IBM DB2 10.1
for Linux, UNIX, and Windows

Data Recovery and High Availability
Guide and Reference
Updated January, 2013

..ll

IBM DB2 10.1
for Linux, UNIX, and Windows

Data Recovery and High Availability
Guide and Reference
Updated January, 2013

..ll

Note
Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on
page 481.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
¢ To order publications online, go to the IBM Publications Center at http://www.ibm.com/shop/publications/
order

* To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at http://www.ibm.com/
planetwide/

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2001, 2013.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

Contents

About thisbook. Vi

Part 1. High availability 1

Chapter 1. Outages .

Outage signatures

Outage cost.

Outage tolerance . .
Recovery and avoidance strategles .

gl gk w W

N

Chapter 2. High availability strategies .
High availability through redundancy .
High availability through failover
High availability through clusterlng
Database logging . .
Circular logging .
Archive logging .
Log control files .

= O 0 O O

_ =

Chapter 3. High availability with DB2
server+ .« .«13

Automatic client reroute roadmap13
DB2 fault monitor facilities for Linux and UNIX . .13
High availability disaster recovery (HADR). . . . 14
DB2 High Availability Feature16
High availability through log shipping17
Log mirroring . . . 18
High availability through suspended I/ O and onhne

split mirror support . . . B

Chapter 4. Configuring for high

availability e e 21
Automatic client reroute descrrphon and setup . .21
Automatic client reroute configuration for client
connection distributor technology24
Identifying an alternate server for automatic
client reroute25
Automatic client reroute 11m1tat10ns 025
Configuring TCP/IP keepalive parameters27
Configuring TCP/IP keepalive parameters for
high availability clients JDBC) 27

Configuring TCP/IP keepalive parameters for
non-JDBC high availability clients (AIX HP-UX,

Linux, Windows) . . .o29
DB2 fault monitor registry f1le . . 30
Configuring DB2 fault monitor using the db2fm
command 031
Configuring the DB2 fault monrtor usmg
db2fmcu and system commands32
Initializing high availability disaster recovery
(HADR)33
Configuring automatic chent reroute and ngh
Availability Disaster Recovery (HADR)35

© Copyright IBM Corp. 2001, 2013

Index logging and high availability disaster

recovery (HADR)35
Database configuration for hrgh avarlablhty
disaster recovery (HADR) . . . N 74
Log archiving configuration for DB2 hlgh
availability disaster recovery (HADR)46
High availability disaster recovery (HADR)
performance 47
Cluster managers and hlgh avallablhty dlsaster
recovery (HADR)50
Initializing a standby database . . 51
High Availability Disaster Recovery (HADR)
synchronization mode57
High availability disaster recovery (HADR)
support.6l
Scheduling ma1ntenance for hlgh avallablhty .. .66

Configuring an automated maintenance policy

using SYSPROC.AUTOMAINT_SET_POLICY or

SYSPROC.AUTOMAINT_SET_POLICYFILE . . 67
Configuring database logging options . . . 68

Configuration parameters for database logglng 70

Reducing logging with the NOT LOGGED

INITIALLY parameter 78
Blocking transactions when the log d1rectory is
full79
Log file management through log archlvmg . .79
Configuring a clustered environment for high
availability82
Cluster manager 1ntegrat10n w1th the DB2 Hrgh
Availability Feature.83
IBM Tivoli System Automatlon for
Multiplatforms (SA MP) base component . . . 84
Configuring a cluster automatically with the DB2
High Availability (HA) Feature 84

Configuring a clustered environment usmg DB2
High Availability Instance Configuration Utility

(db2haicu).86

Supported cluster management software ... 131
Synchronizing clocks in a partitioned database
environment. . . . B)

Client/server trmestamp conversion. 149

Chapter 5. Administering and
maintaining a highly available
solution. 151

Log file management.151
On demand log archive153
Log archiving using db2tapemgr . . 153
Automating log file archiving and retrleval w1th
user exit programs15
Log file allocation and removal 158
Including log files with a backup i 1mage .. . 160
Preventing the accidental loss of log files . . . 162

Minimizing the impact of maintenance on

availability162

iii

Stopping DB2 High Availability Disaster

Recovery (HADR). 163
Database activation and deactrvatron ina hlgh
availability disaster recovery (HADR)

environment. . . . 164
Table space rebalance consrderatrons ina DB2

High Availability Disaster Recovery (HADR)
environment. 165
Performing rolling updates and upgrades ina

DB2 High Availability Disaster Recovery

(HADR) environment. 165
Using a split mirror to clone a database N V4|
Using a split mirror to clone a database in a

DB2 pureScale environment 173
Scenario: Changing the system clock 175

Synchronizing the primary and standby databases 176
Resolving log replay error when creating table

space . . . N V4
DB2 High Ava11ab111ty Dlsaster Recovery

(HADR) replicated operations 178
DB2 High Availability Disaster Recovery

(HADR) non-replicated operations . . . 179
DB2 high availability disaster recovery (HADR)
standby database states 180

Determining the HADR standby database state 183
Recovering from table space errors on an HADR

standby 183
HADR role switch and qulesced table spaces 184
HADR delayed replay . . . 184

Recovering data by using HADR delayed replay 185
DB2 High availability disaster recovery (HADR)

management 187
DB2 High Avarlabrhty Drsaster Recovery
(HADR) commands188
HADR multiple standby databases Lo .. 190
Restrictions for multiple standby databases .. 191

Initializing HADR in multiple standby mode 191
Enabling multiple standby mode on a

preexisting HADR setup. 193
Modifications to a multiple standby database
setup 195
Database conflguratlon for multlple HADR
standby databases. 196
Rolling upgrades in HADR multrple standby
mode 198
High ava11ab111ty dlsaster recovery (HADR)
monitoring in multiple standby mode 199
Takeover in HADR multiple standby mode . . 201
Scenario: Deploying an HADR multiple standby
database setup 202
Examples: Takeover in HADR rnultlple standby
mode208
HADR reads on standby feature o212
Enabling reads on standby 213
Data concurrency on the active standby
database 213
Temporarily termlnatlng read apphcatlons on an
active standby database 217
Reads on standby restrictions 217
Detecting and responding to system outages in a
high availability solution219

iV Data Recovery and High Availability Guide and Reference

Administration notificationlog 220
Detecting an unplanned outage221
Responding to an unplanned outage 224
Reintegrating a database after a takeover

operation.230

Chapter 6. Failure management with
DB2 cluster services 233

Automated cluster caching fac1hty fa1lover .. . 233
Automated restart.233
Member restart and crash recovery 234
Group restart and crash recovery.235
Restart light.23
Manual intervention in fallure s1tuat10ns P ¥i
Initiating group crash recovery 244
Initiating member crash recovery. 245
Recovering with damaged table spaces. . . . 246

Part 2. Data recovery 247

Chapter 7. Developing a backup and
recovery strategy. 249

Deciding how often to backup251

Storage considerations for recovery 253
Backup compression254
Archived log file compression. 254

Keeping related data together 255

Backup and restore operations between d1fferent

operating systems and hardware platforms . . . 256

Log stream merging and log file management in a

DB2 pureScale environment 257

Log sequence numbers in DB2 pureScale

environments26l

Chapter 8. Recovery history file . . . 263

Recovery history file entry status. 264
Viewing recovery history file entries using the
DB_HISTORY administrative view 267
Pruning the recovery history file 268
Automating recovery history file pruning . . . 268
Protecting recovery history file entries from belng
pruned270

Chapter 9. Managing recovery objects 273
Deleting database recovery objects using the

PRUNE HISTORY command or the db2Prune API . 273
Automating database recovery object management 274

Protecting recovery objects from being deleted . . 275
Managing snapshot backup objects275
Backup image and log file upload to TSM. . . . 276

Chapter 10. Monitoring the progress
of restore operations 283

Chapter 11. Backup overview 285

Backing up data . . . o287
Performing a snapshot backup oo 289
Using a split mirror as a backup image. . . . 290

Using a split mirror as a backup image in a DB2

pureScale environment291
Backing up to tape293
Backing up to named pipes.295
Backing up partitioned databases. . . . 295

Backing up partitioned tables using IBM T1voh
Space Manager Hierarchical Storage

Management . . . o297
Enabling automatic backup L. 297
Automatic database backup 298
Backup and restore operations in a DB2 pureScale
environment. . . . L. 0299
Monitoring backup 0perat1ons304
Optimizing backup performance 304
Backup and restore statistics 305
Privileges, authorities, and authorlzatlon requlred
to use backup 307
Compatibility of online backup and other ut111t1es 307
Backup examples309
Chapter 12. Recover overview . 311
Recovering data . . . 1 |
Recovering data using db2adut1 G 1 4
Recovering a dropped table325
Crash recovery 0327
Recovering damaged table spaces . . 329

Recovering table spaces in recoverable databases 329
Recovering table spaces in non-recoverable

databases.330

Reducing the 1mpact of medla fa11ure ... 0331

Reducing the impact of transaction failure. . . 333

Recovering from transaction failures in a

partitioned database environment 333

Recovering from the failure of a database

partition server. . . . 336

Recovering indoubt transactlons on malnfrarne

or midrange servers337
Disaster recovery339
Version recovery340
Rollforward recovery.340
Incremental backup and recovery. 344

Restoring from incremental backup 1rnages .. 345

Limitations to automatic incremental restore . . 347
Optimizing recovery performance . . . 348
Privileges, authorities, and authorization requlred
to use recover349
Chapter 13. Restore overview . 351
Using restore 352

Restoring from a snapshot backup 1mage .. . 354

Restoring to an existing database. 355

Restoring to a new database 356

Using incremental restore in a test and

production environment. 356
Performing a redirected restore operation 358

Redefine table space containers by restoring a
database using an automatically generated

script N [
Performing a redlrected restore usmg an
automatically generated script. 364

Cloning a production database using different

storage group paths . . 365
Database rebuild . . 366
Database rebuild and table space contalners . . 370
Database rebuild and temporary table spaces 371
Choosing a target image for database rebuild 372
Rebuilding selected table spaces . . 375
Rebuild and incremental backup images . 376
Rebuilding partitioned databases . . 377
Restrictions for database rebuild . . 378
Rebuild sessions - CLP examples . . 378
Monitoring the progress of restore operations . 387
Optimizing restore performance . . . 387
Privileges, authorities, and authorization requrred
to use restore . . . 388
Database schema transportlng . 388
Transportable objects . . 391
Transport examples . 392
Troubleshooting: transporting schemas . 395
Chapter 14. Rollforward overview. . 397
Using rollforward . . . 399
Continuing a stopped or falled rollforward
operation. . . 400
Rolling forward changes in a table space . . 401
Database rollforward operations in a DB2
pureScale environment 405
Monitoring a rollforward operation . . 407
Authorization required for rollforward . . 409
Rollforward sessions - CLP examples . 409
Chapter 15. Data recovery with IBM
Tivoli Storage Manager (TSM) . 415
Configuring a Tivoli Storage Manager client . . 415
Considerations for using Tivoli Storage Manager 417
Chapter 16. DB2 Advanced Copy
Services (ACS). . 419
DB2 Advanced Copy Serv1ces (ACS) best practlces 419
Restrictions for embedded version of Tivoli Storage
FlashCopy Manager . . . 419
Enabling DB2 Advanced Copy Serv1ces (ACS) . 420
Installing DB2 Advanced Copy Services (ACS) 421
Activating DB2 Advanced Copy Services (ACS)
manually . .o . 422
Configuring DB2 Advanced Copy Serv1ces
(ACS) 423
setup_db2.sh scr1pt . 423
Uninstalling DB2 Advanced Copy Serv1ces (ACS) 424
Manually installing Tivoli Storage FlashCopy
Manager (Linux) . . 425
DB2 Advanced Copy Seerces (ACS) API . . 426
DB2 Advanced Copy Services (ACS) API
functions . . 426
DB2 Advanced Copy Serv1ces (ACS) API data
structures. . 452
DB2 Advanced Copy Serv1ces (ACS) API return
codes 465

Contents

A\

Part 3. Appendixes 469

Appendix A. Overview of the DB2
technical information 4n
DB2 technical library in hardcopy or PDF format 471
Displaying SQL state help from the command line

processor. . . Y
Accessing dlfferent versions of the DBZ

Information Center . . . 474
Updating the DB2 Informatlon Center mstalled on

your computer or intranet server. 474

Vi Data Recovery and High Availability Guide and Reference

Manually updating the DB2 Information Center
installed on your computer or intranet server
DB2 tutorials . .

DB2 troubleshooting 1nf0rmat10n

Terms and conditions.

Appendix B. Notices

Index .

. 476
. 478
. 478
. 478

. 481

. 485

About this book

The Data Recovery and High Availability Guide and Reference describes how to keep
your DB2® for Linux, UNIX, and Windows database solutions highly available, and
how to keep your data from being lost.

The Data Recovery and High Availability Guide and Reference is in two parts:

* Part 1, High availability, describes strategies and DB2 database features and
functionality that help keep your database solutions highly available.

* Part 2, Data recovery, describes how to use DB2 backup and restore functionality
to keep your data from being lost.

© Copyright IBM Corp. 2001, 2013 vii

viili Data Recovery and High Availability Guide and Reference

Part 1. High availability

The availability of a database solution is a measure of how successful user
applications are at performing their required database tasks.

If user applications cannot connect to the database, or if their transactions fail
because of errors or time out because of load on the system, the database solution
is not very available. If user applications are successfully connecting to the
database and performing their work, the database solution is highly available.

Designing a highly available database solution, or increasing the availability of an
existing solution requires an understanding of the needs of the applications
accessing the database. To get the greatest benefit from the expense of additional
storage space, faster processors, or more software licenses, focus on making your
database solution as available as required to the most important applications for
your business at the time when those applications need it most.

Unplanned outages

Unexpected system failures that could affect the availability of your
database solution to users include: power interruption; network outage;
hardware failure; operating system or other software errors; and complete
system failure in the event of a disaster. If such a failure occurs at a time
when users expect to be able to do work with the database, a highly
available database solution must do the following;:

* Shield user applications from the failure, so the user applications are not
aware of the failure. For example, DB2 Data Server can reroute database
client connections to alternate database servers if a database server fails.

* Respond to the failure to contain its effect. For example, if a failure
occurs on one machine in a cluster, the cluster manager can remove that
machine from the cluster so that no further transactions are routed to be
processed on the failed machine.

* Recover from the failure to return the system to normal operations. For
example, if standby database takes over database operations for a failed
primary database, the failed database might restart, recover, and take
over once again as the primary database.

These three tasks must be accomplished with a minimum effect on the
availability of the solution to user applications.

Planned outage

In a highly available database solution, the impact of maintenance
activities on the availability of the database to user applications must be
minimized as well.

For example, if the database solution serves a traditional store front that is
open for business between the hours of 9am to 5pm, then maintenance
activities can occur offline, outside of those business hours without
affecting the availability of the database for user applications. If the
database solution serves an online banking business that is expected to be
available for customers to access through the Internet 24 hours per day,
then maintenance activities must be run online, or scheduled for off-peak
activity periods to have minimal impact on the availability of the database
to the customers.

© Copyright IBM Corp. 2001, 2013 1

When you are making business decisions and design choices about the availability
of your database solution, you must weigh the following two factors:

* The cost to your business of the database being unavailable to customers

* The cost of implementing a certain degree of availability

For example, consider an Internet-based business that makes a certain amount of
revenue, X, every hour the database solution is serving customers. A high
availability strategy that saves 10 hours of downtime per year will earn the
business 10X extra revenue per year. If the cost of implementing this high
availability strategy is less than the expected extra revenue, it would be worth
implementing.

2 Data Recovery and High Availability Guide and Reference

Chapter 1. Outages

An outage is any disruption in the ability of the database solution to serve user
applications. Outages can be classified in two groups: unplanned outages and
planned outages.

Unplanned outages

Examples of unplanned outages include:

¢ The failure of one component of the system, including hardware or software
failure.

* Invalid administrative or user application actions such accidentally dropping a
table that is needed for business-critical transactions.

* Poor performance due to suboptimal configuration, or inadequate hardware or
software.

Planned outages

Examples of planned outages include:

* Maintenance. Some maintenance activities require you to take a complete outage;
other maintenance activities can be performed without stopping the database,
but can adversely affect performance. The latter is the most common type of
planned outage.

¢ Upgrade. Upgrading your software or hardware can sometimes require a partial
or a full outage.

In discussions about availability, the focus is often on disaster scenarios or
component failures. However, to design a robust high availability solution, you
need to address all of these types of outage.

Outage signatures

An outage signature is a collection of symptoms and behaviors which characterize
an outage. The signature of an outage may vary from temporary performance
issues resulting in slow response time for end users to complete site failure.

Consider how these variations impact your business when devising strategies for
avoiding, minimizing, and recovering from outages.

Blackout

A blackout type of outage is experienced when a system is completely
unavailable to its end users. This type of outage may be caused by
problems at the hardware, operating system, or database level. When a
blackout occurs, it is imperative that the scope of the outage is
immediately identified. Is the outage purely at the database level? Is the
outage at the instance level? Or is it at the operating system or hardware
level?

Brownout

A brownout type of outage is experienced when system performance slows
to a point where end users cannot effectively get their work done. The
system as a whole may be up and running, but essentially, in the eyes of

© Copyright IBM Corp. 2001, 2013 3

the end users it is not working as expected. This type of outage may occur
during system maintenance windows and peak usage periods. Typically,
the CPU and memory are near capacity during such outages. Poorly tuned
or overutilized servers often contribute to brownouts.

Frequency and duration of outages

In conversations about database availability, the focus is often on the total
amount or the percentage of down time (or conversely the amount of time
the database system is available) for a given time period. However, the
frequency and duration of planned or unplanned outages makes a
significant difference to the impact that those outages have on your
business.

Consider a situation in which you have to make some upgrades to your
database system that will take seven hours to perform, and you can choose
between taking the database system offline for an hour every day during a
period of low user activity or taking the database offline for seven hours
during the busiest part of your busiest day. Clearly, several small outages
would be less costly and harmful to your business activities than the
single, seven-hour outage. Now consider a situation in which you have
intermittent network failures, possibly for a total of a few minutes every
week, which cause a small number of transactions to fail with regular
frequency. Those very short outages might end up costing you a great deal
of revenue, and irreparably damage the confidence of your customers in
your business-resulting in even greater losses of future revenue.

Don't focus exclusively on the total outage (or available) time. Weigh the

cost of fewer, longer outages against the cost of multiple, smaller outages
when making decisions about maintenance activities or when responding
to an unplanned outage. In the middle of an outage, it can be difficult to

make such judgments; so create a formula or method to calculate the cost
to your business of these outage signatures so that you can make the best
choices.

Multiple and cascading failures

When you are designing your database solution to avoid, minimize, and
recover from outages, keep in mind the possibility for multiple
components to fail at the same time, or even for the failure of one
component to cause another component to fail.

Outage cost

The cost of an outage varies from business to business. Each business, as a best
practice, should analyze the cost of an outage to their mission critical business
processes. The results of this analysis are used to formulate a restoration plan.

This plan includes a priority ordering among restoration activities if more than one
process is identified.

Outage cost

You can estimate the cost to your business of your customer-facing database
system being unavailable to process customer transactions. For example, you can
calculate an average cost in lost sales revenue for every hour or minute during
which that database system is unavailable. Calculating projected losses in revenue
as a result of reduced customer confidence is much more difficult, but you should
consider this cost when assessing your business's availability requirements.

4 Data Recovery and High Availability Guide and Reference

Consider too the cost of internal database systems being unavailable to your
business processes. Something as simple as e-mail or calendar software being
unavailable for an hour can cause your business to grind a halt, because employees
are unable to do their work.

Outage tolerance

The tolerance of an outage varies from business to business. Each business, as a
best-practice, should analyze the impact of an outage to their mission critical
business processes. The results of this analysis are used to formulate a restoration
plan.

This plan includes an order of priority to the restoration if more than one process
is identified.

Outage tolerance

A crucial factor in determining your availability needs is to ask how tolerant your
business, or a specific system in your business, is to the occurrence of an outage.
For example, a restaurant that operates a Web site primarily to publish menu
information will not lose much revenue because of an occasional server outage. On
the other hand, any outage on a stock exchange server that records transactions
would be catastrophic. Thus, using a lot of resources to ensure the availability of
the restaurant's server is 99.99% would not be cost-effective, whereas it certainly
would be for the stock exchange.

When discussing tolerance two concepts should be kept in mind: time to recovery,
and point of recovery.

Time to recovery is the time required to bring a business process or system back
online.

Point of recovery is the historical point at which the business process or system is
restored. In database terms, a plan would weigh the benefits of a quick restore that
loses some transactions versus a complete restore that loses no transactions but
which takes longer to perform.

Recovery and avoidance strategies

When considering purchase and system design choices about availability, it is
tempting to dive into long lists of high availability features and technologies.
However, best practices with respect to making and keeping your system highly
available are just as much about making good design and configuration choices,
and designing and practicing sound administrative procedures and emergency
plans, as they are about buying technology.

You will get the most comprehensive availability for your investment by first
identifying the high availability strategies that best suit your business demands.
Then you can implement your strategies, choosing the most appropriate
technology.

When designing or configuring your database solution for high availability,
consider how outages may be avoided, their impact minimized, and your system
quickly recovered.

Avoid outages

Chapter 1. Outages 5

Whenever possible, avoid outages. For example, remove single points of
failure to avoid unplanned outages, or investigate methods for performing
maintenance activities online to avoid planned outages. Monitor your
database system to identify trends in system behavior that indicate
problems, and resolve the problems before they cause an outage.

Minimize the impact of outages

You can design and configure your database solution to minimize the
impact of planned and unplanned outages. For example, distribute your
database solution so that components and functionality are localized,
allowing some user applications to continue processing transactions even
when one component is offline.

Recover quickly from unplanned outages

Make a recovery plan: create clear and well-documented procedures that
administrators can follow easily and quickly in the event of an unplanned
outage; create clear architectural documents that describe all components
of the systems involved; have service agreements and contact information
well organized and close to hand. While recovering quickly is vitally
important, also know what diagnostic information to collect in order to
identify the root cause of the outage and avoid it in the future.

6 Data Recovery and High Availability Guide and Reference

Chapter 2. High availability strategies

It does not matter to a user why his or her database request failed. Whether a
transaction timed out because of bad performance, or a component of the solution
failed, or an administrator has taken the database offline to perform maintenance,
the result is the same to the user.

The database is unavailable to process requests.

Strategies for improving the availability of your database solution include:

Redundancy
Having secondary copies of each component of your solution that can take
over workload in the event of failure.

System monitoring
Collecting statistics about the components of your solution to facilitate
workload balancing or detecting that components have failed.

Load balancing
Transferring some workload from an overloaded component of your
solution to another component of your solution that has a lighter load.

Failover
Transferring all workload from a failed component of your solution to a
secondary component.

Maximizing performance
Reducing the chance that transactions take a very long time to complete or
time out.

Minimizing the impact of maintenance
Scheduling automated maintenance activities and manual maintenance
activities so as to impact user applications as little as possible.

High availability through redundancy

An important strategy for maintaining high availability is having redundant
components. If a component fails, a secondary or backup copy of that component
can take over, enabling the database to remain available to user applications.

If a component of the system is not redundant, that component could be a single
point of failure for the system.

Redundancy is common in system design:

* Uninterrupted or backup power supplies

* Multiple network fibers between each component
* Bonding or load balancing of network cards

* Multiple hard drives in a redundant array

* Clusters of CPUs

If any one of these components of the system is not redundant, that component
could be a single point of failure for the whole system.

© Copyright IBM Corp. 2001, 2013 7

You can create redundancy at the database level, by having two databases: a
primary database that normally processes all or most of the application workload;
and a secondary database that can take over the workload if the primary database
fails. In a DB2 High Availability Disaster Recover (HADR) environment, this
secondary database is called the standby database.

For DB2 Connect™ clients, Sysplex workload balancing functionality on DB2 for
z/0S® servers provides high availability for client applications that connect
directly to a data sharing group. Sysplex workload balancing functionality
provides workload balancing and seamless automatic client reroute capability. This
support is available for applications that use Java clients (JDBC, SQL], or
pureQuery) or other clients (ODBC, CLI, .NET, OLE DB, PHP, Ruby, or embedded
SQL).

High availability through failover

Failover is the transfer of workload from a primary system to a secondary system
in the event of a failure on the primary system. When workload has been
transferred like this, the secondary system is said to have taken over the workload
of the failed primary system.

Example 1

In a clustered environment, if one machine in the cluster fails, cluster
managing software can move processes that were running on the machine
that failed to another machine in the cluster.

Example 2

In a database solution with multiple IBM® Data Servers, if one database
becomes unavailable, the database manager can reroute database
applications that were connected to the database server that is no longer
available to a secondary database server.

The two most common failover strategies on the market are known as idle standby
and mutual takeover:

Idle Standby

In this configuration, a primary system processes all the workload while a
secondary or standby system is idle, or in standby mode, ready to take
over the workload if there is a failure on the primary system. In an high
availability disaster recovery (HADR) setup, you can have up to three
standbys and you can configure each standby to allow read-only
workloads.

Mutual Takeover

In this configuration, there are multiple systems, and each system is the
designated secondary for another system. When a system fails, the overall
performance is negatively affected because the secondary for the system
that failed must continue to process its own workload as well as the
workload of the failed system.

8 Data Recovery and High Availability Guide and Reference

High availability through clustering

A cluster is a group of connected machines that work together as a single system.
When one machine in a cluster fails, cluster managing software transfers the
workload of the failed machine onto other machines.

Heartbeat monitoring

To detect a failure on one machine in the cluster, failover software can use
heartbeat monitoring or keepalive packets between machines to confirm
availability. Heartbeat monitoring involves system services that maintain
constant communication between all the machines in a cluster. If a
heartbeat is not detected, failover to a backup machine starts.

IP address takeover

When there is a failure on one machine in the cluster, cluster managers can
transfer workload from one machine to another by transferring the IP
address from one machine to another. This is called IP address takeover, or
IP takeover. This transfer is invisible to client applications, which continue
to use the original IP address, unaware that the physical machine to which
that IP address maps has changed.

The DB2 High Availability Feature enables integration between IBM DB2 server
and cluster managing software.

Database logging

Database logging is an important part of your highly available database solution
design because database logs make it possible to recover from a failure, and they
make it possible to synchronize primary and secondary databases.

All databases have logs associated with them. These logs keep records of database
changes. If a database needs to be restored to a point beyond the last full, offline
backup, logs are required to roll the data forward to the point of failure.

Two types of database logging are supported: circular and archive. Each provides a
different level of recovery capability:

* “Circular logging”
¢ “Archive logging” on page 10

The advantage of choosing archive logging is that rollforward recovery can use
both archived logs and active logs to restore a database either to the end of the
logs, or to a specific point in time. The archived log files can be used to recover
changes made after the backup was taken. This is different from circular logging
where you can only recover to the time of the backup, and all changes made after
that are lost.

Circular logging

Circular logging is the default behavior when a new database is created. (The
Togarchmethl and logarchmeth2 database configuration parameters are set to OFF.)

With this type of logging, only full, offline backups of the database are allowed.
The database must be offline (inaccessible to users) when a full backup is taken.

As the name suggests, circular logging uses a ring of online logs to provide
recovery from transaction failures and system crashes. The logs are used and

Chapter 2. High availability strategies 9

retained only to the point of ensuring the integrity of current transactions. Circular
logging does not allow you to roll a database forward through transactions
performed after the last full backup operation. All changes occurring since the last
backup operation are lost. Since this type of restore operation recovers your data to
the specific point in time at which a full backup was taken, it is called version
recovery.

Transaction

Circular Logs

Acti
Database Log Path Lo; I;:’;Te

Active Log Files

Figure 1. Circular Logging

Active logs are used during crash recovery to prevent a failure (system power or
application error) from leaving a database in an inconsistent state. Active logs are
located in the database log path directory.

Archive logging

Archive logging is used specifically for roll-forward recovery. Archived logs are log
files that are copied from the current log path or from the mirror log path to
another location.

You can use the Togarchmethl database configuration parameter, the 1ogarchmeth2

database configuration parameter, or both to enable you or the database manager
to manage the log archiving process.

10 Data Recovery and High Availability Guide and Reference

Units of work Units of work
BACKUP
database
update update
n archived logs n archived logs
1 active log 1 active log
TIME

Logs are used between backups to track the changes to the databases.

Figure 2. Active and archived database logs in roll-forward recovery. There can be more than one active log in the
case of a long-running transaction.

Taking online backups is supported only if you configure the database for archive
logging. During an online backup operation, all activities against the database are
logged. After an online backup is complete, the database manager forces the
currently active log to close, and as a result, it is archived. This process ensures
that your online backup has a complete set of archived logs available for recovery.
When an online backup image is restored, the logs must be rolled forward at least
to the point in time at which the backup operation completed. To facilitate this
operation, archived logs must be made available when the database is restored.

You can use the Togarchmethl and logarchmeth2 database configuration parameters
to specify where archived logs are stored. You can use the Togarchmethl parameter
to archive log files from the active log path that is set by the Togpath configuration
parameter. You can use the Togarchmeth2 parameter to archive additional copies of
log files from the active log path to a second location. If you do not configure
mirror logging, the additional copies are taken from the same log path that the
Togarchmethl parameter uses. If you configure mirror logging, with the
mirrorlogpath configuration parameter, the Togarchmeth2 configuration parameter
archives log files from the mirror log path instead, which can improve resilience
during roll-forward recovery. The newlogpath parameter affects where active logs
are stored.

In certain scenarios, you can compress archived log files to help reduce the storage
cost associated with these files. If the Togarchmethl and logarchmeth2 configuration
parameters are set to DISK, TSM, or VENDOR, you can enable archived log file
compression by setting the Toegarchcomprl and Togarchcompr2 configuration
parameters to ON. If Togarchcomprl and Togarchcompr2 are set dynamically, log files
already archived are not compressed.

If you use the LOGRETAIN option to specify a value that you want to manage the
active logs the database manager renames log files from the active log path after it
archives these files and they are no longer needed for crash recovery. If you enable
infinite logging, additional space is required for more active log files, so the
database server renames the log files after it has archived them.

Log control files

When a database restarts after a failure, the database manager applies transaction
information stored in log files to return the database to a consistent state. To

Chapter 2. High availability strategies 11

determine which records from the log files need to be applied to the database, the
database manager uses information recorded in log control files.

Redundancy for database resilience

The database manager maintains two copies of the each member's log control file,
SQLOGCTL.LFH.1 and SQLOGCTL.LFH.2, and two copies of the global log control file,
SQLOGCTL.GLFH.1 and SQLOGCTL.GLFH.2, so that if one copy is damaged, the
database manager can still use the other copy.

Performance considerations

Applying the transaction information contained in the log control files contributes
to the overhead of restarting a database after a failure. You can configure the
frequency at which the database manager writes buffer pool pages to disk in order
to reduce the number of log records that need to be processed during crash
recovery using the “softmax - Recovery range and soft checkpoint interval
configuration parameter” in Database Administration Concepts and Configuration
Reference.

12 Data Recovery and High Availability Guide and Reference

Chapter 3. High availability with DB2 server

IBM DB2 server contains functionality that supports many high availability
strategies.

Automatic client reroute roadmap

Automatic client reroute is an IBM DB2 server feature that redirects client
applications from a failed server to an alternate server so the applications can
continue their work with minimal interruption. Automatic client reroute can be
accomplished only if an alternate server has been specified prior to the failure.

Table 1 lists the relevant topics in each category.

Table 1. Roadmap to automatic client reroute information

Category Related topics

General information . “Automatic client reroute limitations” on page 25

* “Automatic client reroute description and setup” on page 21

* “Automatic client reroute description and setup (DB2 Connect)”
in DB2 Connect Installing and Configuring DB2 Connect Servers

Configuration * “Identifying an alternate server for automatic client reroute” on

page 25

* “Configuration of DB2 Database for Linux, UNIX, and Windows
high availability support for Java clients” in Developing Java
Applications

Examples * “Automatic client reroute examples” on page 224

Interaction with other

“Configuring automatic client reroute and High Availability
DB2 features

Disaster Recovery (HADR)” on page 35

* “Configuration of DB2 Database for Linux, UNIX, and Windows
high availability support for Java clients” in Developing Java
Applications

Troubleshooting * “Automatic client reroute configuration for client connection

distributor technology” on page 24

Note: Automatic client reroute for DB2 for z/OS Sysplex is also available in IBM
data server clients and non-Java IBM data server drivers. With this support,
applications that access a DB2 for z/OS Sysplex can use automatic client reroute
capabilities provided by the client, and are not required to go through a DB2
Connect server. For more information about this feature, see the topic about
automatic client reroute (client-side) in the DB2 Information Center.

DB2 fault monitor facilities for Linux and UNIX

Available on UNIX based systems only, DB2 fault monitor facilities keep IBM DB2
server databases up and running by monitoring DB2 database manager instances,
and restarting any instance that exits prematurely.

The fault monitor coordinator (FMC) is the process of the fault monitor facility that
is started at the UNIX boot sequence. Theinit daemon starts the FMC and will

© Copyright IBM Corp. 2001, 2013 13

restart it if it terminates abnormally. The FMC starts one fault monitor for each
DB2 instance. Each fault monitor runs as a daemon process and has the same user
privileges as the DB2 instance.

Once a fault monitor is started, it will be monitored to make sure it does not exit
prematurely. If a fault monitor fails, it will be restarted by the FMC. Each fault
monitor will, in turn, be responsible for monitoring one DB2 instance. If the DB2
instance exits prematurely, the fault monitor will restart it. The fault monitor will
only become inactive if the db2stop command is issued. If a DB2 instance is shut
down in any other way, the fault monitor will start it up again.

DB2 fault monitor restrictions

If you are using a high availability clustering product such as IBM Tivoli® System
Automation for Multiplatforms (SA MP) or IBM PowerHA® SystemMirror for
AIX®, the fault monitor facility must be turned off since the instance startup and
shut down is controlled by the clustering product.

Differences between the DB2 fault monitor and the DB2 health
monitor

The health monitor and the fault monitor are tools that work on a single database
instance. The health monitor uses health indicators to evaluate the health of specific
aspects of database manager performance or database performance. A health
indicator measures the health of some aspect of a specific class of database objects,
such as a table space. Health indicators can be evaluated against specific criteria to
determine the health of that class of database object. In addition, health indicators
can generate alerts to notify you when an indicator exceeds a threshold or
indicates a database object is in a non-normal state.

By comparison, the fault monitor is solely responsible for keeping the instance it is
monitoring up and running. If the DB2 instance it is monitoring terminates
unexpectedly, the fault monitor restarts the instance. The fault monitor is not
available on Windows.

High availability disaster recovery (HADR)

The high availability disaster recovery (HADR) feature provides a high availability
solution for both partial and complete site failures. HADR protects against data
loss by replicating data changes from a source database, called the primary database,
to one or more target databases, called the standby databases.

A partial site failure can be caused by a hardware, network, or software (DB2
database system or operating system) failure. Without HADR, a partial site failure
requires restarting the database management system (DBMS) server that contains
the database. The length of time that it takes to restart the database and the server
where it is located is unpredictable. It can take several minutes before the database
is brought back to a consistent state and made available. With HADR, a standby
database can take over in seconds. Further, you can redirect the clients that used
the original primary database to the new primary database by using automatic
client reroute or retry logic in the application.

A complete site failure can occur when a disaster, such as a fire, causes the entire
site to be destroyed. However, because HADR uses TCP/IP for communication
between the primary and standby databases, they can be situated in different
locations. For example, the primary database might be located at your head office

14 Data Recovery and High Availability Guide and Reference

in one city, and a standby database might be located at your sales office in another
city. If a disaster occurs at the primary site, data availability is maintained by
having the remote standby database take over as the primary database with full
DB2 functionality. After a takeover operation occurs, you can bring the original
primary database back up and return it to its primary database status; this is
known as failback. You can initiate a failback if you can make the old primary
database consistent with the new primary database. After you reintegrate the old
primary database into the HADR setup as a standby database, you can switch the
roles of the databases to enable the original primary database to once again be the
primary database.

With HADR, you base the level of protection from potential loss of data on your
configuration and topology choices. Some of the key choices that you must make
are as follows:

What level of synchronization will you use?

Standby databases are synchronized with the primary database through log
data that is generated on the primary and shipped to the standbys. The
standbys constantly roll forward through the logs. You can choose from
four different synchronization modes. In order of most to least protection,
these are SYNC, NEARSYNC, ASYNC, and SUPERASYNC. For more
information, see “High Availability Disaster Recovery (HADR)
synchronization mode” on page 57.

Will you use a peer window?
The peer window feature specifies that the primary and standby databases
are to behave as though they are still in peer state for a configured amount
of time if the primary loses the HADR connection in peer state. If primary
fails in peer or this "disconnected peer" state, the failover to standby will
have zero data loss. This feature provides the greatest protection. For more
information, see “Setting the hadr_timeout and hadr_peer_window
database configuration parameters” on page 44.

How many standbys will you deploy?
With HADR, you can use either single standby mode or multiple standby
mode. With multiple standbys, you can achieve both your high availability
and disaster recovery objectives with a single technology. For more
information, see “HADR multiple standby databases” on page 190.

There are a number of ways that you can use your HADR standby or standbys
beyond their HA or DR purpose:

Reads on standby
You can use the reads on standby feature to direct read-only workload to
one or more standby databases without affecting the HA or DR
responsibility of the standby. This feature can help reduce the workload on
the primary without affecting the main responsibility of the standby. For
more information on this topic, see “HADR reads on standby feature” on
page 212.

Unless you have reads on standby enabled, applications can access the
current primary database only. If you have reads on standby enabled,
read-only applications can be redirected to the standby. Applications
connecting to the standby database do not affect the availability of the
standby in the case of a failover.

Delayed replay
You can use delayed replay to specify that a standby database is to remain

Chapter 3. High availability with DB2 server 15

at an earlier point in time than the primary, in terms of log replay. If data
is lost or corrupted on the primary, you can recovery this data on the time
delayed standby. For more information, see “HADR delayed replay” on
page 184.

Rolling updates and upgrades
Using an HADR setup, you can make various types of upgrades and DB2
fix pack updates to your databases without an outage. If you are using
multiple standby mode enabled, you can perform an upgrade while at the
same time keeping the protection provided by HADR. For more
information, see “Performing rolling updates and upgrades in a DB2 High
Availability Disaster Recovery (HADR) environment” on page 165.

HADR might be your best option if most or all data in your database requires
protection or if you perform DDL operations that must be automatically replicated
on a standby database. However, HADR is only one of several replication solutions
that are offered in the DB2 product family. The InfoSphere® Federation Server
software and the DB2 database system include SQL replication and Q replication
solutions that you can also use, in some configurations, to provide high
availability. These solutions maintain logically consistent copies of database tables
at multiple locations. In addition, they provide flexibility and complex functionality
such as support for column and row filtering, data transformation, and updates to
any copy of a table. You can also use these solutions in partitioned database
environments.

In IBM Data Studio Version 3.1 or later, you can use the task assistant for setting
up HADR. Task assistants can guide you through the process of setting options,
reviewing the automatically generated commands to perform the task, and running
these commands. For more details, see Administering databases with task
assistants.

DB2 High Availability Feature

The DB2 High Availability Feature enables integration between IBM DB2 server
and cluster managing software.

When you stop a database manager instance in a clustered environment, you must
make your cluster manager aware that the instance is stopped. If the cluster
manager is not aware that the instance is stopped, the cluster manager might
attempt an operation such as failover on the stopped instance. The DB2 High
Availability Feature provides infrastructure for enabling the database manager to
communicate with your cluster manager when instance configuration changes,
such as stopping a database manager instance, require cluster changes.

If the database manager communicates with the cluster manager whenever
instance changes require cluster changes, then you are freed from having to
perform separate cluster operations after performing instance configuration
changes.

The DB2 High Availability Feature is composed of the following elements:

e IBM Tivoli System Automation for Multiplatforms (SA MP) is bundled with
DB2 server on AIX and Linux as part of the DB2 High Availability Feature, and
integrated with the DB2 installer. You can install, upgrade, or uninstall SA MP
using either the DB2 installer or the instal1SAM and uninstal1SAM scripts that
are included in the DB2 server install media.

16 Data Recovery and High Availability Guide and Reference

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

* In a clustered environment, some database manager instance configuration and
administration operations require related cluster configuration changes. The DB2
High Availability Feature (HA) Feature enables the database manager to
automatically request cluster manager configuration changes whenever you
perform certain database manager instance configuration and administration
operations. See: “Configuring a cluster automatically with the DB2 High
Availability (HA) Feature” on page 84

* DB2 high availability instance configuration utility (db2haicu) is a text based
utility that you can use to configure and administer your highly available
databases in a clustered environment. See: “DB2 high availability instance
configuration utility (db2haicu)” on page 93

High availability through log shipping

Log shipping is the process of copying whole log files to a standby machine either
from an archive device, or through a user exit program running against the
primary database.

The standby database is continuously rolling forward through the log files
produced by the production machine. When the production machine fails, a
failover occurs and the following takes place:

* The remaining logs are transferred over to the standby machine.
* The standby database rolls forward to the end of the logs and stops.
* The clients reconnect to the standby database and resume operations.

The standby machine has its own resources (for example, disks), but must have the
same physical and logical definitions as the production database. When using this
approach, create the initial standby database by using restore utility (from a
backup of the primary database) or by using the split mirror function if that is
available.

To ensure that you are able to recover your database in a disaster recovery
situation consider the following:

* The archive location should be geographically separate from the primary site.
* Remotely mirror the log at the standby database site.

* Use a synchronous mirror for no loss support. You can do this using modern
disk subsystems such as ESS and EMC, or another remote mirroring technology.
NVRAM cache (both local and remote) is also recommended to minimize the
performance impact of a disaster recovery situation.

If you want to control which log files are to be rolled forward on the standby
machine, you can disable the retrieval of archived logs by using the NORETRIEVE
option with the ROLLFORWARD DATABASE command. The benefits of this are:

* By controlling the log files to be rolled forward, you can ensure that the standby
machine is X hours behind the production machine, to avoid affecting both the
systems.

* If the standby system does not have access to archive (for example, if TSM is the
archive, it only allows the original machine to retrieve the files).

* It might also be possible that while the production system is archiving a file, the
standby system is retrieving the same file, and it might then get an incomplete
log file. NORETRIEVE would solve this problem.

Note:

Chapter 3. High availability with DB2 server 17

1. When the standby database processes a log record indicating that an index
rebuild took place on the primary database, the indexes on the standby server
are not automatically rebuilt. The index will be rebuilt on the standby server
either at the first connection to the database, or at the first attempt to access the
index after the standby server is taken out of rollforward pending state. It is
recommended that the standby server be resynchronized with the primary
server if any indexes on the primary server are rebuilt. You can enable indexes
to be rebuilt during rollforward operations if you set the logindexbuild
database configuration parameter.

2. If the load utility is run on the primary database with the COPY YES option
specified, the standby database must have access to the copy image.

3. If the load utility is run on the primary database with the COPY NO option
specified, the standby database should be resynchronized, otherwise the table
space will be placed in restore pending state.

4. There are two ways to initialize a standby machine:
a. By restoring to it from a backup image.
b. By creating a split mirror of the production system and issuing the db2inidb
command with the STANDBY option.
Only after the standby machine has been initialized can you issue the
ROLLFORWARD DATABASE command on the standby system.

5. Operations that are not logged will not be replayed on the standby database.
As a result, it is recommended that you resynchronize the standby database
after such operations. You can do this through online split mirror and
suspended 1/O support.

Log mirroring

IBM DB2 server supports log mirroring at the database level. Mirroring log files
helps protect a database from accidental deletion of an active log and data
corruption caused by hardware failure.

If you are concerned that your active logs might be damaged (as a result of a disk
crash), consider using the mirrorlogpath configuration parameter to specify a
secondary path for the database to manage copies of the active log, mirroring the
volumes on which the logs are stored.

The mirrorlogpath configuration parameter allows the database to write an
identical second copy of log files to a different path. It is recommended that you
place the secondary log path on a physically separate disk (preferably one that is
also on a different disk controller). That way, the disk controller cannot be a single
point of failure.

When you first give a value to the mirrorlogpath configuration parameter, DB2
will not use it until the next database startup. This behavior is similar to the
newlogpath configuration parameter.

If there is an error writing to either the active log path or the mirror log path, the
database marks the failing path as “bad”, writes a message to the administration
notification log, and writes subsequent log records only to the remaining “good”
log path. DB2 does not attempt to use the “bad” path again until the current log
file is either full or truncated. When DB2 needs to open the next log file, it verifies
that this path is valid, and if so, begins to use it. If not, DB2 does not attempt to
use the path again until the next log file is accessed for the first time. There is no
attempt to synchronize the log paths, but DB2 keeps information about access

18 Data Recovery and High Availability Guide and Reference

errors that occur, so that the correct paths are used when log files are archived. If a
failure occurs while writing to the remaining “good” path, the database shuts
down.

High availability through suspended I/O and online split mirror support

IBM DB?2 server suspended 1/O support enables you to split mirrored copies of
your primary database without taking the database offline. You can use this to
very quickly create a standby database to take over if the primary database fails.

Disk mirroring is the process of writing data to two separate hard disks at the
same time. One copy of the data is called a mirror of the other. Splitting a mirror is
the process of separating the two copies.

You can use disk mirroring to maintain a secondary copy of your primary
database. You can use DB2 server suspended 1/0 functionality to split the primary
and secondary mirrored copies of the database without taking the database offline.
Once the primary and secondary databases copies are split, the secondary database
can take over operations if the primary database fails.

If you would rather not back up a large database using the DB2 server backup
utility, you can make copies from a mirrored image by using suspended 1/O and
the split mirror function. This approach also:

 Eliminates backup operation overhead from the production machine
* Represents a fast way to clone systems

* Represents a fast implementation of idle standby failover. There is no initial
restore operation, and if a rollforward operation proves to be too slow, or
encounters errors, reinitialization is very fast.

The db2inidb command initializes the split mirror so that it can be used:
* As a clone database

* As a standby database

* As a backup image

This command can only be issued against a split mirror, and it must be run before
the split mirror can be used.

In a partitioned database environment, you do not have to suspend I/O writes on
all database partitions simultaneously. You can suspend a subset of one or more
database partitions to create split mirrors for performing offline backups. If the
catalog partition is included in the subset, it must be the last database partition to
be suspended.

In a partitioned database environment, the db2inidb command must be run on
every database partition before the split image from any of the database partitions
can be used. The tool can be run on all database partitions simultaneously using
the db2_al1l command. If; however, you are using the RELOCATE USING option, you
cannot use the db2_all command to run db2inidb on all of the database partitions
simultaneously. A separate configuration file must be supplied for each database
partition, that includes the NODENUM value of the database partition being
changed. For example, if the name of a database is being changed, every database
partition will be affected and the db2relocatedb command must be run with a
separate configuration file on each database partition. If containers belonging to a
single database partition are being moved, the db2relocatedb command only needs
to be run once on that database partition.

Chapter 3. High availability with DB2 server 19

Note: Ensure that the split mirror contains all containers and directories which
comprise the database, including the volume directory. To gather this information,
refer to the DBPATHS administrative view, which shows all the files and
directories of the database that need to be split.

20 Data Recovery and High Availability Guide and Reference

Chapter 4. Configuring for high availability

To configure your DB2 database solution for high availability, you must: schedule
database maintenance activities; configure the primary and standby database
servers to know about each other and their respective roles in the event of a
failure; and configure any cluster managing software to transfer workload from a
failed cluster node.

Before you begin

Before configuring your database solution:

* Assemble and install the underlying hardware and software components that
make up the solution. These underlying components might include: power
supply; network connectivity; network cards; disks or other storage devices;
operating systems; and cluster managing software.

* Test these underlying components without any database workload to make sure
they are functioning properly before attempting to use them in database load
balancing, failover, or recovery operations.

About this task

Redundancy is an important part of a high availability solution. However, if you
do not schedule maintenance wisely, if you run out of storage space for needed
recovery logs, or if your cluster managing software is not configured correctly,
your solution might not be available when your users need to do crucial work
with the database.

Procedure

Configuring for high availability includes:

* Configure client reroute

* Configure fault monitor

¢ Configure DB2 High Availability Disaster Recovery
* Schedule maintenance activities

¢ Configure logging

* Configure cluster managing software

Automatic client reroute description and setup

The main goal of the automatic client reroute feature is to enable an IBM Data
Server Client application to recover from a loss of communications so that the
application can continue its work with minimal interruption.

As the name suggests, rerouting is central to the support of continuous operations.
But rerouting is only possible when there is an alternate location that is identified
to the client connection.

The automatic client reroute feature could be used within the following
configurable environments if the server is DB2 for Linux, UNIX, and Windows :

1. DB2 Enterprise Server Edition with the DB2 Database Partitioning Feature
2. DB2 Enterprise Server Edition with the IBM DB2 pureScale® Feature

© Copyright IBM Corp. 2001, 2013 21

3. InfoSphere Replication Server
4. IBM PowerHA SystemMirror for AIX
5. High availability disaster recovery (HADR)

Automatic client reroute works in conjunction with HADR or the DB2
pureScale Feature to allow a client application to continue its work with
minimal interruption after a failover of the database being accessed.

The seamless automatic client reroute feature is used in the following configuration
if the database server is on System i® or System z®:

1. IBM data server client connects to a z/OS or i5/0S® system through a DB2
Connect server which has an alternate server. The automatic client reroute is
used between the IBM Data Server Client and two DB2 Connect servers.

2. DB2 Connect clients or server products accessing a DB2 for z/OS Parallel
Sysplex® data sharing environment. Automatic client reroute is used between
DB2 Connect and the z/OS Parallel Sysplex system. The automatic client
reroute feature supports seamless failover between a DB2 Connect-licensed
client and the Parallel Sysplex. For more information about seamless failover,
see the topic about automatic client reroute (client-side) in the DB2 Information
Center.

In the case of the DB2 Connect server and its alternate, because there is no
requirement for the synchronization of local databases, you only need to ensure
that both the original and alternate DB2 Connect servers have the target host or
System i database cataloged in such a way that it is accessible using an identical
database alias.

In order for the DB2 database system to have the ability to recover from a loss of
communications, an alternative server location must be specified before the loss of
communication occurs. The UPDATE ALTERNATE SERVER FOR DATABASE command is
used to define the alternate server location on a particular database.

After you have specified the alternate server location on a particular database at
the server instance, the alternate server location information is returned to the IBM
data server client as part of the connection process. In the case of using automatic
client reroute between DB2 Connect clients or server products and a host or
System i database server, the remote server must provide one or more alternate
addresses for itself. In the case of DB2 for z/OS, multiple addresses are known if
the database is a Sysplex data sharing environment. Therefore an alternate server
does not need to be cataloged on DB2 Connect. If communication between the
client and the server is lost for any reason, the IBM Data Server Client will attempt
to reestablish the connection by using the alternate server information. The IBM
data server client will attempt to reconnect with a database server which could be
the original server, and alternate server listed in the database directory file at the
server, or an alternate server that is in the server list returned by the z/OS Parallel
Sysplex system. The timing of these attempts to reestablish a connection varies
from very rapid attempts initially to a gradual lengthening of the intervals between
the attempts.

After a connection is successful, SQL30108N is returned to indicate that a database
connection has been reestablished following the communication failure. The
hostname or IP address and service name or port number are returned. The IBM
data server client only returns the error for the original communications failure to
the application if the reestablishment of the client communications is not possible
to either the original or alternative server.

22 Data Recovery and High Availability Guide and Reference

In V10.1 Fix Pack 2 and later fix packs, when connecting to theDB2 for z/OS data
sharing group with the workload balance (WLB) feature enabled, non-seamless
ACR feature behavior has changed:

¢ The CLI driver does not immediately look for a new transport upon a
connection failure. The CLI driver allocates a transport if the application
resubmits the SET statement (special registers) or the SQL statement. When the
non-seamless ACR feature is enabled and the WLB feature is disabled, however,
the CLI driver immediately looks for a new transport and reconnects to the next
available member.

¢ SQL30108N returns twice to the application if the CLI driver fails to reconnect to
members of the primary group and must switch to the alternate group. The
error is returned twice when the alternate group is specified in the
db2dsdriver.cfg file with the alternategroup parameter and the
enableAlternateGroupSeamlessAcr is set to FALSE. The first SQL30108N error
with reason code 2 is returned when the existing connection to a member in the
current group fails. The second SQL30108N error with reason code 4 is returned
when all the connection attempts to all members in the existing primary group
fail. The application can then resubmit the SET statement or the SQL statement
again for the second time if reconnecting to the alternate group is warranted.
The CLI driver tracks the failed member on a same connection handle when the
ACR connection error (SQL30108N) is returned to avoid resubmitting the
statement to the failed member.

Note: SQL30108N is not returned twice in the following scenarios:
— When the DB2 Connect server is used as a gateway.

— When the ACR feature is explicitly enabled without enabling the WLB
feature.

When connecting to the DB2 for z/OS data sharing group, the seamless ACR
feature and the WLB feature should not be disabled unless directed by IBM
support.

Note the following considerations involving alternate server connectivity in a DB2
Connect server environment:

* When using a DB2 Connect server for providing access to a host or System i
database on behalf of both remote and local clients, confusion can arise
regarding alternate server connectivity information in a system database
directory entry. To minimize this confusion, consider cataloging two entries in
the system database directory to represent the same host or System i database.
Catalog one entry for remote clients and catalog another for local clients.

* Any Parallel Sysplex information that is returned from a target DB2 for z/OS
server is kept only in cache at the DB2 Connect server. Only one alternate server
is written to disk. When multiple alternates or multiple active servers exist, the
information is only maintained in memory and is lost when the process
terminates.

In general, if an alternate server is specified, automatic client reroute will be
enabled when a communication error is detected. In a high availability disaster
recovery (HADR) environment, it will also be enabled if SQL1776N is returned
back from the HADR standby server.

Workload balancing and automatic client reroute require the client to have entries
for each member in the cluster present in the /etc/hosts file. For example:

10.10.10.1 hostname0l.1inux hostname0Ol
10.10.10.2 hostname02.1inux hostname02

Chapter 4. Configuring for high availability 23

Automatic client reroute configuration for client connection
distributor technology

Distributor or dispatcher technologies such as WebSphere® Edge Server Load
Balancer distribute client application reconnection requests to a defined set of
systems if a primary database server fails.

If you are using distributor technology with DB2 automatic client reroute, you
must identify the distributor itself as the alternate server to DB2 automatic client
reroute.

You might be using distributor technology in an environment similar to the
following:

Client -> distributor technology -> (DB2 Connect server 1 or DB2 Connect server 2)
->DB2 for z/OS

where:

¢ The distributor technology component has a TCP/IP host name of DThostname
* The DB2 Connect server 1 has a TCP/IP host name of GWYhostnamel

* The DB2 Connect server 2 has a TCP/IP host name of GWYhostname2

* The DB2 for z/OS server has a TCP/IP host name of zOShostname

The client is catalogued using DThostname in order to utilize the distributor
technology to access either of the DB2 Connect servers. The intervening distributor
technology makes the decision to use GWYhostnamel or GWYhostname2. Once
the decision is made, the client has a direct socket connection to one of these two
DB2 Connect gateways. Once the socket connectivity is established to the chosen
DB2 Connect server, you have a typical client to DB2 Connect server to DB2 for
z/0OS connectivity.

For example, assume the distributor chooses GWYhostname2. This produces the
following environment:

Client -> DB2 Connect server 2 -> DB2 for z/0S

The distributor does not retry any of the connections if there is any communication
failure. If you want to enable the automatic client reroute feature for a database in
such an environment, the alternative server for the associated database or
databases in the DB2 Connect server (DB2 Connect server 1 or DB2 Connect server
2) should be set up to be the distributor (DThostname). Then, if DB2 Connect
server 1 locks up for any reason, automatic client rerouting is triggered and a client
connection is retried with the distributor as both the primary and the alternate
server. This option allows you to combine and maintain the distributor capabilities
with the DB2 automatic client reroute feature. Setting the alternate server to a host
other than the distributor host name still provides the clients with the automatic
client reroute feature. However, the clients will establish direct connections to the
defined alternate server and bypass the distributor technology, which eliminates
the distributor and the value that it brings.

The automatic client reroute feature intercepts the following SQL codes:
* SQL20157N
* SQL1768N (reason code: 7)

24 Data Recovery and High Availability Guide and Reference

Note: Client reroute might not be informed of socket failures in a timely fashion if
the setting of the "TCP Keepalive" operating system configurations parameter is
too high. (Note that the name of this configuration parameter varies by platform.)

Identifying an alternate server for automatic client reroute

Whenever a DB2 server or DB2 Connect server crashes, each client that is
connected to that server receives a communications error which terminates the
connection resulting in an application error.

In cases where availability is important, implement either a redundant set-up or
the ability to fail the server over to a standby node. In either case, the DB2 client
code attempts to re-establish the connection to the original server which might be
running on a failover node (the IP address fails over as well), or to a new server.

Procedure

To define a new or alternate server, use the UPDATE ALTERNATE SERVER FOR

DATABASE or UPDATE ALTERNATE SERVER FOR LDAP DATABASE command.

These commands update the alternate server information for a database alias in the
system database directory.

Automatic client reroute limitations

Consider DB2 database client reroute restrictions when designing your high
availability DB2 database solution.

Here is a list of limitations of the DB2 database automatic client reroute feature:

* Automatic client reroute is only supported when the communications protocol
used for connecting to the DB2 database server, or to the DB2 Connect Server, is
TCP/IP. This means that if the connection is using a different protocol other than
TCP/IP, the automatic client reroute feature will not be enabled. Even if the DB2
database is set up for a loopback, TCP/IP communications protocol must be
used in order to accommodate the automatic client reroute feature.

* When using automatic reroute between the DB2 Connect clients or server
products and a host or System i database server, if you are in the following
situations you will have the associated implications:

— When using a DB2 Connect Server for providing access to a host or System i
database on behalf of both remote and local clients, confusion can arise
regarding alternate server connectivity information in a system database
directory entry. To minimize this confusion, consider cataloging two entries in
the system database directory to represent the same host or System i
database. Catalog one entry for remote clients and catalog another for local
clients.

— Any SYSPLEX information that is returned from a target DB2 for z/OS server
is kept only in cache at the DB2 Connect Server. Only one alternate server is
written to disk. When multiple alternates or multiple active servers exist, the
information is only maintained in memory and is lost when the process
terminates.

* If the connection is reestablished to the alternate server location, any new
connection to the same database alias will be connected to the alternate server
location. If you want any new connection to be established, to the original
location in case the problem on the original location is fixed, there are a couple
of options from which to choose:

Chapter 4. Configuring for high availability 25

— You need to take the alternate server offline and allow the connections to fail
back over to the original server. (This assumes that the original server has
been cataloged using the UPDATE ALTERNATE SERVER command such that it is
set to be the alternate location for the alternate server.)

— You could catalog a new database alias to be used by the new connections.
— You could uncatalog the database entry and re-catalog it again.

* DB2 for Linux, UNIX, and Windows supports the automatic client reroute
feature for both the client and the server if both the client and server support
this feature. Other DB2 database product families do not currently support this
feature.

* The behavior of the automatic client reroute feature and the behavior of the
automatic client rerouting in a DB2 for z/OS sysplex environment are somewhat
different. Specifically:

— The automatic client reroute feature requires the primary server to designate a
single alternative server. This is done using the UPDATE ALTERNATE SERVER FOR
DATABASE or UPDATE ALTERNATE SERVER FOR LDAP DATABASE command issued at
the primary server. This command updates the local database directory with
the alternate server information so that other applications at the same client
have access this information. By contrast, a data-sharing sysplex used for DB2
for z/OS maintains, in memory, a list of one or more servers to which the
client can connect. If a communication failure happens, the client uses that list
of servers to determine the location of the appropriate alternative server.

— In the case of the automatic client reroute feature, the server informs the
client of the most current special register settings whenever a special register
setting is changed. This allows the client, to the best of its ability, to
reestablish the runtime environment after a reroute has occurred. By contrast,
a Sysplex used for DB2 for z/OS returns the special register settings to the
client on commit boundaries therefore any special registers changed within
the unit of work that has been rerouted need to be replayed. All others will
be replayed automatically.

Full automatic client reroute support is available only between a Linux, UNIX,
or Windows client and a Linux, UNIX, or Windows server. It is not available
between a Linux, UNIX, or Windows client and a DB2 for z/OS Sysplex server
(any supported version); only the reroute capability is supported.

* The DB2 database server installed in the alternate host server must be the same
version (but could have a higher fix pack) when compared to the DB2 database
instance installed on the original host server.

* Regardless of whether you have authority to update the database directory at
the client machine, the alternate server information is always kept in memory. In
other words, if you did not have authority to update the database directory (or
because it is a read-only database directory), other applications will not be able
to determine and use the alternate server, because the memory is not shared
among applications.

* The same authentication is applied to all alternate locations. This means that the
client will be unable to reestablish the database connection if the alternate
location has a different authentication type than the original location.

* When there is a communication failure, all session resources such as global
temporary tables, identity, sequences, cursors, server options (SET SERVER
OPTION) for federated processing and special registers are all lost. The
application is responsible to reestablish the session resources in order to continue
processing the work. You do not have to run any of the special register
statements after the connection is reestablished, because the DB2 database will

26 Data Recovery and High Availability Guide and Reference

replay the special register statements that were issued before the communication
error. However, some of the special registers will not be replayed. They are:

— SET ENCRYPTPW

— SET EVENT MONITOR STATE

— SET SESSION AUTHORIZATION
— SET TRANSFORM GROUP

When you have a problem with DB2 Connect, you should refer to the list of
restricted special registers specific to the DB2 Connect product on a data server.

* If, after the connection is reestablished following a communication failure and
the client is using CLI, JCC Type 2 or Type 4 drivers, then those SQL and
XQuery statements that have been prepared against the original server are
implicitly re-prepared with the new server. However, embedded SQL routines
(for example, SQC or SQX applications), are not re-prepared with the new
server.

* Do not run high availability disaster recovery (HADR) commands (START HADR,
STOP HADR, or TAKEOVER HADR) on client reroute-enabled database aliases. HADR
commands are implemented to identify the target database using database
aliases. Consequently, if the target database has an alternative database defined,
it is difficult for HADR commands to determine the database on which the
command is actually operating. A client might need to connect using a client
reroute-enabled alias, but HADR commands must be applied on a specific
database. To accommodate this, you can define aliases specific to the primary
and standby databases and only run HADR commands on those aliases.

* Because each database server can only have one alternate server defined, if you
have a HADR multiple standby setup, you need to select one standby database
(likely the principal standby) as the alternate server of the primary.

An alternate way to implement automatic client rerouting is to use the DNS entry
to specify an alternate IP address for a DNS entry. The idea is to specify a second
IP address (an alternate server location) in the DNS entry; the client would not
know about an alternate server, but at connect time DB2 database system would
alternate between the IP addresses for the DNS entry.

Configuring TCP/IP keepalive parameters

DB2 connections between clients and servers use the TCP/IP protocol to
communicate. In order to prevent potential failover issues caused by timeouts
within the TCP/IP layer, it is necessary to adjust the TCP/IP keepalive parameters
on the client.

Decreasing the keepalive values on the client improves timely detection of server
failures.

There are separate methods to update the client TCP/IP keepalive parameters. The
method you choose depends on if your client connection is based on the IBM Data
Server Driver for JDBC and SQL]J or not.

Configuring TCP/IP keepalive parameters for high availability
clients (JDBC)

For a client system that uses the IBM Data Server Driver for JDBC and SQLJ,
TCP/IP keepalive settings are set at the operating system level by adjusting certain
parameters.

Chapter 4. Configuring for high availability 27

About this task

The values provided in these commands are suggested values, but you should
fine-tune these settings based on your specific network and server capabilities.

Note: By altering these settings at an operating system level, this will affect all
TCP/IP communications on the client.

Procedure
1. Updating AIX

For an AIX client, there are three operating system keepalive parameters to
change:

* tcp_keepidle - the length of time to keep an idle TCP connection active

* tcp_keepintvl - the interval between packets sent to validate the TCP
connection

* tcp_keepcnt - the number of keepalive probes to be sent before terminating
the connection

On the AIX operating system, update these parameters using the "network
option" command:

no -o tcp_keepidle=12
no -o tcp_keepintvl=2
no -o tcp_keepcnt=10

The tcp_keepidle and tcp_keepintvl values are expressed in half-seconds.
2. Updating Linux

For a Linux client, there are four operating system keepalive parameters to

change:

¢ tcp_keepalive_probes - the number of probes that are sent and
unacknowledged before the client considers the connection broken and
notifies the application layer

* tcp_keepalive_time - the interval between the last data packet sent and the
first keepalive probe

* tcp_keepalive_intv] - the interval between subsequent keepalive probes

e tcp_retries2 - the maximum number of times a packet is retransmitted
before giving up

On the Linux operating system, update these parameters using the "echo”

command:

echo "6" > /proc/sys/net/ipv4/tcp_keepalive_time
echo "1" > /proc/sys/net/ipv4/tcp_keepalive_intv]l
echo "10" > /proc/sys/net/ipv4/tcp_keepalive_probes
echo "3" > /proc/sys/net/ipv4/tcp_retries2

The tcp_keepalive_time and tcp_keepalive_intvl values are expressed in
seconds. To retain these values after a system restart, they must be added to the
/etc/sysctl.conf file.

What to do next

For other client platforms, refer to your operating system documentation on how
to set TCP/IP keepalive values.

28 Data Recovery and High Availability Guide and Reference

Related information:

[AIX network option command

[Using TCP/IP keepalive under Linux

(* Microsoft Windows TCP /1P registry entries

Configuring TCP/IP keepalive parameters for non-JDBC high
availability clients (AIX, HP-UX, Linux, Windows)

The recommended method of setting the keepalive parameters on the client is to
use the keepAliveTimeout parameter in the db2dsdriver.cfg configuration file.

About this task

The values provided in these commands are suggested values, but you should
fine-tune these settings based on your specific network and server capabilities.

Procedure

There are two methods to update the TCP/IP keepalive parameters for a client
which does not use the IBM Data Server Driver for JDBC and SQLJ:

* Modify the db2dsdriver.cfg file.

To set this parameter, edit the db2dsdriver.cfg file and place the
keepAliveTimeout line outside of the <acr> section, but still within the
<databases> parent section. For example:
<configuration>
<dsncollection>
<dsn alias="D3D" name="D3D" host="DB2PS-member0" port="5912" />
</dsncollection>
<databases>
<database name="D3D" host="DB2PS-member0" port="5912">
<parameter name="keepAliveTimeout" value="20"/>
<acr>
<parameter name="enableAcr" value="true"/>
<parameter name="enableSeamlessAcr" value="true"/>
<parameter name="affinityFailbackInterval" value="15"/>
</databases>

</configuration>
This method is recommended because it can be used for both instance-based
clients and drivers without an instance. In addition, by utilizing the

db2dsdriver.cfg file, each individual database can have a different
keepAliveTimeout setting.

* Modify the DB2TCP_CLIENT_KEEPALIVE_TIMEOUT parameter.

The second method for updating the keepalive parameters on this type of client
is to set the DB2TCP_CLIENT_KEEPALIVE_TIMEOUT parameter to detect failures in the
TCP/IP communication layer.

To update this parameter, from a command window or terminal on the client,
issue this command:

db2set DB2TCP_CLIENT_KEEPALIVE_TIMEOUT=20
This value is specified in seconds.

Note: While TCP/IP timeout keepalive is also supported for instance
attachments, it can only be set using this second method of specifying a value

Chapter 4. Configuring for high availability 29

http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds4/no.htm
http://tldp.org/HOWTO/TCP-Keepalive-HOWTO/usingkeepalive.html
http://support.microsoft.com/kb/158474

for the DB2TCP_CLIENT_KEEPALIVE_TIMEOUT parameter. Note that automatic client
reroute (ACR) does not apply in the case of instance attachments.

DB2 fault monitor registry file

A fault monitor registry file is created for every DB2 database manager instance on
each physical machine when the fault monitor daemon is started. The keywords
and values in this file specify the behavior of the fault monitors.

The fault monitor registry file can be found in the /sq11ib/ directory and is called
fm.machine_name .reg. This file can be altered using the db2fm command.

If the fault monitor registry file does not exist, the default values will be used.

Here is an example of the contents of the fault monitor registry file:

FM_ON = no
FM_ACTIVE = yes
START_TIMEOUT = 600
STOP_TIMEOUT = 600
STATUS_TIMEOUT = 2
STATUS_INTERVAL
RESTART_RETRIES
ACTION_RETRIES
NOTIFY_ADDRESS

0
20
3
3
instance_name@machine_name

Fault monitor registry file keywords

FM_ON
Specifies whether or not the fault monitor should be started. If the value is
set to NO, the fault monitor daemon will not be started, or will be turned
off if it had already been started. The default value is NO.

FM_ACTIVE

Specifies whether or not the fault monitor is active. The fault monitor will
only take action if both FM_ON and FM_ACTIVE are set to YES. If FM_ON is set
to YES and FM_ACTIVE is set to NO, the fault monitor daemon will be started,
but it will not be active. That means that is will not try to bring DB2 back
online if it shuts down. The default value is YES.

START_TIMEOUT

Specifies the amount of time within which the fault monitor must start the
service it is monitoring. The default value is 600 seconds.

STOP_TIMEOUT

Specifies the amount of time within which the fault monitor must bring
down the service it is monitoring. The default value is 600 seconds.

STATUS_TIMEOUT

Specifies the amount of time within which the fault monitor must get the
status of the service it is monitoring. The default value is 20 seconds.

STATUS_INTERVAL

Specifies the minimum time between two consecutive calls to obtain the
status of the service that is being monitored. The default value is 20
seconds.

RESTART_RETRIES

30 Data Recovery and High Availability Guide and Reference

Specifies the number of times the fault monitor will try to obtain the status
of the service being monitored after a failed attempt. Once this number is
reached the fault monitor will take action to bring the service back online.
The default value is 3.

ACTION_RETRIES

Specifies the number of times the fault monitor will attempt to bring the
service back online. The default value is 3.

NOTIFY_ADDRESS

Specifies the e-mail address to which the fault monitor will send
notification messages. The default is instance_name@machine_name).

Configuring DB2 fault monitor using the db2fm command
You can alter the DB2 fault monitor registry file using the db2fm command.

Here are some examples of using the db2fm command to update the fault monitor
registry file:

Example 1: Update START_TIMEOUT
To update the START_TIMEOUT value to 100 seconds for instance

DB2INST1, type the following command from a DB2 database command
window:

db2fm -i db2instl -T 100
Example 2: Update STOP_TIMEOUT

To update the STOP_TIMEOUT value to 200 seconds for instance
DB2INST1, type the following command:

db2fm -i db2instl -T /200
Example 3: Update START_TIMEOUT and STOP_TIMEOUT

To update the START_TIMEOUT value to 100 seconds and the
STOP_TIMEOUT value to 200 seconds for instance DB2INST1, type the
following command:

db2fm -i db2instl -T 100/200
Example 4: Turn on fault monitoring

To turn on fault monitoring for instance DB2INST1, type the following
command:

db2fm -i db2instl -f yes
Example 5: Turn off fault monitoring

To turn off fault monitoring for instance DB2INST1, type the following
command:

db2fm -i db2instl -f no

To confirm that fault monitor is no longer running for DB2INST1, type the
following command on UNIX systems:

ps -ef|grep -i fm

On Linux, type the following command:
ps auxw|grep -i fm

Chapter 4. Configuring for high availability 31

An entry that shows db2fmd and DB2INST1 indicates that the fault monitor
is still running on that instance. To turn off the fault monitor, type the
following command as the instance owner:

db2fm -i db2instl -D

Configuring the DB2 fault monitor using db2fmcu and system
commands

You can configure the DB2 fault monitor using the DB2 fault monitor controller
command db2fmcu or system commands.

Here are some examples of using db2fmcu and system commands to configure the
fault monitor:

Example 1: Prevent FMC from being launched

You can prevent the fault monitor controller (FMC) from being launched
by using the DB2 fault monitor controller command. The db2fmcu
command must be run as root because it accesses the system's inittab file.
To block the FMC from being run, type the following command as root:

db2fmcu -d

Note: If you apply a DB2 Data Server fix pack this will be reset so that
the inittab will again be configured to include the FMC. To prevent the
FMC from being launched after you have applied a fix pack, you must
reissue the command shown in this example.

Example 2: Include FMC to be launched
To reverse the db2fmcu -d command and reconfigure the inittab to

include the FMC, type the following command:
db2fmcu -u -p fullpath

where fullpath is the complete path to the db2fmed object, for example
/opt/IBM/db2/bin/db2fmcd.

Example 3: Automatically start the DB2 database manager instance

You can also enable FMC to automatically start the instance when the
system is first booted. To enable this feature for instance DB2INST1, type
the following command:

db2iauto -on db2instl

Note: On Red Hat Enterprise Linux 6 (RHEL6) systems, the DB2 Fault
Monitor Coordinator daemon (db2fmcd) does not restart after a system
restart, so the DB2 instances will not restart even if it is configured
correctly to start automatically. Consult the following technote to enable
the fault monitor so that the db2fmcd autostarts on RHEL6 systems:
http:/ /www-01.ibm.com/support/docview.wss?uid=swg21497220.

Example 4: Disable automatically starting the instance

To turn off the autostart behaviour, type the following command:
db2iauto -off db2instl

Example 5: Prevent fault monitor processes from being launched

You can also prevent fault monitor processes from being launched for a
specific instances on the system by changing a field in the global registry

32 Data Recovery and High Availability Guide and Reference

http://www-01.ibm.com/support/docview.wss?uid=swg21497220

record for the instance. To change the global registry field to disable fault
monitors for instance DB2INST1, type the following command as root:

db2greg -updinstrec instancename=db2instl!startatboot=0

To reverse this command and re-enable fault monitors for instance
DB2INST1, type the following command as root:

db2greg -updinstrec instancename=db2instl!startatboot=1

Initializing high availability disaster recovery (HADR)

Use this procedure to set up and initialize the primary and standby databases for
DB2 high availability disaster recovery (HADR) in single standby mode.

About this task

HADR can be initialized through the command line processor (CLP), or by calling
the db2HADRStart APL

Procedure

To use the CLP to initialize HADR on your system for the first time:

1.

Determine the host name, host IP address, and the service name or port
number for each of the HADR databases.

If a host has multiple network interfaces, ensure that the HADR host name or
IP address maps to the intended one. You need to allocate separate HADR
ports in /etc/services for each protected database. These cannot be the same
as the ports allocated to the instance. The host name can only map to one IP
address.

Note: The instance names for the primary and standby databases do not have
to be the same.

Create the standby database by restoring a backup image or by initializing a
split mirror, based on the existing database that is to be the primary.

In the following example, the BACKUP DATABASE and RESTORE DATABASE
commands are used to initialize database SOCKS as a standby database. In this
case, an NFS mounted file system is accessible at both sites.

Issue the following command at the primary database:
backup db socks to /nfsl/backups/db2/socks

Issue the following command at the standby database:
restore db socks from /nfsl/backups/db2/socks replace history file

The following example illustrates how to use the db2inidb utility to initialize
the standby database using a split mirror of the primary database. This
procedure is an alternative to the backup and restore procedure illustrated
previously.

Issue the following command at the standby database:

db2inidb socks as standby

Note:
a. The database names for the primary and standby databases must be the
same.

b. Do not issue the ROLLFORWARD DATABASE command on the standby database
after the restore operation or split mirror initialization. The results of using

Chapter 4. Configuring for high availability 33

a rollforward operation might differ slightly from replaying the logs using
HADR on the standby database. If the databases are not identical, attempts
to start the standby will fail.

C. Use the REPLACE HISTORY FILE option with the RESTORE DATABASE command.

d. When creating the standby database using the RESTORE DATABASE command,
ensure that the standby remains in rollforward-pending or
rollforward-in-progress mode. This means that you cannot issue the
ROLLFORWARD DATABASE command with either the COMPLETE option or the
STOP option. An error will be returned if the START HADR command with the
AS STANDBY option is attempted on the database after rollforward is stopped.

e. The following RESTORE DATABASE command options should be avoided when
setting up the standby database: TABLESPACE, INTO, REDIRECT, and WITHOUT
ROLLING FORWARD.

f. When setting up the standby database using the db2inidb utility, do not use
the SNAPSHOT or MIRROR options. You can specify the RELOCATE USING option
to change one or more of the following configuration attributes: instance
name, log path, and database path. However, you must not change the
database name or the table space container paths.

3. Set the following HADR configuration parameters on the primary and standby
databases:

* hadr_local_host
* hadr_local_svc
* hadr_remote_host
* hadr_remote_svc
* hadr_remote_inst

These configuration parameters must be set after the standby databases has
been created. If they are set prior to creating the standby database, the settings
on the standby database will reflect what is set on the primary database.

Note: This is a generic HADR setup; for more advanced configuration options
and settings, see the following links.

4. Connect to the standby instance and start HADR on the standby database, as in
the following example:

START HADR ON DB SOCKS AS STANDBY

Note: Usually, the standby database is started first. If you start the primary
database first, this startup procedure will fail if the standby database is not
started within the time period specified by the hadr_timeout database
configuration parameter.

After the standby starts, it enters local catchup state in which locally available
log files are read and replayed. After it has replayed all local logs, it enters
remote catchup pending state.

5. Connect to the primary instance and start HADR on the primary database, as
in the following example:
START HADR ON DB SOCKS AS PRIMARY

After the primary starts, the standby enters remote catchup state in which
receives log pages from the primary and replays them. After it has replayed all
log files that are on the disk of the primary database machine, both databases
enter peer state.

34 Data Recovery and High Availability Guide and Reference

Configuring automatic client reroute and High Availability
Disaster Recovery (HADR)

You can use the automatic client reroute feature with the High Availability Disaster
Recovery (HADR) feature to transfer client application requests from a failed
database server to a standby database server.

Restrictions

Rerouting is only possible when an alternate database location has been
specified at the server.

Automatic client reroute is only supported with TCP/IP protocol.

Configuration details

* Use the UPDATE ALTERNATE SERVER FOR DATABASE command to enable automatic
client reroute.

* Automatic client reroute does not use the hadr_remote_host and
hadr_remote_svc database configuration parameters.

* In multiple standby mode, you can only specify one standby database for
automatic client reroute.

* The alternate host location is stored in the system database directory file at the
server.

 If automatic client reroute is not enabled, client applications will receive error
message SQL30081N, and no further attempts will be made to establish a
connection with the server.

Using the UPDATE ALTERNATE SERVER FOR DATABASE
command to set up automatic client reroute with HADR

Your system is set up as follows:

* You have a client where database MUSIC is cataloged as being located at host
HORNET.

* Database MUSIC is the primary database and its corresponding standby
database, also MUSIC, resides on host MONTERO with port number 456, which
is assigned by the svcename configuration parameter.

To enable automatic client reroute, update the alternate server for database MUSIC
on host HORNET:

db2 update alternate server for database music using hostname montero port 456

After this command is issued, the client must successfully connect to host
HORNET to obtain the alternate server information. Then, if a communication
error occurs between the client and database MUSIC at host HORNET, the client
will first attempt to reconnect to database MUSIC at host HORNET. If this fails, the
client will then attempt to establish a connection with the standby database MUSIC
on host MONTERO.

Index logging and high availability disaster recovery (HADR)

You should consider setting the database configuration parameters 1ogindexbuild
and indexrec for high availability disaster recovery (HADR) databases.

Chapter 4. Configuring for high availability 35

Using the logindexbuild database configuration parameter

Recommendation: For HADR databases, set the Togindexbuild database
configuration parameter to ON to ensure that complete information is logged for
index creation, re-creation, and reorganization. Although this means that index
builds might take longer on the primary system and that more log space is
required, the indexes will be rebuilt on the standby system during HADR log
replay and will be available when a failover takes place. Otherwise, when
replaying an index build or rebuild event, the standby marks the index invalid,
because the log records do not contain enough information to populate the new
index. If index builds on the primary system are not logged and a failover occurs,
any invalid indexes that remain after the failover is complete have to be rebuilt
before they can be accessed. While the indexes are being re-created, they cannot be
accessed by any applications.

Note: If the LOG INDEX BUILD table attribute is set to its default value of NULL,
DB2 uses the value specified for the Togindexbuild database configuration
parameter. If the LOG INDEX BUILD table attribute is set to ON or OFF, the value
specified for the Togindexbuild database configuration parameter is ignored.

You might choose to set the LOG INDEX BUILD table attribute to OFF on one or
more tables for either of the following reasons:

* You do not have enough active log space to support logging of the index builds.

* The index data is very large and the table is not accessed often; therefore, it is
acceptable for the indexes to be re-created at the end of the takeover operation.
In this case, set the indexrec configuration parameter to RESTART. Because the
table is not frequently accessed, this setting causes the system to re-create the
indexes at the end of the takeover operation instead of waiting for the first time
the table is accessed after the takeover operation.

If the LOG INDEX BUILD table attribute is set to OFF on one or more tables, any
index build operation on those tables might cause the indexes to be re-created any
time a takeover operation occurs. Similarly, if the LOG INDEX BUILD table
attribute is set to its default value of NULL, and the Togindexbuild database
configuration parameter is set to OFF, any index build operation on a table might
cause the indexes on that table to be re-created any time a takeover operation
occurs. You can prevent the indexes from being re-created by taking one of the
following actions:

* After all invalid indexes are re-created on the new primary database, take a
backup of the database and apply it to the standby database. As a result of
doing this, the standby database does not have to apply the logs used for
re-creating invalid indexes on the primary database, which would mark those
indexes as rebuild required on the standby database.

e Set the LOG INDEX BUILD table attribute to ON, or set the LOG INDEX BUILD
table attribute to NULL and the Togindexbuild configuration parameter to ON
on the standby database to ensure that the index re-creation will be logged.

Using the indexrec database configuration parameter

Recommendation: Set the indexrec database configuration parameter to RESTART
(the default) on both the primary and standby databases. This causes invalid
indexes to be rebuilt after a takeover operation is complete. If any index builds
have not been logged, this setting allows DB2 to check for invalid indexes and to
rebuild them. This process takes place in the background, and the database is
accessible after the takeover operation has completed successfully.

36 Data Recovery and High Availability Guide and Reference

If a transaction accesses a table that has invalid indexes before the indexes have
been rebuilt by the background re-create index process, the invalid indexes are
rebuilt by the first transaction that accesses it.

Database configuration for high availability disaster recovery
(HADR)

You can use database configuration parameters to help achieve optimal
performance with DB2 HADR.

In most cases, you should use the same database configuration parameter settings
and database manager configuration parameter settings on the systems where the
primary and standby databases are located. If the settings for the configuration
parameters on the standby database are different from the settings on the primary,
the following problems might occur:

* Error messages might be returned for the standby database while the log files
that were shipped from the primary database are being replayed.

 After a takeover operation, the new primary database might be unable to handle
the workload, resulting in performance problems or in applications receiving
error messages that they did not receive when they were connected to the
original primary database.

Changes to the configuration parameters on the primary database are not
automatically propagated to the standby database. You must manually make
changes on the standby database. For dynamic configuration parameters, changes
take effect without the need to shut down and restart the database management
system (DBMS) or the database. For non-dynamic configuration parameters,
changes take effect after the standby database is restarted.

Following are sections on specific configuration topics for HADR:

> “Size of log files configuration parameter on the standby database”
¢ “Log receive buffer size on a standby database” on page 38

* “Load operations and HADR” on page 38

* “DB2_HADR_PEER_WAIT_LIMIT registry variable” on page 39

* “HADR configuration parameters” on page 40

Size of log files configuration parameter on the standby
database

One exception to the configuration parameter behavior that is described in the
previous paragraph is the behavior of the legfilsiz database configuration
parameter. Although the value of this parameter is not replicated to the standby
database, to guarantee identical log files on both databases, the setting for the
Togfilsiz configuration parameter on the standby is ignored. Instead, the database
creates local log files whose sizes match the size of the log files on the primary
database.

After a takeover, the original standby (new primary) uses the logfilsiz parameter
value that you set on the original primary until you restart the database. At that
point, the new primary reverts to using the value that you set locally. In addition,
the current log file is truncated and any pre-created log files are resized on the
new primary.

If the databases keep switching roles as a result of a non-forced takeover and
neither database is deactivated, the log file size that is used is always the one from

Chapter 4. Configuring for high availability 37

the original primary database. However, if there is a deactivation and then a restart
on the original standby (new primary), the new primary uses the log file size that
you configured locally. This log file size continues to be used if the original
primary takes over again. Only after a deactivation and restart on the original
primary would the log file size revert to the settings on the original primary.

Log receive buffer size on a standby database

By default, the log receive buffer size on a standby database is two times the value
that you specify for the logbufsz configuration parameter on the primary database.
This size might not be sufficient. For example, consider what might happen when
the HADR synchronization mode is set to ASYNC and the primary and standby
databases are in peer state. If the primary database is also experiencing a high
transaction load, the log receive buffer on the standby database might fill to
capacity, and the log shipping operation from the primary database might stall. To
manage these temporary peaks, you can make either of the following configuration
changes:

* Increase the size of the log receive buffer on the standby database by modifying
the value of the DB2_HADR_BUF_SIZE registry variable.

* Enable log spooling on a standby database by setting the hadr_spool_limit
configuration parameter.

Load operations and HADR

If you issue the LOAD command on the primary database with the COPY YES
parameter, the command executes on the primary database, and the data is
replicated to the standby database if the load copy can be accessed through the
path or device that is specified by the command. If load copy data cannot be
accessed from the standby database, the table space in which the table is stored is
marked invalid on the standby database. Any future log records that pertain to this
table space are skipped. To ensure that the load operation can access the load copy
on the standby database, use a shared location for the output file from the COPY
YES parameter. Alternatively, you can deactivate the standby database while
performing the load on the primary, place a copy of the output file in the standby
path, and then activate the standby database.

If you issue the LOAD command with the NONRECOVERABLE parameter on the primary
database, the command executes on the primary database, and the table on the
standby database is marked invalid. Any future log records that pertain to this
table are skipped. You can issue the LOAD command with the COPY YES and REPLACE
parameters to bring the table back, or you can drop the table to recover the space.

Because a load operation with the COPY NO parameter is not supported with
HADR, the operation is automatically converted to a load operation with the
NONRECOVERABLE parameter. To enable a load operation with the COPY NO parameter
to be converted to a load operation with the COPY YES parameter, set the
DB2_LOAD_COPY_NO_OVERRIDE registry variable on the primary database. This registry
variable is ignored on the standby database. Ensure that the device or directory
that you specify for the primary database can be accessed by the standby database
by using the same path, device, or load library.

If you are using the Tivoli Storage Manager (TSM) software to perform a load
operation with the COPY YES parameter, you might have to set the vendoropt
configuration parameter on the primary and standby databases. Depending on
how you configured TSM, the values on the primary and standby databases might

38 Data Recovery and High Availability Guide and Reference

not be the same. Also, when using TSM to perform a load operation with the COPY
YES parameter, you must issue the db2adut1 command with the GRANT parameter to
give the standby database read access to the files that are loaded.

If table data is replicated by a load operation with the COPY YES parameter, the
indexes are replicated as follows:

* If you specify the REBUILD indexing mode option with the LOAD command and
the LOG INDEX BUILD table attribute is set to ON (using the ALTER TABLE
statement), or if it is set to NULL and the Togindexbuild database configuration
parameter is set to ON, the primary database includes the rebuilt index object
(that is, all of the indexes defined on the table) in the copy file to enable the
standby database to replicate the index object. If the index object on the standby
database is marked invalid before the load operation, it becomes usable again
after the load operation as a result of the index rebuild.

* If you specify the INCREMENTAL indexing mode option with the LOAD command
and the LOG INDEX BUILD table attribute is set to ON (using the ALTER TABLE
statement), or if it is set to NULL and the Togindexbuild database configuration
parameter on the primary database is set to ON, the index object on the standby
database is updated only if it is not marked invalid before the load operation.
Otherwise, the index is marked invalid on the standby database.

DB2_HADR_PEER_WAIT_LIMIT registry variable

Restriction: In multiple standby mode, none of this section applies to the auxiliary
standbys because they are in SUPERASYNC synchronization mode, so they do not
ever enter peer state.

If you set the DB2_HADR_PEER_WAIT_LIMIT registry variable, the HADR primary
database breaks out of peer state if logging on the primary database has been
blocked for the specified number of seconds because of log replication to the
standby. When this limit is reached, the primary database breaks the connection to
the standby database. If you disable the peer window by setting the
hadr_peer_window configuration parameter to 0, the primary enters the
disconnected state, and logging resumes. If you enable the peer window, the
primary database enters disconnected peer state, in which logging continues to be
blocked. The primary leaves disconnected peer state upon reconnection or peer
window expiration. Logging resumes after the primary leaves disconnected peer
state.

Note: If you set DB2_HADR_PEER_WAIT_LIMIT, use a minimum value of 10 to avoid
triggering false alarms.

Honoring peer window transition when a database breaks out of peer state ensures
peer window semantics for safe takeover in all cases. If the primary fails during
the transition, normal peer window protection still applies: safe takeover from the
standby if it is still in disconnected peer state.

On the standby side, after disconnection, the database continues replaying already
received logs. After the received logs have been replayed, the standby reconnects
to the primary. After replaying the received logs, the standby reconnects to the
primary. Upon reconnection, normal state transition follows: first remote catchup
state, then peer state.

Relationship to hadr_timeout database configuration parameter

Chapter 4. Configuring for high availability 39

The hadr_timeout database configuration parameter does not break the
primary out of peer state if the primary keeps receiving heartbeat messages
from the standby while blocked. The hadr_timeout database configuration
parameter specifies a timeout value for the HADR network layer. An
HADR database breaks the connection to its partner database if it has not
received any message from its partner for the period that is specified by
the hadr_timeout configuration parameter. The timeout does not control
timeout for higher-layer operations such as log shipping and ack
(acknowledgement) signals. If log replay on the standby database is stuck
on a large operation such as load or reorganization, the HADR component
still sends heartbeat messages to the primary database on the normal
schedule. In such a scenario, the primary is blocked as long as the standby
replay is blocked unless you set the DB2_HADR_PEER_WAIT_LIMIT registry
variable.

The DB2_HADR_PEER_WAIT_LIMIT registry variable unblocks primary logging
regardless of connection status. Even if you do not set the
DB2_HADR_PEER_WAIT_LIMIT registry variable, the primary always breaks out
of peer state when a network error is detected or the connection is closed,
possibly as result of the hadr_timeout configuration parameter.

HADR configuration parameters

Some HADR configuration parameters are static, such as hadr_local_host and
hadr_remote_host . Static parameters are loaded on database startup, and changes
are ignored during run time. HADR parameters are also loaded when the START
HADR command completes. On the primary database, HADR can be started and
stopped dynamically, with the database remaining online. Thus, one way to refresh
the effective value of an HADR configuration parameter without shutting down
the database is to stop and restart HADR. In contrast, the STOP HADR brings down
the database on the standby, so the standby's parameters cannot be refreshed with
database online.

Host name parameters and service and port name parameters (single standby
mode) An HADR pair has five interrelated configuration parameters that you
should set:

* hadr_local_host

* hadr_remote_host

* hadr_local_svc

* hadr_remote_svc

* hadr_remote_inst

TCP connections are used for communication between the primary and
standby databases. The “local” parameters specify the local address and
the “remote” parameters specify the remote address. A primary database
listens on its local address for new connections. A standby database that is

not connected to a primary database retries connection to its remote
address.

The standby database also listens on its local address. In some scenarios,
another HADR database can contact the standby database on this address
and send it messages.

Unless the HADR_NO_IP_CHECK registry variable is set, HADR does the
following cross-checks of local and remote addresses on connection:

my local address = your remote address

40 Data Recovery and High Availability Guide and Reference

and

my remote address = your local address

The check is done using the IP address and port number, rather than the
literal string in the configuration parameters. You need to set the
HADR_NO_IP_CHECK registry variable in NAT (Network Address Translation)
environment to bypass the check.

You can configure an HADR database to use either IPv4 or IPv6 to locate
its partner database. If the host server does not support IPv6, you must use
IPv4. If the server supports IPv6, whether the database uses IPv4 or IPv6

depends upon the format of the address that you specify for the

hadr_local_host and hadr_remote_host configuration parameters. The
database attempts to resolve the two parameters to the same IP format and
use IPv6 when possible. The following table shows how the IP mode is
determined for IPv6-enabled servers:

IP mode used for IP mode used for IP mode used for HADR

hadr_local_host parameter |hadr_remote_host parameter | communications

IPv4 address IPv4 address 1Pv4

IPv4 address IPv6 address Error

IPv4 address host name, maps to IPv4 IPv4
only

IPv4 address host name, maps to IPv6 Error
only

IPv4 address host name, maps to IPv4 and | IPv4
vb

IPv6 address IPv4 address Error

IPv6 address IPv6 address 1Pv6

IPv6 address host name, maps to IPv4 Error
only

IPv6 address host name, maps to IPv6 IPvé
only

IPv6 address host name, maps to IPv4 and | IPv6
IPv6

hostname, maps to IPv4 only |IPv4 address 1Pv4

hostname, maps to IPv4 only |IPv6 address Error

hostname, maps to IPv4 only | hostname, maps to IPv4 only | IPv4

hostname, maps to IPv4 only | hostname, maps to IPv6 only | Error

hostname, maps to IPv4 only | hostname, maps to IPv4 and |IPv4
IPv6

hostname, maps to IPv6 only |IPv4 address Error

hostname, maps to IPv6 only |IPv6 address IPv6

hostname, maps to IPv6 only | hostname, maps to IPv4 only | Error

hostname, maps to IPv6 only | hostname, maps to IPv6 only | IPv6

hostname, maps to IPv6 only | hostname, maps to IPv4 and |IPv6
IPv6

hostname, maps to IPv4 and |IPv4 address IPv4

IPv6

Chapter 4. Configuring for high availability

41

IP mode used for IP mode used for IP mode used for HADR
hadr_local_host parameter |hadr_remote_host parameter | communications
hostname, maps to IPv4 and |IPv6 address IPv6

IPvé

hostname, maps to IPv4 and |hostname, maps to IPv4 only | IPv4

IPvé

hostname, maps to IPv4 and | hostname, maps to IPv6 only | IPv6

IPv6

hostname, maps to IPv4 and | hostname, maps to IPv4 and |IPv6

IPv6 IPv6

The primary and standby databases can make HADR connections only if
they use the same IPv4 or IPv6 format. If one server is IPv6 enabled (but
also supports IPv4) and the other server supports IPv4 only, at least one of
the hhadr_local_host and hadr_remote_host parameters on the IPv6 server
must specify an IPv4 address to force database on this server to use IPv4.

You can set the HADR local service and remote service parameters
(hadr_local_svc and hadr_remote_svc) to either a port number or a service
name. The values that you specify must map to ports that are not being
used by any other service, including other DB2 components or other
HADR databases. In particular, you cannot set either parameter value to
the TCP/IP port that is used by the server to await communications from
remote clients (the value of the svcename database manager configuration
parameter) or the next port (the value of the svcename parameter + 1).

If the primary and standby databases are on different servers, they can use
the same port number or service name; otherwise, they must have different
values.

Host name, service or port name, and target list parameters (multiple standby

mode)

In multiple standby mode, you should still set the hadr_local_host,
hadr_local_svc, hadr_remote_host, hadr_remote_host, and
hadr_remote_inst configuration parameters. If you set those parameters
incorrectly, they are automatically updated after the primary connects to
the standbys by using the settings of the hadr_target_list configuration
parameter. This parameter specifies the host and port names of all the
standbys. The first standby that you specify in the target list is considered
to be the principal HADR standby database.

In multiple standby mode, you should still set the hadr_local_host,
hadr_local_svc, hadr_remote_host, hadr_remote_host, and
hadr_remote_inst configuration parameters. The hadr_local_host and
hadr_local_svc parameters have the same meaning as in single standby
mode. On the primary, sethadr_remote_host, hadr_remote_host, and
hadr_remote_inst to indicate its principal standby. A new parameter,
hadr_target_list is used to list all standbys, with the first entry being the
principal standby. On standby, set the “remote” parameters to indicate the
primary. In certain conditions, the “remote” parameters (on both the
primary and the standby) can be automatically updated. For more
information, see the “Automatic reconfiguration of HADR parameters”
section in “Database configuration for multiple HADR standby databases”
on page 196.

Synchronization mode

42 Data Recovery and High Availability Guide and Reference

In single standby mode, the synchronization mode, which you specify with
the hadr_syncmode configuration parameter must be identical on the
primary and standby databases. The consistency of the value of this
configuration parameter is checked when an HADR pair establishes a
connection.

In multiple standby mode, the synchronization mode does not have to be
the same. All standbys have an effective synchronization mode that is
determined by the type of standby that they are. The principal standby
uses the synchronization mode of the primary, and the auxiliary standbys
use SUPERASYNC. All standbys have a configured synchronization mode,
which is the explicit setting for hadr_syncmode and is used if a standby
becomes the new primary.

For more detailed information, see “DB2 High Availability Disaster
Recovery (HADR) synchronization mode”.

HADR timeout and peer window

The timeout period, which you specify with the hadr_timeout
configuration parameter, must be identical on the primary and standby
databases. The consistency of the values of these configuration parameters
is checked when an HADR pair establishes a connection.

With one exception, when the primary database starts, it waits for the
longer of the two following periods for a standby to connect:

e For a minimum of 30 seconds

* For the number of seconds that is specified by the hadr_timeout
database configuration parameter.

If the standby does not connect in the specified time, the startup fails. The
one exception to this behavior is when you issue the START HADR command
with the BY FORCE parameter. In this case, the primary database starts
without waiting for the standby database to connect to it.

In multiple standby mode, the primary only waits for the principal
standby to connect; a connection to an auxiliary standby is optional.

After an HADR pair establishes a connection, they exchange heartbeat
messages. The heartbeat interval is computed from factors like the
hadr_timeout and hadr_peer_window configuration parameters. It is
reported by the HEARTBEAT_INTERVAL field in MON_GET_HADR table
function. If one database does not receive any message from the other
database within the number of seconds that is specified by the
hadr_timeout configuration parameter, it initiates a disconnect. This
behavior means that at most, it takes the number of seconds that is
specified by the hadr_timeout configuration parameter for an HADR
database to detect the failure of either its partner database or the
intervening network. If you set the hadr_timeout configuration parameter
too low, you will receive false alarms and frequent disconnections.

If you have the hadr_peer_window configuration parameter set to a nonzero
value and the primary loses connection to the standby in peer state, the
primary database does not commit transactions until the connection with
the standby database is restored or the time value of the hadr_peer_window
configuration parameter elapses, whichever happens first.

For maximal availability, the default value for the hadr_peer_window
database configuration parameter is 0. When this parameter is set to 0, as
soon as the connection between the primary and the standby is closed, the

Chapter 4. Configuring for high availability 43

primary drops out of peer state to avoid blocking transactions. The
connection can close because the standby closed the connection, a network
error is detected, or timeout is reached. For increased data consistency, but
reduced availability, you can set the hadr_peer_window database
configuration parameter to a nonzero value.

For more information, see “Setting the hadr_timeout and hadr_peer_window
database configuration parameters”.

The following sample configuration is for the primary and standby databases:

Primary database:

HADR_LOCAL_HOST
HADR_LOCAL_SVC
HADR_REMOTE_HOST
HADR_REMOTE_SVC
HADR_REMOTE_INST
HADR_TIMEOUT
HADR_SYNCMODE
HADR_PEER_WINDOW

Standby database:

HADR_LOCAL_HOST
HADR_LOCAL_SVC
HADR_REMOTE_HOST
HADR_REMOTE_SVC
HADR_REMOTE_INST
HADR_TIMEOUT
HADR_SYNCMODE
HADR_PEER_WINDOW

hostl.ibm.com
hadr_service
host2.ibm.com
hadr_service
dbinst2

120

NEARSYNC

120

host2.ibm.com
hadr_service
hostl.ibm.com
hadr_service
dbinstl

120

NEARSYNC

120

Setting the hadr_timeout and hadr_peer_window database
configuration parameters

You can configure the hadr_timeout and hadr_peer_window database configuration
parameters for optimal response to a connection failure.

hadr_timeout database configuration parameter
If an HADR database does not receive any communication from its partner
database for longer than the length of time specified by the hadr_timeout
database configuration parameter, then the database concludes that the
connection with the partner database is lost. If the database is in peer state
when the connection is lost, then it moves into disconnected peer state if
the hadr_peer_window database configuration parameter is greater than
zero, or into remote catchup pending state if hadr_peer_window is not
greater than zero. The state change applies to both primary and standby
databases.

hadr_peer_window database configuration parameter
The hadr_peer_window configuration parameter does not replace the
hadr_timeout configuration parameter. The hadr_timeout configuration
parameter determines how long an HADR database waits before
considering its connection with the partner database as failed. The
hadr_peer_window configuration parameter determines whether the
database goes into disconnected peer state after the connection is lost, and
how long the database should remain in that state. HADR breaks the
connection as soon as a network error is detected during send, receive, or
poll on the TCP socket. HADR polls the socket every 100 milliseconds.
This allows it to respond quickly to network errors detected by the OS.
Only in the worst case does HADR wait until the timeout to break a bad
connection. In this case, a database application that is running at the time

44 Data Recovery and High Availability Guide and Reference

of failure can be blocked for a period of time equal to the sum of the
hadr_timeout and hadr_peer_window database configuration parameters.

Setting the hadr_timeout and hadr_peer_window database configuration

parameters
It is desirable to keep the waiting time that a database application
experiences to a minimum. Setting the hadr_timeout and hadr_peer_window
configuration parameters to small values would reduce the time that a
database application must wait if a HADR standby databases loses its
connection with the primary database. However, there are two other details
that should be considered when choosing values to assign to the
hadr_timeout and hadr_peer_window configuration parameters:

* The hadr_timeout database configuration parameter should be set to a
value that is long enough to avoid false alarms on the HADR connection
caused by short, temporary network interruptions. For example, the
default value of hadr_timeout is 120 seconds, which is a reasonable
value on many networks.

¢ The hadr_peer_window database configuration parameter should be set to
a value that is long enough to allow the system to perform automated
failure responses. If the HA system, for example a cluster manager,
detects primary database failure before disconnected peer state ends, a
failover to the standby database takes place. Data is not lost in the
failover as all data from old primary is replicated to the new primary. If
hadr_peer_window is too short, HA system may not have enough time to
detect the failure and respond.

Note: In HADR multiple standby mode, the principal standby uses the
primary's setting for hadr_peer_window (the effective peer window). The
setting for hadr_peer_window on any auxiliary standby is meaningless
because that type of standby always runs in SUPERASYNC mode.

HADR log spooling

The high availability disaster recovery (HADR) log spooling feature allows
transactions on primary to make progress without having to wait for the log replay
on the standby.

When this feature is enabled, log data sent by the primary is spooled, or written, to
disk on the standby, and that log data is later read by log replay.

Log spooling, which is enabled by setting the hadr_spool_Tlimit database
configuration parameter, is an improvement to the HADR feature. When replay is
slow, it is possible that new transactions on the primary can be blocked because it
is not able to send log data to the standby system if there is no room in the buffer
to receive the data. The log spooling feature means that the standby is not limited
by the size of its buffer. When there is an increase in data received that cannot be
contained in the buffer, the log replay reads the data from disk. This allows the
system to better tolerate either a spike in transaction volume on the primary, or a
slow down of log replay (due to the replay of particular type of log records) on the
standby.

This feature could potentially lead to a larger gap between the log position of
received logs on the standby and the log replay position on the standby, which can
lead to longer takeover time. You should consider your spool limit setting carefully
because the old standby cannot start up as the new primary and receive
transactions until the replay of the spooled logs has finished.

Chapter 4. Configuring for high availability 45

Log archiving configuration for DB2 high availability disaster

recovery (HADR)

To use log archiving with DB2 high availability disaster recovery (HADR),
configure both the primary database and the standby database for automatic log
retrieval capability from all log archive locations. For multiple standby systems,
configure archiving on primary and all standby databases.

Only the current primary database can perform log archiving. If the primary and
standby databases are set up with separate archiving locations, logs are archived
only to the primary database's archiving location. In the event of a takeover, the
standby database becomes the new primary database and any logs archived from
that point on are saved to the original standby database's archiving location. In
such a configuration, logs are archived to one location or the other, but not both;
with the exception that following a takeover, the new primary database might
archive a few logs that the original primary database had already archived. In a
multiple standby system, the archived log files can be scattered among all
databases' (primary and standbys) archive devices. A shared archive is preferred
because all files are stored in a single location.

Many operations need to retrieve archived log files. These operations include:
database roll forward, the HADR primary database retrieving log files to send to
the standby database in remote catch up, and replication programs (such as Q
Replication) reading logs. As a result, a shared archive for an HADR system is
preferred, otherwise, the needed files can be distributed on multiple archive
devices, and user intervention is needed to locate the needed files and copy them
to the requesting database. The recommended copy destination is an archive
device. If copying into an archive is not feasible, copy the logs into the overflow
log path. As a last resort, copy them into the log path (but you should be aware
that there is a risk of damaging the active log files). DB2 does not auto delete user
copied files in the overflow and active log path, so you should manually remove
the files when they are no longer needed by any HADR standby or any
application.

A specific scenario is a takeover in multiple standby mode. After the takeover, the
new primary might not have all log files needed by other standbys (because a
standby is at an older log position). If the primary cannot find a requested log file,
it notifies the standby, which closes the connection and then reconnects in a few
seconds to retry. The retry duration is limited to a few minutes. When retry time is
exhausted, the standby shuts down. In this case, you should copy the files to the
primary to ensure it has files from the first missing file to its current log file. After
the files are copied, restart the standby if needed.

The standby database automatically manages log files in its log path. The standby
database does not delete a log file from its local log path until it has been notified
by the primary database that the primary database has archived it. This behavior
provides added protection against the loss of log files. If the primary database fails
and its log disk becomes corrupted before a particular log file is archived on the
primary database, the standby database does not delete that log file from its own
disk because it has not received notification that the primary database successfully
archived the log file. If the standby database then takes over as the new primary
database, it archives that log file before recycling it. If both the Togarchmethl and
Togarchmeth2 configuration parameters are in use, the standby database does not
recycle a log file until the primary database has archived it using both methods.

46 Data Recovery and High Availability Guide and Reference

In addition to the benefits previously listed, a shared log archive device improves
the catchup process by allowing the standby database to directly retrieve older log
files from the archive in local catchup state, instead of retrieving those files
indirectly through the primary in remote catchup state. However, it is
recommended that you not use a serial archive device such as a tape drive for
HADR databases. With serial devices, you might experience performance
degradation on both the primary and standby databases because of mixed read
and write operations. The primary writes to the device when it archives log files
and the standby reads from the device to replay logs. This performance impact can
occur even if the device is not configured as shared.

Shared log archives on Tivoli Storage Manager

Using a shared log archive with IBM Tivoli Storage Manager (TSM) allows one or
more nodes to appear as a single node to the TSM server, which is especially
useful in an HADR environment where either machine can be the primary at any
one time.

To set up a shared log archive, you need to use proxy nodes which allow the TSM
client nodes to perform data protection operations against a centralized name
space on the TSM server. The target client node owns the data and agent nodes act
on behalf of the target nodes to manage the backup data. The proxy node target is
the node name defined on the TSM server to which backup versions of distributed
data are associated. The data is managed in a single namespace on the TSM server
as if it is entirely the data for this node. The proxy node target name can be a real
node (for example, one of the application hosts) or a virtual node name (that is,
with no corresponding physical node). To create a virtual proxy node name, use
the following commands on the TSM server:

Grant proxynode target=virtual-node-name agent=HADR-primary-name
Grant proxynode target=virtual-node-name agent=HADR-standby-name

Next, you need to set these database configuration parameters on the primary and
standby databases to the virtual-node-name:

e vendoropt
* Tlogarchopt
In a multiple standby setup, you need to grade proxynode access to all machines

on the TSM server and configure the vendoropt and Togarchopt configuration
parameters on all of the standbys.

High availability disaster recovery (HADR) performance

Configuring different aspects of your database system, including network
bandwidth, CPU power, and buffer size, can improve the performance of your DB2
High Availability Disaster Recovery (HADR) databases.

The network is the key part of your HADR setup because network connectivity is
required to replicate database changes from the primary to the standby, keeping
the two databases in sync.

Recommendations for maximizing network performance:

¢ Ensure that network bandwidth is greater than the database log generation
rate.

* Consider network delays when choosing the HADR synchronization mode.
Network delays affect the primary only in SYNC and NEARSYNC modes.

Chapter 4. Configuring for high availability 47

The slowdown in system performance as a result of using SYNC mode can
be significantly larger than that of the other synchronization modes. In
SYNC mode, the primary database sends log pages to the standby database
only after the log pages have been successfully written to the primary
database log disk. In order to protect the integrity of the system, the primary
database waits for an acknowledgment from the standby before notifying an
application that a transaction was prepared or committed. The standby
database sends the acknowledgment only after it writes the received log
pages to the standby database disk. The performance overhead equals the
time needed for writing the log pages on the standby database plus the time
needed for sending the messages back to the primary.

In NEARSYNC mode, the primary database writes and sends log pages in
parallel. The primary then waits for an acknowledgment from the standby:.
The standby database acknowledges as soon as the log pages are received
into its memory. On a fast network, the overhead to the primary database is
minimal. The acknowledgment might have already arrived by the time the
primary database finishes local log write.

For ASYNC mode, the log write and send are also in parallel; however, in
this mode the primary database does not wait for an acknowledgment from
the standby. Therefore, network delay is not an issue. Performance overhead
is even smaller with ASYNC mode than with NEARSYNC mode.

For SUPERASYNC mode, transactions are never blocked or experience
elongated response times due to network interruptions or congestion. New
transactions can be processed as soon as previously submitted transactions
are written to the primary database. Therefore, network delay is not an
issue. The elapsed time for the completion of non-forced takeover operations
might be longer than in other modes because the log gap between the
primary and the standby databases might be relatively larger.

* Consider tuning the DB2_HADR_SOSNDBUF and DB2_HADR_SORCVBUF registry
variables.

HADR log shipping workload, network bandwidth, and transmission delay
are important factors to consider when tuning the TCP socket buffer sizes.
Two registry variables, DB2_HADR_SOSNDBUF and DB2_HADR_SORCVBUF allow
tuning of the TCP socket send and receive buffer size for HADR connections
only. These two variables have the value range of 1024 to 4294967295 and
default to the socket buffer size of the operating system, which will vary
depending on the operating system. It is strongly recommended that you
use a minimum value of 16384 (16 K) for your DB2_HADR_SOSNDBUF and
DB2_HADR_SORCVBUF settings. Some operating systems will automatically
round or silently cap the user specified value.

You can use the HADR simulator (a command-line tool that generates a
simulated HADR workload) to measure network performance and to
experiment with various network tuning options. You can download the
simulator at http://www.ibm.com/developerworks/wikis/display/data/
HADR_sim.

Network congestion

For each log write on the primary, the same log pages are also sent to the standby.
Each write operation is called a flush. The size of the flush is limited to the log
buffer size on the primary database (which is controlled by the database
configuration parameter 1ogbufsz). The exact size of each flush is nondeterministic.
A larger log buffer does not necessarily lead to a larger flush size.

48 Data Recovery and High Availability Guide and Reference

http://www.ibm.com/developerworks/wikis/display/data/HADR_sim
http://www.ibm.com/developerworks/wikis/display/data/HADR_sim

If the standby database is too slow replaying log pages, its log-receiving buffer
might fill up, thereby preventing the buffer from receiving more log pages. In
SYNC and NEARSYNC modes, if the primary database flushes its log buffer one
more time, the data will likely be buffered in the network pipeline consisting of the
primary machine, the network, and the standby database. Because the standby
database does not have free buffer to receive the data, it cannot acknowledge, so
the primary database becomes blocked while waiting for the standby database's
acknowledgement.

In ASYNC mode, the primary database continues to send log pages until the
pipeline fills up and it cannot send additional log pages. This condition is called
congestion. Congestion is reported by the hadr_connect_status monitor element.
For SYNC and NEARSYNC modes, the pipeline can usually absorb a single flush
and congestion will not occur. However, the primary database remains blocked
waiting for an acknowledgment from the standby database on the flush operation.

Congestion can also occur if the standby database is replaying log records that take
a long time to replay, such as database or table reorganization log records.

In SUPERASYNC mode, since the transaction commit operations on the primary
database are not affected by the relative slowness of the HADR network or the
standby HADR server, the log gap between the primary database and the standby
database might continue to increase. It is important to monitor the log gap as it is
an indirect measure of the potential number of transactions that might be lost
should a true disaster occur on the primary system. In disaster recovery scenarios,
any transactions committed during the log gap would not be available to the
standby database. Therefore, monitor the log gap by using the hadr_log_gap
monitor element; if it occurs that the log gap is not acceptable, investigate the
network interruptions or the relative speed of the standby HADR server and take
corrective measures to reduce the log gap.

Recommendations for minimizing network congestion:

¢ The standby database should be powerful enough to replay the logged
operations of the database as fast as they are generated on the primary.
Identical primary and standby hardware is recommended.

* Consider tuning the size of the standby database log-receiving buffer using
the DB2_HADR_BUF_SIZE registry variable.

A larger buffer can help to reduce congestion, although it might not remove
all of the causes of congestion. By default, the size of the standby database
log-receiving buffer is two times the size of the primary database log-writing
buffer. The database configuration parameter Togbufsz specifies the size of
the primary database log-writing buffer.

You can determine if the standbys log-receiving buffer is inadequate by
using the db2pd command with the -hadr option. If the value for
StandByRcvBufUsed, which indicates the percentage of standby log receiving
buffer used, is close to 100, then you should increase DB2_HADR_BUF_SIZE.

* Consider setting the DB2_HADR_PEER_WAIT_LIMIT registry variable, which
allows you to prevent primary database logging from blocking because of a
slow or blocked standby database.

When the DB2_HADR_PEER_WAIT_LIMIT registry variable is set, the HADR
primary database will break out of the peer state if logging on the primary
database has been blocked for the specified number of seconds because of
log replication to the standby. When this limit is reached, the primary
database will break the connection to the standby database. If the peer
window is disabled, the primary will enter disconnected state and logging

Chapter 4. Configuring for high availability 49

resumes. If the peer window is enabled, the primary database will enter
disconnected peer state, in which logging continues to be blocked. The
primary database leaves disconnected peer state upon re-connection or peer
window expiration. Logging resumes once the primary database leaves
disconnected peer state.

Note: If you set DB2_HADR_PEER_WAIT_LIMIT, use a minimum value of 10 to
avoid triggering false alarms.

Honoring peer window transition when breaking out of peer state ensures
peer window semantics for safe takeover in all cases. If the primary fails
during the transition, normal peer window protection still applies (safe
takeover from standby as long as it's still in disconnected-peer state).

* In most systems, the logging capability is not driven to its limit. Even in
SYNC mode, there might not be an observable slow down on the primary
database. For example, if the limit of logging is 40 Mb per second with
HADR enabled, but the system was just running at 30 Mb per second before
HADR is enabled, then you might not notice any difference in overall
system performance.

* To speed up the catchup process, you can use a shared log archive device.
However, if the shared device is a serial device such as a tape drive, you
might experience performance degradation on both the primary and standby
databases because of mixed read and write operations.

* If you are going to use the reads on standby feature, the standby must have
the resources to accommodate this additional work.

* If you are going to use the reads on standby feature, configure your buffer
pools on the primary, and that information will be shipped to the standby
through logs.

 If you are going to use the reads on standby feature, Tune the pckcachesz,
catalogcache_sz, appTheapsz, and sortheap configuration parameters on the
standby.

You can consult the following web site for the latest updates on HADR
performance tuning: http://www.ibm.com/developerworks/wikis/display/data/
HADR_tune.

Cluster managers and high availability disaster recovery

(HADR)

You can implement DB2 High Availability Disaster Recovery (HADR) databases on
nodes of a cluster, and use a cluster manager to improve the availability of your
database solution.

You can have both the primary database and the standby database managed by the
same cluster manager, or you can have the primary database and the standby
database managed by different cluster managers.

Set up an HADR pair where the primary and standby databases
are serviced by the same cluster manager

This configuration is best suited to environments where the primary and standby
databases are located at the same site and where the fastest possible failover is
required. These environments would benefit from using HADR to maintain DBMS
availability, rather using crash recovery or another recovery method.

50 Data Recovery and High Availability Guide and Reference

http://www.ibm.com/developerworks/wikis/display/data/HADR_tune
http://www.ibm.com/developerworks/wikis/display/data/HADR_tune

You can use the cluster manager to quickly detect a problem and to initiate a
takeover operation. Because HADR requires separate storage for the DBMS, the
cluster manager should be configured with separate volume control. This
configuration prevents the cluster manager from waiting for failover to occur on
the volume before using the DBMS on the standby system. You can use the
automatic client reroute feature to redirect client applications to the new primary
database.

Set up an HADR pair where the primary and standby databases
are not serviced by the same cluster manager

This configuration is best suited to environments where the primary and standby
databases are located at different sites and where high availability is required for
disaster recovery in the event of a complete site failure. There are several ways you
can implement this configuration. When an HADR primary or standby database is
part of a cluster, there are two possible failover scenarios.

* If a partial site failure occurs and a node to which the DBMS can fail over
remains available, you can choose to perform a cluster failover. In this case, the
IP address and volume failover is performed using the cluster manager; HADR
is not affected.

* If a complete site failure occurs where the primary database is located, you can
use HADR to maintain DBMS availability by initiating a takeover operation. If a
complete site failure occurs where the standby database is located, you can
repair the site or move the standby database to another site.

Initializing a standby database

One strategy for making a database solution highly available is maintaining a
primary database to respond to user application requests, and a secondary or
standby database that can take over database operations for the primary database
if the primary database fails.

Initializing the standby database entails copying the primary database to the
standby database.

Procedure

There are several ways to initialize the standby database. For example:

* Use disk mirroring to copy the primary database, and use DB2 database
suspended I/O support to split the mirror to create the second database.

* Create a backup image of the primary database and recovery that image to the
standby database.

e Use SQL replication to capture data from the primary database and apply that
data to the standby database.

What to do next

After initializing the standby database, you must configure your database solution
to synchronize the primary database and standby database so the standby database
can take over for the primary database if the primary database fails.

Using a split mirror as a standby database
Use the following procedure to create a split mirror of a database for use as a
standby database outside of a DB2 pureScale environment.

Chapter 4. Configuring for high availability 51

If a failure occurs on the primary database and it becomes inaccessible, you can
use the standby database to take over for the primary database.

About this task

If the primary database was configured for log archiving, the standby database will
share the same log archiving configuration. If the log archiving destination is
accessible to the standby database, the standby database will automatically retrieve
log files from it during rollforward operations. However, once the database is
brought out of the rollforward pending state, the standby database will attempt to
archive log files to the same location used by the primary database. While the
standby database will initially use a different log chain from the primary database,
the primary database could eventually use the same log chain value as the standby
database. This could cause the primary database to archive log files on top of the
log files archived by the standby database, or vice versa , and can affect the
recoverability of both databases. You should change the log archiving destination
for the standby database to be different from that of the primary database to avoid
recoverability issues.

Procedure

To use a split mirror as a standby database:
1. Connect to the primary database using the following command:
db2 connect to db_name
2. Suspend the I/O write operations on the primary database using the
following command:
db2 set write suspend for database

Note: While the database is in suspended state, you should not be running
other utilities or tools. You should only be making a copy of the database. You
can optionally use the FLUSH BUFFERPOOLS ALL statement before issuing
SET WRITE SUSPEND to minimize the recovery time of the standby database.

3. Create one or multiple split mirrors from the primary database using
appropriate operating system-level and storage-level commands.

Note:

* Ensure that you copy the entire database directory, including the volume
directory. You must also copy the log directory and any container
directories that exist outside the database directory. To gather this
information, refer to the DBPATHS administrative view, which shows all the
files and directories of the database that need to be split.

* If you specified the EXCLUDE LOGS with the SET WRITE command, do not
include the log files in the copy.
4. Resume the I/O write operations on the primary database using the following
command:
db2 set write resume for database
5. Catalog the mirrored database on the secondary system.

Note: By default, a mirrored database cannot exist on the same system as the
primary database. It must be located on a secondary system that has the same
directory structure and uses the same instance name as the primary database.
If the mirrored database must exist on the same system as the primary
database, you can use the db2relocatedb utility or the RELOCATE USING option
of the db2inidb command to accomplish this.

52 Data Recovery and High Availability Guide and Reference

6.

11.

Start the database instance on the secondary system using the following
command:

db2start

Initialize the mirrored database on the secondary system by placing it in
rollforward pending state using the following command:

db2inidb <database_alias> as standby

If required, specify the RELOCATE USING option of the db2inidb command to
relocate the standby database:

db2inidb <database_alias> as standby relocate using relocatedbcfg.txt

where the relocatedbcfg.txt file contains the information required to relocate
the database.

Note: You can take a full database backup using the split mirror if you have
DMS table spaces (database managed space) or automatic storage table spaces.
Taking a backup using the split mirror reduces the overhead of taking a
backup on the production database. Such backups are considered to be online
backups and will contain in-flight transactions, but you cannot include log
files from the standby database. When such a backup is restored, you must
rollforward to at least the end of the backup before you can issue a
ROLLFORWARD command with the STOP option. Because the backup will not
contain any log files, the log files from the primary database that were in use
at the time the SET WRITE SUSPEND command was issued must be available or
the rollforward operation will not be able to reach the end of the backup.

Make the archived log files from the primary database available to the
standby database either by configuring the log archiving parameters on the
standby database or by shipping logs to the standby database.

Rollforward the database to the end of the logs or to a point-in-time.

Continue retrieving log files and rollforwarding the database through the logs
until you reach the end of the logs or the point-in-time required for the
standby database.

Bring the standby database online by issuing the ROLLFORWARD command with
the STOP option specified.

Note:

¢ The logs from the primary database cannot be applied to the mirrored
database after it has been taken out of rollforward pending state.

¢ If the primary database was configured for log archiving, the standby
database will share the same log archiving configuration. If the log
archiving destination is accessible to the standby database, the standby
database will automatically retrieve log files from it while rollforward is
being performed. However, once the database is brought out of rollforward
pending state, the standby database will attempt to archive log files to the
same location used by the primary database. Although the standby database
will initially use a different log chain from the primary database, there is
nothing to prevent the primary database from eventually using the same log
chain value as the standby database. This may cause the primary database
to archive log files on top of the log files archived by the standby database,
or vice versa. This could affect the recoverability of both databases. You
should change the log archiving destination for the standby database to be
different from that of the primary database to avoid these issues.

Chapter 4. Configuring for high availability 53

Using a split mirror as a standby database in a DB2 pureScale
environment

Use the following procedure to create a split mirror of a database for use as a
standby database in a DB2 pureScale environment. If a failure occurs on the
primary database and it becomes inaccessible, you can use the standby database to
take over for the primary database.

About this task

If the primary database was configured for log archiving, the standby database will
share the same log archiving configuration. If the log archiving destination is
accessible to the standby database, the standby database will automatically retrieve
log files from it during rollforward operations. However, once the database is
brought out of the rollforward pending state, the standby database will attempt to
archive log files to the same location used by the primary database. While the
standby database will initially use a different log chain from the primary database,
the primary database could eventually use the same log chain value as the standby
database. This could cause the primary database to archive log files on top of the
log files archived by the standby database, or vice versa , and can affect the
recoverability of both databases. You should change the log archiving destination
for the standby database to be different from that of the primary database to avoid
recoverability issues.

Procedure

To use a split mirror as a standby database:
1. Connect to the primary database using the following command:
db2 connect to <db_namd>

2. Configure the General Parallel File System (GPFS™) on the secondary cluster
by extracting and importing the primary cluster's settings. On the primary
cluster, run the following GPFS command:

mmfsct] <filesystem> syncFSconfig -n <remotenodefile>

where <remotenodefile> is the list of hosts in the secondary cluster.
3. List the cluster manager domain using the following command:
db2cluster -cm -1ist -domain

4. Stop the cluster manager on each host in the cluster using the following
command:

db2cTuster -cm -stop -host <host> -force

Note: The last host which you shut down must be the host from which you
are issuing this command.

5. Stop the GPFES cluster on the secondary system using the following command:
db2cTuster -cfs -stop -all

6. Suspend the I/O write operations on the primary database using the
following command:

db2 set write suspend for database

Note: While the database is in suspended state, you should not be running
other utilities or tools. You should only be making a copy of the database. You
can optionally flush all buffer pools before issuing SET WRITE SUSPEND to
minimize the recovery window. This can be achieved using the FLUSH
BUFFERPOOLS ALL statement.

54 Data Recovery and High Availability Guide and Reference

10.

11.

12.

13.

14.

15.

16.

Determine which file systems must be suspended and copied using the
following command:

db2cluster -cfs -Tist -filesystem

Suspend each GPFS file system that contains data or log data using the
following command:

/usr/Tpp/mmfs/bin/mmfsct] <filesystem> suspend
where <filesystem> represents a file system that contains data or log data.

Note: While the GPFS file systems are suspended, both read and write
operations are blocked. You should only be performing the split mirror
operations during this period to minimize the amount of time that read
operations are blocked.

Create one or multiple split mirrors from the primary database using
appropriate operating system-level and storage-level commands.

Note:

* Ensure that you copy the entire database directory, including the volume
directory. You must also copy the log directory and any container
directories that exist outside the database directory. To gather this
information, refer to the DBPATHS administrative view, which shows all the
files and directories of the database that need to be split.

 If you specified the EXCLUDE LOGS with the SET WRITE command, do not
include the log files in the copy.

Resume the GPFS file systems that were suspended using the following
command for each suspended file system:

[usr/Tpp/mmfs/bin/mmfsctl <filesystem> resume

where filesystem represents a suspended file system that contains data or log
data.

Resume the I/O write operations on the primary database using the following

command:

db2 set write resume for database

Start the GPFS cluster on the secondary system using the following command:
db2cluster -cfs -start -all

Start the cluster manager using the following command

db2cluster -cm -start -domain <domain>

Catalog the mirrored database on the secondary system.

Note: By default, a mirrored database cannot exist on the same system as the
primary database. It must be located on a secondary system that has the same
directory structure and uses the same instance name as the primary database.
If the mirrored database must exist on the same system as the primary
database, you can use the db2relocatedb utility or the RELOCATE USING option
of the db2inidb command to accomplish this.

Start the database instance on the secondary system using the following
command:

db2start

Initialize the database on the secondary system by placing it in rollforward
pending state:

db2inidb <database_alias> as standby

Chapter 4. Configuring for high availability 55

If required, specify the RELOCATE USING option of the db2inidb command to
relocate the database:

db2inidb database alias as standby relocate using relocatedbcfg.txt

where relocatedbcfg.txt contains the information required to relocate the
database.

Note: You can take a full database backup using the split mirror if you have
DMS table spaces (database managed space) or automatic storage table spaces.
Taking a backup using the split mirror reduces the overhead of taking a
backup on the production database. Such backups are considered to be online
backups and will contain in-flight transactions, but you cannot include log
files from the standby database. When such a backup is restored, you must
rollforward to at least the end of the backup before you can issue a
ROLLFORWARD STOP command. Because the backup will not contain any log files,
the log files from the primary database that were in use at the time the SET
WRITE SUSPEND command was issued must be available or the rollforward
operation will not be able to reach the end of the backup.

17. Make the archived log files from the primary database available to the
standby database either by configuring the log archiving parameters on the
standby database or by shipping logs to the standby database.

18. Rollforward the database to the end of the logs or to a point-in-time.

Note: When executing rollforward operations, you might encounter SQL1273
errors. These errors are expected if some of the log files were not copied from
the primary system when the database was split or if one member generates
log files faster than other members. SQL1273 is generated in some cases when
the rollforward operation must stop to preserve data consistency because the
contents of the log files depends on the contents of unavailable log files from
other members. If the standby database is configured to retrieve log files
archived by the primary database, you can either wait for the primary system
to archive the necessary log file or you can use the ARCHIVE LOG command on
the primary system to force the log file to be archived. Otherwise, you must
ship the required log files to the standby database. After the necessary log file
is available on the standby database, the rollforward operation can read
further ahead in the logs, although SQL1273 might be encountered again if
some members are still generating log files faster than other members. For
more information, see the “Disaster recovery and high availability through log
shipping in a DB2 pureScale environment” section of the “Backup and restore
operations in a DB2 pureScale environment” Information Center topic.

19. Continue the rollforward operation through the logs until you reach the end
of the logs or the point-in-time required for the standby database, shipping
new log files to the standby database if required.

20. Bring the standby database online by issuing the ROLLFORWARD DATABASE
command with the STOP option specified.

Note:

* The logs from the primary database cannot be applied to the mirrored
database once it has been taken out of rollforward pending state.

e If the primary database was configured for log archiving, the standby
database will share the same log archiving configuration. If the log
archiving destination is accessible to the standby database, the standby
database will automatically retrieve log files from it while rollforward is
being performed. However, once the database is brought out of rollforward

56 Data Recovery and High Availability Guide and Reference

pending state, the standby database will attempt to archive log files to the
same location used by the primary database. Although the standby database
will initially use a different log chain from the primary database, there is
nothing to prevent the primary database from eventually using the same
log chain value as the standby database. This may cause the primary
database to archive log files on top of the log files archived by the standby
database, or vice versa. This could affect the recoverability of both
databases. You should change the log archiving destination for the standby
database to be different from that of the primary database to avoid these
issues.

High Availability Disaster Recovery (HADR) synchronization

mode

The HADR synchronization mode determines the degree of protection your DB2
High Availability Disaster Recovery (HADR) database solution has against
transaction loss. The synchronization mode determines when the primary database
server considers a transaction complete, based on the state of the logging on the
standby database.

The more strict the synchronization mode configuration parameter value, the more
protection your database solution has against transaction data loss, but the slower
your transaction processing performance. You must balance the need for protection
against transaction loss with the need for performance.

Figure 3 shows the DB2 HADR synchronization modes that are available and also
when transactions are considered committed based on the synchronization mode
chosen:

Primary database Standby database
A R
HADR _— HADR
send buffer Log shipping receive buffer
Asynchronous —— Near synchronous
——— Super asynchronous Synchronous
log writer

< —- Commit request - -3

I
I
| .
I vy
D Log file

Applications

- Commit
succeeded

D Log file

Figure 3. Synchronization modes for high availability and disaster recovery (HADR)

In multiple standby mode, the setting for hadr_syncmode does not need to be the
same on the primary and standby databases. Whatever setting for hadr_syncmode is
specified on a standby is considered its configured synchronization mode; this setting
only has relevance if the standby becomes a primary. Instead, the standby is
assigned an effective synchronization mode. For any auxiliary standby, the effective
synchronization mode is always SUPERASYNC. For the principal standby, the
effective synchronization mode is the primary's setting for hadr_syncmode. A
standby's effective synchronization mode is the value that is displayed by any
monitoring interface.

Chapter 4. Configuring for high availability 57

Use the hadr_syncmode database configuration parameter to set the synchronization
mode. The following values are valid:

SYNC (synchronous)
This mode provides the greatest protection against transaction loss, and
using it results in the longest transaction response time among the four
modes.

In this mode, log writes are considered successful only when logs have
been written to log files on the primary database and when the primary
database has received acknowledgement from the standby database that
the logs have also been written to log files on the standby database. The
log data is guaranteed to be stored at both sites.

If the standby database crashes before it can replay the log records, the
next time it starts it can retrieve and replay them from its local log files. If
the primary database fails, a failover to the standby database guarantees
that any transaction that has been committed on the primary database has
also been committed on the standby database. After the failover operation,
when the client reconnects to the new primary database, there can be
transactions committed on the new primary database that were never
reported as committed to the application on the original primary. This
occurs when the primary database fails before it processes an
acknowledgement message from the standby database. Client applications
should consider querying the database to determine whether any such
transactions exist.

If the primary database loses its connection to the standby database, what
happens next depends on the configuration of the hadr_peer_window
database configuration parameter. If hadr_peer_window is set to a non-zero
time value, then upon losing connection with the standby database the
primary database will move into disconnected peer state and continue to
wait for acknowledgement from the standby database before committing
transactions. If the hadr_peer_window database configuration parameter is
set to zero, the primary and standby databases are no longer considered to
be in peer state and transactions will not be held back waiting for
acknowledgement from the standby database. If the failover operation is
performed when the databases are not in peer or disconnected peer state,
there is no guarantee that all of the transactions committed on the primary
database will appear on the standby database.

If the primary database fails when the databases are in peer or
disconnected peer state, it can rejoin the HADR pair as a standby database
after a failover operation. Because a transaction is not considered to be
committed until the primary database receives acknowledgement from the
standby database that the logs have also been written to log files on the
standby database, the log sequence on the primary will be the same as the
log sequence on the standby database. The original primary database (now
a standby database) just needs to catch up by replaying the new log
records generated on the new primary database since the failover
operation.

If the primary database is not in peer state when it fails, its log sequence
might be different from the log sequence on the standby database. If a
failover operation has to be performed, the log sequence on the primary
and standby databases might be different because the standby database
starts its own log sequence after the failover. Because some operations
cannot be undone (for example, dropping a table), it is not possible to
revert the primary database to the point in time when the new log

58 Data Recovery and High Availability Guide and Reference

sequence was created. If the log sequences are different and you issue the
START HADR command with the AS STANDBY parameter on the original
primary, you will receive a message that the command was successful.
However, this message is issued before reintegration is attempted. If
reintegration fails, pair validation messages will be issued to the
administration log and the diagnostics log on both the primary and the
standby. The reintegrated standby will remain the standby, but the primary
will reject the standby during pair validation causing the standby database
to shut down. If the original primary database successfully rejoins the
HADR pair, you can achieve failback of the database by issuing the
TAKEOVER HADR command without specifying the BY FORCE parameter. If the
original primary database cannot rejoin the HADR pair, you can reinitialize
it as a standby database by restoring a backup image of the new primary
database.

NEARSYNC (near synchronous)
While this mode has a shorter transaction response time than synchronous
mode, it also provides slightly less protection against transaction loss.

In this mode, log writes are considered successful only when the log
records have been written to the log files on the primary database and
when the primary database has received acknowledgement from the
standby system that the logs have also been written to main memory on
the standby system. Loss of data occurs only if both sites fail
simultaneously and if the target site has not transferred to nonvolatile
storage all of the log data that it has received.

If the standby database crashes before it can copy the log records from
memory to disk, the log records will be lost on the standby database.
Usually, the standby database can get the missing log records from the
primary database when the standby database restarts. However, if a failure
on the primary database or the network makes retrieval impossible and a
failover is required, the log records will never appear on the standby
database, and transactions associated with these log records will never
appear on the standby database.

If transactions are lost, the new primary database is not identical to the
original primary database after a failover operation. Client applications
should consider resubmitting these transactions to bring the application
state up to date.

If the primary database fails when the primary and standby databases are
in peer state, it is possible that the original primary database cannot to
rejoin the HADR pair as a standby database without being reinitialized
using a full restore operation. If the failover involves lost log records
(because both the primary and standby databases have failed), the log
sequences on the primary and standby databases will be different and
attempts to restart the original primary database as a standby database
without first performing a restore operation will fail. If the original
primary database successfully rejoins the HADR pair, you can achieve
failback of the database by issuing the TAKEOVER HADR command without
specifying the BY FORCE parameter. If the original primary database cannot
rejoin the HADR pair, you can reinitialize it as a standby database by
restoring a backup image of the new primary database.

ASYNC (asynchronous)
Compared with the SYNC and NEARSYNC modes, the ASYNC mode results in
shorter transaction response times but might cause greater transaction
losses if the primary database fails

Chapter 4. Configuring for high availability 59

In ASYNC mode, log writes are considered successful only when the log
records have been written to the log files on the primary database and
have been delivered to the TCP layer of the primary system's host
machine. Because the primary system does not wait for acknowledgement
from the standby system, transactions might be considered committed
when they are still on their way to the standby database.

A failure on the primary database host machine, on the network, or on the
standby database can cause log records in transit to be lost. If the primary
database is available, the missing log records can be resent to the standby
database when the pair reestablishes a connection. However, if a failover
operation is required while there are missing log records, those log records
will never reach the standby database, causing the associated transactions
to be lost in the failover.

If transactions are lost, the new primary database is not exactly the same as
the original primary database after a failover operation. Client applications
should consider resubmitting these transactions to bring the application
state up to date.

If the primary database fails when the primary and standby databases are
in peer state, it is possible that the original primary database will not be
able to rejoin the HADR pair as a standby database without being
reinitialized using a full restore operation. If the failover involves lost log
records, the log sequences on the primary and standby databases will be
different, and attempts to restart the original primary database as a
standby database will fail. Because there is a greater possibility of log
records being lost if a failover occurs in asynchronous mode, there is also a
greater possibility that the primary database will not be able to rejoin the
HADR pair. If the original primary database successfully rejoins the HADR
pair, you can achieve failback of the database by issuing the TAKEOVER HADR
command without specifying the BY FORCE parameters. If the original
primary database cannot rejoin the HADR pair, you can reinitialize it as a
standby database by restoring a backup image of the new primary
database.

SUPERASYNC (super asynchronous)
This mode has the shortest transaction response time but has also the
highest probability of transaction losses if the primary system fails. This
mode is useful when you do not want transactions to be blocked or
experience elongated response times due to network interruptions or
congestion.

In this mode, the HADR pair can never be in peer state or disconnected
peer state. The log writes are considered successful as soon as the log
records have been written to the log files on the primary database. Because
the primary database does not wait for acknowledgement from the standby
database, transactions are considered committed irrespective of the state of
the replication of that transaction.

A failure on the primary database host machine, on the network, or on the
standby database can cause log records in transit to be lost. If the primary
database is available, the missing log records can be resent to the standby
database when the pair reestablishes a connection. However, if a failover
operation is required while there are missing log records, those log records
will never reach the standby database, causing the associated transactions
to be lost in the failover.

60 Data Recovery and High Availability Guide and Reference

If transactions are lost, the new primary database is not exactly the same as
the original primary database after a failover operation. Client applications
should consider resubmitting these transactions to bring the application
state up to date.

Since the transaction commit operations on the primary database are not
affected by the relative slowness of the HADR network or the standby
HADR server, the log gap between the primary database and the standby
database might continue to increase. It is important to monitor the log gap
as it is an indirect measure of the potential number of transactions that
might be lost should a true disaster occur on the primary system. In
disaster recovery scenarios, any transactions committed during the log gap
would not be available to the standby database. Therefore, monitor the log
gap by using the hadr_log_gap monitor element; if it occurs that the log
gap is not acceptable, investigate the network interruptions or the relative
speed of the standby database node and take corrective measures to reduce
the log gap.

If the primary database fails, it is possible that the original primary
database will not be able to rejoin the HADR pair as a standby database
without being reinitialized using a full restore operation. If the failover
involves lost log records, the log sequences on the primary and standby
databases will be different, and attempts to restart the original primary
database as a standby database will fail. Because there is a greater
probability of log records being lost if a failover occurs in super
asynchronous mode, there is also a greater probability that the primary
database will not be able to rejoin the HADR pair. If the original primary
database successfully rejoins the HADR pair, you can achieve failback of
the database by issuing the TAKEOVER HADR command without specifying
the BY FORCE parameter. If the original primary database cannot rejoin the
HADR pair, you can reinitialize it as a standby database by restoring a
backup image of the new primary database.

High availability disaster recovery (HADR) support

To get the most out of the DB2 database High Availability Disaster Recovery
(HADR) feature, consider system requirements and feature limitations when
designing your high availability database solution.

System requirements for High Availability Disaster Recovery
(HADR)

To achieve optimal performance with High Availability Disaster Recovery (HADR),
ensure that your system meets the following requirements for hardware, operating
systems, and for the DB2 database system.

Recommendation: For better performance, use the same hardware and software for
the system where the primary database resides and for the system where the
standby database resides. If the system where the standby database resides has
fewer resources than the system where the primary database resides, it is possible
that the standby database will be unable to keep up with the transaction load
generated by the primary database. This can cause the standby database to fall
behind or the performance of the primary database to degrade. In a failover
situation, the new primary database should have the resources to service the client
applications adequately.

If you enable reads on standby and use the standby database to run some of your
read-only workload, ensure that the standby has sufficient resources. An active

Chapter 4. Configuring for high availability 61

standby requires additional memory and temporary table space usage to support
transactions, sessions, and new threads as well as queries that involve sort and join
operations.

Hardware and operating system requirements

Recommendation: Use identical host computers for the HADR primary and
standby databases. That is, they should be from the same vendor and have the
same architecture.

The operating system on the primary and standby databases should be the same
version, including patches. You can violate this rule for a short time during a
rolling upgrade, but take extreme caution.

A TCP/IP interface must be available between the HADR host machines, and a
high-speed, high-capacity network is recommended.

DB2 database requirements

The versions of the database systems for the primary and standby databases must
be identical; for example, both must be either version 8 or version 9. During rolling
updates, the modification level (for example, the fix pack level) of the database
system for the standby database can be later than that of the primary database for
a short while to test the new level. However, you should not keep this
configuration for an extended period of time. The primary and standby databases
will not connect to each other if the modification level of the database system for
the primary database is later than that of the standby database. In order to use the
reads on standby feature, both the primary and the standby databases need to be
Version 9.7 FixPakl.

The DB2 database software for both the primary and standby databases must have
the same bit size (32 or 64 bit). Table spaces and their containers must be identical
on the primary and standby databases. Properties that must be identical include
the table space type (DMS or SMS), table space size, container path, container size,
and container file type (raw device or file system). The amount of space allocated
for log files should also be the same on both the primary and standby databases.

When you issue a table space statement on the primary database, such as CREATE
TABLESPACE, ALTER TABLESPACE, or DROP TABLESPACE, it is replayed on the
standby database. You must ensure that the devices involved are set up on both of
the databases before you issue the table space statement on the primary database.

The primary and standby databases do not require the same database path. If
relative container paths are used, the same relative path might map to different
absolute container paths on the primary and standby databases.

Storage groups are fully supported by HADR, including replication of the CREATE
STOGROUP, ALTER STOGROUP and DROP STOGROUP statements. Similar to
table space containers, the storage paths must exist on both primary and standby.

The primary and standby databases must have the same database name. This
means that they must be in different instances.

Redirected restore is not supported. That is, HADR does not support redirecting
table space containers. However, database directory and log directory changes are

supported. Table space containers created by relative paths will be restored to

62 Data Recovery and High Availability Guide and Reference

paths relative to the new database directory.
Buffer pool requirements

Since buffer pool operations are also replayed on the standby database, it is
important that the primary and standby databases have the same amount of
memory. If you are using reads on standby, you will need to configure the buffer
pool on the primary so that the active standby can accommodate log replay and
read applications.

Installation and storage requirements for high availability
disaster recovery (HADR)

To achieve optimal performance with high availability disaster recovery (HADR),
ensure that your system meets the following installation and storage requirements.

Installation requirements

For HADR, instance paths should be the same on the primary and the standby
databases. Using different instance paths can cause problems in some situations,
such as if an SQL stored procedure invokes a user-defined function (UDF) and the
path to the UDF object code is expected to be on the same directory for both the
primary and standby server.

Storage requirements

Storage groups are fully supported by HADR, including replication of the CREATE
STOGROUP, ALTER STOGROUP and DROP STOGROUP statements. Similar to
table space containers, the storage path must exist on both primary and standby.
Symbolic links can be used to create identical paths. The primary and standby
databases can be on the same computer. Even though their database storage starts
at the same path, they do not conflict because the actual directories used have
instance names embedded in them (since the primary and standby databases must
have the same database name, they must be in different instances). The storage
path is formulated as storage_path_name/inst_name/dbpart_name/db_name/
tbsp_name/container_name.

Table spaces and their containers must be identical on the primary and standby
databases. Properties that must be identical include: the table space type (DMS or
SMS), table space size, container path, container size, and container file type (raw
device or file system). Storage groups and their storage paths must be identical.
This includes the path names and the amount of space on each that is devoted to
each storage group. The amount of space allocated for log files should also be the
same on both the primary and standby databases.

When you issue a table space statement on the primary database, such as CREATE
TABLESPACE, ALTER TABLESPACE, or DROP TABLESPACE, it is replayed on the
standby database. You must ensure that the devices involved are set up on both of
the databases before you issue the table space statement on the primary database.

If the table space setup is not identical on the primary and standby databases, log
replay on the standby database might encounter errors such as OUT OF SPACE or
TABLE SPACE CONTAINER NOT FOUND. Similarly, if the storage groups's
storage path setup is not identical on the primary and standby databases, log
records associated with the CREATE STOGROUP or ALTER STOGROUP are not be
replayed. As a result, the existing storage paths might prematurely run out of
space on the standby system and automatic storage table spaces are not be able to

Chapter 4. Configuring for high availability 63

increase in size. If any of these situations occurs, the affected table space is put in
rollforward pending state and is ignored in subsequent log replay. If a takeover
operation occurs, the table space is not available to applications.

If the problem is noticed on the standby system prior to a takeover then the
resolution is to re-establish the standby database while addressing the storage
issues. The steps to do this include:

* Deactivating the standby database.
* Dropping the standby database.

* Ensuring the necessary file systems exist with enough free space for the
subsequent restore and rollforward.

* Restoring the database at the standby system using a recent backup of the
primary database (or, reinitialize using split mirror or flash copy with the
db2inidb command). Storage group storage paths should not be redefined
during the restore. Also, table space containers should not be redirected as part
of the restore.

* Restarting HADR on the standby system.

However, if the problem is noticed with the standby database after a takeover has
occurred (or if a choice was made to not address the storage issues until this time)
then the resolution is based on the type of problem that was encountered.

If the database is enabled for automatic storage and space is not available on the
storage paths associated with the standby database then follow these steps:

1. Make space available on the storage paths by extending the file systems, or by
removing unnecessary non-DB2 files on them.

2. Perform a table space rollforward to the end of logs.

In the case where the addition or extension of containers as part of log replay
could not occur, if the necessary backup images and log file archives are available,
you might be able to recover the table space by first issuing the SET TABLESPACE
CONTAINERS statement with the IGNORE ROLLFORWARD CONTAINER
OPERATIONS option and then issuing the ROLLFORWARD command.

The primary and standby databases do not require the same database path. If
relative container paths are used, the same relative path might map to different
absolute container paths on the primary and standby databases. Consequently, if
the primary and standby databases are placed on the same computer, all table
space containers must be defined with relative paths so that they map to different
paths for primary and standby.

HADR and Network Address Translation (NAT) support

NAT, which is supported in an HADR environment, is usually used for firewall
and security because it hides the server's real address.

In an HADR setup, the local and remote host configurations on the primary and
standby nodes are cross-checked to ensure they are correct. In a NAT environment,
a host is known to itself by a particular IP address but is known to the other hosts
by a different IP address. This behavior causes the HADR host cross-check to fail
unless you set the DB2_HADR_NO_IP_CHECK registry variable to ON. Using this setting
causes the host cross-check to be bypassed, enabling the primary and standby to
connect in a NAT environment.

64 Data Recovery and High Availability Guide and Reference

If you are not running in a NAT environment, use the default setting of OFF for the
DB2_HADR_NO_IP_CHECK registry variable. Disabling the cross-check weakens the
HADR validation of your configuration.

Considerations for HADR multiple standby mode

In a NAT environment with a multiple standby setup, each standby's settings for
hadr_local_host and hadr_local_svc must still be listed in the primary's
hadr_target_list or the primary does not accept the connection from that standby.

Normally, in multiple standby mode, on start up, a standby checks that its settings
for hadr_remote_host and hadr_remote_svc are in its hadr_target_list, to ensure
that on role switch, the old primary can become a new standby. In NAT scenarios,
that check fails unless the DB2_HADR_NO_IP_CHECK registry variable to ON. Because
this check is bypassed, the standby waits until it connects to the primary to check
that the primary's hadr_local_host and hadr_local_svc are in the standby's
hadr_target_list. The check still ensures role switch can succeed on this pair.

Note: If the DB2_HADR_NO_IP_CHECK registry variable is set to ON, the
hadr_remote_host and hadr_remote_svc are not automatically updated.

In a multiple standby setup, DB2_HADR_NO_IP_CHECK should be set on all databases
that might be making a connection to another database across a NAT boundary. If
a database will never cross a NAT boundary to connect to another database (that
is, if no such link is configured), then you should not set this registry variable on
that database. When DB2_HADR_NO_IP_CHECK is set, it prevents a standby from
automatically discovering the new primary after a takeover has occurred, and you
have to manually reconfigure the standby to have it connect to the new primary.

Restrictions for High Availability Disaster Recovery (HADR)

To achieve optimal performance with High Availability Disaster Recovery (HADR),
consider HADR restrictions when designing your high availability DB2 database
solution.

The following list is a summary of High Availability Disaster Recovery (HADR)
restrictions:

* HADR is not supported in a partitioned database environment.
* HADR is not supported in DB2 pureScale environments.

¢ The primary and standby databases must have the same operating system
version and the same version of the DB2 database system, except for a short
time during a rolling upgrade.

¢ The DB2 database system software on the primary and standby databases must
be the same bit size (32 or 64 bit).

* Clients cannot connect to the standby database unless you have reads on
standby enabled. Reads on standby enables clients to connect to the active
standby database and issue read-only queries.

* If reads on standby is enabled, operations on the standby database that write a
log record are not permitted; only read clients can connect to the active standby
database.

e If reads on standby is enabled, write operations that would modify database
contents are not allowed on the standby database. Any asynchronous threads
such as real-time statistics collection, Auto Index rebuild and utilities that

Chapter 4. Configuring for high availability 65

attempt to modify database objects will not be supported. Real-time statistics
collection and Auto Index rebuild should not be running on the standby
database.

Log files are only archived by the primary database.

The self tuning memory manager (STMM) can be run only on the current
primary database. After the primary database is started or the standby database
is converted to a primary database by takeover, the STMM EDU may not start
until the first client connection comes in.

Backup operations are not supported on the standby database.

Non-logged operations, such as changes to database configuration parameters
and to the recovery history file, as well as LOB table columns that have the NOT
LOGGED option, are not replicated to the standby database.

Load operations with the COPY NO option specified are not supported.

HADR does not support the use of raw 1/O (direct disk access) for database log
files. If HADR is started via the START HADR command, or the database is
activated (restarted) with HADR configured, and raw logs are detected, the
associated command will fail.

Federated server does not fully support HADR. For one-phase commit, a HADR
database can act as either a federated server (transaction manager), or a data
source (resource manager), which requires client reroute configuration. For
two-phase commit, an HADR database can only act as the data source; the
HADR database cannot act as a federated server for data consistency limitations.

HADR does not support infinite logging.

The system clock of the HADR primary database must be synchronized with the
HADR standby database's system clock.

Scheduling maintenance for high availability

Your DB2 database solution will require regular maintenance. You will have to
perform maintenance such as: software or hardware upgrades; database
performance tuning; database backups; statistics collection and monitoring for
business purposes. You must minimize the impact of these maintenance activities
on the availability of your database solution.

Before you begin

Before you can schedule maintenance activities, you must identify those
maintenance activities that you will have to perform on your database solution.

Procedure

To schedule maintenance, perform the following steps:

1.

Identify periods of low database activity.

It is best to schedule maintenance activities for low-usage times (those periods
of time when the fewest user applications are making requests of the database
system). Depending on the type of business applications you are creating, there
might even be periods of time when no user applications are accessing the
database system.

Categorize the maintenance activities you must perform according to the
following:

e The maintenance can be automated

66 Data Recovery and High Availability Guide and Reference

* You must bring the database solution offline while you perform the
maintenance

* You can perform the maintenance while the database solution is online

3. For those maintenance activities that can be automated, configure automated
maintenance using one of the following methods:

* Use the auto_maint configuration parameter

* Use one of the system stored procedure called AUTOMAINT_SET_POLICY
and AUTOMAINT_SET_POLICYFILE

4. If any of the maintenance activities you must perform require the database
server to be offline, schedule those offline maintenance activities for those
low-usage times.

5. For those maintenance activities that can be performed while the database
server is online:

* Identify the availability impact of running those online maintenance
activities.

¢ Schedule those online maintenance activities so as to minimize the impact of
running those maintenance activities on the availability of the database
system.

For example: schedule online maintenance activities for low-usage times; and
use throttling mechanisms to balance the amount of system resources the
maintenance activities use.

Configuring an automated maintenance policy using
SYSPROC.AUTOMAINT_SET_POLICY or
SYSPROC.AUTOMAINT_SET_POLICYFILE

You can use the system stored procedures AUTOMAINT_SET_POLICY and
AUTOMAINT_SET_POLICYFILE to configure the automated maintenance policy
for a database.

Procedure

To configure the automated maintenance policy for a database, perform the
following steps:

1. Connect to the database
2. Call AUTOMAINT_SET_POLICY or AUTOMAINT_SET_POLICYFILE
* The parameters required for AUTOMAINT_SET_POLICY are:

a. Maintenance type, specifying the type of automated maintenance activity
to configure.

b. Pointer to a BLOB that specifies the automated maintenance policy in
XML format.

* The parameters required for AUTOMAINT_SET_POLICYFILE are:

a. Maintenance type, specifying the type of automated maintenance activity
to configure.

b. The name of an XML file that specifies the automated maintenance policy.

Valid maintenance type values are:

* AUTO_BACKUP - automatic backup

* AUTO_REORG - automatic table and index reorganization
¢ AUTO_RUNSTATS - automatic table RUNSTATS operations
* MAINTENANCE_WINDOW - maintenance window

Chapter 4. Configuring for high availability 67

What to do next

You can use the system stored procedures AUTOMAINT_GET_POLICY and
AUTOMAINT_GET_POLICYFILE to retrieve the automated maintenance policy
configured for a database.

Sample automated maintenance policy specification XML for
AUTOMAINT_SET_POLICY or AUTOMAINT_SET_POLICYFILE
Whether you are using AUTOMAINT_SET_POLICY or
AUTOMAINT_SET_POLICYFILE to specify your automated maintenance policy,
you must specify the policy using XML. There are sample files that demonstrate
how to specify your automated maintenance policy in XML. In Linux and UNIX
operating systems, you can find the sample files in the SQLLIB/samples/
automaintcfg directory. In Windows operating systems, you can find the sample
files in the SQLLIB\samples\automaintcfg directory.

The second parameter you pass to the system stored procedure
AUTOMAINT_SET_POLICY is a BLOB containing XML, specifying your desired
automated maintenance policy. The second parameter you pass to the system
stored procedure AUTOMAINT_SET_POLICYFILE is the name of an XML file that
specifies your desired automated maintenance policy. The XML elements that are
valid in the BLOB you pass to AUTOMAINT_SET_POLICY are the same elements
that are valid in the XML file you pass to AUTOMAINT_SET_POLICYFILE.

In the samples directory (SQLLIB/samples/automaintcfg in Linux and UNIX
environments and SQLLIB\samples\automaintcfg in Windows environments) there
are four XML files that contain example automated maintenance policy
specification:

DB2MaintenanceWindowPolicySample.xml

Demonstrates specifying a maintenance window during which time the
database manager should schedule automated maintenance.

DB2AutoBackupPolicySample.xml

Demonstrates specifying how the database manager should perform
automatic backup.

DB2AutoReorgPolicySample.xml

Demonstrates specifying how the database manager should perform
automatic table and index reorganization.

DB2DefaultAutoRunstatsPolicySample.xml
Demonstrates specifying how the database manager should perform

automatic table runstats operations.

You can create your own automated maintenance policy specification XML by
copying the XML from these files and modifying that XML according to the
requirements of your system.

Configuring database logging options

Use database logging configuration parameters to specify data logging options for
your database, such as the type of logging to use, the size of the log files, and the
location where log files should be stored.

68 Data Recovery and High Availability Guide and Reference

Before you begin

To configure database logging options, you must have SYSADM, SYSCTRL, or
SYSMAINT authority.

About this task

You can configure database logging options by using the UPDATE DATABASE
CONFIGURATION command on the command line processor (CLP), or by calling the
db2CfgSet APIL

Procedure

* To configure database logging options by using the UPDATE DATABASE
CONFIGURATION command on the command line processor:

1.

Specify whether you want to use circular logging or archive logging. If you
want to use circular logging, the Togarchmethl and logarchmeth2 database
configuration parameters must be set to OFF. This setting is the default. To
use archive logging, you must set at least one of these database configuration
parameters to a value other than OFF. For example, if you want to use
archive logging and you want to save the archived logs to disk, issue the
following command:

db2 update db configuration for mydb using Togarchmethl
disk:/u/dbuser/archived_logs

The archived logs are placed in a directory called /u/dbuser/archived_1logs.

Specify values for other database logging configuration parameters, as
required. The following additional configuration parameters apply to
database logging:

— archretrydelay
— blk_log_dsk_ful
— failarchpath

— Togarchcomprl
— Tlogarchcompr2
— logarchmethl

— logarchmeth2

— Tlogarchoptl

— Togarchopt2

— logbufsz

— logfilsiz

— Togprimary

— logsecond

— max_log

— mirrorlogpath
— newlogpath

— mincommit

— numarchretry
— num_log_span

— overflowlogpath

For more information about these database logging configuration parameters,
see “Configuration parameters for database logging” on page 70.

Chapter 4. Configuring for high availability 69

* To configure database logging options by using IBM Data Studio, use the task
assistant for the UPDATE DATABASE CONFIGURATION command.

Configuration parameters for database logging

A key element of any high availability strategy is database logging. You can use
database logs to record transaction information, synchronize primary and
secondary (standby) databases, and roll forward a secondary database that has
taken over for a failed primary database.

To configure these database logging activities, you must set a variety of database
configuration parameters.

Archive retry delay (archretrydelay)
Specifies the amount of time (in seconds) to wait between attempts to
archive log files after the previous attempt fails. The default value is 20.

Block on log disk full (blk_log_dsk_ful)

This configuration parameter can be set to prevent disk full errors from
being generated when the DB2 database manager cannot create a new log
file in the active log path. Instead, the DB2 database manager will attempt
to create the log file every five minutes until it succeeds. After each
attempt, the DB2 database manager will write a message to the
administration notification log. The only way to confirm that your
application is hanging because of a log disk full condition is to monitor the
administration notification log. Until the log file is successfully created, any
user application that attempts to update table data will not be able to
commit transactions. Read-only queries might not be directly affected;
however, if a query needs to access data that is locked by an update
request or a data page that is fixed in the buffer pool by the updating
application, read-only queries will also be blocked.

Setting b1k_log_dsk_ful to YES causes applications to hang when the DB2
database manager encounters a log disk full error. You are then able to
resolve the error and the application can continue. A disk full situation can
be resolved by moving old log files to another file system, by increasing
the size of the file system so that hanging applications can complete, or by
investigating and resolving any log archiving failures.

If b1k _Tlog_dsk_ful is set to NO, a transaction that receives a log disk full
error will fail and be rolled back.

Failover archive path (failarchpath)
Specifies an alternate directory for the archive log files if there is a problem
with the normal archive path (for example, if it is not accessible or full).
This directory is a temporary storage area for the log files until the log
archive method that failed becomes available again, at which time the log
files will be moved from this directory to the path specified in the original
log archiving. Moving the log files to this temporary location, helps you
avoid log directory full situations. This parameter must be a fully qualified
existing directory.

Primary log archive compression (logarchcomprl), secondary log archive
compression (logarchcompr2)
In certain circumstances, these parameters control whether the database
manager compresses archive log files. You can reduce the cost associated
with storing log archive files if you use compression on the files.

Valid values for these parameters are as follows:

70 Data Recovery and High Availability Guide and Reference

OFF This value specifies that log archive files are not compressed. The
default value is OFF.

ON This value specifies that log archive files are compressed. If set
dynamically, log files already archived are not compressed.

Note:

1. If you set the Togarchmethl configuration parameter to a value other
than DISK, TSM, or VENDOR, log archive compression has no effect
regardless of the Togarchcomprl configuration parameter setting.

2. If you set the Togarchmeth2 configuration parameter to a value other
than DISK, TSM, or VENDOR, log archive compression has no effect
regardless of the Togarchcompr2 configuration parameter setting.

Log archive method 1 (logarchmeth1), log archive method 2 (logarchmeth?2)
These parameters cause the database manager to archive log files to a
location that is not the active log path. If you specify both of these
parameters, each log file from the active log path that is set by the Togpath
configuration parameter is archived twice. This means that you will have
two identical copies of archived log files from the log path in two different
destinations. If you specify mirror logging by using the mirrorlogpath
configuration parameter, the Togarchmeth2 configuration parameter
archives log files from the mirror log path instead of archiving additional
copies of the log files in the active log path. This means that you have two
separate copies of the log files archived in two different destinations: one
copy from the log path and one copy from the mirror log path.

Valid values for these parameters are as follows:

OFF This value specifies that the log archiving method is not used. If
you set both the Togarchmethl and logarchmeth2 configuration
parameters to OFF, the database is considered to be using circular
logging and is not rollforward recoverable. The default value is
OFF.

LOGRETAIN
Specifies that active log files are retained and become online
archive log files for use in rollforward recovery.

USEREXIT
Specifies that log retention logging is performed and that a user
exit program should be used to archive and retrieve the log files.
Log files are archived when they are full. They are retrieved when
the rollforward utility must use them to restore a database.

DISK You must follow this value with a colon (:) and then a fully
qualified existing path name where the log files will be archived.
For example, if you set the Togarchmethl configuration parameter
to DISK: /u/dbuser/archived_logs, the archive log files are placed
under or in the /u/dbuser/archived_logs/INSTANCE_NAME/DBNAME/
NODExxxx/LOGSTREAMxxxx/Cxxxxxxx directory.

Note: If you are archiving to tape, you can use the db2tapemgr
utility to store and retrieve log files.

TSM If specified without any additional configuration parameters, this
value indicates that log files should be archived on the local Tivoli
Storage Manager (TSM) server using the default management class.

Chapter 4. Configuring for high availability 71

If followed by a colon(:) and a TSM management class, the log files
will be archived using the specified management class.

VENDOR
Specifies that a vendor library will be used to archive the log files.
This value must be followed by a colon(:) and the name of the
library. The APIs provided in the library must use the backup and
restore APIs for vendor products.

Note:

1. If either Togarchmethl or Togarchmeth2 is set to a value other than OFF,
the database is configured for rollforward recovery.

Log archive options 1 (logarchoptl), log archive options 2 (logarchopt2)
Specifies a string which is passed on to the TSM API or vendor APIs.

For TSM environments, use this parameter to enable the database to
retrieve logs that were generated on a different TSM node, by a different
TSM user, or in TSM environments using proxy nodes such as in DB2
pureScale environments. You must provide the string in one of the
following formats:

* For retrieving logs generated on a different TSM node when the TSM
server is not configured to support proxy node clients:

"-fromnode=nodename"

* For retrieving logs generated by a different TSM user when the TSM
server is not configured to support proxy node clients:

"~ fromowner=ownername"

* For retrieving logs generated on a different TSM node and by a different
TSM user when the TSM server is not configured to support proxy node
clients:

"-fromnode=nodename -fromowner=ownername"

* For retrieving logs generated in client proxy nodes configurations, such
as in DB2 pureScale environments where there are multiples members
working on the same data:

"-asnodename=proxynode"

where nodename is the name of the TSM node that originally archived
the log files, ownername is the name of the TSM user that originally
archived the log files, and proxynode is the name of the shared TSM
target proxy node. Each log archive options field corresponds to one of
the log archive methods: Togarchoptl is used with Togarchmethl, and
Togarchopt2 is used with 1ogarchmeth2.

Note:

* When the -asnodename TSM option is used, data is not stored using the
name of the node (nodename) of each member. The data is stored
instead using the name of the shared TSM target node used by all the
members within a DB2 pureScale instance.

* The -fromnode option and the -fromowner option are not compatible
with the -asnodename option and cannot be used together. Use the
-asnodename option for TSM configurations using proxy nodes and the
other two options for other types of TSM configurations. For more
information, see “Configuring a Tivoli Storage Manager client” on page
415.

72 Data Recovery and High Availability Guide and Reference

Log buffer (logbufsz)
This parameter allows you to specify the amount of memory to use as a
buffer for log records before writing these records to disk. The log records
are written to disk when any one of the following events occurs:

* A transaction commits
* The log buffer becomes full
¢ Some other internal database manager event occurs.

Increasing the log buffer size can result in more efficient input/output
(I/0) activity associated with logging, because the log records are written
to disk less frequently, and more records are written each time. However,
recovery can take longer with a larger log buffer size value. As well, you
may be able to use a higher Togbufsz setting to reduce number of reads
from the log disk. (To determine if your system would benefit from this,
use the Tog_reads monitor element to check if reading from log disk is
significant.

Log file size (logfilsiz)
This parameter specifies the size of each configured log, in number of 4-KB
pages.
There is a 1024 GB logical limit on the total active log space per log stream
that you can configure. This limit is the result of the upper limit for each
log file, which is 4 GB, and the maximum combined number of primary
and secondary log files, which is 256.

The size of the log file has a direct bearing on performance. There is a
performance cost for switching from one log to another. So, from a pure
performance perspective, the larger the log file size the better. This
parameter also indicates the log file size for archiving. In this case, a larger
log file is size it not necessarily better, since a larger log file size can
increase the chance of failure or cause a delay in log shipping scenarios.
When considering active log space, it might be better to have a larger
number of smaller log files. For example, if there are two very large log
files and a transaction starts close to the end of one log file, only half of
the log space remains available.

Every time a database is deactivated (all connections to the database are
terminated), the log file that is currently being written is truncated. So, if a
database is frequently being deactivated, it is better not to choose a large
log file size because the DB2 database manager will create a large file only
to have it truncated. You can use the ACTIVATE DATABASE command to
avoid this cost because it prevents automatic database deactivation when
the last client disconnects from the database.

Assuming that you have an application that keeps the database open to
minimize processing time when opening the database, the log file size
should be determined by the amount of time it takes to make offline
archived log copies.

Minimizing log file loss is also an important consideration when setting
the log size. Archiving operates on one entire log file at a time. If you
configure larger log files, you increase the time between archiving. If the
medium containing the log fails, some transaction information will
probably be lost. Decreasing the log file size increases the frequency of
archiving but can reduce the amount of information loss in case of a media
failure because on average less log data is not yet archived at any given
point in time.

Chapter 4. Configuring for high availability 73

Maximum log per transaction (max_log)
This parameter indicates the percentage of primary log space that can be
consumed by one transaction. The value is a percentage of the value
specified for the Togprimary configuration parameter.

If the value is set to 0, there is no limit to the percentage of total primary
log space that a transaction can consume. If an application violates the
max_log configuration, the application will be forced to disconnect from the
database, the transaction will be rolled back.

You can override this behavior by setting the DB2_FORCE_APP_ON_MAX_LOG
registry variable to FALSE. This will cause transactions that violate the
max_log configuration to fail. The application can still commit the work
completed by previous statements in the unit of work, or it can roll back
the completed work to undo the unit of work.

This parameter, along with the num_log_span configuration parameter, can
be useful when infinite active log space is enabled. If infinite logging is on
(that is, if Togsecond is -1) then transactions are not restricted to the upper
limit of the number of log files (logprimary + Togsecond). When the value
of Togprimary is reached, the DB2 database manager starts to archive the
active logs, rather than failing the transaction. This can cause problems if,
for instance, there is a long running transaction that has been left
uncommitted (perhaps caused by an application with a logic error). If this
occurs, the active log space keeps growing, which might lead to poor crash
recovery performance. To prevent this, you can specify values for either
one or both of the max_log and num_log_span configuration parameters.

Note: The following DB2 commands are excluded from the limitation
imposed by the max_log configuration parameter: ARCHIVE LOG, BACKUP
DATABASE, LOAD, REORG, RESTORE DATABASE, and ROLLFORWARD DATABASE.

Mirror log path (mirrorlogpath)
To protect the logs on the primary log path from disk failure or accidental
deletion, you can specify that an identical set of logs be maintained on a
secondary (mirror) log path. To do this, change the value of this
configuration parameter to point to a different directory. Active logs that
are currently stored in the mirrored log path directory are not moved to
the new location if the database is configured for rollforward recovery.

The mirrorlogpath parameter also has an effect on log archiving behavior,
which you can use to further improve resilience during rollforward
recovery: When both mirrorlogpath and logarchmeth2 are set,
logarchmeth2 archives log files from the mirror log path instead of
archiving additional copies of the log files in the active log path. You can
use this log archiving behaviour to improve resilience, because a usable,
archived log file from the mirror log path might still be available to
continue a database recovery operation, even if a primary log file became
corrupted due to a disk failure before archiving.

Because you can change the log path location, the logs needed for
rollforward recovery might exist in different directories. You can change
the value of this configuration parameter during a rollforward operation to
allow you to access log files from a different mirror log path.

You must keep track of the location of the logs.

Changes are not applied until the database is in a consistent state. The
configuration parameter database_consistent returns the status of the
database.

74 Data Recovery and High Availability Guide and Reference

To turn this configuration parameter off, set its value to DEFAULT.

Note:

1. This configuration parameter is not supported if the primary log path
is a raw device.

2. The value specified for this parameter cannot be a raw device.

3. In a DB2 pureScale environment, the first member connecting to or
activating the database processes configuration changes to this log path
parameter. The DB2 database manager verifies that the path exists and
that it has both read and write access to that path. It also creates
member-specific subdirectories for the log files. If any one of these
operations fails, the DB2 database manager rejects the specified path
and brings the database online using the old path. If the specified path
is accepted, the new value is propagated to each member. If a member
fails while trying to switch to the new path, subsequent attempts to
activate it or to connect to it will fail (SQL5099N). All members must
use the same log path.

New log path (newlogpath)
The database logs are initially created in the following directory:
db_path/instance_name /dbname /NODE0000/LOGSTREAMO0000. You can
change the location in which active log files are placed (and future log files
will be placed) by changing the value of this configuration parameter to
point to a different directory or to a device. Active logs that are currently
stored in the database log path directory are not moved to the new
location if the database is configured for rollforward recovery.

Because you can change the log path location, the logs needed for
rollforward recovery might exist in different directories or on different
devices. You can change the value of this configuration parameter during a
rollforward operation to allow you to access logs in multiple locations.

You must keep track of the location of the logs.

Changes are not applied until the database is in a consistent state. The
configuration parameter database_consistent returns the status of the
database.

Note: In a DB2 pureScale environment, the first member connecting to or
activating the database processes configuration changes to this log path
parameter. The DB2 database manager verifies that the path exists and that
it has both read and write access to that path. It also creates
member-specific subdirectories for the log files. If any one of these
operations fails, the DB2 database manager rejects the specified path and
brings the database online using the old path. If the specified path is
accepted, the new value is propagated to each member. If a member fails
while trying to switch to the new path, subsequent attempts to activate it
or to connect to it will fail (SQL5099N). All members must use the same
log path.

Number of commits to group (mincommit)
This parameter allows you to delay the writing of log records to disk until
a minimum number of commits have been performed. This delay can help
reduce the database manager overhead associated with writing log records
and, as a result, improve performance when you have multiple
applications running against a database, and many commits are requested
by the applications within a very short period of time.

Chapter 4. Configuring for high availability 75

The grouping of commits occurs only if the value of this parameter is
greater than 1 and multiple applications attempt to commit their
transactions at about the same time. When commit grouping is in effect,
application commit requests are held until either one second has elapsed,
or the number of commit requests equals the value of this parameter.

Number of archive retries on error (numarchretry)
Specifies the number of attempts that will be made to archive log files
using a configured log archive method before they are archived to the path
specified by the failarchpath configuration parameter. This parameter can
only be used if the failarchpath configuration parameter is set. The
default value is 5.

Number of active logs a transaction can span (num_log_span)
This parameter indicates the number of active log files that an active
transaction can span. If the value is set to 0, there is no limit to how many
log files one single transaction can span.

If an application violates the num_log_span setting, the application will be
forced to disconnect from the database.

This parameter, along with the max_log configuration parameter, can be
useful when infinite active log space is enabled. If infinite logging is on
(that is, if Togsecond is -1) then transactions are not restricted to the upper
limit of the number of log files (logprimary + Togsecond). When the value
of Togprimary is reached, the DB2 database manager starts to archive the
active logs, rather than failing the transaction. This can cause problems if,
for instance, there is a long running transaction that has been left
uncommitted (perhaps caused by an application with a logic error). If this
occurs, the active log space keeps growing, which might lead to poor crash
recovery performance. To prevent this, you can specify values for either
one or both of the max_log and num_log_span configuration parameters.

Note: The following DB2 commands are excluded from the limitation
imposed by the num_log_span configuration parameter: ARCHIVE LOG,
BACKUP DATABASE, LOAD, REORG, RESTORE DATABASE, and
ROLLFORWARD DATABASE.

Overflow log path (overflowlogpath)
This parameter can be used for several functions, depending on your
logging requirements. You can specify a location for the DB2 database
manager to find log files that are needed for a rollforward operation. It is
similar to the OVERFLOW LOG PATH option of the ROLLFORWARD
command; however, instead of specifying the OVERFLOW LOG PATH
option for every ROLLFORWARD command issued, you can set this
configuration parameter once. If both are used, the OVERFLOW LOG
PATH option will overwrite the overflowlogpath configuration parameter
for that rollforward operation.

If Togsecond is set to -1, you can specify a directory for the DB2 database
manager to store active log files retrieved from the archive. (Active log files
must be retrieved for rollback operations if they are no longer in the active
log path).

If overflowlogpath is not specified, the DB2 database manager will retrieve
the log files into the active log path. By specifying this parameter you can
provide an additional storage resource where the DB2 database manager

76 Data Recovery and High Availability Guide and Reference

can place the retrieved log files. The benefit includes spreading the 1/O
cost to different disks, and allowing more log files to be stored in the
active log path.

For example, if you are using the db2ReadLog API for replication, you can
use overflowlogpath to specify a location for the DB2 database manager to
search for log files that are needed for this APL. If the log file is not found
(in either the active log path or the overflow log path) and the database is
configured for log archiving, the DB2 database manager will retrieve the
log file. You can also use this parameter to specify a directory for the DB2
database manager to store the retrieved log files. The benefit comes from
reducing the I/O cost on the active log path and allowing more log files to
be stored in the active log path.

Setting overflowlogpath is useful when infinite logging is configured (i.e.,
when logsecond is set to -1). The DB2 database manager can store active
log files retrieved from the archive in this path. (With infinite logging,
active log files may need to be retrieved from archive, for rollback or crash
recovery operations, if they are no longer in the active log path.)

If you have configured a raw device for the active log path,
overflowlogpath must be configured if you want to set Toegsecond to -1, or
if you want to use the db2ReadLog API.

To set overflowlogpath, specify a string of up to 242 bytes. The string must
point to a path name, and it must be a fully qualified path name, not a
relative path name. The path name must be a directory, not a raw device.

Note: In a partitioned database environment, the database partition
number is automatically appended to the path. This is done to maintain
the uniqueness of the path in multiple logical node configurations.

Primary log files (logprimary)
This parameter specifies the number of primary logs of size logfilsiz that
will be created.

A primary log file, whether empty or full, requires the same amount of
disk space. Thus, if you configure more logs than you need, you use disk
space unnecessarily. If you configure too few logs, you can encounter a
log-full condition. As you select the number of logs to configure, you must
consider the size you make each log and whether your application can
handle a log-full condition. The total log file size limit on active log space
is 256 GB.

If you are enabling an existing database for rollforward recovery, change
the number of primary logs to the sum of the number of primary and
secondary logs, plus one.

Secondary logs (logsecond)
This parameter specifies the number of secondary log files that are created
and used for recovery, if needed.

If the primary log files become full, secondary log files (of size Togfilsiz)
are allocated, one at a time as needed, up to the maximum number
specified by this parameter. If this parameter is set to -1, the database is
configured with infinite active log space. There is no limit on the size or
number of in-flight transactions running on the database. Infinite active
logging is useful in environments that must accommodate large jobs
requiring more log space than you would normally allocate to the primary
logs.

Chapter 4. Configuring for high availability 77

Note:
1. Log archiving must be enabled in order to set logsecond to -1.

2. If this parameter is set to -1, crash recovery time might be increased
since the DB2 database manager might need to retrieve archived log
files.

Reducing logging with the NOT LOGGED INITIALLY parameter

If your application creates and populates work tables from master tables, you can
create the work tables and specify the NOT LOGGED INITIALLY parameter on the
CREATE TABLE statement.

This option is useful if you are not concerned about the recoverability of these
work tables because they can be easily re-created from the master tables.
Specifying the NOT LOGGED INITIALLY parameter reduces logging and improves
performance.

The advantage of using the NOT LOGGED INITIALLY parameter is that any
changes made on a table (including insert, delete, update, or create index
operations) in the same unit of work that creates the table will not be logged. This
not only reduces the logging that is done, but can also increase the performance of

your application. You can achieve the same result for existing tables by using the
ALTER TABLE statement with the NOT LOGGED INITIALLY parameter.

Note:

1. You can create more than one table with the NOT LOGGED INITIALLY
parameter in the same unit of work.

2. Changes to the catalog tables and other user tables are still logged.

Because changes to the table are not logged, you should consider the following
when deciding to use the NOT LOGGED INITIALLY table attribute:

+ All changes to the table will be flushed out to disk at commit time. This means
that the commit might take longer.

* If the NOT LOGGED INITIALLY attribute is activated and an activity occurs
that is not logged, the entire unit of work will be rolled back if a statement fails
or a ROLLBACK TO SAVEPOINT is executed (SQL1476N).

* If you are using high availability disaster recovery (HADR) you should not use
the NOT LOGGED INITIALLY table attribute. Tables created on the primary
database with the NOT LOGGED INITIALLY option specified are not replicated
to the standby database. Attempts to access such tables on an active standby
database or after the standby becomes the primary as a result of a takeover
operation will result in an error (SQL1477N).

* You cannot recover these tables when rolling forward. If the rollforward
operation encounters a table that was created or altered with the NOT LOGGED
INITIALLY option, the table is marked as unavailable. After the database is
recovered, any attempt to access the table returns SQL1477N.

Note: When a table is created, row locks are held on the catalog tables until a
COMMIT is done. To take advantage of the no logging behavior, you must
populate the table in the same unit of work in which it is created. This has
implications for concurrency.

78 Data Recovery and High Availability Guide and Reference

Reducing logging with declared temporary tables

If you plan to use declared temporary tables as work tables, note the following:

* Declared temporary tables are not created in the catalogs; therefore locks are not
held.

* Logging is not performed against declared temporary tables, even after the first
COMMIT.

* Use the ON COMMIT PRESERVE option to keep the rows in the table after a
COMMIT; otherwise, all rows will be deleted.

* Only the application that creates the declared temporary table can access that
instance of the table.

* The table is implicitly dropped when the application connection to the database
is dropped.

* Created temporary tables (CGTTs) and declared temporary tables (DGTTs)
cannot be created or accessed on an active standby.

* Errors in operation during a unit of work using a declared temporary table do
not cause the unit of work to be completely rolled back. However, an error in
operation in a statement changing the contents of a declared temporary table
will delete all the rows in that table. A rollback of the unit of work (or a
savepoint) will delete all rows in declared temporary tables that were modified
in that unit of work (or savepoint).

Blocking transactions when the log directory is full

When the DB2 database manager cannot create a log file in the active log path
because there is not enough room for the new file, you get errors indicating the
disk is full.

If you set the b1k_log_dsk_ful database configuration parameter, the DB2 database
manager repeatedly attempts to create the log file until the file is successfully
created instead of returning “disk full” errors.

If you set the b1k_Tog_dsk_ful database configuration parameter, the DB2 database
manager attempts to create the log file every 5 minutes until it succeeds. If a log
archiving method is specified, the DB2 database manager also checks for the
completion of log file archiving. If an archived log file is archived successfully, the
DB2 database manager can rename the inactive log file to the new log file name
and continue. After each attempt, the DB2 database manager writes a message to
the administration notification log. The only way that you can confirm that your
application is hanging because of a log disk full condition is to monitor the
administration notification log.

Until the log file is successfully created, any user application that attempts to
update table data is not able to commit transactions. Read-only queries might not
be directly affected; however, if a query needs to access data that is locked by an
update request, or a data page that is fixed in the buffer pool by the updating
application, read-only queries also appear to hang.

Log file management through log archiving

DB2 server log file archiving is complicated by a variety of operating-system file
handling and scheduling problems. For example, if a disk fails as the DB2 database
manager is archiving a queue of log files, those log files and the transaction data
that they contain might be lost.

Chapter 4. Configuring for high availability 79

Correctly configuring database logging can prevent these kinds of problems from
undermining your availability and recovery strategy.

The following general considerations apply to all methods of log archiving:

* The logarchcomprl database configuration parameter specifies whether the
database manager compresses log files contained in the location set in
Togarchmethl. If the Togarchmethl configuration parameter to a value other than
DISK, TSM, or VENDOR, log archive compression has no effect regardless of the
Togarchcomprl configuration parameter setting.

* The logarchcompr2 database configuration parameter specifies whether the
database manager compresses log files contained in the location set in
Togarchmeth2. If the Togarchmeth2 configuration parameter to a value other than
DISK, TSM, or VENDOR, log archive compression has no effect regardless of the
Togarchcompr2 configuration parameter setting.

e The logarchmethl database configuration parameter causes the database
manager to archive log files or to retrieve log files during rollforward recovery
of databases by using the method that you specify. A request to retrieve a log
file is made when the rollforward utility needs a log file that is not found in the
log path directory. Log files are archived from the path that is specified by the
Togpath configuration parameter.

The Togarchmeth2 database configuration parameter causes the database
manager to archive additional copies of log files. If you configure mirror
logging, the log files that are archived to the path that is specified by the
Togarchmeth2 parameter are taken from the mirror log path. If you do not
configure mirror logging, the log files that are archived to the path that is
specified by the Togarchmeth2 parameter are taken from the current log path.

* You should not use locally attached tape drives to store log files if you are using
any of the following features:

— Infinite logging

— Online recovery at the table space level

— Replication

— The asynchronous read log API (db2ReadLog)
— High availability disaster recovery (HADR)

Any of these features can cause a log file to be retrieved, which can conflict with
log archiving operations. Also, you cannot use locally attached tape drives in a
DB2 pureScale environment because the member performing the log merge
operation must retrieve logs for the other members.

 If you are using log archiving, the log manager attempts to archive active logs as
they are filled. In some cases, if a database is deactivated before the log manager
can record the archive as successful, the log manager might try to archive the
log again when the database is activated. Thus, a log file can be archived more
than once.

 If you use archiving, a log file is passed to the log manager when it is full, even
if the log file is still active and is needed for normal processing. This process
allows copies of the data to be moved away from volatile media as quickly as
possible. The log file that is passed to the log manager is retained in the log path
directory until it is no longer needed for normal processing. At this point, the
disk space is reused.

 If a log file has been archived and contains no open transactions, the DB2
database manager does not delete the file but renames it as the next log file
when such a file is needed. This process improves performance because creating

80 Data Recovery and High Availability Guide and Reference

a new log file instead of renaming the file would require all pages to be written
out to guarantee that the necessary disk space or other storage space is available.

* During crash recovery, during member crash recovery (in a DB2 pureScale
environment), or during runtime rollback, the DB2 database manager does not
retrieve log files unless you set the Togsecond database configuration parameter
to -1 (that is, if you enable infinite logging). In a DB2 pureScale environment,
the database manager might have to retrieve archived logs during a group crash
recovery even if you do not enable infinite logging.

* Configuring log archiving does not guarantee rollforward recovery to the point
of failure but only attempts to make the failure window smaller. As log files are
filled, the log manager asynchronously archives the logs. If the disk containing
the log fails before a log file is filled, the data in that log file is lost. Also,
because the files are queued for archiving, the disk can fail before all the files are
copied, causing any log files in the queue to be lost.

To help prevent the case where a failure of the disk or device on which the log
path is located causes log files to be permanently lost, you can use the
mirrorlogpath database configuration parameter to ensure that the logs are
written to a secondary path. If the secondary path does not fail along with the
primary disk or device, the log files are available for recovery.

When you set both the mirrorlogpath and logarchmeth2 configuration
parameters, the Togarchmeth2 configuration parameter archives log files from the
mirror log path instead of archiving additional copies of the log files in the
current log path. You can use this log archiving behaviour to improve resilience
during rollforward recovery. The reason is that a usable archived log file from
the mirror log path might still be available to continue a database recovery
operation, even if a primary log file from the current log path became corrupted
because of a disk failure before archiving.

* The configured size of each log file has a direct bearing on log archiving. If each
log file is very large, a large amount of data can be lost if a disk fails. If you
configure your database to use small log files, the log manager archives the logs
more frequently.

However, if you are moving the data to a slower device such as tape, you might
want to have larger log files to prevent the queue from building up. Using larger
log files is also recommended if archiving each file requires substantial
overhead, such as rewinding the tape device or establishing a connection to the
archive media.

* If you use log archiving, the log manager attempts to archive primary logs as
they are filled. In some cases, the log manager archives a log before it is full.
This occurs if the log file is truncated because the database is deactivated, you
issue the ARCHIVE LOG command, the end of an online backup is reached, or you
issue the SET WRITE SUSPEND command.

Note: To free unused log space, a log file is truncated before it is archived.

* If you are archiving logs and backup images to a tape drive, you must ensure
that the same tape drive is not the destination for both the backup images and
the archived logs. Because some log archiving can take place while a backup
operation is in progress, an error can occur when the two processes are trying to
write to the same tape drive at the same time.

The following considerations apply to calling a user exit program or a vendor
program for archiving and retrieving log files:

* The DB2 database manager opens a log file in read mode when it starts a user
exit program to archive the file. On some operating systems, this prevents the
user exit program from being able to delete the log file. Other operating systems,

Chapter 4. Configuring for high availability 81

such as the AIX operating system, allow processes, including the user exit
program, to delete log files. A user exit program should never delete a log file
after it is archived, because the file might still be active and needed for crash
recovery. The DB2 database manager manages disk space reuse when it archives
the log files.

A user exit or vendor program might receive a request to archive a file that does
not exist, because there were multiple requests to archive and the file was
deleted after the first successful archiving operation. A user exit or vendor
program might also receive a request to retrieve a file that does not exist,
because it is located in another directory or the end of the logs has been reached.
In both cases, the user exit or vendor program should ignore this request and
pass a successful return code.

On Windows operating systems, you cannot use a REXX user exit to archive
logs.

The user exit or vendor program should allow for the existence of different log
files with the same name after a point-in-time recovery. The user exit or vendor
program should be written to preserve both log files and to associate those log
files with the correct recovery path.

If you enable a user exit or vendor program for two or more databases that are
using the same tape device to archive log files and a rollforward operation is
taking place on one of the databases, no other database should be active. If
another database tries to archive a log file while the rollforward operation is in
progress, one of the following situations might occur:

— The logs that are required for the rollforward operation might not be found.

— The new log file that is archived to the tape device might overwrite the log
files that were previously stored on that tape device.

To prevent either situation from occurring, you can take one of the following
steps:

— You can ensure that no other databases on the database partition that calls the
user exit program are open during the rollforward operation.

— You can write a user exit program to handle this situation.

Configuring a clustered environment for high availability

Creating a cluster of machines, and using cluster managing software to balance
work load on those machines is one strategy for designing a highly available
solution.

If you install IBM DB2 server on one or several of the machines in a cluster, you
must configure the cluster manager to properly react to failures that affect the
database or databases. Also, you must configure the database manager instances to
work properly in the clustered environment.

About this task

Configuring and administering the database instances and the cluster manager
manually is complex, time-consuming, and prone to error. The DB2 High
Availability Feature provides infrastructure for enabling the database manager to
communicate with your cluster manager when instance configuration changes,
such as stopping a database manager instance, require cluster changes.

Procedure

1.

Install cluster managing software.

82 Data Recovery and High Availability Guide and Reference

SA MP is integrated with DB2 Enterprise Server Edition, DB2 Advanced
Enterprise Server Edition, DB2 Workgroup Server Edition, DB2 Connect
Enterprise Edition, and DB2 Connect Application Server Edition on AIX, Linux,
and Solaris SPARC operating systems. It is also integrated with DB2 Express-C
Fixed Term License (FTL) and the IBM DB2 High Availability Feature for
Express® Edition on Linux operating systems. On Windows operating systems,
SA MP is bundled with all of these DB2 database products and features, but it
is not integrated with the DB2 installer.

Configure DB2 database manager instances for your cluster manager, and
configure your cluster manager for DB2 server.

DB2 high availability instance configuration utility (db2haicu) is a text based
utility that you can use to configure and administer your highly available
databases in a clustered environment.

Over time, as your database needs change and you need to modify your
database configuration within the clustered environment, continue to keep the
database manager instance configuration and the cluster manager configuration
synchronized.

The DB2 High Availability Feature provides infrastructure for enabling the
database manager to communicate with your cluster manager when instance
configuration changes, such as stopping a database manager instance, require
cluster changes.

Whether you use db2haicu with SA MP, or you use another cluster manager
that supports the DB2 cluster manager API, administering you clustered
environment with the DB2 HA Feature is easier than maintaining the database
manager configuration and the cluster configuration separately.

Cluster manager integration with the DB2 High Availability

Feature

The DB2 High Availability Feature enables integration between IBM DB2 server
and cluster managing software.

When you stop a database manager instance in a clustered environment, you must
make your cluster manager aware that the instance is stopped. If the cluster
manager is not aware that the instance is stopped, the cluster manager might
attempt an operation such as failover on the stopped instance. The DB2 High
Availability Feature provides infrastructure for enabling the database manager to
communicate with your cluster manager when instance configuration changes,
such as stopping a database manager instance, require cluster changes.

The DB2 High Availability Feature is composed of the following elements:

IBM Tivoli System Automation for Multiplatforms (SA MP) is bundled with
DB2 server on AIX and Linux as part of the DB2 High Availability Feature, and
integrated with the DB2 installer. You can install, upgrade, or uninstall SA MP
using either the DB2 installer or the instal1SAM and uninstallSAM scripts that
are included in the DB2 server install media.

In a clustered environment, some database manager instance configuration and
administration operations require related cluster configuration changes. The DB2
High Availability Feature (HA) Feature enables the database manager to
automatically request cluster manager configuration changes whenever you
perform certain database manager instance configuration and administration
operations. See: “Configuring a cluster automatically with the DB2 High
Availability (HA) Feature” on page 84

Chapter 4. Configuring for high availability 83

* DB2 high availability instance configuration utility (db2haicu) is a text based
utility that you can use to configure and administer your highly available
databases in a clustered environment. See: “DB2 high availability instance
configuration utility (db2haicu)” on page 93

IBM Tivoli System Automation for Multiplatforms (SA MP) base
component

IBM Tivoli System Automation for Multiplatforms (SA MP) provides high
availability and disaster recovery capabilities for AIX, Linux, Solaris SPARC, and
Windows.

SA MP is integrated with DB2 Enterprise Server Edition, DB2 Advanced Enterprise
Server Edition, DB2 Workgroup Server Edition, DB2 Connect Enterprise Edition
and DB2 Connect Application Server Edition on AIX, Linux, and Solaris SPARC
operating systems. It is also integrated with Express Edition for use with DB2
Express-C Fixed Term License (FTL) and the DB2 High Availability Feature.

On Windows operating systems, SA MP is bundled with all of these DB2 database
products and features, but it is not integrated with the DB2 database product
installer.

You can use this copy of SA MP to manage the high availability of your DB2
database system. You cannot use this copy to manage database systems other than
DB2 database systems without buying an upgrade for the SA MP license.

SA MP is the default cluster manager in an IBM DB2 server clustered environment
on AIX, Linux, and Solaris SPARC operating systems.

For more information about SA MP, see IBM Tivoli System Automation for
Multiplatforms (SA MP)publib.boulder.ibm.com/tividd/td/
IBMTivoliSystemAutomationforMultiplatforms3.1.html. The list of supported
operating systems is also available on the following website: www.ibm.com/
software/tivoli/products/sys-auto-linux/platforms.html.

Configuring a cluster automatically with the DB2 High
Availability (HA) Feature

In a clustered environment, some database manager instance configuration and
administration operations require related cluster configuration changes. The DB2
High Availability Feature (HA) Feature enables the database manager to
automatically request cluster manager configuration changes whenever you
perform certain database manager instance configuration and administration
operations.

Before you begin

To enable the database manager to perform required cluster configuration for
database administration tasks, you must configure the instance for high availability
by using db2haicu to create a cluster domain for the instance. For more information,
see: “Configuring a clustered environment using DB2 High Availability Instance
Configuration Utility (db2haicu)” on page 86.

84 Data Recovery and High Availability Guide and Reference

http://publib.boulder.ibm.com/tividd/td/IBMTivoliSystemAutomationforMultiplatforms3.1.html
http://publib.boulder.ibm.com/tividd/td/IBMTivoliSystemAutomationforMultiplatforms3.1.html
http://www.ibm.com/software/tivoli/products/sys-auto-linux/platforms.html
http://www.ibm.com/software/tivoli/products/sys-auto-linux/platforms.html

Procedure

When you perform the following database manager instance configuration and
administration operations, the database manager automatically performs related
cluster manager configuration for you:

Starting a database using START DATABASE or db2start.

Stopping a database using STOP DATABASE or db2stop.

Creating a database using CREATE DATABASE.

Adding storage using CREATE TABLESPACE.

Removing storage using ALTER TABLESPACE DROP or DROP TABLESPACE.
Adding or removing storage paths using ALTER DATABASE.
Dropping a database using DROP TABLESPACE.

Restoring a database using the RESTORE DATABASE or db2Restore.

Specifying the table space containers for redirected restore using SET TABLESPACE
CONTAINERS.

Rolling a database forward using ROLLFORWARD DATABASE or db2Rollforward.
Recovering a database using RECOVER DATABASE or db2Recover.
Creating event monitors using CREATE EVENT MONITOR.
Dropping event monitors using DROP EVENT MONITOR.

Creating and altering external routines using;:

- CREATE PROCEDURE

- CREATE FUNCTION

— CREATE FUNCTION

- CREATE METHOD

- ALTER PROCEDURE

- ALTER FUNCTION

- ALTER METHOD

Dropping external routines using:

- DROP PROCEDURE

- DROP FUNCTION

- DROP METHOD

Start DB2 High Availability Disaster Recovery (HADR) operations for a database
using START HADR.

Stop HADR operations for a database using STOP HADR.

Cause an HADR standby database to take over as an HADR primary database
using TAKEOVER HADR.

Setting the database manager configuration parameter diagpath or spm_log_path.

Setting the database configuration parameter newlogpath, overflowlogpath,
mirrorlogpath, or failarchpath.

Dropping a database manager instance using db2idrop.

Results

When the database manager coordinates the cluster configuration changes for
database administration tasks listed, you do not have to perform separate cluster
manager operations.

Chapter 4. Configuring for high availability 85

Configuring a clustered environment using DB2 High
Availability Instance Configuration Utility (db2haicu)

You can configure and administer your databases in a clustered environment using
DB2 high availability instance configuration utility (db2haicu). When you specify
database manager instance configuration details to db2haicu, db2haicu
communicates the required cluster configuration details to your cluster managing
software.

Before you begin

* There is a set of tasks you must perform before using DB2 high availability
instance configuration utility (db2haicu). For more information, see: “DB2 High
Availability Instance Configuration Utility (db2haicu) prerequisites” on page 126.

About this task

You can run db2haicu interactively, or using an XML input file:

Interactive mode
When you invoke DB2 high availability instance configuration utility
(db2haicu) by running the db2haicu command without specifying an XML
input file with the -f parameter, the utility runs in interactive mode. In
interactive mode, db2haicu displays information and queries you for
information in a text-based format. For more information, see: “Running
DB2 High Availability Instance Configuration Utility (db2haicu) in
interactive mode” on page 96

Batch mode with an XML input file
You can use the -f input-file-name parameter with the db2haicu
command to run DB2 high availability instance configuration utility
(db2haicu) with an XML input file specifying your configuration details.
Running db2haicu with an XML input file is useful when you must
perform configuration tasks multiple times, such as when you have
multiple database partitions to be configured for high availability. For more
information, see: “Running DB2 High Availability Instance Configuration
Utility (db2haicu) with an XML input file” on page 96

For a detailed scenario that uses db2haicu with both methods to set up an HADR
pair, see “Automated Cluster Controlled HADR (High Availability Disaster
Recovery) Configuration Setup using the IBM DB2 High Availability Instance
Configuration Utility (db2haicu)”.

Restrictions

There are some restrictions for using DB2 high availability instance configuration
utility (db2haicu). For more information, see: “DB2 High Availability Instance
Configuration Utility (db2haicu) restrictions” on page 129.

Procedure

Perform the following steps for each database manager instance:
1. Create a new cluster domain.

When you run DB2 high availability instance configuration utility (dbZhaicu)
for the first time for a database manager instance, db2haicu creates a model of

86 Data Recovery and High Availability Guide and Reference

http://download.boulder.ibm.com/ibmdl/pub/software/dw/data/dm-0908hadrdb2haicu/HADR_db2haicu.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/data/dm-0908hadrdb2haicu/HADR_db2haicu.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/data/dm-0908hadrdb2haicu/HADR_db2haicu.pdf

your cluster, called a cluster domain. For more information, see: “Creating a
cluster domain using DB2 High Availability Instance Configuration Utility
(db2haicu)” on page 127.

2. Continue to refine the cluster domain configuration, and administer and
maintain the cluster domain

When you are modifying the cluster domain model of your clustered
environment using dbZhaicu, the database manager propagates the related
changes to your database manager instance and cluster configuration. For more
information, see: “Maintaining a cluster domain using DB2 High Availability
Instance Configuration Utility (db2haicu)” on page 128.

What to do next

DB2 high availability instance configuration utility (db2haicu) does not have a
separate diagnostic log. You can investigate and diagnose dbZhaicu errors using the
database manager diagnostic log, db2diag log file, and the db2pd tool. For more
information, see: “Troubleshooting DB2 High Availability Instance Configuration
Utility (db2haicu)” on page 129

Cluster domain

A cluster domain is a model that contains information about your cluster elements
such databases, mount points, and failover policies. You create a cluster domain
using DB2 high availability instance configuration utility (db2haicu).

db2haicu uses the information in the cluster domain to enable configuration and
maintenance cluster administration tasks. Also, as part of the DB2 High
Availability (HA) Feature, the database manager uses the information in the cluster
domain to perform automated cluster administration tasks.

If you add a cluster element to the cluster domain, then that element will be
included in any subsequent dbZhaicu configuration operations, or any automated
cluster administration operations that are performed by the database manager as
part of the DB2 HA Feature. If you remove a cluster element from the cluster
domain, then that element will no longer be included in db2haicu operations or
database manager automated cluster administration operations. db2haicu and the
database manager can only coordinate with your cluster manager for cluster
elements that are in the cluster domain that you create using dbZhaicu.

You can use db2haicu to create and configure the following cluster domain
elements:

e Computers or machines (in a cluster domain context, these are referred to as
cluster domain nodes)

* Network interface cards or NICs (referred to in db2haicu as network interfaces,
interfaces, network adaptors, or adaptors)

e IP addresses

* Databases, including High Availability Disaster Recovery (HADR) primary and
standby database pairs

* Database partitions

* Mount points and paths, including those paths that are not critical to failover in
the event of a failure

* Failover policies

* Quorum devices

Cluster management software:

Chapter 4. Configuring for high availability 87

Cluster management software maximizes the work that a cluster of computers can
perform. A cluster manager balances workload to reduce bottlenecks, monitors the
health of the elements of the cluster, and manages failover when an element fails.

A cluster manager can also help a system administrator to perform administration
tasks on elements in the cluster (by rerouting workload off of a computer that
needs to be serviced, for example.)

Elements of a cluster

To function properly, the cluster manager must be aware of many details related to
the elements of the cluster, and the cluster manager must be aware of the
relationships between the elements of the cluster.

Here are some examples of cluster elements of which the cluster manager must be
aware:

* Physical or virtual computers, machines, or devices in the cluster (in a cluster
context, these are referred to as cluster nodes)

* Networks that connect the cluster nodes

* Network interfaces cards that connect the cluster nodes to the networks
* [P addresses of cluster nodes

* Virtual or services IP addresses

Here are some examples of relationships of which the cluster manager must be
aware:

e Pairs of cluster nodes that have the same software installed and can failover for
one another

* Networks that have the same properties and can be used to failover for one
another

* The cluster node to which a virtual IP address is currently associated
Adding or modifying elements of your cluster

To make the cluster manager aware of the elements of your cluster and the
relationships between those elements, a system administrator must register the
elements with the cluster manager. If a system administrator makes a change to the
elements of the cluster, the administrator must communicate that change to the
cluster manager. Cluster managers have interfaces to help with these tasks.

Cluster administration is challenging because there is an enormous variety of
possible cluster elements. An administrator must be an expert in the hardware and
operating systems of the cluster nodes, networking protocols and configuration,
and the software installed on the cluster nodes such as database software.
Registering the elements of the cluster with the cluster management software, or
updating the cluster manager after a system change, can be complex and time
consuming.

Using db2haicu to add or modify elements of your cluster

In a DB2 database solution, you can use the DB2 high availability instance
configuration utility (db2haicu) to register the elements of your cluster with the
cluster manager, and to update the cluster manager after making an administrative
change to your cluster. Using db2haicu simplifies these tasks because once you
know the model that db2haicu uses to encapsulate the elements of your cluster and

88 Data Recovery and High Availability Guide and Reference

the relationships between those elements, you do not need to be an expert in the
idiosyncrasies of your hardware, operating systems, and cluster manager interface
to perform the tasks.

Resources and resource groups:

A resource is any cluster element such a cluster node, database, mount point, or
network interface card that has been registered with a cluster manager. If an
element is not registered with the cluster manager, then the cluster manager will
not be aware of that element and the cluster manager will not include that element
in cluster managing operations. A resource group is a logical collection of resources.
The resource group is a very powerful construct because relationships and
constraints can be defined on resource groups that simplify performing complex
administration tasks on the resources in those groups.

When a cluster manager collects resources into groups, the cluster manager can
operate on all those resources collectively. For example, if two databases called
database-1 and database-2 belong to the resource group called resource-group-A,
then if the cluster manager performs a start operation on resource-group-A then
both database-1 and database-2 would be started by that one cluster manager
operation.

Restrictions

* A resource group cannot contain an equivalency and an equivalency cannot
contain a resource group (An equivalency is a set of resources that provide the
same functionality as each other and can fail over for each other.)

* A resource can only be in one resource group
* A resource cannot be in a resource group and in an equivalency

* A resource group can contain other resource groups, but the maximum nesting
level is 50

¢ The maximum number or resources that you can collect in a resource group is
100

Quorum devices:

A quorum device helps a cluster manager make cluster management decisions when
the cluster manager's normal decision process does not produce a clear choice.

When a cluster manager has to choose between multiple potential actions, the
cluster manager counts how many cluster domain nodes support each of the
potential actions; and then cluster manager chooses the action that is supported by
the majority of cluster domain nodes. If exactly the same number of cluster domain
nodes supports more than one choice, then the cluster manager refers to a quorum
device to make the choice.

db2haicu supports the quorum devices listed in the following table.

Table 2. Types of quorum device supported by db2haicu

Quorum device Description

network A network quorum device is an IP address to which
every cluster domain node can connect at all times.

Networks in a cluster domain:

Chapter 4. Configuring for high availability 89

To configure elements of your cluster domain that are related to networks, you can
use DB2 high availability instance configuration utility (db2haicu) to add a physical
network to your cluster domain. A physical network is composed of: network
interface cards, IP addresses, and subnetwork masks.

Network interface cards

A network interface card (NIC) is hardware that connects a computer (also called a
cluster node) to a network. A NIC is sometimes referred to as an interface, a network
adaptor, or an adaptor. When you use db2haicu to add a physical network to your
cluster domain, you specify at least one NIC including: the host name of the
computer to which the NIC belongs; the name of the NIC on that host computer;
and the IP address of the NIC.

IP addresses

An Internet Protocol address (IP address) is a unique address on a network. In IP
version 4, an IP address is 32 bits large, and is normally expressed in dot-decimal
notation like this: 129.30.180.16. An IP address is composed of a network portion
and a host computer portion.

db2haicu does not support IP version 6.
Subnetwork masks

A network can be partitioned into multiple logical subnetworks using subnetwork
masks. A subnetwork mask is a mechanism for moving some bits of the host
portion of an IP address to the network portion of the IP address. When you use
db2haicu to add an IP address to your cluster domain, you will sometimes need to
specify the subnetwork mask for the IP address. For example, when you use
db2haicu to add a NIC, you must specify the subnetwork mask for the IP address
of the NIC.

Network equivalencies

An equivalency is a set of resources that provide the same functionality as each
other and can fail over for each other. When you create a network using db2haicu,
the NICs in that network can fail over for each other. Such a network is also
referred to an a network equivalency.

Network protocols

When you use dbZhaicu to add a network to your cluster domain, you must
specify the type of network protocol being used. Currently, only the TCP/IP
network protocol is supported.

Usage note

A network configured using db2haicu is only required for a virtual IP (VIP)
failover. Network adapters that are in different subnets (or equivalently, in different
virtual local area networks) cannot be added to the same network because a

common virtual local area network is required for a VIP failover.

Failover policies in a cluster domain:

90 Data Recovery and High Availability Guide and Reference

A failover policy specifies how a cluster manager should respond when a cluster
element such as a network interface card or a database server fails. In general, a
cluster manager will transfer workload away from a failed element to an
alternative element that had been previously identified to the cluster manager as
an appropriate replacement for the element that failed. This transfer of workload
from a failed element to a secondary element is called failover.

Round robin failover policy

When you are using a round robin failover policy, then if there is a failure associated
with one computer in the cluster domain (also called cluster domain nodes or simply
nodes) then the database manager will restart the work from the failed cluster
domain node on any other node that is in the cluster domain.

Mutual failover policy

To configure a mutual failover policy, you associate a pair of computers in the cluster
domain (also called cluster domain nodes or simply nodes) as a system pair. If there
is a failure on one of the nodes in this pair, then the database partitions on the
failed node will failover to the other node in the pair. Mutual failover is only
available when you have multiple database partitions.

N Plus M failover policy

When you are using a N Plus M failover policy, then if there is a failure associated
with one computer in the cluster domain (also called cluster domain nodes or simply
nodes) then the database partitions on the failed node will failover to any other
node that is in the cluster domain.If roving HA failover is enabled, the last failed
node become the standby node once that failed node is brought online again. The
roving HA failover for N plus M failover policy is only supported for the case
where M=1. N Plus M failover is only available when you have multiple database
partitions.

Local restart failover policy

When you use a local restart failover policy, then if there is a failure on one of the
computers in the cluster domain (also called cluster domain nodes or simply nodes)
then the database manager will restart the database in place (or locally) on the
same node that failed.

HADR failover policy

When you configure a HADR failover policy, you are enabling the DB2 High
Availability Disaster Recovery (HADR) feature to manage failover. If an HADR
primary database fails, the database manager will move the workload from the
failed database to an HADR standby database.

Custom failover policy

When you configure a custom failover policy, you create a list of computers in the
cluster domain (also called cluster domain nodes or simply nodes) onto which the
database manager can failover. If a node in the cluster domain fails, the database
manager will move the workload from the failed node to one of the nodes in the

list that you specified

Using roving high availability (HA) failover in partitioned database environments:

Chapter 4. Configuring for high availability 91

When you are using a N Plus M failover policy with 'N' active nodes and one
standby node, you can enable roving HA failover.

Before you begin

Each node in the cluster must have the roving HA failover support enabled or
disabled.

In partitioned database environments where roving HA failover is not enabled, the
designated standby node is usually the only node with access to all the disks and
volume groups, including the file systems on these volume groups. In those
environments, ensure that the external storage LUN mappings and the SAN zones
in the cluster can see all the disks in the database instance. In addition, verify that
all the volume groups controlled by the cluster are imported on all the cluster
nodes. After importing the volume groups, disable the auto-varyon attribute of
volume groups and the auto-mount attribute of the file systems on all the active
cluster nodes.

If you want to use roving HA failover, you must enable it again using these steps
after applying a new fix pack.

About this task

When you are using a N Plus M failover policy with 'N' active nodes and one
standby node, a failover operation occurs when one of the active nodes fails. The
standby node then begins hosting the resources of the failed node. When the failed
node comes back online, you usually have to take the clustered environment
offline again so the node which was originally chosen as the standby node
becomes the standby node again. You can configure roving HA failover to have the
last failed node in the cluster become the standby node without requiring
additional fail back operations.

Procedure

To enable roving HA failover:
1. Ensure that there is no failover operation in progress.

2. Make a backup copy of the db2V10_start.ksh script located in the
sqlTib\samples\tsa directory.

3. Edit the db2V10_start.ksh script. Find the following line:
ROVING_STANDBY_ENABLED=false

and make the following changes:
ROVING_STANDBY_ENABLED=true
4. Save your changes.

Results
The change will take effect at the next failover operation.
What to do next

If you want to disable rover HA failover support, perform the following steps on
each node:

1. Ensure that there is no failover operation in progress.

92 Data Recovery and High Availability Guide and Reference

2. Edit the db2V10_start.ksh script. Find the following line:
ROVING_STANDBY_ENABLED=true

and make the following changes:
ROVING_STANDBY_ENABLED=false
3. Save your changes. The change will take effect at the next failover operation.

Mount points in a cluster domain:

After mounting a file system, you can use DB2 high availability instance
configuration utility (db2haicu) to add that mount point to your cluster domain.

Mount points

On UNIX, Linux, and AIX operating systems, to mount a file system means to
make that file system available to the operating system. During the mount
operation, the operating system performs tasks such as reading index or navigation
data structures, and associates a directory path with that mounted file system. That
associated directory path that you can use to access the mounted file system is
called a mount point.

Non-critical mount points or paths

There might be mount points or paths in your cluster that do not need to be failed
over in the event of a failure. You can use db2haicu to add a list of those
non-critical mount points or paths to your cluster domain. Your cluster manager
will not include the mount points or paths in that non-critical list in failover
operations.

For example, consider the case where you have a hard drive mounted at
/mnt/driveA on a computer called nodel in your cluster. If you decide that it is
critical for /mnt/driveA to be available, your cluster manager will fail over to keep
/mnt/driveA available if nodel fails. However, if you decide that it is acceptable for
/mnt/driveA to be unavailable if nodel fails, then you can indicate to your cluster
manager that /mnt/driveA is not critical for failover by adding /mnt/driveA to the
list of non-critical paths. If /mnt/driveA is identified as non-critical for failover,
then that drive might be unavailable if nodel fails.

DB2 high availability instance configuration utility (db2haicu)

DB2 high availability instance configuration utility (db2haicu) is a text based utility
that you can use to configure and administer your highly available databases in a
clustered environment.

db2haicu collects information about your database instance, your cluster
environment, and your cluster manager by querying your system. You supply
more information through parameters to the db2haicu call, an input file, or at
runtime by providing information at db2haicu prompts.

Syntax

db2haicu [-f XML-input-file-name]
[-disable]
[-delete [dbpartitionnum db-partition-list |
hadrdb database-name]]

Chapter 4. Configuring for high availability 93

Parameters

The parameters that you pass to the db2haicu command are case-sensitive, and
must be in lowercase.

-f XML-input-file-name
You can use the -f parameter to specify your cluster domain details in an
XML input file, XML-input-file-name. For more information, see: “Running
DB2 High Availability Instance Configuration Utility (db2haicu) with an
XML input file” on page 96.

-disable
A database manager instance is considered configured for high availability
once you have used db2haicu to create a cluster domain for that instance.
When a database manager instance is configured for high availability, then
whenever you perform certain database manager administrative operations
that require related cluster configuration changes, the database manager
will communicate those cluster configuration changes to the cluster
manager. When the database manager coordinates these cluster
management tasks with the cluster manager for you, you do not have to
perform a separate cluster manager operation for those administrative
tasks. This integration between the database manager and the cluster
manager is a function of the DB2 High Availability Feature.

You can use the -disable parameter to cause a database manager instance
to cease to be configured for high availability. If the database manager
instance is no longer configured for high availability, then the database
manager will not coordinate with the cluster manager if you perform any
database manager administrative operations that require related cluster
configuration changes.

To reconfigure a database manager instance for high availability, you can
run db2haicu again.

-delete
You can use the -delete parameter to delete resource groups for the
current database manager instance.

If you do not use either the dbpartitionnum parameter or the hadrdb
parameter, then db2haicu will remove all the resources groups associated
with the current database manager instance.

dbpartitionnum db-partition-list
You can use the dbpartitionnum parameter to delete resource
groups that are associated with the database partitions listed in
db-partition-list. db-partition-list is a comma-separated list of
numbers identifying the database partitions.

hadrdb database-name
You can use the hadrdb parameter to delete resource groups that
are associated with the high availability disaster recovery (HADR)
database named database-name.

If there are no resource groups left in the cluster domain after db2haicu
removes the resource groups, then dbZhaicu will also remove the cluster
domain.

Running db2haicu with the -delete parameter causes the current database
manager instance to cease to be configured for high availability. If the
database manager instance is no longer configured for high availability,

94 Data Recovery and High Availability Guide and Reference

then the database manager will not coordinate with the cluster manager if
you perform any database manager administrative operations that require
related cluster configuration changes.

To reconfigure a database manager instance for high availability, you can
run dbZhaicu again.

DB2 High Availability Instance Configuration Utility (db2haicu) startup mode:

The first time that you run DB2 high availability instance configuration utility
(db2haicu) for a given database manager instance, db2haicu operates in startup
mode.

When you run db2haicu, db2haicu examines your database manager instance and
your system configuration, and searches for an existing cluster domain. A cluster
domain is a model that contains information about your cluster elements such
databases, mount points, and failover policies. You create a cluster domain using
DB2 high availability instance configuration utility (db2haicu).

When you run db2haicu for a given database manager instance, and there is no
cluster domain that is already created and configured for that instance, db2haicu
will immediately begin the process of creating and configuring a new cluster
domain. db2haicu creates a new cluster domain by prompting you for information
such as a name for the new cluster domain and the hostname of the current
machine.

If you create a cluster domain, but do not complete the task of configuring the
cluster domain, then the next time you run db2haicu, db2haicu will resume the
task of configuring the cluster domain.

After you create and configure a cluster domain for a database manager instance,
db2haicu will run in maintenance mode.

DB2 High Availability Instance Configuration Utility (db2haicu) maintenance
mode:

When you run DB2 high availability instance configuration utility (db2haicu) and
there is already a cluster domain created for the current database manager
instance, db2haicu operates in maintenance mode.

When dbZhaicu is running in maintenance mode, db2haicu presents you with a list
of configuration and administration tasks that you can perform.

db2haicu maintenance tasks include adding cluster elements such as databases or
cluster nodes to the cluster domain, and removing elements from the cluster
domain. db2haicu maintenance tasks also include modifying the details of cluster
domain elements such as the failover policy for the database manager instance.

When you run db2haicu in maintenance mode, db2haicu presents you with a list of
operations you can perform on the cluster domain:

¢ Add or remove cluster nodes (machine identified by hostname)

* Add or remove a network interface (network interface card)

* Add or remove database partitions (partitioned database environment only)
e Add or remove a DB2 High Availability Disaster Recovery (HADR) database
* Add or remove a highly available database

Chapter 4. Configuring for high availability 95

e Add or remove a mount point

* Add or remove an IP address

e Add or remove a non-critical path

* Move database partitions and HADR databases for scheduled maintenance
* Change failover policy for the current instance

* Create a new quorum device for the cluster domain

* Destroy the cluster domain

Running DB2 High Availability Instance Configuration Utility (db2haicu) in
interactive mode:

When you invoke DB2 high availability instance configuration utility (db2haicu) by
running the dbZhaicu command without specifying an XML input file with the -f
parameter, the utility runs in interactive mode. In interactive mode, db2haicu
displays information and queries you for information in a text-based format.

Before you begin

* There is a set of tasks you must perform before using DB2 high availability
instance configuration utility (db2haicu). For more information, see: “DB2 High
Availability Instance Configuration Utility (db2haicu) prerequisites” on page 126.

About this task

When you run db2haicu in interactive mode, you see information and questions
presented to you in text format on your screen. You can enter the information
requested by db2haicu at a prompt at the bottom of your screen.

Procedure

To run db2haicu in interactive mode, call the db2haicu command without the -f
input-file-name.

What to do next

DB2 high availability instance configuration utility (db2haicu) does not have a
separate diagnostic log. You can investigate and diagnose dbZhaicu errors using the
database manager diagnostic log, db2diag log file, and the db2pd tool. For more
information, see: “Troubleshooting DB2 High Availability Instance Configuration
Utility (db2haicu)” on page 129

Running DB2 High Availability Instance Configuration Utility (db2haicu) with
an XML input file:

You can use the -f input-file-name parameter with the db2haicu command to run
DB2 high availability instance configuration utility (db2haicu) with an XML input
file specifying your configuration details. Running db2haicu with an XML input
file is useful when you must perform configuration tasks multiple times, such as
when you have multiple database partitions to be configured for high availability.

Before you begin

* There is a set of tasks you must perform before using DB2 high availability
instance configuration utility (db2haicu). For more information, see: “DB2 High
Availability Instance Configuration Utility (db2haicu) prerequisites” on page 126.

96 Data Recovery and High Availability Guide and Reference

About this task

There is a set of sample XML input files located in the samples subdirectory of the
sq11ib directory that you can modify and use with db2haicu to configure your
clustered environment. For more information, see: “Sample XML input files for
DB2 High Availability Instance Configuration Utility (db2haicu)” on page 116

For a detailed scenario that uses db2haicu with a sample XML input file to set up
an HADR pair, see “Automated Cluster Controlled HADR (High Availability
Disaster Recovery) Configuration Setup using the IBM DB2 High Availability
Instance Configuration Utility (db2haicu)”.

Procedure

1. Create an XML input file. You will use the same XML file if you are configuring
database partitions or, in an HADR setup, both the primary and the standby.

2. Call db2haicu with the -f input-file-name. In an HADR setup,
a. Log on to the standby instance and issue the command.

b. After db2haicu exits, log on to the primary instance and issue the command.
What to do next

DB2 high availability instance configuration utility (db2haicu) does not have a
separate diagnostic log. You can investigate and diagnose dbZhaicu errors using the
database manager diagnostic log, db2diag log file, and the db2pd tool. For more
information, see: “Troubleshooting DB2 High Availability Instance Configuration
Utility (db2haicu)” on page 129

DB2 High Availability Instance Configuration Utility (db2haicu) input file XML schema
definition:

The DB2 high availability instance configuration utility (db2haicu) input file XML
schema definition (XSD) defines the cluster domain objects that you can specify in
a db2haicu XML input file. This db2haicu XSD is located in the file called
db2ha.xsd in the sq11ib/samples/ha/xml directory.

DB2ClusterType

The root element of the db2haicu XML schema definition (XSD) is DB2Cluster,
which is of type DB2CTusterType. A db2haicu XML input file must begin with a
DB2Cluster element.

“XML schema definition”
“Subelements” on page 98
“Attributes” on page 99
“Usage notes” on page 99

XML schema definition

<xs:complexType name='DB2CTusterType'>
<xs:sequence>

<xs:element name='DB2ClusterTemplate’
type='DB2ClusterTemplateType'
minOccurs='0"
maxOccurs="unbounded' />

<xs:element name='ClusterDomain'
type='ClusterDomainType'
maxOccurs="unbounded'/>

Chapter 4. Configuring for high availability 97

http://download.boulder.ibm.com/ibmdl/pub/software/dw/data/dm-0908hadrdb2haicu/HADR_db2haicu.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/data/dm-0908hadrdb2haicu/HADR_db2haicu.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/data/dm-0908hadrdb2haicu/HADR_db2haicu.pdf

<xs:element name='FailoverPolicy'
type='FailoverPolicyType'
minOccurs='0"'/>
<xs:element name='DB2PartitionSet'
type='DB2PartitionSetType'
minOccurs='0"
max0Occurs="unbounded"' />
<xs:element name='HADRDBSet'
type="HADRDBType'
minOccurs='0"
maxOccurs="unbounded'/>
<xs:element name='HADBSet'
type="'HADBType'
minOccurs="'0"
maxOccurs="unbounded'/>
</xs:sequence>
<xs:attribute name='clusterManagerName
</xs:complexType>

type='xs:string' use='optional'/>

Subelements
DB2ClusterTemplate
Type: DB2CTusterTemplateType

Usage notes:
Do not include a DB2ClusterTemplateType element in your
db2haicu XML input file. The DB2CTusterTemplateType element is
currently reserved for future use.

ClusterDomain
Type: ClusterDomainType

A ClusterDomainType element contains specifications about: the
machines or computers in the cluster domain (also called cluster
domain nodes); the network equivalencies (groups of networks that can
fail over for one another); and the quorum device (tie-breaking
mechanism).

Occurrence rules:
You must include one or more ClusterDomain element in your
DB2ClusterType element.

FailoverPolicy
Type: FailoverPolicyType

A FailoverPolicyType element specifies the failover policy that the
cluster manager should use with the cluster domain.

Occurrence rules:
You can include zero or one FailoverPolicy element in your
DB2ClusterType element.

DB2PartitionSet
Type: DB2PartitionSetType

A DB2PartitionSetType element contains information about
database partitions. The DB2PartitionSetType element is only
applicable in a partitioned database environment.

98 Data Recovery and High Availability Guide and Reference

Occurrence rules:
You can include zero or more DB2PartitionSet elements in your
DB2CTusterType element, according to the db2haicu db2haicu XML
schema definition.

HADRDBSet
Type: HADRDBType

A HADRDBType element contains a list of High Availability Disaster
Recovery (HADR) primary and standby database pairs.

Occurrence rules:
You can include zero or more HADRDBSet elements in your
DB2CTusterType element, according to the db2haicu db2haicu XML
schema definition.

Usage notes:

* You must not include HADRDBSet in a partitioned database
environment.

* If you include HADRDBSet, then you must specify a failover policy
of HADRFailover in the FailoverPolicy element.

HADBSet
Type: HADBType

A HADBType element contains a list of databases to include in the
cluster domain, and to make highly available.

Occurrence rules:
You can include zero or more HADBSet elements in your
DB2CTusterType element, according to the db2haicu db2haicu XML
schema definition.

Attributes

clusterManagerName (optional)
The clusterManagerName attribute specifies the cluster manager.

Valid values for this attribute are specified in the following table:

Table 3. Valid values for the clusterManager attribute

clusterManagerName value Cluster manager product
TSA IBM Tivoli System Automation for Multiplatforms (SA
MP)

Usage notes

In a single partition database environment, you will usually only create a single
cluster domain for each database manager instance.

One possible configuration for a multi-partition database environment is:
* Set the FailoverPolicy element to Mutual

e In the DB2Partition subelement of DB2PartitionSet, use the MutualPair element
to specify two cluster domain nodes that are in a single cluster domain

ClusterDomainType XML schema definition for DB2 High Availability Instance
Configuration Utility (db2haicu) input files:

Chapter 4. Configuring for high availability 99

A ClusterDomainType element contains specifications about: the machines or
computers in the cluster domain (also called cluster domain nodes); the network
equivalencies (groups of networks that can fail over for one another); and the
quorum device (tie-breaking mechanism).

“Superelements”

“XML schema definition”
“Subelements”
“Attributes” on page 101

Superelements

The following types of elements contain ClusterDomainType subelements:
* DB2ClusterType

XML schema definition

<xs:complexType name='ClusterDomainType'>
<xs:sequence>
<xs:element name='Quorum'
type="'QuorumType'
minOccurs='0"/>
<xs:element name='PhysicalNetwork'
type="'PhysicalNetworkType'
minOccurs="'0"
max0Occurs="unbounded"' />
<xs:element name='ClusterNode'
type="'ClusterNodeType'
maxOccurs="unbounded'/>
</xs:sequence>
<xs:attribute name='domainName' type='xs:string' use='required'/>
</xs:complexType>

Subelements
Quorum

Type: QuorumType

A QuorumType element specifies the quorum device for the cluster
domain.

Occurrence rules:
You can include zero or one Quorum element in your
ClusterDomainType element.

PhysicalNetwork
Type: PhysicalNetworkType

A PhysicalNetworkType element contains network interface cards
that can fail over for each other. This kind of network is also called
a network equivalency.

Occurrence rules:
You can include zero or more PhysicalNetwork elements in your
ClusterDomainType element.

ClusterNode
Type: ClusterNodeType

100 Data Recovery and High Availability Guide and Reference

A ClusterNodeType element contains information about a particular
computer or machine (also called a cluster domain node) in the
cluster.

Occurrence rules:
You must specify at least one ClusterNode element in your
ClusterDomainType element.

Usage notes
IBM Tivoli System Automation for Multiplatforms (SA MP)
supports a maximum of 32 cluster domain nodes. If your cluster
manager is SA MP, then you can include a maximum of 32
ClusterNode elements in your ClusterDomainType element.

Attributes
domainName (required)
You must specify a unique name for your ClusterDomainType element.

If you are using Reliable Scalable Cluster Technology (RSCT) to manage
your cluster, the following restrictions apply to domainName:

* domainName can only contain the characters A to Z, a to z, digits 0 to 9,
period (.), and underscore (_)

* domainName cannot be "TW"

The following example is of a ClusterDomainType element:

<ClusterDomain domainName="hadr_1inux_domain">
<Quorum quorumDeviceProtocol="network" quorumDeviceName="9.26.4.5"/>
<PhysicalNetwork physicalNetworkName="db2_public_network_0"
physicalNetworkProtocol="ip">
<Interface interfaceName="eth0" clusterNodeName="1inux01">
<IPAddress baseAddress="9.26.124.30" subnetMask="255.255.255.0"
networkName="db2_public_network 0"/>
</Interface>
<Interface interfaceName="eth0" clusterNodeName="1inux02">
<IPAddress baseAddress="9.26.124.31" subnetMask="255.255.255.0"
networkName="db2_public_network_0"/>
</Interface>
</PhysicalNetwork>
<ClusterNode clusterNodeName="1inux01"/>
<ClusterNode clusterNodeName="11inux02"/>
</ClusterDomain>

QuorumType XML schema definition for DB2 High Availability Instance Configuration
Utility (db2haicu) input files:

A QuorumType element specifies the quorum device for the cluster domain.
“Superelements”

“XML schema definition” on page 102

“Subelements” on page 102

“Attributes” on page 102

Superelements

The following types of elements contain QuorumType subelements:
e ClusterDomainType

Chapter 4. Configuring for high availability 101

XML schema definition

<xs:complexType name='QuorumType'>
<xs:attribute name='quorumDeviceProtocol'

type="QuorumDeviceProtocolType'
use='required'/>

<xs:attribute name='quorumDeviceName'

type='xs:string'
use='required'/>

</xs:complexType>

Subelements

None.

Attributes

quorumDeviceProtocol (required)

quorumDeviceProtocol specifies the type of quorum to use.

A quorum device helps a cluster manager make cluster management
decisions when the cluster manager's normal decision process does not
produce a clear choice.

The type of the quorumDeviceProtocol attribute is
QuorumDeviceProtocolType.

Here is the XML schema definition for the QuorumDeviceProtocolType:

<xs:simpleType name='QuorumDeviceProtocolType'>
<xs:restriction base='xs:string'>
<xs:enumeration value='disk'/>
<xs:enumeration value='scsi'/>
<xs:enumeration value='network'/>
<xs:enumeration value='eckd'/>
<xs:enumeration value='mns'/>
</xs:restriction>
</xs:simpleType>

Currently supported values for this attribute are specified in the following
table:

Table 4. Valid values for the quorumDeviceProtocol attribute

quorumDeviceProtocol value

Meaning

network

A network quorum device is an IP address to which
every cluster domain node can connect at all times.

quorumDeviceName (required)

The value of the quorumDeviceName depends on the type of quorum device
specified in quorumDeviceProtocol.

Valid values for this attribute are specified in the following table:

102 Data Recovery and High Availability Guide and Reference

Table 5. Valid values for the quorumDeviceName attribute

Value of quorumDeviceProtocol Valid value for quorumDeviceName

network A string containing a properly formatted IP address. For
example:
12.126.4.5

For the IP address that you specify to be valid as a
network quorum device, every cluster domain node must
be able to access this IP addressed (using the ping utility,
for example.)

PhysicalNetworkType XML schema definition for DB2 High Availability Instance
Configuration Utility (db2haicu) input files:

A PhysicalNetworkType element contains network interface cards that can fail over
for each other. This kind of network is also called a network equivalency.

“Superelements”

“XML schema definition”
“Subelements”
“Attributes” on page 104

Superelements

The following types of elements contain PhysicalNetworkType subelements:
e ClusterDomainType

XML schema definition

<xs:complexType name='PhysicalNetworkType'>
<xs:sequence>
<xs:element name='Interface'
type="'InterfaceType'
minOccurs="1"
max0Occurs="unbounded' />
<xs:element name='LogicalSubnet'
type="'IPAddressType'
minOccurs="0"
maxOccurs="unbounded' />
</xs:sequence>
<xs:attribute name='physicalNetworkName'
type='xs:string'
use='required'/>
<xs:attribute name='physicalNetworkProtocol'
type="'PhysicalNetworkProtocolType'
use='required'/>
</xs:complexType>

Subelements
Interface

Type: InterfaceType

The InterfaceType element consists of an IP address, the name of a
computer or machine in the network (also called a cluster domain
node), and the name of a network interface card (NIC) on that cluster
domain node.

Chapter 4. Configuring for high availability 103

Occurrence rules:
You must specify one or more Interface elements in your
PhysicalNetworkType element.

LogicalSubnet
Type: IPAddressType

A IPAddressType element contains all the details of an IP address
such as: the base address, the subnet mask, and the name of the
network to which the IP address belongs.

Occurrence rules:
You can include zero or more LogicalSubnet elements in your
PhysicalNetworkType element.

Attributes

physicalNetworkName (required)
You must specify a unique physicalNetworkName for each
PhysicalNetworkType element.

physicalNetworkProtocol (required)
The type of the physicalNetworkProtocol attribute is
PhysicalNetworkProtocolType.

Here is the XML schema definition for the PhysicalNetworkProtocolType
element:

<xs:simpleType name='PhysicalNetworkProtocolType'>
<xs:restriction base='xs:string'>
<xs:enumeration value='ip'/>
<xs:enumeration value='rs232'/>
<xs:enumeration value='scsi'/>
<xs:enumeration value='ssa'/>
<xs:enumeration value='disk'/>
</xs:restriction>
</xs:simpleType>

Currently supported values for this attribute are specified in the following
table:

Table 6. Valid values for the physicalNetworkProtocol attribute

physicalNetworkProtocol value Meaning

ip

TCP/IP protocol

InterfaceType XML schema definition for DB2 High Availability Instance Configuration
Utility (db2haicu) input files:

The InterfaceType element consists of an IP address, the name of a computer or
machine in the network (also called a cluster domain node), and the name of a
network interface card (NIC) on that cluster domain node.

“Superelements” on page 105

“XML schema definition” on page 105
“Subelements” on page 105
“Attributes” on page 105

104 Data Recovery and High Availability Guide and Reference

Superelements

The following types of elements have InterfaceType subelements:
* PhysicalNetworkType

XML schema definition

<xs:complexType name='InterfaceType'>
<xs:sequence>
<xs:element name='IPAddress' type="I1PAddressType'/>
</xs:sequence>
<xs:attribute name='interfaceName' type='xs:string' use='required'/>
<xs:attribute name='clusterNodeName' type='xs:string' use='required'/>
</xs:complexType>

Subelements
IPAddress
Type: IPAddressType

A TPAddressType element contains all the details of an IP address
such as: the base address, the subnet mask, and the name of the
network to which the IP address belongs.

Occurrence rules:
You must specify exactly one IPAddress in your InterfaceType
element.

Attributes

interfaceName (required)
You must specify the name of a NIC in the interfaceName attribute. The
NIC that you specify in the interfaceName must exist on the cluster
domain node that you specify in the clusterNodeName attribute.

clusterNodeName (required)
You must specify the name of the cluster domain node that is located at
the IP address that you specify in the IPAddress element.

IPAddressType XML schema element for DB2 High Availability Instance Configuration
Utility (db2haicu) input files:

A IPAddressType element contains all the details of an IP address such as: the base
address, the subnet mask, and the name of the network to which the IP address
belongs.

“Superelements”

“XML schema definition” on page 106
“Subelements” on page 106
“Attributes” on page 106

Superelements

The following types of elements have IPAddressType subelements:
* PhysicalNetworkType

e InterfaceType

e DB2PartitionType

Chapter 4. Configuring for high availability 105

XML schema definition

<xs:complexType name='IPAddressType'>
<xs:attribute name='baseAddress' type='xs:string' use='required'/>
<xs:attribute name='subnetMask' type='xs:string' use='required'/>
<xs:attribute name='networkName' type='xs:string' use='required'/>
</xs:complexType>

Subelements
None.

Attributes

baseAddress (required)
You must specify the base IP address using a string with a valid IP address
format: four sets of numbers ranging from 0 to 255, separated by a period.
For example:

162.148.31.101
subnetMask (required)

You must specify the base IP address using a string with a valid IP address
format.

networkName (required)
You must specify the same value for networkName here as you specified for
the physicalNetworkName attribute of the PhysicalNetworkType element
that contains this IPAddress element.

ClusterNodeType XML schema definition for DB2 High Availability Instance
Configuration Utility (db2haicu) input files:

A ClusterNodeType element contains information about a particular computer or
machine (also called a cluster domain node) in the cluster.

“Superelements”

“XML schema definition”
“Subelements”

“ Attributes”

Superelements

The following types of elements have ClusterNodeType elements:
* ClusterDomainType

XML schema definition

<xs:complexType name='ClusterNodeType'>
<xs:attribute name='clusterNodeName' type='xs:string' use='required'/>
</xs:complexType>

Subelements
None.

Attributes

clusterNodeName (required)
You must specify the name of the cluster domain node.

106 Data Recovery and High Availability Guide and Reference

FailoverPolicyType XML schema definition for DB2 High Availability Instance
Configuration Utility (db2haicu) input files:

A FailoverPolicyType element specifies the failover policy that the cluster manager
should use with the cluster domain.

“Superelements”

“XML schema definition”
“Subelements”

“Possible values”

Superelements

The following types of elements contain InterfaceType subelements:
e DB2CTusterType

XML schema definition

<xs:complexType name='FailoverPolicyType'>
<xs:choice>

<xs:element name='RoundRobin'
type='xs:string'
minOccurs='0"' />

<xs:element name='Mutual'’
type='xs:string'
minOccurs='0"
max0Occurs="unbounded' />

<xs:element name='NPlusM'
type='xs:string'
minOccurs="'0"
maxOccurs="unbounded'/>

<xs:element name='LocalRestart'
type='xs:string'
fixed="'"/>

<xs:element name='HADRFailover'
type='xs:string'
fixed="'"/>

<xs:element name='Custom'
type='xs:string'
minOccurs='0"' />

</xs:choice>
</xs:complexType>

Subelements
None.
Possible values

Select one of the following choices to specify to the cluster manager what type of
failover policy to use if there is a failure anywhere in the cluster domain.

A failover policy specifies how a cluster manager should respond when a cluster
element such as a network interface card or a database server fails. In general, a
cluster manager will transfer workload away from a failed element to an
alternative element that had been previously identified to the cluster manager as
an appropriate replacement for the element that failed. This transfer of workload
from a failed element to a secondary element is called failover.

RoundRobin
When you are using a round robin failover policy, then if there is a failure

Chapter 4. Configuring for high availability 107

associated with one computer in the cluster domain (also called cluster
domain nodes or simply nodes) then the database manager will restart the
work from the failed cluster domain node on any other node that is in the
cluster domain.

Mutual
To configure a mutual failover policy, you associate a pair of computers in
the cluster domain (also called cluster domain nodes or simply nodes) as a
system pair. If there is a failure on one of the nodes in this pair, then the
database partitions on the failed node will failover to the other node in the
pair. Mutual failover is only available when you have multiple database
partitions.

NPlusM
When you are using a N Plus M failover policy, then if there is a failure
associated with one computer in the cluster domain (also called cluster
domain nodes or simply nodes) then the database partitions on the failed
node will failover to any other node that is in the cluster domain.If roving
HA failover is enabled, the last failed node become the standby node once
that failed node is brought online again. The roving HA failover for N plus
M failover policy is only supported for the case where M=1. N Plus M
failover is only available when you have multiple database partitions.

LocalRestart
When you use a local restart failover policy, then if there is a failure on one
of the computers in the cluster domain (also called cluster domain nodes or
simply nodes) then the database manager will restart the database in place
(or locally) on the same node that failed.

HADRFailover
When you configure a HADR failover policy, you are enabling the DB2 High
Availability Disaster Recovery (HADR) feature to manage failover. If an
HADR primary database fails, the database manager will move the
workload from the failed database to an HADR standby database.

Custom
When you configure a custom failover policy, you create a list of computers
in the cluster domain (also called cluster domain nodes or simply nodes) onto
which the database manager can failover. If a node in the cluster domain
fails, the database manager will move the workload from the failed node
to one of the nodes in the list that you specified

DB2PartitionSetType XML schema definition for DB2 High Availability Instance
Configuration Utility (db2haicu) input files:

A DB2PartitionSetType element contains information about database partitions.
The DB2PartitionSetType element is only applicable in a partitioned database
environment.

“Superelements”

“XML schema definition” on page 109
“Subelements” on page 109
“Attributes” on page 109

Superelements

InterfaceType is a subelement of:
* PhysicalNetworkType

108 Data Recovery and High Availability Guide and Reference

XML schema definition

<xs:complexType name='DB2PartitionSetType'>
<xs:sequence>
<xs:element name='DB2Partition'
type='DB2PartitionType'
max0Occurs="unbounded"' />
</xs:sequence>
</xs:complexType>

Subelements
DB2Partition
Type: DB2PartitionType

A DB2PartitionType element specifies a database partition
including the DB2 database manager instance to which the
database partition belongs and the database partition number.

Occurrence rules:
You must specify one or more DB2Partition elements in your
DB2PartitionSetType element.

Attributes
None.

DB2PartitionType XML schema element for DB2 High Availability Instance Configuration
Utility (db2haicu) input files:

A DB2PartitionType element specifies a database partition including the DB2
database manager instance to which the database partition belongs and the
database partition number.

“Superelements”

“XML schema definition”
“Subelements” on page 110
“Attributes” on page 111

Superelements

InterfaceType is a subelement of:
* DB2PartitionSetType

XML schema definition

<xs:complexType name='DB2PartitionType'>
<xs:sequence>
<xs:element name='VirtualIPAddress'
type="'IPAddressType'
minOccurs="0"
max0ccurs="unbounded' />
<xs:element name='Mount'
type="'MountType'
minOccurs='0"
max0Occurs="unbounded' />
<xs:element name='HADRDB'
type="'HADRDBType'
minOccurs='0"
maxOccurs="unbounded'/>
<xs:element name='MutualPair'
type='MutualPolicyType'

Chapter 4. Configuring for high availability 109

minOccurs='0"
maxOccurs="'1"/>
<xs:element name='NPlusMNode'
type="'NPTusMPolicyType'
minOccurs='0"
maxOccurs="unbounded'/>
<xs:element name='CustomNode'
type="'CustomPolicyType'
minOccurs="0"
max0ccurs="unbounded' />
</xs:sequence>
<xs:attribute name='instanceName' type='xs:string' use='required'/>
<xs:attribute name='dbpartitionnum' type='xs:integer' use='required'/>
</xs:complexType>

Subelements

VirtualIPAddress
Type: IPAddressType

A IPAddressType element contains all the details of an IP address such as:
the base address, the subnet mask, and the name of the network to which the
IP address belongs.

You can omit including VirtualIPAddress; or you can include an
unbounded number of VirtualIPAddress elements in your
DB2PartitionType element.

Mount
Type: MountType

A MountType element contains information about a mount point such as the
file path that identifies the location of the mounted files.

You can omit including Mount; or you can include an unbounded number
of Mount elements in your DB2PartitionType element.

HADRDB
Type: HADRDBType

A HADRDBType element contains a list of High Availability Disaster Recovery
(HADR) primary and standby database pairs.

You can omit including HADRDB; or you can include an unbounded number
of HADRDB elements in your DB2PartitionType element.

MutualPair
Type: MutualPolicyType

A MutualPolicyType element contains information about a pair of cluster
domain nodes that can failover for each other.

You can omit including MutualPair; or you can include exactly one
MutualPair elements in your DB2PartitionType element.

NPlusMNode
Type: NPTusMPolicyType

You can omit including NPTusMNode; or you can include an unbounded
number of NPTusMNode elements in your DB2PartitionType element.

CustomNode
Type: CustomPolicyType

You can omit including CustomNode; or you can include an unbounded
number of CustomNode elements in your DB2PartitionType element.

110 Data Recovery and High Availability Guide and Reference

Attributes

instanceName (required)
In the instanceName attribute you must specify the DB2 database manager
instance with which this DB2PartitionType element is associated.

dbpartitionnum (required)
In the dbpartitionnum attribute you must specify the database partition
number that uniquely identifies the database partition (the dbpartitionnum
number specified in the db2nodes.cfg file, for example.)

MountType XML schema definition for DB2 High Availability Instance Configuration
Utility (db2haicu) input files:

A MountType element contains information about a mount point such as the file path
that identifies the location of the mounted files.

“Superelements”

“XML schema definition”
“Subelements”

“ Attributes”

Superelements

The following types of elements contain MountType subelements:
e DB2PartitionType

XML schema definition

<xs:complexType name='MountType'>
<xs:attribute name='filesystemPath' type='xs:string' use='required'/>
</xs:complexType>

Subelements
None.

Attributes

filesystemPath (required)
Specify the path that was associated with the mount point when the file
system was mounted.

MutualPolicyType XML schema definition for DB2 High Availability Instance
Configuration Utility (db2haicu) input files:

A MutualPolicyType element contains information about a pair of cluster domain
nodes that can failover for each other.

“Superelement”

“XML schema definition” on page 112
“Subelements” on page 112
“Attributes” on page 112

Superelement

The following types of elements contain MutualPolicyType subelements:
* DB2PartitionType

Chapter 4. Configuring for high availability 111

XML schema definition

<xs:complexType name='MutualPolicyType'>
<xs:attribute name='systemPairNodel' type='xs:string' use='required'/>
<xs:attribute name='systemPairNode2' type='xs:string' use='required'/>
</xs:complexType>

Subelements
None.

Attributes

systemPairNodel (required)
In systemPairNodel you must specify the name of a cluster domain node
that can fail over for the cluster domain node that you specify in
systemPairNode?2.

systemPairNode2 (required)
In systemPairNode2 you must specify the name of a cluster domain node
that can fail over for the cluster domain node that you specify in
systemPairNodel.

NPlusMPolicyType XML schema definition for DB2 High Availability Instance
Configuration Utility (db2haicu) input files:

An NPlusMPolicy states that if a computer in a cluster domain experiences a
failure, then the database partitions on the failed node fails over to any other
available node in the same cluster domain. An XML schema defines the
configurations associated with this HADR policy.

“Superelements”

“XML schema definition”
“Subelements”

“ Attributes”

Superelements

The following types of elements contain NPTusMPolicyType subelements:
e DB2PartitionType

XML schema definition

<xs:complexType name='NPlusMPolicyType'>
<xs:attribute name='standbyNodeName' type='xs:string' use='required'/>
</xs:complexType>

Subelements
None.

Attributes

standbyNodeName (required)
In the standbyNodeName element, you must specify the name of a cluster
domain node to which the partition that contains this NPTusMPolicyType
element can fail over.

CustomPolicyType XML schema definition for DB2 High Availability Instance
Configuration Utility (db2haicu) input files:

112 Data Recovery and High Availability Guide and Reference

A CustomPolicyType XML schema defines configuration settings for a Custom
HADR policy. You can define the nodes that a failover defaults to in this schema.

“Superelements”

“XML schema definition”
“Subelements”

“ Attributes”

Superelements

The following types of elements contain CustomPolicyType subelements:
e DB2PartitionType

XML schema definition

<xs:complexType name='NPlusMPolicyType'>
<xs:attribute name='standbyNodeName' type='xs:string' use='required'/>
</xs:complexType>

Subelements
None.

Attributes

customNodeName (required)
In the customNodeName element, you must specify the name of a cluster
domain node to which the partition that contains this CustomPolicyType
element can fail over.

HADRDBType XML schema definition for DB2 High Availability Instance Configuration
Utility (db2haicu) input files:

A HADRDBType element contains a list of High Availability Disaster Recovery
(HADR) primary and standby database pairs.

“Superelements”

“XML schema definition”
“Subelements” on page 114
“Attributes” on page 114
“Usage notes” on page 114
“Restrictions” on page 114

Superelements

The following types of elements contain HADRDBType subelements:
* DB2ClusterType
* DB2PartitionType

XML schema definition

<xs:complexType name='HADRDBType'>
<xs:sequence>
<xs:element name='HADRDB' type='HADRDBDefn' minOccurs='1"' max0Occurs='1"/>
<xs:element name='VirtualIPAddress' type='IPAddressType' minOccurs='0"' maxOccurs='1"'/>
</xs:sequence>
</xs:complexType>

Chapter 4. Configuring for high availability 113

<HADRDBSet>

Subelements
VirtualIPAddress
Type: IPAddressType

A IPAddressType element contains all the details of an IP address
such as: the base address, the subnet mask, and the name of the
network to which the IP address belongs.

Occurrence rules:
You can including zero or more VirtualIPAddress elements in your
HADRDBType element.

HADRDB
Type: HADRDBDefn

A HADRDBDefn element contains information about a High
Availability Disaster Recovery (HADR) primary and standby
database pair.

Occurrence rules:
You can include one or more VirtualIPAddress elements in your
HADRDBType element.
Attributes
None.
Usage notes
If you include a HADRDBType element in the specification for a given cluster domain,
then you must also include a FailoverPolicy element specifying HADRFaiTover in
the same cluster domain specification.
Restrictions

You cannot use the HADRDBType element in a partitioned database environment.

The following example is of an HADRDBType element:

<HADRDB databaseName="HADRDB" TlocalInstance="db2inst1"
remoteInstance="db2inst1" localHost="1inux01" remoteHost="1inux02" />

<VirtualIPAddress baseAddress="9.26.124.22" subnetMask="255.255.245.0"
networkName="db2_public_network_0"/>

</HADRDBSet>

HADRDBDefn XML schema definition for DB2 High Availability Instance Configuration
Utility (db2haicu) input files:

A HADRDBDefn element contains information about a High Availability Disaster
Recovery (HADR) primary and standby database pair.

“Superelements” on page 115

“XML schema definition” on page 115
“Subelements” on page 115
“Attributes” on page 115

114 Data Recovery and High Availability Guide and Reference

Superelements

The following types of elements contain HADRDBDefn subelements:
* HADRDBType

XML schema definition
<xs:complexType name='HADRDBDefn'>

<xs:attribute name='databaseName' type='xs:string' use='required'/>
<xs:attribute name='locallnstance' type='xs:string' use='required'/>
<xs:attribute name='remotelnstance' type='xs:string' use='required'/>
<xs:attribute name='localHost' type='xs:string' use='required'/>
<xs:attribute name='remoteHost' type='xs:string' use='required'/>

</xs:complexType>
Subelements
None.

Attributes

databaseName (required)
Enter the name of the HADR database.

localInstance (required)
The TocallInstance is the database manager instance of the HADR primary
database.

remotelnstance (required)
The remotelnstance is the database manager instance of the HADR
standby database.

localHost (required)
The TocalHost is the hostname of the cluster domain node where the
HADR primary database is located.

remoteHost (required)
The remoteHost is the hostname of the cluster domain node where the
HADR standby database is located.

HADBType XML schema definition for DB2 High Availability Instance Configuration
Utility (db2haicu) input files:

A HADBType element contains a list of databases to include in the cluster domain,
and to make highly available.

“Superelements”

“XML schema definition” on page 116
“Subelements” on page 116
“Attributes” on page 116

Superelements

The following types of elements contain HADBType subelements:
* DB2ClusterType

Chapter 4. Configuring for high availability 115

XML schema definition

<xs:complexType name='HADBType'>
<xs:sequence>
<xs:element name='HADB' type="HADBDefn' maxOccurs="'unbounded'/>
</xs:sequence>
<xs:attribute name='instanceName' type='xs:string' use='required'/>
</xs:complexType>

Subelements
HADB
Type: HADBDefn

A HADBDefn element describes a database to be included in the
cluster domain and made highly available.

Occurrence rules:
You must include one or more HADB elements in your HADBType
element.

Attributes

instanceName (required)
In the instanceName attribute, you must specify the DB2 database manager
instance to which the databases specified in the HADB elements belong.

HADBDefn XML schema element for DB2 High Availability Instance Configuration
Utility (db2haicu) input files:

A HADBDefn element describes a database to be included in the cluster domain and
made highly available.

“Superelements”

“XML schema definition”
“Subelements”
“Attributes”

Superelements

HADBDefn is a subelement of:
* HADRDBType

XML schema definition

<xs:complexType name='HADBDefn'>
<xs:attribute name='databaseName' type='xs:string' use='required'/>
</xs:complexType>

Subelements
None.

Attributes

databaseName (required)
You must specify exactly one database name in the databaseName attribute.

Sample XML input files for DB2 High Availability Instance Configuration Utility
(db2haicu):

116 Data Recovery and High Availability Guide and Reference

There is a set of sample XML input files located in the samples subdirectory of the
sq11ib directory that you can modify and use with db2haicu to configure your
clustered environment.

db2ha_sample_sharedstorage_mutual.xml:

The sample file db2ha_sample_sharedstorage_mutual.xml is an example of an XML
input file that you pass to DB2 high availability instance configuration utility
(db2haicu) to specify a new cluster domain.

db2ha_sample_sharedstorage mutual.xml is located in the sq11ib/samples/ha/xm1
directory.

Features

The db2ha_sample_sharedstorage_mutual.xml sample demonstrates how to use
db2haicu with an XML input file to define a cluster domain with the following
details:

* quorum device: network

e computers in the cluster (cluster domain nodes): two
* failover policy: mutual

* database partitions: one

 virtual (service) IP addresses: one

¢ shared mount points for failover: one

XML source

<lo- === -.>
<l-- = Use the DB2 High Availability Instance Configuration Utility = -->
<l-- = (db2haicu) XML schema definition, db2ha.xsd, and specify = -->
<l-- = IBM Tivoli System Automation for Multiplatforms (SA MP) = -->
<l-- = Base Component as the cluster manager. = -->

<DB2Cluster xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="db2ha.xsd"
clusterManagerName="TSA"
version="1.0">

<!__ —=—=—==—=—=-=-=—=--=-—=--=-==-=-=—=-=-=-=-=-=-=-=-=-=-=================================== ..>
<l-- = Create a cluster domain named db2HAdomain = >
<lae === __>

<!—— S SS SIS SSCSSSSSCSSS oaaD>
<!-- = Specify a network quorum device (IP address: 19.126.4.5). = -->
<l-- = The IP must be pingable at all times by each of the cluster = -->
<l-- = domain nodes. = >
<!-- SEEESSSSSSSSS S SSS aa>

<!—— S SCS =SS SCSS o>
<l-- = Create a network named db2 public_network 0 with an IP = -->
<!-- = network protocol. = -=>
<l-- = This network contains two computers: hasys0l and hasys02. = -->
<!l-- = Each computer has one network interface card (NIC) called = -->
<l-- = ethO. = -->
<l-- = The IP address of the NIC on hasys0l is 19.126.52.139 = -->
<l-- = The IP address of the NIC on hasys02 is 19.126.52.140 = -->

<PhysicalNetwork physicalNetworkName="db2_public_network_ 0"
physicalNetworkProtocol="ip">

Chapter 4. Configuring for high availability 117

<Interface interfaceName="eth0" clusterNodeName="hasys01">
<IPAddress baseAddress="19.126.52.139"
subnetMask="255.255.255.0"
networkName="db2_public_network 0"/>
</Interface>

<Interface interfaceName="eth0" clusterNodeName="hasys02">
<IPAddress baseAddress="19.126.52.140"
subnetMask="255.255.255.0"
networkName="db2_public_network 0"/>

</Interface>
</PhysicalNetwork>
<!__ === _.>
<l-- = List the computers (cluster nodes) in the cluster domain. = -->
<l-o- === __>

<ClusterNode clusterNodeName="hasys01"/>
<ClusterNode clusterNodeName="hasys02"/>

</ClusterDomain>

<!—— === == ..>
<l-- = The failover policy specifies the order in which the cluster = -->
<l-- = domain nodes should fail over. = -
<l-- ======z====z=z=========z=== >
<FailoverPolicy>

<Mutual />

</FailoverPolicy>

<l-- === -->
<l-- = Specify all the details of the database partition = -->
<l-- === -->
<DB2PartitionSet>

<DB2Partition dbpartitionnum="0" instanceName="db2inst1">
<VirtualIPAddress baseAddress="19.126.52.222"
subnetMask="255.255.255.0"
networkName="db2_public_network 0"/>
<Mount filesystemPath="/home/db2inst1"/>
<MutualPair systemPairNodel="hasys01" systemPairNode2="hasys02" />
</DB2Partition>

</DB2PartitionSet>

</DB2Cluster>

db2ha_sample_DPF_mutual.xml:

The sample file db2ha_sample_DPF_mutual.xml is an example of an XML input file
that you pass to DB2 high availability instance configuration utility (db2haicu) to
specify a new cluster domain. db2ha_sample_DPF_mutual.xml is located in the
sqllib/samples/ha/xml directory.

Features

The db2ha_sample_DPF_mutual.xml sample demonstrates how to use db2haicu with
an XML input file to define a cluster domain with the following details:

e quorum device: network
* computers in the cluster (cluster domain nodes): four
* failover policy: mutual

118 Data Recovery and High Availability Guide and Reference

* database partitions: two

* virtual (service) IP addresses: one

* shared mount points for failover: two

* databases configured for high availability: two

XML source
<)o ==esmsmcmsmmsssscsssssssscssssssssssssscssssossossssssssmssssssss oo
<l-- = Use the DB2 High Availability Instance Configuration Utility -->
<l-- = (db2haicu) XML schema definition, db2ha.xsd, and specify -->
<!l-- = IBM Tivoli System Automation for Multiplatforms (SA MP) -->
<!-- = Base Component as the cluster manager. -->
<lee === ==>
<DB2Cluster xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xs1i:noNamespaceSchemalocation="db2ha.xsd"
clusterManagerName="TSA"
version="1.0">
<l-- ======z====z=z====zz===zsz==sss=zsssssssssssssoosssossSossSTSss=IIISE ooo>
<l-- = Create a cluster domain named db2HAdomain = -->
<l-- ======z=z==z=z=z===zz===zszz==sss=zsssssssssossssosssssssosssTsss==IIIs=T oo
<ClusterDomain domainName="db2HAdomain">
<l-- ===z=====z====z====z=========z===zs===ss===ssssssssssssssssszsss=IT o>
<!-- = Specify a network quorum device (IP address: 19.126.4.5). = -->
<l-- = The IP must be pingable at all times by each of the cluster = -->
<!-- = domain nodes. = -->
<l-- ===z=====z=z==z=z====z====zz===z=zs===zss=szsssszssssssssssssssssszsss=Dz o>
<Quorum quorumDeviceProtocol="network" quorumDeviceName="19.126.4.5"/>
<l-- ==z====z====z====z========z===zs===ss===ssssssssssssssssszsss=IE o>
<!l-- = Create a network named db2_public_network 0 with an IP = -->
<l-- = network protocol. = -->
<!-- = This network contains four computers: hasys0l, hasys02, = -->
<l-- = hasys03, and hasys04. = -->
<!-- = Each computer has a network interface card called eth0. = -->
<l-- = The IP address of ethO on hasys01 is 19.126.124.30 -->
<l-- = The IP address of eth® on hasys02 is 19.126.124.31 = -->
<l-- = The IP address of ethO on hasys03 is 19.126.124.32 = -->
<l-- = The IP address of ethO on hasys04 is 19.126.124.33 = -->
<l-- ===s===s====s========s===s====s==s=====s==sss=s=sssss=s==s===== -->
<PhysicalNetwork physicalNetworkName="db2_public_network_0"

physicalNetworkProtocol="ip">

<Interface interfaceName="eth0" clusterNodeName="hasys01">
<IPAddress baseAddress="19.126.124.30"
subnetMask="255.255.255.0"
networkName="db2_public_network 0"/>
</Interface>

<Interface interfaceName="eth0" clusterNodeName="hasys02">
<IPAddress baseAddress="19.126.124.31"
subnetMask="255.255.255.0"
networkName="db2_public_network 0"/>
</Interface>

<Interface interfaceName="eth0" clusterNodeName="hasys03">
<IPAddress baseAddress="19.126.124.32"
subnetMask="255.255.255.0"
networkName="db2_public_network 0"/>
</Interface>

<Interface interfaceName="eth0" clusterNodeName="hasys04">
<IPAddress baseAddress="19.126.124.33"
subnetMask="255.255.255.0"
networkName="db2_public_network 0"/>

Chapter 4. Configuring for high availability 119

</Interface>

</PhysicalNetwork>

<l-- ==z=z=z=z=z===z===z===z==z=z==z=z==z===z==z==z==s==s==z=======zz=zz=sz====
<!-- = Create a network named db2_private_network_0 with an IP =
<l-- = network protocol. =
<l-- = This network contains four computers: hasys0l, hasys02, =
<l-- = hasys03, and hasys04 (same as db2_public_network 0.) =
<l-- = In addition to eth0, each computer has a network interface =
<l-- = card called ethl. =
<l-- = The IP address of ethl on hasys01 is 192.168.23.101 =
<l-- = The IP address of ethl on hasys02 is 192.168.23.102 =
<l-- = The IP address of ethl on hasys03 is 192.168.23.103 =
<l-- = The IP address of ethl on hasys04 is 192.168.23.104 =
<! —-— S S S S CS S S S S CS S S S CS S S CS S EECSSESESSSEESSSEESESESEEESESEEE=E=EE==E=E=E===E

<PhysicalNetwork physicalNetworkName="db2 private network 0"
physicalNetworkProtocol="ip">

<Interface interfaceName="ethl" clusterNodeName="hasys01">
<IPAddress baseAddress="192.168.23.101"
subnetMask="255.255.255.0"
networkName="db2_private_network 0"/>
</Interface>

<Interface interfaceName="ethl" clusterNodeName="hasys02">
<IPAddress baseAddress="192.168.23.102"
subnetMask="255.255.255.0"
networkName="db2_private_network 0"/>
</Interface>

<Interface interfaceName="ethl" clusterNodeName="hasys03">
<IPAddress baseAddress="192.168.23.103"
subnetMask="255.255.255.0"
networkName="db2_private_network 0"/>
</Interface>

<Interface interfaceName="ethl" clusterNodeName="hasys04">
<IPAddress baseAddress="192.168.23.104"
subnetMask="255.255.255.0"
networkName="db2_private network 0"/>
</Interface>

</PhysicalNetwork>

<ClusterNode clusterNodeName="hasys01"/>
<ClusterNode clusterNodeName="hasys02"/>
<ClusterNode clusterNodeName="hasys03"/>
<ClusterNode clusterNodeName="hasys04"/>

</ClusterDomain>

<lae ===
<l-- = The failover policy specifies the order in which the cluster =
<!-- = domain nodes should fail over. =
<loo ===

<FailoverPolicy>

<Mutual />

</FailoverPolicy>

<!

120 Data Recovery and High

-- = Specify all the details of the database partitions. =

Availability Guide and Reference

<DB2PartitionSet>

<DB2Partition dbpartitionnum="0" instanceName="db2inst1">
<VirtualIPAddress baseAddress="19.126.124.251"
subnetMask="255.255.255.0"
networkName="db2_public_network 0"/>
<Mount filesystemPath="/hafs/db2inst1/NODEGOOO" />
<MutualPair systemPairNodel="hasys01" systemPairNode2="hasys02" />
</DB2Partition>

<DB2Partition dbpartitionnum="1" instanceName="db2inst1">

<Mount filesystemPath="/hafs/db2inst1/NODE0OO1" />

<MutualPair systemPairNodel="hasys02" systemPairNode2="hasys01" />
</DB2Partition>

<DB2Partition dbpartitionnum="2" instanceName="db2inst1">

<Mount filesystemPath="/hafs/db2inst1/NODE00O2" />

<MutualPair systemPairNodel="hasys03" systemPairNode2="hasys04" />
</DB2Partition>

<DB2Partition dbpartitionnum="3" instanceName="db2instl">
<Mount filesystemPath="/hafs/db2inst1/NODE0QO3"/>
<MutualPair systemPairNodel="hasys04" systemPairNode2="hasys03" />

</DB2Partition>
</DB2PartitionSet>
<!__ —===—=—==—==-=-=-=-=-==-=-==-=-=—==-=-===-======================================= _.>
<l-- = List of databases to be configured for High Availability = -->
<!__ —=———————-——-——-——--—-—=-=-—=-=-=-=-=-===-=-===-=-=-=-=-==-===—==================== ..>

<HADBSet instanceName="db2instl">

<HADB databaseName = "SAMPLE" />
<HADB databaseName = "MYDB" />
</HADBSet>
</DB2Cluster>

db2ha_sample_DPF_NPlusM.xml:

The sample file db2ha_sample_DPF_NPTusM.xml is an example of an XML input file
that you pass to DB2 high availability instance configuration utility (db2haicu) to
specify a new cluster domain. db2ha_sample_DPF_NPTusM.xml is located in the
sqllib/samples/ha/xml directory.

Features

The db2ha_sample DPF_NPTusM.xml sample demonstrates how to use db2haicu with
an XML input file to define a cluster domain with the following details:

* quorum device: network

e computers in the cluster (cluster domain nodes): four
* failover policy: N Plus M

* database partitions: two

 virtual (service) IP addresses: one

* shared mount points for failover: four

Chapter 4. Configuring for high availability 121

XML source

<lo- === -.>
<l-- = Use the DB2 High Availability Instance Configuration Utility = -->
<l-- = (db2haicu) XML schema definition, db2ha.xsd, and specify = ->
<l-- = IBM Tivoli System Automation for Multiplatforms (SA MP) = -->
<l-- = Base Component as the cluster manager. = -->
<!—— SESSS aa>

<DB2Cluster xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="db2ha.xsd"
clusterManagerName="TSA"
version="1.0">

<!__ —===—=—=—=—==-=-=--=-==-=-==-=-==-==-===-=-===-=================================== ..>
<l-- = Create a cluster domain named db2HAdomain = -->
<!__ ————————-———-—-——-=-=--===—===—=—=—==—============= ..>

<l-- ==z=====z===z====z====zz===ss==ssss=zssssssssssssssssssssssssss=Is o>
<!-- = Specify a network quorum device (IP address: 19.126.4.5). = -->
<l-- = The IP must be pingable at all times by each of the cluster = -->
<l-- = domain nodes. = -->
<l-- ===z====z=z==zz=z===z=z====zz===zsz===zss=szssss=sssssssss=sssssssssssss=Ez o>

<l-- ===z=================ss=ss=ssszsssssssssssssssssssszssssszssosssssoo>
<l-- = Create a network named db2 public_network 0 with an IP = -->
<l-- = network protocol. = ==
<l-- = This network contains four computers: hasys0l, hasys02, = -->
<l-- = hasys03, and hasys04. = -=>
<!-- = Each computer has a network interface card called eth0. = -=>
<l-- = The IP address of ethO on hasys01 is 19.126.124.30 = -->
<l-- = The IP address of ethO® on hasys02 is 19.126.124.31 = -=>
<l-- = The IP address of ethO on hasys03 is 19.126.124.32 = -->
<l-- = The IP address of ethO on hasys04 is 19.126.124.33 = -->
<l ================ssssss=ssososssosoososssssssossssososssossssssos=sss o>

<PhysicalNetwork physicalNetworkName="db2_public_network_0"
physicalNetworkProtocol="ip">

<Interface interfaceName="eth0" clusterNodeName="hasys01">
<IPAddress baseAddress="19.126.124.30"
subnetMask="255.255.255.0"
networkName="db2_public_network_0"/>
</Interface>

<Interface interfaceName="eth0" clusterNodeName="hasys02">
<IPAddress baseAddress="19.126.124.31"
subnetMask="255.255.255.0"
networkName="db2_public_network 0"/>
</Interface>

<Interface interfaceName="eth0" clusterNodeName="hasys03">
<IPAddress baseAddress="19.126.124.32"
subnetMask="255.255.255.0"
networkName="db2_public_network 0"/>
</Interface>

<Interface interfaceName="eth0" clusterNodeName="hasys04">
<IPAddress baseAddress="19.126.124.33"
subnetMask="255.255.255.0"
networkName="db2_public_network 0"/>

</Interface>
</PhysicalNetwork>
<lo- === -->
<l-- = Create a network named db2 private_network 0 with an IP = -->
<l-- = network protocol. = -->

122 Data Recovery and High Availability Guide and Reference

<!-- = This network contains four computers: hasys0l, hasys02, = -->

<l-- = hasys03, and hasys04 (same as db2_public_network 0.) = -->
<l-- = In addition to eth0®, each computer has a network interface = -->
<l-- = card called ethl. = -=>
<l-- = The IP address of ethl on hasys01 is 192.168.23.101 = -->
<l-- = The IP address of ethl on hasys02 is 192.168.23.102 = -->
<l-- = The IP address of ethl on hasys03 is 192.168.23.103 = -->
<l-- = The IP address of ethl on hasys04 is 192.168.23.104 = -->
<| = SECS S CSCSSSCSSCSS S S SS ool

<PhysicalNetwork physicalNetworkName="db2 private network 0"
physicalNetworkProtocol="ip">

<Interface interfaceName="ethl" clusterNodeName="hasys01">
<IPAddress baseAddress="192.168.23.101"
subnetMask="255.255.255.0"
networkName="db2_private_network 0"/>
</Interface>

<Interface interfaceName="ethl" clusterNodeName="hasys02">
<IPAddress baseAddress="192.168.23.102"
subnetMask="255.255.255.0"
networkName="db2 private network 0"/>
</Interface>

<Interface interfaceName="ethl" clusterNodeName="hasys03">
<IPAddress baseAddress="192.168.23.103"
subnetMask="255.255.255.0"
networkName="db2_private_network 0"/>
</Interface>

<Interface interfaceName="ethl" clusterNodeName="hasys04">
<IPAddress baseAddress="192.168.23.104"
subnetMask="255.255.255.0"
networkName="db2_private _network 0"/>

</Interface>
</PhysicalNetwork>
<!__ ———=——————=—=-=-=-=-=-=-=-=-=-=-=-=-=-=-==-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=—=-=-=—=—=—=—==—============= ..>
<l-- = List the computers (cluster nodes) in the cluster domain. = -->
<!__ === __.>

<ClusterNode clusterNodeName="hasys01"/>
<ClusterNode clusterNodeName="hasys02"/>
<ClusterNode clusterNodeName="hasys03"/>
<ClusterNode clusterNodeName="hasys04"/>

</ClusterDomain>

<!—— === == >
<l-- = The failover policy specifies the order in which the cluster = -->
<l-- = domain nodes should fail over. = -->
<! == SESESSSSSSSSS S SS o ae>
<FailoverPolicy>

<NPlusM />

</FailoverPolicy>

<l-o- === __>
<l-- = Specify all the details of the database partitions = -->
<l-- =======================-so==sso=sss-ssss-ssssssssssssssssssssssssssss oo>
<DB2PartitionSet>

<DB2Partition dbpartitionnum="0" instanceName="db2inst1">
<VirtualIPAddress baseAddress="19.126.124.250"
subnetMask="255.255.255.0"
networkName="db2_public_network 0"/>

Chapter 4. Configuring for high availability 123

<Mount filesystemPath="/ha_dpfl/db2inst1/NODE000O" />

<Mount filesystemPath="/hafs/NODE00QO" />

<NP1usMNode standbyNodeName="hasys03" />
</DB2Partition>

<DB2Partition dbpartitionnum="1" instanceName="db2inst1">
<Mount filesystemPath="/ha_dpf1l/db2inst1/NODEOOOL"/>
<Mount filesystemPath="/hafs/NODE0OO1"/>
<NPTusMNode standbyNodeName="hasys04" />
</DB2Partition>

</DB2PartitionSet>

</DB2CTuster>

db2ha_sample_ HADR.xml:

The sample file db2ha_sample_DPF_HADR.xml is an example of an XML input file
that you pass to DB2 high availability instance configuration utility (db2haicu) to
specify a new cluster domain. db2ha_sample_HADR.xm1 is located in the
sqllib/samples/ha/xml directory.

Features

The db2ha_sample_HADR.xml sample demonstrates how to use db2haicu with an
XML input file to define a cluster domain with the following details:

* quorum device: network

* computers in the cluster (cluster domain nodes): two
* failover policy: HADR

* database partitions: one

 virtual (service) IP addresses: none

* shared mount points for failover: none

XML source

<!-- SESSS ae>
<l-- = DB2 High Availability configuration schema = -->
<l-- = Schema describes the elements of DB2 High Availability = >
<l-- = IBM Tivoli System Automation for Multiplatforms (SA MP) = -
<l-- = that are used in the configuration of a HA cluster = >
<lee === ==>

<DB2Cluster xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="db2ha.xsd" cluster ManagerName="TSA" version="1.0">

<lan === =)
<l-- = ClusterDomain element = ==>
<l-- = This element encapsulates the cluster configuration = -=>
<l-- = specification = -
<l-- = Creating cluster domain of name db2HAdomain = -->
<!-- = Creating an IP quorum device (IP 19.126.4.5) = -=>
<!-- = The IP must be pingable at all times by each of the nodes in = -->
<l-- = the cluster domain = -=>

<lo- === -=>

<ClusterDomain domainName="db2HAdomain">
<Quorum quorumDeviceProtocol="network" quorumDeviceName="19.126.4.5"/>

<lo- === _.>
<l-- = Physical network element =
<l-- = The physical network specifies the network type, protocol = -->
<l-- = IP address, subnet mask, and NIC name = -
<l-- = Define two logical groupings of NICs = -->
<l-- = Define two Togical groupings of NICs = -

124 Data Recovery and High Availability Guide and Reference

<PhysicalNetwork physicalNetworkName="db2_public_network_0"
physicalNetworkProtocol="ip">
<Interface interfaceName="eth0" clusterNodeName="hasys0l">
<IPAddress baseAddress="19.126.52.139"
subnetMask="255.255.255.0" networkName="db2_public_network 0"/>
</Interface>
<Interface interfaceName="eth0" clusterNodeName="hasys02">
<IPAddress baseAddress="19.126.52.140"
subnetMask="255.255.255.0" networkName="db2 _public_network 0"/>
</Interface>
</PhysicalNetwork>

<PhysicalNetwork physicalNetworkName="db2_private_network_0"
physicalNetworkProtocol="1ip">
<Interface interfaceName="ethl" clusterNodeName="hasysQ1">
<IPAddress baseAddress="192.168.23.101"
subnetMask="255.255.255.0" networkName="db2_private_network 0"/>
</Interface>
<Interface interfaceName="ethl" clusterNodeName="hasys02">
<IPAddress baseAddress="192.168.23.102"
subnetMask="255.255.255.0" networkName="db2_private_network 0"/>
</Interface>

</PhysicalNetwork>
<l-- === -->
<l-- = ClusterNodeName element = -->
<l-- = The set of nodes in the cluster domain = -->
<!l-- = Here the defined set of nodes in the domain is = -->
<!-- = hasys01, hasys02 = -->
<loo =========soosoosoosoososoosoosososoosoosoosoosoosoosssossossosososoosossossososs=sss o>

<ClusterNode clusterNodeName="hasys01"/>
<ClusterNode clusterNodeName="hasys02"/>
</ClusterDomain>

<le- ============sssssssssssosssssssssssssssossssssssssssssssssssssssss oo
<l-- = Failover policy element = -->
<l-- = The failover policy specifies the failover order of the = -->
<l-- = cluster nodes = -->
<l-- = In the current sample the failover policy is to restart = -->
<l-- = instance in place (LocalRestart) = -->

<| = SESCSSCSSCSSSCSSSCSS e

<FailoverPolicy>
<HADRFailover></HADRFailover>
</FailoverPolicy>

<l-- === -.>
<!-- = DB2 Partition element = -->
<l-- = The DB2 partition type specifies a DB2 Instance Name, = -->
<l-- = partition number = -=>

<lo- === ..>
<DB2PartitionSet>
<DB2Partition dbpartitionnum="0" instanceName="db2instl">
</DB2Partition>

</DB2PartitionSet>

<l-- === -_>
<!-- = HADRDBSet = -->
<l-- = Set of HADR Databases for this instance = -->
<l-- = Specify the databaseName, the name of the local instance on = -->
<l-- = this machine controlling the HADR database, the name of the = -->
<l-- = remote instance in this HADR pair, the name of the Tocal = -->
<l-- = hostname and the remote hostname for the remote instance = -->

<l-- === -_>
<HADRDBSet>

Chapter 4. Configuring for high availability 125

<HADRDB databaseName="HADRDB" locallInstance="db2inst1"
remoteInstance="db2inst1" TocalHost="hasys01" remoteHost="hasys02"/>
</HADRDBSet>
</DB2Cluster>

DB2 High Availability Instance Configuration Utility (db2haicu)
prerequisites

There is a set of tasks you must perform before using DB2 high availability
instance configuration utility (db2haicu).

General

Before a database manager instance owner can run db2haicu, a user with root
authority must run the preprpnode command.

preprpnode is part of the Reliable Scalable Cluster Technology (RSCT) fileset for
AIX and the RSCT package for Linux. preprpnode handles initializing the nodes for
intracluster communication. The preprpnode command is run as a part of setting
up the cluster. For more information about preprpnode, see:

e preprpnode Command (AIX)
e preprpnode command (Linux)

For more information about RSCT, see RSCT Administration Guide - What is
RSCT?

Also, a user with root authority must disable the iTCO_wdt and
iTCO_vendor_support modules.

* On SUSE, add the following lines to the /etc/modprobe.d/blacklist file:

alias iTCO_wdt off
alias iTCO_vendor_support off

* On RHEL, add the following lines to the /etc/modprobe.conf file:

blacklist iTCO_wdt
blacklist iTCO_vendor_support

You can verify that the modules are disabled by using the Tsmod command.

Before running db2haicu, a database manager instance owner must perform the
following tasks:

* Synchronize services files on all machines that will be added to the cluster.

* Run the db2profile script for the database manager instance that will be used to
create the cluster domain.

* Start the database manager using the db2start command.
DB2 High Availability Disaster Recovery (HADR)

If you will be using HADR functionality, perform the following tasks:

* Ensure all DB2 High Availability Disaster Recovery (HADR) databases are
started in their respective primary and standby database roles, and that all
HADR primary-standby database pairs are in peer state.

* Configure hadr_peer_window for all HADR databases to a value of at least 120
seconds.

e Disable DB2 fault monitor.

126 Data Recovery and High Availability Guide and Reference

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds4/preprpnode.htm
https://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.rsct.v3r2.rsct700.doc/bl501m_preprpnode.htm
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.rsct.doc/rsct_aix5l53/bl5adm1110.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.rsct.doc/rsct_aix5l53/bl5adm1110.html

Partitioned database environment

If you have multiple database partitions to configure for high availability, perform
the following steps:

* Configure the DB2_NUM_FAILOVER_NODES registry variable on all machines that will
be added to the cluster domain.

¢ (Optional) Activate the database before running db2haicu.

Creating a cluster domain using DB2 High Availability Instance
Configuration Utility (db2haicu)

When you run DB2 high availability instance configuration utility (db2haicu) for
the first time for a database manager instance, db2haicu creates a model of your
cluster, called a cluster domain.

Database paths detected automatically by DB2 High Availability Instance
Configuration Utility (db2haicu):

When you run DB2 high availability instance configuration utility (db2haicu) for
the first time, db2haicu will search your database system for database
configuration information that is related to cluster configuration.

Single database partition environment

In a single database partition environment, db2haicu automatically detects the
paths:

* Instance home directory path

¢ Audit log path

* Audit archive log path

* Sync point manager (SPM) log path

» DB2 diagnostic log (db2diag log file) path
* Database related paths:

Database log path
— Database table space container path

Database table space directory path

Local database directory

Note: If any of the database related directories are symbolic links, the db2haicu
utility prints an error message and exits.

Multiple database partition environment

In a multiple database partition environment, db2haicu automatically detects only
the following paths:

* Database log path

* Database table space container path
* Database table space directory path
* Local database directory

Chapter 4. Configuring for high availability 127

Maintaining a cluster domain using DB2 High Availability
Instance Configuration Utility (db2haicu)

When you are modifying the cluster domain model of your clustered environment
using db2haicu, the database manager propagates the related changes to your
database manager instance and cluster configuration.

Before you begin

Before you can configure your clustered environment using db2haicu, you must
create and configure a cluster domain. For more information, see “Creating a
cluster domain using DB2 High Availability Instance Configuration Utility
(db2haicu)” on page 127

About this task

db2haicu maintenance tasks include adding cluster elements such as databases or
cluster nodes to the cluster domain, and removing elements from the cluster
domain. db2haicu maintenance tasks also include modifying the details of cluster
domain elements such as the failover policy for the database manager instance.

Procedure
1. Run db2haicu

When you run db2haicu in maintenance mode, db2haicu presents you with a
list of operations you can perform on the cluster domain:

¢ Add or remove cluster nodes (machine identified by hostname)

* Add or remove a network interface (network interface card)

e Add or remove database partitions (partitioned database environment only)
* Add or remove a DB2 High Availability Disaster Recovery (HADR) database
* Add or remove a highly available database

¢ Add or remove a mount point

* Add or remove an IP address

* Add or remove a non-critical path

* Move database partitions and HADR databases for scheduled maintenance
* Change failover policy for the current instance

* Create a new quorum device for the cluster domain

¢ Destroy the cluster domain

2. Select a task to perform, and answer subsequent questions that db2haicu
presents.

Results

The database manager uses the information in the cluster domain to coordinate
with your cluster manager. When you configure your database and cluster
elements using db2haicu then those elements are included in integrated and
automated cluster configuration and administration provided by the DB2 High
Availability (HA) Feature. When you use db2haicu to make a database manager
instance configuration change, the database manager makes the required cluster
manager configuration change for you so that you do not have to make a
subsequent call to your cluster manager.

128 Data Recovery and High Availability Guide and Reference

What to do next

DB2 high availability instance configuration utility (db2haicu) does not have a
separate diagnostic log. You can investigate and diagnose db2haicu errors using the
database manager diagnostic log, db2diag log file, and the db2pd tool. For more
information, see: “Troubleshooting DB2 High Availability Instance Configuration
Utility (db2haicu)”

Troubleshooting DB2 High Availability Instance Configuration
Utility (db2haicu)

DB2 high availability instance configuration utility (db2haicu) does not have a
separate diagnostic log. You can investigate and diagnose db2haicu errors using the
database manager diagnostic log, db2diag log file, and the db2pd tool.

DB2 High Availability Instance Configuration Utility (db2haicu)
restrictions

There are some restrictions for using DB2 high availability instance configuration
utility (db2haicu).

¢ “Software and hardware”

* “Configuration tasks”

e “Usage notes”

* “Recommendations” on page 130

Software and hardware
db2haicu does not support IP version 6.

* db2haicu does not support Logical Volume Manager (LVM) on any platform
other than AIX.

Configuration tasks

You cannot perform the following tasks using db2haicu:
* You cannot configure automatic client reroute using db2haicu.

* When you upgrade from DB2 for Linux, UNIX, and Windows Version 9.5 to a
later version, you cannot use db2haicu to migrate your cluster configuration. To
migrate a cluster configuration, you must perform the following steps:

1. Delete the existing cluster domain (if one exists)
2. Upgrade the database server

3. Create a new cluster domain using db2haicu
Usage notes

The db2haicu utility is not supported in a DB2 pureScale environment. Use the
db2cluster utility instead to configure clustered environments.

Consider the following db2haicu usage notes when planning your cluster
configuration and administration activities:

* Even though db2haicu performs some administration tasks that normally require
root authority, db2haicu runs with the privileges of the database manager
instance owner. db2haicu initialization, performed by a root user, enables
db2haicu to carry out the required configuration changes despite having only
instance owner privileges.

Chapter 4. Configuring for high availability 129

* When you create a new cluster domain, db2haicu does not verify that the name
you specify for the new cluster domain is valid. For example, db2haicu does not
confirm that the name is a valid length, or contains valid characters, or that is
not the same name as an existing cluster domain.

* db2haicu does not verify or validate information that a user specifies and that is
passed to a cluster manager. Because db2haicu cannot be aware of all cluster
manager restrictions with respect to cluster object names, for example, db2haicu
passes text to the cluster manager without validating it for things like valid
characters, or length.

 If an error happens and db2haicu fails while you are creating and configuring a
new cluster domain, you must perform the following steps:

1. Remove the resource groups of the partially created cluster domain by
running db2haicu using the -delete parameter

2. Recreate the new cluster domain by calling dbZhaicu again.

* When you run db2haicu with the -delete parameter, db2haicu deletes the
resource groups associated with the current database manager instance
immediately, without confirming whether those resource groups are locked.

* To remove resource groups associated with the database manager instances of a
DB2 High Availability Disaster Recovery (HADR) primary database, standby
database pair, perform the following steps:

1. Run db2haicu with the -delete parameter against the database manager
instance of the HADR standby database first.

2. Also run db2Zhaicu with the -delete parameter against the database manager
instance of the HADR primary database.

* To remove a virtual IP from an HADR resource group using db2haicu, you must
remove it from the instance on which it was created.

 If a cluster operation you attempt to perform using db2haicu times out, db2haicu
will not return an error to you. When a cluster operation times out, you will not
know that the operation timed out unless you review diagnostic logs after
making the db2haicu call; or unless a subsequent cluster action fails, and while
investigating that subsequent failure, you determine that the original cluster
operation timed out.

* If you attempt to change the failover policy for a given database instance to
active-passive, there is one condition under which that configuration operation
will fail, but for which db2haicu will not return a error to you. If you specify a
machine that is currently offline to be the active machine, dbZhaicu will not make
that machine the active machine, but db2haicu will not return an error indicating
that the change did not succeed.

* For a shared disk configuration, db2haicu does not support a nested mount
configuration because DB2 does not enforce the disk mount order.

* When adding network interface cards (NICs) to a network, you cannot add NICs
with different subnet masks to the same network using db2haicu. If you want to
add NICs with different subnet masks to the same network, use the following
SA MP command:

mkequ <name> IBM.NetworkInterface:<eth0>:<node0>,...,<ethN>:<nodeN>
Recommendations

The following is a list of recommendations for configuration your cluster, and your
database manager instances when using db2haicu.

130 Data Recovery and High Availability Guide and Reference

* When you add new mount points for the cluster by adding entries to
/etc/fstab, use the noauto option to prevent the mount points from being
automatically mounted on more than one machine in the cluster. For example:

dev/vpathal /db/svtpdb/NODE0O10 ext3 noauto 0 0

Supported cluster management software

Cluster managing software enables the transfer of DB2 database operations from a
failed primary database on one node of the cluster to a secondary database on
another node in the cluster.

DB2 database supports the following cluster managing software:

* IBM PowerHA SystemMirror for AIX (formerly known as High Availability
Cluster Multi-Processing for AIX or HACMP")

For detailed information about how to configure PowerHA SystemMirror with
DB2 database products, see http://www.redbooks.ibm.com/abstracts/
5g247363.htm1?Open.

* Tivoli System Automation for Multiplatforms.

For detailed information about how to configure Tivoli System Automation with
DB2 database products, see http:/ /www.redbooks.ibm.com/abstracts/
$g247363.htm1?Open.

* Microsoft Cluster Server, for Windows operating systems

For detailed information about how to configure Microsoft Cluster Server with
DB2 database products, see http:/ /www.redbooks.ibm.com/abstracts/
5g247363.htm1?Open.

* Sun Cluster, or VERITAS Cluster Server, for the Solaris operating system.

For information about Sun Cluster, see the white paper entitled “DB2 Universal
Database " and High Availability on Sun Cluster 3.X”, which is available from
the IBM Software Library web site (http://www.ibm.com/software/sw-library/
). For information about VERITAS Cluster Server, see the white paper entitled
“DB2 UDB and High Availability with VERITAS Cluster Server”, which is
available from the “IBM Support and downloads” Web site (http://
www.ibm.com/support/docview.wss?uid=swg21045033).

¢ Multi-Computer/ServiceGuard, for Hewlett-Packard

IBM PowerHA SystemMirror for AIX (formerly known as High
Availability Cluster Multi-Processing for AIX or HACMP)

IBM PowerHA SystemMirror for AIX is cluster managing software. The nodes in
PowerHA SystemMirror clusters exchange messages called heartbeats, or keepalive
packets. If a node stops sending these messages, PowerHA SystemMirror invokes
failover across the other nodes in the cluster; and when the node that failed is
repaired, PowerHA SystemMirror reintegrates it back into the cluster.

There are two types of events: standard events that are anticipated within the
operations of PowerHA SystemMirror, and user-defined events that are associated
with the monitoring of parameters in hardware and software components.

One of the standard events is the node_down event. This is when a node in the
cluster has failed, and PowerHA SystemMirror has initiated failover across the
other nodes in the cluster. When planning what should be done as part of the
recovery process, PowerHA SystemMirror allows two failover options: hot (or idle)
standby, and mutual takeover.

Chapter 4. Configuring for high availability 131

http://www.redbooks.ibm.com/abstracts/sg247363.html?Open
http://www.redbooks.ibm.com/abstracts/sg247363.html?Open
http://www.redbooks.ibm.com/abstracts/sg247363.html?Open
http://www.redbooks.ibm.com/abstracts/sg247363.html?Open
http://www.redbooks.ibm.com/abstracts/sg247363.html?Open
http://www.redbooks.ibm.com/abstracts/sg247363.html?Open
http://www.ibm.com/software/sw-library/
http://www.ibm.com/support/docview.wss?uid=swg21045033
http://www.ibm.com/support/docview.wss?uid=swg21045033

Note: When using PowerHA SystemMirror, ensure that DB2 instances are not
started at boot time by using the db2iauto utility as follows:

db2iauto -off InstName
where InstName is the login name of the instance.
Cluster configuration

In a hot standby configuration, the AIX processor node that is the takeover node is
not running any other workload. In a mutual takeover configuration, the AIX
processor node that is the takeover node is running other workloads.

Generally, in a partitioned database environment, DB2 database runs in mutual
takeover mode with database partitions on each node. One exception is a scenario
in which the catalog partition is part of a hot standby configuration.

One planning consideration is how to manage big clusters. It is easier to manage a
small cluster than a big one; however, it is also easier to manage one big cluster
than many smaller ones. When planning, consider how your applications will be
used in your cluster environment. If there is a single, large, homogeneous
application running, for example, on 16 nodes, it is probably easier to manage the
configuration as a single cluster rather than as eight two-node clusters. If the same
16 nodes contain many different applications with different networks, disks, and
node relationships, it is probably better to group the nodes into smaller clusters.
Keep in mind that nodes integrate into an PowerHA SystemMirror cluster one at a
time; it will be faster to start a configuration of multiple clusters rather than one
large cluster. PowerHA SystemMirror supports both single and multiple clusters, as
long as a node and its backup are in the same cluster.

PowerHA SystemMirror failover recovery allows predefined (also known as
cascading) assignment of a resource group to a physical node. The failover recovery
procedure also allows floating (or rotating) assignment of a resource group to a
physical node. IP addresses, and external disk volume groups, or file systems, or
NFS file systems, and application servers within each resource group specify either
an application or an application component, which can be manipulated by
PowerHA SystemMirror between physical nodes by failover and reintegration.
Failover and reintegration behavior is specified by the type of resource group
created, and by the number of nodes placed in the resource group.

For example, consider a DB2 database partition (logical node). If its log and table
space containers were placed on external disks, and other nodes were linked to
those disks, it would be possible for those other nodes to access these disks and to
restart the database partition (on a takeover node). It is this type of operation that
is automated by PowerHA SystemMirror. PowerHA SystemMirror can also be used
to recover NFS file systems used by DB2 instance main user directories.

Read the PowerHA SystemMirror documentation thoroughly as part of your
planning for recovery with DB2 database in a partitioned database environment.
You should read the Concepts, Planning, Installation, and Administration guides,
then build the recovery architecture for your environment. For each subsystem that
you have identified for recovery, based on known points of failure, identify the
PowerHA SystemMirror clusters that you need, as well as the recovery nodes
(either hot standby or mutual takeover).

If you plan to use PowerHA SystemMirror on two or more computers that share
the same home directory, you must install the database manager in the same

132 Data Recovery and High Availability Guide and Reference

installation path. Using symbolic links to a similar installation path might cause
issues in this scenario. The installation paths must be the same physical path.

It is strongly recommended that both disks and adapters be mirrored in your
external disk configuration. For DB2 physical nodes that are configured for
PowerHA SystemMirror, care is required to ensure that nodes on the volume group
can vary from the shared external disks. In a mutual takeover configuration, this
arrangement requires some additional planning, so that the paired nodes can
access each other's volume groups without conflicts. In a partitioned database
environment, this means that all container names must be unique across all
databases for all SMS or DMS table spaces. Automatic storage table spaces manage
this requirement for you.

One way to achieve uniqueness is to include the database partition number as part
of the name. You can specify a node expression for container string syntax when
creating either SMS or DMS containers. When you specify the expression, the node
number can be part of the container name or, if you specify additional arguments,
the results of those arguments can be part of the container name. Use the argument
" $N" (blank]$N) to indicate the node expression. The argument must occur at the
end of the container string, and can only be used in one of the following forms:

Table 7. Arguments for Creating Containers. The node number is assumed to be five.

Syntax Example Value
blank]$N " $N" 5
blank]$N+ number] " $N+1011" 1016
blank]$N% number] " $N%3" 2
blank]$N+ number]% number] " $N+12%13" 4
blank]$N% number]+ number] " $N%3+20" 22
Note:

1. % is modulus.
2. In all cases, the operators are evaluated from left to right.

Following are some examples of how to create containers using this special
argument:
* Creating containers for use on a two-node system.

CREATE TABLESPACE TS1 MANAGED BY DATABASE USING
(device '/dev/rcont $N' 20000)

The following containers would be used:

/dev/rcont®@ - on Node 0
/dev/rcontl - on Node 1

* Creating containers for use on a four-node system.

CREATE TABLESPACE TS2 MANAGED BY DATABASE USING
(file '/DB2/containers/TS2/container $N+100' 10000)

The following containers would be used:

/DB2/containers/TS2/container100 - on Node 0
/DB2/containers/TS2/container101 - on Node 1
/DB2/containers/TS2/container102 - on Node 2
/DB2/containers/TS2/container103 - on Node 3

* Creating containers for use on a two-node system.

Chapter 4. Configuring for high availability 133

CREATE TABLESPACE TS3 MANAGED BY SYSTEM USING
('/TS3/cont §N%2, '/TS3/cont $N%2+2')

The following containers would be used:

/TS3/cont® - on Node 0
/TS3/cont2 - on Node 0
/TS3/contl - on Node 1
/TS3/cont3 - on Node 1

Configuring DB2 database partitions for PowerHA SystemMirror

Once configured, each database partition in an instance is started by PowerHA
SystemMirror, one physical node at a time. Multiple clusters are recommended for
starting parallel DB2 configurations that are larger than four nodes. Note that in a
64-node parallel DB2 configuration, it is faster to start 32 two-node PowerHA
SystemMirror clusters in parallel, than four 16-node clusters.

A script file is packaged with DB2 Enterprise Server Edition to assist in configuring
for PowerHA SystemMirror failover or recovery in either hot standby or mutual
takeover nodes. The script file is called rc.db2pe.ee for a single node and
rc.db2pe.eee for multiple nodes. They are located in the sql1ib/samples/hacmp/es
directory. Copy the appropriate file to /usr/bin on each system in the PowerHA
SystemMirror cluster and rename it to rc.db2pe.

In addition, DB2 buffer pool sizes can be customized during failover in mutual
takeover configurations from within rc.db2pe. (Buffer pool sizes can be configured
to ensure proper resource allocation when two database partitions run on one
physical node.)

PowerHA SystemMirror event monitoring and user-defined events

Initiating a failover operation if a process dies on a given node, is an example of a
user-defined event. Events must be configured manually as a user defined event as
part of the cluster setup.

For detailed information on the implementation and design of highly available
IBM DB2 database environments see the IBM Software Library web site
(http:/ /www.ibm.com/software/sw-library /).

Related information:

[(* powerHA SystemMirror Information Center

IBM Tivoli System Automation for Multiplatforms (Linux and AIX)
IBM Tivoli System Automation for Multiplatforms (Tivoli SA MP) is cluster
managing software that facilitates automatic switching of users, applications, and
data from one database system to another in a cluster. Tivoli SA MP automates
control of IT resources such as processes, file systems, and IP addresses.

Tivoli SA MP provides a framework to automatically manage the availability of
what are known as resources. Examples of resources are:

* Any piece of software for which start, monitor, and stop scripts can be written to
control

* Any network interface card (NIC) to which Tivoli SA MP has been granted
access. That is, Tivoli SA MP will manage the availability of any IP address that
a user wants to use by floating that IP address amongst NICs that it has been
granted access to.

134 Data Recovery and High Availability Guide and Reference

http://www.ibm.com/software/sw-library/
http://publib.boulder.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.powerha.navigation/powerha_main.htm

For example, both a DB2 instance and the High Availability Disaster Recovery
feature, have start, stop, and monitor commands. Therefore, Tivoli SA MP scripts
can be written to automatically manage these resources. Resources that are closely
related (for example, ones that collectively run on the same node at the same time)
are called a resource group.

DB2 resources

In a single-partition DB2 environment, a single DB2 instance is running on a
server. This DB2 instance has local access to data (its own executable image as well
as databases owned by the instance). If this DB2 instance is made accessible to
remote clients, an unused IP address must be assigned to this DB2 instance.

The DB2 instance, the local data, and the IP address are all considered resources,
which must be automated by Tivoli SA MP. Since these resources are closely
related (for example, they collectively run on the same node at the same time),
they are called a resource group.

The entire resource group is collocated on one node in the cluster. In the case of a
failover, the entire resource group is started on another node.

The following dependencies exist between the resources in the group:
¢ The DB2 instance must be started after the local disk

* The DB2 instance must be stopped before the local disk

* The HA IP address must be collocated with the instance

Disk storage

The DB2 database can utilize these resources for local data storage:
* Raw disk (for example, /dev/sdal)

* Logical volume managed by Logical Volume Manager (LVM)

* File system (for example, ext3, jfs)

DB2 data can be stored either entirely on one or more raw disks, entirely on logical
volumes, entirely on file systems, or on a mixture of all three. Any executables
need to reside on a file system of some sort.

DB2 database requirements for the HA IP address

The DB2 database has no special requirements for the IP address. It is not
necessary to define a highly available IP address in order for the instance to be
considered highly available. However, it is important to remember that the IP
address that is protected (if any) is the client's access point to the data, and as
such, this address must be well known by all clients. In practice, it is
recommended that this IP address be the one that is used by the clients in their
CATALOG TCPIP NODE commands.

Tivoli SA MP resource groups
IBM Tivoli System Automation for Multiplatforms is a product that provides high
availability by automating resources such as processes, applications, IP addresses,

and others in Linux-based clusters. To automate an IT resource (such as an IP
address), the resource must be defined to Tivoli SA MP. Furthermore, these

Chapter 4. Configuring for high availability 135

resources must all be contained in at least one resource group. If these resources
are always required to be hosted on the same machine, they should all be placed
in the same resource group.

Every application needs to be defined as a resource in order to be managed and
automated with Tivoli SA MP. Application resources are usually defined in the
generic resource class IBM.Application. In this resource class, there are several
attributes that define a resource, but at least three of them are application-specific:

e StartCommand
¢ StopCommand
¢ MonitorCommand

These commands may be scripts or binary executables.
Setting up Tivoli SA MP with your DB2 environment

For detailed configuration information to help you set up Tivoli SA MP to work
with your DB2 environment, search for "Tivoli System Automation" on the IBM
Software Library web site (http://www.ibm.com/software/sw-library/).

Microsoft Failover Clustering support (Windows)

Microsoft Failover Clustering supports clusters of servers on Windows operating
systems. It automatically detects and responds to server or application failure, and
can balance server workloads.

Introduction

Microsoft Failover Clustering is a feature of Windows server operating systems. It
is the software that supports the connection of two servers (up to four servers in
DataCenter Server) into a cluster for high availability and easier management of
data and applications. Failover Clustering can also automatically detect and
recover from server or application failures. It can be used to move server
workloads to balance machine utilization and to provide for planned maintenance
without downtime.

The following DB2 database products have support for Microsoft Failover
Clustering:

* DB2 Connect server products (DB2 Connect Enterprise Edition, DB2 Connect
Application Server Edition, DB2 Connect Unlimited Edition for iSeries® and DB2
Connect Unlimited Edition for zSeries®).

* DB2 Advanced Enterprise Server Edition
* DB2 Enterprise Server Edition

» DB2 Express Edition

* DB2 Workgroup Server Edition

DB2 Failover Clustering components

A cluster is a configuration of two or more nodes, each of which is an independent
computer system. The cluster appears to network clients as a single server.

136 Data Recovery and High Availability Guide and Reference

http://www.ibm.com/software/sw-library/

Machine A N Machine B

il

|
=]

T

Quorum disk
used by MSCS

m
(o]

DB2 Group 0
SQLLIB SQLLIB
-
(Each machine has DB2 code
installed on a local disk) DB2 Group 1

Cluster disks in a disk tower

Figure 4. Example of a Failover Clustering configuration

The nodes in a Failover Clustering cluster are connected using one or more shared
storage buses and one or more physically independent networks. The network that
connects only the servers but does not connect the clients to the cluster is referred
to as a private network. The network that supports client connections is referred to
as the public network. There are one or more local disks on each node. Each shared
storage bus attaches to one or more disks. Each disk on the shared bus is owned
by only one node of the cluster at a time. The DB2 software resides on the local
disk. DB2 database files (for example tables, indexes, log files) reside on the shared
disks. Because Microsoft Failover Clustering does not support the use of raw
partitions in a cluster, it is not possible to configure DB2 to use raw devices in a
Microsoft Failover Clustering environment.

The DB2 resource

In a Microsoft Failover Clustering environment, a resource is an entity that is
managed by the clustering software. For example, a disk, an IP address, or a
generic service can be managed as a resource. DB2 integrates with Microsoft
Failover Clustering by creating its own resource type called DB2 Server. Each DB2
Server resource manages a DB2 instance, and when running in a partitioned
database environment, each DB2 Server resource manages a database partition. The
name of the DB2 Server resource is the instance name, although in the case of a
partitioned database environment, the name of the DB2 Server resource consists of
both the instance name and the database partition (or node) number.

Pre-online and post-online scripts

You can run scripts both before and after a DB2 resource is brought online. These
scripts are referred to as pre-online and post-online scripts respectively. Pre-online
and post-online scripts are .BAT files that can run DB2 and system commands.

In a situation when multiple instances of DB2 might be running on the same
machine, you can use the pre-online and post-online scripts to adjust the
configuration so that both instances can be started successfully. In the event of a
failover, you can use the post-online script to perform manual database recovery.

Chapter 4. Configuring for high availability 137

Post-online script can also be used to start any applications or services that depend
on DB2.

The DB2 group

Related or dependent resources are organized into resource groups. All resources
in a group move between cluster nodes as a unit. For example, in a typical DB2

single partition cluster environment, there will be a DB2 group that contains the

following resources:

1. DB2 resource. The DB2 resource manages the DB2 instance (or node).

2. IP Address resource. The IP Address resource allows client applications to
connect to the DB2 server.

3. Network Name resource. The Network Name resource allows client
applications to connect to the DB2 server by using a name rather than using an
IP address. The Network Name resource has a dependency on the IP Address
resource. The Network Name resource is optional. (Configuring a Network
Name resource can affect the failover performance.)

4. One or more Physical Disk resources. Each Physical Disk resource manages a
shared disk in the cluster.

Note: The DB2 resource is configured to depend on all other resources in the
same group so the DB2 server can only be started after all other resources are
online.

Failover configurations

Two types of configuration are available:
¢ Active-passive
* Mutual takeover

In a partitioned database environment, the clusters do not all have to have the
same type of configuration. You can have some clusters that are set up to use
active-passive, and others that are set up for mutual takeover. For example, if your
DB2 instance consists of five workstations, you can have two machines set up to
use a mutual takeover configuration, two to use a passive standby configuration,
and one machine not configured for failover support.

Active-passive configuration

In a active-passive configuration, one machine in the Microsoft Failover Clustering
cluster provides dedicated failover support, and the other machine participates in
the database system. If the machine participating in the database system fails, the
database server on it will be started on the failover machine. If, in a partitioned
database environment, you are running multiple logical nodes on a machine and it
fails, the logical nodes will be started on the failover machine. Figure 5 on page 139
shows an example of a active-passive configuration.

138 Data Recovery and High Availability Guide and Reference

Cluster

Workstation A Workstation B

[A— Y-

F — r ‘

Instance A N

Figure 5. Active-passive configuration

Mutual takeover configuration

In a mutual takeover configuration, both workstations participate in the database
system (that is, each machine has at least one database server running on it). If one
of the workstations in the Microsoft Failover Clustering cluster fails, the database
server on the failing machine will be started to run on the other machine. In a
mutual takeover configuration, a database server on one machine can fail
independently of the database server on another machine. Any database server can
be active on any machine at any given point in time. Figure 6 shows an example of
a mutual takeover configuration.

Cluster

Workstation A Workstation B

= — [= 1

| = || msancen

Figure 6. Mutual takeover configuration

For detailed information on the implementation and design of highly available
IBM DB2 database environments on Windows operating systems, see the IBM
Software Library web site (http://www.ibm.com/software/sw-library/).

Windows Server 2008 Failover Clustering support

To configure partitioned DB2 database systems to run on Windows Server 2008
failover clusters:

1. Follow the same procedures as described in the white paper “Implementing
IBM DB2 Universal Database V8.1 Enterprise Server Edition with Microsoft

Chapter 4. Configuring for high availability 139

http://www.ibm.com/software/sw-library/

Cluster Server”, which is available from the IBM Software Library web site
(http:/ /www.ibm.com/software/sw-library/).

2. Due to changes in the Failover Clustering feature of Windows Server 2008, the
following additional setup might be required:

e In Windows Server 2008 failover clusters, the Windows cluster service is run
under a special Local System account, whereas in Windows Server 2003, the
Windows cluster service is run under an administrators account. This affects
the operations of the DB2 resource (db2server.d11), which is run under the
context of the cluster service account.

If the DB2_EXTSECURITY registry variable is set to YES on a Windows failover
cluster, the DB2ADMNS and DB2USERS groups must be domain groups.

When a multiple partition instance is running on a Windows failover cluster,
the INSTPROF path must be set to a network path (for example,
\\NetName\DB2MSCS-DB2\DB2PROFS). This will be done automatically if you use
the db2mscs command to cluster the DB2 database system.

When the Windows Server 2008 failover cluster is formed, a computer object
representing the new cluster is created in the Active Directory. For example,
if the name of the cluster is MYCLUSTER, then a computer object
MYCLUSTER is created in the Active Directory. If a user clusters a multiple
partition instance and the DB2_EXTSECURITY registry variable is set to YES (the
default setting), then this computer object must be added to the DB2ADMNS
group. You must do this so that the DB2 resource DLL can access the
\\NetName\DB2MSCS-DB2\DB2PROFS path. For example, if the DB2
Administrators group is MYDOMAIN\DB2ADMNS, the computer object
MYCLUSTER must be added to this group. Lastly, after adding the computer
object to the DB2ADMNS group, you must reboot both nodes in the cluster.

* In Windows Server 2008 Failover Clustering, the “cluster fileshare resource”
is no longer supported. The cluster file server is used instead. The file share
(a regular file share) will be based on the cluster file server resource.
Microsoft requires that the cluster file servers created in the cluster use
Domain Name System (DNS) for name resolution. When running multiple
partition instances, a file server resource is required to support the file share.
The values of the NETNAME_NAME, NETNAME_VALUE, and NETNAME_DEPENDENCY
parameters specified in the db2mscs.cfg file are used to create the file server
and file share resources. The NetName is based on an IP address, and this
NetName must be in DNS. For example, if a db2mscs.cfg file contains the
following parameters, a file share \\MSCSV\DB2MSCS-DB2 is created:

NETNAME_NAME = MSCSN
NETNAME_VALUE = MSCSV

The name MSCSV must be registered in DNS. Otherwise, the FileServer or
the file share created for the DB2 cluster will fail when DNS resolution is not
successful.

Solaris Operating System cluster support
DB2 supports two cluster managers available for the Solaris operating system: Sun
Cluster; and Veritas Cluster Server (VCS).

Note: When using Sun Cluster 3.0 or Veritas Cluster Server, ensure that DB2
instances are not started at boot time by using the db2iauto utility as follows:

db2iauto -off InstName

where InstName is the login name of the instance.

140 Data Recovery and High Availability Guide and Reference

http://www.ibm.com/software/sw-library/

High availability

The computer systems that host data services contain many distinct components,
and each component has a "mean time before failure" (MTBF) associated with it.
The MTBEF is the average time that a component will remain usable. The MTBF for
a quality hard drive is in the order of one million hours (approximately 114 years).
While this seems like a long time, one out of 200 disks is likely to fail within a
6-month period.

Although there are a number of methods to increase availability for a data service,
the most common is an HA cluster. A cluster, when used for high availability,
consists of two or more machines, a set of private network interfaces, one or more
public network interfaces, and some shared disks. This special configuration allows
a data service to be moved from one machine to another. By moving the data
service to another machine in the cluster, it should be able to continue providing
access to its data. Moving a data service from one machine to another is called a
failover, as illustrated in Figure 7.

|| Machine A i Data 1

Data 0 Switch Data 3

MachineC Data 2 I Machine D

Figure 7. Failover. When Machine B fails its data service is moved to another machine in the cluster so that the data
can still be accessed.

The private network interfaces are used to send heartbeat messages, as well as
control messages, among the machines in the cluster. The public network interfaces
are used to communicate directly with clients of the HA cluster. The disks in an
HA cluster are connected to two or more machines in the cluster, so that if one
machine fails, another machine has access to them.

A data service running on an HA cluster has one or more logical public network
interfaces and a set of disks associated with it. The clients of an HA data service
connect via TCP/IP to the logical network interfaces of the data service only. If a
failover occurs, the data service, along with its logical network interfaces and set of
disks, are moved to another machine.

Chapter 4. Configuring for high availability 141

One of the benefits of an HA cluster is that a data service can recover without the
aid of support staff, and it can do so at any time. Another benefit is redundancy.
All of the parts in the cluster should be redundant, including the machines
themselves. The cluster should be able to survive any single point of failure.

Even though highly available data services can be very different in nature, they
have some common requirements. Clients of a highly available data service expect
the network address and host name of the data service to remain the same, and
expect to be able to make requests in the same way, regardless of which machine
the data service is on.

Consider a web browser that is accessing a highly available web server. The
request is issued with a URL (Uniform Resource Locator), which contains both a
host name, and the path to a file on the web server. The browser expects both the
host name and the path to remain the same after failover of the web server. If the
browser is downloading a file from the web server, and the server is failed over,
the browser will need to reissue the request.

Availability of a data service is measured by the amount of time the data service is
available to its users. The most common unit of measurement for availability is the
percentage of "up time"; this is often referred to as the number of "nines":

99.99% => service is down for (at most) 52.6 minutes / yr

99.999% => service is down for (at most) 5.26 minutes / yr
99.9999% => service is down for (at most) 31.5 seconds / yr

When designing and testing an HA cluster:

1. Ensure that the administrator of the cluster is familiar with the system and
what should happen when a failover occurs.

2. Ensure that each part of the cluster is truly redundant and can be replaced
quickly if it fails.

3. Force a test system to fail in a controlled environment, and make sure that it
fails over correctly each time.

4. Keep track of the reasons for each failover. Although this should not happen
often, it is important to address any issues that make the cluster unstable. For
example, if one piece of the cluster caused a failover five times in one month,
find out why and fix it.

5. Ensure that the support staff for the cluster is notified when a failover occurs.

6. Do not overload the cluster. Ensure that the remaining systems can still handle
the workload at an acceptable level after a failover.

7. Check failure-prone components (such as disks) often, so that they can be
replaced before problems occur.

Fault tolerance

Another way to increase the availability of a data service is fault tolerance. A fault
tolerant machine has all of its redundancy built in, and should be able to withstand
a single failure of any part, including CPU and memory. Fault tolerant machines
are most often used in niche markets, and are usually expensive to implement. An
HA cluster with machines in different geographical locations has the added
advantage of being able to recover from a disaster affecting only a subset of those
locations.

An HA cluster is the most common solution to increase availability because it is
scalable, easy to use, and relatively inexpensive to implement.

142 Data Recovery and High Availability Guide and Reference

Sun Cluster 3.0 (and higher) support:

If you plan to run your DB2 database solution on a Solaris operating system
cluster, you can use Sun Cluster 3.0 to manager the cluster. A high availability
agent acts as a mediator between DB2 database and Sun Cluster 3.0.

The statements made in this topic about the support for Sun Cluster 3.0 also apply
to versions of Sun Cluster higher than 3.0.

" T 7 T R

/ - -

QK/\/ Q“(

Figure 8. DB2 database, Sun Cluster 3.0, and High Availability. The relationship between DB2 database, Sun Cluster
3.0 and the high availability agent.

Failover

Sun Cluster 3.0 provides high availability by enabling application failover.
Each node is periodically monitored and the cluster software automatically
relocates a cluster-aware application from a failed primary node to a
designated secondary node. When a failover occurs, clients might
experience a brief interruption in service and might have to reconnect to
the server. However, they will not be aware of the physical server from
which they are accessing the application and the data. By allowing other
nodes in a cluster to automatically host workloads when the primary node
fails, Sun Cluster 3.0 can significantly reduce downtime and increase
productivity.

Multihost disks

Sun Cluster 3.0 requires multihost disk storage. This means that disks can
be connected to more than one node at a time. In the Sun Cluster 3.0
environment, multihost storage allows disk devices to become highly
available. Disk devices that reside on multihost storage can tolerate single
node failures since there is still a physical path to the data through the
alternate server node. Multihost disks can be accessed globally through a
primary node. If client requests are accessing the data through one node
and that node fails, the requests are switched over to another node that has
a direct connection to the same disks. A volume manager provides for
mirrored or RAID 5 configurations for data redundancy of the multihost
disks. Currently, Sun Cluster 3.0 supports Solstice DiskSuite and VERITAS
Volume Manager as volume managers. Combining multihost disks with
disk mirroring and striping protects against both node failure and
individual disk failure.

Global devices

Global devices are used to provide cluster-wide, highly available access to
any device in a cluster, from any node, regardless of the device's physical
location. All disks are included in the global namespace with an assigned

Chapter 4. Configuring for high availability 143

device ID (DID) and are configured as global devices. Therefore, the disks
themselves are visible from all cluster nodes.

File systems and global file systems

A cluster or global file system is a proxy between the kernel (on one node)
and the underlying file system volume manager (on a node that has a
physical connection to one or more disks). Cluster file systems are
dependent on global devices with physical connections to one or more
nodes. They are independent of the underlying file system and volume
manager. Currently, cluster file systems can be built on UFS using either
Solstice DiskSuite or VERITAS Volume Manager. The data only becomes
available to all nodes if the file systems on the disks are mounted globally
as a cluster file system.

Device group

All multihost disks must be controlled by the Sun Cluster framework. Disk
groups, managed by either Solstice DiskSuite or VERITAS Volume
Manager, are first created on the multihost disk. Then, they are registered
as Sun Cluster disk device groups. A disk device group is a type of global
device. Multihost device groups are highly available. Disks are accessible
through an alternate path if the node currently mastering the device group
fails. The failure of the node mastering the device group does not affect
access to the device group except for the time required to perform the
recovery and consistency checks. During this time, all requests are blocked
(transparently to the application) until the system makes the device group
available.

Resource group manager (RGM)

The RGM, provides the mechanism for high availability and runs as a
daemon on each cluster node. It automatically starts and stops resources
on selected nodes according to pre-configured policies. The RGM allows a
resource to be highly available in the event of a node failure or to reboot
by stopping the resource on the affected node and starting it on another.
The RGM also automatically starts and stops resource-specific monitors
that can detect resource failures and relocate failing resources onto another
node.

Data services

The term data service is used to describe a third-party application that has
been configured to run on a cluster rather than on a single server. A data
service includes the application software and Sun Cluster 3.0 software that
starts, stops and monitors the application. Sun Cluster 3.0 supplies data
service methods that are used to control and monitor the application
within the cluster. These methods run under the control of the Resource
Group Manager (RGM), which uses them to start, stop, and monitor the
application on the cluster nodes. These methods, along with the cluster
framework software and multihost disks, enable applications to become
highly available data services. As highly available data services, they can
prevent significant application interruptions after any single failure within
the cluster, regardless of whether the failure is on a node, on an interface
component or in the application itself. The RGM also manages resources in
the cluster, including network resources (logical host names and shared
addresses) and application instances.

Resource type, resource, and resource group

A resource type is made up of the following:

144 Data Recovery and High Availability Guide and Reference

1. A software application to be run on the cluster.

2. Control programs used as callback methods by the RGM to manage the
application as a cluster resource.

3. A set of properties that form part of the static configuration of a cluster.

The RGM uses resource type properties to manage resources of a particular
type.

A resource inherits the properties and values of its resource type. It is an
instance of the underlying application running on the cluster. Each instance
requires a unique name within the cluster. Each resource must be
configured in a resource group. The RGM brings all resources in a group
online and offline together on the same node. When the RGM brings a
resource group online or offline, it invokes callback methods on the
individual resources in the group.

The nodes on which a resource group is currently online are called its
primary nodes, or its primaries. A resource group is mastered by each of
its primaries. Each resource group has an associated Nodelist property, set
by the cluster administrator, to identify all potential primaries or masters
of the resource group.

VERITAS Cluster Server support:

If you plan to run your DB2 database solution on a Solaris Operating System
cluster, you can use VERITAS Cluster Server to manager the cluster.

VERITAS Cluster Server can manage a wide range of applications in heterogeneous
environments; and it supports up to 32 node clusters in both storage area network
(SAN) and traditional client/server environments.

Hardware requirements

Following is a list of hardware currently supported by VERITAS Cluster
Server:

* For server nodes:

— Any SPARC/Solaris server from Sun Microsystems running Solaris 2.6
or later with a minimum of 128 MB RAM.

* For disk storage:

~ EMC Symmetrix, IBM Enterprise Storage Server®, HDS 7700 and 9xxx,
Sun T3, Sun A5000, Sun A1000, Sun D1000 and any other disk storage
supported by VCS 2.0 or later; your VERITAS representative can
confirm which disk subsystems are supported or you can refer to VCS
documentation.

— Typical environments will require mirrored private disks (in each
cluster node) for the DB2 binaries and shared disks between nodes for
the DB2 data.

* For network interconnects:

— For the public network connections, any network connection
supporting IP-based addressing.

— For the heartbeat connections (internal to the cluster), redundant
heartbeat connections are required; this requirement can be met
through the use of two additional Ethernet controllers per server or
one additional Ethernet controller per server and the use of one
shared GABdisk per cluster

Software requirements

Chapter 4. Configuring for high availability 145

The following VERITAS software components are qualified configurations:

* VERITAS Volume Manager 3.2 or later, VERITAS File System 3.4 or later,
VERITAS Cluster Server 2.0 or later.

e DB Edition for DB2 for Solaris 1.0 or later.

While VERITAS Cluster Server does not require a volume manager, the use
of VERITAS Volume Manager is strongly recommended for ease of
installation, configuration and management.

Failover

VERITAS Cluster Server is an availability clustering solution that manages
the availability of application services, such as DB2 database, by enabling
application failover. The state of each individual cluster node and its
associated software services are regularly monitored. When a failure occurs
that disrupts the application service (in this case, the DB2 database
service), either VERITAS Cluster Server or the VCS HA-DB2 Agent, or both
will detect the failure and automatically take steps to restore the service.
The steps take to restore the service can include restarting the DB2
database system on the same node or moving DB2 database system to
another node in the cluster and restarting it on that node. If an application
needs to be migrated to a new node, VERITAS Cluster Server moves
everything associated with the application (that is, network IP addresses,
ownership of underlying storage) to the new node so that users will not be
aware that the service is actually running on another node. They will still
access the service using the same IP addresses, but those addresses will
now point to a different cluster node.

When a failover occurs with VERITAS Cluster Server, users might or might
not see a disruption in service. This will be based on the type of
connection (stateful or stateless) that the client has with the application
service. In application environments with stateful connections (like DB2
database), users might see a brief interruption in service and might need to
reconnect after the failover has completed. In application environments
with stateless connections (like NFS), users might see a brief delay in
service but generally will not see a disruption and will not need to log
back on.

By supporting an application as a service that can be automatically
migrated between cluster nodes, VERITAS Cluster Server can not only
reduce unplanned downtime, but can also shorten the duration of outages
associated with planned downtime (for maintenance and upgrades).
Failovers can also be initiated manually. If a hardware or operating system
upgrade must be performed on a particular node, the DB2 database system
can be migrated to another node in the cluster, the upgrade can be
performed, and then the DB2 database system can be migrated back to the
original node.

Applications recommended for use in these types of clustering
environments should be crash tolerant. A crash tolerant application can
recover from an unexpected crash while still maintaining the integrity of
committed data. Crash tolerant applications are sometimes referred to as
cluster friendly applications. DB2 database system is a crash tolerant
application.

Shared storage

When used with the VCS HA-DB2 Agent, Veritas Cluster Server requires
shared storage. Shared storage is storage that has a physical connection to

146 Data Recovery and High Availability Guide and Reference

multiple nodes in the cluster. Disk devices resident on shared storage can
tolerate node failures since a physical path to the disk devices still exists
through one or more alternate cluster nodes.

Through the control of VERITAS Cluster Server, cluster nodes can access
shared storage through a logical construct called "disk groups". Disk
groups represent a collection of logically defined storage devices whose
ownership can be atomically migrated between nodes in a cluster. A disk
group can only be imported to a single node at any given time. For
example, if Disk Group A is imported to Node 1 and Node 1 fails, Disk
Group A can be exported from the failed node and imported to a new
node in the cluster. VERITAS Cluster Server can simultaneously control
multiple disk groups within a single cluster.

In addition to allowing disk group definition, a volume manager can
provide for redundant data configurations, using mirroring or RAID 5, on
shared storage. VERITAS Cluster Server supports VERITAS Volume
Manager and Solstice DiskSuite as logical volume managers. Combining
shared storage with disk mirroring and striping can protect against both
node failure and individual disk or controller failure.

VERITAS Cluster Server Global Atomic Broadcast(GAB) and Low Latency
Transport (LLT)

An internode communication mechanism is required in cluster
configurations so that nodes can exchange information concerning
hardware and software status, keep track of cluster membership, and keep
this information synchronized across all cluster nodes. The Global Atomic
Broadcast (GAB) facility, running across a low latency transport (LLT),
provides the high speed, low latency mechanism used by VERITAS Cluster
Server to do this. GAB is loaded as a kernel module on each cluster node
and provides an atomic broadcast mechanism that ensures that all nodes
get status update information at the same time.

By leveraging kernel-to-kernel communication capabilities, LLT provides
high speed, low latency transport for all information that needs to be
exchanged and synchronized between cluster nodes. GAB runs on top of
LLT. VERITAS Cluster Server does not use IP as a heartbeat mechanism,
but offers two other more reliable options. GAB with LLT, can be
configured to act as a heartbeat mechanism, or a GABdisk can be
configured as a disk-based heartbeat. The heartbeat must run over
redundant connections. These connections can either be two private
Ethernet connections between cluster nodes, or one private Ethernet
connection and one GABdisk connection. The use of two GABdisks is not a
supported configuration since the exchange of cluster status between nodes
requires a private Ethernet connection.

For more information about GAB or LLT, or how to configure them in
VERITAS Cluster Server configurations, consult the VERITAS Cluster
Server 2.0 User's Guide for Solaris.

Bundled and enterprise agents

An agent is a program that is designed to manage the availability of a
particular resource or application. When an agent is started, it obtains the
necessary configuration information from VCS and then periodically
monitors the resource or application and updates VCS with the status. In
general, agents are used to bring resources online, take resources offline, or
monitor resources and provide four types of services: start, stop, monitor
and clean. Start and stop are used to bring resources online or offline,

Chapter 4. Configuring for high availability 147

monitor is used to test a particular resource or application for its status,
and clean is used in the recovery process.

A variety of bundled agents are included as part of VERITAS Cluster
Server and are installed when VERITAS Cluster Server is installed. The
bundled agents are VCS processes that manage predefined resource types
commonly found in cluster configurations (that is, IP, mount, process and
share), and they help to simplify cluster installation and configuration
considerably. There are over 20 bundled agents with VERITAS Cluster
Server.

Enterprise agents tend to focus on specific applications such as the DB2
database application. The VCS HA-DB2 Agent can be considered an
Enterprise Agent, and it interfaces with VCS through the VCS Agent
framework.

VCS resources, resource types, and resource groups

A resource type is an object definition used to define resources within a
VCS cluster that will be monitored. A resource type includes the resource
type name and a set of properties associated with that resource that are
salient from a high availability point of view. A resource inherits the
properties and values of its resource type, and resource names must be
unique on a cluster-wide basis.

There are two types of resources: persistent and standard (non-persistent).
Persistent resources are resources such as network interface controllers
(NICs) that are monitored but are not brought online or taken offline by
VCS. Standard resources are those whose online and offline status is
controlled by VCS.

The lowest level object that is monitored is a resource, and there are
various resource types (that is, share, mount). Each resource must be
configured into a resource group, and VCS will bring all resources in a
particular resource group online and offline together. To bring a resource
group online or offline, VCS will invoke the start or stop methods for each
of the resources in the group. There are two types of resource groups:
failover and parallel. A highly available DB2 database configuration,
regardless of whether it is partitioned database environment or not, will
use failover resource groups.

A "primary" or "master” node is a node that can potentially host a resource.
A resource group attribute called systemlist is used to specify which
nodes within a cluster can be primaries for a particular resource group. In
a two node cluster, usually both nodes are included in the systemlist, but
in larger, multi-node clusters that might be hosting several highly available
applications there might be a requirement to ensure that certain application
services (defined by their resources at the lowest level) can never fail over
to certain nodes.

Dependencies can be defined between resource groups, and VERITAS
Cluster Server depends on this resource group dependency hierarchy in
assessing the impact of various resource failures and in managing recovery.
For example, if the resource group ClientAppl can not be brought online
unless the resource group DB2 has already been successfully started,
resource group ClientAppl is considered dependent on resource group
DB2.

148 Data Recovery and High Availability Guide and Reference

Synchronizing clocks in a partitioned database environment

You should maintain relatively synchronized system clocks across the database
partition servers to ensure smooth database operations and unlimited forward
recoverability.

Time differences among the database partition servers, plus any potential
operational and communications delays for a transaction should be less than the
value specified for the max_time_diff (maximum time difference among nodes)
database manager configuration parameter.

To ensure that the log record time stamps reflect the sequence of transactions in a
partitioned database environment, DB2 uses the system clock and the virtual
timestamp stored in the SQLOGCTL.LFH file on each machine as the basis for the
time stamps in the log records. If, however, the system clock is set ahead, the log
clock is automatically set ahead with it. Although the system clock can be set back,
the clock for the logs cannot, and remains at the same advanced time until the
system clock matches this time. The clocks are then in synchrony. The implication
of this is that a short term system clock error on a database node can have a long
lasting effect on the time stamps of database logs.

For example, assume that the system clock on database partition server A is
mistakenly set to November 7, 2005 when the year is 2003, and assume that the
mistake is corrected after an update transaction is committed in the database
partition at that database partition server. If the database is in continual use, and is
regularly updated over time, any point between November 7, 2003 and November
7, 2005 is virtually unreachable through rollforward recovery. When the COMMIT
on database partition server A completes, the time stamp in the database log is set
to 2005, and the log clock remains at November 7, 2005 until the system clock
matches this time. If you attempt to roll forward to a point in time within this time
frame, the operation will stop at the first time stamp that is beyond the specified
stop point, which is November 7, 2003.

Although DB2 cannot control updates to the system clock, the max_time_diff
database manager configuration parameter reduces the chances of this type of
problem occurring:

* The configurable values for this parameter range from 1 minute to 24 hours.

* When the first connection request is made to a non-catalog partition, the
database partition server sends its time to the catalog partition for the database.
The catalog partition then checks that the time on the database partition
requesting the connection, and its own time are within the range specified by
the max_time_diff parameter. If this range is exceeded, the connection is refused.

* An update transaction that involves more than two database partition servers in
the database must verify that the clocks on the participating database partition
servers are in synchrony before the update can be committed. If two or more
database partition servers have a time difference that exceeds the limit allowed
by max_time_diff, the transaction is rolled back to prevent the incorrect time from
being propagated to other database partition servers.

Client/server timestamp conversion

Timestamp conversion helps you maintain accurate records of activities on the
database. It allows you to view activities in local time recorded in GMT time zone
format, even if the database server is in a remote location with a different time
zone.

Chapter 4. Configuring for high availability 149

Timestamps are essential for auditing purposes. It is important that the integrity of
timestamps is maintained across all data partitions in a partitioned database
environment.

This section explains the generation of timestamps in a client/server environment:

* If you specify a local time for a rollforward operation, all messages returned will
also be in local time.

Note: All times are converted on the server and (in partitioned database
environments) on the catalog database partition.

* The timestamp string is converted to GMT on the server, so the time represents
the server's time zone, not the client's. If the client is in a different time zone
from the server, the server's local time should be used.

e If the timestamp string is close to the time change due to daylight savings time,

it is important to know whether the stop time is before or after the time change
so that it is specified correctly.

150 Data Recovery and High Availability Guide and Reference

Chapter 5. Administering and maintaining a highly available
solution

Once you have created, configured, and started your DB2 database high
availability solution running, there are ongoing activities you will have to perform.
You need to monitor, maintain, and repair your database solution to keep it
available to client applications.

Procedure

As your database system runs, you need to monitor and respond to the following
kinds of things:

1. Manage log files.

Log files grow larger, require archiving; and some log files require copying or
moving to be available for a restore operation.

2. Perform maintenance activities:
¢ Installing software
* Upgrading hardware
* Reorganizing database tables
¢ Database performance tuning
* Database backup

3. Synchronize primary and secondary or standby databases so that failover
works smoothly.

4. Identify and respond to unexpected failures in hardware or software.

Log file management

The DB2 database manager uses a number scheme to name log files. This naming
strategy has implications for log file reuse and log sequences. Also, a DB2 database
that has no client application connection uses a new log file when the next client
application connects to that database server.

These two aspects of DB2 Data Server database logging behavior affect the log file
management choices you make.

Consider the following when managing database logs:

* The numbering scheme for archived logs starts with S0000000.L0G, and
continues through $9999999.L0G, accommodating a potential maximum of 10
million log files. The database manager resets to S0000000. L0G if:

— A database configuration file is changed to enable rollforward recovery

— A database configuration file is changed to disable rollforward recovery

— 59999999.L0G has been used.

The DB2 database manager reuses log file names after restoring a database (with
or without rollforward recovery). The database manager ensures that an
incorrect log is not applied during rollforward recovery. If the DB2 database
manager reuses a log file name after a restore operation, the new log files are

archived to separate directories so that multiple log files with the same name
can be archived. The location of the log files is recorded in the recovery history

© Copyright IBM Corp. 2001, 2013 151

file so that they can be applied during rollforward recovery. You must ensure
that the correct logs are available for rollforward recovery.

When a rollforward operation completes successfully, the last log that was used
is truncated, and logging begins with the next sequential log. Any log in the log
path directory with a sequence number greater than the last log used for
rollforward recovery is re-used. Any entries in the truncated log following the
truncation point are overwritten with zeros. Ensure that you make a copy of the
logs before invoking the rollforward utility. (You can invoke a user exit program
to copy the logs to another location.)

* If a database has not been activated (by way of the ACTIVATE DATABASE
command), the DB2 database manager truncates the current log file when all
applications have disconnected from the database. The next time an application
connects to the database, the DB2 database manager starts logging to a new log
file. If many small log files are being produced on your system, you might want
to consider using the ACTIVATE DATABASE command. This not only saves the
overhead of having to initialize the database when applications connect, it also
saves the overhead of having to allocate a large log file, truncate it, and then
allocate a new large log file.

* An archived log can be associated with two or more different log sequences for a
database, because log file names are reused (see Figure 9 on page 153). For
example, if you want to recover Backup 2, there are two possible log sequences
that could be used. If, during full database recovery, you roll forward to a point
in time and stop before reaching the end of the logs, you have created a new log
sequence. The two log sequences cannot be combined. If you have an online
backup image that spans the first log sequence, you must use this log sequence
to complete rollforward recovery.

If you have created a new log sequence after recovery, any table space backup
images on the old log sequence are invalid. This is usually recognized at restore
time, but the restore utility fails to recognize a table space backup image on an
old log sequence if a database restore operation is immediately followed by the
table space restore operation. Until the database is actually rolled forward, the
log sequence that is to be used is unknown. If the table space is on an old log
sequence, it must be “caught” by the table space rollforward operation. A restore
operation using an invalid backup image might complete successfully, but the
table space rollforward operation for that table space will fail, and the table
space will be left in restore pending state.

For example, suppose that a table space-level backup operation, Backup 3,
completes between S0000013.L0G and S0000014.L0G in the top log sequence (see
Figure 9 on page 153). If you want to restore and roll forward using the
database-level backup image, Backup 2, you will need to roll forward through
S0000012.L0G. After this, you could continue to roll forward through either the
top log sequence or the (newer) bottom log sequence. If you roll forward
through the bottom log sequence, you will not be able to use the table
space-level backup image, Backup 3, to perform table space restore and
rollforward recovery.

To complete a table space rollforward operation to the end of the logs using the
table space-level backup image, Backup 3, you will have to restore the
database-level backup image, Backup 2, and then roll forward using the top log
sequence. Once the table space-level backup image, Backup 3, has been restored,
you can initiate a rollforward operation to the end of the logs.

152 Data Recovery and High Availability Guide and Reference

Backup 1 Backup 2 Backup 3

l l

‘SOOOOO10.LOGHSOOOOO11.LOGHSOOOOO12.LOG SOOOOO13.LOGH SOOOOO14.LOG" T

SOOOOO13.LOGHSOOOOO14.LOG" s

Restore Backup 2
and Roll Forward to
end of log 12.

Figure 9. Re-using Log File Names

On demand log archive

IBM DB2 server supports the closing (and, if enabled, the archiving) of the active
log for a recoverable database at any time. This allows you to collect a complete
set of log files up to a known point, and then to use these log files to update a
standby database.

You can initiate on demand log archiving by invoking the ARCHIVE LOG command,
or by calling the db2ArchiveLog APL

Log archiving using db2tapemgr
You can use the db2tapemgr utility to store archived log files to tape devices. The

db2tapemgr utility copies log files from disk to the specified tape device, and
updates the recovery history file with the new location of the copied log files.

Configuration

Set the database configuration parameter Togarchmethl to the location on disk of
the log files you want to copy to tape. The db2tapemgr utility reads this
Togarchmethl value to find the log files to copy. In a partitioned database
environment, the Togarchmethl configuration parameter must be set on each
database partition that contains log files to be copied.

The db2tapemgr utility does not use the logarchmeth2 database configuration
parameter.

STORE and DOUBLE STORE parameters

Issue the db2tapemgr command with either the STORE or DOUBLE STORE parameter to
transfer archived logs from disk to tape.

e The STORE parameter stores a range or all log files from the log archive directory
to a specified tape device and deletes the files from disk.

* The DOUBLE STORE parameter scans the history file to see whether logs were
stored to tape previously.

— If a log has never been stored before, db2tapemgr stores the log file to tape
and but does not delete it from disk.

— If a log has been stored before, db2tapemgr stores the log file to tape and
deletes it from disk.

Chapter 5. Administering and maintaining a highly available solution 153

Use DOUBLE STORE if you want to keep duplicate copies of your archived logs on
tape and on disk, or if you want to store the same logs on two different tapes.

When you issue the db2tapemgr command with either the STORE or DOUBLE STORE
parameter, the db2tapemgr utility first scans the history file for entries where the
Togarchmethl configuration parameter is set to disk. If it finds that any files that
are supposed to be on disk, are not on disk, it issues a warning. If the db2tapemgr
utility finds no log files to store, it stops the operation and issues a message to
inform you that there is nothing to do.

RETRIEVE parameters

Issue the db2tapemgr command with the RETRIEVE parameter to transfer files from
tape to disk.

e Use the RETRIEVE ALL LOGS or LOGS n TO n parameter to retrieve all archived logs
that meet your specified criteria and copy them to disk.

* Use the RETRIEVE FOR ROLLFORWARD TO POINT-IN-TIME parameter to retrieve all
archived logs required to perform a rollforward operation and copy them to
disk.

* Use the RETRIEVE HISTORY FILE parameter to retrieve the history file from tape
and copy it to disk.

Behavior

If the db2tapemgr utility finds log files on disk, it then reads the tape header to
make sure that it can write the log files to the tape. It also updates the history

for those files that are currently on tape. If the update fails, the operation stops
and an error message is displayed.

If the tape is writeable, the db2tapemgr utility copies the logs to tape. After the
files are copied, the log files are deleted from disk. Finally, the db2tapemgr utility
copies the history file to tape and deletes it from disk.

The db2tapemgr utility does not append log files to a tape. If a store operation
does not fill the entire tape, then the unused space is wasted.

The db2tapemgr utility stores log files only once to any given tape. This
restriction exists to avoid any problems inherent to writing to tape media, such
as stretching of the tape.

In a partitioned database environment, the db2tapemgr utility only executes
against one database partition at a time. You must run the appropriate command
for each database partition, specifying the database partition number using the
ON DBPARTITIONNUM parameter of the db2tapemgr command. You must also ensure
that each database partition has access to a tape device.

* The db2tapemgr utility is not supported in DB2 pureScale environments.
Examples
The following example shows how to use the db2tapemgr command to store all log

files from the primary archive log path for database sample on database partition
number 0 to a tape device and remove them from the archive log path:

154 Data Recovery and High Availability Guide and Reference

db2tapemgr db sample on dbpartitionnum 0 store on /dev/rmt0.1 all logs

The following example shows how to store the first 10 log files from the primary
archive log path to a tape device and remove them from the archive log path:

db2tapemgr db sample on dbpartitionnum store on /dev/rmt0.1 10 Togs

The following example shows how to store the first 10 log files from the primary
archive log path to a tape device and then store the same log files to a second tape
and remove them from the archive log path:

db2tapemgr db sample on dbpartitionnum double store on /dev/rmt0.1 10 Togs
db2tapemgr db sample on dbpartitionnum double store on /dev/rmtl.1 10 logs

The following example shows how to retrieve all log files from a tape to a
directory:

db2tapemgr db sample on dbpartitionnum retrieve all Togs from /dev/rmtl.1
to /home/dbuser/archived_logs

Automating log file archiving and retrieval with user exit
programs

You can automate log file archiving and retrieval by creating a user exit program
that the DB2 database manager calls to carry out the archiving or retrieval
operation.

When the DB2 database manager invokes your user exit program, the following
happens:

* The database manager passes control to the user exit program;
* The database manager passes parameters to the user exit program; and

¢ On completion, the use exit program passes a return code back to the database
manager.

Configuration

Before invoking a user exit program for log file archiving or retrieval, ensure that
the Togarchmethl database configuration parameter is set to USEREXIT. This also
enables your database for rollforward recovery.

User exit program requirements

The executable file for your user exit program must be called db2uext2.

User exit programs must copy log files from the active log path to the archive
log path, they must not move them. Do not remove log files from the active log
path. If you remove log files from the active log path, your DB2 database might
not be able to successfully recover in the event of a failure.

DB2 database requires the log files to be in the active log path during recovery.
The DB2 database server removes archived log files from the active log path
when these log files are no longer needed for recovery.

User exit programs must handle error conditions. Your user exit program must
handle errors because the DB2 database manager can handle only a limited set
of return conditions.

See “User exit error handling” on page 157.

Chapter 5. Administering and maintaining a highly available solution 155

Each DB2 database manager instance can invoke only one user exit program.
Because the database manager instance can invoke only one user exit program,
you must design your user exit program with a section for each operation it
might have to perform.

Sample user exit programs

Sample user exit programs are provided for all supported platforms. You can
modify these programs to suit your particular requirements. The sample programs
are well commented with information that will help you to use them most
effectively.

You should be aware that user exit programs must copy log files from the active
log path to the archive log path. Do not remove log files from the active log path.
(This could cause problems during database recovery.) DB2 removes archived log
files from the active log path when these log files are no longer needed for
recovery.

Following is a description of the sample user exit programs that are shipped with
DB2 Data Server.

* UNIX operating systems
The user exit sample programs for DB2 Data Server for UNIX operating systems
are found in the sqllib/samples/c subdirectory. Although the samples provided
are coded in C, your user exit program can be written in a different
programming language.
Your user exit program must be an executable file whose name is db2uext2.
There are four sample user exit programs for UNIX operating systems:
— db2uext2.ctsm

This sample uses Tivoli Storage Manager to archive and retrieve database log
files.

— db2uext2.ctape
This sample uses tape media to archive and retrieve database log files .
— db2uext2.cdisk

This sample uses the operating system COPY command and disk media to
archive and retrieve database log files.

— db2uxt2.cxbsa

This sample works with the XBSA Draft 0.8 published by the X/Open group.
It can be used to archive and retrieve database log files. This sample is only
supported on AIX.

* Windows operating systems

The user exit sample programs for DB2 Data Server for Windows operating
systems are found in the sql1ib\samples\c subdirectory. Although the samples
provided are coded in C, your user exit program can be written in a different
programming language.

Your user exit program must be an executable file whose name is db2uext2.
There are two sample user exit programs for Windows operating systems:

— dbZuext2.ctsm

This sample uses Tivoli Storage Manager to archive and retrieve database log
files.

— db2uext2.cdisk

156 Data Recovery and High Availability Guide and Reference

This sample uses the operating system COPY command and disk media to
archive and retrieve database log files.

User exit program calling format
When the DB2 database manager calls a user exit program, it passes a set of
parameters (of data type CHAR) to the program.

Command syntax

db2uext2 -0S<os> -RL<db2rel> -RQ<request> -DB<dbname>
-NN<nodenum> -LP<logpath> -LN<logname> -AP<tsmpasswd>
-SP<startpage> -LS<logsize>

os Specifies the platform on which the instance is running. Valid values are:
AIX, Solaris, HP-UX, SCO, Linux, and NT.

db2rel Specifies the DB2 release level. For example, SQLO7020.

request
Specifies a request type. Valid values are: ARCHIVE and RETRIEVE.

dbname
Specifies a database name.

nodenum
Specifies the local node number, such as 5, for example.

logpath
Specifies the fully qualified path to the log files. The path must contain the
trailing path separator. For example, /u/database/1og/path/, or
d:\logpath\.

logname
Specifies the name of the log file that is to be archived or retrieved, such as
S0000123.L0G, for example.

tsmpasswd
Specifies the TSM password. (If a value for the database configuration
parameter tsm_password has previously been specified, that value is passed
to the user exit program.)

startpage
Specifies the number of 4-KB offset pages of the device at which the log
extent starts.

logsize
Specifies the size of the log extent, in 4-KB pages. This parameter is only
valid if a raw device is used for logging.

User exit error handling

If you create a user exit program to automate log file archiving and retrieval, your
user exit program passes return codes to the DB2 database manager that invoked
the user exit program.

The DB2 database manager can only handle a limited list of specific error codes.
However, your user exit program might encounter many different kinds of error
conditions, such as operating system errors. Your user exit program must map the
error conditions it encounters to error codes that the database manager can handle.

Table 8 on page 158 shows the codes that can be returned by a user exit program,

and describes how these codes are interpreted by the database manager. If a return
code is not listed in the table, it is treated as if its value were 32.

Chapter 5. Administering and maintaining a highly available solution 157

Table 8. User Exit Program Return Codes

Return Code |Explanation

0 | Successful.

4 | Temporary resource error encountered.”

8 | Operator intervention is required.”

12 | Hardware error.”

16 | Error with the user exit program or a software function used by the
program.”

20 | Error with one or more of the parameters passed to the user exit program.
Verify that the user exit program is correctly processing the specified
parameters.b

24 | The user exit program was not found. °

28 | Error caused by an input/output (I/O) failure, or by the operating
system.

32 | The user exit program was terminated by the user.”

255 | Error caused by the user exit program not being able to load the library
file for the executable.

* For archiving or retrieval requests, a return code of 4 or 8 causes a retry in five minutes.
If the user exit program continues to return 4 or 8 on retrieve requests for the same log file,
DB2 will continue to retry until successful. (This applies to rollforward operations, or calls
to the db2ReadLog API, which is used by the replication utility.)

® User exit requests are suspended for five minutes. During this time, all requests are
ignored, including the request that caused the error condition. Following this five-minute
suspension, the next request is processed. If this request is processed without error,
processing of new user exit requests continues, and DB2 reissues the archive request that
failed or was suspended previously. If a return code greater than 8 is generated during the
retry, requests are suspended for an additional five minutes. The five-minute suspensions
continue until the problem is corrected, or the database is stopped and restarted. Once all
applications have disconnected from the database, DB2 issues an archive request for any
log file that might not have been successfully archived previously. If the user exit program
fails to archive log files, your disk might become filled with log files, and performance
might be degraded. Once the disk becomes full, the database manager will not accept
further application requests for database updates. If the user exit program was called to
retrieve log files, rollforward recovery is suspended, but not stopped, unless the
ROLLFORWARD STOP option was specified. If the STOP option was not specified, you
can correct the problem and resume recovery.

¢ If the user exit program returns error code 255, it is likely that the program cannot load
the library file for the executable. To verify this, manually invoke the user exit program.
More information is displayed.

Note: During archiving and retrieval operations, an alert message is issued for all return
codes except 0, and 4. The alert message contains the return code from the user exit
program, and a copy of the input parameters that were provided to the user exit program.

Log file allocation and removal

A log file which is required for crash recovery is called an active log. Unless
infinite logging is enabled, log files in the active log path are never removed if
they might be required for crash recovery.

If infinite logging is enabled and space needs to be made available for more active
log files, the database manager archives an active log file and renames it to create a

158 Data Recovery and High Availability Guide and Reference

new active log file. If crash recovery is needed when infinite logging is used, log
files might need to be retrieved from the archive log path to complete crash
recovery.

When the Togarchmethl database configuration parameter is not set to OFF, a full
log file becomes a candidate for removal only after it is no longer required for
crash recovery, unless infinite logging is enabled, in which case the log files might
be moved to the archive log path instead.

When logarchmethl or Togarchmeth2 is set to a value other than OFF, LOGRETAIN, or
USEREXIT, archived log file compression can be enabled to help reduce the amount
of disk space required for archived log files.

The process of allocating new log files and removing old log files is dependent on
the settings of the Togarchmethl and Togarchmeth2 database configuration
parameters:

logarchmethl and logarchmeth2 are set to OFF
Circular logging is used. Roll-forward recovery is not supported with
circular logging, while crash recovery is.

During circular logging, new log files, other than secondary logs, are not
generated and old log files are not deleted. Log files are handled in a
circular fashion. That is, when the last log file is full, the database manager
begins writing to the first log file.

A log full situation can occur if all of the log files are active and the
circular logging process cannot wrap to the first log file. Secondary log
files are created when all the primary log files are active and full.
Secondary log files are deleted when the database is deactivated or when
the space they are using is required for the active log files.

logarchmethl or Togarchmeth2 is set to LOGRETAIN
Archive logging is used. The database is a recoverable database. Both
roll-forward recovery and crash recovery are enabled. The database
manager does not manage the log files. After you archive the log files, you
must delete them from the active log path so that the disk space can be
reused for new log files. To determine which log files are archived logs,
check the value of the Toghead database configuration parameter. This
parameter indicates the lowest numbered log that is active. Those logs
with sequence numbers less than the Toghead value are not active and can
be archived and removed.

logarchmethl or Togarchmeth? is set to a value other than OFF or LOGRETAIN
Archive logging is used. The database is a recoverable database. Both
roll-forward recovery and crash recovery are enabled. When a log file
becomes full, it is automatically archived by the database manager.

Log files are not deleted. Instead, when a new log file is required and one
is not available, an archived log file is renamed and used again. An
archived log file, is not deleted or renamed once it is closed and copied to
the archived log file directory. The database manager waits until a new log
file is needed and then renames the oldest archived log. A log file that is
moved to the database directory during recovery is removed during the
recovery process when it is no longer needed.

If an error occurs when log files are being archived, archiving is suspended
for the amount of time specified by the archretrydelay database
configuration parameter. You can also use the numarchretry database

Chapter 5. Administering and maintaining a highly available solution 159

configuration parameter to specify the number of times that the database
manager is to try archiving a log file to the primary or secondary archive
directory before it tries to archive log files to the failover directory
(specified by the failarchpath database configuration parameter).
Numarchretry is only used if the failarchpath database configuration
parameter is set. If numarchretry is set to 0, the database manager
continuously tries archiving from the primary or the secondary log path.

The easiest way to remove old log files is to restart the database. Once the
database is restarted, only new log files and log files that the database
manager failed to archive are found in the database directory.

When a database is restarted, the minimum number of logs in the database
log directory equals the number of primary logs which can be configured
using the Togprimary database configuration parameter. It is possible for
more than the number of primary logs to be found in the log directory.
This condition occurs if the number of empty logs in the log directory at
the time the database was shut down, is greater than the value of the
Togprimary configuration parameter at the time the database is restarted.
This happens if the value of the Togprimary configuration parameter is
changed between the database being shut down and restarted, or if
secondary logs are allocated and never used.

When a database is restarted, if the number of empty logs is less than the
number of primary logs specified by the Togprimary configuration
parameter, additional log files are allocated to make up the difference. If
there are more empty logs than primary logs available in the database
directory, the database can be restarted with as many available empty logs
as are found in the database directory. After database shutdown, secondary
log files that are created remain in the active log path when the database is
restarted.

Including log files with a backup image

When performing an online backup operation, you can specify that the log files
required to restore and recover a database are included in the backup image.

This means that if you need to ship backup images to a disaster recovery site, you
do not have to send the log files separately or package them together yourself.
Further, you do not have to decide which log files are required to guarantee the
consistency of an online backup. This provides some protection against the
deletion of log files required for successful recovery.

To use this feature, specify the INCLUDE LOGS option of the BACKUP DATABASE
command. When you specify this option, the backup utility truncates the currently
active log file and copies the necessary set of log extents into the backup image.

To restore the log files from a backup image, use the LOGTARGET option of the
RESTORE DATABASE command and specify a fully qualified path that exists on the
DB2 server. The restore database utility then writes the log files from the image to
the target path. If a log file with the same name exists in the target path, the
restore operation fails and an error is returned. If the LOGTARGET option is not
specified, no log files are restored from the backup image.

If the LOGTARGET option is specified and the backup image does not include any log

files, an error is returned before an attempt is made to restore any table space data.
The restore operation also fails if an invalid or read-only path is specified. During

160 Data Recovery and High Availability Guide and Reference

a database or table space restore where the LOGTARGET option is specified, if one or
more log files cannot be extracted, the restore operation fails and an error is
returned.

You can also choose to restore only the log files saved in the backup image. To do
this, specify the LOGS option with the LOGTARGET option of the RESTORE DATABASE
command. If the restore operation encounters any problems when restoring log
files in this mode, the restore operation fails and an error is returned.

During an automatic incremental restore operation, only the logs included in the
target image of the restore operation are retrieved from the backup image. Any
logs that are included in intermediate images referenced during the incremental
restore process are not extracted from those backup images. During a manual
incremental restore, if you specify a log target directory when restoring a backup
image that includes log files, the log files in that backup image are restored.

If you roll a database forward that was restored from an online backup image that
includes log files, you might encounter error SQL1268N, which indicates
roll-forward recovery stopped due to an error received when retrieving a log. This
error is generated when the target system to which you are attempting to restore
the backup image does not have access to the facility used by the source system to
archive its transaction logs.

If you specify the INCLUDE LOGS option of the BACKUP DATABASE command when
you back up a database, then perform a restore operation and a roll-forward
operation that use that back up image, DB2 still searches for additional transaction
logs when rolling the database forward, even though the backup image includes
logs. It is standard rollforward behavior to continue to search for additional
transaction logs until no more logs are found. It is possible to have more than 1
log file with the same timestamp. Consequently, DB2 does not stop as soon as it
finds the first timestamp that matches the point-in-time to which you are rolling
forward the database as there might be other log files that also have that
timestamp. Instead, DB2 continues to look at the transaction log until it finds a
timestamp greater than the point-in-time specified.

When no additional logs can be found, the rollforward operation ends successfully.
However, if there is an error while searching for additional transaction log files,
error SQL1268N is returned. Error SQL1268N can occur because during the initial
restore, certain database configuration parameters were reset or overwritten. Three
of these database configuration parameters are the TSM parameters, tsm_nodename,
tsm_owner, and tsm_password. They are all reset to NULL. To rollforward to the end
of logs, you need to reset these database configuration parameters to correspond to
the source system before the rollforward operation. Alternatively, you can specify
the NORETRIEVE option when you issue the ROLLFORWARD DATABASE command. This
prevents the DB2 database system from trying to obtain potentially missing
transaction logs elsewhere.

Note:
1. This feature is not supported for offline backups.

2. When logs are included in an online backup image, the resulting image cannot
be restored on releases of DB2 database before Version 8.2.

Chapter 5. Administering and maintaining a highly available solution 161

Preventing the accidental loss of log files

In situations where you need to drop a database or perform a point-in-time
rollforward recovery, it is possible to lose log files that might be required for future
recovery operations. In these cases, it is important to make copies of all the logs in
the current database log path directory.

Consider the following scenarios:

If you plan to drop a database before a restore operation, you need to save the
log files in the active log path before issuing the DROP DATABASE command. After
the database is restored, these log files might be required for rollforward
recovery because some of them might not have been archived before the
database was dropped. Normally, you are not required to drop a database before
issuing the RESTORE command. However, you might have to drop the database
(or drop the database on one database partition by specifying the AT
DBPARTITIONNUM parameter of the DROP DATABASE command), because it was
damaged to the extent that the RESTORE command fails. You might also decide to
drop a database before the restore operation to give yourself a fresh start.

If you are rolling a database forward to a specific point in time, log data after
the time stamp you specify is overwritten. If, after you complete the
point-in-time rollforward operation and reconnect to the database, you
determine that you actually need to roll the database forward to a later point in
time, you are not able to because the logs are already overwritten. It is possible
that the original set of log files might have been archived; however, DB2 might
be calling a user exit program to automatically archive the newly generated log
files. Depending on how the user exit program is written, this might cause the
original set of log files in the archive log directory to be overwritten. Even if
both the original and new set of log files exist in the archive log directory (as
different versions of the same files), you might have to determine which set of
logs should be used for future recovery operations.

Minimizing the impact of maintenance on availability

You will have to perform maintenance on your DB2 database solution such as:
software or hardware upgrades; database performance tuning; database backups;
statistics collection; and monitoring for business purposes.

Minimizing the impact that performing that maintenance has on the availability of
your solution involves careful scheduling of offline maintenance, and using DB2
features and functionality that reduce the availability impact of online
maintenance.

Before you begin

Before you can use the following steps to minimize the impact of maintenance on
the availability of your DB2 database solution, you must:

* configure automatic maintenance; and
* install the High Availability Disaster Recovery (HADR) feature.

Procedure

1. Allow automatic maintenance to do your maintenance for you.

162 Data Recovery and High Availability Guide and Reference

DB2 database can automate many database maintenance activities. Once the
automatic maintenance has been configured, the maintenance will happen
without you taking any additional steps to perform that maintenance.

2. Use a DB2 High Availability Disaster Recovery (HADR) rolling upgrade to
minimize the impact of other maintenance activities.

If you are upgrading software or hardware, or if you are modifying some
database manager configuration parameters, the HADR feature enables you to
accomplish those changes with minimal interruption of availability. This
seamless change enabled by HADR is called a rolling upgrade.

Some maintenance activities require you to shut down a database before
performing the maintenance, even in the HADR environment. Under some
conditions, the procedure for shutting down an HADR database is a little
different than the procedure for shutting down a standard database: if an
HADR database is started by a client application connecting to it, you must use
the DEACTIVATE DATABASE command.

Stopping DB2 High Availability Disaster Recovery (HADR)

If you are using the DB2 High Availability Disaster Recovery (HADR) feature,
stopping HADR operations to perform maintenance on the primary or standby
databases might be necessary. Stop HADR operations only on the database that
you are performing maintenance. To stop using HADR completely, stop HADR on
both databases.

About this task

Warning: If you want to stop the specified database but you still want it to
maintain its role as either an HADR primary or standby database, do not issue the
STOP HADR command. If you issue the STOP HADR command the database will
become a standard database and might require reinitialization in order to resume
operations as an HADR database. Instead, issue the DEACTIVATE DATABASE
command.

If you issue the STOP HADR command against a standard database, an error will be
returned.

Procedure

To stop HADR operations on the primary or standby database:

e From the CLP, issue the STOP HADR command on the database where you want to
stop HADR operations.

In the following example, HADR operations are stopped on database SOCKS:
STOP HADR ON DATABASE SOCKS

If you issue this command against an inactive primary database, the database
switches to a standard database and remains offline.

If you issue this command against an inactive standby database the database
switches to a standard database, is placed in rollforward pending state, and
remains offline.

If you issue this command on an active primary database, logs stop being
shipped to the standby database and all HADR engine dispatchable units
(EDUs) are shut down on the primary database. The database switches to a
standard database and remains online. Transaction processing can continue. You
can issue the START HADR command with the AS PRIMARY option to switch
the role of the database back to primary database.

Chapter 5. Administering and maintaining a highly available solution 163

If you issue this command on an active standby database, an error message is
returned, indicating that you must deactivate the standby database before
attempting to convert it to a standard database.

* From an application, call the db2HADRStop application programming interface
(API).

* From IBM Data Studio, open the task assistant for the STOP HADR command.

Database activation and deactivation in a high availability
disaster recovery (HADR) environment

If a standard database is started by a client connection, the database is shut down
when the last client disconnects. If an HADR primary database is started by a
client connection, it is equivalent to starting the database by using the ACTIVATE
DATABASE command.

To shut down an HADR primary database that was started by a client connection,
you need to explicitly issue the DEACTIVATE DATABASE command.

On a standard database in rollforward pending state, the ACTIVATE DATABASE and
DEACTIVATE DATABASE commands are not applicable. You can only continue
rollforward, stop rollforward, or use the START HADR command to start the database
as an HADR standby database. Once a database is started as an HADR standby,
you can use the ACTIVATE DATABASE and DEACTIVATE DATABASE commands to start
and stop the database.

Activate a primary database using the following methods:

* client connection

* ACTIVATE DATABASE command

* Task assistant for the ACTIVATE DATABASE command in IBM Data Studio
* START HADR command with the AS PRIMARY option

Deactivate a primary database using the following methods:
* DEACTIVATE DATABASE command

Note: If you deactivate an HADR primary database that is in disconnected peer
state using the DEACTIVATE DATABASE command or the sqle_deactivate_db API,
the database will be in an inconsistent state. The database will require crash
recovery upon restart and no offline backups can be taken of this database until
it is restarted.

e Task assistant for the DEACTIVATE DATABASE command in IBM Data Studio
* db2stop command with the FORCE parameter

Activate a standby database using the following methods:

e ACTIVATE DATABASE command

* Task assistant for the ACTIVATE DATABASE command in IBM Data Studio
* START HADR command with the AS STANDBY option

Deactivate a standby database using the following methods:

* DEACTIVATE DATABASE command

* Task assistant for the DEACTIVATE DATABASE command in IBM Data Studio
* db2stop command with the FORCE parameter

164 Data Recovery and High Availability Guide and Reference

Recommended order for shutting down an HADR pair
n

Warning: Although the STOP HADR command can be used to stop HADR on the
primary or the standby, or both, it should be used with caution. If you want to
stop the specified database but still want it to maintain its role as either an HADR
primary or a standby database, do not issue the STOP HADR command. If you issue
the STOP HADR command, the database becomes a standard database and might
require re-initialization in order to resume operations as an HADR database.
Instead, issue the DEACTIVATE DATABASE command.

If you only want to shut down the HADR operation, this is the recommended way
of shutting down the HADR pair:

1. Deactivate the primary database
2. Stop DB2 on the primary database
3. Deactivate the standby database
4. Stop DB2 on the standby database

Table space rebalance considerations in a DB2 High
Availability Disaster Recovery (HADR) environment

You can use the ALTER TABLESPACE REBALANCE or ALTER TABLESPACE
USING STOGROUP statement to start a rebalance operation on a primary
database. The statement is replayed on the standby database, and a corresponding
rebalance operation is started.

During the rebalance operation, you can specify the ALTER TABLESPACE
statement with the REBALANCE SUSPEND clause to suspend the rebalance
operation on the primary database. To resume the suspended rebalance operation,
specify the ALTER TABLESPACE statement with the REBALANCE RESUME
clause.

The standby database remains in active state when it replays an ALTER
TABLESPACE REBALANCE SUSPEND statement. Because the rebalance is
suspended on the primary database, when the standby takes over as the new
primary database the rebalance operation on the new primary database is
suspended and the rebalance operation on the new standby database is implicitly
resumed.

When you restore a database using a split mirror as a clone database or as a
standby database, any suspended rebalance operations for table spaces are
automatically resumed at database startup.

Performing rolling updates and upgrades in a DB2 High
Availability Disaster Recovery (HADR) environment

Use this procedure in a high availability disaster recovery (HADR) environment
when you upgrade software or hardware, update your DB2 database system, or
change database configuration parameters.

This procedure keeps database service available throughout the upgrade process,
with only a momentary service interruption when processing is switched from one
database to the other.With multiple standbys, you can provide continued HA and
DR protection throughout the update or upgrade process.

Chapter 5. Administering and maintaining a highly available solution 165

Before you begin

Review the system requirements for HADR. See “System requirements for High
Availability Disaster Recovery (HADR)” on page 61.

The HADR pair should be in peer state before starting the rolling upgrade.

Note: All DB2 database system fix packs and upgrades should be implemented in
a test environment before being applied to your production system.

About this task

This procedure will not work to upgrade from an earlier to a later version of a
DB2 database system; for example, you cannot use this procedure to upgrade from
a version 8 to a version 9 database system. You can use this procedure to perform
a rolling update on your database system from one modification level to another
only, for example by applying a fix pack. During rolling updates, the modification
level (for example, the fix pack level) of the standby database can be later than that
of the primary database for a short while to test the new level. However, you
should not keep this configuration for an extended period to reduce the risk of
using features that might be incompatible between the levels. The primary and
standby databases will not connect to each other if the modification level of the
database system for the primary database is later than that of the standby
database.

This procedure will not work if you update the DB2 HADR configuration
parameters. Updates to HADR configuration parameters should be made
separately. Because HADR requires the parameters on the primary and standby to
be the same, this might require both the primary and standby databases to be
deactivated and updated at the same time.

Procedure

To perform a rolling upgrade in an HADR environment:

1. Upgrade the system where the standby database resides:
a. Use the DEACTIVATE DATABASE command to shut down the standby database.
b. If necessary, shut down the instance on the standby database.

c. Change one or more of the following: the software, the hardware, or the
DB2 configuration parameters.

Note: You cannot change any HADR configuration parameters when
performing a rolling upgrade.

d. If necessary, restart the instance on the standby database.
e. Use the db2pd command to restart the standby database.

f. Ensure that the standby database enters peer state. Use the GET SNAPSHOT
command to check this.

2. Switch the roles of the primary and standby databases:
a. Issue the TAKEOVER HADR command on the standby database.

b. Direct clients to the new primary database. This can be done using
automatic client reroute.

Note: Because the standby database takes over as the primary database, the
new primary database is now upgraded. If you are applying a DB2

166 Data Recovery and High Availability Guide and Reference

database system fix pack, the TAKEOVER HADR command changes the role of
the original primary database to standby database. However, the command
does not let the new standby database connect to the newly updated
primary database. Because the new standby database uses an older version
of the DB2 database system, it might not understand the new log records
generated by the updated primary database, and it will be shut down. In
order for the new standby database to reconnect with the new primary
database (that is, for the HADR pair to reform), the new standby database
must also be updated.

3. Upgrade original primary database (which is now the standby database) using
the same procedure as in Step 1. When you have done this, both databases are
upgraded and connected to each other in HADR peer state. The HADR system
provides full database service and full high availability protection.

4. Optional: To return to your original configuration, switch the roles of the
primary and standby database as in step 2.

To enable the HADR reads on standby feature during the rolling upgrade, defer
the optional Step 4, and perform the following steps. The binding of internal
DB2 packages occurs at first connection time, and can complete successfully
only on the primary database. These steps are necessary to ensure the
consistency of the internal DB2 packages on the standby database before read
operations are introduced.

5. Enable the HADR reads on standby feature on the standby database as follows:
a. Set the DB2_HADR_ROS registry variable to ON on the standby database.

Use the DEACTIVATE DATABASE command to shut down the standby database.

Restart the instance on the standby database.

Use the ACTIVATE DATABASE command to restart the standby database.

Use the GET SNAPSHOT command to check that the standby database enters
PEER state.

6. Switch the roles of the primary and standby database as follows:
a. Issue the TAKEOVER HADR command on the standby database.
b. Direct clients to the new primary database.

® oo

7. Repeat the same procedure in Step 5 to enable the HADR reads on standby
feature on the new standby database.

8. Optional: To return to your original configuration, switch the roles of the
primary and standby database as in step 2.

Rolling upgrade in an automated High Availability Disaster
Recovery (HADR) environment

When you use the integrated High Availability (HA) feature to automate HADR,
additional steps are required to upgrade software (operating system or DB2
database system), hardware, or change database configuration parameters. Use this
procedure to perform a rolling upgrade in an automated HADR environment.

Before you begin

You must have the following prerequisites ready to perform the steps described in
the procedures section:

¢ Two DB2 instances (in this example, named stevera on each node).

* Two nodes (grom04 and grom03). The grom04 machine is initially hosting the
HADR Primary.

* The instances are originally running at DB2 V9.8 GA code.

Chapter 5. Administering and maintaining a highly available solution 167

* The instances are configured with Integrated HA control of HADR failover. The
Cluster Domain is named test.

Note: All DB2 database system fix packs and upgrades should be implemented in
a test environment before being applied to your production system.

The HADR pair should be in peer state before starting the rolling upgrade.
Restrictions

This procedure will not work to migrate from an earlier to a later version of a DB2
database system; for example, you cannot use this procedure to migrate from a
version 8 to a version 9 database system. You can use this procedure to update
your database system from one modification level to another only, for example by
applying a fix pack.

This procedure will not work if you update the DB2 HADR configuration
parameters. Updates to HADR configuration parameters should be made
separately. Because HADR requires the parameters on the primary and standby to
be the same, this might require both the primary and standby databases to be
deactivated and updated at the same time.

Procedure
1. Display Initial System State:

root@grom03:# 1srpdomain
Name OpState RSCTActiveVersion MixedVersions TSPort GSPort

test Online 2.4.7.1 No 12347 12348

root@grom03:# 1ssam
Online IBM.ResourceGroup:db2_stevera_grom03_0-rg Nominal=0nline
'- Online IBM.Application:db2_stevera_grom03_0-rs
'- Online IBM.Application:db2_stevera_grom03_0-rs:grom03
OnTine IBM.ResourceGroup:db2_stevera_grom04_0-rg Nominal=Online
'- Online IBM.Application:db2_stevera_grom04 0-rs
'- Online IBM.Application:db2_stevera_grom04_0-rs:grom04
Online IBM.ResourceGroup:db2_stevera_stevera SVTDB-rg Nominal=OnTline
|- Online IBM.Application:db2_stevera_stevera SVTDB-rs
|- Offline IBM.Application:db2_stevera stevera SVTDB-rs:grom03
'- Online IBM.Application:db2_stevera_stevera_SVTDB-rs:grom04
'- Online IBM.ServicelIP:db2ip_9_26_124_22-rs
|- 0ffline IBM.ServiceIP:db2ip 9 26 124 22-rs:grom03
‘- Online IBM.ServicelP:db2ip_9_26_124 22-rs:grom04

root@grom03:# 1srpnode
Name OpState RSCTVersion

grom03 Online 2.
grom@4 Online 2

From this example, you see that you must upgrade the Standby instance on
grom03. To do that, stop all resource groups hosted on grom03.

2. Stop all Resource Groups on Standby Node and confirm change:
root@grom03:# chrg -o 0ffline db2_stevera_grom03_0-rg
root@grom@3:# 1ssam g db2_stevera_grom03_0-rg
0ffline IBM.ResourceGroup:db2_stevera_grom03_0-rg Nominal=0ffline

'- 0ffline IBM.Application:db2_stevera grom@3 0-rs
'- O0ffline IBM.Application:db2_stevera_grom@3_0-rs:grom03

3. Stop Cluster Node (the Standby Node) and confirm change:

168 Data Recovery and High Availability Guide and Reference

root@grom03:# stoprpnode grom03

root@grom03:# 1srpdomain
Name OpState RSCTActiveVersion MixedVersions TSPort GSPort

test Offline 2.4.7.1 No 12347 12348

Install DB2 fix pack on Standby Node:

Optional: On AIX, you might need to install RSCT prerequisites for the fix
pack in question.

root@grom03:# ./installFixPack -b /opt/ibm/db2/V9.8
DBI10171 installFixPack is updating the DB2 product(s) installed in
location /opt/ibm/db2/V9.8.

DB2 fix pack installation is being started.

Start the node and online the resource group:
When the installation is completed successfully.
root@grom03:# startrpdomain test

root@grom03:# 1srpdomain
Name OpState RSCTActiveVersion MixedVersions TSPort GSPort

test Online 2.4.7.1 Yes 12347 12348

root@grom@3:# chrg -o Online db2_stevera_grom03_0-rg
Verify that the fix pack is applied and HADR is in peer state again:
stevera@grom03% db2level

stevera@grom03% db2pd hadr db SVTDB
Perform TAKEOVER:

To upgrade the other node (in this case, that is grom04), perform TAKEOVER
so that the node grom03 is hosting the HADR Primary.

root@grom03:# su - stevera

stevera@grom03% db2 takeover hadr on db SVTDB
DB20000I The TAKEOVER HADR ON DATABASE command completed successfully.

root@grom03:# 1ssam
Online IBM.ResourceGroup:db2_stevera_grom03 0-rg Nominal=0Online
'- Online IBM.Application:db2_stevera_grom03_0-rs
'- Online IBM.Application:db2_stevera_grom03_0-rs:grom03
Online IBM.ResourceGroup:db2_stevera_grom04_0-rg Nominal=0Online
'- Online IBM.Application:db2_stevera_grom04_0-rs
'- Online IBM.Application:db2_stevera_grom04 0-rs:grom04
OnTine IBM.ResourceGroup:db2_stevera_stevera_SVTDB-rg Nominal=Online
|- Online IBM.Application:db2_stevera stevera SVTDB-rs
|- Online IBM.Application:db2_stevera_ stevera SVTDB-rs:grom03
'- 0ffline IBM.Application:db2_stevera_stevera_SVTDB-rs:grom04
'- Online IBM.ServicelIP:db2ip_9_26_124 22-rs
|- Online IBM.ServiceIP:db2ip 9 26 124 22-rs:grom03
'- 0ffline IBM.ServiceIP:db2ip_9 26 _124 22-rs:grom04

Perform upgrade at node gromo04:
root@grom03:# ssh root@grom04
root@grom@4:# chrg -o 0ffline db2_stevera_grom04_0-rg
root@grom@4:# 1ssam g db2_stevera_grom04_0-rg
O0ffline IBM.ResourceGroup:db2_stevera_grom04_0-rg Nominal=0ffline
'- 0ffline IBM.Application:db2_stevera_grom@4 0-rs
'- O0ffline IBM.Application:db2_stevera_grom04_0-rs:grom04

root@grom04:# stoprpnode grom04

Chapter 5. Administering and maintaining a highly available solution 169

Optional: On AIX, you might need to install RSCT prerequisites for the fix
pack in question.

root@grom@4:# ./installFixPack -b /opt/ibm/db2/v9.8
DBI10171 installFixPack is updating the DB2 product(s) installed in
location /opt/ibm/db2/V9.8

DB2 fix pack installation is being started.
When the installation is completed successfully.

root@grom04:# 1srpdomain
Name OpState RSCTActiveVersion MixedVersions TSPort GSPort

test Offline 2.4.7.1 Yes 12347 12348
root@grom04:# startrpdomain test

root@grom@4:# 1srpdomain
Name OpState RSCTActiveVersion MixedVersions TSPort GSPort

test Online 2.4.7.1 Yes 12347 12348

root@grom@4:# chrg -o Online db2_stevera_grom04_0-rg

9. Verity that the fix pack is applied (by running db21level) and HADR is in Peer
State (by running db2pd hadr db svtdb):

root@grom04:# su - stevera
stevera@grom04% db2pd -hadr -db svtdb
Database Partition 0 -- Database SVTDB -- Active -- Up 0 days 00:00:05

HADR Information:
Role State SyncMode HeartBeatsMissed LogGapRunAvg (bytes)

Standby Peer Sync 0 0
ConnectStatus ConnectTime Timeout
Connected Tue May 5 13:20:58 2009 (1241544058) 120
PeerWindowEnd PeerWindow

Tue May 5 13:25:58 2009 (1241544358) 300

LocalHost LocalService
gromos 55555
RemoteHost RemoteService RemoteInstance
gromo3 55555 stevera

PrimaryFile PrimaryPg PrimaryLSN

S0000001.L0G 1 0x0000000003389487
StandByFile StandByPg StandByLSN StandByRcvBufUsed
S0000001.L0G 1 0x0000000003389487 0%

root@grom04:# 1ssam
OnTine IBM.ResourceGroup:db2_stevera_grom03_0-rg Nominal=Online
'- Online IBM.Application:db2_stevera_grom03_0-rs
'- Online IBM.Application:db2_stevera_grom03_0-rs:grom03
Online IBM.ResourceGroup:db2_stevera_grom04 0-rg Nominal=0Online
'- Online IBM.Application:db2_stevera_grom04_0-rs
'- Online IBM.Application:db2 stevera grom04 0-rs:grom04

170 Data Recovery and High Availability Guide and Reference

Online IBM.ResourceGroup:db2_stevera_stevera SVTDB-rg Nominal=OnTline
|- Online IBM.Application:db2_stevera_stevera SVTDB-rs
|- Online IBM.Application:db2 _stevera stevera SVTDB-rs:grom03
'- 0ffline IBM.Application:db2_stevera_stevera_SVTDB-rs:grom04
'- Online IBM.ServicelIP:db2ip_9 26 124 22-rs
|- Online IBM.ServiceIP:db2ip_9 26 124 22-rs:grom03
'- 0ffline IBM.ServicelIP:db2ip_9 26_124_22-rs:grom04

10. Migrate the TSA Domain:
root@grom04:# export CT_MANAGEMENT_SCOPE=2

root@grom04:# runact -c IBM.PeerDomain CompleteMigration Options=0
Resource Class Action Response for CompleteMigration

root@grom04:# samctrl -m
Ready to Migrate! Are you Sure? [Y|N]:.

Y
11. Ensure that MixedVersions is no longer set to Yes for the Cluster component:

root@grom04:# 1srpdomain
Name OpState RSCTActiveVersion MixedVersions TSPort GSPort

test Online 2.5.1.2 No 12347 12348

12. Ensure that the Active Version Number (AVN) matches the Installed Version
Number (IVN) for the HA Manager:
root@grom04:# 1ssrc 1s IBM.RecoveryRM [grep VN
Our IVN 1 2.2.0.7
Our AVN 1 2.2.0.7
13. Optional: Perform a takeover as the instance owner stevera on grom04
machine to get grom04 to be the HADR Primary (as per original).

Using a split mirror to clone a database

Use the following procedure to create a clone database in an environment outside
of a DB2 pureScale environment. Although you can write to clone databases, they
are generally used for read-only activities such as running reports.

About this task

If the primary database was configured for log archiving, the cloned database will
share the same log archiving configuration. If the archive log location is accessible
to the cloned database, this could cause the cloned database to archive log files to
the same location as the primary database and can affect the recoverability of both
databases. While the cloned database will initially use a different log chain from
the primary database, the primary database could eventually use the same log
chain value as the cloned database. You should change the log archiving
destination for the cloned database to be different from that of the primary
database before running the db2inidb command to avoid recoverability issues.

You cannot back up a cloned database, restore the backup image on the original
system, or roll forward through log files produced on the original system. The
cloned database provides an instantaneous copy of the database only at that time
when the 1/0O is suspended; any other outstanding uncommitted work will be
rolled back after the db2inidb command is executed on the clone.

Chapter 5. Administering and maintaining a highly available solution 171

Procedure

To clone a database:

1. Connect to the primary database using the following command:
db2 connect to db_name

2. Suspend the I/O write operations on the primary database using the following
command:
db2 set write suspend for database

Note: While the database is in suspended state, you should not be running
other utilities or tools. You should only be making a copy of the database. You
can optionally flush all buffer pools before issuing SET WRITE SUSPEND to
minimize the recovery window. This can be achieved using the FLUSH
BUFFERPOOLS ALL statement.

3. Create one or multiple split mirrors from the primary database using the
appropriate operating system-level and storage-level commands.

Note:

* Ensure that you copy the entire database directory, including the volume
directory. You must also copy the log directory and any container directories
that exist outside the database directory. To gather this information, refer to
the DBPATHS administrative view, which shows all the files and directories
of the database that need to be split.

* If you specified the EXCLUDE LOGS with the SET WRITE command, do not
include the log files in the copy.
4. Resume the I/O write operations on the primary database using the following
command:
db2 set write resume for database
5. Catalog the mirrored database on the secondary system.

Note: By default, a mirrored database cannot exist on the same system as the
primary database. It must be located on a secondary system that has the same
directory structure and uses the same instance name as the primary database. If
the mirrored database must exist on the same system as the primary database,
you can use the db2relocatedb utility or the RELOCATE USING option of the
db2inidb command to accomplish this.

6. Start the database instance on the secondary system using the following
command:

db2start
7. Initialize the mirrored database on the secondary system:
db2inidb database_alias as snapshot

If required, specify the RELOCATE USING option of the db2inidb command to
relocate the clone database:

db2inidb database_alias as snapshot relocate using relocatedbcfg.txt

where the relocatedbcfg.txt file contains the information required to relocate
the database.

Note:

* This command rolls back transactions that are in flight when the split occurs,
and starts a new log chain sequence so that any logs from the primary
database cannot be replayed on the cloned database.

172 Data Recovery and High Availability Guide and Reference

¢ If the primary database was configured for log archiving, the cloned
database will share the same log archiving configuration. This means that the
cloned database attempts to archive log files to the same location used by the
primary database if that location is accessible to the cloned database.
Although the cloned database initially uses a different log chain from the
primary database, there is nothing to prevent the primary database from
eventually using the same log chain value as the cloned database. This might
cause the primary database to archive log files on top of the log files
archived by the clone database, or vice versa. This might affect the
recoverability of both databases. You should change the log archiving
destination for the cloned database to be different from that of the primary
database to avoid these issues.

Using a split mirror to clone a database in a DB2 pureScale
environment

Use the following procedure to create a clone database in a DB2 pureScale
environment. Although you can write to clone databases, they are generally used
for read-only activities such as running reports.

About this task

If the primary database was configured for log archiving, the cloned database will
share the same log archiving configuration. If the archive log location is accessible
to the cloned database, this could cause the cloned database to archive log files to
the same location as the primary database and can affect the recoverability of both
databases. While the cloned database will initially use a different log chain from
the primary database, the primary database could eventually use the same log
chain value as the cloned database. You should change the log archiving
destination for the cloned database to be different from that of the primary
database before running the db2inidb command to avoid recoverability issues.

You cannot back up a cloned database, restore the backup image on the original
system, or roll forward through log files produced on the original system. The
cloned database provides an instantaneous copy of the database only at that time
when the 1/0O is suspended; any other outstanding uncommitted work will be
rolled back after the db2inidb command is executed on the clone.

Procedure

To clone a database:
1. Connect to the primary database using the following command:
db2 connect to <db_namd>

2. Configure the General Parallel File System (GPFS) on the secondary cluster by
extracting and importing the settings of the primary cluster. On the primary
cluster, run the following GPFS command:

mmfsct] filesystem syncFSconfig -n remotenodefile

where remotenodefile is the list of hosts in the secondary cluster.
3. List the cluster manager domain using the following command:
db2cluster -cm -list -domain

4. Stop the cluster manager on each host in the cluster using the following
command:

db2cluster -cm -stop -host host -force

Chapter 5. Administering and maintaining a highly available solution 173

Note: The last host which you shut down must be the host from which you
are issuing this command.

5. Stop the GPFS cluster on the secondary system using the following command:
db2cTuster -cfs -stop -all

6. Suspend the I/O write operations on the primary database using the
following command:

db2 set write suspend for database

Note: While the database is in suspended state, you should not be running
other utilities or tools. You should only be making a copy of the database. You
can optionally flush all buffer pools before issuing SET WRITE SUSPEND to
minimize the recovery window. This can be achieved using the FLUSH
BUFFERPOOLS ALL statement.

7. Determine which file systems must be suspended and copied using the
following command:

db2cluster -cfs -list -filesystem

8. Suspend each GPFS file system that contains data or log data using the
following command:

/usr/1pp/mmfs/bin/mmfsctl filesystem suspend-write
where filesystem represents a file system that contains data or log data.

Note: When the GPFS file systems are suspended, only write operations are
blocked.

9. Create one or multiple split mirrors from the primary database using
appropriate operating system-level and storage-level commands.

Note:

* Ensure that you copy the entire database directory, including the volume
directory. You must also copy the log directory and any container
directories that exist outside the database directory. To gather this
information, refer to the DBPATHS administrative view, which shows all the
files and directories of the database that need to be split.

 If you specified the EXCLUDE LOGS with the SET WRITE command, do not
include the log files in the copy.

10. Resume the GPFS file systems that were suspended using the following
command for each suspended file system:

/usr/1pp/mmfs/bin/mmfsctl filesystem resume

where filesystem represents a suspended file system that contains data or log
data.

11. Resume the I/O write operations on the primary database:
db2 set write resume for database

12. Start the GPFS cluster on the secondary system using the following command:
db2cluster -cfs -start -all

13. Start the cluster manager using the following command
db2cluster -cm -start -domain domain

14. Catalog the mirrored database on the secondary system:

Note: By default, a mirrored database cannot exist on the same system as the
primary database. It must be located on a secondary system that has the same
directory structure and uses the same instance name as the primary database.

174 Data Recovery and High Availability Guide and Reference

If the mirrored database must exist on the same system as the primary
database, you can use the db2relocatedb utility or the RELOCATE USING option
of the db2inidb command to accomplish this.

15. Start the database instance on the secondary system using the following
command:

db2start

16. Initialize the mirrored database on the secondary system using the following
command:

db2inidb database_alias as snapshot

If required, specify the RELOCATE USING option of the db2inidb command to
relocate the clone database:

db2inidb database_alias as snapshot relocate using relocatedbcfg.txt

where the relocatedbcfg.txt file contains the information required to relocate
the database.

Note:

* This command rolls back transactions that are in flight when the split
occurs, and starts a new log chain sequence so that any logs from the
primary database cannot be replayed on the cloned database.

e If the primary database was configured for log archiving, the clone database
shares the same log archiving configuration. If the log archiving destination
is accessible to the cloned database, the standby database automatically
retrieves log files from it while rollforward is being performed. However,
once the database is brought out of rollforward pending state, the clone
database attempts to archive log files to the same location used by the
primary database. Although the standby database initially uses a different
log chain from the primary database, there is nothing to prevent the
primary database from eventually using the same log chain value as the
cloned database. This might cause the primary database to archive log files
on top of the log files archived by the cloned database, or vice versa. This
might affect the recoverability of both databases. You should change the log
archiving destination for the cloned database to be different from that of the
primary database to avoid these issues.

Scenario: Changing the system clock

When adjusting or changing the system clock, there is no reason to stop the DB2
database manager. DB2 for Linux, UNIX, and Windows successfully handles
daylight saving time changes twice a year all over the world without issue.

Configurations which use NTP to synchronize clocks across systems are also fully
supported.

About this task

There are some best practices that you must be aware of when changing the
system time.

Restrictions

When changing the system clock in the vast majority of scenarios there is
absolutely no impact.

When major time shifts occur, you must be aware of two situations.

Chapter 5. Administering and maintaining a highly available solution 175

 If you execute point-in-time recovery you need to be aware of any significant
time shifts.

* Function definitions include the time and date they were created in the form of
a timestamp. At function invocation, DB2 for Linux, UNIX, and Windows
attempts to resolve the function definition. As part of the function resolution, the
timestamp value logged in the function definition at create time is checked. If
you move the system clock back to a time before the functions were created,
DB2 for Linux, UNIX, and Windows does not resolve references to those
functions.

Procedure

Best practices to avoid these two situations:
1. If you are moving time forward, proceed to step 3.
2. If you are moving time backward by X minutes:

a. Choose a time to execute the change when no new functions were created
in the past X minutes, and no update transactions occur in X minutes.

b. If you are unable to find a time as outlined in step a, you can still move the
system clock backwards by X minutes with DB2 for Linux, UNIX, and
Windows online. However, you must accept the following implications:

* You might not be able to use point-in-time recovery to recover to a point
within those X minutes. That is, you might not be able to recover a
subset of the update transactions that executed within those X minutes.

* Functions created within X minutes before the change might not be
resolved for X minutes after the change.

3. Change the system clock.
Results

By following the best practices as outlined, you avoid any potential point-in-time
recovery or function resolution issue when changing the system clock.

Synchronizing the primary and standby databases

One high availability strategy is to have a primary database and a secondary or
standby database to take over operations if the primary database fails.

If the standby database must take over database operations for a failed primary
database, it must contain exactly the same data, know about all inflight
transactions, and otherwise continue database processing exactly the same way as
the primary database server would, if it had not failed. The ongoing process of
updating the standby database so that it is a copy of the primary database is called
synchronization.

Before you begin

Before you can synchronize the primary and standby databases you must:
* Create and configure the primary and standby databases.
* Configure communications between the primary and standby databases.

Choose a synchronization strategy (for example, log shipping, log mirroring,
suspended I/0O and disk mirroring, or HADR.)

176 Data Recovery and High Availability Guide and Reference

There are several strategies for keeping the primary database server and the

standby database server synchronized:

— shipping logs from the primary database to the standby database and rolling
them forward on the standby database;

— writing database logs to both the primary and standby databases at the same
time, known as log mirroring;

— using suspended 1/O support with disk mirroring to periodically taking a
copy of the primary database, splitting th mirror and initializing the copy as a
new standby database server; and

— using a availability feature such as the DB2 High Availability Disaster
Recovery (HADR) feature to keep the primary and standby database
synchronized.

Procedure

1. If you are using logs to synchronize the primary database and the secondary
or standby database, configure DB2 database to perform the required log
management for you. For example, if you want DB2 database to mirror the
logs, set the mirrorlogpath configuration parameter to the location where you
want the second copy of the logs to be saved.

2. If you are using DB2 database suspended I/O functionality to split a disk
mirror of the primary database, you must do the following;:

a. Initialize the disk mirroring for the primary database.

b. When you need to split the mirror of the primary database, follow the
instructions in the topic “Using a split mirror as a standby database.”

3. If you are using the HADR feature to manage synchronizing the primary and
standby databases, configure DB2 database for HADR, and allow DB2 database
to synchronize the primary and standby databases for you.

Resolving log replay error when creating table space

Resolving log replay error when creating table space

If you create a table space on the primary database and log replay fails on the
standby database because the containers are not available, the primary database
does not receive an error message stating that the log replay failed.

To check for log replay errors, you must monitor the db2diag log file and the
administration notification log file on the standby database when you are creating
new table spaces.

If a takeover operation occurs, the new table space that you created is not available
on the new primary database. To recover from this situation, restore the table space
on the new primary database from a backup image.

In the following example, table space MY_TABLESPACE is restored on database
MY_TABLESPACE before it is used as the new primary database:

1. db2 connect to my_database
2. db2 1ist tablespaces show detail

Note: Run the db2 1ist tablespaces show detail command to show the
status of all table spaces and to obtain the table space ID number required for
Step 5.

3. db2 stop hadr on database my_database

Chapter 5. Administering and maintaining a highly available solution 177

4. db2 "restore database my_database tablespace (my_tablespace) online redirect”

5. db2 "set tablespace containers for my_tablespace_ID_# ignore rollforward
container operations using (path '/my_new_container_path/")"

6. db2 "restore database my_database continue"

7. db2 rollforward database my_database to end of logs and stop tablespace
"(my_tablespace)"

8. db2 start hadr on database my_database as primary

DB2 High Availability Disaster Recovery (HADR) replicated
operations

DB2 High Availability Disaster Recovery (HADR) uses database logs to replicate
data from the primary database to the standby database. Some activities can cause
the standby database to fall behind the primary database as logs are replayed on
the standby database.

Some activities are so heavily logged that the large amount of log files they
generate can cause storage problems. Although replicating data to the standby
database using logs is the core of availability strategies, logging itself can
potentially have a negative impact on the availability of your solution. Design you
maintenance strategy wisely, configure your system to minimize the negative
impact of logging, and allow logging to protect your transaction data.

In high availability disaster recovery (HADR), the following operations are
replicated from the primary to the standby database:

* Data definition language (DDL)
 Data manipulation language (DML)
* Buffer pool operations

* Table space operations

* Online reorganization

 Offline reorganization

* Metadata for stored procedures and user defined functions (UDF) (but not the
related object or library files)

During an online reorganization, all operations are logged in detail. As a result,
HADR can replicate the operation without the standby database falling further
behind than it would for more typical database updates. However, this behavior
can potentially have a large impact on the system because of the large number of
log records generated.

While offline reorganizations are not logged as extensively as online
reorganizations, operations are typically logged per hundreds or thousands of
affected rows. This means that the standby database could fall behind because it
waits for each log record and then replays many updates at once. If the offline
reorganization is non-clustered, a single log record is generated after the entire
reorganization operation. This mode has the greatest impact on the ability of the
standby database to keep up with the primary database. The standby database will
perform the entire reorganization after it receives the log record from the primary
database.

HADR does not replicate stored procedure and UDF object and library files. You
must create the files on identical paths on both the primary and standby databases.

178 Data Recovery and High Availability Guide and Reference

If the standby database cannot find the referenced object or library file, the stored
procedure or UDF invocation will fail on the standby database.

DB2 High Availability Disaster Recovery (HADR)
non-replicated operations

DB2 High Availability Disaster Recovery (HADR) uses database logs to replicate
data from the primary database to the standby database. Non-logged operations
are allowed on the primary database, but not replicated to the standby database.

If you want non-logged operations, such as updates to the history file, to be
reflected in the standby database, you must take extra steps to cause this to
happen.

The following are examples of cases in which operations on the primary database
are not replicated to the standby database:

* Tables created with the NOT LOGGED INITIALLY option specified are not
replicated. Attempts to access such tables after an HADR standby database takes
over as the primary database result in an error.

All logged LOB columns are replicated. Non-logged LOB columns are not
replicated. However, the space for them is allocated on the standby database
using binary zeros as the value for the column.

e Updates to database configuration using the UPDATE DATABASE CONFIGURATION
and UPDATE DATABASE MANAGER CONFIGURATION commands are not replicated.

¢ Database configuration and database manager configuration parameters are not
replicated.

* For user-defined functions (UDFs), changes to objects external to the database
(such as related objects and library files) are not replicated. They need to be set
up on the standby via other means.

* The recovery history file (db2rhist.asc), and changes to it, are not automatically
shipped from the primary database to the standby database.

You can place an initial copy of the history file (obtained from the backup image
of the primary) on the standby database by issuing the RESTORE DATABASE
command with the REPLACE HISTORY FILE parameter:

RESTORE DB KELLY REPLACE HISTORY FILE

After HADR is initialized and subsequent backup activities take place on the
primary database, the history file on the standby database becomes out of date.
However, a copy of the history file is stored in each backup image. You can
update the history file on the standby by extracting the history file from a
backup image using the following command:

RESTORE DB KELLY HISTORY FILE

Do not use regular operating system commands to copy the history file in the
database directory from the primary database to the standby database. The
history file can become corrupted if the primary is updating the files when the
copy is made.

If a takeover operation occurs and the standby database has an up-to-date
history file, backup and restore operations on the new primary generate new
records in the history file and blend seamlessly with the records generated on
the original primary. If the history file is out of date or has missing entries, an
automatic incremental restore might not be possible; instead, a manual
incremental restore operation is required.

Chapter 5. Administering and maintaining a highly available solution 179

DB2 high availability disaster recovery (HADR) standby

database states

At any time, an high availability disaster recovery (HADR) standby database is in
one of five states: local catchup, remote catchup pending, remote catchup, peer, or
disconnected peer. The states are defined by log shipping status. Regardless of the
state, log replay is concurrently going on, replaying all available logs.

The primary log position, standby log receive position, and standby log replay
position are all reported by the standard monitoring interfaces for HADR: the
MON_GET_HADR table function and the db2pd command with the -hadr
parameter. The state of a standby is reported in the HADR_STATE field. If a primary
database is connected to a standby database, the monitoring interface reports the
state of the standby as its HADR_STATE; otherwise, it reports DISCONNECTED.

Figure 10 shows the progression through the different standby database states.

Database
startup

Local catchup

|

Remote catchup
pending

I
Connection lost Connected

Connection lost
Remote catchup HADR PEER WINDOW = 0

Connection restored or
peer window expires Peer

Connection lost
HADR_PEER WINDOW > 0

v

Disconnected
peer

Figure 10. States of the standby database

4—

Local catchup state

With the HADR feature, when a standby database is started, it enters local catchup
state and the log files in its local log path are read to determine what logs are

180 Data Recovery and High Availability Guide and Reference

available locally. In this state, logs are not be retrieved from the archive even if you
configured a log archiving method. Also, in this state, a connection to the primary
database is not required; however, if a connection does not exist, the standby
database tries to connect to the primary database. When the end of local log files is
reached, the standby database enters remote catchup pending state.

Remote catchup pending state

Entering remote catchup pending state, if a connection to the primary has not been
established, the standby waits for a connection. After a connection is established,
the standby obtains the primary's current log chain information. This enables the
standby, if a log archive is configured, to retrieve log files from archive and verify
that the log files are valid.

In remote catchup and peer state, if the standby loses its connection to the primary,
it goes back to remote catchup pending state. When the connection is reestablished,
the standby tries to retrieve the logs from the archive. Thus, if you configure a
shared archive device, the standby might be able to find more logs than would be
available if it is using a separate archiving device. This behavior favors retrieving
from the archive over shipping from the primary through the HADR connection to
minimize the impact on the primary database.

Remote catchup state

In remote catchup state, the primary database reads log data from its log path or
by way of a log archiving method and the log data is sent to the standby database.
The primary and standby databases enter peer state when the standby database
receives all the on-disk log data of the primary database. If you are using the
SUPERASYNC synchronization mode, the primary and standby never enter peer
state. They permanently stay in remote catchup state, which prevents the
possibility of blocking primary log writing in peer state.

If the connection between the primary and standby databases is lost when the
databases are in remote catchup state, the standby database enters remote catchup
pending state.

Peer state

In peer state, log data is shipped directly from the primary's log write buffer to the
standby whenever the primary flushes its log pages to disk. The HADR
synchronization mode specifies whether the primary waits for the standby to send
an acknowledgement message that log data has been received. The log pages are
always written to the local log files on the standby database. This behavior guards
against a crash and allows a file to be archived on the new primary in case of
takeover, if it has not been archived on the old primary. After being written to local
disk, the received log pages can then be replayed on the standby database. If log
spooling is disabled (the default), replay reads logs only from the log receive
buffer.

If log replay is slow, the receive buffer can fill up, and the standby stops receiving
new logs. If this happens, primary log writing is blocked. If you enable log
spooling, a part of log buffer is released even if it has not been replayed yet. Log
replay reads the log data back from disk later. If the spooling device fills up or the
configured spool limit is reached, the standby still stops receiving, and the primary
can still be blocked.

Chapter 5. Administering and maintaining a highly available solution 181

If the connection between the primary and standby databases is lost when the
databases are in peer state and the hadr_peer_window database configuration
parameter is set to 0 (the default), the standby database enters remote catchup
pending state. However, if the connection between the primary and standby
databases is lost when the databases are in peer state and you set the
hadr_peer_window parameter to a nonzero value (meaning that you configured a
peer window), the standby database enters disconnected peer state.

Disconnected peer state

If you configured a peer window and the primary database loses its connection
with the standby database in peer state, the primary database continues to behave
as though the primary and standby databases were in peer state for the configured
amount of time (called the peer window), or until the standby reconnects, whichever
happens first. When the primary database and standby database are disconnected
but behave as though in they were in peer state, this state is called disconnected
peer.

The advantage of configuring a peer window is that it lowers the risk of
transaction loss during multiple or cascading failures. Without the peer window,
when the primary database loses its connection with the standby database, the
primary database moves out of peer state immediately and continues transaction
processing. These transactions are not replicated to the standby. If the primary
server fails shortly after it loses its connection to the standby, the risk of
transaction loss is high in a failover. With the peer window enabled, the primary
database blocks transaction processing for a certain amount of time after losing
connection to standby in peer state, guarding against cascading failures.
Furthermore, the standby can take over within the peer window time with no risk
of data loss.

The disadvantage of configuring a peer window is that transactions on the primary
database take longer or even time out while the primary database is in peer
window waiting for the connection with the standby database to be restored or for
the peer window to expire. As well, intermittent network failure can cause severe
impact on primary transaction processing.

You can determine the peer window size, which is the value of the
hadr_peer_window database configuration parameter, by using the
MON_GET_HADR table function, or the db2pd command with the -hadr
parameter.

Manually copying log files from the primary database to the
standby database

One method for synchronizing the primary and standby databases is to manually
copy the primary database log files into the standby database log path or overflow
log path (if configured). This can be especially helpful if there is a large log gap
between the primary and standby (for example, because the standby database was
down for a long time). This can reduce the delay of standby having to retrieve the
logs from archive, or it can reduce the impact on primary for having to ship over
these log files (which the primary would likely have to retrieve from archive). It is
important that this step is done before activating the standby database. After the
standby database is activated, it proceeds with searching local log files, attempting
to retrieve from archive, and engaging the primary for log shipping, as described
above. Copying the log files to the standby after it has been activated interferes
with its normal operation.

182 Data Recovery and High Availability Guide and Reference

Determining the HADR standby database state

The state that a DB2 High Availability Disaster Recovery (HADR) standby database
is in determines what operations it can perform. There are two recommended
options for determining the state of the standby: the db2pd command and the
MON_GET_HADR table function.

Procedure

To determine the state of an HADR standby database in a primary-standby HADR
database pair:

* Issue the db2pd command with the -hadr parameter from the primary database
or the standby database.

— If you issue the command from the primary database, the command returns a
set of data for each standby in your HADR setup.

— If you issue the command from the standby database, the command returns
only a single set of data, because the standby is not aware of any other
standbys, even if your HADR setup is in multiple standby mode.

* Issue a query using the MON_GET_HADR table function on the primary
database or the standby database:

db2 "select STANDBY ID, HADR STATE, from table (mon_get hadr(NULL))"

The following information is returned:
STANDBY_ID HADR_STATE

1 PEER

2 REMOTE_CATCHUP

3 REMOTE_CATCHUP
3 record(s) selected.

— If you issue the query to the primary database, the table function returns a
row of information for each standby in your HADR setup.

— If you issue the query to the standby database, the table function returns only
a single row of information because the standby is not aware of any other
standbys, even if your HADR setup is in multiple standby mode.

Recovering from table space errors on an HADR standby

In the event that the HADR standby database encounters an error on a particular
table space during log replay, the standby database will continue to replay logs on
other table spaces but will stop replaying logs on the affected table space.

About this task

The affected table space's tablespace state will be changed to restore pending,
rollforward pending, or offline. You need to recover the table space on the standby
because data in this table space will not be available if this database takes over the
primary role.

Procedure

1. Correct the root cause of the error. Possible causes include:
¢ Insufficient space
¢ The file system is not mounted
* A load copy could not be found

Chapter 5. Administering and maintaining a highly available solution 183

2. Repair the affected table space. Do this by completely reinitializing the standby
database by restoring a backup image of the primary database.

HADR role switch and quiesced table spaces

In an high availability disaster recovery (HADR) environment, a table space
quiesce is not preserved during a role switch.

When a table space is quiesced on the primary database, no log records are
generated, so there is no effect on the standby database. If the standby has to take
over as the primary before the quiesce has been released, that table space will be
fully available on the new primary. You should be aware that if you continue the
job that required the table space to be quiesced on the original primary, then on
the new primary, the job is no longer protected by the quiesce

If there was a role switch (that is, if the old primary is now the new standby),
changes to the table space on the new primary are replayed on the new standby.
However, if the primary role is failed back to the old primary, the quiesce state will
still be in effect for that table space.

HADR delayed replay

HADR delayed replay helps prevent data loss due to errant transactions. To
implement HADR delayed replay, set the hadr_replay_delay database
configuration parameter on the HADR standby database.

Delayed replay intentionally keeps the standby database at a point in time that is
earlier than that of the primary database by delaying replay of logs on that
standby. If an errant transaction is executed on the primary, you have until the
configured time delay has elapsed to take action to prevent the errant transaction
from being replayed on the standby. To recover the lost data, you can either copy
this data back to the primary, or you can have the standby take over as the new
primary database.

Delayed replay works by comparing timestamps in the log stream, which is
generated on the primary, and the current time of the standby. As a result, it is
important to synchronize the clocks of the primary and standby databases.
Transaction commit is replayed on the standby according to the following
equation:

(current time on the standby - value of the hadr_replay_delay configuration parameter) >=
timestamp of the committed log record

You should set the hadr_replay_delay database configuration parameter to a large
enough value to allow time to detect and react to errant transactions on the
primary.

You can use this feature in either single standby mode or multiple standby mode.
In multiple standby mode, typically one or more standbys stays current with the
primary for high availability or disaster recovery purposes, and one standby is
configured with delayed replay for protection against errant transactions. If you
use this feature in single standby mode, you should not enable IBM Tivoli System
Automation for Multiplatforms because the takeover will fail.

There are several important restrictions for delayed replay:

* You can set the hadr_replay_delay configuration parameter only on a standby
database.

184 Data Recovery and High Availability Guide and Reference

e A TAKEOVER command on a standby with replay delay enabled will fail. You
must first set the hadr_replay_delay configuration parameter to 0 and then
deactivate and reactivate the standby to pick up the new value, and then issue
the TAKEOVER command.

* The delayed replay feature is supported only in SUPERASYNC mode. Because
log replay is delayed, a lot of unreplayed log data might accumulate on the
standby, filling up receive buffer and spool (if configured). In other
synchronization modes, this would cause the primary to be blocked.

The objective of this feature is to protect against application error. If you want to
use this feature and ensure that there is no data loss in the event of a primary
failure, consider a multiple standby setup with a more synchronous setting on
the principal standby.

Recommendations

Delayed replay and disaster recovery
Consider using a small delay if you are using the standby database for
disaster recovery purposes and errant transaction protection.

Delayed replay and the HADR reads on standby feature
Consider using a small delay if you are using the standby database for
reads on standby purposes, so that reader sessions can see more up-to-date
data. Additionally, because reads on standby runs in “uncommitted read”
isolation level, it can see applied, but not yet committed changes that are
technically still delayed from replay. These uncommitted transactions can
be rolled back in errant transaction recovery procedure when you roll
forward the standby to the PIT that you want and then stop.

Delayed replay and log spooling
If you enable delayed replay;, it is recommended that you also enable log
spooling by setting the hadr_spool_limit database configuration
parameter. Because of the intentional delay, the replay position can be far
behind the log receive position on the standby. Without spooling, log
receive can only go beyond replay by the amount of the receive buffer.
With spooling, the standby can receive many more logs beyond the replay
position, providing more protection against data loss in case of primary
failure. Note that in either case, because of the mandatory SUPERASYNC
mode, the primary won't be blocked by the delayed replay.

Recovering data by using HADR delayed replay

Using the HADR time-delayed replay feature, you can recover data that was lost
because of an errant transaction on the primary database by stopping HADR on a
standby before that transaction is replayed.

Before you begin
Delayed replay must have already been enabled for your standby database.

If log replay on the standby, indicated by STANDBY_REPLAY_LOG_TIME, has
passed the commit time for the errant transaction on the standby, you cannot
recover the data using the following procedure. You can determine the
STANDBY_REPLAY_LOG_TIME by using the db2pd command with the -hadr
parameter or the MON_GET_HADR table function.

Chapter 5. Administering and maintaining a highly available solution 185

Restriction: A standby database for which you set the hadr_replay_delay
configuration parameter cannot take over as a primary; you must first disable
delayed replay on that standby.

Procedure

To recover from an errant transaction, perform the following steps on the standby
on which you enabled delayed replay:

1. Verify the timing;:
a. Ensure that standby has not yet replayed the transaction. The

STANDBY_REPLAY_LOG_TIME value must not have reached the errant
transaction commit time.

b. Ensure that the standby has received the relevant logs. The
STANDBY_LOG_TIME value, which indicates logs received, must have
reached a PIT before the errant transaction commit time, but close to the
errant transaction commit time. This will be the rollforward PIT used in
step 3. If the standby has not yet received enough log files, you can wait
until more logs are shipped over, but you run the risk of the replay time
reaching the errant transaction time. For example, if the delay is 1 hour, you
should stop HADR no later than 50 minutes after the errant transaction
time (allowing a 10-minute safety margin), even if log shipping has yet not
reached the PIT that you want.

Alternatively, if a shared log archive is available and the logs are already
archived, then there is no need to wait. If the logs are not archived yet, the
logs can be archived using the ARCHIVE LOG command. Otherwise, the user
can manually copy complete log files from the primary to the time-delayed
standby (the overflow log path is preferred, otherwise, use the log path).
For these alternate methods, deactivate the standby first to avoid
interference with standby log shipping and replay.

You can determine these times by issuing db2pd -db dbname -hadr or by
enabling the reads on standby feature on the standby and then issuing the
following query, which uses the MON_GET_HADR table function:

DB2 "select HADR_ROLE, STANDBY_ID, STANDBY_LOG_TIME, STANDBY_REPLAY_LOG_TIME,
varchar (PRIMARY_MEMBER_HOST,20) as PRIMARY_MEMBER HOST,

varchar (STANDBY_MEMBER_HOST,20) as STANDBY_MEMBER_HOST

from table (mon_get hadr(NULL))"

2. Stop HADR on the standby database:
DB2 STOP HADR ON DATABASE dbname
3. Roll forward the standby to the PIT that you want and then stop:
DB2 ROLLFORWARD DB dbname to time-stamp and STOP
4. Use one of the following approaches:
* Restore the lost data on the primary:
a. Copy the affected data from the standby and send it back to the primary.

If the errant transaction dropped a table, you could export it on the
standby and import it to the primary. If the errant transaction deleted
rows from a table, you could export the table on the standby and use an
import replace operation on the primary.

b. Reinitialize the delayed-replay standby because its log stream has
diverged from the primary's. No action is needed on any other standbys
because they continue to follow the primary and any data repair on the
primary is also replicated to them.

186 Data Recovery and High Availability Guide and Reference

C.

d.

Restore the database using a backup image taken on the primary. The
image can be one taken at any time.

Remove all log files in standby log path. This step is important. The
ROLLFORWARD... STOP command in step 3 made the database log stream
diverge from the primary. If the files are left alone, the newly restored
database would follow that log stream and also diverge from the primary.
Alternatively, you can drop the database before the restore for a clean
start, but then you will also lose the current configuration including
HADR configuration.

Issue the START HADR command with the AS STANDBY option on the
database. The database should then activate and connect to the primary.

¢ Have the standby with the intact data become the primary:

a.
b.

—n

Shut down the old primary to avoid split brain

On the delayed-replay database, set the hadr_replay_delay configuration
parameter to 0. Reconfigure the other parameters like hadr_target_list if
needed. Then run START HADR command with the AS PRIMARY BY FORCE
options on the database to convert it to the new primary. Use the BY
FORCE option because there is no guarantee that the configured principal
standby (which could be the old primary) will be able to connect.

Redirect clients to the new primary.

The other standbys will be automatically redirected to the new primary.
However, if a standby received logs from the old primary beyond the
point where old and new primary diverge (the PIT used in step 3), it will
be rejected by the new primary. If this happens, reinitialize this standby
using the same procedure as reinitializing the old primary.

Reinitialize the old primary because its log stream has diverged from the
new primary's.

Restore database using a backup image taken on the new primary, or
taken on the old primary before the PIT used in step 3.

Remove all log files in the log path. If you do not do this, the newly
restored database will follow the old primary's log stream and diverge
from the new primary. Alternatively, you can drop the database before
the restore for a clean start, but then you also lose the current
configuration including HADR configuration.

Issue the START HADR command with the AS STANDBY option on the
database. The database should then activate and connect to the primary.

DB2 High availability disaster recovery (HADR) management

DB2 High availability disaster recovery (HADR) management involves configuring
and maintaining the status of your HADR system.

Managing HADR includes such tasks as:
Cataloging an HADR database.
“Initializing high availability disaster recovery (HADR)” on page 33

Checking or altering database configuration parameters related to HADR.

“Switching database roles in high availability disaster recovery (HADR)” on
page 229

“Performing an HADR failover operation” on page 227

“High availability disaster recovery (HADR) monitoring” on page 222
“Stopping DB2 High Availability Disaster Recovery (HADR)” on page 163

Chapter 5. Administering and maintaining a highly available solution 187

You can manage HADR using the following methods:

* Command line processor

* DB2 administrative API

* Task assistants for managing HADR in IBM Data Studio Version 3.1 or later.
Related information:

[Administering databases with task assistants

DB2 High Availability Disaster Recovery (HADR) commands

The DB2 High Availability Disaster Recovery (HADR) feature provides complex
logging, failover, and recovery functionality for DB2 high availability database
solutions.

Despite the complexity of the functionality HADR provides, there are only a few
actions you need to directly command HADR to perform: starting HADR; stopping
HADR; and causing the standby database to take over as the primary database.

There are three high availability disaster recover (HADR) commands used to
manage HADR:

* START HADR
e STOP HADR
* TAKEOVER HADR

To invoke these commands, use the command line processor or the administrative
APIL

Issuing the START HADR command with either the AS PRIMARY or AS STANDBY option
changes the database role to the one specified if the database is not already in that
role. This command also activates the database, if it is not already activated.

The STOP HADR command changes an HADR database (either primary or standby)
into a standard database. Any database configuration parameters related to HADR
remain unchanged so that the database can easily be reactivated as an HADR
database.

The TAKEOVER HADR command, which you can issue on the standby database only,
changes the standby database to a primary database. When you do not specify the
BY FORCE option, the primary and standby databases switch roles. When you do
specify the BY FORCE option, the standby database unilaterally switches to become
the primary database. In this case, the standby database attempts to stop
transaction processing on the old primary database. However, there is no
guarantee that transaction processing will stop. Use the BY FORCE option to force a
takeover operation for failover conditions only. To whatever extent possible, ensure
that the current primary has definitely failed, or shut it down yourself, prior to
issuing the TAKEOVER HADR command with the BY FORCE option.

HADR database role switching
A database can be switched between primary and standard roles dynamically and
repeatedly. When the database is either online or offline, you can issue both the

START HADR command with the AS PRIMARY option and the STOP HADR command.

You can switch a database between standby and standard roles statically. You can
do so repeatedly only if the database remains in rollforward pending state. You can

188 Data Recovery and High Availability Guide and Reference

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

issue the START HADR command with the AS STANDBY option to change a standard
database to standby while the database is offline and in rollforward pending state.
Use the STOP HADR command to change a standby database to a standard database
while the database is offline. The database remains in rollforward pending state
after you issue the STOP HADR command. Issuing a subsequent START HADR
command with the AS STANDBY option returns the database to standby. If you issue
the ROLLFORWARD DATABASE command with the STOP option after stopping HADR on
a standby database, you cannot bring it back to standby. Because the database is
out of rollforward pending state, you can use it as a standard database. This is
referred to as taking a snapshot of the standby database. After changing an
existing standby database into a standard database, consider creating a new
standby database for high availability purposes.

To switch the role of the primary and standby databases, perform a takeover
operation without using the BY FORCE option.

To change the standby to primary unilaterally (without changing the primary to
standby), use forced takeover. Subsequently, you might be able to reintegrate the
old primary as a new standby.

HADR role is persistent. Once an HADR role is established, it remains with the
database, even through repeated stopping and restarting of the DB2 instance or
deactivation and activation of the DB2 database.

Starting the standby is asynchronous

When you issue the START HADR command with the AS STANDBY option, the
command returns as soon as the relevant engine dispatchable units (EDUs) are
successfully started. The command does not wait for the standby to connect to the
primary database. In contrast, the primary database is not considered started until
it connects to a standby database (with the exception of when the START HADR
command is issued on the primary with the BY FORCE option). If the standby
database encounters an error, such as the connection being rejected by the primary
database, the START HADR command with the AS STANDBY option might have already
returned successfully. As a result, there is no user prompt to which HADR can
return an error indication. The HADR standby will write a message to the DB2
diagnostic log and shut itself down. You should monitor the status of the HADR
standby to ensure that it successfully connects with the HADR primary.

Replay errors, which are errors that the standby encounters while replaying log
records, can also bring down the standby database. These errors might occur, for
example, when there is not enough memory to create a buffer pool, or if the path
is not found while creating a table space. You should continuously monitor the
status of the standby database.

Do not run HADR commands from a client using a database alias
enabled for client reroute

When automatic client reroute is set up, the database server has a predefined
alternate server so that client applications can switch between working with either
the original database server or the alternative server with only minimal
interruption of the work. In such an environment, when a client connects to the
database via TCD, the actual connection can go to either the original database or to
the alternate database. HADR commands are implemented to identify the target
database through regular client connection logic. Consequently, if the target
database has an alternative database defined, it is difficult to determine the

Chapter 5. Administering and maintaining a highly available solution 189

database on which the command is actually operating. Although an SQL client
does not need to know which database it is connecting to, HADR commands must
be applied on a specific database. To accommodate this limitation, HADR
commands should be issued locally on the server machine so that client reroute is
bypassed (client reroute affects only TCP/IP connections).

HADR commands must be run on a server with a valid license

The START HADR, STOP HADR, and TAKEOVER HADR commands require that a valid
HADR license has been installed on the server where the command is executed. If
the license is not present, these commands will fail and return a command-specific
error code (SQL1767N, SQL1769N, or SQL1770N, respectively) along with a reason
code of 98. To correct the problem, either install a valid HADR license using
db21icm, or install a version of the server that contains a valid HADR license as
part of its distribution.

HADR multiple standby databases

The high availability disaster recover (HADR) feature supports multiple standby
databases. Using multiple standbys, you can have your data in more than two
sites, which provides improved data protection with a single technology.

When you deploy the HADR feature in multiple standby mode, you can have up
to three standby databases in your setup. You designate one of these databases as
the principal HADR standby database; any other standby database is an auxiliary
HADR standby database. Both types of HADR standbys are synchronized with the
HADR primary database through a direct TCP/IP connection, both types support
reads on standby, and you can configure both types for time-delayed log replay. In
addition, you can issue a forced or non-forced takeover on any standby. There are
a couple of important distinctions between the principal and auxiliary standbys,
however:

* IBM Tivoli System Automation for Multiplatforms (SA MP) automated failover is
supported only for the principal standby. You must issue a takeover manually
on one of the auxiliary standbys to make one of them the primary.

* All of the HADR sync modes are supported on the principal standby, but the
auxiliary standbys can only be in SUPERASYNC mode.

There are a number of benefits to using a multiple HADR standby setup. Instead
of employing the HADR feature to achieve your high availability objectives and
another technology to achieve your disaster recovery objectives, you can use
HADR for both. You can deploy your principal standby in the same location as the
primary. If there is an outage on the primary, the principal standby can take over
the primary role within your recovery time objectives. You can also deploy
auxiliary standbys in a distant location, which provides protection against a
widespread disaster that affects both the primary and the principal standby. The
distance, and the potential for network delays between the primary and the
auxiliaries, has no effect on activity on the primary because the auxiliaries use
SUPERASYNC mode. If a disaster affects the primary and principal standby, you
can issue a takeover on either of the auxiliaries. You can configure the other
auxiliary standby database to become the new principal standby using the
hadr_target_list database configuration parameter. However, an auxiliary
standby can take over as the primary even if that auxiliary does not have an
available standby. For example, if there is an outage on the primary and principal
standby, one auxiliary can take over as the primary even if it does not have a

190 Data Recovery and High Availability Guide and Reference

corresponding standby. However, if you stop that database after it becomes the
new primary, it cannot start again as an HADR primary unless its principal
standby is started.

Restrictions for multiple standby databases

There are a number of restrictions that you should be aware of if you are planning
to deploy the HADR feature in multiple standby mode.

The restrictions are as follows:

* You can have a maximum of three standby databases: one principal standby and
up to two auxiliary standbys.

* Only the principal standby supports all the HADR synchronization modes; all
auxiliary standbys will be in SUPERASYNC mode.

e IBM Tivoli System Automation for Multiplatforms (SA MP) support applies only
between the primary HADR database and its principal standby.

¢ The hadr_target_list database configuration parameter must be set on all the
databases in the multiple standby setup. Each standby must include the primary
in its hadr_target_list setting.

Initializing HADR in multiple standby mode

Initializing an HADR system in multiple standby mode is similar to single standby
mode. The main difference is that you must enable multiple standby mode by
setting the hadr_target_list database configuration parameter on all the databases
in your setup.

About this task

This task covers how to initialize HADR in multiple standby mode. If you want to
convert a single standby setup to a multiple standby setup, see “Enabling multiple
standby mode on a preexisting HADR setup” on page 193.

Multiple standby mode requires the hadr_target_list configuration parameter to
be set on all participating databases. This parameter lists the standbys in the
scenario when the database becomes a primary. It is required even on a standby.
Mutual inclusion is required (that is, if A has B in its target list, B must have A in
its target list). This ensures that after a takeover from any standby, the new
primary can always keep the old primary as its standby. The first standby that you
specify in the target list is designated as the principal HADR standby database.
Additional standbys are auxiliary HADR standby databases. The target list need not
always include all participants. As well, there is no requirement for symmetry or
reciprocity if there is more than one standby; even if you designate that database A
has database B as its principal standby, database B does not have to designate A as
its principal standby. Each standby specified in the target list of database A, must
also have database A in its target list.. Working out the target list for each database
is an important step.

As a special case, multiple standby mode can be configured with only one standby.
For example, you can configure two databases as primary and standby in multiple
standby mode. The behavior is not same as single standby setup because multiple
standby behavior such as automated configuration will be in effect and because
standby targets can be added or removed dynamically.

Tip: You can perform steps 2 to 4 in a single update on each database.

Chapter 5. Administering and maintaining a highly available solution 191

Procedure

To initialize HADR in multiple standby mode:

1. Create your standby database or databases by using either a restored backup or
split mirror. For instructions on how to do this, see “Initializing a standby
database” on page 51 or step 2 of “Initializing high availability disaster
recovery (HADR)” on page 33.

¢ On the primary, issue the following command:
BACKUP DB dbname
* On the standbys, issue the following command:
RESTORE DB dbname
2. On each of the databases, set the hadr_local_host, hadr_local_svc,
hadr_local_svc, and hadr_sync_mode configuration parameters:

"UPDATE DB CFG FOR dbname USING
HADR_LOCAL_HOST hostname
HADR_LOCAL_SVC servicename
HADR_SYNCMODE syncmode"
3. Set the hadr_target_list configuration parameter on all of the standbys and
the primary.
DB2 UPDATE DB CFG FOR dbname USING
HADR _TARGET LIST principalhostname:principalservicename |
auxhostnamel :auxservicenamel |auxhostname2 :auxservicename?
4. On all the databases, set the hadr_remote_host, hadr_remote_svc, and
hadr_remote_inst configuration parameters.

This step is not required because in multiple standby mode, these values are
automatically set if you do not set them and are automatically reset if you set
them incorrectly. However, explicitly setting them to the correct values makes
correct values available immediately. These values are helpful for theIBM Tivoli
System Automation for Multiplatforms (SA MP) software, which might require
the hadr_remote_inst value to construct the resource name.

* On the primary, set the parameters to the corresponding values on the
principal standby by issuing the following command:

DB2 "UPDATE DB CFG FOR dbname USING
HADR_REMOTE_HOST principalhostname
HADR_REMOTE_SVC principalservicename
HADR_REMOTE_INST principalinstname"

* On each standby, set the parameters to the corresponding values on the
primary by issuing the following command:

DB2 "UPDATE DB CFG FOR dbname USING
HADR_REMOTE_HOST primaryhostname
HADR_REMOTE_SVC primaryservicename
HADR_REMOTE_INST primaryinstname"

5. Connect to each standby instance.

6. On the standby instance, issue the START HADR command with the AS STANDBY
parameter:

START HADR ON DB dbname AS STANDBY
7. Connect to the primary instance.

8. On the primary instance, issue the START HADR command with the AS PRIMARY
parameter:

START HADR ON DB dbname AS PRIMARY

192 Data Recovery and High Availability Guide and Reference

Results

The standby databases start in local catchup state, in which locally available log
files are read and replayed. After all local logs have been replayed, the databases
enter remote catchup pending state. After the primary starts, the standbys enter
remote catchup state, in which log pages are received from the primary and
replayed. After all of the log files that are on the disk of the primary database have
been replayed on the standbys, what happens depends on the type of what
happens next depends on the type of synchronization mode. A principal standby
in SUPERASYNC and any auxiliary standby will stay in remote catchup mode. A
principal standby with a SYNC, NEARSYNC, or ASYNC mode will enter peer
mode.

Enabling multiple standby mode on a preexisting HADR setup

Initializing an HADR system in multiple standby mode is similar to s single
standby mode. The main difference is that you must enable multiple standby mode
by setting the hadr_target_list database configuration parameter on all the
databases in your setup.

Before you begin

* Determine the host name or host IP address (to be used for the hadr_local_host
setting), service name or port number (to be used for the hadr_local_svc setting)
of all participating databases.

* Determine the target list for each database.

* Determine the synchronization mode and peer window for each database's
principal standby in the event that the database becomes the primary.

* Determine the setting for the hadr_timeout configuration parameter; this
parameter must have the same setting on all databases.

* Determine if there is sufficient network bandwidth between the primary and
each standby. Upgrade if necessary.

* Determine if the primary network interface can support outgoing data flow of
the additional standbys. Upgrade if needed.

About this task

Multiple standby mode requires the hadr_target_list configuration parameter to
be set on all participating databases. This parameter lists the standbys in the
scenario when the database becomes a primary. It is required even on a standby.
Mutual inclusion is required (that is, if A has B in its target list, B must have A in
its target list). This ensures that after a takeover from any standby, the new
primary can always keep the old primary as its standby. The first standby that you
specify in the target list is designated as the principal HADR standby database.
Additional standbys are auxiliary HADR standby databases. The target list need not
always include all participants. As well, there is no requirement for symmetry or
reciprocity if there is more than one standby; even if you designate that database A
has database B as its principal standby, database B does not have to designate A as
its principal standby. Each standby specified in the target list of database A, must
also have database A in its target list.. Working out the target list for each database
is an important step.

As a special case, multiple standby mode can be configured with only one standby.

For example, you can configure two databases as primary and standby in multiple
standby mode. The behavior is not same as single standby setup because multiple

Chapter 5. Administering and maintaining a highly available solution 193

standby behavior such as automated configuration will be in effect and because
standby targets can be added or removed dynamically.

In this task, you first create and configure the new standbys only. By keeping the
original configuration until the final steps, you can keep your primary-standby
pair functioning for as long as possible. If you change the original standby's
configuration too early, you can break the old HADR pair if the standby is
deactivated and reactivated unintentionally to pick up the new configuration.

Procedure

To enable HADR in multiple standby mode:

1. Create any additional standby databases using either a restored backup or split
mirror. For instructions on how to do this, see “Initializing a standby database”
on page 51 or step 2 of “Initializing high availability disaster recovery (HADR)”
on page 33.

* On the primary:
DB2 BACKUP DB dbname
* On the standbys:
DB2 RESTORE DB dbname
2. Configure each of the new standby databases as follows:

a. Set the hadr_local_host and hadr_local_svc to the TCP address used by
the HADR connection.

b. Set the hadr_remote_host, hadr_remote_svc, hadr_remote_inst configuration
parameters to point to the primary database.

C. Set the hadr_timeout configuration, with the same setting on all of the
databases.

d. Set the hadr_target_list configuration parameter, as previously planned.

e. Set the hadr_syncmode and hadr_peer_window configuration parameters for
the principal standby in case this database becomes the primary.

f. Set any other HADR-specific parameters such as hadr_spool_limit or
hadr_replay_delay, depending on your desired setup.

3. Connect to each new standby instance and issue the START HADR command with
the AS STANDBY option.

START HADR ON DB dbname AS STANDBY

4. Reconfigure the original standby by following the same instructions as in Step
2.

5. Reconfigure the primary as follows:

a. Set the hadr_local_host and hadr_local_svc to the TCP address used by
the HADR connection. You might need to make an update if you are using
a new network interface card (NIC) to support higher network bandwidth
to accommodate more standbys.

b. Set the hadr_remote_host, hadr_remote_svc, hadr_remote_inst configuration
parameters to point to the principal standby database.

C. Set the hadr_timeout configuration, with the same setting as on all of the
standby databases.

d. Set the hadr_target_list configuration parameter, as previously planned.

e. Set the hadr_syncmode and hadr_peer_window configuration parameters,
which the principal standby will use.

f. Set any other HADR-specific parameters such as hadr_spool_1imit or
hadr_replay_delay, depending on your desired setup.

194 Data Recovery and High Availability Guide and Reference

6. Deactivate and then reactivate the original standby to pick up the new

configuration.

7. Stop HADR on the primary and then restart it to pick up the new
configuration.

Results

All of the standbys should connect to the primary within seconds. You can monitor
their status using the db2pd command with the -hadr option or the
MON_GET_HADR table function.

Modifications to a multiple standby database setup

After your multiple HADR standby setup is up and running, you might want to
make additional changes, such as adding or removing auxiliary standby databases
or changing the principal standby database designation. You can make these kinds
of modifications without causing an outage on your primary database.

Adding auxiliary standbys

There are a few reasons why you might want to add an auxiliary standby:
* To deploy an additional standby for processing read-only workloads

* To deploy an additional standby for time-delayed replay

* To deploy an additional standby for disaster recovery purposes

* To add a standby that was a part of a previously active HADR deployment but
was orphaned because the hadr_target_list configuration parameter for the new
primary does not specify that standby

You can add an auxiliary standby only if your HADR deployment is in multiple
standby mode. That is, thehadr_target_list configuration parameter must already
be set to at least one standby.

To add an auxiliary standby to your HADR deployment, update the target list of
the primary with the host and port information from the standby. This information
corresponds to the settings for the hadr_local_host and hadr_local_svc
parameters on the standby. You must also add the host and port information for
the primary to the target list of the new standby.

Tip: Although it is not required, a best practice is to also add the host and port
information for the new standby to the target lists of the other standbys in the
deployment. You should also specify the host and port information for those
standbys in the target list of the new standby. If you do not make these additional
updates and one of the other standbys takes over as the new primary, the new
standby is rejected as a standby target and is shut down.

Removing auxiliary standbys

The only standbys that you can remove dynamically are auxiliary standbys. If you
dynamically remove an auxiliary standby from your multiple standby deployment,
there is no effect on normal HADR operations on the primary and the principal
standby. To remove an auxiliary standby, issue the STOP HADR command on the
standby; afterward, you can remove it from the target lists of the primary and any
other standby.

Chapter 5. Administering and maintaining a highly available solution 195

Changing the principal standby

You can change the principal standby only if you first stop HADR on the primary
database; this does not cause an outage, because you do not have to deactivate the
primary.

To change the principal standby, you must stop HADR on the primary database.
Then, update the target list of the primary database to list the new principal
standby first. If the new principal standby is not already a standby, add the
primary database's address to its target list, configure the other HADR parameters,
and activate the standby. If it is already a standby, no action is needed.

Tip: Although it is not required, it is a best practice to also add the host and port
information for the new principal standby to the target list of the other standby in
the deployment. You should also specify the host and port information for that
standby in the target list of the new principal standby. If you do not make these
additional updates and either one of the standbys takes over as the new primary,
the other standby is rejected as a standby target and is shut down.

Database configuration for multiple HADR standby databases

There are a number of considerations for database configuration in a multiple
HADR standby setup.

Automatic reconfiguration of HADR parameters
Reconfiguration after HADR starts

In multiple standby mode, the configuration parameters that identify the
primary database for the standbys and identify the principal standby for
the primary are automatically reset when HADR starts if you did not
correctly set them. This behavior applies to the following configuration
parameters:

* hadr_remote_host
* hadr_remote_inst
* hadr_remote_svc

Tip: Even though this automatic reconfiguration occurs, you should
always try to set the correct initial values because that reconfiguration
might not take effect until a connection is made between a standby and its
primary. In some HADR deployments, those initial values might be
needed. For example, if you are using the IBM Tivoli System Automation
for Multiplatforms software, the value for the hadr_remote_inst
configuration parameter is needed to construct a resource name.

Note: If the DB2_HADR_NO_IP_CHECK registry variable is set to ON, the
hadr_remote_host and hadr_remote_svc are not automatically updated.

Reconfiguration is predicated on the values of the hadr_target_list
configuration parameter being correct; if anything is wrong in a target list
entry, you must correct it manually.

On the primary, the reconfiguration occurs in the following manner:

* If the values for the hadr_remote_host and hadr_remote_svc
configuration parameters do not match the host:port pair that is the first
entry of the hadr_target_list configuration parameter (namely, the

196 Data Recovery and High Availability Guide and Reference

principal standby), the hadr_remote_host and hadr_remote_svc
configuration parameters are updated with the values from the target
list.

¢ If the value for the hadr_remote_inst configuration parameter does not
match the instance name of the principal standby, the correct instance
name is copied to the hadr_remote_inst configuration parameter for the
primary after the principal standby connects to it.

On a standby database, the reconfiguration occurs in the following manner:

* When a standby starts, it attempts to connect to the database that you
specified for its hadr_remote_host, hadr_remote_inst, and
hadr_remote_svc configuration parameters.

¢ If the standby cannot connect to the primary, it waits for the primary to
connect to it.

* The primary attempts to connect to its standbys using addresses listed in
its hadr_target_list parameter. After the primary connects to a standby,
the hadr_remote_host, hadr_remote_inst, and hadr_remote_svc
configuration parameters for the standby are updated with the correct
values for the primary.

Reconfiguration during and after a takeover

In a non-forced takeover, the values for the hadr_remote_host,
hadr_remote_inst, and hadr_remote_svc configuration parameters on the
new primary are automatically updated to its principal standby, and these
parameters on the standbys listed in the new primary's hadr_target_list
are automatically updated to point to the new primary. Any database that
is not listed in the new primary's hadr_target_list is not updated. Those
databases continue to attempt to connect to the old primary and get
rejected because the old primary is now a standby. The old primary is
guaranteed to be in the new primary's target list because of the
requirement of mutual inclusion in the target list.

In a forced takeover, automatic update on the new primary and its
standbys (excluding the old primary) work the same way as non-forced
takeover. However, automatic update on the old primary does not happen
until it is shut down and restarted as a standby for reintegration.

Any database that is not online during the takeover will be automatically
reconfigured after it starts. Automatic reconfiguration might not take effect
immediately on startup, because it relies on the new primary to
periodically contact the standby. On startup, a standby might attempt to
connect to the old primary and follow the log stream of the old primary,
causing it to diverge from the new primary's log stream and, making that
standby unable to pair with the new primary. As a result, you must shut
down the old primary before takeover to avoid that kind of split brain
scenario.

Lack of standby control of the synchronization mode and peer
window

In multiple standby mode, only the settings of the hadr_syncmode and
hadr_peer_window configuration parameters of the current primary are relevant.
The standby databases either have the settings for those parameters defined by the
primary, in the case of the principal standby, or by their role as an auxiliary
standby.

Synchronization mode

Chapter 5. Administering and maintaining a highly available solution 197

In multiple standby mode, the setting for the hadr_syncmode configuration
parameter do not have to be the same on the primary and standby
databases. Whatever setting you specify for the hadr_syncmode
configuration parameter on a standby is considered its configured
synchronization mode; this setting has relevance only if the standby becomes
a primary. The standby is assigned an effective synchronization mode. For any
auxiliary standby, the effective synchronization mode is always
SUPERASYNC. For the principal standby, the effective synchronization
mode is the setting for the hadr_syncmode configuration parameter for the
primary. For a standby, the monitoring interfaces display the effective
synchronization mode as the synchronization mode.

Peer window
In multiple standby mode, the setting for the hadr_peer_window
configuration parameter does not have to be the same on the primary and
standby databases. In fact, any setting for the hadr_peer_window
configuration parameter on the auxiliary standbys is ignored because peer
window functionality is incompatible with SUPERASYNC mode. The
principal standby uses the peer window setting of the primary, which is
applicable only if the value of the hadr_syncmode configuration parameter
for the standby is SYNC or NEARSYNC, just as with single standby mode.

Rolling upgrades in HADR multiple standby mode

As with HADR single standby mode, you can use a rolling upgrade. The crucial
difference is that with multiple standbys you can use this procedure while
maintaining HADR protection by keeping a primary and a standby active.

There is always a primary to provide database service and this primary always has
at least one standby providing HA and DR protection.

With multiple standbys, you should perform the update or upgrade on all of the
standbys before doing so on the primary. This is particularly important if you are
updating the fixpack level because HADR does not allow the primary to be at a
higher fixpack level than the standby.

The procedure is essentially the same as with single standby mode, except you
should perform the upgrade on one database at a time and starting with an
auxiliary standby. For example, consider the following HADR setup:

* hostl is the primary

* host2 is the principal standby

* host 3 is the auxiliary standby

For this setup, perform the rolling upgrade or update according to the following
sequence:

1. Deactivate host3, make the required changes, activate host3, and start HADR
on host3 (as a standby).

2. After host3 is caught up in log replay, deactivate host2, make the required
changes, activate host2, and start HADR on host2 (as a standby).

3. After host2 is caught up in log replay and in peer state with hostl, issue a
takeover on host2.

4. Deactivate hostl, make the required changes, activate hostl, and start HADR
on hostl (as a standby).

5. After hostl is in peer state with host 2, issue a takeover on hostl so that it
becomes the primary again and host2 becomes the principal standby again.

198 Data Recovery and High Availability Guide and Reference

High availability disaster recovery (HADR) monitoring in
multiple standby mode

HADR multiple standby mode supports the same monitoring interfaces as in
single standby mode; however, you should only use the db2pd command and the
MON_GET_HADR table function because other monitoring interfaces do not give
a complete view of all of the standbys.

The information returned by the monitoring interface depends on where it is
issued. Monitoring on a standby returns information about that standby and the
primary only; no information is provided about any other standbys. Monitoring on
the primary returns information about all of the standbys if you are using the
db2pd command or the MON_GET_HADR table function. Even standbys that are
not connected, but are configured in the primary's hadr_target_list configuration
parameter are displayed. Other interfaces like the GET SNAPSHOT FOR DATABASE
command report the primary and the principal standby only.

The db2pd command and the MON_GET_HADR table function return essentially
the same information, but the db2pd command does not require reads on standby
to be enabled (for reporting from a standby). As well, the db2pd command is
preferred during takeover because there could be a time window where neither the
primary nor the standby allows client connections.

db2pd command

In the following example, the DBA issues the db2pd command on a primary
database with three standbys. Three sets of data are returned, with each
representing a primary-standby log shipping channel. The HADR_ROLE field
represents the role of the database to which db2pd is issued, so it is listed as
PRIMARY in all sets. The HADR_STATE for the two auxiliary standbys (hostS2
and hostS3) is REMOTE_CATCHUP because they automatically run in
SUPERASYNC mode (which is also reflected in the db2pd output) regardless of
their configured setting for hadr_syncmode. The STANDBY_ID differentiates the
standbys. It is system generated and the ID-to-standby mapping can change from
query to query; however, the ID "1" is always assigned to the principal standby.

Note: Fields not relevant to current status might be omitted in the output. For
example, in the following output, information about the replay-only window (like
start time and transaction count) is not included because the replay-only window
is not active.

db2pd -db hadr_db -hadr

Database Member 0 -- Database hadr_db -- Active -- Up 0 days 00:23:17 --
Date 06/08/2011 13:57:23

HADR_ROLE = PRIMARY
REPLAY_TYPE = PHYSICAL
HADR_SYNCMODE = SYNC
STANDBY_ID = 1
LOG_STREAM_ID = 0
HADR_STATE = PEER
PRIMARY_MEMBER_HOST = hostP. ibm.com
PRIMARY_INSTANCE = db2instl
PRIMARY MEMBER = 0
STANDBY_MEMBER_HOST = hostS1.ibm.com
STANDBY_INSTANCE = db2inst2
STANDBY_MEMBER = ©
HADR_CONNECT_STATUS = CONNECTED
HADR_CONNECT_STATUS_TIME = 06/08/2011 13:38:10.199479 (1307565490)
HEARTBEAT_INTERVAL (seconds) = 30

Chapter 5. Administering and maintaining a highly available solution 199

HADR_TIMEOUT (seconds)
TIME_SINCE_LAST_RECV(seconds)
PEER_WAIT_LIMIT(seconds)
LOG_HADR_WAIT_CUR(seconds)
LOG_HADR_WAIT_RECENT_AVG(seconds)
LOG_HADR_WAIT_ACCUMULATED(seconds)
LOG_HADR_WAIT_COUNT
SOCK_SEND_BUF_REQUESTED,ACTUAL (bytes)
SOCK_RECV_BUF_REQUESTED,ACTUAL (bytes)
PRIMARY_LOG_FILE,PAGE,POS
STANDBY_LOG_FILE,PAGE,POS
HADR_LOG_GAP (bytes)
STANDBY_REPLAY_LOG_FILE,PAGE,POS
STANDBY_RECV_REPLAY_GAP(bytes)
PRIMARY_LOG_TIME

STANDBY_LOG_TIME
STANDBY_REPLAY_LOG_TIME
STANDBY_RECV_BUF_SIZE(pages)
STANDBY RECV_BUF_PERCENT
STANDBY_SPOOL_LIMIT(pages)
PEER_WINDOW(seconds)
READS_ON_STANDBY_ENABLED
STANDBY_REPLAY ONLY WINDOW_ACTIVE

HADR_ROLE

REPLAY_TYPE

HADR_SYNCMODE

STANDBY_ID

LOG_STREAM_ID

HADR_STATE

PRIMARY_MEMBER_HOST
PRIMARY_INSTANCE

PRIMARY_MEMBER
STANDBY_MEMBER _HOST
STANDBY_INSTANCE

STANDBY_MEMBER
HADR_CONNECT_STATUS
HADR_CONNECT_STATUS_TIME
HEARTBEAT_INTERVAL(Seconds)
HADR_TIMEOUT (seconds)
TIME_SINCE_LAST RECV(seconds)
PEER_WAIT LIMIT(seconds)
LOG_HADR_WAIT_CUR(seconds)
LOG_HADR_WAIT_RECENT_AVG(seconds)
LOG_HADR_WAIT_ACCUMULATED(seconds)
LOG_HADR_WAIT_COUNT
SOCK_SEND_BUF_REQUESTED,ACTUAL (bytes)
SOCK_RECV_BUF_REQUESTED,ACTUAL (bytes)
PRIMARY_LOG_FILE,PAGE,POS
STANDBY_LOG_FILE,PAGE,POS
HADR_LOG_GAP(bytes)
STANDBY_REPLAY_LOG_FILE,PAGE,P0S
STANDBY_RECV_REPLAY_GAP(bytes)
PRIMARY LOG_TIME

STANDBY_LOG_TIME
STANDBY_REPLAY_LOG_TIME
STANDBY_RECV_BUF_SIZE(pages)
STANDBY _RECV_BUF_PERCENT
STANDBY_SPOOL_LIMIT(pages)
PEER_WINDOW(seconds)
READS_ON_STANDBY_ENABLED

HADR_ROLE
REPLAY_TYPE
HADR_SYNCMODE
STANDBY_ID
LOG_STREAM_ID
HADR_STATE
PRIMARY_MEMBER_HOST
PRIMARY_INSTANCE
PRIMARY_MEMBER

200 Data Recovery and High Availability Guide and Reference

=Z=E<oo0o o

120

3

0

0.000

0.006298

0.516

82

0, 50772

0, 87616
S0000009.L0G, 1,
S0000009.L0G, 1,
0
50000009.L0G,
0

06/08/2011 13:
06/08/2011 13:
06/08/2011 13:
16

49262315
49262315

49262315

:19.000000 (1307566159)
:19.000000 (1307566159)
:19.000000 (1307566159)

PRIMARY

PHYSICAL

SUPERASYNC

2

0

REMOTE_CATCHUP

hostP.ibm.com

db2instl

0

hostS2.ibm.com

db2ins3t

0

CONNECTED

06/08/2011 13:35:51.724447 (1307565351)
30

120

16

0

0.000

0.006298

0.516

82

0, 16384

0, 87380
S0000009.L0G, 1,
S0000009.L0G, 1,
0
S0000009.L0G,
0

06/08/2011 13:
06/08/2011 13:
06/08/2011 13:
16

0

49262315
49262315

49262315

:19.000000 (1307566159)
:19.000000 (1307566159)
:19.000000 (1307566159)

0
0
Y

PRIMARY
PHYSICAL
SUPERASYNC

3

0
REMOTE_CATCHUP
hostP.ibm.com
db2instl

0

STANDBY_MEMBER_HOST = hostS3.ibm.com

STANDBY_INSTANCE = db2inst3
STANDBY_MEMBER = 0
HADR_CONNECT_STATUS = CONNECTED
HADR_CONNECT_STATUS_TIME = 06/08/2011 13:46:51.561873 (1307566011)
HEARTBEAT_INTERVAL(seconds) = 30
HADR_TIMEOUT (seconds) = 120
TIME_SINCE_LAST RECV(seconds) = 6
PEER_WAIT_LIMIT(seconds) 0
LOG_HADR_WAIT_CUR(seconds) = 0.000
LOG_HADR_WAIT_RECENT AVG(seconds) = 0.006298
LOG_HADR WAIT_ACCUMULATED(seconds) 0.516
LOG_HADR_WAIT_COUNT = 82
SOCK_SEND_BUF_REQUESTED,ACTUAL (bytes) = 0, 16384
SOCK_RECV_BUF_REQUESTED,ACTUAL (bytes) 0, 87380

PRIMARY_LOG_FILE,PAGE,POS

L0G_ $0000009.L0G, 1, 49262315
STANDBY_LOG_FILE,PAGE,POS

S0000009.L0G, 1, 49262315

HADR_LOG_GAP(bytes) = 0
STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.L0G, 1, 49262315
STANDBY RECV_REPLAY_GAP(bytes) = 0

PRIMARY_LOG_TIME
STANDBY_LOG_TIME
STANDBY_REPLAY_LOG_TIME

06/08/2011 13:49:19.000000 (1307566159)
06/08/2011 13:49:19.000000 (1307566159)
06/08/2011 13:49:19.000000 (1307566159)

STANDBY_RECV_BUF_SIZE(pages) = 16
STANDBY_RECV_BUF_PERCENT = 0
STANDBY_SPOOL_LIMIT(pages) = 0
PEER_WINDOW(seconds) = 0
READS_ON_STANDBY_ENABLED = N

MON_GET_HADR table function

In the following example, the DBA calls the MON_GET_HADR table function on the
primary database with three standbys. Three rows are returned. Each row
represents a primary-standby log shipping channel. The HADR_ROLE column
represents the role of the database to which the query is issued. Therefore it is
PRIMARY on all rows. The HADR_STATE for the two auxiliary standbys (hostS2
and hostS3) is REMOTE_CATCHUP because they automatically run in
SUPERASYNC mode regardless of their configured setting for hadr_syncmode.
db2 "select HADR_ROLE, STANDBY_ID, HADR_STATE, varchar(PRIMARY_MEMBER_HOST,20)

as PRIMARY_MEMBER HOST, varchar(STANDBY_MEMBER_HOST,20)
as STANDBY_MEMBER _HOST from table (mon_get hadr(NULL))"

HADR_ROLE STANDBY_ID HADR_STATE PRIMARY_MEMBER_HOST ~STANDBY_MEMBER_HOST
PRIMARY 1 PEER hostP.ibm.com hostS1.ibm.com
PRIMARY 2 REMOTE_CATCHUP hostP.ibm.com hostS2.ibm.com
PRIMARY 3 REMOTE_CATCHUP hostP.ibm.com hostS3.ibm.com

3 record(s) selected.

Takeover in HADR multiple standby mode

When an HADR standby database takes over as the primary database in a multiple
standby environment, there are a number of important differences from single
standby mode.

With HADR, there are two types of takeover: role switch and failover. Role switch,
sometimes called graceful takeover or non-forced takeover, can be performed only
when the primary is available and it switches the role of primary and standby.
Failover, or forced takeover, can be performed when the primary is not available. It
is commonly used in primary failure cases to make the standby the new primary.
The old primary remains in primary role in a forced takeover. Both types of
takeover are supported in multiple standby mode, and any of the standby
databases can take over as the primary. A crucial thing to remember, though, is

Chapter 5. Administering and maintaining a highly available solution 201

that if a standby is not included in the new primary's target list, it is considered to
be orphaned and cannot connect to the new primary.

In a takeover, DB2 automatically makes a number of configuration changes for you
so that the standbys listed in new primary's target list can connect to the new
primary. The hadr_remote_host, hadr_remote_svc, and hadr_remote_inst
configuration parameters are updated on the new primary and listed standbys in
the following way:

* On the new primary: They refer to the principal standby (the first database
listed in the new primary's target list).

* On the standbys: They refer to the new primary. When an old primary is
reintegrated to become standby, the START HADR AS STANDBY command first
converts it to a standby. Thus it can also be automatically redirected to the new
primary if it is listed in the target list of the new primary.

Note: Orphaned standbys are not automatically updated in this way. If you
want them to join as standbys, you need to ensure they are in the new primary's
target list and that they include the new primary in their target lists.

Role switch
Just as in single standby mode, role switch in multiple standby mode
guarantees no data is lost between the old primary and new primary.
Other standbys configured in the new primary's hadr_target_list
configuration parameter are automatically redirected to the new primary
and continue receiving logs.

Failover

Just as in single standby mode, if a failover results in any data loss in
multiple standby mode (meaning that the new primary does not have all
of the data of the old primary), the old and new primary's log streams
diverge and the old primary has to be reinitialized. For the other standbys,
if a standby received logs from the old primary beyond the diverge point,
it has to be reinitialized. Otherwise, it can connect to the new primary and
continue log shipping and replay. As a result, it is very important that you
check the log positions of all of the standbys and choose the standby with
the most data as the failover target. You can query this information using
the db2pd command or the MON_GET_HADR table function.

Note: Successful automatic reconfiguration of a standby's
hadr_remote_host, hadr_remote_svc, and hadr_remote_inst configuration
parameters to point to the new primary does not mean the standby will be
accepted to pair with the new primary. It only allows the standby to make
a TCP connection to the primary. Upon connection, if DB2 determines that
the two databases have diverging log streams, the pairing request will be
rejected and the connection closed.

Scenario: Deploying an HADR multiple standby database
setup

This scenario describes the planning, configuring, and deploying of an HADR
setup for a bank called ExampleBANK. The setup has three standby databases: one
principal standby and two auxiliary standbys.

202 Data Recovery and High Availability Guide and Reference

Background

Because banking is a 24x7 business, high availability is crucial to ExampleBANK's
technology strategy. In addition, ExampleBANK experienced a close call with a
hurricane hitting City A, where its head office is located, so the bank also requires
a disaster recovery strategy. High availability disaster recovery (HADR) offers a
solution that can help the bank achieve both of these goals with a single
technology: HADR multiple standby databases.

ExampleBANK considers the following requirements essential for its HADR
solution:

An aggressive recovery time objective
As a bank that offers 24-hour online service, ExampleBANK wants to
minimize the time that applications cannot connect to their database.

An aggressive recovery point objective
ExampleBANK cannot tolerate data loss, so the RPO should be as close to
0 as possible.

Near-zero planned downtime
ExampleBANK's database should be available as much as possible, even
through planned activities such as upgrades and maintenance.

Data protection through geographic dispersion
As part of its compliance standards, ExampleBANK wants the capability to
recover operations at a remote location.

Easy deployment and management
ExampleBANK's overburdened IT department wants a solution that is
relatively simple to configure and that has automation capabilities.

As the following scenarios illustrate, using the HADR feature in multiple standby
mode helps ExampleBANK meet all these requirements.

Planning for a multiple standby setup

ExampleBANK wants to have both high availability and disaster recovery
protection from its HADR setup, so the bank decides to use the maximum number
of standbys: three. To achieve the RTO, the bank must have a standby that is in
close synchronization with the primary (a standby that uses SYNC or NEARSYNC
mode) and is collocated with the primary. It makes the most sense to have this
standby be the principal standby because only that standby supports all
synchronization modes. Both the primary and the principal standby are located in
ExampleBANK's head office in City A and are connected by a LAN.

In addition, to protect the bank's data from being lost because of a disaster, the
ExampleBANK DBA chooses to set up two standbys in the bank's regional office in
City B. The regional office is connected to the head office in City A by a WAN. The
distance between the two cities will not affect the primary because the standbys
are auxiliary standbys, which automatically run in SUPERASYNC mode. The DBA
can provide additional justification for the costs of these additional databases by
setting up one of them to use the reads on standby feature and the other to use the
time-delayed replay feature. Also, these standbys can help maintain database
availability through a rolling update or maintenance scenario, preventing the loss
of HADR protection.

Chapter 5. Administering and maintaining a highly available solution 203

Configuring a multiple standby setup

The ExampleBANK DBA takes a backup of the intended primary database,
HADR_DB:

DB2 BACKUP DB hadr_db TO backup_dir

The DBA then restores the backup onto each of the intended standby hosts by
issuing the following command:

DB2 RESTORE DB hadr_db FROM backup_dir

Tip: For more information about options for creating a standby, see “Initializing a
standby database” on page 51.

For the initial setup, the ExampleBANK DBA decides that most of the default
configuration settings are sufficient. However, as in a regular HADR setup, the
following database configuration parameters must be explicitly set:

* hadr_local_host

* hadr_local_svc

* hadr_remote_host

* hadr_remote_inst

* hadr_remote_svc

To obtain the correct values for those configuration parameters, the DBA

determines the host name, port number, and instance name of the four databases
that will be in the HADR setup:

Table 9. Host name, port number, and instance name for databases

Intended role Host name Port number Instance name
Primary host1 10 dbinst1
Principal standby host2 40 dbinst2
Auxiliary standby host3 41 dbinst3
Auxiliary standby host4.ibm.com 42 dbinst4

On the primary, the settings for the hadr_remote_host, hadr_remote_inst, and
hadr_remote_svc configuration parameters correspond to the host name, instance
name, and port number of the principal standby. On the standbys, the values of
these configuration parameters correspond to the host name, port number, and
instance name of the primary. In addition, the DBA uses the host name and port
values to set the hadr_target_list configuration parameter on all the databases.
Also, although it is not required, the DBA adds the information about all the
standbys in the setup to the target list of each of the other standbys. For more
information about this topic, see “Database configuration for high availability
disaster recovery (HADR)” on page 37.

As mentioned earlier, the bank wants the closest possible synchronization between
the primary and principal standby, so the DBA sets the hadr_syncmode parameter
on the primary to SYNC. Although the principal standby will automatically have
its effective synchronization mode set to SYNC after it connects to the primary, the
DBA still sets the hadr_syncmode parameter to SYNC on the principal standby. The
reason is that if the principal standby switches role with the primary, the
synchronization mode for the new primary and principal standby pair will also be
SYNC.

The DBA decides to specify host2, which is in a different city from the auxiliary
standbys, as the principal standbys for the auxiliary standbys. If one of the

204 Data Recovery and High Availability Guide and Reference

auxiliaries becomes the primary, SUPERASYNC would be a good synchronization
mode between the primary and the remotely located host2. Thus DBA sets the
hadr_syncmode parameter on the auxiliary standbys to SUPERASYNC, although the
auxiliary standbys will automatically have their effective synchronization modes
set to SUPERASYNC after they connect to the primary. For more information about
this topic, see “High Availability Disaster Recovery (HADR) synchronization
mode” on page 57.

Finally, the DBA has read about the new HADR delayed replay feature, which can
be used to intentionally keep a standby database at a point in time that is earlier
than the primary by delaying replay of logs. The DBA decides that enabling this
feature would improve ExampleBANK's data protection against errant transactions
on the primary. The DBA chooses host4, an auxiliary standby, for this feature, and
makes a note that this feature must be disabled before host4 can take over as the
primary database. For more information about this topic, see “HADR delayed
replay” on page 184.

The DBA issues the following commands to update the configuration parameters
on each of the databases:

* On hostl (the primary):

DB2 "UPDATE DB CFG FOR hadr_db USING
HADR _TARGET_LIST host2:40|host3:41|host4:42
HADR_REMOTE_HOST host2
HADR_REMOTE_SVC 40
HADR_LOCAL_HOST host1
HADR_LOCAL_SVC 10
HADR_SYNCMODE sync
HADR_REMOTE_INST db2inst2"

* On host2 (the principal standby):

DB2 "UPDATE DB CFG FOR hadr_db USING
HADR_TARGET LIST host1:10|host3:41|host4:42
HADR_REMOTE_HOST host1
HADR_REMOTE_SVC 10
HADR_LOCAL_HOST host2
HADR_LOCAL_SVC 40
HADR_SYNCMODE sync
HADR_REMOTE_INST db2inst1"

* On host3 (an auxiliary standby):

DB2 "UPDATE DB CFG FOR hadr_db USING
HADR_TARGET_LIST host2:40|host1:10|host4:42
HADR_REMOTE_HOST host1
HADR_REMOTE_SVC 10
HADR_LOCAL_HOST host3
HADR_LOCAL_SVC 41
HADR_SYNCMODE superasync
HADR_REMOTE_INST db2inst1"

* On host4 (an auxiliary standby):

DB2 "UPDATE DB CFG FOR hadr_db USING
HADR_TARGET LIST host2.:40|host1:10|host3:41
HADR_REMOTE_HOST host2
HADR_REMOTE_SVC 10
HADR_LOCAL _HOST host4
HADR_LOCAL SVC 42
HADR_SYNCMODE superasync
HADR_REMOTE_INST db2instl
HADR_REPLAY DELAY 86400"

Finally, the ExampleBANK DBA wants to enable the HADR reads on standby
feature for the following reasons:

Chapter 5. Administering and maintaining a highly available solution 205

* To make online changes to some of the HADR configuration parameters on the
standbys

¢ To call the MON_GET_HADR table function on the standbys

* To divert some of the read-only workload from the primary

The DBA updates the registry variables on the standby databases by issuing the
following commands on each of host2, host3, and host4:

DB2SET DB2_HADR_ROS=0ON
DB2SET DB2_STANDBY_ISO=UR

Starting the HADR databases

The DBA starts the standby databases first, by issuing the following command on
each of host2, host3, and host 4:

DB2 START HADR ON DB hadr_db AS STANDBY

Next, the DBA starts HADR on the primary database, on host1:
DB2 START HADR ON DB hadr_db AS PRIMARY

To verify that HADR is up and running, the DBA queries the status of the
databases from the primary on hostl by issuing the db2pd command, which returns
information about all of the standbys:

db2pd -db hadr_db -hadr

Database Member 0 -- Database hadr_db -- Active -- Up 0 days 00:23:17 -- Date 06/08/2011 13:57:23

PRIMARY_LOG_FILE,PAGE,POS
STANDBY_LOG_FILE,PAGE,POS

50000009.L0G, 1, 49262315
50000009.L0G, 1, 49262315

HADR_LOG_GAP (bytes) = 0
STANDBY REPLAY_LOG_FILE,PAGE,P0S = $S0000009.L0G, 1, 49262315
STANDBY_RECV_REPLAY_GAP(bytes) = 0

PRIMARY LOG_TIME

STANDBY_LOG_TIME
STANDBY_REPLAY_LOG_TIME
STANDBY_RECV_BUF_SIZE(pages)
STANDBY_RECV_BUF_PERCENT
STANDBY_SPOOL_LIMIT(pages)
PEER_WINDOW(seconds)
READS_ON_STANDBY_ ENABLED
STANDBY_REPLAY ONLY_WINDOW ACTIVE

06/08/2011 13:49:19.000000 (1307566159)
06/08/2011 13:49:19.000000 (1307566159)
06/08/2011 13:49:19.000000 (1307566159)
16

HADR_ROLE = PRIMARY
REPLAY_TYPE = PHYSICAL
HADR_SYNCMODE = SYNC
STANDBY_ID =1
LOG_STREAM_ID = 0
HADR_STATE = PEER
PRIMARY_MEMBER_HOST = hostl
PRIMARY_INSTANCE = db2instl
PRIMARY_MEMBER = 0
STANDBY_MEMBER_HOST = host2
STANDBY_INSTANCE = db2inst2
STANDBY_MEMBER = 0
HADR_CONNECT_STATUS = CONNECTED
HADR_CONNECT_STATUS_TIME = 06/08/2011 13:38:10.199479 (1307565490)
HEARTBEAT_INTERVAL(seconds) = 30
HADR_TIMEOUT (seconds) = 120
TIME_SINCE_LAST_RECV(seconds) = 3
PEER_WAIT LIMIT(seconds) = 0
LOG_HADR_WAIT CUR(seconds) = 0.000
LOG_HADR_WAIT RECENT AVG(seconds) = 0.006298
LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516
LOG_HADR_WAIT_COUNT = 82
SOCK_SEND_BUF_REQUESTED,ACTUAL (bytes) = 0, 50772
SOCK_RECV_BUF_REQUESTED,ACTUAL (bytes) = 0, 87616

=Z=E<oo o

206 Data Recovery and High Availability Guide and Reference

HADR_ROLE

REPLAY_TYPE

HADR_SYNCMODE

STANDBY_ID

LOG_STREAM_ID

HADR_STATE

PRIMARY_MEMBER_HOST
PRIMARY_INSTANCE

PRIMARY_MEMBER
STANDBY_MEMBER_HOST
STANDBY_INSTANCE

STANDBY_MEMBER
HADR_CONNECT_STATUS

HADR_| CONNECT_STATUS _TIME
HEARTBEAT_INTERVAL(seconds)
HADR_TIMEOUT (seconds)
TIME_SINCE_LAST_RECV(seconds)
PEER_WAIT_LIMIT(seconds)

LOG_ HADR _WAIT_CUR(seconds)
LOG_HADR WAIT RECENT _AVG(seconds)
LOG_HADR_WAIT ACCUMULATED(seconds)
LOG_HADR_WAIT_COUNT
SOCK_SEND_BUF_REQUESTED,ACTUAL (bytes)
SOCK_RECV_BUF_REQUESTED,ACTUAL (bytes)
PRIMARY_LOG_FILE,PAGE,POS
STANDBY_LOG_FILE,PAGE,POS
HADR_LOG_GAP (bytes)
STANDBY_REPLAY_ LOG FILE,PAGE,POS
STANDBY RECV REPLAY GAP(bytes)
PRIMARY_LOG_TIME

STANDBY LOG TIME

STANDBY_| REPLAY LOG TIME
STANDBY_RECV BUF SIZE(pages)
STANDBY RECV BUF_PERCENT

STANDBY_ SPOOL LIMIT(pages)

PEER wINDON(seconds)
READS_ON_STANDBY_ENABLED
STANDBY_REPLAY ONLY NINDOW _ACTIVE

HADR_ROLE

REPLAY_TYPE

HADR_SYNCMODE

STANDBY_ID

LOG_STREAM_ID

HADR_STATE

PRIMARY_MEMBER_HOST
PRIMARY_INSTANCE

PRIMARY_MEMBER

STANDBY_MEMBER_HOST
STANDBY_INSTANCE

STANDBY_MEMBER

HADR_CONNECT_STATUS

HADR_| CONNECT STATUS TIME

HEARTBEAT INTERVAL(SecondS)
HADR_TIMEOUT(seconds)
TIME_SINCE_LAST_RECV(seconds)
PEER_ WAIT LIMIT(secondS)

LOG_ HADR WAIT_CUR(seconds)
LOG_HADR_ WAIT RECENT AVG(secondS)
LOG_ HADR WAIT ACCUMULATED(seconds)
LOG_HADR_WAIT_COUNT
SOCK_SEND_BUF_REQUESTED,ACTUAL (bytes)
SOCK_RECV_BUF_REQUESTED,ACTUAL (bytes)
PRIMARY_LOG_FILE,PAGE,POS
STANDBY_LOG_FILE,PAGE,POS

HADR LoG GAP(bytes)
STANDBY_REPLAY_ LOG FILE,PAGE,POS
STANDBY RECV REPLAY _GAP(bytes)
PRIMARY_LOG_TIME

L[| | | | | | | | | | | | | | | | | | I | | | | (e | | | | | Y | N | N | S | |
=Z=E<ooo

PRIMARY
PHYSICAL
SUPERASYNC

2

0
REMOTE_CATCHUP
hostl

db2instl

0

host3

db2inst3

0

CONNECTED
06/08/2011 13:35:51.724447 (1307565351)
30

120

16

0

0.000
0.006298
0.516

82

0, 16384

0, 87380
S0000009.L0G,
S0000009.L0G,

1, 49262315
1, 49262315

S0000009. LOG,
0
06/08/2011 13:
06/08/2011 13:
06/08/2011 13:
16

1, 49262315

49:19.000000 (1307566159)
49:19.000000 (1307566159)
49:19.000000 (1307566159)

PRIMARY
PHYSICAL
SUPERASYNC

3

0
REMOTE_CATCHUP
hostl

db2instl

0

host4

db2inst4

0

CONNECTED
06/08/2011 13:46:51.561873 (1307566011)
30

120

6

0

0.000
0.006298
0.516

82

0, 16384

0, 87380
S0000009.L0G,
S0000009.L0G,
0
S0000009.L0G,
0

06/08/2011 13:

1, 49262315
1, 49262315

1, 49262315

49:19.000000 (1307566159)

Chapter 5. Administering and maintaining a highly available solution

STANDBY_REPLAY_LOG_TIME
STANDBY_RECV_BUF_SIZE(pages)
STANDBY_RECV_BUF_PERCENT
STANDBY_SPOOL_LIMIT (pages)
PEER_WINDOW(seconds)
READS_ON_STANDBY_ENABLED
STANDBY_REPLAY ONLY_WINDOW_ACTIVE

STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
06/08/2011 13:49:19.000000 (1307566159)

16

=Z=E<oo o

Examples: Takeover in HADR multiple standby mode

This set of examples of takeovers (both forced and unforced) in HADR multiple
standby mode is based on a three-standby setup. The purpose of these examples is
to show how the multiple standby automatic reconfiguration works in a takeover
situation.

* “A principal standby takes over gracefully (role switch)” on page 209
* “An auxiliary standby takes over by force (failover)” on page 210

* “An auxiliary standby takes over by force (failover) in a SA MP environment”
on page 211

The initial setup for each of the examples is as follows:

* a primary database (hostl)

* a principal standby (host2)

* two auxiliary standbys (host3 and host4)

All of the databases are called hadr_db. The primary and principal standby have

their synchronization mode set to SYNC and the standbys have theirs set to
SUPERASYNC.

The configuration for each database is shown in Table 10.

Table 10. Configuration values for each HADR database

Configuration

parameter Host1 Host2 Host3 Host4

hadr_target_list host2:40 I host3:41 | host1:10 I host3:41 | host2:40 I host1:10 | host2:40 I host1:10 |
host4:42 host4:42 host4:42 host3:41

hadr_remote_host host2 hostl hostl hostl

hadr_remote_svc 40 10 10 10

hadr_remote_inst dbinst2 dbinstl dbinstl dbinstl

hadr_local_host hostl host2 host3 host4

hadr_local_svc 10 40 41 42

Configured SYNC SYNC SUPERASYNC SUPERASYNC

hadr_syncmode
(Refers to the
explicitly set
synchronization
mode, which is used
if the database
becomes a primary)

208 Data Recovery and High Availability Guide and Reference

Table 10. Configuration values for each HADR database (continued)

Configuration
parameter Host1 Host2 Host3 Host4
Effective n/a SYNC SUPERASYNC SUPERASYNC

hadr_syncmode

(Refers to the
synchronization mode
that is used if the
database is currently
a standby)

A principal standby takes over gracefully (role switch)

The DBA performs a takeover on the principal standby by issuing the following
command on host2:

DB2 TAKEOVER HADR ON DB hadr_db

After the takeover is completed successfully, host2 becomes the new primary and
host1, which is the first entry in the hadr_target_list of host2 (as shown in
Table 10 on page 208), becomes its principal standby. Their sync mode is SYNC
mode because host2 is configured with an hadr_syncmode of SYNC. The auxiliary
standby targets, host3 and host4, have their hadr_remote_host and
hadr_remote_svc pointing at the old primary, hostl, but are automatically
redirected to the new primary, host2. In this redirection, host3 and host4 update
(persistently) their hadr_remote_host, hadr_remote_svc, and hadr_remote_inst
configuration parameters. They reconnect to host2 as auxiliary standbys, and are
told by host2 to use an effective synchronization mode of SUPERASYNC
(regardless of what they have locally configured for hadr_syncmode)