement package cache
identifier monitor element” on page 1251for more details.

Contained by: “db2_activity_details” on page 158

Element content:

Type Facet

xs:long

stmt_text

The text of the SQL statement. See monitor element “stmt_text - SQL statement text
monitor element” on page 1255for more details.

Contained by: “db2_activity_details” on page 158

Chapter 3. Event monitors 157

stmt_first use_time

This element shows the first time the statement entry was processed. For cursor
operations, “stmt_first_use_time - Statement first use timestamp monitor element”
on page 1246shows when the cursor was opened. At application coordination
nodes, this value reflects the application requests; at non-coordinator nodes, this
value reflects when requests were received from the originating node. See monitor
element stmt_first_use_time for more details.

Contained by: “db2_activity_details”

Element content:

Type

Facet

xs:dateTime

stmt_last_use_time

This element shows the last time the statement entry was processed. For cursor
operations, “stmt_last_use_time - Statement last use timestamp monitor element”
on page 1248shows the time of the last action on the cursor where that action
could be an open, fetch, or close. At application coordination nodes, this value
reflects the application requests; at non-coordinator nodes, this value reflects when
requests were received from the originating node. See monitor element
stmt_last_use_time for more details.

Contained by: “db2_activity_details”

Element content:

Type

Facet

xs:dateTime

query_actual_degree

The actual runtime degree value for the SQL statement while it was being run. See
monitor element “query_actual_degree - Actual runtime degree of intrapartition
parallelism monitor element” on page 1162for more details.

Contained by: “db2_activity_details”

Element content:

Type

Facet

xs:int

db2_activity_details
Schema represents the details regarding this activity

Contained by: “db2_activity” on page 148

158 Database Monitoring Guide and Reference

Element content: (“activity_id” on page 154, “uow_id” on page 154,
“package_name” on page 154, “package_schema” on page 154,
“package_version_id” on page 154, “consistency_token” on page 154,
“section_number” on page 154, “reopt” on page 155, “incremental_bind” on page
155, “effective_isolation” on page 155, “effective_query_degree” on page 155,
“stmt_unicode” on page 155, “stmt_lock_timeout” on page 156, “stmt_type” on
page 156, “stmt_operation” on page 156, “stmt_query_id” on page 156,
“stmt_nest_level” on page 156, “stmt_invocation_id” on page 157,
“stmt_source_id” on page 157, “stmt_pkgcache_id” on page 157, “stmt_text” on
page 157, “stmt_first_use_time” on page 158, “stmt_last_use_time” on page 158,
“query_actual_degree” on page 158, ANY content (skip) {zero or more (*)})

db2_input_variable

Schema element represents the list of input variables associated with the SQL
statement.

Contained by: “db2_activity” on page 148

a7 /i

Element content: (“stmt_value_index”, “stmt_value_isreopt”, “stmt_value_isnull”,
“stmt_value_type” on page 160, “stmt_value_data” on page 160, ANY content (
skip) {zero or more (*)})

stmt_value_index

The element represents the position of the input parameter marker or host variable
used in the SQL statement. See monitor element “stmt_value_index - Value index”
on page 1259for more details.

Contained by: “db2_input_variable”

stmt_value_isreopt

The element shows whether the variable was used during statement
reoptimization. See monitor element “stmt_value_isreopt - Variable used for

statement reoptimization monitor element” on page 1261for more details.

Contained by: “db2_input_variable”

Attributes:
QName Type Fixed Default Use Annotation
id xs:int required

stmt_value_isnull

The element shows whether a data value associated with the SQL statement is the
NULL value. See monitor element “stmt_value_isnull - Value has null value
monitor element” on page 1260for more details.

Contained by: “db2_input_variable”

Attributes:

Chapter 3. Event monitors 159

QName

Type Fixed Default Use Annotation

id

xs:int required

stmt_value_type

“stmt_value_type - Value type monitor element” on page 1261
Contained by: “db2_input_variable” on page 159
stmt_value_data

The element contains a string representation of a data value associated with an
SQL statement. See monitor element “stmt_value_data - Value data” on page
1259for more details.

Contained by: “db2_input_variable” on page 159

Collecting lock event data and generating reports

You can use the lock event monitor to collect lock timeout, lock wait, and deadlock
information to help identify and resolve locking problems. After the lock event
data has been collected in an unreadable form in an unformatted event table, this
task describes how to obtain a readable text report.

Before you begin

To create the locking event monitor and collect lock event monitor data, you must
have DBADM, or SQLADM authority.

About this task

The lock event monitor collects relevant information that helps with the
identification and resolution of locking problems. For example, some of the
information the lock event monitor collects for a lock event is as follows:

* The lock that resulted in a lock event
* The applications requesting or holding the lock that resulted in a lock event
* What the applications were doing during the lock event

This task provides instructions for collecting lock event data for a given workload.
You might want to collect lock event data under the following conditions:

* You notice that lock wait values are longer than usual when using the
MON_GET WORKLOAD table function.

* An application returns a -911 SQL return code with reason code 68 in the
administration notification log, stating that "The transaction was rolled back due
to a lock timeout." See also message SQL0911N for further details.

* You notice a deadlock event message in the administration notification log (-911
SQL return code with reason code 2, stating that "The transaction was rolled
back due to a deadlock."). The log message indicates that the lock event
occurred between two applications, for example, Application A and B, where A
is part of workload FINANCE and B is part of workload PAYROLL. See also
message SQL0911N for further details.

Restrictions

160 Database Monitoring Guide and Reference

To view data values, you need the EXECUTE privilege on the
EVMON_FORMAT_UE_* routines, which the SQLADM and DBADM authorities
hold implicitly. You also need SELECT privilege on the unformatted event table
table, which by default is held by users with the DATAACCESS authority and by
the creator of the event monitor and the associated unformatted event table.

Procedure

To collect detailed information regarding potential future lock events, perform the
following steps:

1.

Create a lock event monitor called Tockevmon by using the CREATE EVENT
MONITOR FOR LOCKING statement, as shown in the following example:

CREATE EVENT MONITOR Tockevmon FOR LOCKING
WRITE TO UNFORMATTED EVENT TABLE

Note: The following lists important points to remember when creating an event
monitor:

* You can create event monitors ahead of time and not worry about using up
disk space since nothing is written until you activate the data collection at
the database or workload level

¢ In a partitioned database environment, ensure that the event monitors are
placed in a partitioned table space across all nodes. Otherwise, lock events
will be missed at partitions where the partitioned table space is not present.

* Ensure that you set up a table space and bufferpool to minimize the
interference on high performance work caused by ongoing work during
accesses to the tables to obtain data.

Activate the lock event monitor called Tockevmon by running the following
statement:

SET EVENT MONITOR lockevmon STATE 1

To enable the lock event data collection at the workload level, issue the ALTER
WORKLOAD statement with one of the following COLLECT clauses:
COLLECT LOCK TIMEOUT DATA, COLLECT DEADLOCK DATA, or
COLLECT LOCK WAIT DATA. Specify the WITH HISTORY option on the
COLLECT clause. Setting the database configuration parameter affects the lock
event data collection at the database level and all workloads are affected.

For lock wait events
To collect lock wait data for any lock acquired after 5 seconds for the
FINANCE application and to collect lock wait data for any lock
acquired after 10 seconds for the PAYROLL application, issue the
following statements:
ALTER WORKLOAD finance COLLECT LOCK WAIT DATA WITH HISTORY AND VALUES
FOR LOCKS WAITING MORE THAN 5 SECONDS

ALTER WORKLOAD payroll COLLECT LOCK WAIT DATA
FOR LOCKS WAITING MORE THAN 10 SECONDS WITH HISTORY

To set the mon_lockwait database configuration parameter with
HIST_AND_VALUES input data value for the SAMPLE database, and
to set the mon_lw_thresh database configuration parameter for 10
seconds, issue the following commands:

db2 update db cfg for sample using mon_lockwait hist_and_values
db2 update db cfg for sample using mon_lw_thresh 10000000

For lock timeout events
To collect lock timeout data for the FINANCE and PAYROLL
applications, issue the following statements:

Chapter 3. Event monitors 161

ALTER WORKLOAD finance COLLECT LOCK TIMEOUT DATA WITH HISTORY
ALTER WORKLOAD payroll COLLECT LOCK TIMEOUT DATA WITH HISTORY

To set the mon_locktimeout database configuration parameter with
HIST_AND_VALUES input data value for the SAMPLE database, issue
the following command:

db2 update db cfg for sample using mon_locktimeout hist_and_values

For deadlock events
To collect data for the FINANCE and PAYROLL applications, issue the
following statements:

ALTER WORKLOAD finance COLLECT DEADLOCK DATA WITH HISTORY
ALTER WORKLOAD payroll COLLECT DEADLOCK DATA WITH HISTORY

To set the mon_deadlock database configuration parameter with
HIST_AND_VALUES input data value for the SAMPLE database, issue
the following command:

db2 update db cfg for sample using mon_deadlock hist_and_values
4. Rerun the workload in order to receive another lock event notification.
5. Connect to the database.
6. Obtain the locking event report using one of the following approaches:
a. Use the XML parser tool, db2evmonfmt, to produce a flat-text report based on

the event data collected in the unformatted event table and using the
default stylesheet, for example:

java db2evmonfmt -d db_name -ue table_name -ftext -u user_id -p password
b. Use the EVMON_FORMAT _UE_TO_XML table function to obtain an XML
document.

c. Use the EVMON_FORMAT_UE_TO_TABLES procedure to output the data
into a relational table.

7. Analyze the report to determine the reason for the lock event problem and
resolve it.

8. Turn OFF lock data collection for both FINANCE and PAYROLL applications
by running the following statements or resetting the database configuration
parameters:

For lock wait events

ALTER WORKLOAD finance COLLECT LOCK WAIT DATA NONE
ALTER WORKLOAD payroll COLLECT LOCK WAIT DATA NONE

To reset the mon_lockwait database configuration parameter with the
default NONE input data value for the SAMPLE database, and to reset
the mon_lw_thresh database configuration parameter back to its default
value of 5 seconds, issue the following command:

db2 update db cfg for sample using mon_lockwait none
db2 update db cfg for sample using mon_lw_thresh 5000000

For lock timeout events
ALTER WORKLOAD finance COLLECT LOCK TIMEOUT DATA NONE
ALTER WORKLOAD payroll COLLECT LOCK TIMEOUT DATA NONE

To reset the mon_locktimeout database configuration parameter with the
default NONE input data value for the SAMPLE database, issue the
following command:

db2 update db cfg for sample using mon_locktimeout none

162 Database Monitoring Guide and Reference

For deadlock events
ALTER WORKLOAD finance COLLECT DEADLOCK DATA NONE
ALTER WORKLOAD payroll COLLECT DEADLOCK DATA NONE

To reset the mon_deadlock database configuration parameter with the
default WITHOUT_HIST input data value for the SAMPLE database,
issue the following command:

db2 update db cfg for sample using mon_deadlock without hist
What to do next

Rerun the application or applications to ensure that the locking problem has been
eliminated.

Unit of work event monitoring

The unit of work event monitor records an event whenever a unit of work is
completed, that is, whenever there is a commit or a rollback. This historical
information about individual units of work is useful for chargeback purposes
(charging by CPU usage) and for monitoring compliance with response-time
service-level objectives.

The unit of work event monitor is one way to perform system-perspective
monitoring with request metrics. The most closely related alternatives or
complements to the unit of work event monitor are the statistics event monitor and
the MON_GET_UNIT_OF_WORK and MON_GET_UNIT_OF_WORK_DETAILS
table functions.

You can use the unit of work event monitor to collect a listing of packages used
within a unit of work and the nesting level at which it was used. This information
helps facilitate stored procedure troubleshooting. Starting in DB2 Version 10.1, you
can also generate a listing of the executable IDs and associated statement-level
metrics for statements that ran within a unit of work.

To create the unit of work event monitor and collect unit of work event monitor
data, you must have DBADM or SQLADM authority.

Creating a unit of work event monitor

Starting in DB2 Version 10.1, you have the choice of having the output for a unit of
work event monitor output written to an unformatted event (UE) table, or a
regular table. See “Output options for event monitors” on page 34 for more
information on how to choose the most appropriate output format.

Whichever type of table you use, when you create a unit of work event monitor,
identify the table space where you plan to store the table or tables containing the
output for your event monitor. The recommended practice is to have a table space
that is dedicated and configured to store the table. However, when you create an
event monitor, you can specify an existing table space. If you do not specify a table
space, one is chosen for you.

To create a unit of work event monitor using defaults and best practices, use the
CREATE EVENT MONITOR statement. The following sample statement uses
defaults where possible and specifies that output will be stored in a UE table in the
MY_EVMON_TABLESPACE table space:

Chapter 3. Event monitors 163

CREATE EVENT MONITOR MY_UOW_EVMON
FOR UNIT OF WORK
WRITE TO UNFORMATTED EVENT TABLE (IN MY_EVMON_TABLESPACE)

Configuring data collection

You can specify four different collection levels for unit of work data:
1. None
2. Basic unit of work data
a. Information about the packages that ran within the unit of work
b. A list of executable IDs for statements that ran within the unit of work.

You can use database configuration parameters to control the collection of unit of
work data for all unit of work event monitors that are active in the database.
Alternatively, to control the collection of information for specific workloads, service
classes, or work actions, you can use the CREATE and ALTER statements for the
appropriate workload objects.

To configure data collection at the database level, set the mon_uow_data database
configuration parameter and, optionally, the mon_uow_pkglist and
mon_uow_execlist database configuration parameters by using the UPDATE DATABASE
CONFIGURATION command. Possible combinations of values for these parameters are
shown inTable 28:

Table 28. Possible values for unit of work event monitor configuration parameters

Data to collect mon_uow_data mon_uow_pkglist mon_uow_execlist
Collect no unit of NONE (default) OFF(default) OFF (default)
work data

Collect only basic BASE OFF (default) OFF (default)

unit of work data

Collect package list ~ BASE ON OFF (default)

information but not
information about
executable IDs

Collect information BASE OFF (default) ON
about executable IDs

but not a list of

packages

Collect basic unit of BASE ON ON
work data, package

list information, and

information about

executable IDs

Tips:

* If you do not set any of the configuration parameters, no unit of work data is
collected unless you enable collection for specific workload objects. You can
enable collection for specific workload objects by using either the CREATE or

ALTER statement for the appropriate workload object type, for example, the
CREATE SERVICE CLASS or ALTER WORKLOAD statement.

* To collect basic unit of work data but no package list or executable ID
information, you can set the mon_uow_data configuration parameter to BASE and
omit the mon_uow_pkglist and mon_uow_execlist configuration parameters. If
you do not explicitly set them, the default value of OFF is used.

164 Database Monitoring Guide and Reference

* To collect one or both of package list and executable ID information, you must
also set the mon_uow_data configuration parameter to BASE. If you set the
mon_uow_data configuration parameter to NONE, no information is collected,
regardless of the settings of the mon_uow_pkglist and mon_uow_execlist
configuration parameters.

To control the collection of data for specific workload objects, use the COLLECT
UNIT OF WORK DATA clause of the CREATE or ALTER statement for the specific
type of workload object that you are interested in. For example, to collect basic
unit of work event data and package list information for the workload REPORTS,
you might issue a statement such as this:

ALTER WORKLOAD REPORTS COLLECT UNIT OF WORK DATA BASE INCLUDE PACKAGE LIST

To collect both package list information and a list of the executable IDs for
statements that are run in the unit of work, you might use this statement:

ALTER WORKLOAD REPORTS COLLECT UNIT OF WORK DATA BASE INCLUDE PACKAGE LIST,
EXECUTABLE LIST

The settings that are shown in Table 28 on page 164 apply to all workloads
running in the system unless you override these settings for specific workloads by
using the CREATE WORKLOAD or ALTER WORKLOAD statement. If you want
to collect base-level information for all workloads but also want to collect package
list information for selected workloads, set the mon_uow_data database
configuration parameter to BASE. Then, use the CREATE WORKLOAD or ALTER
WORKLOAD statement to set the level to BASE PACKAGE LIST for the workloads
that you are interested in.

By default, applicable table functions and event monitors, including the unit of
work event monitor, collect and report request metrics. You can change the default
setting as follows:

* By using the mon_req_metrics database configuration parameter

* By using the COLLECT REQUEST METRICS clause of the CREATE SERVICE
CLASS or ALTER SERVICE CLASS statement for a service superclass.

Changing the default setting affects any table function or event monitor that can
report request metrics.

Accessing event data that is captured by a unit of work event
monitor

A unit of work event monitor can write data to a regular table or it can write data
in binary format to an unformatted event (UE) table. You can access the data in
regular tables by using SQL.

To access data in a UE table, use one of the following table functions:

EVMON_FORMAT UE_TO_XML
Extracts data from an unformatted event table into an XML document.

EVMON_FORMAT UE_TO_TABLES
Extracts data from an unformatted event table into a set of relational
tables.

When you use one of these table functions, you can specify which data to extract
by including a SELECT statement as one of the parameters to the function. You
have full control over selection, ordering, and other aspects provided by the
SELECT statement.

Chapter 3. Event monitors 165

If you are generating package listing information, you can use the
EVMON_FORMAT_UE_TO_XML table function to generate a single XML
document that contains both the base unit of work event monitor data and the
package listing. The EVMON_FORMAT_UE_TO_TABLES procedure produces two
tables: one for the basic unit of work event monitor information and another for
the package listing information. You can join the two tables by using the values in
the MEMBER, APPLICATION_ID, and UOW_ID columns.

You can also use the db2evmonfmt command to help perform the following tasks:

* Select events of interest based on the following attributes: event ID, event type,
time period, application, workload, or service class

* Choose whether to receive the output in the form of a text report or a formatted
XML document

* Control the output format by creating your own XSLT style sheets instead of
using the ones provided by the db2evmonfmt command

For example, the following command provides a unit of work report that selects
unit of work events that occurred in the past 24 hours in the database SAMPLE.
These event records are obtained from the unformatted event table called
SAMPLE_UOW_EVENTS. The command creates formatted text output by using
the MyUOW.xs1 style sheet.

java db2evmonfmt -d SAMPLE -ue SAMPLE_UOW_EVENTS -ftext -ss MyUOW.xs1 -hours 24

Data generated by unit of work event monitors

Unit of work event monitors produce data about units of work (transactions) that
run in the system. You can choose to have the output from a unit of work event
monitor to regular tables, or to an unformatted event (UE) table. If data is written
to a UE table, you must perform post-processing on it to view the data.

Regardless of the output format you choose, unit of work event data comes from
one of four logical groups:

* uow
°* uow_metrics

* uow_package_list

* uow_exec_list

If you choose to have the unit of work event data written to regular tables, data

from an additional group (CONTROL) is used to generate meta-data about the
event monitor itself.

Note: Unless you specify otherwise, the only monitor elements collected by a unit
of work event monitor are request metrics. To enable the generation of basic unit
of work event data, or for package or execution list data, you must enable data
collection explicitly. See “Enabling event monitor data collection” on page 116 for
more information.

Information written to tables for a unit of work event monitor:

Information written by the unit of work event monitor when the WRITE TO
TABLE option is specified.

When you choose WRITE TO TABLE as the ouput type for the unit of work event

monitor, by default, five tables are produced, each containing monitor elements
from one or more logical data groups:

166 Database Monitoring Guide and Reference

Table 29. Tables produced by UNIT OF WORK write-to-table event monitors. The table

name is derived by concatenating the name of the logical data group used to populate the
table with the name given to the event monitor (as represented by evmon-name in the table
names shown in the following table) in the CREATE EVENT MONITOR statement.

Default table name

Logical data groups reported

UOW _evmon-name

uow

UOW_METRICS_evmon-name

uow_metrics

UOW_PACKAGE_LIST_evmon-name

uow_package_list

UOW_EXECUTABLE_LIST_evmon-name

uow_executable_list

CONTROL_evmon-name

The CONTROL logical group consists of
selected elements from one or more of the
event_dbheader, event_start and
event_overflow logical data groups.

Note: Even though all five tables are produced by default, you must still ensure
data collection is enabled for the kind of lock information you want to gather,
otherwise some of the columns will report null values.

To restrict the output of the event monitor to specific tables, specify the names of
the logical groups for which you want tables produced in the CREATE EVENT
MONITOR or ALTER EVENT MONITOR statements. Refer to the reference topics

for those statements for details.

Tables produced

Table 30. Information returned for a locking event monitor: Default table name:

UOW_evmon-name

Column name Data type Description
PARTITION_KEY INTEGER “partition_key - Partitioning
key monitor element” on
page 1016
APPLICATION_HANDLE BIGINT application_handle -
Application handle
APPLICATION_ID VARCHAR(128) |“appl_id - Application ID
monitor element” on page 666
APPLICATION_NAME VARCHAR(128) | “appl_name - Application
name monitor element” on
page 670
CLIENT_ACCTNG VARCHAR(255) | client_acctng - Client
accounting string
CLIENT_APPLNAME VARCHAR(255) |client_applname - Client
application name
CLIENT_HOSTNAME VARCHAR(255) |client_hostname - Client
hostname
CLIENT_PID BIGINT client_pid - Client process ID
CLIENT_PLATFORM VARCHAR(12) client_platform - Client
operating platform
CLIENT_PORT_NUMBER INTEGER client_port_number - Client
port number

Chapter 3. Event monitors

167

Table 30. Information returned for a locking event monitor: Default table name:

UOW_evmon-name (continued)

Column name Data type Description
CLIENT_PRODUCT_ID VARCHAR(128) | “client_prdid - Client product
and version ID monitor
element” on page 715
CLIENT_PROTOCOL VARCHAR(10) client_protocol - Client
communication protocol
CLIENT_USERID VARCHAR(255) |client_userid - Client user ID
CLIENT_WRKSTNNAME VARCHAR(255) |client_wrkstnname - Client
workstation name
COMPLETION_STATUS VARCHAR(128) | completion_status -
Completion status
CONNECTION_TIME TIMESTAMP “connection_start_time -
Connection start time monitor
element” on page 736
COORD_MEMBER SMALLINT coord_member - Coordinator
member
EVENT_ID INTEGER NOT |event_id - Event ID monitor
NULL element
EVENT_TIMESTAMP TIMESTAMP event_timestamp - Event
NOT NULL timestamp monitor element
EXECUTABLE_LIST_SIZE BIGINT “executable_list_size - Size of
executable list monitor
element” on page 819
EXECUTABLE_LIST_TRUNCATED CHAR(3) “executable_list_truncated -
Executable list truncated
monitor element” on page 819
GLOBAL_TRANSACTION_ID VARCHAR(40) “global_transaction_id -
Global transaction identifier
monitor element” on page 851
INTRA_PARALLEL_STATE VARCHAR(128) |intra_parallel_state - Current
state of intrapartition
parallelism
LOCAL_TRANSACTION_ID VARCHAR(16) “local_transaction_id - Local
transaction identifier monitor
element” on page 900
MEMBER SMALLINT member - Database member
MEMBER_ACTIVATION_TIME TIMESTAMP “db_conn_time - Database
activation timestamp monitor
element” on page 772
METRICS BLOB
MON_INTERVAL_ID VARCHAR(128) | mon_interval_id - Monitor
interval identifier
PACKAGE_LIST_EXCEEDED CHAR(3) package_list_exceeded -
Package list exceeded
PACKAGE_LIST_SIZE INTEGER “package_list_size - Size of

package list monitor element”
on page 1006

168 Database Monitoring Guide and Reference

Table 30. Information returned for a locking event monitor: Default table name:

UOW_evmon-name (continued)

Column name Data type Description
SERVICE_CLASS_ID INTEGER service_class_id - Service class
1D
SERVICE_SUBCLASS_NAME VARCHAR(128) |service_subclass_name -
Service subclass name
SERVICE_SUPERCLASS_NAME VARCHAR(128) |service_superclass_name -
Service superclass name
SESSION_AUTHID VARCHAR(128) | “session_auth_id - Session
authorization ID monitor
element” on page 1211
START_TIME TIMESTAMP start_time - Event start time
STOP_TIME TIMESTAMP stop_time - Event stop time
SYSTEM_AUTHID VARCHAR(128) | “system_auth_id - System
authorization identifier
monitor element” on page
1267
UOW_ID INTEGER uow_id - Unit of work ID
UOW_LOG_SPACE_USED BIGINT uow_log_space_used - Unit of
work log space used
WORKLOAD_ID INTEGER workload_id - Workload ID
WORKLOAD_NAME VARCHAR(128) |workload_name - Workload
name
WORKLOAD_OCCURRENCE_ID INTEGER workload_occurrence_id -
Workload occurrence
identifier

Table 31. Information returned for a unit of work event monitor: Table name:

UOW_METRICS_evmon-name

Column Name Data Type Description

PARTITION_KEY INTEGER “partition_key - Partitioning key monitor
element” on page 1016

APPLICATION_ID VARCHAR “appl_id - Application ID monitor element”

(128) on page 666

MEMBER SMALLINT member - Database member

UOW_ID INTEGER uow_id - Unit of work ID

WLM_QUEUE_TIME_TOTAL BIGINT wlm_queue_time_total - Workload manager
total queue time

WLM_QUEUE_ASSIGNMENTS BIGINT wlm_queue_assignments_total - Workload

_TOTAL manager total queue assignments

FCM_TQ_RECV_WAIT_TIME BIGINT fem_tq_recv_wait_time - FCM table queue
received wait time

FCM_MESSAGE_RECV_WAIT_TIME BIGINT fcm_message_recv_wait_time - FCM message
received wait time

FCM_TQ_SEND_WAIT_TIME BIGINT fem_tq_send_wait_time - FCM table queue
send wait time

FCM_MESSAGE_SEND_WAIT_TIME BIGINT fem_message_send_wait_time - FCM message
send wait time

AGENT_WAIT_TIME BIGINT agent_wait_time - Agent wait time

AGENT_WAITS_TOTAL BIGINT agent_waits_total - Total agent waits

169

Chapter 3. Event monitors

Table 31. Information returned for a unit of work event monitor: Table name:
UOW_METRICS_evmon-name (continued)

Column Name Data Type Description

LOCK_WAIT_TIME BIGINT lock_wait_time - Time waited on locks

LOCK_WAITS BIGINT lock_waits - Lock waits

DIRECT_READ_TIME BIGINT direct_read_time - Direct read time

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read requests

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write time

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write requests

LOG_BUFFER_WAIT_TIME BIGINT log_buffer_wait_time - Log buffer wait time

NUM_LOG_BUFFER_FULL BIGINT num_log_buffer_full - Number of full log
buffers

LOG_DISK_WAIT_TIME BIGINT log_disk_wait_time - Log disk wait time

LOG_DISK_WAITS_TOTAL BIGINT log_disk_waits_total - Total log disk waits

TCPIP_RECV_WAIT_TIME BIGINT tepip_recv_wait_time - TCP/IP received wait
time

TCPIP_RECVS_TOTAL BIGINT tepip_recvs_total - TCP/IP receives total

CLIENT_IDLE_WAIT_TIME BIGINT client_idle_wait_time - Client idle wait time

IPC_RECV_WAIT_TIME BIGINT ipc_recv_wait_time - Interprocess
communication received wait time

IPC_RECVS_TOTAL BIGINT ipc_recvs_total - Interprocess communication
receives total

IPC_SEND_WAIT_TIME BIGINT ipc_send_wait_time - Interprocess
communication send wait time

IPC_SENDS_TOTAL BIGINT ipc_sends_total - Interprocess communication
send total

TCPIP_SEND_WAIT_TIME BIGINT tcpip_send_wait_time - TCP/IP send wait
time

TCPIP_SENDS_TOTAL BIGINT tepip_sends_total - TCP/IP sends total

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool physical
write time

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool physical
read time

AUDIT_FILE_WRITE_WAIT_TIME BIGINT audit_file_write_wait_time - Audit file write
wait time

AUDIT_FILE_WRITES_TOTAL BIGINT audit_file_writes_total - Total audit files
written

AUDIT_SUBSYSTEM_WAIT_TIME BIGINT audit_subsystem_wait_time - Audit
subsystem wait time

AUDIT_SUBSYSTEM_WAITS_TOTAL | BIGINT audit_subsystem_waits_total - Total audit
subsystem waits

DIAGLOG_WRITE_WAIT_TIME BIGINT diaglog_write_wait_time - Diagnostic log file
write wait time

DIAGLOG_WRITES_TOTAL BIGINT diaglog_writes_total - Total diagnostic log file
writes

FCM_SEND_WAIT_TIME BIGINT fem_send_wait_time - FCM send wait time

FCM_RECV_WAIT_TIME BIGINT fcm_recv_wait_time - FCM received wait time

TOTAL_WAIT_TIME BIGINT total_wait_time - Total wait time

RQSTS_COMPLETED_TOTAL BIGINT rgsts_completed_total - Total requests
completed

TOTAL_RQST_TIME BIGINT total_rqgst_time - Total request time

170 Database Monitoring Guide and Reference

Table 31. Information returned for a unit of work event monitor: Table name:

UOW_METRICS_evmon-name (continued)

Column Name Data Type Description
APP_RQSTS_COMPLETED_TOTAL BIGINT app_rqsts_completed_total - Total application
requests completed
TOTAL_APP_RQST_TIME BIGINT total_app_rqgst_time - Total application request
time
TOTAL_SECTION_SORT_PROC_TIME | BIGINT total_section_sort_proc_time - Total section
sort processing time
TOTAL_SECTION_SORTS BIGINT total_section_sorts - Total section sorts
TOTAL_SECTION_SORT_TIME BIGINT total_section_sort_time - Total section sort
time
ROWS_READ BIGINT rows_read - Rows read
ROWS_MODIFIED BIGINT rows_modified - Rows modified
POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool data logical
reads
POOL_INDEX_L_READS BIGINT pool_index_I_reads - Buffer pool index logical
reads
POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer pool
temporary data logical reads
POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer pool
temporary index logical reads
POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer pool XDA data
logical reads
POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer pool
temporary XDA data logical reads
TOTAL_CPU_TIME BIGINT total_cpu_time - Total CPU time
ACT_COMPLETED_TOTAL BIGINT act_completed_total - Total completed
activities
POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool data physical
reads
POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer pool
temporary data physical reads
POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer pool XDA data
physical reads
POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer pool
temporary XDA data physical reads
POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool index
physical reads
POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer pool
temporary index physical reads
POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool data writes
POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer pool XDA data
writes
POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool index writes
DIRECT_READS BIGINT direct_reads - Direct reads from database
DIRECT_WRITES BIGINT direct_writes - Direct writes to database
ROWS_RETURNED BIGINT rows_returned - Rows returned
DEADLOCKS BIGINT deadlocks - Deadlocks detected
LOCK_TIMEOUTS BIGINT lock_timeouts - Number of lock timeouts
LOCK_ESCALS BIGINT lock_escals - Number of lock escalations
FCM_SENDS_TOTAL BIGINT fcm_sends_total - FCM sends total
FCM_RECVS_TOTAL BIGINT fem_recvs_total - FCM receives total

Chapter 3. Event monitors 171

Table 31. Information returned for a unit of work event monitor: Table name:
UOW_METRICS_evmon-name (continued)

Column Name Data Type Description
FCM_SEND_VOLUME BIGINT fcm_send_volume - FCM send volume
FCM_RECV_VOLUME BIGINT fem_recv_volume - FCM received volume
FCM_MESSAGE_SENDS_TOTAL BIGINT fcm_message_sends_total - Total FCM
message sends
FCM_MESSAGE_RECVS_TOTAL BIGINT fcm_message_recvs_total - Total FCM
message receives
FCM_MESSAGE_SEND_VOLUME BIGINT fcm_message_send_volume - FCM message
send volume
FCM_MESSAGE_RECV_VOLUME BIGINT fcm_message_recv_volume - FCM message
received volume
FCM_TQ_SENDS_TOTAL BIGINT fem_tq_sends_total - FCM table queue send
total
FCM_TQ_RECVS_TOTAL BIGINT fem_tq_recvs_total - FCM table queue receives
total
FCM_TQ_SEND_VOLUME BIGINT fem_tq_send_volume - FCM table queue send
volume
FCM_TQ_RECV_VOLUME BIGINT fem_tq_recv_volume - FCM table queue
received volume
TQ_TOT_SEND_SPILLS BIGINT tq_tot_send_spills - Total number of table
queue buffers overflowed
TCPIP_SEND_VOLUME BIGINT tcpip_send_volume - TCP/IP send volume
TCPIP_RECV_VOLUME BIGINT tepip_recv_volume - TCP/IP received volume
IPC_SEND_VOLUME BIGINT ipc_send_volume - Interprocess
communication send volume
IPC_RECV_VOLUME BIGINT ipc_recv_volume - Interprocess
communication received volume
POST_THRESHOLD_SORTS BIGINT post_threshold_sorts - Post threshold sorts
POST_SHRTHRESHOLD_SORTS BIGINT post_shrthreshold_sorts - Post shared
threshold sorts
SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows
AUDIT_EVENTS_TOTAL BIGINT audit_events_total - Total audit events
ACT_REJECTED_TOTAL BIGINT act_rejected_total - Total rejected activities
ACT_ABORTED_TOTAL BIGINT act_aborted_total - Total aborted activities
TOTAL_SORTS BIGINT total_sorts - Total sorts
TOTAL_ROUTINE_TIME BIGINT total_routine_time - Total routine time
TOTAL_COMPILE_PROC_TIME BIGINT total_compile_proc_time - Total compile
processing time
TOTAL_COMPILATIONS BIGINT total_compilations - Total compilations
TOTAL_COMPILE_TIME BIGINT total_compile_time - Total compile time
TOTAL_IMPLICIT_COMPILATIONS BIGINT total_implicit_compilations - Total implicit
complications
TOTAL_IMPLICIT_COMPILE_TIME BIGINT total_implicit_compile_time - Total implicit
compile time
TOTAL_RUNSTATS_PROC_TIME BIGINT total_runstats_proc_time - Total runtime
statistics processing time
TOTAL_RUNSTATS BIGINT total_runstats - Total runtime statistics
TOTAL_RUNSTATS_TIME BIGINT total_runstats_time - Total runtime statistics
time
TOTAL_REORG_PROC_TIME BIGINT total_reorg_proc_time - Total reorganization
processing time

172 Database Monitoring Guide and Reference

Table 31. Information returned for a unit of work event monitor: Table name:

UOW_METRICS_evmon-name (continued)

Column Name Data Type Description

TOTAL_REORGS BIGINT total_reorgs - Total reorganizations

TOTAL_REORG_TIME BIGINT total_reorg_time - Total reorganization time

TOTAL_LOAD_PROC_TIME BIGINT total_load_proc_time - Total load processing
time

TOTAL_LOADS BIGINT total_loads - Total loads

TOTAL_LOAD_TIME BIGINT total_load_time - Total load time

TOTAL_SECTION_PROC_TIME BIGINT total_section_proc_time - Total section

processing time

TOTAL_APP_SECTION_EXECUTIONS | BIGINT

total_app_section_executions - Total
application section executions

TOTAL_SECTION_TIME BIGINT total_section_time - Total section time

TOTAL_COMMIT_PROC_TIME BIGINT total_commit_proc_time - Total commits
processing time

TOTAL_APP_COMMITS BIGINT total_app_commits - Total application
commits

TOTAL_COMMIT_TIME BIGINT total_commit_time - Total commit time

TOTAL_ROLLBACK_PROC_TIME BIGINT total_rollback_proc_time - Total rollback
processing time

TOTAL_APP_ROLLBACKS BIGINT total_app_rollbacks - Total application
rollbacks

TOTAL_ROLLBACK_TIME BIGINT total_rollback_time - Total rollback time

TOTAL_ROUTINE_USER_CODE BIGINT total_routine_user_code_time - Total routine

_TIME user code time

THRESH_VIOLATIONS BIGINT thresh_violations - Number of threshold
violations

NUM_LW_THRESH_EXCEEDED BIGINT num_Iw_thresh_exceeded - Number of lock

wait thresholds exceeded

TOTAL_ROUTINE_INVOCATIONS BIGINT

total_routine_invocations - Total routine
invocations

INT_COMMITS BIGINT int_commits - Internal commits
INT_ROLLBACKS BIGINT int_rollbacks - Internal rollbacks
CAT_CACHE_INSERTS BIGINT cat_cache_inserts - Catalog cache inserts
CAT_CACHE_LOOKUPS BIGINT cat_cache_lookups - Catalog cache lookups
PKG_CACHE_INSERTS BIGINT pkg_cache_inserts - Package cache inserts
PKG_CACHE_LOOKUPS BIGINT pkg_cache_lookups - Package cache lookups
ACT_RQSTS_TOTAL BIGINT act_rqgsts_total - Total activity requests
TOTAL_ACT_WAIT_TIME BIGINT total_act_wait_time - Total activity wait time
TOTAL_ACT_TIME BIGINT total_act_time - Total activity time
LOCK_WAIT_TIME_GLOBAL BIGINT lock_wait_time_global - Lock wait time global
LOCK_WAITS_GLOBAL BIGINT lock_waits_global - Lock waits global
RECLAIM_WAIT_TIME BIGINT reclaim_wait_time - Reclaim wait time

SPACEMAPPAGE_RECLAIM_WAIT BIGINT
_TIME

spacemappage_reclaim_wait_time - Space
map page reclaim wait time

LOCK_TIMEOUTS_GLOBAL BIGINT lock_timeouts_global - Lock timeouts global

LOCK_ESCALS_MAXLOCKS BIGINT lock_escals_maxlocks - Number of maxlocks
lock escalations

LOCK_ESCALS_LOCKLIST BIGINT lock_escals_locklist - Number of locklist lock

escalations

Chapter 3. Event monitors 173

Table 31. Information returned for a unit of work event monitor: Table name:

UOW_METRICS_evmon-name (continued)

Column Name Data Type Description

LOCK_ESCALS_GLOBAL BIGINT lock_escals_global - Number of global lock
escalations

CF_WAIT_TIME BIGINT cf_wait_time - cluster caching facility wait
time

CF_WAITS BIGINT cf_waits - Number of cluster caching facility
DB2 pureScale server waits

POOL_DATA_GBP_L_READS BIGINT pool_data_gbp_l_reads - Group buffer pool
data logical reads

POOL_DATA_GBP_P_READS BIGINT pool_data_gbp_p_reads - Group buffer pool

data physical reads

POOL_DATA_LBP_PAGES_FOUND BIGINT

pool_data_lbp_pages_found - Local buffer
pool found data pages

POOL_DATA_GBP_INVALID_PAGES | BIGINT

pool_data_gbp_invalid_pages - Group buffer
pool invalid data pages

POOL_INDEX_GBP_L_READS BIGINT pool_index_gbp_I_reads - Group buffer pool
index logical reads
POOL_INDEX_GBP_P_READS BIGINT pool_index_gbp_p_reads - Group buffer pool

index physical reads

POOL_INDEX_LBP_PAGES_FOUND | BIGINT

pool_index_lbp_pages_found - Local buffer
pool index pages found

POOL_INDEX_GBP_INVALID_PAGES | BIGINT

pool_index_gbp_invalid_pages - Group buffer
pool invalid index pages

POOL_XDA_GBP_L_READS BIGINT pool_xda_gbp_l_reads - Group buffer pool
XDA data logical read requests
POOL_XDA_GBP_P_READS BIGINT pool_xda_gbp_p_reads - Group buffer pool

XDA data physical read requests

POOL_XDA_LBP_PAGES_FOUND BIGINT

pool_xda_lbp_pages_found - Local buffer
pool XDA data pages found

POOL_XDA_GBP_INVALID_PAGES BIGINT

pool_xda_gbp_invalid_pages - Group buffer
pool invalid XDA data pages

EVMON_WAIT_TIME BIGINT

evmon_wait_time - Event monitor wait time

EVMON_WAITS_TOTAL BIGINT

evmon_waits_total - Event monitor total waits

TOTAL_EXTENDED_LATCH_WAIT BIGINT
_TIME

total_extended_latch_wait_time - Total
extended latch wait time

TOTAL_EXTENDED_LATCH_WAITS | BIGINT

total_extended_latch_waits - Total extended
latch waits

TOTAL_STATS_FABRICATIONS BIGINT

total_stats_fabrications - Total statistics
fabrications

TOTAL_STATS_FABRICATION_TIME | BIGINT

total_stats_fabrication_time - Total statistics
fabrication time

TOTAL_SYNC_RUNSTATS_PROC BIGINT total_sync_runstats_proc_time - Total

_TIME synchronous RUNSTATS processing time

TOTAL_SYNC_RUNSTATS BIGINT total_sync_runstats - Total synchronous
RUNSTATS activities

TOTAL_SYNC_RUNSTATS_TIME BIGINT total_sync_runstats_time - Total synchronous

RUNSTATS time

TOTAL_DISP_RUN_QUEUE_TIME BIGINT

total_disp_run_queue_time - Total dispatcher
run queue time

POOL_QUEUED_ASYNC_DATA BIGINT pool_queued_async_data_reqs - Data prefetch
_REQS requests

POOL_QUEUED_ASYNC_INDEX BIGINT pool_queued_async_index_reqs - Index
_REQS prefetch requests

174 Database Monitoring Guide and Reference

Table 31. Information returned for a unit of work event monitor: Table name:
UOW_METRICS_evmon-name (continued)

Column Name Data Type Description
POOL_QUEUED_ASYNC_XDA_REQS | BIGINT pool_queued_async_xda_reqs - XDA prefetch
requests
POOL_QUEUED_ASYNC_OTHER BIGINT pool_queued_async_other_reqs - Non-prefetch
_REQS requests
POOL_QUEUED_ASYNC_DATA BIGINT pool_queued_async_data_pages - Data pages
_PAGES prefetch requests
POOL_QUEUED_ASYNC_INDEX BIGINT pool_queued_async_index_pages - Index
_PAGES pages prefetch requests
POOL_QUEUED_ASYNC_XDA BIGINT pool_queued_async_xda_pages - XDA pages
_PAGES prefetch requests
POOL_FAILED_ASYNC_DATA_REQS | BIGINT pool_failed_async_data_reqs - Failed data
prefetch requests
POOL_FAILED_ASYNC_INDEX_REQS | BIGINT pool_failed_async_index_reqs - Failed index
prefetch requests
POOL_FAILED_ASYNC_XDA_REQS | BIGINT pool_failed_async_xda_reqs - Failed XDA
prefetch requests
POOL_FAILED_ASYNC_OTHER BIGINT pool_failed_async_other_reqs - Failed
_REQS non-prefetch requests
APP_ACT_COMPLETED_TOTAL BIGINT app_act_completed_total - Total successful
external coordinator activities
APP_ACT_ABORTED_TOTAL BIGINT app_act_aborted_total - Total failed external
coordinator activities
APP_ACT_REJECTED_TOTAL BIGINT app_act_rejected_total - Total rejected external
coordinator activities
TOTAL_PEDS BIGINT total_peds - Total partial early distincts
DISABLED_PEDS BIGINT “disabled_peds - Disabled partial early
distincts monitor element” on page 802
POST_THRESHOLD_PEDS BIGINT post_threshold_peds - Partial early distincts
threshold
TOTAL_PEAS BIGINT total_peas - Total partial early aggregations
POST_THRESHOLD_PEAS BIGINT post_threshold_peas - Partial early
aggregation threshold
TQ_SORT_HEAP_REQUESTS BIGINT tq_sort_heap_requests - Table queue sort heap
requests
TQ_SORT_HEAP_REJECTIONS BIGINT tq_sort_heap_rejections - Table queue sort
heap rejections
TOTAL_CONNECT_REQUESTS BIGINT total_connect_requests - Connection or switch
user requests
TOTAL_CONNECT_REQUEST_TIME | BIGINT total_connect_request_time - Total connection
or switch user request time
TOTAL_CONNECT BIGINT total_connect_authentications - Connections or
_AUTHENTICATIONS switch user authentications performed
PREFETCH_WAIT_TIME BIGINT prefetch_wait_time - Time waited for prefetch
PREFETCH_WAITS BIGINT prefetch_waits - Prefetcher wait count
POOL_DATA_GBP_INDEP_PAGES BIGINT “pool_data_gbp_indep_pages_found
_FOUND_IN_LBP _in_lbp - Group buffer pool independent data
pages found in local buffer pool monitor
element” on page 1041
POOL_INDEX_GBP_INDEP_PAGES BIGINT “pool_index_gbp_indep_pages

_FOUND_IN_LBP

_found_in_Ibp - Group buffer pool
independent index pages found in local buffer
pool monitor element” on page 1073

175

Chapter 3. Event monitors

Table 31. Information returned for a unit of work event monitor: Table name:
UOW_METRICS_evmon-name (continued)

Column Name Data Type Description
POOL_XDA_GBP_INDEP_PAGES BIGINT “pool_xda_gbp_indep_pages
_FOUND_IN_LBP _found_in_Ibp - Group buffer pool XDA

independent pages found in local buffer pool
monitor element” on page 1130

Table 32. Information returned for a locking event monitor: Default table name:
UOW_PACKAGE_LIST_evmon-name

Column name Data type Description
PARTITION_KEY INTEGER “partition_key - Partitioning
key monitor element” on
page 1016
APPLICATION_ID VARCHAR(128) | “appl_id - Application ID
monitor element” on page 666
INVOCATION_ID INTEGER invocation_id - Invocation ID
MEMBER SMALLINT member - Database member
NESTING_LEVEL INTEGER nesting_level - Nesting level
PACKAGE_ELAPSED_TIME BIGINT package_elapsed_time -
Package elapsed time
PACKAGE_ID BIGINT package_id - Package
identifier
ROUTINE_ID INTEGER routine_id - Routine ID
UOW_ID INTEGER uow_id - Unit of work ID

Table 33. Information returned for a locking event monitor: Default table name:
UOW_EXECUTABLE_LIST_evmon-name

Column name Data type Description

PARTITION_KEY INTEGER “partition_key - Partitioning
key monitor element” on
page 1016

APPLICATION_ID VARCHAR(128) |“appl_id - Application ID
monitor element” on page 666

EXECUTABLE_ID VARCHAR(32) executable_id - Executable ID

LOCK_WAIT_TIME BIGINT lock_wait_time - Time waited
on locks

LOCK_WAITS BIGINT lock_waits - Lock waits

MEMBER SMALLINT member - Database member

NUM_EXECUTIONS BIGINT num_executions - Statement
executions

POST_SHRTHRESHOLD_SORTS BIGINT post_shrthreshold_sorts - Post
shared threshold sorts

POST_THRESHOLD_SORTS BIGINT post_threshold_sorts - Post
threshold sorts

ROWS_READ BIGINT rows_read - Rows read

SORT_OVERFLOWS BIGINT sort_overflows - Sort
overflows

176 Database Monitoring Guide and Reference

Table 33. Information returned for a locking event monitor: Default table name:
UOW_EXECUTABLE_LIST_evmon-name (continued)

Column name Data type Description

TOTAL_ACT_TIME BIGINT total_act_time - Total activity
time

TOTAL_ACT_WAIT_TIME BIGINT total_act_wait_time - Total
activity wait time

TOTAL_CPU_TIME BIGINT total_cpu_time - Total CPU
time

TOTAL_SORTS BIGINT total_sorts - Total sorts

UOW_ID INTEGER uow_id - Unit of work ID

Table 34. Information returned for a unit of work event monitor: Default table name:

CONTROL_evmon-name

Column name Data type Description

PARTITION_KEY INTEGER “partition_key - Partitioning
key monitor element” on
page 1016

EVENT_MONITOR_NAME VARCHAR(128) |event_monitor_name - Event
monitor name

MESSAGE VARCHAR(128) | message - Control table
message

MESSAGE_TIME TIMESTAMP message_time - Timestamp
control table message

PARTITION_NUMBER SMALLINT partition_number - Partition
number

Information written to relational tables by EVMON_FORMAT_UE_TO_TABLES

for a unit of work event monitor:

Information written for a unit of work event monitor from the
EVMON_FORMAT UE_TO_TABLES table function. This is also documented in the

sq11ib/misc/DB2EvmonUOW. xsd file.

Table 35. Information returned for a unit of work event monitor: Table name: UOW_EVENT

Column Name Data Type Description

EVENT_ID BIGINT NOT NULL event_id - Event ID monitor
element

TYPE VARCHAR(128) NOT NULL

EVENT_TIMESTAMP TIMESTAMP NOT NULL event_timestamp - Event
timestamp monitor element

MEMBER SMALLINT member - Database member

COORD_MEMBER SMALLINT coord_member - Coordinator
member

COMPLETION_STATUS VARCHAR(128) completion_status - Completion
status

START_TIME TIMESTAMP start_time - Event start time

STOP_TIME TIMESTAMP stop_time - Event stop time

177

Chapter 3. Event monitors

Table 35. Information returned for a unit of work event monitor: Table name: UOW_EVENT (continued)

Column Name Data Type Description
WORKLOAD_NAME VARCHAR(128) workload_name - Workload name
WORKLOAD_ID INTEGER workload_id - Workload ID
SERVICE_SUPERCLASS_NAME VARCHAR(128) service_superclass_name - Service
superclass name
SERVICE_SUBCLASS_NAME VARCHAR(128) service_subclass_name - Service
subclass name
SERVICE_CLASS_ID INTEGER service_class_id - Service class ID
UOW_ID INTEGER uow_id - Unit of work ID
WORKLOAD_OCCURRENCE_ID INTEGER workload_occurrence_id -
Workload occurrence identifier
CONNECTION_TIME TIMESTAMP “connection_start_time -
Connection start time monitor
element” on page 736
MEMBER_ACTIVATION_TIME TIMESTAMP “db_conn_time - Database
activation timestamp monitor
element” on page 772
APPLICATION_ID VARCHAR(128) “appl_id - Application ID monitor
element” on page 666
APPLICATION_HANDLE BIGINT application_handle - Application
handle
APPLICATION_NAME VARCHAR(128) “appl_name - Application name
monitor element” on page 670
SYSTEM_AUTHID VARCHAR(128) “system_auth_id - System
authorization identifier monitor
element” on page 1267
SESSION_AUTHID VARCHAR(128) “session_auth_id - Session
authorization ID monitor element”
on page 1211
CLIENT_PLATFORM VARCHAR(12) client_platform - Client operating
platform
CLIENT_PID BIGINT client_pid - Client process ID
CLIENT_PRODUCT_ID VARCHAR(128) “client_prdid - Client product and
version ID monitor element” on
page 715
CLIENT_PROTOCOL VARCHAR(10) client_protocol - Client
communication protocol
CLIENT_HOSTNAME VARCHAR(255) client_hostname - Client hostname
CLIENT_PORT_NUMBER INTEGER client_port_number - Client port
number
CLIENT_WRKSTNNAME VARCHAR(255) client_wrkstnname - Client
workstation name
CLIENT_ACCTNG VARCHAR(255) client_acctng - Client accounting
string
CLIENT_USERID VARCHAR(255) client_userid - Client user ID
CLIENT_APPLNAME VARCHAR(255) client_applname - Client

application name

178 Database Monitoring Guide and Reference

Table 35. Information returned for a unit of work event monitor: Table name: UOW_EVENT (continued)

Column Name

Data Type

Description

LOCAL_TRANSACTION_ID

VARCHAR(16)

“local_transaction_id - Local
transaction identifier monitor
element” on page 900

GLOBAL_TRANSACTION_ID

VARCHAR(40)

“global_transaction_id - Global
transaction identifier monitor
element” on page 851

UOW_LOG_SPACE_USED

BIGINT

uow_log_space_used - Unit of
work log space used

PACKAGE_LIST_SIZE

INTEGER

“package_list_size - Size of
package list monitor element” on
page 1006

PACKAGE_LIST_EXCEEDED

CHAR(3)

package_list_exceeded - Package
list exceeded

EXECUTABLE_LIST_SIZE

BIGINT

“executable_list_size - Size of
executable list monitor element” on
page 819

EXECUTABLE_LIST_TRUNCATED

CHAR(3)

“executable_list_truncated -
Executable list truncated monitor
element” on page 819

METRICS

BLOB(1M)

XML document containing
metrics-related monitor elements.
The metrics in this document are
the same as those described in the
UOW_METRICS table that appears
later in this topic. See “Interfaces
that return monitor data in XML
documents” on page 13 for more
information.

INTRA_PARALLEL_STATE

VARCHAR(3)

intra_parallel_state - Current state
of intrapartition parallelism

MONL_INTERVAL_ID

BIGINT

mon_interval_id - Monitor interval
identifier

Table 36. Information returned for a unit of work event monitor: Table name: UOW_PACKAGE_LIST

Column Name Data Type Description
MEMBER SMALLINT member - Database member
UOW_ID INTEGER uow_id - Unit of work ID
APPLICATION_ID VARCHAR(128) “appl_id - Application ID
monitor element” on page 666
PACKAGE_ID BIGINT package_id - Package identifier
NESTING_LEVEL INTEGER nesting_level - Nesting level
ROUTINE_ID BIGINT routine_id - Routine ID
INVOCATION_ID INTEGER invocation_id - Invocation ID
PACKAGE_ELAPSED_TIME BIGINT package_elapsed_time - Package

elapsed time

Chapter 3. Event monitors 179

Table 37. Information returned for a unit of work event monitor: Table name: UOW_EXECUTABLE_LIST

Column Name Data Type Description

MEMBER SMALLINT member - Database member
UOW_ID INTEGER uow_id - Unit of work ID
APPLICATION_ID VARCHAR(128) “appl_id - Application ID

monitor element” on page 666

EXECUTABLE_ID

VARCHAR(32) FOR BIT DATA

executable_id - Executable 1D

NUM_EXECUTIONS BIGINT num_executions - Statement
executions
ROWS_READ BIGINT rows_read - Rows read
TOTAL_CPU_TIME BIGINT total_cpu_time - Total CPU time
TOTAL_ACT_TIME BIGINT total_act_time - Total activity
time
TOTAL_ACT_WAIT_TIME BIGINT total_act_wait_time - Total
activity wait time
LOCK_WAIT_TIME BIGINT lock_wait_time - Time waited
on locks
LOCK_WAITS BIGINT lock_waits - Lock waits
TOTAL_SORTS BIGINT total_sorts - Total sorts
POST_THRESHOLD_SORTS BIGINT post_threshold_sorts - Post
threshold sorts
POST_SHRTHRESHOLD_SORTS BIGINT post_shrthreshold_sorts - Post
shared threshold sorts
SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

Table 38. Information returned for a unit of work event monitor: Table name: UOW_METRICS. The metrics in this
table are the same as those returned in the METRICS monitor element in the UOW_EVENT table

Column Name Data Type Description

MEMBER SMALLINT member - Database member

UOW_ID INTEGER uow_id - Unit of work ID

APPLICATION_ID VARCHAR(128) “appl_id - Application ID monitor element”
on page 666

ACT_ABORTED_TOTAL BIGINT act_aborted_total - Total aborted activities

ACT_COMPLETED_TOTAL BIGINT act_completed_total - Total completed
activities

ACT_REJECTED_TOTAL BIGINT act_rejected_total - Total rejected activities

AGENT_WAIT_TIME BIGINT agent_wait_time - Agent wait time

AGENT_WAITS_TOTAL BIGINT agent_waits_total - Total agent waits

POOL_DATA_L_READS BIGINT pool_data_I_reads - Buffer pool data logical
reads

POOL_INDEX_L_READS BIGINT pool_index_I_reads - Buffer pool index logical
reads

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer pool
temporary data logical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer pool

temporary index logical reads

180 Database Monitoring Guide and Reference

Table 38. Information returned for a unit of work event monitor: Table name: UOW_METRICS. The metrics in this
table are the same as those returned in the METRICS monitor element in the UOW_EVENT table (continued)

Column Name Data Type Description
POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer pool
temporary XDA data logical reads
POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer pool XDA data
logical reads
POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool data physical
reads
POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool index
physical reads
POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer pool
temporary data physical reads
POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer pool
temporary index physical reads
POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer pool
temporary XDA data physical reads
POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer pool XDA data
physical reads
POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool data writes
POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool index writes
POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer pool XDA data
writes
POOL_READ_TIME BIGINT pool_read_time - Total buffer pool physical
read time
POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool physical
write time
CLIENT_IDLE_WAIT_TIME BIGINT client_idle_wait_time - Client idle wait time
DEADLOCKS BIGINT deadlocks - Deadlocks detected
DIRECT_READS BIGINT direct_reads - Direct reads from database
DIRECT_READ_TIME BIGINT direct_read_time - Direct read time
DIRECT_WRITES BIGINT direct_writes - Direct writes to database
DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write time
DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read requests
DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write requests
FCM_RECV_VOLUME BIGINT fem_recv_volume - FCM received volume
FCM_RECVS_TOTAL BIGINT fcm_recvs_total - FCM receives total
FCM_SEND_VOLUME BIGINT fem_send_volume - FCM send volume
FCM_SENDS_TOTAL BIGINT fcm_sends_total - FCM sends total
FCM_RECV_WAIT_TIME BIGINT fem_recv_wait_time - FCM received wait
time
FCM_SEND_WAIT_TIME BIGINT fcm_send_wait_time - FCM send wait time
IPC_RECV_VOLUME BIGINT ipc_recv_volume - Interprocess
communication received volume
IPC_RECV_WAIT_TIME BIGINT ipc_recv_wait_time - Interprocess

communication received wait time

Chapter 3. Event monitors 181

Table 38. Information returned for a unit of work event monitor: Table name: UOW_METRICS. The metrics in this
table are the same as those returned in the METRICS monitor element in the UOW_EVENT table (continued)

Column Name Data Type Description

IPC_RECVS_TOTAL BIGINT ipc_recvs_total - Interprocess communication
receives total

IPC_SEND_VOLUME BIGINT ipc_send_volume - Interprocess
communication send volume

IPC_SEND_WAIT_TIME BIGINT ipc_send_wait_time - Interprocess
communication send wait time

IPC_SENDS_TOTAL BIGINT ipc_sends_total - Interprocess communication
send total

LOCK_ESCALS BIGINT lock_escals - Number of lock escalations

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of lock timeouts

LOCK_WAIT_TIME BIGINT lock_wait_time - Time waited on locks

LOCK_WAITS BIGINT lock_waits - Lock waits

LOG_BUFFER_WAIT_TIME BIGINT log_buffer_wait_time - Log buffer wait time

NUM_LOG_BUFFER_FULL BIGINT num_log_buffer_full - Number of full log
buffers

LOG_DISK_WAIT_TIME BIGINT log_disk_wait_