

IBM DB2 Universal Database ÉÂÔ

API Reference
Version 5

 S10J-8167-00

IBM DB2 Universal Database ÉÂÔ

API Reference
Version 5

 S10J-8167-00

Before using this information and the product it supports, be sure to read the general information under Appendix I,
“Notices” on page 539.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in U.S. or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1993, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

About This Book . ix
Who Should Use this Book . ix
How this Book is Structured . ix

Chapter 1. Application Programming Interfaces 1
DB2 APIs . 1
DB2 Sample Programs . 5
How the API Descriptions are Organized . 8
sqlabndx - Bind . 10
sqlaintp - Get Error Message . 15
sqlaprep - Precompile Program . 18
sqlarbnd - Rebind . 23
sqlbctcq - Close Tablespace Container Query 27
sqlbctsq - Close Tablespace Query . 29
sqlbftcq - Fetch Tablespace Container Query 31
sqlbftpq - Fetch Tablespace Query . 34
sqlbgtss - Get Tablespace Statistics . 37
sqlbmtsq - Tablespace Query . 39
sqlbotcq - Open Tablespace Container Query 42
sqlbotsq - Open Tablespace Query . 45
sqlbstpq - Single Tablespace Query . 48
sqlbstsc - Set Tablespace Containers . 51
sqlbtcq - Tablespace Container Query . 54
sqlcspqy - List DRDA Indoubt Transactions . 57
sqle_activate_db - Activate Database . 59
sqle_deactivate_db - Deactivate Database . 62
sqleaddn - Add Node . 65
sqleatin - Attach . 68
sqlecadb - Catalog Database . 72
sqlecran - Create Database at Node . 79
sqlecrea - Create Database . 81
sqlectnd - Catalog Node . 89
sqledcgd - Change Database Comment . 94
sqledcls - Close Database Directory Scan . 98
sqledgne - Get Next Database Directory Entry 100
sqledosd - Open Database Directory Scan . 103
sqledpan - Drop Database at Node . 106
sqledreg - Deregister . 108
sqledrpd - Drop Database . 110
sqledrpn - Drop Node Verify . 113
sqledtin - Detach . 115
sqlefmem - Free Memory . 117
sqlefrce - Force Application . 119
sqlegdad - Catalog DCS Database . 123
sqlegdcl - Close DCS Directory Scan . 126

 Copyright IBM Corp. 1993, 1997 iii

sqlegdel - Uncatalog DCS Database . 128
sqlegdge - Get DCS Directory Entry for Database 131
sqlegdgt - Get DCS Directory Entries . 133
sqlegdsc - Open DCS Directory Scan . 136
sqlegins - Get Instance . 138
sqleintr - Interrupt . 140
sqleisig - Install Signal Handler . 143
sqlemgdb - Migrate Database . 145
sqlencls - Close Node Directory Scan . 148
sqlengne - Get Next Node Directory Entry . 150
sqlenops - Open Node Directory Scan . 153
sqlepstart - Start Database Manager . 156
sqlepstp - Stop Database Manager . 159
sqleqryc - Query Client . 162
sqleregs - Register . 165
sqlerstd - Restart Database . 168
sqlesact - Set Accounting String . 171
sqlesdeg - Set Runtime Degree . 173
sqlesetc - Set Client . 176
sqleuncd - Uncatalog Database . 179
sqleuncn - Uncatalog Node . 182
sqlfddb - Get Database Configuration Defaults 184
sqlfdsys - Get Database Manager Configuration Defaults 186
sqlfrdb - Reset Database Configuration . 188
sqlfrsys - Reset Database Manager Configuration 191
sqlfudb - Update Database Configuration . 194
sqlfusys - Update Database Manager Configuration 198
sqlfxdb - Get Database Configuration . 201
sqlfxsys - Get Database Manager Configuration 204
sqlgaddr - Get Address . 207
sqlgdref - Dereference Address . 208
sqlgmcpy - Copy Memory . 210
sqlmon - Get/Update Monitor Switches . 212
sqlmonss - Get Snapshot . 215
sqlmonsz - Estimate Size Required for sqlmonss() Output Buffer 218
sqlmrset - Reset Monitor . 221
sqlogstt - Get SQLSTATE Message . 224
sqluadau - Get Authorizations . 227
sqlubkp - Backup Database . 230
sqludrdt - Redistribute Nodegroup . 237
sqluexpr - Export . 241
sqlugrpn - Get Row Partitioning Number . 248
sqlugtpi - Get Table Partitioning Information . 252
sqluhcls - Close Recovery History File Scan . 254
sqluhgne - Get Next Recovery History File Entry 256
sqluhops - Open Recovery History File Scan 259
sqluhprn - Prune Recovery History File . 264
sqluhupd - Update Recovery History File . 267

iv API Reference

sqluimpr - Import . 271
sqluload - Load . 282
sqluqry - Load Query . 291
sqlureot - Reorganize Table . 293
sqlurlog - Asynchronous Read Log . 297
sqluroll - Rollforward Database . 300
sqlurst - Restore Database . 309
sqlustat - Runstats . 319
sqluvqdp - Quiesce Tablespaces for Table . 324

Chapter 2. Additional REXX APIs . 329
Change Isolation Level . 330

Chapter 3. Data Structures . 331
RFWD-INPUT . 334
RFWD-OUTPUT . 337
SQL-AUTHORIZATIONS . 340
SQL-DIR-ENTRY . 343
SQLA-FLAGINFO . 345
SQLB-TBS-STATS . 347
SQLB-TBSCONTQRY-DATA . 349
SQLB-TBSPQRY-DATA . 351
SQLCA . 355
SQLCHAR . 357
SQLDA . 358
SQLDCOL . 361
SQLE-ADDN-OPTIONS . 365
SQLE-CONN-SETTING . 367
SQLE-NODE-APPC . 370
SQLE-NODE-APPN . 371
SQLE-NODE-CPIC . 372
SQLE-NODE-IPXSPX . 373
SQLE-NODE-LOCAL . 374
SQLE-NODE-NETB . 375
SQLE-NODE-NPIPE . 376
SQLE-NODE-STRUCT . 377
SQLE-NODE-TCPIP . 379
SQLE-REG-NWBINDERY . 380
SQLE-START-OPTIONS . 381
SQLEDBCOUNTRYINFO . 385
SQLEDBDESC . 386
SQLEDBSTOPOPT . 392
SQLEDINFO . 394
SQLENINFO . 397
SQLFUPD . 400
SQLM-COLLECTED . 407
SQLM-RECORDING-GROUP . 410
SQLMA . 412

 Contents v

SQLOPT . 414
SQLU-LSN . 416
SQLU-MEDIA-LIST . 417
SQLU-RLOG-INFO . 422
SQLU-TABLESPACE-BKRST-LIST . 423
SQLUEXPT-OUT . 425
SQLUHINFO . 426
SQLUIMPT-IN . 430
SQLUIMPT-OUT . 431
SQLULOAD-IN . 433
SQLULOAD-OUT . 437
SQLUPI . 439
SQLXA-RECOVER . 441
SQLXA-XID . 443

Appendix A. Naming Conventions . 445

Appendix B. Transaction APIs . 447
Heuristic APIs . 447
sqlxhfrg - Forget Transaction Status . 449
sqlxphcm - Commit an Indoubt Transaction . 450
sqlxphqr - List Indoubt Transactions . 452
sqlxphrl - Roll Back an Indoubt Transaction . 454

Appendix C. Precompiler Customization APIs 457

Appendix D. Backup and Restore APIs for Vendor Products 459
Operational Overview . 459

Number of Sessions . 460
Operation with No Errors, Warnings or Prompting 460
PROMPTING Mode . 461
Device Characteristics . 462
If Error Conditions Are Returned to DB2 . 463
Warning Conditions . 464

Operational Hints and Tips . 464
Recovery History File . 465

Functions and Data Structures . 465
sqluvint - Initialize and Link to Device . 467
sqluvget - Reading Data from Device . 471
sqluvput - Writing Data to Device . 473
sqluvend - Unlink the Device and Release its Resources 475
sqluvdel - Delete Committed Session . 477
DB2-INFO . 479
VENDOR-INFO . 482
INIT-INPUT . 483
INIT-OUTPUT . 484
DATA . 485
RETURN-CODE . 486

vi API Reference

Invoking Backup/Restore Using Vendor Products 487
The Database Director . 487
The Command Line Processor . 488
Backup and Restore API Function Calls . 488

Appendix E. Threaded Applications with Concurrent Access 489
sqleAttachToCtx - Attach to Context . 490
sqleBeginCtx - Create and Attach to an Application Context 491
sqleDetachFromCtx - Detach From Context . 493
sqleEndCtx - Detach and Destroy Application Context 494
sqleGetCurrentCtx - Get Current Context . 496
sqleInterruptCtx - Interrupt Context . 497
sqleSetTypeCtx - Set Application Context Type 498

Appendix F. DB2 Common Server Log Records 501
 Log Manager Header . 503
 Data Manager Log Records . 504

Initialize Table . 506
Import Replace (Truncate) . 508
Rollback Insert . 508
Reorg Table . 508
Create Index, Drop Index . 509
Create Table, Drop Table, Rollback Create Table, Rollback Drop Table 509
Alter Propagation, Alter Check Pending, Rollback Propagation Change,

Rollback Check Pending Change . 509
Alter Table Add Columns, Rollback Add Columns 510
Insert Record, Delete Record, Rollback Delete Record, Rollback Update

Record . 511
Update Record . 514

 Long Field Manager Log Records . 515
Add Long Field Record . 516

 LOB Manager Log Records . 516
Insert LOB Data Log Record (AFIM_DATA) 517
Insert LOB Data Log Record (AFIM_AMOUNT) 517

 Transaction Manager Log Records . 518
Normal Commit . 518
Heuristic Commit . 518
MPP Coordinator Commit . 519
MPP Subordinator Commit . 519
Normal Abort . 519
Heuristic Abort . 520
Local Pending List . 520
Global Pending List . 520
XA Prepare . 521
MPP Subordinator Prepare . 521

 Utility Manager Log Records . 522
Migration Begin . 522
Migration End . 523

 Contents vii

Load Start . 523
Load Pending List . 523
Backup End . 524
Tablespace Rolled Forward . 524
Tablespace Roll Forward to PIT Begins . 524
Tablespace Roll Forward to PIT Ends . 524

Appendix G. Application Migration Considerations 527
Changed APIs and Data Structures . 528

Appendix H. How the DB2 Library Is Structured 529
SmartGuides . 529
Online Help . 530
DB2 Books . 532
About the Information Center . 536

Appendix I. Notices . 539
Trademarks . 539
Trademarks of Other Companies . 540

Index . 541

Contacting IBM . 543

viii API Reference

About This Book

This book provides information about the use of application programming interfaces
(APIs) to execute database administrative functions. It presents detailed information on
the use of database manager API calls in applications written in the following
programming languages:

 ¹ C
 ¹ COBOL
 ¹ FORTRAN
 ¹ REXX.

For a compiled language, an appropriate precompiler must be available to process the
statements. Precompilers are provided for all supported languages.

Who Should Use this Book
It is assumed that the reader has an understanding of database administration and
application programming, plus a knowledge of:

¹ Structured Query Language (SQL)
¹ The C, COBOL, FORTRAN, or REXX programming language
¹ Application program design.

How this Book is Structured
This book provides the reference information needed to develop administrative
applications.

The following topics are covered:

Chapter 1 Provides a description of all database manager APIs.

Chapter 2 Describes DB2 APIs that are only supported in the REXX
programming language.

Chapter 3 Describes data structures used when calling APIs.

Appendix A Explains the conventions used to name objects such as databases
and tables.

Appendix B Provides a description of transaction and heuristic APIs.

Appendix C Describes how to contact IBM for information about the function and
use of APIs that enable the customization of precompilers.

Appendix D Describes the function and use of APIs that enable DB2 to interface
with other vendor software.

Appendix E Describes new APIs that permit the allocation of separate
environments or contexts for each thread within a process, enabling
true concurrent access to a DB2 database.

 Copyright IBM Corp. 1993, 1997 ix

Appendix F Provides information on extracting and working with DB2 log records.

Appendix G Discusses issues that should be considered before migrating an
application to DB2 Version 2.

x API Reference

DB2 APIs

Chapter 1. Application Programming Interfaces

This chapter describes the DB2 application programming interfaces in alphabetical
order. The APIs enable most of the administrative functions from within an application
program.

Note: Slashes (/) in directory paths are specific to UNIX based systems, and are
equivalent to back slashes (\) in directory paths on OS/2 and Windows
operating systems.

 DB2 APIs
The following table lists the APIs grouped by functional category:

Table 1 (Page 1 of 5). DB2 APIs

API Description

API
Function
Name b

Sample
Code c d

INCLUDE
File e f

Database Manager Control

START DATABASE MANAGER sqlepstart makeapi sqlenv

STOP DATABASE MANAGER sqlepstp makeapi,

dbstop

sqlenv

GET DATABASE MANAGER CONFIGURATION sqlfxsys dbmconf sqlutil

GET DATABASE MANAGER CONFIGURATION
DEFAULTS

sqlfdsys d_dbmcon sqlutil

RESET DATABASE MANAGER
CONFIGURATION

sqlfrsys dbmconf sqlutil

UPDATE DATABASE MANAGER
CONFIGURATION

sqlfusys dbmconf sqlutil

SET RUNTIME DEGREE sqlesdeg setrundg sqlenv

Database Control

RESTART DATABASE sqlerstd restart sqlenv

CREATE DATABASE sqlecrea dbconf sqlenv

CREATE DATABASE AT NODE sqlecran n/a sqlenv

DROP DATABASE sqledrpd dbconf sqlenv

DROP DATABASE AT NODE sqledpan n/a sqlenv

MIGRATE DATABASE sqlemgdb migrate sqlenv

LIST INDOUBT TRANSACTIONS sqlxphqr n/a sqlxa

ACTIVATE DATABASE sqle_acti-

vate_db
n/a sqlenv

DEACTIVATE DATABASE sqle_deac-

tivate_db
n/a sqlenv

 Copyright IBM Corp. 1993, 1997 1

DB2 APIs

Table 1 (Page 2 of 5). DB2 APIs

API Description

API
Function
Name b

Sample
Code c d

INCLUDE
File e f

LIST DRDA INDOUBT TRANSACTIONS sqlcspqy n/a sqlxa

Database Directory Management

CATALOG DATABASE sqlecadb dbcat sqlenv

UNCATALOG DATABASE sqleuncd dbcat sqlenv

CATALOG DCS DATABASE sqlegdad dcscat sqlenv

UNCATALOG DCS DATABASE sqlegdel dcscat sqlenv

CHANGE DATABASE COMMENT sqledcgd dbcmt sqlenv

OPEN DATABASE DIRECTORY SCAN sqledosd dbcat sqlenv

GET NEXT DATABASE DIRECTORY ENTRY sqledgne dbcat sqlenv

CLOSE DATABASE DIRECTORY SCAN sqledcls dbcat sqlenv

OPEN DCS DIRECTORY SCAN sqlegdsc dcscat sqlenv

GET DCS DIRECTORY ENTRIES sqlegdgt dcscat sqlenv

CLOSE DCS DIRECTORY SCAN sqlegdcl dcscat sqlenv

GET DCS DIRECTORY ENTRY FOR
DATABASE

sqlegdge dcscat sqlenv

Client/Server Directory Management

CATALOG NODE sqlectnd nodecat sqlenv

UNCATALOG NODE sqleuncn nodecat sqlenv

OPEN NODE DIRECTORY SCAN sqlenops nodecat sqlenv

GET NEXT NODE DIRECTORY ENTRY sqlengne nodecat sqlenv

CLOSE NODE DIRECTORY SCAN sqlencls nodecat sqlenv

Network Support

REGISTER sqleregs regder sqlenv

DEREGISTER sqledreg regder sqlenv

Database Configuration

GET DATABASE CONFIGURATION sqlfxdb dbconf sqlutil

GET DATABASE CONFIGURATION
DEFAULTS

sqlfddb d_dbconf sqlutil

RESET DATABASE CONFIGURATION sqlfrdb dbconf sqlutil

UPDATE DATABASE CONFIGURATION sqlfudb dbconf sqlutil

Backup/Recovery

BACKUP DATABASE sqlubkp backrest sqlutil

RESTORE DATABASE sqlurst backrest sqlutil

ROLLFORWARD DATABASE sqluroll backrest sqlutil

2 API Reference

DB2 APIs

Table 1 (Page 3 of 5). DB2 APIs

API Description

API
Function
Name b

Sample
Code c d

INCLUDE
File e f

OPEN RECOVERY HISTORY FILE SCAN sqluhops rechist sqlutil

GET NEXT RECOVERY HISTORY FILE
ENTRY

sqluhgne rechist sqlutil

CLOSE RECOVERY HISTORY FILE SCAN sqluhcls rechist sqlutil

PRUNE RECOVERY HISTORY FILE sqluhprn rechist sqlutil

UPDATE RECOVERY HISTORY FILE sqluhupd rechist sqlutil

Operational Utilities

FORCE APPLICATION sqlefrce dbstop sqlenv

REORGANIZE TABLE sqlureot dbstat sqlutil

RUNSTATS sqlustat dbstat sqlutil

Database Monitoring

ESTIMATE SIZE REQUIRED FOR sqlmonss()
OUTPUT BUFFER

sqlmonsz monsz sqlmon

GET/UPDATE MONITOR SWITCHES sqlmon n/a sqlmon

GET SNAPSHOT sqlmonss dbsnap sqlmon

RESET MONITOR sqlmrset monreset sqlmon

Data Utilities

EXPORT sqluexpr impexp sqlutil

IMPORT sqluimpr impexp sqlutil

LOAD sqluload tload sqlutil

LOAD QUERY sqluqry qload sqlutil

General Application Programming

GET ERROR MESSAGE sqlaintp util,

checkerr

sql

GET SQLSTATE MESSAGE sqlogstt util,

checkerr

sql

INSTALL SIGNAL HANDLER sqleisig util,

checkerr

sqlenv

INTERRUPT sqleintr util,

checkerr

sqlenv

DEREFERENCE ADDRESS sqlgdref nodecat sqlutil

COPY MEMORY sqlgmcpy tspace sqlutil

FREE MEMORY sqlefmem tabspace,

tspace

sqlenv

GET ADDRESS sqlgaddr dbmconf sqlutil

 Chapter 1. Application Programming Interfaces 3

DB2 APIs

Table 1 (Page 4 of 5). DB2 APIs

API Description

API
Function
Name b

Sample
Code c d

INCLUDE
File e f

Application Preparation

PRECOMPILE PROGRAM sqlaprep makeapi sql

BIND sqlabndx makeapi sql

REBIND sqlarbnd rebind sql

Remote Server Utilities

ATTACH sqleatin dbinst sqlenv

DETACH sqledtin dbinst sqlenv

Table Space Management

TABLESPACE CONTAINER QUERY sqlbtcq tabscont sqlutil

OPEN TABLESPACE CONTAINER QUERY sqlbotcq tabscont sqlutil

FETCH TABLESPACE CONTAINER QUERY sqlbftcq tabscont sqlutil

CLOSE TABLESPACE CONTAINER QUERY sqlbctcq tabscont sqlutil

SET TABLESPACE CONTAINERS sqlbstsc backrest sqlutil

TABLESPACE QUERY sqlbmtsq tabspace sqlutil

SINGLE TABLESPACE QUERY sqlbstpq tabspace sqlutil

OPEN TABLESPACE QUERY sqlbotsq tabspace sqlutil

FETCH TABLESPACE QUERY sqlbftpq tabspace sqlutil

CLOSE TABLESPACE QUERY sqlbctsq tabspace sqlutil

GET TABLESPACE STATISTICS sqlbgtss tabspace sqlutil

QUIESCE TABLESPACES FOR TABLE sqluvqdp tquiesce sqlutil

Node Management

ADD NODE sqleaddn n/a sqlenv

DROP NODE VERIFY sqledrpn n/a sqlenv

Nodegroup Management

REDISTRIBUTE NODEGROUP sqludrdt n/a sqlutil

Additional APIs

GET AUTHORIZATIONS sqluadau dbauth sqlutil

GET INSTANCE sqlegins dbinst sqlenv

QUERY CLIENT sqleqryc client sqlenv

SET CLIENT sqlesetc client sqlenv

SET ACCOUNTING STRING sqlesact setact sqlenv

ASYNCHRONOUS READ LOG sqlurlog n/a sqlutil

GET ROW PARTITIONING NUMBER sqlugrpn n/a sqlutil

4 API Reference

DB2 Sample Programs

Table 1 (Page 5 of 5). DB2 APIs

API Description

API
Function
Name b

Sample
Code c d

INCLUDE
File e f

GET TABLE PARTITIONING INFORMATION sqlugtpi n/a sqlutil

Note:

a This is a pre-version 2 API and is not supported on all platforms.

b The fourth character of the generic API function name is always g.

c The sample programs can be found in the language specific directory of the
samples directory in the sqllib directory (for example, sqllib\samples\c for C
source code).

d The file extensions on sample code depend on the programming language being
used. For example, for sample code written in C, the extension is .c or .sqc. Not
all programs are available in all supported programming languages. Not all APIs
have sample code (indicated by n/a).

e The file extensions on INCLUDE files depend on the programming language being
used. For example, an INCLUDE file written for C has a file extension of .h.

f The INCLUDE files can be found in directory sqllib\include (directory delimiters
are dependant upon the operating system).

DB2 Sample Programs
The following table lists the APIs grouped by sample program:

Table 2 (Page 1 of 4). DB2 APIs by Sample Program

Sample Code Included APIs

backrest sqlbstsc - Set Tablespace Containers
sqlubkp - Backup Database
sqluroll - Rollforward Database
sqlurst - Restore Database

checkerr sqlaintp - Get Error Message
sqleintr - Interrupt
sqleisig - Install Signal Handler
sqlogstt - Get SQLSTATE Message

client sqleqryc - Query Client
sqlesetc - Set Client

d_dbconf sqlfddb - Get Database Configuration Defaults

d_dbmcon sqlfdsys - Get Database Manager Configuration Defaults

dbauth sqluadau - Get Authorizations

dbcat sqlecadb - Catalog Database
sqledcls - Close Database Directory Scan
sqledgne - Get Next Database Directory Entry
sqledosd - Open Database Directory Scan
sqleuncd - Uncatalog Database

 Chapter 1. Application Programming Interfaces 5

DB2 Sample Programs

Table 2 (Page 2 of 4). DB2 APIs by Sample Program

Sample Code Included APIs

dbcmt sqledcgd - Change Database Comment

dbconf sqlecrea - Create Database
sqledrpd - Drop Database
sqlfrdb - Reset Database Configuration
sqlfudb - Update Database Configuration
sqlfxdb - Get Database Configuration

dbinst sqleatin - Attach
sqledtin - Detach
sqlegins - Get Instance

dbmconf sqlfrsys - Reset Database Manager Configuration
sqlfusys - Update Database Manager Configuration
sqlfxsys - Get Database Manager Configuration
sqlgaddr - Get Address

dbsnap sqlmonss - Get Snapshot

dbstat sqlureot - Reorganize Table
sqlustat - Runstats

dbstop sqlefrce - Force Application
sqlepstp - Stop Database Manager

dcscat sqlegdad - Catalog DCS Database
sqlegdcl - Close DCS Directory Scan
sqlegdel - Uncatalog DCS Database
sqlegdge - Get DCS Directory Entry for Database
sqlegdgt - Get DCS Directory Entries
sqlegdsc - Open DCS Directory Scan

impexp sqluexpr - Export
sqluimpr - Import

makeapi sqlabndx - Bind
sqlaprep - Precompile Program
sqlepstp - Stop Database Manager
sqlepstr - Start Database Manager

migrate sqlemgdb - Migrate Database

monreset sqlmrset - Reset Monitor

monsz sqlmonsz - Estimate Size Required for sqlmonss() Output Buffer

nodecat sqlectnd - Catalog Node
sqlencls - Close Node Directory Scan
sqlengne - Get Next Node Directory Entry
sqlenops - Open Node Directory Scan
sqleuncn - Uncatalog Node
sqlgdref - Dereference Address

qload sqluqry - Load Query

rebind sqlarbnd - Rebind

6 API Reference

DB2 Sample Programs

Table 2 (Page 3 of 4). DB2 APIs by Sample Program

Sample Code Included APIs

rechist sqluhcls - Close Recovery History File Scan
sqluhgne - Get Next Recovery History File Entry
sqluhops - Open Recovery History File Scan
sqluhprn - Prune Recovery History File
sqluhupd - Update Recovery History File

regder sqledreg - Deregister
sqleregs - Register

restart sqlerstd - Restart Database

setact sqlesact - Set Accounting String

setrundg sqlesdeg - Set Runtime Degree

tabscont sqlbctcq - Close Tablespace Container Query
sqlbftcq - Fetch Tablespace Container Query
sqlbotcq - Open Tablespace Container Query
sqlbtcq - Tablespace Container Query

tabspace sqlbctsq - Close Tablespace Query
sqlbftpq - Fetch Tablespace Query
sqlbgtss - Get Tablespace Statistics
sqlbmtsq - Tablespace Query
sqlbotsq - Open Tablespace Query
sqlbstpq - Single Tablespace Query
sqlefmem - Free Memory

tload sqluload - Load

tquiesce sqluvqdp - Quiesce Tablespaces for Table

tspace sqlefmem - Free Memory
sqlgmcpy - Copy Memory

util sqlaintp - Get Error Message
sqleintr - Interrupt
sqleisig - Install Signal Handler
sqlogstt - Get SQLSTATE Message

n/a sqlcspqy - List DRDA Indoubt Transactions
sqle_activate_db - Activate Database
sqle_deactivate_db - Deactivate Database
sqleaddn - Add Node
sqlecran - Create Database at Node
sqledpan - Drop Database at Node
sqledrpn - Drop Node Verify
sqludrdt - Redistribute Nodegroup
sqlugrpn - Get Row Partitioning Number
sqlugtpi - Get Table Partitioning Information
sqlurlog - Asynchronous Read Log
sqlxphqr - List Indoubt Transactions

 Chapter 1. Application Programming Interfaces 7

Table 2 (Page 4 of 4). DB2 APIs by Sample Program

Sample Code Included APIs

Note: a The sample programs can be found in the language specific directory of the samples
directory in the sqllib directory (for example, sqllib\samples\c for C source code).
The file extensions on sample code depend on the programming language being
used. For example, for sample code written in C, the extension is .c or .sqc. Not all
programs are available in all supported programming languages. Not all APIs have
sample code (indicated by n/a).

How the API Descriptions are Organized
A short description of each API precedes some or all of the following subsections.

 Scope
The API's scope of operation within the instance. In a single-node system, the scope is
that single node only. In a multi-node system, it is the collection of all logical nodes
defined in the node configuration file, db2nodes.cfg.

 Authorization
The authority required to successfully call the API.

 Required Connection
One of the following: database, instance, none, or establishes a connection. Indicates
whether the function requires a database connection, an instance attachment, or no
connection to operate successfully. An explicit connection to the database or
attachment to the instance may be required before a particular API can be called. APIs
that require a database connection or an instance attachment can be executed either
locally or remotely. Those that require neither cannot be executed remotely; when
called at the client, they affect the client environment only. For information about
database connections and instance attachments, see the Administration Guide.

API Include File
The name of the include file that contains the API prototype, and any necessary
predefined constants and parameters.

C API Syntax
The C syntax of the API call.

Generic API Syntax
The syntax of the API call for the COBOL and FORTRAN programming languages.

Attention: Provide one extra byte for every character string passed to an API. Failure
to do so may cause unexpected errors. This extra byte is modified by the database
manager.

8 API Reference

 API Parameters
A description of each API parameter and its values. Predefined values are listed with
the appropriate symbolics. Actual values for symbolics can be obtained from the
appropriate language include files. COBOL programmers should substitute a hyphen (-)
for the underscore (_) in all symbolics. For more information about parameter data
types in each host language, see the sample programs.

REXX API Syntax
The REXX syntax of the API call, where appropriate.

A new interface, SQLDB2, has been added to support calling APIs from REXX. The
SQLDB2 interface was created to provide support in REXX for new or previously
unsupported APIs that do not have any output other than the SQLCA. Invoking a
command through the SQLDB2 interface is syntactically the same as invoking the
command through the command line processor (CLP), except that the token call db2

is replaced by CALL SQLDB2. Using the CALL SQLDB2 from REXX has the following
advantages over calling the CLP directly:

¹ The compound REXX variable SQLCA is set
¹ By default, all CLP output messages are turned off.

For more information about the SQLDB2 interface, see the Embedded SQL
Programming Guide.

 REXX Parameters
A description of each REXX API parameter and its values, where appropriate.

 Sample Programs
The location and the names of sample programs illustrating the use of the API in one or
more supported languages (C, COBOL, FORTRAN, and REXX).

 Usage Notes
Other information.

 See Also
A cross-reference to related information.

 Chapter 1. Application Programming Interfaces 9

sqlabndx - Bind

sqlabndx - Bind
Invokes the bind utility, which prepares SQL statements stored in the bind file
generated by the precompiler, and creates a package that is stored in the database.

 Scope
This API can be called from any node in db2nodes.cfg. It updates the database
catalogs on the catalog node. Its effects are visible to all nodes.

 Authorization
One of the following:

¹ sysadm or dbadm authority
¹ BINDADD privilege if a package does not exist and one of:

– IMPLICIT_SCHEMA authority on the database if the schema name of the
package does not exist

– CREATEIN privilege on the schema if the schema name of the package exists
¹ ALTERIN privilege on the schema if the package exists
¹ BIND privilege on the package if it exists.

The user also needs all privileges required to compile any static SQL statements in the
application. Privileges granted to groups are not used for authorization checking of
static statements. If the user has sysadm authority, but not explicit privileges to
complete the bind, the database manager grants explicit dbadm authority automatically.

 Required Connection
Database

API Include File
sql.h

C API Syntax

/* File: sql.h */

/* API: Bind */

/* ... */

SQL_API_RC SQL_API_FN

 sqlabndx (

_SQLOLDCHAR * pBindFileName,

_SQLOLDCHAR * pMsgFileName,

struct sqlopt * pBindOptions,

struct sqlca * pSqlca);

/* ... */

10 API Reference

sqlabndx - Bind

Generic API Syntax

/* File: sql.h */

/* API: Bind */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgbndx (

unsigned short MsgFileNameLen,

unsigned short BindFileNameLen,

struct sqlca * pSqlca,

struct sqlopt * pBindOptions,

_SQLOLDCHAR * pMsgFileName,

_SQLOLDCHAR * pBindFileName);

/* ... */

 API Parameters
MsgFileNameLen

Input. A 2-byte unsigned integer representing the length of the message file
name in bytes.

BindFileNameLen
Input. A 2-byte unsigned integer representing the length of the bind file
name in bytes.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pBindOptions
Input. A structure used to pass bind options to the API. For more
information about this structure, see “SQLOPT” on page 414.

pMsgFileName
Input. A string containing the destination for error, warning, and
informational messages. Can be the path and the name of an operating
system file, or a standard device. If a file already exists, it is overwritten. If
it does not exist, a file is created.

pBindFileName
Input. A string containing the name of the bind file, or the name of a file
containing a list of bind file names. The bind file names must contain the
extension .bnd. A path for these files can be specified.

Precede the name of a bind list file with the at sign (@). For example, a
fully qualified bind list file name might be:

/u/user1/bnd/@all.lst

 The bind list file should contain one or more bind file names, and must
have the extension .lst.

 Chapter 1. Application Programming Interfaces 11

sqlabndx - Bind

Precede all but the first bind file name with a plus symbol (+). The bind
file names may be on one or more lines. For example, the bind list file
all.lst might contain:

mybind1.bnd+mybind2.bnd+

mybind3.bnd+

mybind4.bnd

Path specifications on bind file names in the list file can be used. If no path
is specified, the database manager takes path information from the bind list
file.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

 Sample Programs
C \sqllib\samples\c\makeapi.sqc

COBOL \sqllib\samples\cobol\prepbind.sqb

FORTRAN \sqllib\samples\fortran\prepbind.sqf

 Usage Notes
Binding can be done as part of the precompile process for an application program
source file, or as a separate step at a later time. Use BIND when binding is performed
as a separate process.

The name used to create the package is stored in the bind file, and is based on the
source file name from which it was generated (existing paths or extensions are
discarded). For example, a precompiled source file called myapp.sqc generates a
default bind file called myapp.bnd and a default package name of MYAPP. (However, the
bind file name and the package name can be overridden at precompile time by using
the SQL_BIND_OPT and the SQL_PKG_OPT options in “sqlaprep - Precompile
Program” on page 18.)

BIND executes under the transaction that the user has started. After performing the
bind, BIND issues a COMMIT (if bind is successful) or a ROLLBACK (if bind is
unsuccessful) operation to terminate the current transaction and start another one.

Binding halts if a fatal error or more than 100 errors occur. If a fatal error occurs during
binding, BIND stops binding, attempts to close all files, and discards the package.

Binding application programs has prerequisite requirements and restrictions beyond the
scope of this manual. For more detailed information about binding application programs
to databases, see the Embedded SQL Programming Guide.

The following table lists valid values for the type and the val fields of the bind options
structure (see “SQLOPT” on page 414), as well as their corresponding CLP options.

12 API Reference

sqlabndx - Bind

For a description of the bind options (including default values), see the Command
Reference.

Table 3 (Page 1 of 2). BIND Option Types and Values

CLP Option Option Type Option Values

ACTION ADD SQL_ACTION_OPT SQL_ACTION_ADD

ACTION REPLACE SQL_ACTION_OPT SQL_ACTION_REPLACE

BLOCKING ALL SQL_BLOCK_OPT SQL_BL_ALL

BLOCKING NO SQL_BLOCK_OPT SQL_BL_NO

BLOCKING UNAMBIG SQL_BLOCK_OPT SQL_BL_UNAMBIG

CCSIDG SQL_CCSIDG_OPT sqlopt.sqloptions.val

CCSIDM SQL_CCSIDM_OPT sqlopt.sqloptions.val

CCSIDS SQL_CCSIDS_OPT sqlopt.sqloptions.val

CHARSUB BIT SQL_CHARSUB_OPT SQL_CHARSUB_BIT

CHARSUB DEFAULT SQL_CHARSUB_OPT SQL_CHARSUB_DEFAULT

CHARSUB MIXED SQL_CHARSUB_OPT SQL_CHARSUB_MIXED

CHARSUB SBCS SQL_CHARSUB_OPT SQL_CHARSUB_SBCS

CNULREQD NO SQL_CNULREQD_OPT SQL_CNULREQD_NO

CNULREQD YES SQL_CNULREQD_OPT SQL_CNULREQD_YES

COLLECTION SQL_COLLECTION_OPT sqlchar structure

DATETIME DEF SQL_DATETIME_OPT SQL_DATETIME_DEF

DATETIME EUR SQL_DATETIME_OPT SQL_DATETIME_EUR

DATETIME ISO SQL_DATETIME_OPT SQL_DATETIME_ISO

DATETIME JIS SQL_DATETIME_OPT SQL_DATETIME_JIS

DATETIME LOC SQL_DATETIME_OPT SQL_DATETIME_LOC

DATETIME USA SQL_DATETIME_OPT SQL_DATETIME_USA

DECDEL COMMA SQL_DECDEL_OPT SQL_DECDEL_COMMA

DECDEL PERIOD SQL_DECDEL_OPT SQL_DECDEL_PERIOD

DEC 15 SQL_DEC_OPT SQL_DEC_15

DEC 31 SQL_DEC_OPT SQL_DEC_31

DEGREE 1 SQL_DEGREE_OPT SQL_DEGREE_1

DEGREE ANY SQL_DEGREE_OPT SQL_DEGREE_ANY

DEGREE degree SQL_DEGREE_OPT Integer between 1 and 32767.

DYNAMICRULES BIND SQL_DYNAMICRULES_OPT SQL_DYNAMICRULES_BIND

DYNAMICRULES RUN SQL_DYNAMICRULES_OPT SQL_DYNAMICRULES_RUN

EXPLAIN NO SQL_EXPLAIN_OPT SQL_EXPLAIN_NO

EXPLAIN YES SQL_EXPLAIN_OPT SQL_EXPLAIN_YES

EXPLAIN ALL SQL_EXPLAIN_OPT SQL_EXPLAIN_ALL

EXPLSNAP NO SQL_EXPLSNAP_OPT SQL_EXPLSNAP_NO

EXPLSNAP YES SQL_EXPLSNAP_OPT SQL_EXPLSNAP_YES

EXPLSNAP ALL SQL_EXPLSNAP_OPT SQL_EXPLSNAP_ALL

FUNCPATH SQL_FUNCTION_PATH sqlchar structure

 Chapter 1. Application Programming Interfaces 13

sqlabndx - Bind

Table 3 (Page 2 of 2). BIND Option Types and Values

CLP Option Option Type Option Values

GENERIC SQL_GENERIC_OPT sqlchar structure

GRANT SQL_GRANT_OPT sqlchar structure

GRANT PUBLIC SQL_GRANT_OPT sqlchar structure

GRANT TO USER SQL_GRANT_USER_OPT sqlchar structure

GRANT TO GROUP SQL_GRANT_GROUP_:OPT sqlchar structure

INSERT BUF SQL_INSERT_OPT SQL_INSERT_BUF

INSERT DEF SQL_INSERT_OPT SQL_INSERT_DEF

ISOLATION RS SQL_ISOLATION_OPT SQL_ISOLATION_RS

ISOLATION NC SQL_ISOLATION_OPT SQL_ISOLATION_NC

ISOLATION CS SQL_ISOLATION_OPT SQL_ISOLATION_CS

ISOLATION RR SQL_ISOLATION_OPT SQL_ISOLATION_RR

ISOLATION UR SQL_ISOLATION_OPT SQL_ISOLATION_UR

OWNER SQL_OWNER_OPT sqlchar structure

QUALIFIER SQL_QUALIFIER_OPT sqlchar structure

QUERYOPT SQL_QUERYOPT_OPT SQL_QUERYOPT_0,1,2,3,5,7,9

RELEASE COMMIT SQL_RELEASE_OPT SQL_RELEASE_COMMIT

RELEASE DEALLOCATE SQL_RELEASE_OPT SQL_RELEASE_DEALLOCATE

REPLVER SQL_REPLVER_OPT sqlchar structure

RETAIN NO SQL_RETAIN_OPT SQL_RETAIN_NO

RETAIN YES SQL_RETAIN_OPT SQL_RETAIN_YES

SQLERROR CHECK SQL_SQLERROR_OPT SQL_SQLERROR_CHECK

SQLERROR CONTINUE SQL_SQLERROR_OPT SQL_SQLERROR_CONTINUE

SQLERROR NOPACKAGE SQL_SQLERROR_OPT SQL_SQLERROR_NOPACKAGE

SQLWARN NO SQL_SQLWARN_OPT SQL_SQLWARN_NO

SQLWARN YES SQL_SQLWARN_OPT SQL_SQLWARN_YES

STRDEL APOSTROPHE SQL_STRDEL_OPT SQL_STRDEL_APOSTROPHE

STRDEL QUOTE SQL_STRDEL_OPT SQL_STRDEL_QUOTE

TEXT SQL_TEXT_OPT sqlchar structure

VALIDATE BIND SQL_VALIDATE_OPT SQL_VALIDATE_BIND

VALIDATE RUN SQL_VALIDATE_OPT SQL_VALIDATE_RUN

Note: Option values showing sqlchar structure have a val field that contains a pointer to “SQLCHAR” on
page 357. This structure contains a character string that specifies the option value.

 See Also
“sqlaprep - Precompile Program” on page 18.

14 API Reference

sqlaintp - Get Error Message

sqlaintp - Get Error Message
Retrieves the message associated with an error condition specified by the sqlcode field
of the sqlca structure.

 Authorization
None

 Required Connection
None

API Include File
sql.h

C API Syntax

/* File: sql.h */

/* API: Get Error Message */

/* ... */

SQL_API_RC SQL_API_FN

 sqlaintp (

char * pBuffer,

 short BufferSize,

 short LineWidth,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sql.h */

/* API: Get Error Message */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgintp (

 short BufferSize,

 short LineWidth,

struct sqlca * pSqlca,

_SQLOLDCHAR * pBuffer);

/* ... */

 Chapter 1. Application Programming Interfaces 15

sqlaintp - Get Error Message

 API Parameters
BufferSize

Input. Size, in bytes, of a string buffer to hold the retrieved message text.
LineWidth

Input. The maximum line width for each line of message text. Lines are
broken on word boundaries. A value of zero indicates that the message
text is returned without line breaks.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pBuffer
Output. A pointer to a string buffer where the message text is placed. If the
message must be truncated to fit in the buffer, the truncation allows for the
null string terminator character.

REXX API Syntax

GET MESSAGE INTO :msg [LINEWIDTH width]

REXX API Parameters
msg

REXX variable into which the text message is placed.
width

Maximum line width for each line in the text message. The line is broken
on word boundaries. If width is not given or set to 0, the message text
returns without line breaks.

 Sample Programs
C \sqllib\samples\c\util.c

COBOL \sqllib\samples\cobol\checkerr.cbl

FORTRAN \sqllib\samples\fortran\util.f

REXX \sqllib\samples\rexx\dbcat.cmd

 Usage Notes
One message is returned per call.

A new line (line feed, LF, or carriage return/line feed, CR/LF) sequence is placed at the
end of each message.

If a positive line width is specified, new line sequences are inserted between words so
that the lines do not exceed the line width.

16 API Reference

sqlaintp - Get Error Message

If a word is longer than a line width, the line is filled with as many characters as will fit,
a new line is inserted, and the remaining characters are placed on the next line.

 Return Codes
Code Message
+i Positive integer indicating the number of bytes in the formatted message. If this

is greater than the buffer size input by the caller, the message is truncated.
-1 Insufficient memory available for message formatting services to function. The

requested message is not returned.
-2 No error. The sqlca did not contain an error code (SQLCODE = 0).
-3 Message file inaccessible or incorrect.
-4 Line width is less than zero.
-5 Invalid sqlca, bad buffer address, or bad buffer length.

If the return code is -1 or -3, the message buffer will contain additional information
about the problem.

 See Also
“sqlogstt - Get SQLSTATE Message” on page 224.

 Chapter 1. Application Programming Interfaces 17

sqlaprep - Precompile Program

sqlaprep - Precompile Program
Processes an application program source file containing embedded SQL statements. A
modified source file is produced containing host language calls for the SQL statements
and, by default, a package is created in the database.

 Scope
This API can be called from any node in db2nodes.cfg. It updates the database
catalogs on the catalog node. Its effects are visible to all nodes.

 Authorization
One of the following:

¹ sysadm or dbadm authority
¹ BINDADD privilege if a package does not exist and one of:

– IMPLICIT_SCHEMA authority on the database if the schema name of the
package does not exist

– CREATEIN privilege on the schema if the schema name of the package exists
¹ ALTERIN privilege on the schema if the package exists
¹ BIND privilege on the package if it exists.

The user also needs all privileges required to compile any static SQL statements in the
application. Privileges granted to groups are not used for authorization checking of
static statements. If the user has sysadm authority, but not explicit privileges to
complete the bind, the database manager grants explicit dbadm authority automatically.

 Required Connection
Database

API Include File
sql.h

C API Syntax

/* File: sql.h */

/* API: Precompile Program */

/* ... */

SQL_API_RC SQL_API_FN

 sqlaprep (

_SQLOLDCHAR * pProgramName,

_SQLOLDCHAR * pMsgFileName,

struct sqlopt * pPrepOptions,

struct sqlca * pSqlca);

/* ... */

18 API Reference

sqlaprep - Precompile Program

Generic API Syntax

/* File: sql.h */

/* API: Precompile Program */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgprep (

unsigned short MsgFileNameLen,

unsigned short ProgramNameLen,

struct sqlca * pSqlca,

struct sqlopt * pPrepOptions,

_SQLOLDCHAR * pMsgFileName,

_SQLOLDCHAR * pProgramName);

/* ... */

 API Parameters
MsgFileNameLen

Input. A 2-byte unsigned integer representing the length of the message file
name in bytes.

ProgramNameLen
Input. A 2-byte unsigned integer representing the length of the program
name in bytes.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pPrepOptions
Input. A structure used to pass precompile options to the API. For more
information about this structure, see “SQLOPT” on page 414.

pMsgFileName
Input. A string containing the destination for error, warning, and
informational messages. Can be the path and the name of an operating
system file, or a standard device. If a file already exists, it is overwritten. If
it does not exist, a file is created.

pProgramName
Input. A string containing the name of the application to be precompiled.
Use the following extensions:

.sqb - for COBOL applications

.sqc - for C applications

.sqC - for UNIX C++ applications

.sqf - for FORTRAN applications

.sqx - for C++ applications

When the TARGET option is used, the input file name extension does not
have to be from this predefined list.

 Chapter 1. Application Programming Interfaces 19

sqlaprep - Precompile Program

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

 Sample Programs
C \sqllib\samples\c\makeapi.sqc

COBOL \sqllib\samples\cobol\prepbind.sqb

FORTRAN \sqllib\samples\fortran\prepbind.sqf

 Usage Notes
A modified source file is produced, which contains host language equivalents to the
SQL statements. By default, a package is created in the database to which a
connection has been established. The name of the package is the same as the
program file name (minus the extension and folded to uppercase), up to a maximum of
8 characters.

Following connection to a database, sqlaprep executes under the transaction that was
started. PRECOMPILE PROGRAM then issues a COMMIT or a ROLLBACK operation
to terminate the current transaction and start another one.

Precompiling stops if a fatal error or more than 100 errors occur. If a fatal error does
occur, PRECOMPILE PROGRAM stops precompiling, attempts to close all files, and
discards the package.

The following table lists valid values for the type and the val fields of the precompile
options structure (see “SQLOPT” on page 414), as well as their corresponding CLP
options. For a description of the precompile options (including default values), see the
Command Reference.

Table 4 (Page 1 of 3). PRECOMPILE Option Types and Values

CLP Option API Option Type API Option Values

ACTION ADD SQL_ACTION_OPT SQL_ACTION_ADD

ACTION REPLACE SQL_ACTION_OPT SQL_ACTION_REPLACE

BINDFILE SQL_BIND_OPT Null

BINDFILE filename SQL_BIND_OPT sqlchar structure

BLOCKING ALL SQL_BLOCK_OPT SQL_BL_ALL

BLOCKING NO SQL_BLOCK_OPT SQL_BL_NO

BLOCKING UNAMBIG SQL_BLOCK_OPT SQL_BL_UNAMBIG

CCSIDG value SQL_CCSIDG_OPT sqlopt.sqloptions.val

CCSIDM value SQL_CCSIDM_OPT sqlopt.sqloptions.val

CCSIDS value SQL_CCSIDS_OPT sqlopt.sqloptions.val

CHARSUB BIT SQL_CHARSUB_OPT SQL_CHARSUB_BIT

CHARSUB DEFAULT SQL_CHARSUB_OPT SQL_CHARSUB_DEFAULT

CHARSUB MIXED SQL_CHARSUB_OPT SQL_CHARSUB_MIXED

CHARSUB SBCS SQL_CHARSUB_OPT SQL_CHARSUB_SBCS

COLLECTION coll-id SQL_COLLECTION_OPT sqlchar structure

20 API Reference

sqlaprep - Precompile Program

Table 4 (Page 2 of 3). PRECOMPILE Option Types and Values

CLP Option API Option Type API Option Values

CONNECT 1 SQL_CONNECT_OPT SQL_CONNECT_1

CONNECT 2 SQL_CONNECT_OPT SQL_CONNECT_2

DATETIME DEF SQL_DATETIME_OPT SQL_DATETIME_DEF

DATETIME EUR SQL_DATETIME_OPT SQL_DATETIME_EUR

DATETIME ISO SQL_DATETIME_OPT SQL_DATETIME_ISO

DATETIME JIS SQL_DATETIME_OPT SQL_DATETIME_JIS

DATETIME LOC SQL_DATETIME_OPT SQL_DATETIME_LOC

DATETIME USA SQL_DATETIME_OPT SQL_DATETIME_USA

DECDEL COMMA SQL_DECDEL_OPT SQL_DECDEL_COMMA

DECDEL PERIOD SQL_DECDEL_OPT SQL_DECDEL_PERIOD

DEC 15 SQL_DEC_OPT SQL_DEC_15

DEC 31 SQL_DEC_OPT SQL_DEC_31

DEFERRED_PREPARE ALL SQL_DEFERRED_PREPARE_OPT SQL_DEFERRED_PREPARE_ALL

DEFERRED_PREPARE NO SQL_DEFERRED_PREPARE_OPT SQL_DEFERRED_PREPARE_NO

DEFERRED_PREPARE YES SQL_DEFERRED_PREPARE_OPT SQL_DEFERRED_PREPARE_YES

DEGREE 1 SQL_DEGREE_OPT SQL_DEGREE_1

DEGREE ANY SQL_DEGREE_OPT SQL_DEGREE_ANY

DEGREE degree SQL_DEGREE_OPT Integer between 1 and 32767.

DISCONNECT EXPLICIT SQL_DISCONNECT_OPT SQL_DISCONNECT_EXPL

DISCONNECT CONDITIONAL SQL_DISCONNECT_OPT SQL_DISCONNECT_COND

DISCONNECT AUTOMATIC SQL_DISCONNECT_OPT SQL_DISCONNECT_AUTO

DYNAMICRULES BIND SQL_DYNAMICRULES_OPT SQL_DYNAMICRULES_BIND

DYNAMICRULES RUN SQL_DYNAMICRULES_OPT SQL_DYNAMICRULES_RUN

EXPLAIN NO SQL_EXPLAIN_OPT SQL_EXPLAIN_NO

EXPLAIN YES SQL_EXPLAIN_OPT SQL_EXPLAIN_YES

EXPLAIN ALL SQL_EXPLAIN_OPT SQL_EXPLAIN_ALL

Not supported by DRDA.

EXPLSNAP NO SQL_EXPLSNAP_OPT SQL_EXPLSNAP_NO

EXPLSNAP YES SQL_EXPLSNAP_OPT SQL_EXPLSNAP_YES

EXPLSNAP ALL SQL_EXPLSNAP_OPT SQL_EXPLSNAP_ALL

FUNCPATH SQL_FUNCTION_PATH sqlchar structure

INSERT BUF SQL_INSERT_OPT SQL_INSERT_BUF

INSERT DEF SQL_INSERT_OPT SQL_INSERT_DEF

ISOLATION RS SQL_ISOLATION_OPT SQL_ISOLATION_RS

ISOLATION NC SQL_ISOLATION_OPT SQL_ISOLATION_NC

ISOLATION CS SQL_ISOLATION_OPT SQL_ISOLATION_CS

ISOLATION RR SQL_ISOLATION_OPT SQL_ISOLATION_RR

ISOLATION UR SQL_ISOLATION_OPT SQL_ISOLATION_UR

LANGLEVEL SAA1 SQL_STANDARDS_OPT SQL_SAA_COMP

LANGLEVEL MIA SQL_STANDARDS_OPT SQL_MIA_COMP

LANGLEVEL SQL92E SQL_STANDARDS_OPT SQL_SQL92E_COMP

LEVEL levelname SQL_LEVEL_OPT sqlchar structure

NOLINEMACRO SQL_LINEMACRO_OPT SQL_NO_LINE_MACROS

(default) SQL_LINEMACRO_OPT SQL_LINE_MACROS

OPTLEVEL 0 SQL_OPTIM_OPT SQL_DONT_OPTIMIZE

OPTLEVEL 1 SQL_OPTIM_OPT SQL_OPTIMIZE

 Chapter 1. Application Programming Interfaces 21

sqlaprep - Precompile Program

Table 4 (Page 3 of 3). PRECOMPILE Option Types and Values

CLP Option API Option Type API Option Values

OUTPUT filename SQL_PREP_OUTPUT_OPT sqlchar structure

OWNER SQL_OWNER_OPT sqlchar structure

PACKAGE SQL_PKG_OPT Null

PACKAGE pkgname SQL_PKG_OPT sqlchar structure

QUALIFIER SQL_QUALIFIER_OPT sqlchar structure

QUERYOPT SQL_QUERYOPT_OPT SQL_QUERYOPT_0,1,2,3,5,7,9

RELEASE COMMIT SQL_RELEASE_OPT SQL_RELEASE_COMMIT

RELEASE DEALLOCATE SQL_RELEASE_OPT SQL_RELEASE_DEALLOCATE

REPLVER versn-str SQL_REPLVER_OPT sqlchar structure

RETAIN NO SQL_RETAIN_OPT SQL_RETAIN_NO

RETAIN YES SQL_RETAIN_OPT SQL_RETAIN_YES

SQLCA SAA SQL_SAA_OPT SQL_SAA_YES

SQLCA NONE SQL_SAA_OPT SQL_SAA_NO

SQLERROR CHECK SQL_SQLERROR_OPT SQL_SQLERROR_CHECK

SQLERROR CONTINUE SQL_SQLERROR_OPT SQL_SQLERROR_CONTINUE

SQLERROR NOPACKAGE SQL_SQLERROR_OPT SQL_SQLERROR_NOPACKAGE

SQLFLAG SQL92E SYNTAX SQL_FLAG_OPT SQL_SQL92E_SYNTAX

SQLFLAG MVSDB2V23 SYNTAX SQL_FLAG_OPT SQL_MVSDB2V23_SYNTAX

SQLFLAG MVSDB2V31 SYNTAX SQL_FLAG_OPT SQL_MVSDB2V31_SYNTAX

SQLFLAG MVSDB2V41 SYNTAX SQL_FLAG_OPT SQL_MVSDB2V41_SYNTAX

SQLRULES DB2 SQL_RULES_OPT SQL_RULES_DB2

SQLRULES STD SQL_RULES_OPT SQL_RULES_STD

SQLWARN NO SQL_SQLWARN_OPT SQL_SQLWARN_NO

SQLWARN YES SQL_SQLWARN_OPT SQL_SQLWARN_YES

STRDEL APOSTROPHE SQL_STRDEL_OPT SQL_STRDEL_APOSTROPHE

STRDEL QUOTE SQL_STRDEL_OPT SQL_STRDEL_QUOTE

SYNCPOINT ONEPHASE SQL_SYNCPOINT_OPT SQL_SYNC_ONEPHASE

SYNCPOINT TWOPHASE SQL_SYNCPOINT_OPT SQL_SYNC_TWOPHASE

SYNCPOINT NONE SQL_SYNCPOINT_OPT SQL_SYNC_NONE

SYNTAX SQL_SYNTAX_OPT SQL_SYNTAX_CHECK

(default) SQL_SYNTAX_OPT SQL_NO_SYNTAX_CHECK

TARGET compiler SQL_TARGET_OPT sqlchar structure

TEXT text-str SQL_TEXT_OPT sqlchar structure

VALIDATE BIND SQL_VALIDATE_OPT SQL_VALIDATE_BIND

VALIDATE RUN SQL_VALIDATE_OPT SQL_VALIDATE_RUN

VERSION versn-str SQL_VERSION_OPT sqlchar structure

WCHARTYPE CONVERT SQL_WCHAR_OPT SQL_WCHAR_CONVERT

WCHARTYPE NOCONVERT SQL_WCHAR_OPT SQL_WCHAR_NOCONVERT

(none) SQL_NO_OPT (none)

 See Also
“sqlabndx - Bind” on page 10.

22 API Reference

sqlarbnd - Rebind

sqlarbnd - Rebind
Allows the user to recreate a package stored in the database without the need for a
bind file.

 Authorization
One of the following:

¹ sysadm or dbadm authority
¹ ALTERIN privilege on the schema
¹ BIND privilege on the package.

The authorization ID logged in the BOUNDBY column of the SYSCAT.PACKAGES
system catalog table, which is the ID of the most recent binder of the package, is used
as the binder authorization ID for the rebind, and for the default schema for table
references in the package. Note that this default qualifier may be different from the
authorization ID of the user executing the rebind request. REBIND will use the same
bind options that were specified when the package was created.

 Required Connection
Database

API Include File
sql.h

C API Syntax

/* File: sql.h */

/* API: Rebind */

/* ... */

SQL_API_RC SQL_API_FN

 sqlarbnd (

char * pPackageName,

struct sqlca * pSqlca,

void * pReserved);

/* ... */

 Chapter 1. Application Programming Interfaces 23

sqlarbnd - Rebind

Generic API Syntax

/* File: sql.h */

/* API: Rebind */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgrbnd (

unsigned short PackageNameLen,

char * pPackageName,

struct sqlca * pSqlca,

void * pReserved);

/* ... */

 API Parameters
PackageNameLen

Input. A 2-byte unsigned integer representing the length of the package
name in bytes.

pPackageName
Input. A string containing the qualified or unqualified name that designates
the package to be rebound. An unqualified package name is implicitly
qualified by the current authorization ID.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pReserved
Reserved for future use. Must be set to NULL.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

 Sample Programs
C \sqllib\samples\c\rebind.sqc

COBOL \sqllib\samples\cobol\rebind.sqb

FORTRAN \sqllib\samples\fortran\rebind.sqf

 Usage Notes
REBIND does not automatically commit the transaction following a successful rebind.
The user must explicitly commit the transaction. This enables "what if" analysis, in
which the user updates certain statistics, and then tries to rebind the package to see
what changes. It also permits multiple rebinds within a unit of work.

This API:

24 API Reference

sqlarbnd - Rebind

¹ Provides a quick way to recreate a package. This enables the user to take
advantage of a change in the system without a need for the original bind file. For
example, if it is likely that a particular SQL statement can take advantage of a
newly created index, REBIND can be used to recreate the package. REBIND can
also be used to recreate packages after “sqlustat - Runstats” on page 319 has
been executed, thereby taking advantage of the new statistics.

¹ Provides a method to recreate inoperative packages. Inoperative packages must
be explicitly rebound by invoking either the bind utility or the rebind utility. A
package will be marked inoperative (the VALID column of the SYSCAT.PACKAGES

system catalog will be set to X) if a function instance on which the package
depends is dropped.

¹ Gives users control over the rebinding of invalid packages. Invalid packages will be
automatically (or implicitly) rebound by the database manager when they are
executed. This may result in a noticeable delay in the execution of the first SQL
request for the invalid package. It may be desirable to explicitly rebind invalid
packages, rather than allow the system to automatically rebind them, in order to
eliminate the initial delay and to prevent unexpected SQL error messages which
may be returned in case the implicit rebind fails. For example, following migration,
all packages stored in the database will be invalidated by the DB2 Version 2.1
migration process. Given that this may involve a large number of packages, it may
be desirable to explicitly rebind all of the invalid packages at one time. This explicit
rebinding can be accomplished using BIND, REBIND, or the db2rbind tool (see
"db2rbind - Rebind all Packages" in the Command Reference).

The choice of whether to use BIND or REBIND to explicitly rebind a package depends
on the circumstances. It is recommended that REBIND be used whenever the situation
does not specifically require the use of BIND, since the performance of REBIND is
significantly better than that of BIND. BIND must be used, however:

¹ When there have been modifications to the program (for example, when SQL
statements have been added or deleted, or when the package does not match the
executable for the program).

¹ When the user wishes to modify any of the bind options as part of the rebind.
REBIND does not support any bind options. For example, if the user wishes to
have privileges on the package granted as part of the bind process, BIND must be
used, since it has an SQL_GRANT_OPT option.

¹ When the package does not currently exist in the database.

¹ When detection of all bind errors is desired. REBIND only returns the first error it
detects, and then ends, whereas the BIND command returns the first 100 errors
that occur during binding.

REBIND is supported by DDCS.

If REBIND is executed on a package that is in use by another user, the rebind will not
occur until the other user's logical unit of work ends, because an exclusive lock is held
on the package's record in the SYSCAT.PACKAGES system catalog table during the
rebind.

 Chapter 1. Application Programming Interfaces 25

sqlarbnd - Rebind

When REBIND is executed, the database manager recreates the package from the
SQL statements stored in the SYSCAT.STATEMENTS system catalog table.

If REBIND encounters an error, processing stops, and an error message is returned.

The Explain tables are populated during REBIND if either SQL_EXPLSNAP_OPT or
SQL_EXPLAIN_OPT have been set to YES or ALL (check EXPLAIN_SNAPSHOT and
EXPLAIN_MODE columns in the catalog). The Explain tables used are those of the
REBIND requester, not the original binder.

 See Also
“sqlabndx - Bind” on page 10
“sqlustat - Runstats” on page 319.

26 API Reference

sqlbctcq - Close Tablespace Container Query

sqlbctcq - Close Tablespace Container Query
Ends a table space container query request and frees the associated resources.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint
 dbadm

 Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Close Tablespace Container Query */

/* ... */

SQL_API_RC SQL_API_FN

 sqlbctcq (

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlutil.h */

/* API: Close Tablespace Container Query */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgctcq (

struct sqlca * pSqlca);

/* ... */

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

 Chapter 1. Application Programming Interfaces 27

sqlbctcq - Close Tablespace Container Query

 Sample Programs
C \sqllib\samples\c\tabscont.sqc

COBOL \sqllib\samples\cobol\tabscont.sqb

FORTRAN \sqllib\samples\fortran\tabscont.sqf

 See Also
“sqlbftcq - Fetch Tablespace Container Query” on page 31
“sqlbotcq - Open Tablespace Container Query” on page 42
“sqlbstsc - Set Tablespace Containers” on page 51
“sqlbtcq - Tablespace Container Query” on page 54.

28 API Reference

sqlbctsq - Close Tablespace Query

sqlbctsq - Close Tablespace Query
Ends a table space query request, and frees up associated resources.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint
 dbadm

 Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Close Tablespace Query */

/* ... */

SQL_API_RC SQL_API_FN

 sqlbctsq (

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlutil.h */

/* API: Close Tablespace Query */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgctsq (

struct sqlca * pSqlca);

/* ... */

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

 Chapter 1. Application Programming Interfaces 29

sqlbctsq - Close Tablespace Query

 Sample Programs
C \sqllib\samples\c\tabspace.sqc

COBOL \sqllib\samples\cobol\tabspace.sqb

FORTRAN \sqllib\samples\fortran\tabspace.sqf

 See Also
“sqlbftpq - Fetch Tablespace Query” on page 34
“sqlbgtss - Get Tablespace Statistics” on page 37
“sqlbotsq - Open Tablespace Query” on page 45
“sqlbstpq - Single Tablespace Query” on page 48
“sqlbmtsq - Tablespace Query” on page 39.

30 API Reference

sqlbftcq - Fetch Tablespace Container Query

sqlbftcq - Fetch Tablespace Container Query
Fetches a specified number of rows of table space container query data, each row
consisting of data for a container.

 Scope
In a partitioned database server environment, only the table spaces on the current node
are listed.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint
 dbadm

 Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Fetch Tablespace Container Query */

/* ... */

SQL_API_RC SQL_API_FN

 sqlbftcq (

struct sqlca * pSqlca,

unsigned long MaxContainers,

struct SQLB_TBSCONTQRY_DATA * pContainerData,

unsigned long * pNumContainers);

/* ... */

 Chapter 1. Application Programming Interfaces 31

sqlbftcq - Fetch Tablespace Container Query

Generic API Syntax

/* File: sqlutil.h */

/* API: Fetch Tablespace Container Query */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgftcq (

struct sqlca * pSqlca,

unsigned long MaxContainers,

struct SQLB_TBSCONTQRY_DATA * pContainerData,

unsigned long * pNumContainers);

/* ... */

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

MaxContainers
Input. The maximum number of rows of data that the user allocated output
area (pointed to by pContainerData) can hold.

pContainerData
Output. Pointer to the output area, a structure for query data. For more
information about this structure, see “SQLB-TBSCONTQRY-DATA” on
page 349. The caller of this API must allocate space for MaxContainers of
these structures, and set pContainerData to point to this space. The API
will use this space to return the table space container data.

pNumContainers
Output. Number of rows of output returned.

 Sample Programs
C \sqllib\samples\c\tabscont.sqc

COBOL \sqllib\samples\cobol\tabscont.sqb

FORTRAN \sqllib\samples\fortran\tabscont.sqf

 Usage Notes
The user is responsible for allocating and freeing the memory pointed to by the
pContainerData parameter. This API can only be used after a successful sqlbotcq call.
It can be invoked repeatedly to fetch the list generated by sqlbotcq .

For more information, see “sqlbotcq - Open Tablespace Container Query” on page 42.

32 API Reference

sqlbftcq - Fetch Tablespace Container Query

 See Also
“sqlbctcq - Close Tablespace Container Query” on page 27
“sqlbotcq - Open Tablespace Container Query” on page 42
“sqlbstsc - Set Tablespace Containers” on page 51
“sqlbtcq - Tablespace Container Query” on page 54.

 Chapter 1. Application Programming Interfaces 33

sqlbftpq - Fetch Tablespace Query

sqlbftpq - Fetch Tablespace Query
Fetches a specified number of rows of table space query data, each row consisting of
data for a table space.

 Scope
In a partitioned database server environment, only the table spaces on the current node
are listed.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint
 dbadm

 Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Fetch Tablespace Query */

/* ... */

SQL_API_RC SQL_API_FN

 sqlbftpq (

struct sqlca * pSqlca,

unsigned long MaxTablespaces,

struct SQLB_TBSPQRY_DATA * pTablespaceData,

unsigned long * pNumTablespaces);

/* ... */

34 API Reference

sqlbftpq - Fetch Tablespace Query

Generic API Syntax

/* File: sqlutil.h */

/* API: Fetch Tablespace Query */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgftpq (

struct sqlca * pSqlca,

unsigned long MaxTablespaces,

struct SQLB_TBSPQRY_DATA * pTablespaceData,

unsigned long * pNumTablespaces);

/* ... */

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

MaxTablespaces
Input. The maximum number of rows of data that the user allocated output
area (pointed to by pTablespaceData) can hold.

pTablespaceData
Input and output. Pointer to the output area, a structure for query data. For
more information about this structure, see “SQLB-TBSPQRY-DATA” on
page 351. The caller of this API must:
¹ Allocate space for MaxTablespaces of these structures
¹ Initialize the structures
¹ Set TBSPQVER in the first structure to SQLB_TBSPQRY_DATA_ID

¹ Set pTablespaceData to point to this space. The API will use this
space to return the table space data.

pNumTablespaces
Output. Number of rows of output returned.

 Sample Programs
C \sqllib\samples\c\tabspace.sqc

COBOL \sqllib\samples\cobol\tabspace.sqb

FORTRAN \sqllib\samples\fortran\tabspace.sqf

 Usage Notes
The user is responsible for allocating and freeing the memory pointed to by the
pTablespaceData parameter. This API can only be used after a successful sqlbotsq
call. It can be invoked repeatedly to fetch the list generated by sqlbotsq .

For more information, see “sqlbotsq - Open Tablespace Query” on page 45.

 Chapter 1. Application Programming Interfaces 35

sqlbftpq - Fetch Tablespace Query

 See Also
“sqlbctsq - Close Tablespace Query” on page 29
“sqlbgtss - Get Tablespace Statistics” on page 37
“sqlbotsq - Open Tablespace Query” on page 45
“sqlbstpq - Single Tablespace Query” on page 48
“sqlbmtsq - Tablespace Query” on page 39.

36 API Reference

sqlbgtss - Get Tablespace Statistics

sqlbgtss - Get Tablespace Statistics
Provides information on the space utilization of a table space.

 Scope
In a partitioned database server environment, only the table spaces on the current node
are listed.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint
 dbadm

 Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Get Tablespace Statistics */

/* ... */

SQL_API_RC SQL_API_FN

 sqlbgtss (

struct sqlca * pSqlca,

unsigned long TablespaceId,

struct SQLB_TBS_STATS * pTablespaceStats);

/* ... */

 Chapter 1. Application Programming Interfaces 37

sqlbgtss - Get Tablespace Statistics

Generic API Syntax

/* File: sqlutil.h */

/* API: Get Tablespace Statistics */

/* ... */

SQL_API_RC SQL_API_FN

 sqlggtss (

struct sqlca * pSqlca,

unsigned long TablespaceId,

struct SQLB_TBS_STATS * pTablespaceStats);

/* ... */

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

TablespaceId
Input. ID of the single table space to be queried.

pTablespaceStats
Output. A pointer to a user-allocated SQLB_TBS_STATS structure. The
information about the table space is returned in this structure. For more
information about this structure, see “SQLB-TBS-STATS” on page 347.

 Sample Programs
C \sqllib\samples\c\tabspace.sqc

COBOL \sqllib\samples\cobol\tabspace.sqb

FORTRAN \sqllib\samples\fortran\tabspace.sqf

 Usage Notes
See “SQLB-TBS-STATS” on page 347 for information about the fields returned and
their meaning.

 See Also
“sqlbctsq - Close Tablespace Query” on page 29
“sqlbftpq - Fetch Tablespace Query” on page 34
“sqlbotsq - Open Tablespace Query” on page 45
“sqlbstpq - Single Tablespace Query” on page 48
“sqlbmtsq - Tablespace Query” on page 39.

38 API Reference

sqlbmtsq - Tablespace Query

sqlbmtsq - Tablespace Query
Provides a one-call interface to the table space query data. The query data for all table
spaces in the database is returned in an array.

 Scope
In a partitioned database server environment, only the table spaces on the current node
are listed.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint
 dbadm

 Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Tablespace Query */

/* ... */

SQL_API_RC SQL_API_FN

 sqlbmtsq (

struct sqlca * pSqlca,

unsigned long * pNumTablespaces,

struct SQLB_TBSPQRY_DATA *** pppTablespaceData,

unsigned long reserved1,

unsigned long reserved2);

/* ... */

 Chapter 1. Application Programming Interfaces 39

sqlbmtsq - Tablespace Query

Generic API Syntax

/* File: sqlutil.h */

/* API: Tablespace Query */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgmtsq (

struct sqlca * pSqlca,

unsigned long * pNumTablespaces,

struct SQLB_TBSPQRY_DATA *** pppTablespaceData,

unsigned long reserved1,

unsigned long reserved2);

/* ... */

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pNumTablespaces
Output. The total number of table spaces in the connected database.

pppTablespaceData
Output. The caller supplies the API with the address of a pointer. The
space for the table space query data is allocated by the API, and a pointer
to that space is returned to the caller. On return from the call, the pointer
points to an array of SQLB_TBSPQRY_DATA pointers to the complete set
of table space query data.

reserved1
Input. Always SQLB_RESERVED1.

reserved2
Input. Always SQLB_RESERVED2.

 Sample Programs
C \sqllib\samples\c\tabspace.sqc

COBOL \sqllib\samples\cobol\tabspace.sqb

FORTRAN \sqllib\samples\fortran\tabspace.sqf

 Usage Notes
This API uses the lower level services, namely:

¹ “sqlbotsq - Open Tablespace Query” on page 45
¹ “sqlbftpq - Fetch Tablespace Query” on page 34
¹ “sqlbctsq - Close Tablespace Query” on page 29

to get all of the table space query data at once.

40 API Reference

sqlbmtsq - Tablespace Query

If sufficient memory is available, this function returns the number of table spaces, and a
pointer to the memory location of the table space query data. It is the user's
responsibility to free this memory with a call to sqlefmem (see “sqlefmem - Free
Memory” on page 117).

If sufficient memory is not available, this function simply returns the number of table
spaces, and no memory is allocated. If this should happen, use “sqlbotsq - Open
Tablespace Query” on page 45, “sqlbftpq - Fetch Tablespace Query” on page 34, and
“sqlbctsq - Close Tablespace Query” on page 29, to fetch less than the whole list at
once.

 See Also
“sqlbctsq - Close Tablespace Query” on page 29
“sqlbftpq - Fetch Tablespace Query” on page 34
“sqlbgtss - Get Tablespace Statistics” on page 37
“sqlbotsq - Open Tablespace Query” on page 45
“sqlbstpq - Single Tablespace Query” on page 48.

 Chapter 1. Application Programming Interfaces 41

sqlbotcq - Open Tablespace Container Query

sqlbotcq - Open Tablespace Container Query
Prepares for a table space container query operation, and returns the number of
containers currently in the table space.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint
 dbadm

 Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Open Tablespace Container Query */

/* ... */

SQL_API_RC SQL_API_FN

 sqlbotcq (

struct sqlca * pSqlca,

unsigned long TablespaceId,

unsigned long * pNumContainers);

/* ... */

Generic API Syntax

/* File: sqlutil.h */

/* API: Open Tablespace Container Query */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgotcq (

struct sqlca * pSqlca,

unsigned long TablespaceId,

unsigned long * pNumContainers);

/* ... */

42 API Reference

sqlbotcq - Open Tablespace Container Query

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

TablespaceId
Input. ID of the table space for which container data is desired. If the
special identifier SQLB_ALL_TABLESPACES (in sqlutil) is specified, a
complete list of containers for the entire database is produced.

pNumContainers
Output. The number of containers in the specified table space.

 Sample Programs
C \sqllib\samples\c\tabscont.sqc

COBOL \sqllib\samples\cobol\tabscont.sqb

FORTRAN \sqllib\samples\fortran\tabscont.sqf

 Usage Notes
This API is normally followed by one or more calls to “sqlbftcq - Fetch Tablespace
Container Query” on page 31, and then by one call to “sqlbctcq - Close Tablespace
Container Query” on page 27.

An application can use the following APIs to fetch information about containers in use
by table spaces:

¹ “sqlbtcq - Tablespace Container Query” on page 54

Fetches a complete list of container information. The API allocates the space
required to hold the information for all the containers, and returns a pointer to this
information. Use this API to scan the list of containers for specific information.
Using this API is identical to calling the three APIs below (sqlbotcq , sqlbftcq , and
sqlbctcq), except that this API automatically allocates the memory for the output
information. A call to this API must be followed by a call to “sqlefmem - Free
Memory” on page 117 to free the memory.

¹ “sqlbotcq - Open Tablespace Container Query” on page 42

¹ “sqlbftcq - Fetch Tablespace Container Query” on page 31

¹ “sqlbctcq - Close Tablespace Container Query” on page 27

These three APIs function like an SQL cursor, in that they use the
OPEN/FETCH/CLOSE paradigm. The caller must provide the output area for the
fetch. Unlike an SQL cursor, only one table space container query can be active at
a time. Use this set of APIs to scan the list of table space containers for specific
information. These APIs allows the user to control the memory requirements of an
application (compared with “sqlbtcq - Tablespace Container Query” on page 54).

When sqlbotcq is called, a snapshot of the current container information is formed in
the agent servicing the application. If the application issues a second table space

 Chapter 1. Application Programming Interfaces 43

sqlbotcq - Open Tablespace Container Query

container query call (sqlbtcq or sqlbotcq), this snapshot is replaced with refreshed
information.

No locking is performed, so the information in the buffer may not reflect changes made
by another application after the snapshot was generated. The information is not part of
a transaction.

There is one snapshot buffer for table space queries and another for table space
container queries. These buffers are independent of one another.

 See Also
“sqlbctcq - Close Tablespace Container Query” on page 27
“sqlbftcq - Fetch Tablespace Container Query” on page 31
“sqlbstsc - Set Tablespace Containers” on page 51
“sqlbtcq - Tablespace Container Query” on page 54.

44 API Reference

sqlbotsq - Open Tablespace Query

sqlbotsq - Open Tablespace Query
Prepares for a table space query operation, and returns the number of table spaces
currently in the database.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint
 dbadm

 Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Open Tablespace Query */

/* ... */

SQL_API_RC SQL_API_FN

 sqlbotsq (

struct sqlca * pSqlca,

unsigned long TablespaceQueryOptions,

unsigned long * pNumTablespaces);

/* ... */

Generic API Syntax

/* File: sqlutil.h */

/* API: Open Tablespace Query */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgotsq (

struct sqlca * pSqlca,

unsigned long TablespaceQueryOptions,

unsigned long * pNumTablespaces);

/* ... */

 Chapter 1. Application Programming Interfaces 45

sqlbotsq - Open Tablespace Query

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

TablespaceQueryOptions
Input. Indicates which table spaces to process. Valid values (defined in
sqlutil) are:
SQLB_OPEN_TBS_ALL

Process all the table spaces in the database.
SQLB_OPEN_TBS_RESTORE

Process only the table spaces that the user's agent is restoring.
pNumTablespaces

Output. The number of table spaces in the connected database.

 Sample Programs
C \sqllib\samples\c\tabspace.sqc

COBOL \sqllib\samples\cobol\tabspace.sqb

FORTRAN \sqllib\samples\fortran\tabspace.sqf

 Usage Notes
This API is normally followed by one or more calls to “sqlbftpq - Fetch Tablespace
Query” on page 34, and then by one call to “sqlbctsq - Close Tablespace Query” on
page 29.

An application can use the following APIs to fetch information about the currently
defined table spaces:

¹ “sqlbstpq - Single Tablespace Query” on page 48

Fetches information about a given table space. Only one table space entry is
returned (into a space provided by the caller). Use this API when the table space
identifier is known, and information about only that table space is desired.

¹ “sqlbmtsq - Tablespace Query” on page 39

Fetches information about all table spaces. The API allocates the space required to
hold the information for all table spaces, and returns a pointer to this information.
Use this API to scan the list of table spaces when searching for specific
information. Using this API is identical to calling the three APIs below, except that
this API automatically allocates the memory for the output information. A call to this
API must be followed by a call to “sqlefmem - Free Memory” on page 117 to free
the memory.

¹ “sqlbotsq - Open Tablespace Query” on page 45

¹ “sqlbftpq - Fetch Tablespace Query” on page 34

¹ “sqlbctsq - Close Tablespace Query” on page 29

These three APIs function like an SQL cursor, in that they use the
OPEN/FETCH/CLOSE paradigm. The caller must provide the output area for the

46 API Reference

sqlbotsq - Open Tablespace Query

fetch. Unlike an SQL cursor, only one table space query may be active at a time.
Use this set of APIs to scan the list of table spaces when searching for specific
information. This set of APIs allows the user to control the memory requirements of
an application (compared with “sqlbmtsq - Tablespace Query” on page 39).

When sqlbotsq is called, a snapshot of the current table space information is buffered
in the agent servicing the application. If the application issues a second table space
query call (sqlbtsq or sqlbotsq), this snapshot is replaced with refreshed information.

No locking is performed, so the information in the buffer may not reflect more recent
changes made by another application. The information is not part of a transaction.

There is one snapshot buffer for table space queries and another for table space
container queries. These buffers are independent of one another.

 See Also
“sqlbctsq - Close Tablespace Query” on page 29
“sqlbftpq - Fetch Tablespace Query” on page 34
“sqlbstpq - Single Tablespace Query” on page 48
“sqlbmtsq - Tablespace Query” on page 39.

 Chapter 1. Application Programming Interfaces 47

sqlbstpq - Single Tablespace Query

sqlbstpq - Single Tablespace Query
Retrieves information about a single currently defined table space.

 Scope
In a partitioned database server environment, only the table spaces on the current node
are listed.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint
 dbadm

 Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Single Tablespace Query */

/* ... */

SQL_API_RC SQL_API_FN

 sqlbstpq (

struct sqlca * pSqlca,

unsigned long TablespaceId,

struct SQLB_TBSPQRY_DATA * pTablespaceData,

unsigned long reserved);

/* ... */

48 API Reference

sqlbstpq - Single Tablespace Query

Generic API Syntax

/* File: sqlutil.h */

/* API: Single Tablespace Query */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgstpq (

struct sqlca * pSqlca,

unsigned long TablespaceId,

struct SQLB_TBSPQRY_DATA * pTablespaceData,

unsigned long reserved);

/* ... */

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

TablespaceId
Input. Identifier for the table space which is to be queried.

pTablespaceData
Input and output. Pointer to a user-supplied SQLB_TBSPQRY_DATA
structure where the table space information will be placed upon return. The
caller of this API must initialize the structure and set TBSPQVER to
SQLB_TBSPQRY_DATA_ID (in sqlutil).

reserved
Input. Always SQLB_RESERVED1.

 Sample Programs
C \sqllib\samples\c\tabspace.sqc

COBOL \sqllib\samples\cobol\tabspace.sqb

FORTRAN \sqllib\samples\fortran\tabspace.sqf

 Usage Notes
This API retrieves information about a single table space if the table space identifier to
be queried is known. This API provides an alternative to the more expensive OPEN
TABLESPACE QUERY, FETCH, and CLOSE combination of APIs, which must be used
to scan for the desired table space when the table space identifier is not known in
advance. The table space IDs can be found in the system catalogs. No agent snapshot
is taken; since there is only one entry to return, it is returned directly.

For more information, see “sqlbotsq - Open Tablespace Query” on page 45.

 Chapter 1. Application Programming Interfaces 49

sqlbstpq - Single Tablespace Query

 See Also
“sqlbctsq - Close Tablespace Query” on page 29
“sqlbftpq - Fetch Tablespace Query” on page 34
“sqlbgtss - Get Tablespace Statistics” on page 37
“sqlbotsq - Open Tablespace Query” on page 45
“sqlbmtsq - Tablespace Query” on page 39.

50 API Reference

sqlbstsc - Set Tablespace Containers

sqlbstsc - Set Tablespace Containers
This API facilitates the provision of a redirected restore, in which the user is restoring a
database, and a different set of operating system storage containers is desired or
required.

Use this API when the table space is in a storage definition pending or a storage
definition allowed state. These states are possible during a restore operation,
immediately prior to the restoration of database pages.

 Authorization
One of the following:

 sysadm
 sysctrl

 Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Set Tablespace Containers */

/* ... */

SQL_API_RC SQL_API_FN

 sqlbstsc (

struct sqlca * pSqlca,

unsigned long SetContainerOptions,

unsigned long TablespaceId,

unsigned long NumContainers,

struct SQLB_TBSCONTQRY_DATA * pContainerData);

/* ... */

 Chapter 1. Application Programming Interfaces 51

sqlbstsc - Set Tablespace Containers

Generic API Syntax

/* File: sqlutil.h */

/* API: Set Tablespace Containers */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgstsc (

struct sqlca * pSqlca,

unsigned long SetContainerOptions,

unsigned long TablespaceId,

unsigned long NumContainers,

struct SQLB_TBSCONTQRY_DATA * pContainerData);

/* ... */

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

SetContainerOptions
Input. Use this field to specify additional options. Valid values (defined in
sqlutil) are:
SQLB_SET_CONT_INIT_STATE

Redo alter table space operations when performing a roll forward.
SQLB_SET_CONT_FINAL_STATE

Ignore alter table space operations in the log when performing a roll
forward.

TablespaceId
Input. Identifier for the table space which is to be changed.

NumContainers
Input. The number of rows the structure pointed to by pContainerData
holds.

pContainerData
Input. Container specifications. Although the SQLB_TBSCONTQRY_DATA
structure is used, only the contType, totalPages, name, and nameLen (for
languages other than C) fields are used; all other fields are ignored.

 Sample Programs
C \sqllib\samples\c\backrest.c

COBOL \sqllib\samples\cobol\backrest.cbl

FORTRAN \sqllib\samples\fortran\backrest.f

52 API Reference

sqlbstsc - Set Tablespace Containers

 Usage Notes
This API is used in conjunction with “sqlurst - Restore Database” on page 309.

A backup of a database, or one or more table spaces, keeps a record of all the table
space containers in use by the table spaces being backed up. During a restore, all
containers listed in the backup are checked to see if they currently exist and are
accessible. If one or more of the containers is inaccessible for any reason, the restore
will fail. In order to allow a restore in such a case, the redirecting of table space
containers is supported during the restore. This support includes adding, changing, or
removing of table space containers. It is this API that allows the user to add, change or
remove those containers. For more information, see the Administration Guide.

Typical use of this API would involve the following sequence of actions:

1. Invoke “sqlurst - Restore Database” on page 309 with CallerAction set to
SQLUD_RESTORE_STORDEF.

The restore utility returns an sqlcode indicating that some of the containers are
inaccessible.

2. Invoke sqlbstsc to set the table space container definitions with the
SetContainerOptions parameter set to SQLB_SET_CONT_FINAL_STATE.

3. Invoke sqlurst a second time with CallerAction set to SQLUD_CONTINUE.

The above sequence will allow the restore to use the new table space container
definitions and will ignore table space add container operations in the logs when
“sqluroll - Rollforward Database” on page 300 is called after the restore is complete.

The user of this API should be aware that when setting the container list, there must be
sufficient disk space to allow for the restore/rollforward to replace all of the original data
into these new containers. If there is not sufficient space, then such tablespaces will be
left in the recovery pending state until sufficient disk space is made available. A prudent
Database Administrator will keep records of disk utilization on a regular basis. Then,
when a restore/rollforward is needed, he will know how much disk space is required.

 See Also
“sqlubkp - Backup Database” on page 230
“sqluroll - Rollforward Database” on page 300
“sqlurst - Restore Database” on page 309.

 Chapter 1. Application Programming Interfaces 53

sqlbtcq - Tablespace Container Query

sqlbtcq - Tablespace Container Query
Provides a one-call interface to the table space container query data. The query data
for all containers in a table space, or for all containers in all table spaces, is returned in
an array.

 Scope
In a partitioned database server environment, only the table spaces on the current node
are listed.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint
 dbadm

 Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Tablespace Container Query */

/* ... */

SQL_API_RC SQL_API_FN

 sqlbtcq (

struct sqlca * pSqlca,

unsigned long TablespaceId,

unsigned long * pNumContainers,

struct SQLB_TBSCONTQRY_DATA ** ppContainerData);

/* ... */

54 API Reference

sqlbtcq - Tablespace Container Query

Generic API Syntax

/* File: sqlutil.h */

/* API: Tablespace Container Query */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgtcq (

struct sqlca * pSqlca,

unsigned long TablespaceId,

unsigned long * pNumContainers,

struct SQLB_TBSCONTQRY_DATA ** ppContainerData);

/* ... */

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

TablespaceId
Input. ID of the table space for which container data is desired, or a special
ID, SQLB_ALL_TABLESPACES (defined in sqlutil), which produces a list of all
containers for the entire database.

pNumContainers
Output. The number of containers in the table space.

ppContainerData
Output. The caller supplies the API with the address of a pointer to a
SQLB_TBSCONTQRY_DATA structure. The space for the table space
container query data is allocated by the API, and a pointer to that space is
returned to the caller. On return from the call, the pointer to the
SQLB_TBSCONTQRY_DATA structure points to the complete set of table
space container query data.

 Sample Programs
C \sqllib\samples\c\tabscont.sqc

COBOL \sqllib\samples\cobol\tabscont.sqb

FORTRAN \sqllib\samples\fortran\tabscont.sqf

 Usage Notes
This API uses the lower level services, namely:

¹ “sqlbotcq - Open Tablespace Container Query” on page 42
¹ “sqlbftcq - Fetch Tablespace Container Query” on page 31
¹ “sqlbctcq - Close Tablespace Container Query” on page 27

to get all of the table space container query data at once.

 Chapter 1. Application Programming Interfaces 55

sqlbtcq - Tablespace Container Query

If sufficient memory is available, this function returns the number of containers, and a
pointer to the memory location of the table space container query data. It is the user's
responsibility to free this memory with a call to sqlefmem (see “sqlefmem - Free
Memory” on page 117).

If sufficient memory is not available, this function simply returns the number of
containers, and no memory is allocated. If this should happen, use “sqlbotcq - Open
Tablespace Container Query” on page 42, “sqlbftcq - Fetch Tablespace Container
Query” on page 31, and “sqlbctcq - Close Tablespace Container Query” on page 27 to
fetch less than the whole list at once.

 See Also
“sqlbctcq - Close Tablespace Container Query” on page 27
“sqlbftcq - Fetch Tablespace Container Query” on page 31
“sqlbotcq - Open Tablespace Container Query” on page 42
“sqlbstsc - Set Tablespace Containers” on page 51
“sqlbtcq - Tablespace Container Query” on page 54.

56 API Reference

sqlcspqy - List DRDA Indoubt Transactions

sqlcspqy - List DRDA Indoubt Transactions
Provides a list of transactions that are indoubt between partner LUs connected by LU
6.2 protocols.

 Authorization
sysadm

 Required Connection
Instance

API Include File
sqlxa.h

C API Syntax

/* File: sqlxa.h */

/* API: List DRDA Indoubt Transactions */

/* ... */

extern int SQL_API_FN sqlcspqy(SQLCSPQY_INDOUBT **indoubt_data,

 long *indoubt_count,

 struct sqlca *sqlca);

/* ... */

 API Parameters
indoubt_data

Output. A pointer to the returned array.
indoubt_count

Output. The number of elements in the returned array.
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

 Usage Notes
DRDA indoubt transactions occur when communication is lost between coordinators
and participants in distributed units of work.

A distributed unit of work lets a user or application read and update data at multiple
locations within a single unit of work. Such work requires a two-phase commit.

The first phase requests all the participants to prepare for commit. The second phase
commits or rolls back the transactions. If a coordinator or participant becomes
unavailable after the first phase then the distributed transactions are indoubt.

 Chapter 1. Application Programming Interfaces 57

sqlcspqy - List DRDA Indoubt Transactions

Before issuing LIST DRDA INDOUBT TRANSACTIONS, the application process must
be connected to the Sync Point Manager (SPM) instance. Use the SPM_NAME as the
dbalias on the CONNECT statement (see the SQL Reference for more information
about using CONNECT). SPM_NAME is a database manager configuration parameter.

58 API Reference

sqle_activate_db - Activate Database

sqle_activate_db - Activate Database
Activates the specified database and starts up all necessary database services, so that
the database is available for connection and use by any application.

 Scope
This API activates the specified database on all nodes within the system. If one or
more of these nodes encounters an error during activation of the database, a warning is
returned. The database remains activated on all nodes on which the API has
succeeded.

Note: If it is the coordinator node or the catalog node that encounters the error, the
API returns a negative sqlcode, and the database will not be activated on any
node.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
None. Applications invoking ACTIVATE DATABASE cannot have any existing database
connections.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Activate Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqle_activate_db (

char * pDbAlias,

char * pUserName,

char * pPassword,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

 Chapter 1. Application Programming Interfaces 59

sqle_activate_db - Activate Database

Generic API Syntax

/* File: sqlenv.h */

/* API: Activate Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqlg_activate_db (

unsigned short DbAliasLen,

unsigned short UserNameLen,

unsigned short PasswordLen,

char * pDbAlias,

char * pUserName,

char * pPassword,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

 API Parameters
pDbAlias

Input. Pointer to the database alias name.
pUserName

Input. Pointer to the user ID starting the database. Can be NULL.
pPassword

Input. Pointer to the password for the user name. Can be NULL, but must
be specified if a user name is specified.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

 Usage Notes
If a database has not been started, and a DB2 CONNECT TO (or an implicit connect)
is encountered in an application, the application must wait while the database manager
starts up the required database. In such cases, this first application spends time on
database initialization before it can do any work. However, once the first application
has started a database, other applications can simply connect and use it.

Database administrators can use ACTIVATE DATABASE to start up selected
databases. This eliminates any application time spent on database initialization.

60 API Reference

sqle_activate_db - Activate Database

Databases initialized by ACTIVATE DATABASE can only be shut down by
“sqle_deactivate_db - Deactivate Database” on page 62, or by “sqlepstp - Stop
Database Manager” on page 159. To obtain a list of activated databases, call
“sqlmonss - Get Snapshot” on page 215.

If a database was started by a DB2 CONNECT TO (or an implicit connect) and
subsequently an ACTIVATE DATABASE is issued for that same database, then
DEACTIVATE DATABASE must be used to shut down that database.

ACTIVATE DATABASE behaves in a similar manner to a DB2 CONNECT TO (or an
implicit connect) when working with a database requiring a restart (for example,
database in an inconsistent state). The database will be restarted before it can be
initialized by ACTIVATE DATABASE.

 See Also
“sqle_deactivate_db - Deactivate Database” on page 62.

 Chapter 1. Application Programming Interfaces 61

sqle_deactivate_db - Deactivate Database

sqle_deactivate_db - Deactivate Database
Stops the specified database.

 Scope
In an MPP system, this API deactivates the specified database on all nodes in the
system. If one or more of these nodes encounters an error, a warning is returned. The
database will be successfully deactivated on some nodes, but may remain activated on
the nodes encountering the error.

Note: If it is the coordinator node or the catalog node that encounters the error, the
API returns a negative sqlcode, and the database will not be reactivated on any
node on which it was deactivated.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
None. Applications invoking DEACTIVATE DATABASE cannot have any existing
database connections.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Deactivate Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqle_deactivate_db (

char * pDbAlias,

char * pUserName,

char * pPassword,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

62 API Reference

sqle_deactivate_db - Deactivate Database

Generic API Syntax

/* File: sqlenv.h */

/* API: Deactivate Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqlg_deactivate_db (

unsigned short DbAliasLen,

unsigned short UserNameLen,

unsigned short PasswordLen,

char * pDbAlias,

char * pUserName,

char * pPassword,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

 API Parameters
pDbAlias

Input. Pointer to the database alias name.
pUserName

Input. Pointer to the user ID stopping the database. Can be NULL.
pPassword

Input. Pointer to the password for the user name. Can be NULL, but must
be specified if a user name is specified.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

 Usage Notes
Databases initialized by ACTIVATE DATABSE can only be shut down by DEACTIVATE
DATABASE. “sqlepstp - Stop Database Manager” on page 159 automatically stops all
activated databases before stopping the database manager. If a database was
initialized by ACTIVATE DATABASE, the last DB2 CONNECT RESET statement
(counter equal 0) will not shut down the database; DEACTIVATE DATABASE must be
used.

 Chapter 1. Application Programming Interfaces 63

sqle_deactivate_db - Deactivate Database

 See Also
“sqle_activate_db - Activate Database” on page 59.

64 API Reference

sqleaddn - Add Node

sqleaddn - Add Node
Adds a new node to the parallel database system. This API creates database partitions
for all databases currently defined in the MPP server on the new node. The user can
specify the source node for any temporary table spaces to be created with the
databases, or specify that no temporary table spaces are to be created. The API must
be issued from the node that is being added, and can only be issued on an MPP
server.

 Scope
This API only affects the node on which it is executed.

 Authorization
One of the following:

 sysadm
 sysctrl

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Add Node */

/* ... */

SQL_API_RC SQL_API_FN

 sqleaddn (

void * pAddNodeOptions,

struct sqlca * pSqlca);

/* ... */

 Chapter 1. Application Programming Interfaces 65

sqleaddn - Add Node

Generic API Syntax

/* File: sqlenv.h */

/* API: Add Node */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgaddn (

unsigned short addnOptionsLen,

struct sqlca * pSqlca,

void * pAddNodeOptions);

/* ... */

 API Parameters
addnOptionsLen

Input. A 2-byte unsigned integer representing the length of the optional
sqle_addn_options structure in bytes.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pAddNodeOptions
Input. A pointer to the optional sqle_addn_options structure. This structure
is used to specify the source node, if any, of the temporary table space
definitions for all database partitions created during the add node
operation. If not specified (that is, a NULL pointer is specified), the
temporary table space definitions will be the same as those for the catalog
node. For more information about this structure, see
“SQLE-ADDN-OPTIONS” on page 365.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

 Usage Notes
Before adding a new node, ensure that there is sufficient storage for the containers that
must be created for all existing databases on the system.

The add node operation creates an empty database partition on the new node for every
database that exists in the instance. The configuration parameters for the new database
partitions are set to the default value.

If an add node operation fails while creating a database partition locally, it enters a
clean-up phase, in which it locally drops all databases that have been created. This
means that the database partitions are removed only from the node being added (that

66 API Reference

sqleaddn - Add Node

is, the local node). Existing database partitions remain unaffected on all other nodes. If
this fails, no further clean up is done, and an error is returned.

The database partitions on the new node cannot be used to contain user data until after
the ALTER NODEGROUP statement has been used to add the node to a nodegroup.
For details, see the SQL Reference.

This API will fail if a create database or a drop database operation is in progress. The
API can be called again once the operation has completed.

If temporary table spaces are to be created with the database partitions, sqleaddn may
have to communicate with another node in the MPP system in order to retrieve the
table space definitions. The start_stop_time database manager configuration parameter
is used to specify the time, in minutes, by which the other node must respond with the
table space definitions. If this time is exceeded, the API fails. Increase the value of
start_stop_time, and call the API again.

 See Also
“sqlecrea - Create Database” on page 81
“sqledrpn - Drop Node Verify” on page 113
“sqlepstart - Start Database Manager” on page 156.

 Chapter 1. Application Programming Interfaces 67

sqleatin - Attach

sqleatin - Attach
Enables an application to specify the node at which instance-level functions (CREATE
DATABASE and FORCE APPLICATION, for example) are to be executed. This node
may be the current instance (as defined by the value of the DB2INSTANCE
environment variable), another instance on the same workstation, or an instance on a
remote workstation. Establishes a logical instance attachment to the node specified,
and starts a physical communications connection to the node if one does not already
exist.

 Authorization
None

 Required Connection
This API establishes an instance attachment.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Attach */

/* ... */

SQL_API_RC SQL_API_FN

 sqleatin (

char * pNodeName,

char * pUserName,

char * pPassword,

struct sqlca * pSqlca);

/* ... */

68 API Reference

sqleatin - Attach

Generic API Syntax

/* File: sqlenv.h */

/* API: Attach */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgatin (

unsigned short PasswordLen,

unsigned short UserNameLen,

unsigned short NodeNameLen,

struct sqlca * pSqlca,

char * pPassword,

char * pUserName,

char * pNodeName);

/* ... */

 API Parameters
PasswordLen

Input. A 2-byte unsigned integer representing the length of the password in
bytes. Set to zero if no password is supplied.

UserNameLen
Input. A 2-byte unsigned integer representing the length of the user name
in bytes. Set to zero if no user name is supplied.

NodeNameLen
Input. A 2-byte unsigned integer representing the length of the node name
in bytes. Set to zero if no node name is supplied.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pPassword
Input. A string containing the password for the specified user name. May
be NULL.

pUserName
Input. A string containing the user name under which the attachment is to
be authenticated. May be NULL.

pNodeName
Input. A string containing the alias of the instance to which the user wants
to attach. This instance must have a matching entry in the local node
directory. The only exception is the local instance (as specified by the
DB2INSTANCE environment variable), which can be specified as the
object of an ATTACH, but cannot be used as a node name in the node
directory. May be NULL.

 Chapter 1. Application Programming Interfaces 69

sqleatin - Attach

REXX API Syntax

ATTACH [TO nodename [USER username USING password]]

REXX API Parameters
nodename

Alias of the instance to which the user wants to attach. This instance must
have a matching entry in the local node directory. The only exception is the
local instance (as specified by the DB2INSTANCE environment variable),
which can be specified as the object of an ATTACH, but cannot be used as
a node name in the node directory.

username
Name under which the user attaches to the instance.

password
Password used to authenticate the user name.

 Sample Programs
C \sqllib\samples\c\dbinst.c

COBOL \sqllib\samples\cobol\dbinst.cbl

FORTRAN \sqllib\samples\fortran\dbinst.f

REXX \sqllib\samples\rexx\dbinst.cmd

 Usage Notes
Note: A node name in the node directory can be regarded as an alias for an instance.

If an attach request succeeds, the sqlerrmc field of the sqlca will contain 9 tokens
separated by hexadecimal FF (similar to the tokens returned when a CONNECT
request is successful):

1. Country code of the application server
2. Code page of the application server

 3. Authorization ID
4. Node name (as specified on the ATTACH API)
5. Identity and platform type of the server (see the SQL Reference).
6. Agent ID of the agent which has been started at the server

 7. Agent index
8. Node number of the server
9. Number of partitions if the server is a partitioned database server.

If the node name is a zero-length string or NULL, information about the current state of
attachment is returned. If no attachment exists, sqlcode 1427 is returned. Otherwise,
information about the attachment is returned in the sqlerrmc field of the sqlca (as
outlined above).

70 API Reference

sqleatin - Attach

If ATTACH has not been executed, instance-level APIs are executed against the
current instance, specified by the DB2INSTANCE environment variable.

Certain functions (db2start , db2stop , and all directory services, for example) are never
executed remotely. That is, they affect only the local instance environment, as defined
by the value of the DB2INSTANCE environment variable.

If an attachment exists, and the API is issued with a node name, the current attachment
is dropped, and an attachment to the new node is attempted.

Where the user name and password are authenticated depends on the authentication
type of the target instance. For detailed information about authentication types, see the
Administration Guide.

The node to which an attachment is to be made can also be specified by a call to
“sqlesetc - Set Client” on page 176 (see the SQL_ATTACH_NODE option in
“SQLE-CONN-SETTING” on page 367).

 See Also
“sqledtin - Detach” on page 115
“sqlesetc - Set Client” on page 176.

 Chapter 1. Application Programming Interfaces 71

sqlecadb - Catalog Database

sqlecadb - Catalog Database
Stores database location information in the system database directory. The database
can be located either on the local workstation or on a remote node.

 Scope
This API affects the system database directory.

 Authorization
One of the following:

 sysadm
 sysctrl

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Catalog Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqlecadb (

_SQLOLDCHAR * pDbName,

_SQLOLDCHAR * pDbAlias,

unsigned char Type,

_SQLOLDCHAR * pNodeName,

_SQLOLDCHAR * pPath,

_SQLOLDCHAR * pComment,

unsigned short Authentication,

_SQLOLDCHAR * pDcePrincipal,

struct sqlca * pSqlca);

/* ... */

72 API Reference

sqlecadb - Catalog Database

Generic API Syntax

/* File: sqlenv.h */

/* API: Catalog Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgcadb (

unsigned short DCEPrinLen,

unsigned short CommentLen,

unsigned short PathLen,

unsigned short NodeNameLen,

unsigned short DbAliasLen,

unsigned short DbNameLen,

struct sqlca * pSqlca,

_SQLOLDCHAR * pDcePrin,

unsigned short Authentication,

_SQLOLDCHAR * pComment,

_SQLOLDCHAR * pPath,

_SQLOLDCHAR * pNodeName,

unsigned char Type,

_SQLOLDCHAR * pDbAlias,

_SQLOLDCHAR * pDbName);

/* ... */

 API Parameters
DCEPrinLen

Input. A 2-byte unsigned integer representing the length in bytes of the
DCE principal. Set to zero if no principal is provided. This value should be
nonzero only when authentication is specified as SQL_AUTHENTICATION_DCE.

CommentLen
Input. A 2-byte unsigned integer representing the length in bytes of the
comment. Set to zero if no comment is provided.

PathLen
Input. A 2-byte unsigned integer representing the length in bytes of the
path of the local database directory. Set to zero if no path is provided.

NodeNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
node name. Set to zero if no node name is provided.

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

DbNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database name.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

 Chapter 1. Application Programming Interfaces 73

sqlecadb - Catalog Database

pDcePrin
Input. A string containing the DCE principal name of the DB2 server on
which the database resides. This value should only be specified when
authentication is SQL_AUTHENTICATION_DCE. The principal must be the same
as the value stored in the server's keytab file.

Authentication
Input. Contains the authentication type specified for the database.
Authentication is a process that verifies that the user is who he/she claims
to be. Access to database objects depends on the user's authentication.
Valid values (from sqlenv) are:
SQL_AUTHENTICATION_SERVER

Specifies that authentication takes place on the node containing the
target database.

SQL_AUTHENTICATION_CLIENT
Specifies that authentication takes place on the node where the
application is invoked.

SQL_AUTHENTICATION_DCS
Specifies that authentication takes place on the node containing the
target database, except when using DDCS, when it specifies that
authentication takes place at the DRDA AS.

SQL_AUTHENTICATION_DCE
Specifies that authentication takes place using DCE Security Services.

SQL_AUTHENTICATION_NOT_SPECIFIED
Authentication not specified.

This parameter can be set to SQL_AUTHENTICATION_NOT_SPECIFIED, except
when cataloging a database that resides on a DB2 Version 1 server.

Specifying the authentication type in the database catalog results in a
performance improvement during a connect.

For more information about authentication types, see the Administration
Guide.

pComment
Input. A string containing an optional description of the database. A null
string indicates no comment. The maximum length of a comment string is
30 characters.

pPath
Input. A string which, on UNIX based systems, specifies the name of the
path on which the database being cataloged resides. Maximum length is
215 characters.

On OS/2 or the Windows operating system, this string specifies the letter of
the drive on which the database being cataloged resides.

If a NULL pointer is provided, the default database path is assumed to be
that specified by the database manager configuration parameter dftdbpath.

pNodeName
Input. A string containing the name of the node where the database is
located. May be NULL.

74 API Reference

sqlecadb - Catalog Database

Note: If neither pPath nor pNodeName is specified, the database is
assumed to be local, and the location of the database is assumed
to be that specified in the database manager configuration
parameter dftdbpath.

Type
Input. A single character that designates whether the database is indirect,
remote, or is cataloged via DCE. Valid values (defined in sqlenv) are:
SQL_INDIRECT

Specifies that the database resides at this instance.
SQL_REMOTE

Specifies that the database resides at another instance.
SQL_DCE

Specifies that the database is cataloged via DCE.
pDbAlias

Input. A string containing an alias for the database.
pDbName

Input. A string containing the database name.

CATALOG DATABASE - REXX API Syntax

CATALOG DATABASE dbname [AS alias] [ON path|AT NODE nodename]

[AUTHENTICATION authentication] [WITH "comment"]

REXX API Parameters
dbname

Name of the database to be cataloged.
alias

Alternate name for the database. If an alias is not specified, the database
name is used as the alias.

path
Path on which the database being cataloged resides.

nodename
Name of the remote workstation where the database being cataloged
resides.

Note: If neither path nor nodename is specified, the database is assumed
to be local, and the location of the database is assumed to be that
specified in the database manager configuration parameter
dftdbpath.

authentication
Place where authentication is to be done. Valid values are:
SERVER

Authentication occurs at the node containing the target database. This
is the default.

 Chapter 1. Application Programming Interfaces 75

sqlecadb - Catalog Database

CLIENT
Authentication occurs at the node where the application is invoked.

DCS
Specifies how authentication will take place for databases accessed
using DDCS. The behavior is the same as for the type SERVER, except
that when the authentication type is SERVER, DDCS forces
authentication at the gateway, and when the authentication type is DCS,
authentication is assumed to take place at the host.

DCE SERVER PRINCIPAL dce_principal_name
Fully qualified DCE principal name for the target server. This value is
also recorded in the keytab file at the target server.

comment
Describes the database or the database entry in the system database
directory. The maximum length of a comment string is 30 characters. A
carriage return or a line feed character is not permitted. The comment text
must be enclosed by double quotation marks.

CATALOG GLOBAL DATABASE - REXX API Syntax

CATALOG GLOBAL DATABASE db_global_name AS alias

USING DIRECTORY {DCE} [WITH comment]

REXX API Parameters
db_global_name

The fully qualified name that uniquely identifies the database in the DCE
name space.

alias
Alternate name for the database.

DCE
The global directory service being used.

comment
Describes the database or the database entry in the system database
directory. The maximum length of a comment string is 30 characters. A
carriage return or a line feed character is not permitted. The comment text
must be enclosed by double quotation marks.

 Example
call SQLDBS 'CATALOG GLOBAL DATABASE /.../cell1/subsys/database/DB3

AS dbtest USING DIRECTORY DCE WITH "Sample Database"'

 Sample Programs
C \sqllib\samples\c\dbcat.c

COBOL \sqllib\samples\cobol\dbcat.cbl

76 API Reference

sqlecadb - Catalog Database

FORTRAN \sqllib\samples\fortran\dbcat.f

REXX \sqllib\samples\rexx\dbcat.cmd

 Usage Notes
Use CATALOG DATABASE to catalog databases located on local or remote nodes,
recatalog databases that were uncataloged previously, or maintain multiple aliases for
one database (regardless of database location).

DB2 automatically catalogs databases when they are created. It catalogs an entry for
the database in the local database directory, and another entry in the system database
directory. If the database is created from a remote client (or a client which is executing
from a different instance on the same machine), an entry is also made in the system
database directory at the client instance.

Databases created at the current instance (as defined by the value of the
DB2INSTANCE environment variable) are cataloged as indirect. Databases created at
other instances are cataloged as remote (even if they physically reside on the same
machine).

CATALOG DATABASE automatically creates a system database directory if one does
not exist. The system database directory is stored on the path that contains the
database manager instance that is being used. The system database directory is
maintained outside of the database. Each entry in the directory contains:

 ¹ Alias
 ¹ Authentication type
 ¹ Comment
 ¹ Database
 ¹ Entry type
¹ Local database directory (when cataloging a local database)
¹ Node name (when cataloging a remote database)

 ¹ Release information.

If a database is cataloged with the type parameter set to SQL_INDIRECT, the value of the
authentication parameter provided will be ignored, and the authentication in the
directory will be set to SQL_AUTHENTICATION_NOT_SPECIFIED.

List the contents of the system database directory using “sqledosd - Open Database
Directory Scan” on page 103, “sqledgne - Get Next Database Directory Entry” on
page 100, and “sqledcls - Close Database Directory Scan” on page 98.

If directory caching is enabled (see the configuration parameter dir_cache in “sqlfxsys -
Get Database Manager Configuration” on page 204), database, node, and DCS
directory files are cached in memory. An application's directory cache is created during
its first directory lookup. Since the cache is only refreshed when the application
modifies any of the directory files, directory changes made by other applications may
not be effective until the application has restarted. To refresh DB2's shared cache
(server only), stop (db2stop) and then restart (db2start) the database manager. To

 Chapter 1. Application Programming Interfaces 77

sqlecadb - Catalog Database

refresh the directory cache for another application, stop and then restart that
application.

 See Also
“sqledcls - Close Database Directory Scan” on page 98
“sqledgne - Get Next Database Directory Entry” on page 100
“sqledosd - Open Database Directory Scan” on page 103
“sqleuncd - Uncatalog Database” on page 179.

78 API Reference

sqlecran - Create Database at Node

sqlecran - Create Database at Node
Creates a database only on the node that calls the API. This API is not intended for
general use. For example, it should be used with “sqlurst - Restore Database” on
page 309 if the database partition at a node was damaged and must be recreated.
Improper use of this API can cause inconsistencies in the system, so it should only be
used with caution.

Note: If this API is used to recreate a database partition that was dropped (because it
was damaged), the database at this node will be in the restore-pending state.
After recreating the database partition, the database must immediately be
restored on this node.

 Scope
This API only affects the node on which it is called.

 Authorization
One of the following:

 sysadm
 sysctrl

 Required Connection
Instance. To create a database at another node, it is necessary to first attach to that
node. A database connection is temporarily established by this API during processing.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Create Database at Node */

/* ... */

SQL_API_RC SQL_API_FN

 sqlecran (

char * pDbName,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

 Chapter 1. Application Programming Interfaces 79

sqlecran - Create Database at Node

Generic API Syntax

/* File: sqlenv.h */

/* API: Create Database at Node */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgcran (

unsigned short reservedLen,

unsigned short dbNameLen,

struct sqlca * pSqlca,

void * pReserved,

char * pDbName);

/* ... */

 API Parameters
reservedLen

Input. Reserved for the length of pReserved.
dbNameLen

Input. A 2-byte unsigned integer representing the length of the database
name in bytes.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pReserved
Input. A spare pointer that is set to null or points to zero. Reserved for
future use.

pDbName
Input. A string containing the name of the database to be created. Must not
be NULL.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

 Usage Notes
When the database is successfully created, it is placed in restore-pending state. The
database must be restored on this node before it can be used.

 See Also
“sqlecrea - Create Database” on page 81
“sqledpan - Drop Database at Node” on page 106.

80 API Reference

sqlecrea - Create Database

sqlecrea - Create Database
Initializes a new database with an optional user-defined collating sequence, creates the
three initial table spaces, creates the system tables, and allocates the recovery log.

 Scope
In a multi-node environment, this API affects all nodes that are listed in the
$HOME/sqllib/db2nodes.cfg file.

The node from which this API is called becomes the catalog node for the new
database.

 Authorization
One of the following:

 sysadm
 sysctrl

 Required Connection
Instance. To create a database at another (remote) node, it is necessary to first attach
to that node. A database connection is temporarily established by this API during
processing.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Create Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqlecrea (

char * pDbName,

char * pLocalDbAlias,

char * pPath,

struct sqledbdesc * pDbDescriptor,

struct sqledbcountryinfo * pCountryInfo,

 char Reserved2,

void * pReserved1,

struct sqlca * pSqlca);

/* ... */

 Chapter 1. Application Programming Interfaces 81

sqlecrea - Create Database

Generic API Syntax

/* File: sqlenv.h */

/* API: Create Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgcrea (

unsigned short PathLen,

unsigned short LocalDbAliasLen,

unsigned short DbNameLen,

struct sqlca * pSqlca,

void * pReserved1,

unsigned short Reserved2,

struct sqledbcountryinfo * pCountryInfo,

struct sqledbdesc * pDbDescriptor,

char * pPath,

char * pLocalDbAlias,

char * pDbName);

/* ... */

 API Parameters
PathLen

Input. A 2-byte unsigned integer representing the length of the path in
bytes. Set to zero if no path is provided.

LocalDbALiasLen
Input. A 2-byte unsigned integer representing the length of the local
database alias in bytes. Set to zero if no local alias is provided.

DbNameLen
Input. A 2-byte unsigned integer representing the length of the database
name in bytes.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pReserved1
Input. A spare pointer that is set to null or points to zero.

Reserved2
Input. Reserved for future use.

pCountryInfo
Input. A pointer to the sqledbcountryinfo structure, containing the locale
and the code set for the database. For more information about this
structure, see “SQLEDBCOUNTRYINFO” on page 385. For a list of valid
locale and code set values, see one of the Quick Beginnings books. May
be NULL.

pDBDescriptor
Input. A pointer to the database description block used when creating the
database. The database description block may be used to supply values

82 API Reference

sqlecrea - Create Database

that are permanently stored in the configuration file of the database, such
as collating sequence. Its structure is described in “SQLEDBDESC” on
page 386. May be NULL.

pPath
Input. On UNIX based systems, specifies the path on which to create the
database. If a path is not specified, the database is created on the default
database path specified in the database manager configuration file
(dftdbpath parameter). On OS/2 or the Windows operating system,
specifies the letter of the drive on which to create the database. May be
NULL.

Note: For MPP systems, a database should not be created in an
NFS-mounted directory. If a path is not specified, ensure that the
dftdbpath database manager configuration parameter is not set to
an NFS-mounted path (for example, on UNIX based systems, it
should not specify the $HOME directory of the instance owner). The
path specified for this API in an MPP system cannot be a relative
path.

pLocalDbAlias
Input. A string containing the alias to be placed in the client's system
database directory. May be NULL. If no local alias is specified, the
database name is the default.

pDbName
Input. A string containing the database name. This is the database name
that will be cataloged in the system database directory. Once the database
has been successfully created in the server’s system database directory, it
is automatically cataloged in the system database directory with a database
alias identical to the database name. Must not be NULL.

REXX API Syntax

CREATE DATABASE dbname [ON path] [ALIAS dbalias]

[USING CODESET codeset TERRITORY territory]

[COLLATE USING {SYSTEM | IDENTITY | USER :udcs}]

[NUMSEGS numsegs] [DFT_EXTENT_SZ dft_extentsize]

[CATALOG TABLESPACE <tablespace_definition>]

[USER TABLESPACE <tablespace_definition>]

[TEMPORARY TABLESPACE <tablespace_definition>]

[WITH comment]

Where <tablespace_definition> stands for:

MANAGED BY {

SYSTEM USING :SMS_string |

DATABASE USING :DMS_string }

[EXTENTSIZE number_of_pages]

[PREFETCHSIZE number_of_pages]

[OVERHEAD number_of_milliseconds]

[TRANSFERRATE number_of_milliseconds]

 Chapter 1. Application Programming Interfaces 83

sqlecrea - Create Database

REXX API Parameters
dbname

Name of the database.
dbalias

Alias of the database.
path

Path on which to create the database.

If a path is not specified, the database is created on the default database
path specified in the database manager configuration file (dftdbpath
configuration parameter).

Note: For MPP systems, a database should not be created in an
NFS-mounted directory. If a path is not specified, ensure that the
dftdbpath database manager configuration parameter is not set to
an NFS-mounted path (for example, on UNIX based systems, it
should not specify the $HOME directory of the instance owner). The
path specified for this API in an MPP system cannot be a relative
path.

codeset
Code set to be used for data entered into the database.

territory
Territory code (locale) to be used for data entered into the database.

SYSTEM
Uses the collating sequence of the operating system based on the current
country code.

IDENTITY
The collating sequence is the identity sequence, where strings are
compared byte for byte, starting with the leftmost byte.

USER udcs
The collating sequence is specified by the calling application in a host
variable containing a 256-byte string defining the collating sequence.

numsegs
Number of segment directories that will be created and used to store the
DAT, IDX, and LF files.

dft_extentsize
Specifies the default extentsize for table spaces in the database.

SMS_string
A compound REXX host variable identifying one or more containers that
will belong to the table space, and where the table space data will be
stored. In the following, XXX represents the host variable name. Note that
each of the directory names cannot exceed 254 bytes in length.

XXX.0 Number of directories specified

XXX.1 First directory name for SMS tablespace

XXX.2 Second directory name for SMS tablespace

XXX.3 and so on.

84 API Reference

sqlecrea - Create Database

DMS_string
A compound REXX host variable identifying one or more containers that
will belong to the table space, where the table space data will be stored,
container sizes (specified in a number of 4KB pages) and types (file or
device). The specified devices (not files) must already exist. In the
following, XXX represents the host variable name. Note that each of the
container names cannot exceed 254 bytes in length.

XXX.0 Number of strings in the REXX host variable (number of first
level elements)

XXX.1.1 Type of the first container (file or device)

XXX.1.2 First file name or device name

XXX.1.3 Size (in pages) of the first container

XXX.2.1 Type of the second container (file or device)

XXX.2.2 Second file name or device name

XXX.2.3 Size (in pages) of the second container

XXX.3.1 and so on.

EXTENTSIZE number_of_pages
Number of 4KB pages that will be written to a container before skipping to
the next container.

PREFETCHSIZE number_of_pages
Number of 4KB pages that will be read from the table space when data
prefetching is being performed.

OVERHEAD number_of_milliseconds
Number that specifies the I/O controller overhead, disk seek, and latency
time in milliseconds.

TRANSFERRATE number_of_milliseconds
Number that specifies the time in milliseconds to read one 4KB page into
memory.

comment
Description of the database or the database entry in the system directory.
Do not use a carriage return or line feed character in the comment. Be
sure to enclose the comment text in double quotation marks. Maximum
size is 30 characters.

 Sample Programs
C \sqllib\samples\c\dbconf.c

COBOL \sqllib\samples\cobol\dbconf.cbl

FORTRAN \sqllib\samples\fortran\dbconf.f

REXX \sqllib\samples\rexx\dbconf.cmd

 Chapter 1. Application Programming Interfaces 85

sqlecrea - Create Database

 Usage Notes
CREATE DATABASE:

¹ Creates a database in the specified subdirectory. In an MPP system, creates the
database on all nodes listed in db2nodes.cfg, and creates a
$DB2INSTANCE/NODExxxx directory under the specified subdirectory at each node,
where xxxx represents the local node number. In a non-MPP system, creates a
$DB2INSTANCE/NODE0000 directory under the specified subdirectory.

¹ Creates the system catalog tables and recovery log.

¹ Catalogs the database in the following database directories:

– server's local database directory on the path indicated by pPath or, if the path
is not specified, the default database path defined in the database manager
system configuration file. A local database directory resides on each file
system that contains a database.

– server's system database directory for the attached instance. The resulting
directory entry will contain the database name and a database alias.

If the API was called from a remote client, the client's system database
directory is also updated with the database name and an alias.

Creates a system or a local database directory if neither exists. If specified, the
comment and code set values are placed in both directories.

¹ Stores the specified code set, territory, and collating sequence. A flag is set in the
database configuration file if the collating sequence consists of unique weights, or if
it is the identity sequence.

¹ Creates the schemata called SYSCAT, SYSFUN, SYSIBM, and SYSSTAT with
SYSIBM as the owner. The server node on which this API is called becomes the
catalog node for the new database. Two nodegroups are created automatically:
IBMDEFAULTGROUP and IBMCATGROUP. For more information, see the SQL
Reference.

¹ Binds the previously defined database manager bind files to the database (these
are listed in db2ubind.lst). If one or more of these files do not bind successfully,
sqlecrea returns a warning in the SQLCA, and provides information about the
binds that failed. If a bind fails, the user can take corrective action and manually
bind the failing file. The database is created in any case. A schema called NULLID
is implicitly created when performing the binds with CREATEIN privilege granted to
PUBLIC.

¹ Creates SYSCATSPACE, TEMPSPACE1, and USERSPACE1 table spaces. The
SYSCATSPACE table space is only created on the catalog node. All nodes have
the same table space definitions.

¹ Grants the following:

– DBADM authority, and CONNECT, CREATETAB, BINDADD,
CREATE_NOT_FENCED, and IMPLICIT_SCHEMA privileges to the database
creator

86 API Reference

sqlecrea - Create Database

– CONNECT, CREATETAB, BINDADD, and IMPLICIT_SCHEMA privileges to
PUBLIC

– SELECT privilege on each system catalog to PUBLIC
– BIND and EXECUTE privilege to PUBLIC for each successfully bound utility.

With dbadm authority, one can grant these privileges to (and revoke them from) other
users or PUBLIC. If another administrator with sysadm or dbadm authority over the
database revokes these privileges, the database creator nevertheless retains them.

In an MPP environment, the database manager creates a subdirectory,
$DB2INSTANCE/NODExxxx, under the specified or default path on all nodes. The xxxx is
the node number as defined in the db2nodes.cfg file (that is, node 0 becomes
NODE0000). Subdirectories SQL00001 through SQLnnnnn will reside on this path. This
ensures that the database objects associated with different nodes are stored in different
directories (even if the subdirectory $DB2INSTANCE under the specified or default path is
shared by all nodes).

CREATE DATABASE will fail if the application is already connected to a database.

If the database description block structure is not set correctly, an error message is
returned (see “SQLEDBDESC” on page 386).

The "eye-catcher" of the database description block must be set to the symbolic value
SQLE_DBDESC_2 (defined in sqlenv). The following sample user-defined collating
sequences are available in the host language include files:

sqle819a If the code page of the database is 819 (ISO Latin/1), this sequence will
cause sorting to be performed according to the host CCSID 500 (EBCDIC
International).

sqle819b If the code page of the database is 819 (ISO Latin/1), this sequence will
cause sorting to be performed according to the host CCSID 037 (EBCDIC
US English).

sqle850a If the code page of the database is 850 (ASCII Latin/1), this sequence will
cause sorting to be performed according to the host CCSID 500 (EBCDIC
International).

sqle850b If the code page of the database is 850 (ASCII Latin/1), this sequence will
cause sorting to be performed according to the host CCSID 037 (EBCDIC
US English).

sqle932a If the code page of the database is 932 (ASCII Japanese), this sequence
will cause sorting to be performed according to the host CCSID 5035
(EBCDIC Japanese).

sqle932b If the code page of the database is 932 (ASCII Japanese), this sequence
will cause sorting to be performed according to the host CCSID 5026
(EBCDIC Japanese).

 Chapter 1. Application Programming Interfaces 87

sqlecrea - Create Database

The collating sequence specified during CREATE DATABASE cannot be changed later,
and all character comparisons in the database use the specified collating sequence.
This affects the structure of indexes as well as the results of queries.

Use sqlecadb to define different alias names for the new database.

 See Also
“sqlabndx - Bind” on page 10
“sqlecadb - Catalog Database” on page 72
“sqlecran - Create Database at Node” on page 79
“sqledpan - Drop Database at Node” on page 106
“sqledrpd - Drop Database” on page 110.

88 API Reference

sqlectnd - Catalog Node

sqlectnd - Catalog Node
Stores information in the node directory about the location of a DB2 server instance
based on the communications protocol used to access that instance. The information is
needed to establish a database connection or attachment between an application and a
server instance.

 Authorization
One of the following:

 sysadm
 sysctrl

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Catalog Node */

/* ... */

SQL_API_RC SQL_API_FN

 sqlectnd (

struct sqle_node_struct * pNodeInfo,

void * pProtocolInfo,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Catalog Node */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgctnd (

struct sqlca * pSqlca,

struct sqle_node_struct * pNodeInfo,

void * pProtocolInfo);

/* ... */

 Chapter 1. Application Programming Interfaces 89

sqlectnd - Catalog Node

 API Parameters
pNodeInfo

Input. A pointer to a node directory structure. For more information about
this structure, see “SQLE-NODE-STRUCT” on page 377.

pProtocolInfo
Input. A pointer to the protocol structure. For more information about these
structures, see:
¹ “SQLE-NODE-CPIC” on page 372
¹ “SQLE-NODE-IPXSPX” on page 373
¹ “SQLE-NODE-LOCAL” on page 374
¹ “SQLE-NODE-NETB” on page 375
¹ “SQLE-NODE-NPIPE” on page 376
¹ “SQLE-NODE-TCPIP” on page 379.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

CATALOG APPC NODE - REXX API Syntax

CATALOG APPC NODE nodename DESTINATION symbolic_destination_name

[SECURITY {NONE|SAME|PROGRAM}]

[WITH comment]

REXX API Parameters
nodename

Alias for the node to be cataloged.
symbolic_destination_name

Symbolic destination name of the remote partner node.
comment

An optional description associated with this node directory entry. Do not
include a CR/LF character in a comment. Maximum length is 30
characters. The comment text must be enclosed by double quotation
marks.

CATALOG IPX/SPX NODE - REXX API Syntax

CATALOG IPXSPX NODE nodename REMOTE file_server SERVER objectname

[WITH comment]

90 API Reference

sqlectnd - Catalog Node

REXX API Parameters
nodename

Alias for the node to be cataloged.
file_server

Name of the NetWare file server where the internetwork address of the
database manager instance is registered. The internetwork address is
stored in the bindery at the NetWare file server, and is accessed using
objectname.

objectname
The database manager server instance is represented as the object,
objectname, on the NetWare file server. The server's IPX/SPX internetwork
address is stored and retrieved from this object.

comment
An optional description associated with this node directory entry. Do not
include a CR/LF character in a comment. Maximum length is 30
characters. The comment text must be enclosed by double quotation
marks.

CATALOG LOCAL NODE - REXX API Syntax

CATALOG LOCAL NODE nodename INSTANCE instance_name [WITH comment]

REXX API Parameters
nodename

Alias for the node to be cataloged.
instance_name

Name of the instance to be cataloged.
comment

An optional description associated with this node directory entry. Do not
include a CR/LF character in a comment. Maximum length is 30
characters. The comment text must be enclosed by double quotation
marks.

CATALOG NETBIOS NODE - REXX API Syntax

CATALOG NETBIOS NODE nodename REMOTE server_nname ADAPTER adapternum

[WITH comment]

REXX API Parameters
nodename

Alias for the node to be cataloged.

 Chapter 1. Application Programming Interfaces 91

sqlectnd - Catalog Node

server_nname
Name of the remote workstation. This is the workstation name (nname)
found in the database manager configuration file of the server instance.

adapternum
Local LAN adapter number.

comment
An optional description associated with this node directory entry. Do not
include a CR/LF character in a comment. Maximum length is 30
characters. The comment text must be enclosed by double quotation
marks.

CATALOG NPIPE NODE - REXX API Syntax

CATALOG NPIPE NODE nodename REMOTE computer_name INSTANCE instance_name

REXX API Parameters
nodename

Alias for the node to be cataloged.
computer_name

The computer name of the node on which the target database resides.
instance_name

Name of the instance to be cataloged.

CATALOG TCPIP NODE - REXX API Syntax

CATALOG TCPIP NODE nodename REMOTE hostname SERVER servicename

[WITH comment]

 Parameters
nodename

Alias for the node to be cataloged.
hostname

Host name of the node where the target database resides.
servicename

Either the service name of the database manager instance on the remote
node, or the port number associated with that service name.

comment
An optional description associated with this node directory entry. Do not
include a CR/LF character in a comment. Maximum length is 30
characters. The comment text must be enclosed by double quotation
marks.

92 API Reference

sqlectnd - Catalog Node

 Sample Programs
C \sqllib\samples\c\nodecat.c

COBOL \sqllib\samples\cobol\nodecat.cbl

FORTRAN \sqllib\samples\fortran\nodecat.f

REXX \sqllib\samples\rexx\nodecat.cmd

 Usage Notes
DB2 creates the node directory on the first call to this API if the node directory does not
exist. On OS/2 or the Windows operating system, the node directory is stored in the
directory of the instance being used. On UNIX based systems, it is stored in the DB2
install directory (sqllib, for example).

If directory caching is enabled (see the configuration parameter dir_cache in “sqlfxsys -
Get Database Manager Configuration” on page 204), database, node, and DCS
directory files are cached in memory. An application's directory cache is created during
its first directory lookup. Since the cache is only refreshed when the application
modifies any of the directory files, directory changes made by other applications may
not be effective until the application has restarted. To refresh DB2's shared cache
(server only), stop (db2stop) and then restart (db2start) the database manager. To
refresh the directory cache for another application, stop and then restart that
application.

To list the contents of the node directory, use “sqlenops - Open Node Directory Scan”
on page 153, “sqlengne - Get Next Node Directory Entry” on page 150, and “sqlencls -
Close Node Directory Scan” on page 148.

 See Also
“sqlencls - Close Node Directory Scan” on page 148
“sqlengne - Get Next Node Directory Entry” on page 150
“sqlenops - Open Node Directory Scan” on page 153
“sqleuncn - Uncatalog Node” on page 182.

 Chapter 1. Application Programming Interfaces 93

sqledcgd - Change Database Comment

sqledcgd - Change Database Comment
Changes a database comment in the system database directory or the local database
directory. New comment text can be substituted for text currently associated with a
comment.

 Scope
This API only affects the node on which it is issued.

 Authorization
One of the following:

 sysadm
 sysctrl

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Change Database Comment */

/* ... */

SQL_API_RC SQL_API_FN

 sqledcgd (

_SQLOLDCHAR * pDbAlias,

_SQLOLDCHAR * pPath,

_SQLOLDCHAR * pComment,

struct sqlca * pSqlca);

/* ... */

94 API Reference

sqledcgd - Change Database Comment

Generic API Syntax

/* File: sqlenv.h */

/* API: Change Database Comment */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgdcgd (

unsigned short CommentLen,

unsigned short PathLen,

unsigned short DbAliasLen,

struct sqlca * pSqlca,

_SQLOLDCHAR * pComment,

_SQLOLDCHAR * pPath,

_SQLOLDCHAR * pDbAlias);

/* ... */

 API Parameters
CommentLen

Input. A 2-byte unsigned integer representing the length in bytes of the
comment. Set to zero if no comment is provided.

PathLen
Input. A 2-byte unsigned integer representing the length in bytes of the
path parameter. Set to zero if no path is provided.

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pComment
Input. A string containing an optional description of the database. A null
string indicates no comment. It can also indicate no change to an existing
database comment.

pPath
Input. A string containing the path on which the local database directory
resides. If the specified path is a null pointer, the system database
directory is used.

The comment is only changed in the local database directory or the system
database directory on the node on which the API is executed. To change
the database comment on all nodes, run the API on every node.

pDbAlias
Input. A string containing the database alias. This is the name that is
cataloged in the system database directory, or the name cataloged in the
local database directory if the path is specified.

 Chapter 1. Application Programming Interfaces 95

sqledcgd - Change Database Comment

REXX API Syntax

CHANGE DATABASE database_alias COMMENT [ON path] WITH comment

REXX API Parameters
database_alias

Alias of the database whose comment is to be changed.

To change the comment in the system database directory, it is necessary
to specify the database alias.

If the path where the database resides is specified (with the path
parameter), enter the name (not the alias) of the database. Use this
method to change the comment in the local database directory.

path
Path on which the database resides.

comment
Describes the entry in the system database directory or the local database
directory. Any comment that helps to describe the cataloged database can
be entered. The maximum length of a comment string is 30 characters. A
carriage return or a line feed character is not permitted. The comment text
must be enclosed by double quotation marks.

 Sample Programs
C \sqllib\samples\c\dbcmt.c

COBOL \sqllib\samples\cobol\dbcmt.cbl

FORTRAN \sqllib\samples\fortran\dbcmt.f

REXX \sqllib\samples\rexx\dbcmt.cmd

 Usage Notes
New comment text replaces existing text. To append information, enter the old
comment text, followed by the new text.

To modify an existing comment:

1. Call “sqledosd - Open Database Directory Scan” on page 103

2. Call “sqledgne - Get Next Database Directory Entry” on page 100 to retrieve the
old comment

3. Modify the retrieved comment

4. Call “sqledcls - Close Database Directory Scan” on page 98

5. Call "sqledcgd - Change Database Comment" to replace the old text with the
modified text.

96 API Reference

sqledcgd - Change Database Comment

Only the comment for an entry associated with the database alias is modified. Other
entries with the same database name, but with different aliases, are not affected.

If the path is specified, the database alias must be cataloged in the local database
directory. If the path is not specified, the database alias must be cataloged in the
system database directory.

 See Also
“sqlecrea - Create Database” on page 81
“sqlecadb - Catalog Database” on page 72.

 Chapter 1. Application Programming Interfaces 97

sqledcls - Close Database Directory Scan

sqledcls - Close Database Directory Scan
Frees the resources allocated by “sqledosd - Open Database Directory Scan” on
page 103.

 Authorization
None

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Close Database Directory Scan */

/* ... */

SQL_API_RC SQL_API_FN

 sqledcls (

unsigned short Handle,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Close Database Directory Scan */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgdcls (

unsigned short Handle,

struct sqlca * pSqlca);

/* ... */

 API Parameters
Handle

Input. Identifier returned from the associated OPEN DATABASE
DIRECTORY SCAN API.

98 API Reference

sqledcls - Close Database Directory Scan

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax

CLOSE DATABASE DIRECTORY scanid

REXX API Parameters
scanid

A host variable containing the scanid returned from the OPEN DATABASE
DIRECTORY SCAN API.

 Sample Programs
C \sqllib\samples\c\dbcat.c

COBOL \sqllib\samples\cobol\dbcat.cbl

FORTRAN \sqllib\samples\fortran\dbcat.f

REXX \sqllib\samples\rexx\dbcat.cmd

 See Also
“sqledgne - Get Next Database Directory Entry” on page 100
“sqledosd - Open Database Directory Scan” on page 103.

 Chapter 1. Application Programming Interfaces 99

sqledgne - Get Next Database Directory Entry

sqledgne - Get Next Database Directory Entry
Returns the next entry in the system database directory or the local database directory
copy returned by “sqledosd - Open Database Directory Scan” on page 103.
Subsequent calls to this API return additional entries.

 Authorization
None

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Get Next Database Directory Entry */

/* ... */

SQL_API_RC SQL_API_FN

 sqledgne (

unsigned short Handle,

struct sqledinfo ** ppDbDirEntry,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Get Next Database Directory Entry */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgdgne (

unsigned short Handle,

struct sqledinfo ** ppDbDirEntry,

struct sqlca * pSqlca);

/* ... */

100 API Reference

sqledgne - Get Next Database Directory Entry

 API Parameters
Handle

Input. Identifier returned from the associated OPEN DATABASE
DIRECTORY SCAN API.

ppDbDirEntry
Output. The caller supplies the API with the address of a pointer to an
sqledinfo structure. The space for the directory data is allocated by the API,
and a pointer to that space is returned to the caller. A call to “sqledcls -
Close Database Directory Scan” on page 98 frees the allocated space.
Information returned to the buffer is described in “SQLEDINFO” on
page 394.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax

GET DATABASE DIRECTORY ENTRY :scanid [USING :value]

REXX API Parameters
scanid

A REXX host variable containing the identifier returned from the OPEN
DATABASE DIRECTORY SCAN API.

value
A compound REXX host variable to which the database entry information is
returned. If no name is given, the name SQLDINFO is used. In the following,
XXX represents the host variable name (the corresponding field names are
taken from the structure returned by the API):

XXX.0 Number of elements in the variable (always 12)

XXX.1 ALIAS (alias of the database)

XXX.2 DBNAME (name of the database)

XXX.3 DRIVE/PATH (local database directory path name)

XXX.3.1 NODE NUMBER (valid for local database directory only)

XXX.4 INTNAME (token identifying the database subdirectory)

XXX.5 NODENAME (name of the node where the database is
located)

XXX.6 DBTYPE (product name and release number)

XXX.7 COMMENT (comment associated with the database)

XXX.8 Reserved

XXX.9 TYPE (entry type)

 Chapter 1. Application Programming Interfaces 101

sqledgne - Get Next Database Directory Entry

XXX.10 AUTHENTICATION (authentication type)

XXX.10.1 DCE principal

XXX.11 GLBDBNAME (Global database name)

XXX.12 CATALOG NODE NUMBER

 Sample Programs
C \sqllib\samples\c\dbcat.c

COBOL \sqllib\samples\cobol\dbcat.cbl

FORTRAN \sqllib\samples\fortran\dbcat.f

REXX \sqllib\samples\rexx\dbcat.cmd

 Usage Notes
All fields of the directory entry information buffer are padded to the right with blanks.

A subsequent GET NEXT DATABASE DIRECTORY ENTRY obtains the entry following
the current entry.

The sqlcode value of sqlca is set to 1014 if there are no more entries to scan when
GET NEXT DATABASE DIRECTORY ENTRY is called.

The count value returned by the OPEN DATABASE DIRECTORY SCAN API can be
used to scan through the entire directory by issuing GET NEXT DATABASE
DIRECTORY ENTRY calls, one at a time, until the number of scans equals the count of
entries.

 See Also
“sqledcls - Close Database Directory Scan” on page 98
“sqledosd - Open Database Directory Scan” on page 103.

102 API Reference

sqledosd - Open Database Directory Scan

sqledosd - Open Database Directory Scan
Stores a copy of the system database directory or the local database directory in
memory, and returns the number of entries. This copy represents a snapshot of the
directory at the time the directory is opened. This copy is not updated, even if the
directory itself is changed later.

Use “sqledgne - Get Next Database Directory Entry” on page 100 to advance through
the database directory, examining information about the database entries. Close the
scan using “sqledcls - Close Database Directory Scan” on page 98. This removes the
copy of the directory from memory.

 Authorization
None

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Open Database Directory Scan */

/* ... */

SQL_API_RC SQL_API_FN

 sqledosd (

_SQLOLDCHAR * pPath,

unsigned short * pHandle,

unsigned short * pNumEntries,

struct sqlca * pSqlca);

/* ... */

 Chapter 1. Application Programming Interfaces 103

sqledosd - Open Database Directory Scan

Generic API Syntax

/* File: sqlenv.h */

/* API: Open Database Directory Scan */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgdosd (

unsigned short PathLen,

struct sqlca * pSqlca,

unsigned short * pNumEntries,

unsigned short * pHandle,

_SQLOLDCHAR * pPath);

/* ... */

 API Parameters
PathLen

Input. A 2-byte unsigned integer representing the length in bytes of the
path parameter. Set to zero if no path is provided.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pNumEntries
Output. Address of a 2-byte area where the number of directory entries is
returned.

pHandle
Output. Address of a 2-byte area for the returned identifier. This identifier
must be passed to “sqledgne - Get Next Database Directory Entry” on
page 100 for scanning the database entries, and to “sqledcls - Close
Database Directory Scan” on page 98 to release the resources.

pPath
Input. The name of the path on which the local database directory resides.
If the specified path is a NULL pointer, the system database directory is
used.

REXX API Syntax

OPEN DATABASE DIRECTORY [ON path_name] USING :value

REXX API Parameters
path_name

Name of the path on which the local database directory resides. If the path
is not specified, the system database directory is used.

104 API Reference

sqledosd - Open Database Directory Scan

value
A compound REXX host variable to which database directory information is
returned. In the following, XXX represents the host variable name.

XXX.0 Number of elements in the variable (always 2)

XXX.1 Identifier (handle) for future scan access

XXX.2 Number of entries contained within the directory.

 Sample Programs
C \sqllib\samples\c\dbcat.c

COBOL \sqllib\samples\cobol\dbcat.cbl

FORTRAN \sqllib\samples\fortran\dbcat.f

REXX \sqllib\samples\rexx\dbcat.cmd

 Usage Notes
Storage allocated by this API is freed by “sqledcls - Close Database Directory Scan” on
page 98.

Multiple OPEN DATABASE DIRECTORY SCAN APIs can be issued against the same
directory. However, the results may not be the same. The directory may change
between openings.

There can be a maximum of eight opened database directory scans per process.

 See Also
“sqledcls - Close Database Directory Scan” on page 98
“sqledgne - Get Next Database Directory Entry” on page 100.

 Chapter 1. Application Programming Interfaces 105

sqledpan - Drop Database at Node

sqledpan - Drop Database at Node
Drops a database at a specified node. Can only be run on an MPP server.

 Scope
This API only affects the node on which it is called.

 Authorization
One of the following:

 sysadm
 sysctrl

 Required Connection
None. An instance attachment is established for the duration of the call.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Drop Database at Node */

/* ... */

SQL_API_RC SQL_API_FN

 sqledpan (

char * pDbAlias,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Drop Database at Node */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgdpan (

unsigned short Reserved1,

unsigned short DbAliasLen,

struct sqlca * pSqlca,

void * pReserved2,

char * pDbAlias);

/* ... */

106 API Reference

sqledpan - Drop Database at Node

 API Parameters
Reserved1

Reserved for future use.
DbAliasLen

Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pReserved2
A spare pointer that is set to null or points to zero. Reserved for future use.

pDbAlias
Input. A string containing the alias of the database to be dropped. This
name is used to reference the actual database name in the system
database directory.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

 Usage Notes
This API is used by utilities supplied with DB2 Universal Database Extended Enterprise
Edition, and is not intended for general use. Improper use of this API can cause
inconsistencies in the system, so it should only be used with caution.

 See Also
“sqlecran - Create Database at Node” on page 79
“sqledrpd - Drop Database” on page 110.

 Chapter 1. Application Programming Interfaces 107

sqledreg - Deregister

sqledreg - Deregister
Deregisters the DB2 server from a network file server. The DB2 server's network
address is removed from a specified registry on the file server.

 Authorization
None

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Deregister */

/* ... */

SQL_API_RC SQL_API_FN

 sqledreg (

unsigned short Registry,

void * pRegisterInfo,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Deregister */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgdreg (

unsigned short Registry,

void * pRegisterInfo,

struct sqlca * pSqlca);

/* ... */

 API Parameters
Registry

Input. Indicates where on the network file server to deregister the DB2
server. In this release, the only supported registry is SQL_NWBINDERY

(NetWare file server bindery, defined in sqlenv).

108 API Reference

sqledreg - Deregister

pRegisterInfo
Input. A pointer to the sqle_reg_nwbindery structure. In this structure, the
caller specifies a user name and password that are valid on the network
file server. For more information about this structure, see
“SQLE-REG-NWBINDERY” on page 380.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

 Sample Programs
C \sqllib\samples\c\regder.c

COBOL \sqllib\samples\cobol\regder.cbl

FORTRAN \sqllib\samples\fortran\regder.f

 Usage Notes
When Registry has a value of SQL_NWBINDERY, this API uses the NetWare user name
and password supplied in the sqle_reg_nwbindery structure to log onto the NetWare file
server (FILESERVER) specified in the database manager configuration file. The object
name (OBJECTNAME) specified in the database manager configuration file is deleted
from the NetWare file server bindery.

The NetWare user name and password specified must have supervisory or equivalent
authority.

This API must be issued locally from the DB2 server. It is not supported remotely.

If the IPX/SPX fields are reconfigured, or the DB2 server's IPX/SPX internetwork
address changes, deregister the DB2 server from the network file server before making
the changes, and then register it again after the changes have been made.

 See Also
“sqleregs - Register” on page 165.

 Chapter 1. Application Programming Interfaces 109

sqledrpd - Drop Database

sqledrpd - Drop Database
Deletes the database contents and all log files for the database, uncatalogs the
database, and deletes the database subdirectory.

 Scope
By default, this API affects all nodes that are listed in the $HOME/sqllib/db2nodes.cfg

file.

 Authorization
One of the following:

 sysadm
 sysctrl

 Required Connection
Instance. It is not necessary to call ATTACH before dropping a remote database. If the
database is cataloged as remote, an instance attachment to the remote node is
established for the duration of the call.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Drop Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqledrpd (

_SQLOLDCHAR * pDbAlias,

_SQLOLDCHAR * pReserved2,

struct sqlca * pSqlca);

/* ... */

110 API Reference

sqledrpd - Drop Database

Generic API Syntax

/* File: sqlenv.h */

/* API: Drop Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgdrpd (

unsigned short Reserved1,

unsigned short DbAliasLen,

struct sqlca * pSqlca,

_SQLOLDCHAR * pReserved2,

_SQLOLDCHAR * pDbAlias);

/* ... */

 API Parameters
Reserved1

Reserved for future use.
DbAliasLen

Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pReserved2
A spare pointer that is set to null or points to zero. Reserved for future use.

pDbAlias
Input. A string containing the alias of the database to be dropped. This
name is used to reference the actual database name in the system
database directory.

REXX API Syntax

DROP DATABASE dbalias

REXX API Parameters
dbalias

The alias of the database to be dropped.

 Sample Programs
C \sqllib\samples\c\dbconf.sqc

COBOL \sqllib\samples\cobol\dbconf.sqb

 Chapter 1. Application Programming Interfaces 111

sqledrpd - Drop Database

FORTRAN \sqllib\samples\fortran\dbconf.sqf

REXX \sqllib\samples\rexx\dbconf.cmd

 Usage Notes
DROP DATABASE deletes all user data and log files. If the log files are needed for a
roll-forward recovery after a restore operation, the files should be saved prior to calling
this API.

The database must not be in use; all users must be disconnected from the database
before the database can be dropped.

To be dropped, a database must be cataloged in the system database directory. Only
the specified database alias is removed from the system database directory. If other
aliases with the same database name exist, their entries remain. If the database being
dropped is the last entry in the local database directory, the local database directory is
deleted automatically.

If DROP DATABASE is issued from a remote client (or from a different instance on the
same machine), the specified alias is removed from the client's system database
directory. The corresponding database name is removed from the server's system
database directory.

 See Also
“sqlecadb - Catalog Database” on page 72
“sqlecrea - Create Database” on page 81
“sqlecran - Create Database at Node” on page 79
“sqledpan - Drop Database at Node” on page 106
“sqleuncd - Uncatalog Database” on page 179.

112 API Reference

sqledrpn - Drop Node Verify

sqledrpn - Drop Node Verify
Verifies whether a node is being used by a database. A message is returned, indicating
whether the node can be dropped.

 Scope
This API only affects the node on which it is issued.

 Authorization
One of the following:

 sysadm
 sysctrl

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Drop Node Verify */

/* ... */

SQL_API_RC SQL_API_FN

 sqledrpn (

unsigned short Action,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Drop Node Verify */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgdrpn (

unsigned short Reserved1,

struct sqlca * pSqlca,

void * pReserved2,

unsigned short Action);

/* ... */

 Chapter 1. Application Programming Interfaces 113

sqledrpn - Drop Node Verify

 API Parameters
Reserved1

Reserved for the length of pReserved2.
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pReserved2
A spare pointer that is set to NULL or points to 0. Reserved for future use.

Action
The action requested. The valid value is:

SQL_DROPNODE_VERIFY

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

 Usage Notes
If a message is returned, indicating that the node is not in use, use the db2stop
command with DROP NODENUM to remove the entry for the node from the
db2nodes.cfg file, which removes the node from the database system.

If a message is returned, indicating that the node is in use, the following actions should
be taken:

1. If the node contains data, redistribute the data to remove it from the node using
“sqludrdt - Redistribute Nodegroup” on page 237. Use either the drop node option
on the sqludrdt API, or the ALTER NODEGROUP statement to remove the node
from any nodegroups for the database. This must be done for each database that
contains the node in a nodegroup. For more information, see the SQL Reference.

2. Drop any event monitors that are defined on the node.

3. Rerun sqledrpn to ensure that the database is no longer in use.

 See Also
“sqleaddn - Add Node” on page 65
“sqlepstp - Stop Database Manager” on page 159.

114 API Reference

sqledtin - Detach

sqledtin - Detach
Removes the logical instance attachment, and terminates the physical communication
connection if there are no other logical connections using this layer.

 Authorization
None

 Required Connection
None. Removes an existing instance attachment.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Detach */

/* ... */

SQL_API_RC SQL_API_FN

 sqledtin (

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Detach */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgdtin (

struct sqlca * pSqlca);

/* ... */

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

 Chapter 1. Application Programming Interfaces 115

sqledtin - Detach

REXX API Syntax

DETACH

 Sample Programs
C \sqllib\samples\c\dbinst.c

COBOL \sqllib\samples\cobol\dbinst.cbl

FORTRAN \sqllib\samples\fortran\dbinst.f

REXX \sqllib\samples\rexx\dbinst.cmd

 See Also
“sqleatin - Attach” on page 68.

116 API Reference

sqlefmem - Free Memory

sqlefmem - Free Memory
Frees memory allocated by DB2 APIs on the caller's behalf. Intended for use with
“sqlbtcq - Tablespace Container Query” on page 54 and “sqlbmtsq - Tablespace
Query” on page 39.

 Authorization
None

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Free Memory */

/* ... */

SQL_API_RC SQL_API_FN

 sqlefmem (

struct sqlca * pSqlca,

void * pBuffer);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Free Memory */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgfmem (

struct sqlca * pSqlca,

void * pBuffer);

/* ... */

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

 Chapter 1. Application Programming Interfaces 117

sqlefmem - Free Memory

pBuffer
Input. Pointer to the memory to be freed.

 Sample Programs
C \sqllib\samples\c\tabspace.sqc

COBOL \sqllib\samples\cobol\tspace.sqb

FORTRAN \sqllib\samples\fortran\tspace.sqf

118 API Reference

sqlefrce - Force Application

sqlefrce - Force Application
Forces local or remote users or applications off the system to allow for maintenance on
a server.

Attention: If an operation that cannot be interrupted (RESTORE DATABASE, for
example) is forced, the operation must be successfully re-executed before the database
becomes available.

 Scope
This API affects all nodes that are listed in the $HOME/sqllib/db2nodes.cfg file.

 Authorization
One of the following:

 sysadm
 sysctrl

 Required Connection
Instance. To force users off a remote server, it is necessary to first attach to that
server. If no attachment exists, this API is executed locally.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Force Application */

/* ... */

SQL_API_RC SQL_API_FN

 sqlefrce (

 long NumAgentIds,

unsigned long * pAgentIds,

unsigned short ForceMode,

struct sqlca * pSqlca);

/* ... */

 Chapter 1. Application Programming Interfaces 119

sqlefrce - Force Application

Generic API Syntax

/* File: sqlenv.h */

/* API: Force Application */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgfrce (

struct sqlca * pSqlca,

unsigned short ForceMode,

unsigned long * pAgentIds,

 long NumAgentIds);

/* ... */

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

ForceMode
Input. An integer specifying the operating mode of the FORCE
APPLICATION API. Only the asynchronous mode is supported. This
means that FORCE APPLICATION does not wait until all specified users
are terminated before returning. It returns as soon as the API has been
issued successfully, or an error occurs. As a result, there may be a short
interval between the time the FORCE APPLICATION call completes and
the specified users have been terminated.

This parameter must be set to SQL_ASYNCH (defined in sqlenv).
pAgentIds

Input. Pointer to an array of unsigned long integers. Each entry describes
the agent ID of the corresponding database user. To list the agent IDs of
the active applications, use “sqlmonss - Get Snapshot” on page 215.

NumAgentIds
Input. An integer representing the total number of users to be terminated.
This number should be the same as the number of elements in the array of
agent IDs.

If this parameter is set to SQL_ALL_USERS (defined in sqlenv), all users are
forced. If it is set to zero, an error is returned.

REXX API Syntax

FORCE APPLICATION {ALL | :agentidarray} [MODE ASYNC]

120 API Reference

sqlefrce - Force Application

REXX API Parameters
ALL

All applications will be disconnected from their database connection.
agentidarray

A compound REXX host variable containing the list of agent IDs to be
terminated. In the following, XXX is the name of the host variable:

XXX.0 Number of agents to be terminated

XXX.1 First agent ID

XXX.2 Second agent ID

XXX.3 and so on.

ASYNC
The only mode currently supported means that FORCE APPLICATION
does not wait until all specified applications are terminated before returning.

 Sample Programs
C \sqllib\samples\c\dbstop.sqc

COBOL \sqllib\samples\cobol\dbstop.sqb

FORTRAN \sqllib\samples\fortran\dbstop.sqf

REXX \sqllib\samples\rexx\dbstop.cmd

 Usage Notes
db2stop cannot be executed during a force. The database manager remains active so
that subsequent database manager operations can be handled without the need for
db2start .

To preserve database integrity, only users who are idling or executing interruptible
database operations can be terminated.

After a FORCE has been issued, the database will still accept requests to connect.
Additional forces may be required to completely force all users off.

The database system monitor functions are used to gather the agent IDs of the users to
be forced. For more information, see the System Monitor Guide and Reference.

When the force mode is set to SQL_ASYNCH (the only value permitted), the API
immediately returns to the calling application.

Minimal validation is performed on the array of agent IDs to be forced. The user must
ensure that the pointer points to an array containing the total number of elements
specified. If NumAgentIds is set to SQL_ALL_USERS, the array is ignored.

When a user is terminated, a ROLLBACK is performed to ensure database consistency.

All users that can be forced will be forced. If one or more specified agent IDs cannot be
found, sqlcode in the sqlca structure is set to 1230. An agent ID may not be found, for

 Chapter 1. Application Programming Interfaces 121

sqlefrce - Force Application

instance, if the user signs off between the time an agent ID is collected and sqlefrce is
called. The user that calls this API is never forced off.

Agent IDs are recycled, and are used to force applications some time after being
gathered by the database system monitor. When a user signs off, therefore, another
user may sign on and acquire the same agent ID through this recycling process, with
the result that the wrong user may be forced.

 See Also
“sqleatin - Attach” on page 68
“sqledtin - Detach” on page 115
“sqlepstp - Stop Database Manager” on page 159
“sqlmonss - Get Snapshot” on page 215.

122 API Reference

sqlegdad - Catalog DCS Database

sqlegdad - Catalog DCS Database
Stores information about a remote database in the Database Connection Services
(DCS) directory. Such databases are accessed through an Application Requester (AR),
such as Distributed Database Connection Services (DDCS). Having a DCS directory
entry with a database name matching a database name in the system database
directory invokes the specified AR to forward SQL requests to the remote server where
the database resides. For more information about DDCS and DCS directory entries,
see the DB2 Connect User's Guide.

 Authorization
One of the following:

 sysadm
 sysctrl

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Catalog DCS Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqlegdad (

struct sql_dir_entry * pDCSDirEntry,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Catalog DCS Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqlggdad (

struct sqlca * pSqlca,

struct sql_dir_entry * pDCSDirEntry);

/* ... */

 Chapter 1. Application Programming Interfaces 123

sqlegdad - Catalog DCS Database

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pDCSDirEntry
Input. A pointer to an sql_dir_entry (Database Connection Services
directory) structure. For more information about this structure, see
“SQL-DIR-ENTRY” on page 343.

REXX API Syntax

CATALOG DCS DATABASE dbname [AS target_dbname]

[AR arname] [PARMS parms] [WITH comment]

REXX API Parameters
dbname

The local database name of the directory entry to be added.
target_dbname

The target database name.
arname

The application client name.
parms

Parameter string. If specified, the string must be enclosed by double
quotation marks.

comment
Description associated with the entry. Maximum length is 30 characters.
Enclose the comment by double quotation marks.

 Sample Programs
C \sqllib\samples\c\dcscat.c

COBOL \sqllib\samples\cobol\dcscat.cbl

FORTRAN \sqllib\samples\fortran\dcscat.f

REXX \sqllib\samples\rexx\dcscat.cmd

 Usage Notes
The DB2 Connect program provides connections to DRDA Application Servers such as:

¹ DATABASE 2 (DB2) for MVS databases on System/370 and System/390
architecture host computers

¹ Structured Query Language/Data System (SQL/DS) databases on System/370 and
System/390 architecture host computers

¹ OS/400 databases on Application System/400 (AS/400) host computers.

124 API Reference

sqlegdad - Catalog DCS Database

The database manager creates a Database Connection Services directory if one does
not exist. This directory is stored on the path that contains the database manager
instance that is being used. The DCS directory is maintained outside of the database.

The database must also be cataloged as a remote database in the system database
directory.

List the contents of the DCS directory using “sqlegdsc - Open DCS Directory Scan” on
page 136, “sqlegdge - Get DCS Directory Entry for Database” on page 131, “sqlegdgt -
Get DCS Directory Entries” on page 133, and “sqlegdcl - Close DCS Directory Scan”
on page 126.

Note: If directory caching is enabled (see the configuration parameter dir_cache in
“sqlfxsys - Get Database Manager Configuration” on page 204), database,
node, and DCS directory files are cached in memory. An application's directory
cache is created during its first directory lookup. Since the cache is only
refreshed when the application modifies any of the directory files, directory
changes made by other applications may not be effective until the application
has restarted. To refresh DB2's shared cache (server only), stop (db2stop) and
then restart (db2start) the database manager. To refresh the directory cache for
another application, stop and then restart that application.

 See Also
“sqlegdel - Uncatalog DCS Database” on page 128.

 Chapter 1. Application Programming Interfaces 125

sqlegdcl - Close DCS Directory Scan

sqlegdcl - Close DCS Directory Scan
Frees the resources that are allocated by “sqlegdsc - Open DCS Directory Scan” on
page 136.

 Authorization
None

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Close DCS Directory Scan */

/* ... */

SQL_API_RC SQL_API_FN

 sqlegdcl (

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Close DCS Directory Scan */

/* ... */

SQL_API_RC SQL_API_FN

 sqlggdcl (

struct sqlca * pSqlca);

/* ... */

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

126 API Reference

sqlegdcl - Close DCS Directory Scan

REXX API Syntax

CLOSE DCS DIRECTORY

 Sample Programs
C \sqllib\samples\c\dcscat.c

COBOL \sqllib\samples\cobol\dcscat.cbl

FORTRAN \sqllib\samples\fortran\dcscat.f

REXX \sqllib\samples\rexx\dcscat.cmd

 See Also
“sqlegdgt - Get DCS Directory Entries” on page 133
“sqlegdsc - Open DCS Directory Scan” on page 136.

 Chapter 1. Application Programming Interfaces 127

sqlegdel - Uncatalog DCS Database

sqlegdel - Uncatalog DCS Database
Deletes an entry from the Database Connection Services (DCS) directory.

 Authorization
One of the following:

 sysadm
 sysctrl

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Uncatalog DCS Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqlegdel (

struct sql_dir_entry * pDCSDirEntry,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Uncatalog DCS Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqlggdel (

struct sqlca * pSqlca,

struct sql_dir_entry * pDCSDirEntry);

/* ... */

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

128 API Reference

sqlegdel - Uncatalog DCS Database

pDCSDirEntry
Input/Output. A pointer to the Database Connection Services directory
structure. For more information about this structure, see “SQL-DIR-ENTRY”
on page 343. Fill in the ldb field of this structure with the local name of the
database to be deleted. The DCS directory entry with a matching local
database name is copied to this structure before being deleted.

REXX API Syntax

UNCATALOG DCS DATABASE dbname [USING :value]

REXX API Parameters
dbname

The local database name of the directory entry to be deleted.
value

A compound REXX host variable into which the directory entry information
is returned. In the following, XXX represents the host variable name. If no
name is given, the name SQLGWINF is used.

XXX.0 Number of elements in the variable (always 7)

XXX.1 RELEASE

XXX.2 LDB

XXX.3 TDB

XXX.4 AR

XXX.5 PARMS

XXX.6 COMMENT

XXX.7 RESERVED.

 Sample Programs
C \sqllib\samples\c\dcscat.c

COBOL \sqllib\samples\cobol\dcscat.cbl

FORTRAN \sqllib\samples\fortran\dcscat.f

REXX \sqllib\samples\rexx\dcscat.cmd

 Usage Notes
DCS databases are also cataloged in the system database directory as remote
databases that can be uncataloged using “sqleuncd - Uncatalog Database” on
page 179.

To recatalog a database in the DCS directory, use “sqlegdad - Catalog DCS Database”
on page 123.

 Chapter 1. Application Programming Interfaces 129

sqlegdel - Uncatalog DCS Database

To list the DCS databases that are cataloged on a node, use “sqlegdsc - Open DCS
Directory Scan” on page 136, “sqlegdgt - Get DCS Directory Entries” on page 133, and
“sqlegdcl - Close DCS Directory Scan” on page 126.

If directory caching is enabled (see the configuration parameter dir_cache in “sqlfxsys -
Get Database Manager Configuration” on page 204), database, node, and DCS
directory files are cached in memory. An application's directory cache is created during
its first directory lookup. Since the cache is only refreshed when the application
modifies any of the directory files, directory changes made by other applications may
not be effective until the application has restarted. To refresh DB2's shared cache
(server only), stop (db2stop) and then restart (db2start) the database manager. To
refresh the directory cache for another application, stop and then restart that
application.

 See Also
“sqlegdad - Catalog DCS Database” on page 123
“sqlegdcl - Close DCS Directory Scan” on page 126
“sqlegdge - Get DCS Directory Entry for Database” on page 131
“sqlegdgt - Get DCS Directory Entries” on page 133
“sqlegdsc - Open DCS Directory Scan” on page 136
“sqleuncd - Uncatalog Database” on page 179.

130 API Reference

sqlegdge - Get DCS Directory Entry for Database

sqlegdge - Get DCS Directory Entry for Database
Returns information for a specific entry in the Database Connection Services (DCS)
directory.

 Authorization
None

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Get DCS Directory Entry for Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqlegdge (

struct sql_dir_entry * pDCSDirEntry,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Get DCS Directory Entry for Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqlggdge (

struct sqlca * pSqlca,

struct sql_dir_entry * pDCSDirEntry);

/* ... */

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

 Chapter 1. Application Programming Interfaces 131

sqlegdge - Get DCS Directory Entry for Database

pDCSDirEntry
Input/Output. Pointer to the Database Connection Services directory
structure. For more information about this structure, see “SQL-DIR-ENTRY”
on page 343. Fill in the ldb field of this structure with the local name of the
database whose DCS directory entry is to be retrieved. The remaining
fields in the structure are filled in upon return of this API.

REXX API Syntax

GET DCS DIRECTORY ENTRY FOR DATABASE dbname [USING :value]

REXX API Parameters
dbname

Specifies the local database name of the directory entry to be obtained.
value

A compound REXX host variable into which the directory entry information
is returned. In the following, XXX represents the host variable name. If no
name is given, the name SQLGWINF is used.

XXX.0 Number of elements in the variable (always 7)

XXX.1 RELEASE

XXX.2 LDB

XXX.3 TDB

XXX.4 AR

XXX.5 PARMS

XXX.6 COMMENT

XXX.7 RESERVED.

 Sample Programs
C \sqllib\samples\c\dcscat.c

COBOL \sqllib\samples\cobol\dcscat.cbl

FORTRAN \sqllib\samples\fortran\dcscat.f

REXX \sqllib\samples\rexx\dcscat.cmd

 See Also
“sqlegdad - Catalog DCS Database” on page 123
“sqlegdcl - Close DCS Directory Scan” on page 126
“sqlegdel - Uncatalog DCS Database” on page 128
“sqlegdgt - Get DCS Directory Entries” on page 133
“sqlegdsc - Open DCS Directory Scan” on page 136.

132 API Reference

sqlegdgt - Get DCS Directory Entries

sqlegdgt - Get DCS Directory Entries
Transfers a copy of Database Connection Services (DCS) directory entries to a buffer
supplied by the application.

 Authorization
None

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Get DCS Directory Entries */

/* ... */

SQL_API_RC SQL_API_FN

 sqlegdgt (

short * pNumEntries,

struct sql_dir_entry * pDCSDirEntries,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Get DCS Directory Entries */

/* ... */

SQL_API_RC SQL_API_FN

 sqlggdgt (

struct sqlca * pSqlca,

short * pNumEntries,

struct sql_dir_entry * pDCSDirEntries);

/* ... */

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

 Chapter 1. Application Programming Interfaces 133

sqlegdgt - Get DCS Directory Entries

pNumEntries
Input/Output. Pointer to a short integer representing the number of entries
to be copied to the caller's buffer. The number of entries actually copied is
returned.

pDCSDirEntries
Output. Pointer to a buffer where the collected DCS directory entries will be
held upon return of the API call. For more information about this structure,
see “SQL-DIR-ENTRY” on page 343. The buffer must be large enough to
hold the number of entries specified in the pNumEntries parameter.

REXX API Syntax

GET DCS DIRECTORY ENTRY [USING :value]

REXX API Parameters
value

A compound REXX host variable into which the directory entry information
is returned. In the following, XXX represents the host variable name. If no
name is given, the name SQLGWINF is used.

XXX.0 Number of elements in the variable (always 7)

XXX.1 RELEASE

XXX.2 LDB

XXX.3 TDB

XXX.4 AR

XXX.5 PARMS

XXX.6 COMMENT

XXX.7 RESERVED.

 Sample Programs
C \sqllib\samples\c\dcscat.c

COBOL \sqllib\samples\cobol\dcscat.cbl

FORTRAN \sqllib\samples\fortran\dcscat.f

REXX \sqllib\samples\rexx\dcscat.cmd

 Usage Notes
“sqlegdsc - Open DCS Directory Scan” on page 136, which returns the entry count,
must be called prior to issuing GET DCS DIRECTORY ENTRIES.

If all entries are copied to the caller, the Database Connection Services directory scan
is automatically closed, and all resources are released.

134 API Reference

sqlegdgt - Get DCS Directory Entries

If entries remain, subsequent calls to this API should be made, or CLOSE DCS
DIRECTORY SCAN should be called, to release system resources.

 See Also
“sqlegdcl - Close DCS Directory Scan” on page 126
“sqlegdge - Get DCS Directory Entry for Database” on page 131
“sqlegdsc - Open DCS Directory Scan” on page 136.

 Chapter 1. Application Programming Interfaces 135

sqlegdsc - Open DCS Directory Scan

sqlegdsc - Open DCS Directory Scan
Stores a copy in memory of the Database Connection Services directory entries, and
returns the number of entries. This is a snapshot of the directory at the time the
directory is opened.

The copy is not updated if the directory itself changes after a call to this API. Use
“sqlegdgt - Get DCS Directory Entries” on page 133 to retrieve the entries, and
“sqlegdcl - Close DCS Directory Scan” on page 126 to release the resources
associated with calling this API.

 Authorization
None

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Open DCS Directory Scan */

/* ... */

SQL_API_RC SQL_API_FN

 sqlegdsc (

short * pNumEntries,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Open DCS Directory Scan */

/* ... */

SQL_API_RC SQL_API_FN

 sqlggdsc (

struct sqlca * pSqlca,

short * pNumEntries);

/* ... */

136 API Reference

sqlegdsc - Open DCS Directory Scan

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pNumEntries
Output. Address of a 2-byte area to which the number of directory entries
is returned.

REXX API Syntax

OPEN DCS DIRECTORY

 Sample Programs
C \sqllib\samples\c\dcscat.c

COBOL \sqllib\samples\cobol\dcscat.cbl

FORTRAN \sqllib\samples\fortran\dcscat.f

REXX \sqllib\samples\rexx\dcscat.cmd

 Usage Notes
The caller of the scan uses the returned value pNumEntries to allocate enough memory
to receive the entries. If a scan call is received while a copy is already held, the
previous copy is released, and a new copy is collected.

 See Also
“sqlegdcl - Close DCS Directory Scan” on page 126
“sqlegdge - Get DCS Directory Entry for Database” on page 131
“sqlegdgt - Get DCS Directory Entries” on page 133.

 Chapter 1. Application Programming Interfaces 137

sqlegins - Get Instance

sqlegins - Get Instance
Returns the value of the DB2INSTANCE environment variable.

 Authorization
None

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Get Instance */

/* ... */

SQL_API_RC SQL_API_FN

 sqlegins (

_SQLOLDCHAR * pInstance,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Get Instance */

/* ... */

SQL_API_RC SQL_API_FN

 sqlggins (

struct sqlca * pSqlca,

_SQLOLDCHAR * pInstance);

/* ... */

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pInstance
Output. Pointer to a string buffer where the database manager instance
name is placed. This buffer must be at least 8 bytes in length.

138 API Reference

sqlegins - Get Instance

REXX API Syntax

GET INSTANCE INTO :instance

REXX API Parameters
instance

A REXX host variable into which the database manager instance name is
to be placed.

 Sample Programs
C \sqllib\samples\c\dbinst.c

COBOL \sqllib\samples\cobol\dbinst.cbl

FORTRAN \sqllib\samples\fortran\dbinst.f

REXX \sqllib\samples\rexx\dbinst.cmd

 Usage Notes
The value in the DB2INSTANCE environment variable is not necessarily the instance to
which the user is attached.

To identify the instance to which a user is currently attached, call “sqleatin - Attach” on
page 68, with null arguments except for the sqlca structure.

 Chapter 1. Application Programming Interfaces 139

sqleintr - Interrupt

sqleintr - Interrupt
Stops a request. This API is called from a control break signal handler in an application.
The control break signal handler can be the default, installed by “sqleisig - Install Signal
Handler” on page 143, or a routine supplied by the programmer and installed using an
appropriate operating system call.

 Authorization
None

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Interrupt */

/* ... */

SQL_API_RC SQL_API_FN

 sqleintr (

 void);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Interrupt */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgintr (

 void);

/* ... */

 API Parameters
The INTERRUPT API does not accept any parameters.

140 API Reference

sqleintr - Interrupt

REXX API Syntax

INTERRUPT

 Example
call SQLDBS 'INTERRUPT'

 Usage Notes
No database manager APIs should be called from an interrupt handler except the
INTERRUPT API. However, the system will not prevent it.

Any database transaction in a state of committing or rollback cannot be interrupted.

An interrupted database manager request returns a code indicating that it was
interrupted.

The following table summarizes the effect of an interrupt on other APIs:

Table 5. INTERRUPT Actions

Database Activity Action

IMPORT/EXPORT Utility cancelled. Database updates rolled back.

REORGANIZE TABLE Utility cancelled. Table is left in its previous state.

BACKUP Utility cancelled. Data on media may be
incomplete.

RESTORE Utility cancelled. DROP DATABASE performed.
Not applicable to table space level restore.

LOAD Utility cancelled. Data in table may be incomplete.

PREP Precompile cancelled. Package creation rolled
back.

BIND Binding cancelled. Package creation rolled back.

COMMIT None. COMMIT completes.

FORCE APPLICATION None. FORCE APPLICATION completes.

ROLLBACK None. ROLLBACK completes.

CREATE DATABASE/CREATE DATABASE AT
NODE/ADD NODE/DROP NODE VERIFY

After a certain point, these APIs are not
interruptible. If the interrupt is received before this
point, the database is not created. If the interrupt
is received after this point, the interrupt is ignored.

DROP DATABASE/DROP DATABASE AT NODE None. These APIs complete.

Directory Services Directory left in consistent state. Utility function
may or may not be performed.

SQL Data Definition statements Database transactions set to state existing prior to
the SQL statement.

Other SQL statements Database transactions set to state existing prior to
the SQL statement.

 Chapter 1. Application Programming Interfaces 141

sqleintr - Interrupt

 See Also
“sqleisig - Install Signal Handler” on page 143.

142 API Reference

sqleisig - Install Signal Handler

sqleisig - Install Signal Handler
Installs the default interrupt (usually Control-C and/or Control-Break) signal handler.
When this default handler detects an interrupt signal, it resets the signal and calls
“sqleintr - Interrupt” on page 140.

 Authorization
None

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Install Signal Handler */

/* ... */

SQL_API_RC SQL_API_FN

 sqleisig (

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Install Signal Handler */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgisig (

struct sqlca * pSqlca);

/* ... */

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

 Chapter 1. Application Programming Interfaces 143

sqleisig - Install Signal Handler

REXX API Syntax

INSTALL SIGNAL HANDLER

 Sample Programs
C \sqllib\samples\c\dbcmt.c

COBOL \sqllib\samples\cobol\ish.cbl

FORTRAN \sqllib\samples\fortran\ish.f

REXX \sqllib\samples\rexx\dbcmt.cmd

 Usage Notes
If an application has no signal handler, and an interrupt is received, the application is
terminated. This API provides simple signal handling, and can be used if an application
does not have extensive interrupt handling requirements.

The API must be called for the interrupt signal handler to function properly.

If an application requires a more elaborate interrupt handling scheme, a signal handling
routine that can also call “sqleintr - Interrupt” on page 140 can be developed. Use
either the operating system call or the language-specific library signal function. “sqleintr
- Interrupt” on page 140 should be the only database manager operation performed by
a customized signal handler. Follow all operating system programming techniques and
practices to ensure that the previously installed signal handlers work properly.

 See Also
“sqleintr - Interrupt” on page 140.

144 API Reference

sqlemgdb - Migrate Database

sqlemgdb - Migrate Database
Converts previous versions of DB2 databases to current formats. Following are the
database releases that are supported in the DB2 V5.0 database migration process:

¹ DB2 for OS/2 Version 1.x and Version 2.x to Version 5.0
¹ DB2 for AIX Version 1.x and Version 2.x to Version 5.0
¹ DB2 for HP-UX Version 2.x to Version 5.0
¹ DB2 for Solaris Version 2.x to Version 5.0
¹ DB2 for Windows NT Version 2.x to Version 5.0
¹ DB2 Parallel Edition Version 1.x to Version 5.0.

 Authorization
sysadm

 Required Connection
This API establishes a database connection.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Migrate Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqlemgdb (

_SQLOLDCHAR * pDbAlias,

_SQLOLDCHAR * pUserName,

_SQLOLDCHAR * pPassword,

struct sqlca * pSqlca);

/* ... */

 Chapter 1. Application Programming Interfaces 145

sqlemgdb - Migrate Database

Generic API Syntax

/* File: sqlenv.h */

/* API: Migrate Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgmgdb (

unsigned short PasswordLen,

unsigned short UserNameLen,

unsigned short DbAliasLen,

struct sqlca * pSqlca,

_SQLOLDCHAR * pPassword,

_SQLOLDCHAR * pUserName,

_SQLOLDCHAR * pDbAlias);

/* ... */

 API Parameters
PasswordLen

Input. A 2-byte unsigned integer representing the length in bytes of the
password. Set to zero when no password is supplied.

UserNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
user name. Set to zero when no user name is supplied.

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pPassword
Input. A string containing the password of the supplied user name (if any).
May be NULL.

pUserName
Input. A string containing the user name of the application. May be NULL.

pDbAlias
Input. A string containing the alias of the database that is cataloged in the
system database directory.

REXX API Syntax

MIGRATE DATABASE dbalias [USER username USING password]

146 API Reference

sqlemgdb - Migrate Database

REXX API Parameters
dbalias

Alias of the database to be migrated.
username

User name under which the database is to be restarted.
password

Password used to authenticate the user name.

 Sample Programs
C \sqllib\samples\c\migrate.c

COBOL \sqllib\samples\cobol\migrate.cbl

FORTRAN \sqllib\samples\fortran\migrate.f

REXX \sqllib\samples\rexx\migrate.cmd

 Usage Notes
This API will only migrate a database to a newer version, and cannot be used to
convert a migrated database to its previous version.

The database must be cataloged before migration.

For detailed information about database migration, see one of the Quick Beginnings
books.

 Chapter 1. Application Programming Interfaces 147

sqlencls - Close Node Directory Scan

sqlencls - Close Node Directory Scan
Frees the resources that are allocated by “sqlenops - Open Node Directory Scan” on
page 153.

 Authorization
None

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Close Node Directory Scan */

/* ... */

SQL_API_RC SQL_API_FN

 sqlencls (

unsigned short Handle,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Close Node Directory Scan */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgncls (

unsigned short Handle,

struct sqlca * pSqlca);

/* ... */

 API Parameters
Handle

Input. Identifier returned from the associated OPEN NODE DIRECTORY
SCAN API.

148 API Reference

sqlencls - Close Node Directory Scan

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax

CLOSE NODE DIRECTORY :scanid

REXX API Parameters
scanid

A host variable containing the scanid returned from the OPEN NODE
DIRECTORY SCAN API.

 Sample Programs
C \sqllib\samples\c\nodecat.sqc

COBOL \sqllib\samples\cobol\nodecat.sqb

FORTRAN \sqllib\samples\fortran\nodecat.sqf

REXX \sqllib\samples\rexx\nodecat.cmd

 See Also
“sqlengne - Get Next Node Directory Entry” on page 150
“sqlenops - Open Node Directory Scan” on page 153.

 Chapter 1. Application Programming Interfaces 149

sqlengne - Get Next Node Directory Entry

sqlengne - Get Next Node Directory Entry
Returns the next entry in the node directory after “sqlenops - Open Node Directory
Scan” on page 153 is called. Subsequent calls to this API return additional entries.

 Authorization
None

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Get Next Node Directory Entry */

/* ... */

SQL_API_RC SQL_API_FN

 sqlengne (

unsigned short Handle,

struct sqleninfo ** ppNodeDirEntry,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Get Next Node Directory Entry */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgngne (

unsigned short Handle,

struct sqleninfo ** ppNodeDirEntry,

struct sqlca * pSqlca);

/* ... */

 API Parameters
Handle

Input. Identifier returned from “sqlenops - Open Node Directory Scan” on
page 153.

150 API Reference

sqlengne - Get Next Node Directory Entry

ppNodeDirEntry
Output. Address of a pointer to an sqleninfo structure. The caller of this API
does not have to provide memory for the structure, just the pointer. Upon
return from the API, the pointer points to the next node directory entry in
the copy of the node directory allocated by “sqlenops - Open Node
Directory Scan” on page 153. For more information about the sqleninfo
structure, see “SQLENINFO” on page 397.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax

GET NODE DIRECTORY ENTRY :scanid [USING :value]

REXX API Parameters
scanid

A REXX host variable containing the identifier returned from the OPEN
NODE DIRECTORY SCAN API.

value
A compound REXX host variable to which the node entry information is
returned. If no name is given, the name SQLNINFO is used. In the following,
XXX represents the host variable name (the corresponding field names are
taken from the structure returned by the API):

XXX.0 Number of elements in the variable (always 16)

XXX.1 NODENAME

XXX.2 LOCALLU

XXX.3 PARTNERLU

XXX.4 MODE

XXX.5 COMMENT

XXX.6 RESERVED

XXX.7 PROTOCOL (protocol type)

XXX.8 ADAPTER (NetBIOS adapter #)

XXX.9 RESERVED

XXX.10 SYMDESTNAME (symbolic destination name)

XXX.11 SECURITY (security type)

XXX.12 HOSTNAME

XXX.13 SERVICENAME

 Chapter 1. Application Programming Interfaces 151

sqlengne - Get Next Node Directory Entry

XXX.14 FILESERVER

XXX.15 OBJECTNAME

XXX.16 INSTANCE (local instance name).

 Sample Programs
C \sqllib\samples\c\nodecat.c

COBOL \sqllib\samples\cobol\nodecat.cbl

FORTRAN \sqllib\samples\fortran\nodecat.f

REXX \sqllib\samples\rexx\nodecat.cmd

 Usage Notes
All fields in the node directory entry information buffer are padded to the right with
blanks.

The sqlcode value of sqlca is set to 1014 if there are no more entries to scan when this
API is called.

The entire directory can be scanned by calling this API pNumEntries times
(pNumEntries is returned by “sqlenops - Open Node Directory Scan” on page 153).

 See Also
“sqlencls - Close Node Directory Scan” on page 148
“sqlenops - Open Node Directory Scan” on page 153.

152 API Reference

sqlenops - Open Node Directory Scan

sqlenops - Open Node Directory Scan
Stores a copy in memory of the node directory, and returns the number of entries. This
is a snapshot of the directory at the time the directory is opened. This copy is not
updated, even if the directory itself is changed later.

Use “sqlengne - Get Next Node Directory Entry” on page 150 to advance through the
node directory and examine information about the node entries. Close the scan using
“sqlencls - Close Node Directory Scan” on page 148. This removes the copy of the
directory from memory.

 Authorization
None

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Open Node Directory Scan */

/* ... */

SQL_API_RC SQL_API_FN

 sqlenops (

unsigned short * pHandle,

unsigned short * pNumEntries,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Open Node Directory Scan */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgnops (

unsigned short * pHandle,

unsigned short * pNumEntries,

struct sqlca * pSqlca);

/* ... */

 Chapter 1. Application Programming Interfaces 153

sqlenops - Open Node Directory Scan

 API Parameters
pHandle

Output. Identifier returned from this API. This identifier must be passed to
“sqlengne - Get Next Node Directory Entry” on page 150, and “sqlencls -
Close Node Directory Scan” on page 148.

pNumEntries
Output. Address of a 2-byte area to which the number of directory entries
is returned.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax

OPEN NODE DIRECTORY USING :value

REXX API Parameters
value

A compound REXX variable to which node directory information is
returned. In the following, XXX represents the host variable name.

XXX.0 Number of elements in the variable (always 2)

XXX.1 Specifies a REXX host variable containing a number for scanid

XXX.2 The number of entries contained within the directory.

 Sample Programs
C \sqllib\samples\c\nodecat.c

COBOL \sqllib\samples\cobol\nodecat.cbl

FORTRAN \sqllib\samples\fortran\nodecat.f

REXX \sqllib\samples\rexx\nodecat.cmd

 Usage Notes
Storage allocated by this API is freed by calling “sqlencls - Close Node Directory Scan”
on page 148.

Multiple node directory scans can be issued against the node directory. However, the
results may not be the same. The directory may change between openings.

There can be a maximum of eight node directory scans per process.

154 API Reference

sqlenops - Open Node Directory Scan

 See Also
“sqlencls - Close Node Directory Scan” on page 148
“sqlengne - Get Next Node Directory Entry” on page 150.

 Chapter 1. Application Programming Interfaces 155

sqlepstart - Start Database Manager

sqlepstart - Start Database Manager
Starts the current database manager instance background processes on a single node
or on all the nodes defined in a multi-node environment.

This API is not valid on a client.

 Scope
In a multi-node environment, this API affects all nodes that are listed in the
$HOME/sqllib/db2nodes.cfg file, unless the nodenum parameter is used (see
“SQLE-START-OPTIONS” on page 381).

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Start Database Manager */

/* ... */

SQL_API_RC SQL_API_FN

 sqlepstart (

struct sqle_start_options * pStartOptions,

struct sqlca * pSqlca);

/* ... */

156 API Reference

sqlepstart - Start Database Manager

Generic API Syntax

/* File: sqlenv.h */

/* API: Start Database Manager */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgpstart (

struct sqle_start_options * pStartOptions,

struct sqlca * pSqlca);

/* ... */

 API Parameters
pStartOptions

A pointer to the sqle_start_options structure. This structure contains the
start-up options. The pointer can be null. For more information about this
structure, see “SQLE-START-OPTIONS” on page 381.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

 Sample Programs
C \sqllib\samples\c\dbstart.c

COBOL \sqllib\samples\cobol\dbstart.cbl

FORTRAN \sqllib\samples\fortran\dbstart.f

REXX \sqllib\samples\rexx\dbstart.cmd

 Usage Notes
It is not necessary to call this API on a client node. It is provided for compatibility with
older clients, but it has no effect on the database manager.

Once started, the database manager instance runs until the user stops it, even if all
application programs that were using it have ended.

If no parameters are specified in a multi-node database environment, the database
manager is started on all parallel nodes specified in the node configuration file.

If the API call is still processing, ensure that the applicable nodes have started before
issuing a request to the database.

 Chapter 1. Application Programming Interfaces 157

sqlepstart - Start Database Manager

The db2cshrc file is not supported and cannot be used to define the environment.

On UNIX platforms, sqlepstart supports the SIGINT and SIGALRM signals. The
SIGINT signal is issued if CTRL+C is pressed. The SIGALRM signal is issued if the
value specified for the start_stop_time database manager configuration parameter is
reached. If either signal occurs, all in-progress startups are interrupted and a message
(SQL1044N for SIGINT and SQL6037N for SIGALRM) is returned from each interrupted
node to the $HOME/sqllib/log/db2start. timestamp.log error log file. Nodes that are
already started are not affected. If CTRL+C is pressed on a node that is starting,
db2stop must be issued on that node before an attempt is made to start it again.

 See Also
“sqleaddn - Add Node” on page 65
“sqlepstp - Stop Database Manager” on page 159.

158 API Reference

sqlepstp - Stop Database Manager

sqlepstp - Stop Database Manager
Stops the current database manager instance. Unless explicitly stopped, the database
manager continues to be active. This API does not stop the database manager instance
if any applications are connected to databases. If there are no database connections,
but there are instance attachments, it forces the instance attachments and stops the
database manager. This API also deactivates any outstanding database activations
before stopping the database manager.

This API can also be used to drop a node from the db2nodes.cfg file (MPP systems
only).

This API is not valid on a client.

 Scope
In a multi-node environment, this API affects all nodes that are listed in the
$HOME/sqllib/db2nodes.cfg file, unless the nodenum parameter is used (see
“SQLEDBSTOPOPT” on page 392).

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Stop Database Manager */

/* ... */

SQL_API_RC SQL_API_FN

 sqlepstp (

struct sqledbstopopt * pStopOptions,

struct sqlca * pSqlca);

/* ... */

 Chapter 1. Application Programming Interfaces 159

sqlepstp - Stop Database Manager

Generic API Syntax

/* File: sqlenv.h */

/* API: Stop Database Manager */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgpstp (

struct sqledbstopopt * pStopOptions,

struct sqlca * pSqlca);

/* ... */

 API Parameters
pStopOptions

A pointer to the sqledbstopopt structure. This structure contains the stop
options. The pointer can be null. For more information about this structure,
see “SQLEDBSTOPOPT” on page 392.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

 Sample Programs
C \sqllib\samples\c\dbstop.c

COBOL \sqllib\samples\cobol\dbstop.cbl

FORTRAN \sqllib\samples\fortran\dbstop.f

REXX \sqllib\samples\rexx\dbstop.cmd

 Usage Notes
It is not necessary to call this API on a client node. It is provided for compatibility with
older clients, but it has no effect on the database manager.

Once started, the database manager instance runs until the user stops it, even if all
application programs that were using it have ended.

If the database manager cannot be stopped because application programs are still
connected to databases, use “sqlefrce - Force Application” on page 119 to disconnect
all users first, or call the sqlepstp API again with the FORCE option.

160 API Reference

sqlepstp - Stop Database Manager

The following information currently applies to multiple node environments only:

¹ If no parameters are specified, the database manager is stopped on each node
listed in the node configuration file. The db2diag.log file may contain messages to
indicate that other nodes are shutting down.

¹ Any nodes added to the MPP system since the previous call to sqlepstp will be
updated in the db2nodes.cfg file.

¹ On UNIX platforms, this API supports the SIGALRM signal, which is issued if the
value specified for the start_stop_time database manager configuration parameter
is reached. If this signal occurs, all in-progress stops are interrupted, and message
SQL6037N is returned from each interrupted node to the
$HOME/sqllib/log/db2stop. timestamp.log error log file. Nodes that are already
stopped are not affected.

¹ The db2cshrc file is not supported and cannot be specified as the value for the
PROFILE parameter.

 See Also
“sqle_deactivate_db - Deactivate Database” on page 62
“sqledrpn - Drop Node Verify” on page 113
“sqlefrce - Force Application” on page 119
“sqlepstart - Start Database Manager” on page 156.

 Chapter 1. Application Programming Interfaces 161

sqleqryc - Query Client

sqleqryc - Query Client
Returns current connection settings for an application process. For information about
the applicable connection settings and their values, see “SQLE-CONN-SETTING” on
page 367.

 Authorization
None

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Query Client */

/* ... */

SQL_API_RC SQL_API_FN

 sqleqryc (

struct sqle_conn_setting * pConnectionSettings,

unsigned short NumSettings,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Query Client */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgqryc (

struct sqle_conn_setting * pConnectionSettings,

unsigned short NumSettings,

struct sqlca * pSqlca);

/* ... */

162 API Reference

sqleqryc - Query Client

 API Parameters
pConnectionSettings

Input/Output. A pointer to an sqle_conn_setting structure, which specifies
connection setting types and values. The user defines an array of
NumSettings connection settings structures, and sets the type field of each
element in this array to indicate one of the five possible connection settings
options. Upon return, the value field of each element contains the current
setting of the option specified. For more information about this structure,
see “SQLE-CONN-SETTING” on page 367.

NumSettings
Input. Any integer (from 0 to 5) representing the number of connection
option values to be returned.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax

QUERY CLIENT INTO :output

REXX API Parameters
output

A compound REXX host variable containing information about the current
connection settings of the application process. In the following, XXX
represents the host variable name.

XXX.1 Current connection setting for the CONNECTION type

XXX.2 Current connection setting for the SQLRULES

XXX.3 Current connection setting indicating which connections will be
released when a COMMIT is issued.

XXX.4 Current connection setting of the SYNCPOINT option.
Indicates whether a transaction manager should be used to
enforce two-phase commit semantics, whether the database
manager should ensure that there is only one database being
updated when multiple databases are accessed within a single
transaction, or whether neither of these options is to be used.

XXX.5 Current connection setting for the maximum number of
concurrent connections for a NETBIOS adapter.

XXX.6 Current connection setting for deferred PREPARE.

 Chapter 1. Application Programming Interfaces 163

sqleqryc - Query Client

 Sample Programs
C \sqllib\samples\c\client.c

COBOL \sqllib\samples\cobol\client.cbl

FORTRAN \sqllib\samples\fortran\client.f

REXX \sqllib\samples\rexx\client.cmd

 Usage Notes
The connection settings for an application process can be queried at any time during
execution.

If QUERY CLIENT is successful, the fields in the sqle_conn_setting structure will
contain the current connection settings of the application process. If SET CLIENT has
never been called, the settings will contain the values of the precompile options only if
an SQL statement has already been processed; otherwise, they will contain the default
values for the precompile options.

For information about distributed unit of work (DUOW), see the Administration Guide.

 See Also
“sqlesetc - Set Client” on page 176.

164 API Reference

sqleregs - Register

sqleregs - Register
Registers the DB2 server on the network server. The DB2 server's network address is
stored in a specified registry on the file server, where it can be retrieved by a client
application that uses the IPX/SPX communication protocol.

 Authorization
None

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Register */

/* ... */

SQL_API_RC SQL_API_FN

 sqleregs (

unsigned short Registry,

void * pRegisterInfo,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Register */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgregs (

unsigned short Registry,

void * pRegisterInfo,

struct sqlca * pSqlca);

/* ... */

 Chapter 1. Application Programming Interfaces 165

sqleregs - Register

 API Parameters
Registry

Input. Indicates where on the network file server to register the DB2 server.
In this release, the only supported value is SQL_NWBINDERY (NetWare file
server bindery, defined in sqlenv).

pRegisterInfo
Input. A pointer to the sqle_reg_nwbindery structure. In the structure, the
caller specifies a user name and password that are valid on the network
file server. For more information about this structure, see
“SQLE-REG-NWBINDERY” on page 380.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

 Sample Programs
C \sqllib\samples\c\regder.c

COBOL \sqllib\samples\cobol\regder.cbl

FORTRAN \sqllib\samples\fortran\regder.f

 Usage Notes
This API determines the IPX/SPX address of the DB2 server machine (the machine
from which it was called), and then creates an object in the NetWare file server bindery
using the value for objectname specified in the database manager configuration file.
The IPX/SPX address of the DB2 server is stored as a property in that object. In order
for a client to connect or attach to a DB2 database using IPX/SPX file server
addressing, it must catalog an IPX/SPX node (using the same FILESERVER and
OBJECTNAME specified on the server) in the node directory.

The specified NetWare user name and password must have supervisory or equivalent
authority.

This API must be issued locally from a DB2 server. It is not supported remotely.

After installation and configuration of DB2, the DB2 server should be registered once on
the network file server (unless only direct addressing will be used by IPX/SPX clients to
connect to this DB2 server). After that, if the IPX/SPX fields are reconfigured, or the
DB2 server's IPX/SPX internetwork address changes, deregister the DB2 server on the
network file server before making the changes, and then register it again after the
changes have been made.

166 API Reference

sqleregs - Register

 See Also
“sqledreg - Deregister” on page 108.

 Chapter 1. Application Programming Interfaces 167

sqlerstd - Restart Database

sqlerstd - Restart Database
Restarts a database that has been abnormally terminated and left in an inconsistent
state. At the successful completion of RESTART DATABASE, the application remains
connected to the database if the user has CONNECT privilege.

 Scope
This API affects only the node on which it is executed.

 Authorization
None

 Required Connection
This API establishes a database connection.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Restart Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqlerstd (

_SQLOLDCHAR * pDbAlias,

_SQLOLDCHAR * pUserName,

_SQLOLDCHAR * pPassword,

struct sqlca * pSqlca);

/* ... */

168 API Reference

sqlerstd - Restart Database

Generic API Syntax

/* File: sqlenv.h */

/* API: Restart Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgrstd (

unsigned short PasswordLen,

unsigned short UserNameLen,

unsigned short DbAliasLen,

struct sqlca * pSqlca,

_SQLOLDCHAR * pPassword,

_SQLOLDCHAR * pUserName,

_SQLOLDCHAR * pDbAlias);

/* ... */

 API Parameters
PasswordLen

Input. A 2-byte unsigned integer representing the length in bytes of the
password. Set to zero if no password is supplied.

UserNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
user name. Set to zero if no user name is supplied.

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pPassword
Input. A string containing the password of the supplied user name (if any).
May be NULL.

pUserName
Input. A string containing the user name of the application. May be NULL.

pDbAlias
Input. A string containing the alias of the database that is to be restarted.

REXX API Syntax

RESTART DATABASE database_alias [USER username USING password]

 Chapter 1. Application Programming Interfaces 169

sqlerstd - Restart Database

REXX API Parameters
database_alias

Alias of the database to be restarted.
username

User name under which the database is to be restarted.
password

Password used to authenticate the user name.

 Sample Programs
C \sqllib\samples\c\restart.c

COBOL \sqllib\samples\cobol\restart.cbl

FORTRAN \sqllib\samples\fortran\restart.f

REXX \sqllib\samples\rexx\restart.cmd

 Usage Notes
Call this API if an attempt to connect to a database returns an error message,
indicating that the database must be restarted. This action occurs only if the previous
session with this database terminated abnormally (due to power failure, for example).

At the completion of this API, a shared connection to the database is maintained if the
user has CONNECT privilege, and an SQL warning is issued if any indoubt transactions
exist. In this case, the database is still usable, but if the indoubt transactions are not
resolved before the last connection to the database is dropped, another RESTART
DATABASE must be issued before the database can be used again. Use the
transaction APIs (see Appendix B, “Transaction APIs” on page 447) to generate a list
of indoubt transactions. For more information about indoubt transactions, see the
Administration Guide.

If the database is only restarted on a single node within an MPP system, a message
may be returned on a subsequent database query indicating that the database needs to
be restarted. This occurs because the database on a node on which the query depends
must also be restarted. Restarting the database on all nodes solves the problem.

 See Also
CONNECT TO statement in the SQL Reference.

170 API Reference

sqlesact - Set Accounting String

sqlesact - Set Accounting String
Provides accounting information that will be sent to a DRDA server with the
application's next connect request.

 Authorization
None

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Set Accounting String */

/* ... */

SQL_API_RC SQL_API_FN

 sqlesact (

char * pAccountingString,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Set Accounting String */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgsact (

unsigned short AccountingStringLen,

char * pAccountingString,

struct sqlca * pSqlca);

/* ... */

 API Parameters
AccountingStringLen

Input. A 2-byte unsigned integer representing the length in bytes of the
accounting string.

pAccountingString
Input. A string containing the accounting data.

 Chapter 1. Application Programming Interfaces 171

sqlesact - Set Accounting String

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

 Sample Programs
C \sqllib\samples\c\setact.c

COBOL \sqllib\samples\cobol\setact.cbl

FORTRAN \sqllib\samples\fortran\setact.f

 Usage Notes
To send accounting data with a connect request, an application should call this API
before connecting to a database. The accounting string can be changed before
connecting to another database by calling the API again; otherwise, the value remains
in effect until the end of the application. The accounting string can be at most
SQL_ACCOUNT_STR_SZ (defined in sqlenv) bytes long; longer strings will be truncated. To
ensure that the accounting string is converted correctly when transmitted to the DRDA
server, use only the characters A to Z, 0 to 9, and the underscore (_).

 See Also
The DB2 Connect User's Guide contains more information about the accounting string
and the DRDA servers that support it.

172 API Reference

sqlesdeg - Set Runtime Degree

sqlesdeg - Set Runtime Degree
Sets the maximum run time degree of intra-partition parallelism for SQL statements for
specified active applications. It has no effect on CREATE INDEX parallelism.

 Scope
This API affects all nodes that are listed in the $HOME/sqllib/db2nodes.cfg file.

 Authorization
One of the following:

 sysadm
 sysctrl

 Required Connection
Instance. To change the maximum run time degree of parallelism on a remote server, it
is first necessary to attach to that server. If no attachment exists, the SET RUNTIME
DEGREE statement fails.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Set Runtime Degree */

/* ... */

SQL_API_RC SQL_API_FN

 sqlesdeg (

 long NumAgentIds,

unsigned long * pAgentIds,

 long Degree,

struct sqlca * pSqlca);

/* ... */

 Chapter 1. Application Programming Interfaces 173

sqlesdeg - Set Runtime Degree

Generic API Syntax

/* File: sqlenv.h */

/* API: Set Runtime Degree */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgsdeg (

struct sqlca * pSqlca,

 long Degree,

unsigned long * pAgentIds,

 long NumAgentIds);

/* ... */

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

Degree
Input. The new value for the maximum run time degree of parallelism. The
value must be in the range 1 to 32767.

pAgentIds
Input. Pointer to an array of unsigned long integers. Each entry describes
the agent ID of the corresponding application. To list the agent IDs of the
active applications, use “sqlmonss - Get Snapshot” on page 215.

NumAgentIds
Input. An integer representing the total number of active applications to
which the new degree value will apply. This number should be the same as
the number of elements in the array of agent IDs.

If this parameter is set to SQL_ALL_USERS (defined in sqlenv), the new
degree will apply to all active applications. If it is set to zero, an error is
returned.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

 Sample Programs
C \sqllib\samples\c\setrundg.c

 Usage Notes
The database system monitor functions are used to gather the agent IDs and degrees
of active applications. For more information, see the System Monitor Guide and
Reference.

174 API Reference

sqlesdeg - Set Runtime Degree

Minimal validation is performed on the array of agent IDs. The user must ensure that
the pointer points to an array containing the total number of elements specified. If
NumAgentIds is set to SQL_ALL_USERS, the array is ignored.

If one or more specified agent IDs cannot be found, the unknown agent IDs are
ignored, and the function continues. No error is returned. An agent ID may not be
found, for instance, if the user signs off between the time an agent ID is collected and
the API is called.

Agent IDs are recycled, and are used to change the degree of parallelism for
applications some time after being gathered by the database system monitor. When a
user signs off, therefore, another user may sign on and acquire the same agent ID
through this recycling process, with the result that the new degree of parallelism will be
modified for the wrong user.

 See Also
“sqlmonss - Get Snapshot” on page 215.

 Chapter 1. Application Programming Interfaces 175

sqlesetc - Set Client

sqlesetc - Set Client
Specifies connection settings for the application. For information about the applicable
connection settings and their values, see “SQLE-CONN-SETTING” on page 367.

 Authorization
None

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Set Client */

/* ... */

SQL_API_RC SQL_API_FN

 sqlesetc (

struct sqle_conn_setting * pConnectionSettings,

unsigned short NumSettings,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Set Client */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgsetc (

struct sqle_conn_setting * pConnectionSettings,

unsigned short NumSettings,

struct sqlca * pSqlca);

/* ... */

 API Parameters
pConnectionSettings

Input. A pointer to the sqle_conn_setting structure, which specifies
connection setting types and values. Allocate an array of NumSettings
sqle_conn_setting structures. Set the type field of each element in this

176 API Reference

sqlesetc - Set Client

array to indicate the connection option to set. Set the value field to the
desired value for the option. For more information about this structure, see
“SQLE-CONN-SETTING” on page 367.

NumSettings
Input. Any integer (from 0 to 5) representing the number of connection
options to set.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax

SET CLIENT USING :values

REXX API Parameters
values

A compound REXX host variable containing the connection settings for the
application process. In the following, XXX represents the host variable
name.

XXX.0 Number of connection settings to be established

XXX.1 Specifies how to set up the CONNECTION type. The valid values
are:

1 Type 1 CONNECT

2 Type 2 CONNECT

XXX.2 Specifies how to set up the SQLRULES. The valid values are:

DB2 Process type 2 CONNECT according to the DB2 rules

STD Process type 2 CONNECT according to the Standard rules

XXX.3 Specifies how to set up the scope of disconnection to databases
at commit. The valid values are:

EXPLICIT Disconnect only those marked by the SQL
RELEASE statement

CONDITIONAL Disconnect only those that have no open
WITH HOLD cursors

AUTOMATIC Disconnect all connections

XXX.4 Specifies how to set up the coordination among multiple database
connections during commits or rollbacks. The valid values are:

TWOPHASE Use Transaction Manager (TM) to coordinate
two-phase commits

 Chapter 1. Application Programming Interfaces 177

sqlesetc - Set Client

ONEPHASE Use one-phase commit

NONE Do not enforce single updater and multiple
reader

XXX.5 Specifies the maximum number of concurrent connections for a
NETBIOS adapter.

XXX.6 Specifies when to execute the PREPARE statement. The valid
values are:

NO The PREPARE statement will be executed at
the time it is issued

YES The PREPARE statement will not be executed
until the corresponding OPEN, DESCRIBE, or
EXECUTE statement is issued. However, the
PREPARE INTO statement is not deferred

ALL Same as YES, except that the PREPARE
INTO statement is also deferred

 Sample Programs
C \sqllib\samples\c\client.c

COBOL \sqllib\samples\cobol\client.cbl

FORTRAN \sqllib\samples\fortran\client.f

REXX \sqllib\samples\rexx\client.cmd

 Usage Notes
If this API is successful, the connections in the subsequent units of work will use the
connection settings specified. If this API is unsuccessful, the connection settings are
unchanged.

The connection settings for the application can only be changed when there are no
existing connections (for example, before any connection is established, or after
RELEASE ALL and COMMIT).

Once the SET CLIENT API has executed successfully, the connection settings are fixed
and can only be changed by again executing the SET CLIENT API. All corresponding
precompiled options of the application modules will be overridden.

For information about distributed unit of work (DUOW), see the Administration Guide.

 See Also
“sqleqryc - Query Client” on page 162.

178 API Reference

sqleuncd - Uncatalog Database

sqleuncd - Uncatalog Database
Deletes an entry from the system database directory.

 Authorization
One of the following:

 sysadm
 sysctrl

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Uncatalog Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqleuncd (

_SQLOLDCHAR * pDbAlias,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Uncatalog Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqlguncd (

unsigned short DbAliasLen,

struct sqlca * pSqlca,

_SQLOLDCHAR * pDbAlias);

/* ... */

 API Parameters
DbAliasLen

Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

 Chapter 1. Application Programming Interfaces 179

sqleuncd - Uncatalog Database

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pDbAlias
Input. A string containing the database alias that is to be uncataloged.

REXX API Syntax

UNCATALOG DATABASE dbname

REXX API Parameters
dbname

Alias of the database to be uncataloged.

 Sample Programs
C \sqllib\samples\c\dbcat.c

COBOL \sqllib\samples\cobol\dbcat.cbl

FORTRAN \sqllib\samples\fortran\dbcat.f

REXX \sqllib\samples\rexx\dbcat.cmd

 Usage Notes
Only entries in the system database directory can be uncataloged. Entries in the local
database directory can be deleted using “sqledrpd - Drop Database” on page 110.

To recatalog the database, use “sqlecadb - Catalog Database” on page 72.

To list the databases that are cataloged on a node, use “sqledosd - Open Database
Directory Scan” on page 103, “sqledgne - Get Next Database Directory Entry” on
page 100, and “sqledcls - Close Database Directory Scan” on page 98.

The authentication type of a database, used when communicating with a down-level
server, can be changed by first uncataloging the database, and then cataloging it again
with a different type.

If directory caching is enabled (see the configuration parameter dir_cache in “sqlfxsys -
Get Database Manager Configuration” on page 204), database, node, and DCS
directory files are cached in memory. An application's directory cache is created during
its first directory lookup. Since the cache is only refreshed when the application
modifies any of the directory files, directory changes made by other applications may
not be effective until the application has restarted. To refresh DB2's shared cache
(server only), stop (db2stop) and then restart (db2start) the database manager. To
refresh the directory cache for another application, stop and then restart that
application.

180 API Reference

sqleuncd - Uncatalog Database

 See Also
“sqlecadb - Catalog Database” on page 72
“sqledcls - Close Database Directory Scan” on page 98
“sqledgne - Get Next Database Directory Entry” on page 100
“sqledosd - Open Database Directory Scan” on page 103.

 Chapter 1. Application Programming Interfaces 181

sqleuncn - Uncatalog Node

sqleuncn - Uncatalog Node
Deletes an entry from the node directory.

 Authorization
One of the following:

 sysadm
 sysctrl

 Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Uncatalog Node */

/* ... */

SQL_API_RC SQL_API_FN

 sqleuncn (

_SQLOLDCHAR * pNodeName,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlenv.h */

/* API: Uncatalog Node */

/* ... */

SQL_API_RC SQL_API_FN

 sqlguncn (

unsigned short NodeNameLen,

struct sqlca * pSqlca,

_SQLOLDCHAR * pNodeName);

/* ... */

 API Parameters
NodeNameLen

Input. A 2-byte unsigned integer representing the length in bytes of the
node name.

182 API Reference

sqleuncn - Uncatalog Node

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pNodeName
Input. A string containing the name of the node to be uncataloged.

REXX API Syntax

UNCATALOG NODE nodename

REXX API Parameters
nodename

Name of the node to be uncataloged.

 Sample Programs
C \sqllib\samples\c\nodecat.c

COBOL \sqllib\samples\cobol\nodecat.cbl

FORTRAN \sqllib\samples\fortran\nodecat.f

REXX \sqllib\samples\rexx\nodecat.cmd

 Usage Notes
To recatalog the node, use “sqlectnd - Catalog Node” on page 89.

To list the nodes that are cataloged, use “sqlenops - Open Node Directory Scan” on
page 153, “sqlengne - Get Next Node Directory Entry” on page 150, and “sqlencls -
Close Node Directory Scan” on page 148.

If directory caching is enabled (see the configuration parameter dir_cache in “sqlfxsys -
Get Database Manager Configuration” on page 204), database, node, and DCS
directory files are cached in memory. An application's directory cache is created during
its first directory lookup. Since the cache is only refreshed when the application
modifies any of the directory files, directory changes made by other applications may
not be effective until the application has restarted. To refresh DB2's shared cache
(server only), stop (db2stop) and then restart (db2start) the database manager. To
refresh the directory cache for another application, stop and then restart that
application.

 See Also
“sqlectnd - Catalog Node” on page 89
“sqlencls - Close Node Directory Scan” on page 148
“sqlengne - Get Next Node Directory Entry” on page 150
“sqlenops - Open Node Directory Scan” on page 153.

 Chapter 1. Application Programming Interfaces 183

sqlfddb - Get Database Configuration Defaults

sqlfddb - Get Database Configuration Defaults
Returns the default values of individual entries in a database configuration file.

 Authorization
None

 Required Connection
Instance. It is not necessary to call ATTACH before getting the configuration of a
remote database. If the database is cataloged as remote, an instance attachment to the
remote node is established for the duration of the call.

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Get Database Configuration Defaults */

/* ... */

SQL_API_RC SQL_API_FN

 sqlfddb (

char * pDbAlias,

unsigned short NumItems,

struct sqlfupd * pItemList,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlutil.h */

/* API: Get Database Configuration Defaults */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgddb (

unsigned short DbAliasLen,

unsigned short NumItems,

struct sqlfupd * pItemList,

struct sqlca * pSqlca,

char * pDbAlias);

/* ... */

184 API Reference

sqlfddb - Get Database Configuration Defaults

 API Parameters
DbAliasLen

Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

NumItems
Input. Number of entries to be returned. The minimum valid value is 1.

pItemList
Input/Output. Pointer to an array of NumItems sqlfupd structures, each
containing a token field indicating which value to return, and a pointer field
indicating where to place the configuration value. For more information
about this structure, see “SQLFUPD” on page 400.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pDbAlias
Input. A string containing the database alias.

 Sample Programs
C \sqllib\samples\c\d_dbconf.c

COBOL \sqllib\samples\cobol\d_dbconf.cbl

FORTRAN \sqllib\samples\fortran\d_dbconf.f

 Usage Notes
The application is responsible for allocating sufficient memory for each data element
returned. For example, the value returned for newlogpath can be up to 242 bytes in
length.

DB2 returns the current value of non-updateable parameters.

If an error occurs, the information returned is not valid. If the configuration file is invalid,
an error message is returned. The database must be restored from a backup version.

To set the database configuration parameters to the recommended database manager
defaults, use “sqlfrdb - Reset Database Configuration” on page 188.

For a brief description of the database configuration parameters, see the Command
Reference. For more information about tuning these parameters, see the Administration
Guide.

 See Also
“sqlfrdb - Reset Database Configuration” on page 188
“sqlfudb - Update Database Configuration” on page 194
“sqlfxdb - Get Database Configuration” on page 201.

 Chapter 1. Application Programming Interfaces 185

sqlfdsys - Get Database Manager Configuration Defaults

sqlfdsys - Get Database Manager Configuration Defaults
Returns the default values of individual entries in the database manager configuration
file.

 Authorization
None

 Required Connection
None or instance. An instance attachment is not required to perform database manager
configuration operations at the current instance (as defined by the value of the
DB2INSTANCE environment variable), but is required to perform database manager
configuration operations at other instances. To display the database manager
configuration for another instance, it is necessary to first attach to that instance.

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Get Database Manager Configuration Defaults */

/* ... */

SQL_API_RC SQL_API_FN

 sqlfdsys (

unsigned short NumItems,

struct sqlfupd * pItemList,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlutil.h */

/* API: Get Database Manager Configuration Defaults */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgdsys (

unsigned short NumItems,

struct sqlfupd * pItemList,

struct sqlca * pSqlca);

/* ... */

186 API Reference

sqlfdsys - Get Database Manager Configuration Defaults

 API Parameters
NumItems

Input. Number of entries being returned. The minimum valid value is 1.
pItemList

Input/Output. Pointer to an array of NumItems sqlfupd structures, each
containing a token field indicating which value to return, and a pointer field
indicating where to place the configuration value. For more information
about this structure, see “SQLFUPD” on page 400.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

 Sample Programs
C \sqllib\samples\c\d_dbmcon.c

COBOL \sqllib\samples\cobol\d_dbmcon.cbl

FORTRAN \sqllib\samples\fortran\d_dbmcon.f

 Usage Notes
If an attachment to a remote instance (or a different local instance) exists, the default
database manager configuration parameters for the attached server are returned;
otherwise, the local default database manager configuration parameters are returned.

If an error occurs, the information returned is not valid. If the configuration file is invalid,
an error message is returned. The user must again install the database manager to
recover.

The current value of non-updateable parameters is returned as the default.

To set the database manager configuration parameters to the recommended database
manager defaults, use “sqlfrsys - Reset Database Manager Configuration” on
page 191.

For a brief description of the database manager configuration parameters, see the
Command Reference. For more information about tuning these parameters, see the
Administration Guide.

 See Also
“sqlfrsys - Reset Database Manager Configuration” on page 191
“sqlfusys - Update Database Manager Configuration” on page 198
“sqlfxsys - Get Database Manager Configuration” on page 204.

 Chapter 1. Application Programming Interfaces 187

sqlfrdb - Reset Database Configuration

sqlfrdb - Reset Database Configuration
Resets the configuration file of a specific database to the system defaults.

 Scope
This API only affects the node on which it is issued.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
Instance. An explicit attachment is not required. If the database is listed as remote, an
instance attachment to the remote node is established for the duration of the call.

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Reset Database Configuration */

/* ... */

SQL_API_RC SQL_API_FN

 sqlfrdb (

_SQLOLDCHAR * pDbAlias,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlutil.h */

/* API: Reset Database Configuration */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgrdb (

unsigned short DbAliasLen,

struct sqlca * pSqlca,

char * pDbAlias);

/* ... */

188 API Reference

sqlfrdb - Reset Database Configuration

 API Parameters
DbAliasLen

Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pDbAlias
Input. A string containing the database alias.

REXX API Syntax

RESET DATABASE CONFIGURATION FOR dbname

REXX API Parameters
dbname

Alias of the database associated with the configuration file.

 Sample Programs
C \sqllib\samples\c\dbconf.c

COBOL \sqllib\samples\cobol\dbconf.cbl

FORTRAN \sqllib\samples\fortran\dbconf.f

REXX \sqllib\samples\rexx\dbconf.cmd

 Usage Notes
This API resets the entire configuration (except for non-updateable parameters).

To view or print a list of the current database configuration parameters for a database,
use “sqlfxdb - Get Database Configuration” on page 201.

To view the default values for database configuration parameters, use “sqlfddb - Get
Database Configuration Defaults” on page 184.

To change the value of a configurable parameter, use “sqlfudb - Update Database
Configuration” on page 194.

Changes to the database configuration file become effective only after they are loaded
into memory. All applications must disconnect from the database before this can occur.

If an error occurs, the database configuration file does not change.

The database configuration file cannot be reset if the checksum is invalid. This may
occur if the database configuration file is changed without using the appropriate API. If
this happens, the database must be restored to reset the database configuration file.

 Chapter 1. Application Programming Interfaces 189

sqlfrdb - Reset Database Configuration

For a brief description of the database configuration parameters, see the Command
Reference. For more information about these parameters, see the Administration Guide.

 See Also
“sqlfddb - Get Database Configuration Defaults” on page 184
“sqlfudb - Update Database Configuration” on page 194
“sqlfxdb - Get Database Configuration” on page 201.

190 API Reference

sqlfrsys - Reset Database Manager Configuration

sqlfrsys - Reset Database Manager Configuration
Resets the parameters in the database manager configuration file to the system
defaults.

 Authorization
sysadm

 Required Connection
None or instance. An instance attachment is not required to perform database manager
configuration operations at the current instance (as defined by the value of the
DB2INSTANCE environment variable), but is required to perform database manager
configuration operations at other instances. To reset the database manager
configuration for another instance, it is necessary to first attach to that instance.

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Reset Database Manager Configuration */

/* ... */

SQL_API_RC SQL_API_FN

 sqlfrsys (

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlutil.h */

/* API: Reset Database Manager Configuration */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgrsys (

struct sqlca * pSqlca);

/* ... */

 API Parameters
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

 Chapter 1. Application Programming Interfaces 191

sqlfrsys - Reset Database Manager Configuration

REXX API Syntax

RESET DATABASE MANAGER CONFIGURATION

 Sample Programs
C \sqllib\samples\c\dbmconf.c

COBOL \sqllib\samples\cobol\dbmconf.cbl

FORTRAN \sqllib\samples\fortran\dbmconf.f

REXX \sqllib\samples\rexx\dbmconf.cmd

 Usage Notes
If an attachment to a remote instance (or a different local instance) exists, the database
manager configuration parameters for the attached server are reset; otherwise, the local
database manager configuration parameters are reset.

This API resets the entire configuration (except for non-updateable parameters).

To view or print a list of the current database manager configuration parameters, use
“sqlfxsys - Get Database Manager Configuration” on page 204.

To view the default values for database manager configuration parameters, use
“sqlfdsys - Get Database Manager Configuration Defaults” on page 186.

To change the value of a configurable parameter, use “sqlfusys - Update Database
Manager Configuration” on page 198.

Changes to the database manager configuration file become effective only after they
are loaded into memory. For a server configuration parameter, this occurs during
execution of db2start . For a client configuration parameter, this occurs when the
application is restarted.

If an error occurs, the database manager configuration file does not change.

The database manager configuration file cannot be reset if the checksum is invalid.
This may occur if the database manager configuration file is changed without using the
appropriate API. If this happens, the database manager must be installed again to reset
the database manager configuration file.

For a brief description of the database manager configuration parameters, see the
Command Reference. For more information about these parameters, see the
Administration Guide.

192 API Reference

sqlfrsys - Reset Database Manager Configuration

 See Also
“sqlfdsys - Get Database Manager Configuration Defaults” on page 186
“sqlfusys - Update Database Manager Configuration” on page 198
“sqlfxsys - Get Database Manager Configuration” on page 204.

 Chapter 1. Application Programming Interfaces 193

sqlfudb - Update Database Configuration

sqlfudb - Update Database Configuration
Modifies individual entries in a specific database configuration file.

A database configuration file resides on every node on which the database has been
created.

 Scope
This API only affects the node on which it is issued.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
Instance. An explicit attachment is not required. If the database is listed as remote, an
instance attachment to the remote node is established for the duration of the call.

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Update Database Configuration */

/* ... */

SQL_API_RC SQL_API_FN

 sqlfudb (

_SQLOLDCHAR * pDbAlias,

unsigned short NumItems,

struct sqlfupd * pItemList,

struct sqlca * pSqlca);

/* ... */

194 API Reference

sqlfudb - Update Database Configuration

Generic API Syntax

/* File: sqlutil.h */

/* API: Update Database Configuration */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgudb (

unsigned short DbAliasLen,

unsigned short NumItems,

unsigned short * pItemListLens,

struct sqlfupd * pItemList,

struct sqlca * pSqlca,

char * pDbAlias);

/* ... */

 API Parameters
DbAliasLen

Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

NumItems
Input. Number of entries being modified. The minimum valid value is 1.

pItemListLens
Input. An array of 2-byte unsigned integers representing the length of each
of the new configuration field values in the pItemList. It is necessary to
provide lengths for those fields that contain strings only, such as
newlogpath. If, for example, newlogpath is the fifth element in the pItemList
array, its length must be the fifth element in the pItemListLens array.

pItemList
Input. Pointer to an array of NumItems sqlfupd structures, each containing
a token field indicating which value to update, and a pointer field indicating
the new value. For more information about this structure, see “SQLFUPD”
on page 400.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pDbAlias
Input. A string containing the database alias.

REXX API Syntax

UPDATE DATABASE CONFIGURATION FOR dbname USING :values

 Chapter 1. Application Programming Interfaces 195

sqlfudb - Update Database Configuration

REXX API Parameters
dbname

Alias of the database associated with the configuration file.
values

A compound REXX host variable containing tokens indicating which
configuration fields are to be modified. The application provides the token
and the new value for each field. The following are elements of a variable,
where XXX represents the host variable name:
XXX.0 Twice the number of fields supplied (number of data elements

in the remainder of the variable)
XXX.1 First token
XXX.2 Value supplied for the first field
XXX.3 Second token
XXX.4 Value supplied for the second field
XXX.5 and so on.

 Sample Programs
C \sqllib\samples\c\dbconf.c

COBOL \sqllib\samples\cobol\dbconf.cbl

FORTRAN \sqllib\samples\fortran\dbconf.f

REXX \sqllib\samples\rexx\dbconf.cmd

 Usage Notes
To view or print a list of the database configuration parameters, use “sqlfxdb - Get
Database Configuration” on page 201.

To view the default values for database configuration parameters, use “sqlfddb - Get
Database Configuration Defaults” on page 184.

To reset the database configuration parameters to the recommended defaults, use
“sqlfrdb - Reset Database Configuration” on page 188.

The default values of these parameters may differ for each type of database node
configured (server, client, or server with remote clients). See the Administration Guide
for the ranges and the default values that can be set on each node type. The valid
token values for each configuration entry are listed in Table 42 on page 400.

Not all parameters can be updated.

Changes to the database configuration file become effective only after they are loaded
into memory. All applications must disconnect from the database before this can occur.

If an error occurs, the database configuration file does not change.

The database configuration file cannot be updated if the checksum is invalid. This may
occur if the database configuration file is changed without using the appropriate API. If
this happens, the database must be restored to reset the database configuration file.

196 API Reference

sqlfudb - Update Database Configuration

For a brief description of the database configuration parameters, see the Command
Reference. For more information about these parameters, see the Administration Guide.

 See Also
“sqlfddb - Get Database Configuration Defaults” on page 184
“sqlfrdb - Reset Database Configuration” on page 188
“sqlfxdb - Get Database Configuration” on page 201.

 Chapter 1. Application Programming Interfaces 197

sqlfusys - Update Database Manager Configuration

sqlfusys - Update Database Manager Configuration
Modifies individual entries in the database manager configuration file.

 Authorization
sysadm

 Required Connection
None or instance. An instance attachment is not required to perform database manager
configuration operations at the current instance (as defined by the value of the
DB2INSTANCE environment variable), but is required to perform database manager
configuration operations at other instances. To update the database manager
configuration for another instance, it is necessary to first attach to that instance.

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Update Database Manager Configuration */

/* ... */

SQL_API_RC SQL_API_FN

 sqlfusys (

unsigned short NumItems,

struct sqlfupd * pItemList,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlutil.h */

/* API: Update Database Manager Configuration */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgusys (

unsigned short NumItems,

unsigned short * pItemListLens,

struct sqlfupd * pItemList,

struct sqlca * pSqlca);

/* ... */

198 API Reference

sqlfusys - Update Database Manager Configuration

 API Parameters
NumItems

Input. Number of entries being modified. The minimum valid value is 1.
pItemListLens

Input. An array of 2-byte unsigned integers representing the length of each
of the new configuration field values in the pItemList. It is necessary to
provide lengths for those fields that contain strings only, such as dftdbpath.
If, for example, dftdbpath is the fifth element in the pItemList array, its
length must be the fifth element in the pItemListLens array.

pItemList
Input. Pointer to an array of NumItems sqlfupd structures, each containing
a token field indicating which value to update, and a pointer field indicating
the new value. For more information about this structure, see “SQLFUPD”
on page 400.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax

UPDATE DATABASE MANAGER CONFIGURATION USING :values

REXX API Parameters
values

A compound REXX host variable containing tokens that indicate the
configuration fields to be modified. The application provides the token and
the new value for each field. The following are elements of a variable,
where XXX represents the host variable name:

XXX.0 Number of elements in the variable. This value is two times the
number of fields to modify.

XXX.1 First token

XXX.2 New value for the first field

XXX.3 Second token

XXX.4 New value for the second field

XXX.5 and so on.

 Sample Programs
C \sqllib\samples\c\dbmconf.c

COBOL \sqllib\samples\cobol\dbmconf.cbl

FORTRAN \sqllib\samples\fortran\dbmconf.f

REXX \sqllib\samples\rexx\dbmconf.cmd

 Chapter 1. Application Programming Interfaces 199

sqlfusys - Update Database Manager Configuration

 Usage Notes
If an attachment to a remote instance (or a different local instance) exists, the database
manager configuration parameters for the attached server are updated; otherwise, the
local database manager configuration parameters are updated.

To view or print a list of the database manager configuration parameters, use “sqlfxsys
- Get Database Manager Configuration” on page 204.

To reset the database manager configuration parameters to the recommended
database manager defaults, use “sqlfrsys - Reset Database Manager Configuration” on
page 191.

The default values of these parameters may differ for each type of database node
configured (server, client, or server with remote clients). See the Administration Guide
for the ranges and the default values that can be set on each node type. The valid
token values for each configuration entry are listed in Table 44 on page 403.

Not all parameters can be updated.

Changes to the database manager configuration file become effective only after they
are loaded into memory. For a server configuration parameter, this occurs during
execution of db2start . For a client configuration parameter, this occurs when the
application is restarted.

If an error occurs, the database manager configuration file does not change.

The database manager configuration file cannot be updated if the checksum is invalid.
This may occur if the database manager configuration file is changed without using the
appropriate API. If this happens, the database manager must be reinstalled to reset the
database manager configuration file.

For a brief description of the database manager configuration parameters, see the
Command Reference. For more information about these parameters, see the
Administration Guide.

 See Also
“sqlfdsys - Get Database Manager Configuration Defaults” on page 186
“sqlfrsys - Reset Database Manager Configuration” on page 191
“sqlfxsys - Get Database Manager Configuration” on page 204.

200 API Reference

sqlfxdb - Get Database Configuration

sqlfxdb - Get Database Configuration
Returns the values of individual entries in a database configuration file.

For a brief description of the database configuration parameters, see the Command
Reference. For detailed information about these parameters, see the Administration
Guide.

 Scope
This API returns information only for the node from which it is called.

 Authorization
None

 Required Connection
Instance. It is not necessary to call ATTACH before getting the configuration of a
remote database. If the database is cataloged as remote, an instance attachment to the
remote node is established for the duration of the call.

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Get Database Configuration */

/* ... */

SQL_API_RC SQL_API_FN

 sqlfxdb (

_SQLOLDCHAR * pDbAlias,

unsigned short NumItems,

struct sqlfupd * pItemList,

struct sqlca * pSqlca);

/* ... */

 Chapter 1. Application Programming Interfaces 201

sqlfxdb - Get Database Configuration

Generic API Syntax

/* File: sqlutil.h */

/* API: Get Database Configuration */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgxdb (

unsigned short DbAliasLen,

unsigned short NumItems,

struct sqlfupd * pItemList,

struct sqlca * pSqlca,

char * pDbAlias);

/* ... */

 API Parameters
DbAliasLen

Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

NumItems
Input. Number of entries to be returned. The minimum valid value is 1.

pItemList
Input/Output. Pointer to an array of NumItem sqlfupd structures, each
containing a token field indicating which value to return, and a pointer field
indicating where to place the configuration value. For more information
about this structure, see “SQLFUPD” on page 400.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pDbAlias
Input. A string containing the database alias.

REXX API Syntax

GET DATABASE CONFIGURATION FOR database_alias USING :values

REXX API Parameters
database_alias

Alias of the database associated with a specific database configuration file.
values

A compound REXX host variable containing tokens that indicate the
configuration fields to be returned. The application provides the token and
the API returns the value. The following are elements of a variable, where
XXX represents the host variable name:

202 API Reference

sqlfxdb - Get Database Configuration

XXX.0 Twice the number of fields returned (number of data elements
in the remainder of the variable)

XXX.1 First token

XXX.2 Value returned for the first field

XXX.3 Second token

XXX.4 Value returned for the second field

XXX.5 and so on.

 Sample Programs
C \sqllib\samples\c\dbconf.c

COBOL \sqllib\samples\cobol\dbconf.cbl

FORTRAN \sqllib\samples\fortran\dbconf.f

REXX \sqllib\samples\rexx\dbconf.cmd

 Usage Notes
Entries in the database configuration file that are not listed in the token values for
pItemList are not accessible to the application.

The application is responsible for allocating sufficient memory for each data element
returned. For example, the value returned for newlogpath can be up to 242 bytes in
length.

If an error occurs, the information returned is not valid. If the configuration file is invalid,
an error message is returned. The database must be restored from a backup version.

To set the database configuration parameters to the database manager defaults, use
“sqlfrdb - Reset Database Configuration” on page 188.

For more information about these parameters, see the Administration Guide.

 See Also
“sqlfddb - Get Database Configuration Defaults” on page 184
“sqlfrdb - Reset Database Configuration” on page 188
“sqlfudb - Update Database Configuration” on page 194.

 Chapter 1. Application Programming Interfaces 203

sqlfxsys - Get Database Manager Configuration

sqlfxsys - Get Database Manager Configuration
Returns the values of individual entries in the database manager configuration file.

For a brief description of the database manager configuration parameters, see the
Command Reference. For detailed information about these parameters, see the
Administration Guide.

 Authorization
None

 Required Connection
An instance attachment is not required to perform database manager configuration
operations at the current instance (as defined by the value of the DB2INSTANCE
environment variable), but is required to perform database manager configuration
operations at other instances. To display the database manager configuration for
another instance, it is necessary to first attach to that instance.

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Get Database Manager Configuration */

/* ... */

SQL_API_RC SQL_API_FN

 sqlfxsys (

unsigned short NumItems,

struct sqlfupd * pItemList,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlutil.h */

/* API: Get Database Manager Configuration */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgxsys (

unsigned short NumItems,

struct sqlfupd * pItemList,

struct sqlca * pSqlca);

/* ... */

204 API Reference

sqlfxsys - Get Database Manager Configuration

 API Parameters
NumItems

Input. Number of entries being modified. The minimum valid value is 1.
pItemList

Input/Output. Pointer to an array of NumItems sqlfupd structures, each
containing a token field indicating which value to return, and a pointer field
indicating where to place the configuration value. For more information
about this structure, see “SQLFUPD” on page 400.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax

GET DATABASE MANAGER CONFIGURATION USING :values

REXX API Parameters
values

A compound host variable containing tokens indicating the configuration
fields to be returned. The application provides the token, and the API
returns the value. XXX represents the host variable name:

XXX.0 The actual number of data elements in the remainder of the
variable

XXX.1 First token

XXX.2 Value returned for the first field

XXX.3 Second token

XXX.4 Value returned for the second field

XXX.5 and so on.

 Sample Programs
C \sqllib\samples\c\dbmconf.c

COBOL \sqllib\samples\cobol\dbmconf.cbl

FORTRAN \sqllib\samples\fortran\dbmconf.f

REXX \sqllib\samples\rexx\dbmconf.cmd

 Usage Notes
If an attachment to a remote instance (or a different local instance) exists, the database
manager configuration parameters for the attached server are returned; otherwise, the
local database manager configuration parameters are returned.

 Chapter 1. Application Programming Interfaces 205

sqlfxsys - Get Database Manager Configuration

The application is responsible for allocating sufficient memory for each data element
returned. For example, the value returned for dftdbpath can be up to 215 bytes in
length.

If an error occurs, the information returned is invalid. If the configuration file is invalid,
an error message is returned. The user must install the database manager again to
recover.

To set the configuration parameters to the default values shipped with the database
manager, use “sqlfrsys - Reset Database Manager Configuration” on page 191.

For more information about these parameters, see the Administration Guide.

 See Also
“sqlfdsys - Get Database Manager Configuration Defaults” on page 186
“sqlfrsys - Reset Database Manager Configuration” on page 191
“sqlfusys - Update Database Manager Configuration” on page 198.

206 API Reference

sqlgaddr - Get Address

sqlgaddr - Get Address
Places the address of a variable into another variable. It is used in host languages,
such as FORTRAN and COBOL, that do not provide pointer manipulation.

 Authorization
None

 Required Connection
None

API Include File
sqlutil.h

Generic API Syntax

/* File: sqlutil.h */

/* API: Get Address */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgaddr (

char * pVariable,

char ** ppOutputAddress);

/* ... */

 API Parameters
pVariable

Input. Variable whose address is to be returned.
ppOutputAddress

Output. A 4-byte area into which the variable address is returned.

 Sample Programs
COBOL \sqllib\samples\cobol\dbmconf.sqb

FORTRAN \sqllib\samples\fortran\dbmconf.sqf

 Usage Notes
This API is used in the COBOL and FORTRAN languages only.

 See Also
“sqlgdref - Dereference Address” on page 208.

 Chapter 1. Application Programming Interfaces 207

sqlgdref - Dereference Address

sqlgdref - Dereference Address
Copies data from a buffer that is defined by a pointer, into a variable that is directly
accessible by the application. It is used in host languages, such as FORTRAN and
COBOL, that do not provide pointer manipulation. This API can be used to obtain
results from APIs, such as “sqlengne - Get Next Node Directory Entry” on page 150,
that return a pointer to the desired data.

 Authorization
None

 Required Connection
None

API Include File
sqlutil.h

Generic API Syntax

/* File: sqlutil.h */

/* API: Dereference Address */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgdref (

unsigned int NumBytes,

char * pTargetBuffer,

char ** ppSourceBuffer);

/* ... */

 API Parameters
NumBytes

Input. An integer representing the number of bytes to be transferred.
pTargetBuffer

Output. Area into which the data are moved.
ppSourceBuffer

Input. A pointer to the area containing the desired data.

 Sample Programs
COBOL \sqllib\samples\cobol\nodecat.sqb

FORTRAN \sqllib\samples\fortran\nodecat.sqf

208 API Reference

sqlgdref - Dereference Address

 Usage Notes
This API is used in the COBOL and FORTRAN languages only.

 See Also
“sqlgaddr - Get Address” on page 207.

 Chapter 1. Application Programming Interfaces 209

sqlgmcpy - Copy Memory

sqlgmcpy - Copy Memory
Copies data from one memory area to another. It is used in host languages, such as
FORTRAN and COBOL, that do not provide memory block copy functions.

 Authorization
None

 Required Connection
None

API Include File
sqlutil.h

Generic API Syntax

/* File: sqlutil.h */

/* API: Copy Memory */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgmcpy (

void * pTargetBuffer,

const void * pSource,

unsigned long NumBytes);

/* ... */

 API Parameters
pTargetBuffer

Output. Area into which to move the data.
pSource

Input. Area from which to move the data.
NumBytes

Input. A 4-byte unsigned integer representing the number of bytes to be
transferred.

 Sample Programs
COBOL \sqllib\samples\cobol\tspace.sqb

FORTRAN \sqllib\samples\fortran\tspace.sqf

 Usage Notes
This API is used in the COBOL and FORTRAN languages only.

210 API Reference

sqlgmcpy - Copy Memory

 See Also
“sqlgaddr - Get Address” on page 207.

 Chapter 1. Application Programming Interfaces 211

sqlmon - Get/Update Monitor Switches

sqlmon - Get/Update Monitor Switches
Selectively turns on or off switches for groups of monitor data to be collected by the
database manager. Returns the current state of these switches for the application
issuing the call.

 Scope
This API only returns information for the node on which it is executed.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
Instance. To display the settings for a remote instance, or for a different local instance,
it is necessary to first attach to that instance.

API Include File
sqlmon.h

C API Syntax

/* File: sqlmon.h */

/* API: Get/Update Monitor Switches */

/* ... */

int SQL_API_FN

 sqlmon (

 unsigned long version,

 _SQLOLDCHAR *reserved,

 sqlm_recording_group group_states[],

 struct sqlca *sqlca);

/* ... */

212 API Reference

sqlmon - Get/Update Monitor Switches

Generic API Syntax

/* File: sqlmon.h */

/* API: Get/Update Monitor Switches */

/* ... */

int SQL_API_FN

 sqlgmon (

 unsigned long reserved_lgth,

 struct sqlca *sqlca,

 sqlm_recording_group group_states[],

 _SQLOLDCHAR *reserved,

 unsigned long version);

/* ... */

 API Parameters
reserved_lgth

Reserved for future use. Users should set this value to zero.
sqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

group_states
Input/Output. Pointer to an array of size SQLM_NUM_GROUPS (6). If the
array size is less than six, an error message is returned. The user
determines which element of the array corresponds to which switch by
indexing it to the following symbolic statements (defined in sqlmon.h):
 ¹ SQLM_UOW_SW
 ¹ SQLM_STATEMENT_SW
 ¹ SQLM_TABLE_SW
 ¹ SQLM_BUFFER_POOL_SW
 ¹ SQLM_LOCK_SW
 ¹ SQLM_SORT_SW.

The array contains the following elements:

¹ An input_state element set to one of the following (defined in
sqlmon.h):

SQLM_ON
Turns information group on.

SQLM_OFF
Turns information group off.

SQLM_HOLD
Leaves information group in its current state.

¹ An output_state element, containing current state information about the
information group being monitored, is returned. SQLM_ON and SQLM_OFF
indicate the state.

 Chapter 1. Application Programming Interfaces 213

sqlmon - Get/Update Monitor Switches

¹ A start_time element, indicating the time that the monitored group was
turned on, is returned. If monitoring of this group is turned off, the time
stamp is zero.

For more information about the sqlm_recording_group structure, see
“SQLM-RECORDING-GROUP” on page 410, or the System Monitor Guide
and Reference.

reserved
Reserved for future use. Users should set this value to NULL.

version
Input. Version ID of the database monitor data to collect. The database
monitor only returns data that was available for the requested version. Set
this parameter to one of the following symbolic constants:

 ¹ SQLM_DBMON_VERSION1

 ¹ SQLM_DBMON_VERSION2

 ¹ SQLM_DBMON_VERSION5

If requesting data for a version higher than the current server, the database
monitor only returns data for its level (see the server_version field in
“SQLM-COLLECTED” on page 407).

Note: If SQLM_DBMON_VERSION1 is specified as the version, the APIs cannot
be run remotely.

 Usage Notes
To obtain the status of the switches at the database manager level, call “sqlmonss -
Get Snapshot” on page 215, specifying SQMA_DB2 for OBJ_TYPE (get snapshot for
database manager).

For detailed information about the use of the database monitor APIs, and for a
summary of all database monitor data elements and monitoring groups, see the System
Monitor Guide and Reference.

 See Also
“sqlmonss - Get Snapshot” on page 215
“sqlmonsz - Estimate Size Required for sqlmonss() Output Buffer” on page 218
“sqlmrset - Reset Monitor” on page 221.

214 API Reference

sqlmonss - Get Snapshot

sqlmonss - Get Snapshot
Collects database manager monitor information and returns it to a user-allocated data
buffer. The information returned represents a snapshot of the database manager
operational status at the time the API was called.

 Scope
This API returns information only for the node on which it is issued.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
Instance. To obtain a snapshot from a remote instance (or a different local instance), it
is necessary to first attach to that instance.

API Include File
sqlmon.h

C API Syntax

/* File: sqlmon.h */

/* API: Get Snapshot */

/* ... */

int SQL_API_FN

 sqlmonss (

 unsigned long version,

 _SQLOLDCHAR *reserved,

 sqlma *sqlma_ptr,

 unsigned long buffer_length,

 void *buffer_area,

 sqlm_collected *collected,

 struct sqlca *sqlca);

/* ... */

 Chapter 1. Application Programming Interfaces 215

sqlmonss - Get Snapshot

Generic API Syntax

/* File: sqlmon.h */

/* API: Get Snapshot */

/* ... */

int SQL_API_FN

 sqlgmnss (

 unsigned long reserved_lgth,

 struct sqlca *sqlca,

 sqlm_collected *collected,

 void *buffer_area,

 unsigned long buffer_length,

 sqlma *sqlma_ptr,

 _SQLOLDCHAR *reserved,

 unsigned long version);

/* ... */

 API Parameters
reserved_lgth

A 4-byte unsigned integer representing the length of the reserved area.
sqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

collected
Output. A pointer to the sqlm_collected structure into which the database
monitor delivers summary statistics and the number of each type of data
structure returned in the buffer area. For more information about this
structure, see “SQLM-COLLECTED” on page 407.

buffer_area
Output. Pointer to the user-defined data area into which the snapshot
information will be returned. For information about interpreting the data
returned in this buffer, see the System Monitor Guide and Reference.

buffer_length
Input. The length of the data buffer. Use “sqlmonsz - Estimate Size
Required for sqlmonss() Output Buffer” on page 218 to estimate the size of
this buffer. If the buffer is not large enough, a warning is returned, along
with the information that will fit in the assigned buffer. It may be necessary
to resize the buffer and call the API again.

sqlma_ptr
Input. Pointer to the user-allocated sqlma (monitor area) structure. This
structure specifies the type(s) of data to be collected. For more information,
see “SQLMA” on page 412.

reserved
Reserved for future use. Must be set to NULL.

216 API Reference

sqlmonss - Get Snapshot

version
Input. Version ID of the database monitor data to collect. The database
monitor only returns data that was available for the requested version. Set
this parameter to one of the following symbolic constants:

 ¹ SQLM_DBMON_VERSION1

 ¹ SQLM_DBMON_VERSION2

 ¹ SQLM_DBMON_VERSION5

If requesting data for a version higher than the current server, the database
monitor only returns data for its level (see the server_version field in
“SQLM-COLLECTED” on page 407).

Note: If SQLM_DBMON_VERSION1 is specified as the version, the APIs cannot
be run remotely.

 Sample Programs
C \sqllib\samples\c\dbsnap.c

 Usage Notes
If an alias for a database residing at a different instance is specified, an error message
is returned.

For detailed information about the use of the database monitor APIs, and for a
summary of all database monitor data elements and monitoring groups, see the System
Monitor Guide and Reference.

 See Also
“sqlmon - Get/Update Monitor Switches” on page 212
“sqlmonsz - Estimate Size Required for sqlmonss() Output Buffer” on page 218
“sqlmrset - Reset Monitor” on page 221.

 Chapter 1. Application Programming Interfaces 217

sqlmonsz - Estimate Size Required for sqlmonss() Output Buffer
Estimates the buffer size needed by “sqlmonss - Get Snapshot” on page 215.

 Scope
This API only affects the instance to which the calling application is attached.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
Instance. To obtain information from a remote instance (or a different local instance), it
is necessary to first attach to that instance. If an attachment does not exist, an implicit
instance attachment is made to the node specified by the DB2INSTANCE environment
variable.

API Include File
sqlmon.h

C API Syntax

/* File: sqlmon.h */

/* API: Estimate Size Required for sqlmonss() Output Buffer */

/* ... */

int SQL_API_FN

 sqlmonsz (

 unsigned long version,

 _SQLOLDCHAR *reserved,

 sqlma *sqlma_ptr,

 unsigned long *buff_size,

 struct sqlca *sqlca);

/* ... */

218 API Reference

Generic API Syntax

/* File: sqlmon.h */

/* API: Estimate Size Required for sqlmonss() Output Buffer */

/* ... */

int SQL_API_FN

 sqlgmnsz (

 unsigned long reserved_lgth,

 struct sqlca *sqlca,

 unsigned long *buff_size,

 sqlma *sqlma_ptr,

 _SQLOLDCHAR *reserved,

 unsigned long version);

/* ... */

 API Parameters
reserved_lgth

Reserved for future use. This value should be set to zero.
sqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

buff_size
Output. A pointer to the returned estimated buffer size needed by the GET
SNAPSHOT API.

sqlma_ptr
Input. Pointer to the user-allocated sqlma (monitor area) structure. This
structure specifies the type(s) of snapshot data to be collected, and can be
reused as input to “sqlmonss - Get Snapshot” on page 215. For more
information about this structure, see “SQLMA” on page 412.

reserved
Reserved for future use. Must be set to NULL.

version
Input. Version ID of the database monitor data to collect. The database
monitor only returns data that was available for the requested version. Set
this parameter to one of the following symbolic constants:

 ¹ SQLM_DBMON_VERSION1

 ¹ SQLM_DBMON_VERSION2

 ¹ SQLM_DBMON_VERSION5

If requesting data for a version higher than the current server, the database
monitor only returns data for its level (see the server_version field in
“SQLM-COLLECTED” on page 407).

Note: If SQLM_DBMON_VERSION1 is specified as the version, the APIs cannot
be run remotely.

 Chapter 1. Application Programming Interfaces 219

 Sample Programs
C \sqllib\samples\c\monsz.sqc

 Usage Notes
This function generates a significant amount of overhead. Allocating and freeing
memory dynamically for each sqlmonss call is also expensive. If calling sqlmonss
repeatedly, for example, when sampling data over a period of time, it may be preferable
to allocate a buffer of fixed size, rather than call sqlmonsz .

If the database system monitor finds no active databases or applications, it may return
a buffer size of zero (if, for example, lock information related to a database that is not
active is requested). Verify that the estimated buffer size returned by this API is
non-zero before calling “sqlmonss - Get Snapshot” on page 215. If an error is returned
by sqlmonss because of insufficient buffer space to hold the output, call this API again
to determine the new size requirements.

For detailed information about the use of the database monitor APIs, and for a
summary of all database monitor data elements and monitoring groups, see the System
Monitor Guide and Reference.

 See Also
“sqlmon - Get/Update Monitor Switches” on page 212
“sqlmonss - Get Snapshot” on page 215
“sqlmrset - Reset Monitor” on page 221.

220 API Reference

sqlmrset - Reset Monitor

sqlmrset - Reset Monitor
Resets the database system monitor data of a specified database, or of all active
databases, for the application issuing the call.

 Scope
This API only affects the node on which it is issued.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
Instance. To reset the monitor switches for a remote instance (or a different local
instance), it is necessary to first attach to that instance.

API Include File
sqlmon.h

C API Syntax

/* File: sqlmon.h */

/* API: Reset Monitor */

/* ... */

int SQL_API_FN

 sqlmrset (

 unsigned long version,

 _SQLOLDCHAR *reserved,

 unsigned long reset_all,

 _SQLOLDCHAR *db_alias,

 struct sqlca *sqlca);

/* ... */

 Chapter 1. Application Programming Interfaces 221

sqlmrset - Reset Monitor

Generic API Syntax

/* File: sqlmon.h */

/* API: Reset Monitor */

/* ... */

int SQL_API_FN

 sqlgmrst (

 unsigned short dbnamel,

 unsigned long reserved_lgth,

 struct sqlca *sqlca,

 _SQLOLDCHAR *db_alias,

 unsigned long reset_all,

 _SQLOLDCHAR *reserved,

 unsigned long version);

/* ... */

 API Parameters
dbnamel

Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

reserved_lgth
Reserved for future use. Users should set this value to zero.

sqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

db_alias
Input. The name that is used to reference the database.

If SQLM_ON is specified for the reset_all parameter, this alias is ignored, and
the data areas for all active databases are reset.

reset_all
Input. Indicates whether to reset data areas for a specific database, or for
all active databases. Set this parameter to one of the following (defined in
sqlmon):
SQLM_OFF

Resets data areas for a specific database.
SQLM_ON

Resets data areas for all active databases.
reserved

Reserved for future use. Must be set to NULL.
version

Input. Version ID of the database monitor data to collect. The database
monitor only returns data that was available for the requested version. Set
this parameter to one of the following symbolic constants:

 ¹ SQLM_DBMON_VERSION1

 ¹ SQLM_DBMON_VERSION2

222 API Reference

sqlmrset - Reset Monitor

 ¹ SQLM_DBMON_VERSION5

If requesting data for a version higher than the current server, the database
monitor only returns data for its level (see the server_version field in
“SQLM-COLLECTED” on page 407).

Note: If SQLM_DBMON_VERSION1 is specified as the version, the APIs cannot
be run remotely.

 Sample Programs
C \sqllib\samples\c\monreset.c

 Usage Notes
Each process (attachment) has its own private view of the monitor data. If one user
resets, or turns off a monitor switch, other users are not affected. When an application
first calls any database monitor function, it inherits the default switch settings from the
database manager configuration file (see “sqlfxsys - Get Database Manager
Configuration” on page 204). These settings can be overridden with “sqlmon -
Get/Update Monitor Switches” on page 212.

If all active databases are reset, some database manager information is also reset to
maintain the consistency of the data that is returned.

This API cannot be used to selectively reset specific data items or specific monitor
groups. However, a specific group can be reset by turning its switch off, and then on,
using “sqlmon - Get/Update Monitor Switches” on page 212.

For detailed information about the use of the database monitor APIs, and for a
summary of all database monitor data elements and monitoring groups, see the System
Monitor Guide and Reference.

 See Also
“sqlmon - Get/Update Monitor Switches” on page 212
“sqlmonss - Get Snapshot” on page 215
“sqlmonsz - Estimate Size Required for sqlmonss() Output Buffer” on page 218.

 Chapter 1. Application Programming Interfaces 223

sqlogstt - Get SQLSTATE Message

sqlogstt - Get SQLSTATE Message
Retrieves the message text associated with an SQLSTATE.

 Authorization
None

 Required Connection
None

API Include File
sql.h

C API Syntax

/* File: sql.h */

/* API: Get SQLSTATE Message */

/* ... */

SQL_API_RC SQL_API_FN

 sqlogstt (

char * pBuffer,

 short BufferSize,

 short LineWidth,

char * pSqlstate);

/* ... */

Generic API Syntax

/* File: sql.h */

/* API: Get SQLSTATE Message */

/* ... */

SQL_API_RC SQL_API_FN

 sqlggstt (

 short BufferSize,

 short LineWidth,

char * pSqlstate,

char * pBuffer);

/* ... */

 API Parameters
BufferSize

Input. Size, in bytes, of a string buffer to hold the retrieved message text.

224 API Reference

sqlogstt - Get SQLSTATE Message

LineWidth
Input. The maximum line width for each line of message text. Lines are
broken on word boundaries. A value of zero indicates that the message
text is returned without line breaks.

pSqlstate
Input. A string containing the SQLSTATE for which the message text is to
be retrieved. This field is alphanumeric and must be either five-digit
(specific SQLSTATE) or two-digit (SQLSTATE class, first two digits of an
SQLSTATE). This field does not need to be NULL-terminated if 5 digits are
being passed in, but must be NULL-terminated if 2 digits are being passed.

pBuffer
Output. A pointer to a string buffer where the message text is to be placed.
If the message must be truncated to fit in the buffer, the truncation allows
for the null string terminator character.

REXX API Syntax

GET MESSAGE FOR SQLSTATE sqlstate INTO :msg [LINEWIDTH width]

REXX API Parameters
sqlstate

The SQLSTATE for which the message text is to be retrieved.
msg

REXX variable into which the message is placed.
width

Maximum line width for each line of the message text. The line is broken
on word boundaries. If a value is not specified, or this parameter is set to
0, the message text returns without line breaks.

 Sample Programs
COBOL \sqllib\samples\cobol\checkerr.cbl

FORTRAN \sqllib\samples\fortran\util.f

 Usage Notes
One message is returned per call.

A LF/NULL sequence is placed at the end of each message.

If a positive line width is specified, LF/NULL sequences are inserted between words so
that the lines do not exceed the line width.

If a word is longer than a line width, the line is filled with as many characters as will fit,
a LF/NULL is inserted, and the remaining characters are placed on the next line.

 Chapter 1. Application Programming Interfaces 225

sqlogstt - Get SQLSTATE Message

 Return Codes
Code Message
+i Positive integer indicating the number of bytes in the formatted message. If this

is greater than the buffer size input by the caller, the message is truncated.
-1 Insufficient memory available for message formatting services to function. The

requested message is not returned.
-2 The SQLSTATE is in the wrong format. It must be alphanumeric and be either 2

or 5 digits in length.
-3 Message file inaccessible or incorrect.
-4 Line width is less than zero.
-5 Invalid sqlca, bad buffer address, or bad buffer length.

If the return code is -1 or -3, the message buffer will contain further information about
the problem.

 See Also
“sqlaintp - Get Error Message” on page 15.

226 API Reference

sqluadau - Get Authorizations

sqluadau - Get Authorizations
Reports the authorities of the current user from values found in the database manager
configuration file and the authorization system catalog view (SYSCAT.DBAUTH).

 Authorization
None

 Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Get Authorizations */

/* ... */

SQL_API_RC SQL_API_FN

 sqluadau (

struct sql_authorizations * pAuthorizations,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlutil.h */

/* API: Get Authorizations */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgadau (

struct sql_authorizations * pAuthorizations,

struct sqlca * pSqlca);

/* ... */

 API Parameters
pAuthorizations

Input/Output. Pointer to the sql_authorizations structure. This array of short
integers indicates which authorizations the current user holds. The first
element in the structure, sql_authorizations_len, must be initialized to the
size of the buffer being passed, prior to calling this API. For more

 Chapter 1. Application Programming Interfaces 227

sqluadau - Get Authorizations

information about the sql_authorizations structure, see
“SQL-AUTHORIZATIONS” on page 340.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax

GET AUTHORIZATIONS :value

REXX API Parameters
value

A compound REXX host variable to which the authorization level is
returned. In the following, XXX represents the host variable name. Values
are 0 for no, and 1 for yes.

XXX.0 Number of elements in the variable (always 18)

XXX.1 Direct SYSADM authority

XXX.2 Direct DBADM authority

XXX.3 Direct CREATETAB authority

XXX.4 Direct BINDADD authority

XXX.5 Direct CONNECT authority

XXX.6 Indirect SYSADM authority

XXX.7 Indirect DBADM authority

XXX.8 Indirect CREATETAB authority

XXX.9 Indirect BINDADD authority

XXX.10 Indirect CONNECT authority

XXX.11 Direct SYSCTRL authority

XXX.12 Indirect SYSCTRL authority

XXX.13 Direct SYSMAINT authority

XXX.14 Indirect SYSMAINT authority

XXX.15 Direct CREATE_NOT_FENC authority

XXX.16 Indirect CREATE_NOT_FENC authority

XXX.17 Direct IMPLICIT_SCHEMA authority

XXX.18 Indirect IMPLICIT_SCHEMA authority.

228 API Reference

sqluadau - Get Authorizations

 Sample Programs
C \sqllib\samples\c\dbauth.sqc

COBOL \sqllib\samples\cobol\dbauth.sqb

FORTRAN \sqllib\samples\fortran\dbauth.sqf

REXX \sqllib\samples\rexx\dbauth.cmd

 Usage Notes
Direct authorities are acquired by explicit commands that grant the authorities to a user
ID. Indirect authorities are based on authorities acquired by the groups to which a user
belongs.

Note: PUBLIC is a special group to which all users belong.

If there are no errors, each element of the sql_authorizations structure contains a 0 or a
1. A value of 1 indicates that the user holds that authorization; 0 indicates that the user
does not.

 Chapter 1. Application Programming Interfaces 229

sqlubkp - Backup Database

sqlubkp - Backup Database
Creates a backup copy of a database or a table space.

 Scope
This API only affects the node on which it is executed.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
Database. This API automatically establishes a connection to the specified database.

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Backup Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqlubkp (

char * pDbAlias,

unsigned long BufferSize,

unsigned long BackupMode,

unsigned long BackupType,

unsigned long CallerAction,

char * pApplicationId,

char * pTimestamp,

unsigned long NumBuffers,

struct sqlu_tablespace_bkrst_list * pTablespaceList,

struct sqlu_media_list * pMediaTargetList,

char * pUserName,

char * pPassword,

void * pReserved2,

unsigned long VendorOptionsSize,

void * pVendorOptions,

unsigned long Parallelism,

unsigned long * pBackupSize,

void * pReserved4,

void * pReserved3,

struct sqlca * pSqlca);

/* ... */

230 API Reference

sqlubkp - Backup Database

Generic API Syntax

/* File: sqlutil.h */

/* API: Backup Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgbkp (

unsigned short DbAliasLen,

unsigned short UserNameLen,

unsigned short PasswordLen,

unsigned short * pReserved1,

char * pDbAlias,

unsigned long BufferSize,

unsigned long BackupMode,

unsigned long BackupType,

unsigned long CallerAction,

char * pApplicationId,

char * pTimestamp,

unsigned long NumBuffers,

struct sqlu_tablespace_bkrst_list * pTablespaceList,

struct sqlu_media_list * pMediaTargetList,

char * pUserName,

char * pPassword,

void * pReserved2,

unsigned long VendorOptionsSize,

void * pVendorOptions,

unsigned long Parallelism,

unsigned long * pBackupSize,

void * pReserved4,

void * pReserved3,

struct sqlca * pSqlca);

/* ... */

 API Parameters
DbAliasLen

Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

UserNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
user name. Set to zero if no user name is provided.

PasswordLen
Input. A 2-byte unsigned integer representing the length in bytes of the
password. Set to zero if no password is provided.

pReserved1.
Reserved for future use.

 Chapter 1. Application Programming Interfaces 231

sqlubkp - Backup Database

pDbAlias
Input. A string containing the database alias (as cataloged in the system
database directory) of the database to back up.

BufferSize
Input. Backup buffer size in allocation units of 4KB. Minimum is 16 units.

BackupMode
Input. Specifies the backup mode. Valid values (defined in sqlutil) are:
SQLUB_OFFLINE

Offline gives an exclusive connection to the database.
SQLUB_ONLINE

Online allows database access by other applications while the backup
occurs.

BackupType
Input. Specifies the type of backup to be taken. Valid values (defined in
sqlutil) are:
SQLUB_FULL

Full database backup.
SQLUB_TABLESPACE

Table space level backup. For a table space level backup, provide a list
of table spaces in the pTablespaceList parameter.

CallerAction
Input. Specifies action to be taken. Valid values (defined in sqlutil) are:
SQLUB_BACKUP

Start the backup.
SQLUB_NOINTERRUPT

Start the backup. Specifies that the backup will run unattended, and
that scenarios which normally require user intervention will either be
attempted without first returning to the caller, or will generate an error.
Use this caller action, for example, if it is known that all of the media
required for the backup have been mounted, and utility prompts are not
desired.

SQLUB_CONTINUE
Continue the backup after the user has performed some action
requested by the utility (mount a new tape, for example).

SQLUB_TERMINATE
Terminate the backup after the user has failed to perform some action
requested by the utility.

SQLUB_DEVICE_TERMINATE
Remove a particular device from the list of devices used by backup.
When a particular medium is full, backup will return a warning to the
caller (while continuing to process using the remaining devices). Call
backup again with this caller action to remove the device which
generated the warning from the list of devices being used.

SQLUB_PARM_CHECK
Used to validate parameters without performing a backup.

pApplicationId
Output. Supply a buffer of length SQLU_APPLID_LEN+1 (defined in
sqlutil). The API will return a string identifying the agent servicing the

232 API Reference

sqlubkp - Backup Database

application. Can be used to obtain information about the progress of the
backup operation using the database monitor.

pTimestamp
Output. Supply a buffer of length SQLU_TIME_STAMP_LEN+1 (defined in
sqlutil). The API will return the time stamp of the backup image.

NumBuffers
Input. Specifies number of backup buffers to be used.

pTablespaceList
Input. List of table spaces to be backed up. Required for table space level
backup only. See structure “SQLU-TABLESPACE-BKRST-LIST” on
page 423.

pMediaTargetList
Input. This structure allows the caller to specify the destination for the
backup. The information provided depends on the value of the media_type
field. The valid values for media_type (defined in sqlutil) are:
SQLU_LOCAL_MEDIA

Local devices. Allows a combination of tapes, disks or diskettes.
Provide a list of sqlu_media_entry. On OS/2 or the Windows operating
system, the entries can be directory paths only, not tape device names.

SQLU_ADSM_MEDIA
ADSM. No additional input is required. The ADSM shared library
provided with DB2 is used. If a different version of the ADSM shared
library is desired, use SQLU_OTHER_MEDIA and provide the shared library
name.

SQLU_OTHER_MEDIA
Vendor product. Provide the shared library name in an sqlu_vendor
structure.

SQLU_USER_EXIT
User exit. No additional input is required (available on OS/2 only).

For more information, see structure “SQLU-MEDIA-LIST” on page 417, and
the Administration Guide.

pUserName
Input. A string containing the user name to be used when attempting a
connection.

pPassword
Input. A string containing the password to be used with the user name.

pReserved2
Reserved for future use.

VendorOptionsSize
Input. The length of the pVendorOptions field.

pVendorOptions
Input. Used to pass information from the application to the vendor
functions. This data structure must be flat; that is, no level of indirection is
supported. Note that byte-reversal is not done, and code page is not
checked for this data.

Parallelism
Input. Degree of parallelism (number of buffer manipulators).

 Chapter 1. Application Programming Interfaces 233

sqlubkp - Backup Database

pBackupSize
Output. Size of the backup image (in MB). Can be set to NULL.

pReserved4
Reserved for future use.

pReserved3
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax

BACKUP DATABASE dbalias USING :value [USER username USING password]

[TABLESPACE :tablespacenames] [ONLINE]

[LOAD vendor-library [OPTIONS vendor-options] [OPEN num-sessions SESSIONS] |

 TO :target-area |

 USE ADSM [OPEN num-sessions SESSIONS] |

 USER_EXIT]

[ACTION caller-action] [WITH num-buffers BUFFERS] [BUFFERSIZE buffer-size]

[PARALLELISM parallelism-degree]

REXX API Parameters
dbalias

Alias of the database to be backed up.
value

A compound REXX host variable to which the database backup information
is returned. In the following, XXX represents the host variable name:

XXX.0 Number of elements in the variables (always 2)

XXX.1 The timestamp of the backup image

XXX.2 An application ID that identifies the agent that serves the
application.

username
Identifies the user name under which to back up the database.

password
The password used to authenticate the user name.

tablespacenames
A compound REXX host variable containing a list of table spaces to be
backed up. In the following, XXX is the name of the host variable:

XXX.0 Number of table spaces to be backed up

XXX.1 First table space name

234 API Reference

sqlubkp - Backup Database

XXX.2 Second table space name

XXX.3 and so on.

vendor-library
The name of the shared library (DLL on OS/2 or the Windows operating
system) containing the vendor backup and restore I/O functions to be used.
It may contain the full path. If the full path is not given, defaults to the path
on which the user exit program resides.

vendor-options
Information required by the vendor functions.

num-sessions
The number of I/O sessions to be used with ADSM or the vendor product.

target-area
Local devices. Allows a combination of tapes, disks or diskettes. Provide a
list in “SQLU-MEDIA-LIST” on page 417. On OS/2 or the Windows
operating system, the entries can be directory paths only, not tape device
names.

caller-action
Specifies action to be taken. Valid values are:
SQLUB_BACKUP

Start the backup.
SQLUB_NOINTERRUPT

Start the backup. Specifies that the backup will run unattended, and
that scenarios which normally require user intervention will either be
attempted without first returning to the caller, or will generate an error.
Use this caller action, for example, if it is known that all of the media
required for the backup have been mounted, and utility prompts are not
desired.

SQLUB_CONTINUE
Continue the backup after the user has performed some action
requested by the utility (mount a new tape, for example).

SQLUB_TERMINATE
Terminate the backup after the user has failed to perform some action
requested by the utility.

SQLUB_DEVICE_TERMINATE
Remove a particular device from the list of devices used by backup.
When a particular medium is full, backup will return a warning to the
caller (while continuing to process using the remaining devices). Call
backup again with this caller action to remove the device which
generated the warning from the list of devices being used.

SQLUB_PARM_CHECK
Used to validate parameters without performing a backup.

num-buffers
Number of backup buffers to be used.

buffer-size
Backup buffer size in allocation units of 4KB. Minimum is 16 units.

parallelism-degree
Number of buffer manipulators.

 Chapter 1. Application Programming Interfaces 235

sqlubkp - Backup Database

 Sample Programs
C \sqllib\samples\c\backrest.c

COBOL \sqllib\samples\cobol\backrest.cbl

FORTRAN \sqllib\samples\fortran\backrest.f

 Usage Notes
For information about database level backup, table space level backup, online and
offline backup, backup file names, and supported devices, see the Command
Reference.

For a general discussion of backup, see “Recovering a Database” in the Administration
Guide.

 See Also
“sqlemgdb - Migrate Database” on page 145
“sqluroll - Rollforward Database” on page 300
“sqlurst - Restore Database” on page 309.

236 API Reference

sqludrdt - Redistribute Nodegroup

sqludrdt - Redistribute Nodegroup
Redistributes data across the nodes in a nodegroup. The current data distribution,
whether it is uniform or skewed, can be specified. The redistribution algorithm selects
the partitions to be moved based on the current data distribution.

This API can only be called from the catalog node. Use the LIST DATABASE
DIRECTORY command (see the Command Reference) to determine which node is the
catalog node for each database.

 Scope
This API affects all nodes in the nodegroup.

 Authorization
One of the following:

 sysadm
 sysctrl
 dbadm

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Redistribute Nodegroup */

/* ... */

SQL_API_RC SQL_API_FN

 sqludrdt (

char * pNodeGroupName,

char * pTargetPMapFileName,

char * pDataDistFileName,

SQL_PDB_NODE_TYPE * pAddList,

unsigned short AddCount,

SQL_PDB_NODE_TYPE * pDropList,

unsigned short DropCount,

unsigned char DataRedistOption,

struct sqlca * pSqlca);

/* ... */

 Chapter 1. Application Programming Interfaces 237

sqludrdt - Redistribute Nodegroup

Generic API Syntax

/* File: sqlutil.h */

/* API: Redistribute Nodegroup */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgdrdt (

unsigned short NodeGroupNameLen,

unsigned short TargetPMapFileNameLen,

unsigned short DataDistFileNameLen,

char * pNodeGroupName,

char * pTargetPMapFileName,

char * pDataDistFileName,

SQL_PDB_NODE_TYPE * pAddList,

unsigned short AddCount,

SQL_PDB_NODE_TYPE * pDropList,

unsigned short DropCount,

unsigned char DataRedistOption,

struct sqlca * pSqlca);

/* ... */

 API Parameters
NodeGroupNameLen

The length of the name of the nodegroup.
TargetPMapFileNameLen

The length of the name of the target partitioning map file.
DataDistFileNameLen

The length of the name of the data distribution file.
pNodeGroupName

The name of the nodegroup to be redistributed.
pTargetPMapFileName

The name of the file that contains the target partitioning map. If a directory
path is not specified as part of the file name, the current directory is used.
This parameter is used when the DataRedistOption value is T. The file
should be in character format and contain either 4 096 entries (for a
multi-node nodegroup) or 1 entry (for a single-node nodegroup). Entries in
the file indicate node numbers. Entries can be in free format.

pDataDistFileName
The name of the file that contains input distribution information. If a
directory path is not specified as part of the file name, the current directory
is used. This parameter is used when the DataRedistOption value is U. The
file should be in character format and contain 4 096 positive integer entries.
Each entry in the file should indicate the weight of the corresponding
partition. The sum of the 4 096 values should be less than or equal to
4 294 967 295.

238 API Reference

sqludrdt - Redistribute Nodegroup

pAddList
The list of nodes to add to the nodegroup during the data redistribution.
Entries in the list must be in the form: SQL_PDB_NODE_TYPE.

AddCount
The number of nodes to add to the nodegroup.

pDropList
The list of nodes to drop from the nodegroup during the data redistribution.
Entries in the list must be in the form: SQL_PDB_NODE_TYPE.

DropCount
The number of nodes to drop from the nodegroup.

DataRedistOption
A single character that indicates the type of data redistribution to be done.
Possible values are:

U Specifies to redistribute the nodegroup to achieve a balanced
distribution. If pDataDistFileName is null, the current data
distribution is assumed to be uniform (that is, each hash
partition represents the same amount of data). If
pDataDistFileName is not null, the values in this file are
assumed to represent the current data distribution. When the
DataRedistOption is U, the pTargetPMapFileName should be
null.

Nodes specified in the add list are added, and nodes specified
in the drop list are dropped from the nodegroup.

T Specifies to redistribute the nodegroup using
pTargetPMapFileName. For this option, pDataDistFileName,
pAddList, and pDropList should be null, and both AddCount
and DropCount must be zero.

C Specifies to continue a redistribution operation that failed. For
this option, pTargetPMapFileName, pDataDistFileName,
pAddList, and pDropList should be null, and both AddCount
and DropCount must be zero.

R Specifies to roll back a redistribution operation that failed. For
this option, pTargetPMapFileName, pDataDistFileName,
pAddList, and pDropList should be null, and both AddCount
and DropCount must be zero.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

 Chapter 1. Application Programming Interfaces 239

sqludrdt - Redistribute Nodegroup

 Usage Notes
When a redistribution operation is done, a message file is written to the
$HOME/sqllib/redist directory. The file name has the following format:

 database-name.nodegroup-name.timestamp

The time stamp value is the time at which the API was called.

This utility performs intermittent COMMITs during processing.

Use the ALTER NODEGROUP statement to add nodes to a nodegroup. This statement
permits one to define the containers for the table spaces associated with the
nodegroup. See the SQL Reference for details.

Note: DB2 Parallel Edition for AIX Version 1 syntax, with ADD NODE and DROP
NODE options, is supported for users with sysadm or sysctrl authority. For ADD
NODE, containers are created like the containers on the lowest node number of
the existing nodes within the nodegroup.

All packages having a dependancy on a table that has undergone redistribution are
invalidated. It is recommended to explicitly rebind such packages after the redistribute
nodegroup operation has completed. Explicit rebinding eliminates the initial delay in the
execution of the first SQL request for the invalid package. The redistribute message file
contains a list of all the tables that have undergone redistribution.

It is also recommended to update statistics by issuing “sqlustat - Runstats” on
page 319 after the redistribute nodegroup operation has completed.

 See Also
“sqlarbnd - Rebind” on page 23.

240 API Reference

sqluexpr - Export

sqluexpr - Export
Exports data from a database to one of several external file formats. The user specifies
the data to be exported by supplying an SQL SELECT statement.

 Authorization
One of the following:

 sysadm
 dbadm

or CONTROL or SELECT privilege on each participating table or view.

 Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Export */

/* ... */

SQL_API_RC SQL_API_FN

 sqluexpr (

char * pDataFileName,

sqlu_media_list * pLobPathList,

sqlu_media_list * pLobFileList,

struct sqldcol * pDataDescriptor,

struct sqlchar * pActionString,

char * pFileType,

struct sqlchar * pFileTypeMod,

char * pMsgFileName,

 short CallerAction,

 struct sqluexpt_out* pOutputInfo,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

 Chapter 1. Application Programming Interfaces 241

sqluexpr - Export

Generic API Syntax

/* File: sqlutil.h */

/* API: Export */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgexpr (

unsigned short DataFileNameLen,

unsigned short FileTypeLen,

unsigned short MsgFileNameLen,

char * pDataFileName,

sqlu_media_list * pLobPathList,

sqlu_media_list * pLobFileList,

struct sqldcol * pDataDescriptor,

struct sqlchar * pActionString,

char * pFileType,

struct sqlchar * pFileTypeMod,

char * pMsgFileName,

 short CallerAction,

 struct sqluexpt_out* pOutputInfo,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

 API Parameters
DataFileNameLen

Input. A 2-byte unsigned integer representing the length in bytes of the
data file name.

FileTypeLen
Input. A 2-byte unsigned integer representing the length in bytes of the file
type.

MsgFileNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
message file name.

pDataFileName
Input. A string containing the path and the name of the external file into
which the data is to be exported.

pLobPathList
Input. An sqlu_media_list using media_type SQLU_LOCAL_MEDIA, and the
sqlu_media_entry structure listing paths on the client where the LOB files
are to be stored.

When file space is exhausted on the first path in this list, the API will use
the second path, and so on.

pLobFileList
Input. An sqlu_media_list using media_type SQLU_CLIENT_LOCATION, and
the sqlu_location_entry structure containing base file names.

242 API Reference

sqluexpr - Export

When the name space is exhausted using the first name in this list, the API
will use the second name, and so on.

When creating LOB files during an export, file names are constructed by
appending the current base name from this list to the current path (from
pLobFilePath), and then appending a 3-digit sequence number. For
example, if the current LOB path is the directory /u/foo/lob/path, and the
current LOB file name is bar, then the LOB files created will be
/u/foo/lob/path/bar.001, /u/foo/lob/pah/bar.002, and so on.

pDataDescriptor
Input. Pointer to an sqldcol structure specifying the column names for the
output file. The value of the dcolmeth field determines how the remainder
of the information provided in this parameter is interpreted by EXPORT.
Valid values for this field during an EXPORT (defined in sqlutil) are:
SQL_METH_N

Names
SQL_METH_D

Default.

If dcolmeth is SQL_METH_N, specified names are given for the columns in the
external file.

If pDataDescriptor is NULL, or dcolmeth is set to SQL_METH_D, default
names are used for the columns in the external file. In this case, the
number of columns and the column specification array are both ignored.
The column names in the external file are derived from the processing of
the SELECT statement specified in pActionString.

For more information, see “SQLDCOL” on page 361.
pActionString

Input. Pointer to a structure containing a valid dynamic SQL SELECT
statement. The structure contains a 2-byte length field, followed by the
characters that make up the SELECT statement. The SELECT statement
specifies the data to be extracted from the database and written to the
external file.

The columns for the external file (from pDataDescriptor), and the database
columns from the SELECT statement, are matched according to their
respective list/structure positions. The first column of data selected from the
database is placed in the first column of the external file, and its column
name is taken from the first element of the external column array.

pFileType
Input. A string indicating the format of the data within the external file.
Supported external file formats (defined in sqlutil) are:
SQL_DEL

Delimited ASCII, for exchange with dBase, BASIC, and the IBM
Personal Decision Series programs, and many other database
managers and file managers.

SQL_WSF
Worksheet formats for exchange with Lotus Symphony and 1-2-3
programs.

 Chapter 1. Application Programming Interfaces 243

sqluexpr - Export

SQL_IXF
PC version of the Integrated Exchange Format, the preferred method
for exporting data from a table, so that it can later be imported or
loaded into the same table or into another database manager table.

pFileTypeMod
Input. A pointer to a structure containing a 2-byte long field, followed by an
array of characters that specify one or more processing options. If this
pointer is NULL, or the structure pointed to has zero characters, this action
is interpreted as selection of a default specification.

Not all options can be used with all of the supported file types.

For more information, see the Command Reference.
pMsgFileName

Input. A string containing the destination for EXPORT error, warning, and
informational messages. Can be the path and name of an operating system
file or a standard device. If the file already exists, it is overwritten. If it does
not exist, a file is created.

CallerAction
Input. The action requested by the caller. It is defined as an integer by the
application. Valid values (defined in sqlutil) are:
SQLU_INITIAL

Initial call. This value must be used on the first call to the API.

If the initial call or any subsequent call returns and requires the calling
application to perform some service prior to completing the requested
export, the caller action must be set to one of the following:
SQLU_CONTINUE

Continue processing. The action requested by the utility has completed,
so the system can continue processing the initial request.

SQLU_TERMINATE
Terminate processing. The requested action was not performed, so the
system terminates the initial request.

pOutputInfo
Ouput. Return value of the number of rows exported. For more information
about this structure, see “SQLUEXPT-OUT” on page 425.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

244 API Reference

sqluexpr - Export

REXX API Syntax

EXPORT :stmt TO datafile OF filetype

[MODIFIED BY :filetmod] [USING :dcoldata]

MESSAGES msgfile [ROWS EXPORTED :number]

CONTINUE EXPORT

STOP EXPORT

REXX API Parameters
stmt

A REXX host variable containing a valid dynamic SQL SELECT statement.
The statement specifies the data to be extracted from the database.

datafile
Name of the file into which the data is to be exported.

filetype
The format of the data within the data file. The supported file formats are:

DEL Delimited ASCII

WSF Worksheet formats

IXF PC version of Integrated Exchange Format.

filetmod
A host variable containing additional information unique to the chosen file
type. If no MODIFIED BY clause is specified, the default filetmod is used.

dcoldata
A compound REXX host variable containing the alternate column names to
be used in the data file. In the following, XXX is the name of the host
variable:

XXX.0 Number of columns (number of elements in the remainder of
the variable)

XXX.1 First column name

XXX.2 Second column name

XXX.3 and so on.

If this parameter is null, or a value for dcoldata has not been specified, the
utility uses the column names from the database.

msgfile
File (or path) or device name where error and warning messages are to be
sent.

number
A host variable that will contain the number of exported rows.

 Chapter 1. Application Programming Interfaces 245

sqluexpr - Export

 Sample Programs
C \sqllib\samples\c\impexp.sqc

COBOL \sqllib\samples\cobol\impexp.sqb

FORTRAN \sqllib\samples\fortran\impexp.sqf

REXX \sqllib\samples\rexx\impexp.cmd

 Usage Notes
Be sure to complete all table operations and release all locks before calling the
EXPORT API. This can be done either by issuing a COMMIT after closing all cursors
opened WITH HOLD, or by issuing a ROLLBACK. A COMMIT is performed during the
export process.

A warning message is issued if the number of columns (dcolnum) in the external
column name array, pDataDescriptor, is not equal to the number of columns generated
by the SELECT statement. In this case, the number of columns written to the external
file is the lesser of the two numbers. Excess database columns or external column
names are not used to generate the output file.

The messages placed in the message file include the information returned from the
message retrieval service. Each message begins on a new line.

If the db2uexpm.bnd module or any other shipped .bnd files are bound manually, the
format option on the binder must not be used.

The EXPORT utility produces a warning message whenever a character column with a
length greater than 254 is selected for export to DEL format files.

PC/IXF import should be used to move data between databases. If character data
containing row separators is exported to a delimited ASCII (DEL) file and processed by
a text transfer program (moving, for example, between OS/2 and AIX systems), fields
containing the row separators will shrink or expand.

PC/IXF file format specifications permit migration of data between OS/2 (IBM Extended
Services for OS/2, OS/2 Extended Edition and DB2 for OS/2) databases and DB2 for
AIX databases via export, binary copying of files between OS/2 and AIX, and import.
The file copying step is not necessary if the source and the target databases are both
accessible from the same client.

DB2 Connect can be used to export tables from DRDA servers such as DB2 for MVS,
SQL/DS, and OS/400. Only PC/IXF export is supported.

The EXPORT utility will not create multiple-part PC/IXF files when invoked from an AIX
system.

Index definitions for a table are included in the PC/IXF file when the contents of a
single database table are exported to a PC/IXF file with a pActionString beginning with
SELECT * FROM tablename, and the pDataDescriptor parameter specifying default

246 API Reference

sqluexpr - Export

names. Indexes are not saved for views, or if the SELECT clause of the pActionString
includes a join. A WHERE clause, a GROUP BY clause, or a HAVING clause in the
pActionString will not prevent the saving of indexes.

Export will store the NOT NULL WITH DEFAULT attribute of the table in an IXF file if
the SELECT statement provided is in the form SELECT * FROM tablename.

 See Also
“sqluimpr - Import” on page 271
“sqluload - Load” on page 282.

 Chapter 1. Application Programming Interfaces 247

sqlugrpn - Get Row Partitioning Number

sqlugrpn - Get Row Partitioning Number
Returns the partition number and the node number based on the partitioning key
values. An application can use this information to determine at which node a specific
row of a table is stored.

The partitioning data structure, “SQLUPI” on page 439, is the input for this API. The
structure can be returned by “sqlugtpi - Get Table Partitioning Information” on
page 252. Another input is the character representations of the corresponding
partitioning key values. The output is a partition number generated by the partitioning
strategy and the corresponding node number from the partitioning map. If the
partitioning map information is not provided, only the partition number is returned. This
can be useful when analyzing data distribution.

The database manager does not need to be running when this API is called.

 Scope
This API can be invoked from any node in the db2nodes.cfg file.

 Authorization
None

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Get Row Partitioning Number */

/* ... */

SQL_API_RC SQL_API_FN

 sqlugrpn (

unsigned short num_ptrs,

unsigned char ** ptr_array,

unsigned short * ptr_lens,

unsigned short ctrycode,

unsigned short codepage,

struct sqlupi * part_info,

short * part_num,

SQL_PDB_NODE_TYPE * node_num,

unsigned short chklvl,

struct sqlca * sqlca,

 short dataformat,

void * pReserved1,

void * pReserved2);

/* ... */

248 API Reference

sqlugrpn - Get Row Partitioning Number

Generic API Syntax

/* File: sqlutil.h */

/* API: Get Row Partitioning Number */

/* ... */

SQL_API_RC SQL_API_FN

 sqlggrpn (

unsigned short num_ptrs,

unsigned char ** ptr_array,

unsigned short * ptr_lens,

unsigned short ctrycode,

unsigned short codepage,

struct sqlupi * part_info,

short * part_num,

SQL_PDB_NODE_TYPE * node_num,

unsigned short chklvl,

struct sqlca * sqlca,

 short dataformat,

void * pReserved1,

void * pReserved2);

/* ... */

 API Parameters
num_ptrs

The number of pointers in ptr_array. The value must be the same as the
one specified for part_info; that is, part_info->sqld.

ptr_array
An array of pointers that points to the character representations of the
corresponding values of each part of the partitioning key specified in
part_info. If a null value is required, the corresponding pointer is set to null.

ptr_lens
An array of unsigned integers that contains the lengths of the character
representations of the corresponding values of each part of the partitioning
key specified in part_info.

ctrycode
The country code of the target database. For a list of valid country code
values, see one of the Quick Beginnings books.

This value can also be obtained from the database configuration file (see
the GET DATABASE CONFIGURATION command in the Command
Reference.

codepage
The code page of the target database. For a list of valid code page values,
see one of the Quick Beginnings books.

This value can also be obtained from the database configuration file (see
the GET DATABASE CONFIGURATION command in the Command
Reference.

 Chapter 1. Application Programming Interfaces 249

sqlugrpn - Get Row Partitioning Number

part_info
A pointer to the sqlupi structure. For more information about this structure,
see “SQLUPI” on page 439.

part_num
A pointer to a 2-byte signed integer that is used to store the partition
number.

node_num
A pointer to an SQL_PDB_NODE_TYPE field used to store the node
number. If the pointer is null, no node number is returned.

chklvl
An unsigned integer that specifies the level of checking that is done on
input parameters. If the value specified is zero, no checking is done. If any
non-zero value is specified, all input parameters are checked.

sqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

dataformat
Specifies the representation of partitioning key values. Valid values are:
SQL_CHARSTRING_FORMAT

All partitioning key values are represented by character strings. This is
the default value.

SQL_PACKEDDECIMAL_FORMAT
All decimal column partitioning key values are in packed decimal
format.

SQL_BINARYNUMERICS_FORMAT
All numeric partitioning key values are in binary format.

pReserved1
Reserved for future use.

pReserved2
Reserved for future use.

 Usage Notes
Datatypes supported on the operating system are the same as those that can be
defined as a partitioning key.

CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC must be converted to the target
code page before this API is called.

For numeric and datetime datatypes, the character representations must be at the code
page of the respective system where the API is invoked.

If node_num is not NULL, the partitioning map must be supplied; that is,
part_info->pmaplen is either 2 or 8 192. Otherwise, SQLCODE -6038 is returned.

The partitioning key must be defined; that is, part_info->sqld must be greater than
zero. Otherwise, SQLCODE -2032 is returned.

If a null value is assigned to a non-nullable partitioning column, SQLCODE -6039 is
returned.

250 API Reference

sqlugrpn - Get Row Partitioning Number

All the leading blanks and trailing blanks of the input character string are stripped,
except for the CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC datatypes, where only
trailing blanks are stripped.

 See Also
“sqlfxdb - Get Database Configuration” on page 201
“sqlugtpi - Get Table Partitioning Information” on page 252
“sqludrdt - Redistribute Nodegroup” on page 237.

 Chapter 1. Application Programming Interfaces 251

sqlugtpi - Get Table Partitioning Information

sqlugtpi - Get Table Partitioning Information
Allows an application to obtain the partitioning information for a table. The partitioning
information includes the partitioning map and the column definitions of the partitioning
key. Information returned by this API can be passed to “sqlugrpn - Get Row Partitioning
Number” on page 248 to determine the partition number and the node number for any
row in the table.

To use this API, the application must be connected to the database that contains the
table for which partitioning information is being requested.

 Scope
This API can be executed on any node defined in the db2nodes.cfg file.

 Authorization
For the table being referenced, a user must have at least one of the following:

 sysadm authority
 dbadm authority
 CONTROL privilege
 SELECT privilege

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Get Table Partitioning Information */

/* ... */

SQL_API_RC SQL_API_FN

 sqlugtpi (

unsigned char * tablename,

struct sqlupi * part_info,

struct sqlca * sqlca);

/* ... */

252 API Reference

sqlugtpi - Get Table Partitioning Information

Generic API Syntax

/* File: sqlutil.h */

/* API: Get Table Partitioning Information */

/* ... */

SQL_API_RC SQL_API_FN

 sqlggtpi (

unsigned short tn_length,

unsigned char * tablename,

struct sqlupi * part_info,

struct sqlca * sqlca);

/* ... */

 API Parameters
tn_length

A 2-byte unsigned integer with the length of the table name.
tablename

The fully qualified name of the table.
part_info

A pointer to the sqlupi structure. For more information about this structure,
see “SQLUPI” on page 439.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

 See Also
“sqlugrpn - Get Row Partitioning Number” on page 248
“sqludrdt - Redistribute Nodegroup” on page 237.

 Chapter 1. Application Programming Interfaces 253

sqluhcls - Close Recovery History File Scan

sqluhcls - Close Recovery History File Scan
Ends a recovery history file scan and frees DB2 resources required for the scan. This
API must be preceded by a successful call to “sqluhops - Open Recovery History File
Scan” on page 259.

 Authorization
None

 Required Connection
Instance. It is not necessary to call ATTACH before issuing this API.

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Close Recovery History File Scan */

/* ... */

SQL_API_RC SQL_API_FN

 sqluhcls (

unsigned short Handle,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlutil.h */

/* API: Close Recovery History File Scan */

/* ... */

SQL_API_RC SQL_API_FN

 sqlghcls (

unsigned short Handle,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

254 API Reference

sqluhcls - Close Recovery History File Scan

 API Parameters
Handle

Input. Contains the handle for scan access that was returned by “sqluhops
- Open Recovery History File Scan” on page 259.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax

CLOSE RECOVERY HISTORY FILE :scanid

REXX API Parameters
scanid

Host variable containing the scan identifier returned from OPEN
RECOVERY HISTORY FILE SCAN.

 Sample Programs
C \sqllib\samples\c\rechist.c

COBOL \sqllib\samples\cobol\rechist.cbl

FORTRAN \sqllib\samples\fortran\rechist.f

REXX \sqllib\samples\rexx\rechist.cmd

 Usage Notes
For a detailed description of the use of the recovery history file APIs, see “sqluhops -
Open Recovery History File Scan” on page 259.

 See Also
“sqluhgne - Get Next Recovery History File Entry” on page 256
“sqluhops - Open Recovery History File Scan” on page 259
“sqluhprn - Prune Recovery History File” on page 264
“sqluhupd - Update Recovery History File” on page 267.

 Chapter 1. Application Programming Interfaces 255

sqluhgne - Get Next Recovery History File Entry

sqluhgne - Get Next Recovery History File Entry
Gets the next entry from the recovery history file. This API must be preceded by a
successful call to “sqluhops - Open Recovery History File Scan” on page 259.

 Authorization
None

 Required Connection
Instance. It is not necessary to call ATTACH before issuing this API.

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Get Next Recovery History File Entry */

/* ... */

SQL_API_RC SQL_API_FN

 sqluhgne (

unsigned short Handle,

void * pReserved,

struct sqluhinfo * pHistoryInfo,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlutil.h */

/* API: Get Next Recovery History File Entry */

/* ... */

SQL_API_RC SQL_API_FN

 sqlghgne (

unsigned short Handle,

void * pReserved,

struct sqluhinfo * pHistoryInfo,

struct sqlca * pSqlca);

/* ... */

256 API Reference

sqluhgne - Get Next Recovery History File Entry

 API Parameters
Handle

Input. Contains the handle for scan access that was returned by “sqluhops
- Open Recovery History File Scan” on page 259.

pReserved
Reserved for future use.

pHistoryInfo
Output. A pointer to the recovery history file entry information buffer (see
“SQLUHINFO” on page 426). The history file information is returned in the
memory pointed to by this parameter.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax

GET RECOVERY HISTORY FILE ENTRY :scanid [USING :value]

REXX API Parameters
scanid

Host variable containing the scan identifier returned from OPEN
RECOVERY HISTORY FILE SCAN.

value
A compound REXX host variable into which the recovery history file entry
information is returned. In the following, XXX represents the host variable
name:

XXX.0 Number of first level elements in the variable (always 15)

XXX.1 Number of table space elements

XXX.2 Number of used table space elements

XXX.3 OPERATION (type of operation performed)

XXX.4 OBJECT (granularity of the operation)

XXX.5 OBJECT_PART (time stamp and sequence number)

XXX.6 OPTYPE (qualifier of the operation)

XXX.7 DEVICE_TYPE (type of device used)

XXX.8 FIRST_LOG (earliest log ID)

XXX.9 LAST_LOG (current log ID)

XXX.10 BACKUP_ID (identifier for the backup)

XXX.11 SCHEMA (qualifier for the table name)

XXX.12 TABLE_NAME (name of the unloaded/loaded table)

 Chapter 1. Application Programming Interfaces 257

sqluhgne - Get Next Recovery History File Entry

XXX.13.0 NUM_OF_TABLESPACES (number of table spaces involved in
backup or restore)

XXX.13.1 Name of the first table space backed up/restored

XXX.13.2 Name of the second table space backed up/restored

XXX.13.3 and so on

XXX.14 LOCATION (where backup or copy is stored)

XXX.15 COMMENT (text to describe the entry).

 Sample Programs
C \sqllib\samples\c\rechist.c

COBOL \sqllib\samples\cobol\rechist.cbl

FORTRAN \sqllib\samples\fortran\rechist.f

REXX \sqllib\samples\rexx\rechist.cmd

 Usage Notes
The records that are returned will have been selected using the values specified on the
call to sqluhops .

For a detailed description of the use of the recovery history file APIs, see “sqluhops -
Open Recovery History File Scan” on page 259.

 See Also
“sqluhcls - Close Recovery History File Scan” on page 254
“sqluhops - Open Recovery History File Scan” on page 259
“sqluhprn - Prune Recovery History File” on page 264
“sqluhupd - Update Recovery History File” on page 267.

258 API Reference

sqluhops - Open Recovery History File Scan

sqluhops - Open Recovery History File Scan
Starts a recovery history file scan.

 Authorization
None

 Required Connection
Instance. It is not necessary to call ATTACH before calling this API. If the database is
cataloged as remote, an instance attachment to the remote node is established.

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Open Recovery History File Scan */

/* ... */

SQL_API_RC SQL_API_FN

 sqluhops (

char * pDbAlias,

char * pTimestamp,

char * pObjectName,

unsigned short * pNumRows,

unsigned short * pHandle,

unsigned short CallerAction,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

 Chapter 1. Application Programming Interfaces 259

sqluhops - Open Recovery History File Scan

Generic API Syntax

/* File: sqlutil.h */

/* API: Open Recovery History File Scan */

/* ... */

SQL_API_RC SQL_API_FN

 sqlghops (

unsigned short DbAliasLen,

unsigned short TimestampLen,

unsigned short ObjectNameLen,

char * pDbAlias,

char * pTimestamp,

char * pObjectName,

unsigned short * pNumRows,

unsigned short * pHandle,

unsigned short CallerAction,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

 API Parameters
DbAliasLen

Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

TimestampLen
Input. A 2-byte unsigned integer representing the length in bytes of the
time stamp. Set to zero if no time stamp is provided.

ObjectNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
object name. Set to zero if no object name is provided.

pDbAlias
Input. A string containing the database alias.

pTimestamp
Input. A string specifying the time stamp to be used for selecting records.
Records whose time stamp is equal to or greater than this value are
selected. Setting this parameter to NULL, or pointing to zero, prevents the
filtering of entries using a time stamp.

pObjectName
Input. A string specifying the object name to be used for selecting records.
The object may be a table or a table space. If it is a table, the fully
qualified table name must be provided. Setting this parameter to NULL, or
pointing to zero, prevents the filtering of entries using the object name.

pNumRows
Output. Upon return from the API, this parameter contains the number of
matching recovery history file entries.

260 API Reference

sqluhops - Open Recovery History File Scan

pHandle
Output. Upon return from the API, this parameter contains the handle for
scan access. It is subsequently used in “sqluhgne - Get Next Recovery
History File Entry” on page 256, and “sqluhcls - Close Recovery History
File Scan” on page 254.

CallerAction
Input. Valid values (defined in sqlutil) are:
SQLUH_LIST_HISTORY

Select all of the records (backup, restore, load and unload) that pass
the other filters.

SQLUH_LIST_BACKUP
Select only the backup and restore records that pass the other filters.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax

OPEN [BACKUP] RECOVERY HISTORY FILE FOR database_alias

[OBJECT objname] [TIMESTAMP :timestamp]

USING :value

REXX API Parameters
database_alias

The alias of the database whose history file is to be listed.
objname

Specifies the object name to be used for selecting records. The object may
be a table or a table space. If it is a table, the fully qualified table name
must be provided. Setting this parameter to NULL prevents the filtering of
entries using objname.

timestamp
Specifies the time stamp to be used for selecting records. Records whose
time stamp is equal to or greater than this value are selected. Setting this
parameter to NULL prevents the filtering of entries using timestamp.

value
A compound REXX host variable to which recovery history file information
is returned. In the following, XXX represents the host variable name.

XXX.0 Number of elements in the variable (always 2)

XXX.1 Identifier (handle) for future scan access

XXX.2 Number of matching recovery history file entries.

 Chapter 1. Application Programming Interfaces 261

sqluhops - Open Recovery History File Scan

 Sample Programs
C \sqllib\samples\c\rechist.c

COBOL \sqllib\samples\cobol\rechist.cbl

FORTRAN \sqllib\samples\fortran\rechist.f

REXX \sqllib\samples\rexx\rechist.cmd

 Usage Notes
The combination of time stamp, object name and caller action can be used to filter
records. Only records that pass all specified filters are returned.

The filtering effect of the object name depends on the value specified:

¹ Specifying a table will return records for loads and unloads, because this is the
only information for tables in the history file.

¹ Specifying a table space will return records for backups, restores, loads, and
unloads for the table space.

A maximum of eight history file scans per process is permitted.

To list every entry in the history file, a typical application will perform the following
steps:

1. Call sqluhops , which will return pNumRows
2. Allocate an sqluhinfo structure with space for n tablespace fields, where n is an

arbitrary number
3. Set the sqln field of the sqluhinfo structure to n
4. In a loop, perform the following:

¹ Call sqluhgne to fetch from the history file.
¹ If sqluhgne returns an SQLCODE of SQL_RC_OK, use the sqld field of the

sqluhinfo structure to determine the number of table space entries returned.
¹ If sqluhgne returns an SQLCODE of SQLUH_SQLUHINFO_VARS_WARNING, not

enough space has been allocated for all of the table spaces that DB2 is trying
to return; free and reallocate the sqluhinfo structure with enough space for sqld
table space entries, and set sqln to sqld.

¹ If sqluhgne returns an SQLCODE of SQLE_RC_NOMORE, all recovery history files
have been retrieved.

¹ Any other SQLCODE indicates a problem.
5. When all of the information has been fetched, call “sqluhcls - Close Recovery

History File Scan” on page 254 to free the resources allocated by the call to
sqluhops .

The macro SQLUHINFOSIZE(n), defined in sqlutil, is provided to help determine how
much memory is required for an sqluhinfo structure with space for n tablespace fields.

262 API Reference

sqluhops - Open Recovery History File Scan

 See Also
“sqluhcls - Close Recovery History File Scan” on page 254
“sqluhgne - Get Next Recovery History File Entry” on page 256
“sqluhprn - Prune Recovery History File” on page 264
“sqluhupd - Update Recovery History File” on page 267.

 Chapter 1. Application Programming Interfaces 263

sqluhprn - Prune Recovery History File

sqluhprn - Prune Recovery History File
Deletes entries from the recovery history file.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint
 dbadm

 Required Connection
Database. To delete entries from the recovery history file for any database other than
the default database, a connection to the database must be established before calling
this API.

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Prune Recovery History File */

/* ... */

SQL_API_RC SQL_API_FN

 sqluhprn (

char * pTimestamp,

unsigned short ForceOption,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

264 API Reference

sqluhprn - Prune Recovery History File

Generic API Syntax

/* File: sqlutil.h */

/* API: Prune Recovery History File */

/* ... */

SQL_API_RC SQL_API_FN

 sqlghprn (

unsigned short TimestampLen,

char * pTimestamp,

unsigned short ForceOption,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

 API Parameters
TimestampLen

Input. A 2-byte unsigned integer representing the length in bytes of the
time stamp.

pTimestamp
Input. A string specifying the time stamp or part of a time stamp (minimum
yyyy, or year) used to select records for deletion. All entries equal to or
less than the time stamp will be deleted. A valid time stamp must be
provided; there is no default behavior for a NULL parameter.

ForceOption
Input. Indicates whether history file entries corresponding to the most
recent full backup and its restore set should be kept. The restore set
includes all table space backups and load copies taken after the most
recent full database backup. Valid values (defined in sqlutil) are:
SQLUH_NO_FORCE

The most recent restore set entries will be kept, even if the time stamp
is less than or equal to the time stamp specified as input.

SQLUH_FORCE
The recovery history file will be pruned according to the time stamp
specified, even if some entries from the most recent restore set are
deleted from the file.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax

PRUNE RECOVERY HISTORY BEFORE :timestamp [WITH FORCE OPTION]

 Chapter 1. Application Programming Interfaces 265

sqluhprn - Prune Recovery History File

REXX API Parameters
timestamp

A host variable containing a time stamp. All entries with time stamps equal
to or less than the time stamp provided are deleted from the recovery
history file.

WITH FORCE OPTION
If specified, the recovery history file will be pruned according to the time
stamp specified, even if some entries from the most recent restore set are
deleted from the file. If not specified, the most recent restore set will be
kept, even if the time stamp is less than or equal to the time stamp
specified as input.

 Sample Programs
C \sqllib\samples\c\rechist.c

COBOL \sqllib\samples\cobol\rechist.cbl

FORTRAN \sqllib\samples\fortran\rechist.f

REXX \sqllib\samples\rexx\rechist.cmd

 Usage Notes
Pruning the recovery history file does not delete the actual backup, load, and unload
files. The user must manually delete these files to free up the space they consume on
storage media.

Attention:

If the latest full database backup is deleted from the media (in addition to being pruned
from the recovery history file), the user must ensure that all table spaces, including the
catalog table space and the user table spaces, are backed up. Failure to do so may
result in a database that cannot be recovered, or the loss of some portion of the user
data in the database.

 See Also
“sqluhcls - Close Recovery History File Scan” on page 254
“sqluhgne - Get Next Recovery History File Entry” on page 256
“sqluhops - Open Recovery History File Scan” on page 259
“sqluhupd - Update Recovery History File” on page 267.

266 API Reference

sqluhupd - Update Recovery History File

sqluhupd - Update Recovery History File
Updates the location, device type, or comment in a recovery history file entry.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint
 dbadm

 Required Connection
Database. To update entries in the recovery history file for any database other than the
default database, a connection to the database must be established before calling this
API.

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Update Recovery History File */

/* ... */

SQL_API_RC SQL_API_FN

 sqluhupd (

char * pObjectPart,

char * pNewLocation,

char * pNewDeviceType,

char * pNewComment,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

 Chapter 1. Application Programming Interfaces 267

sqluhupd - Update Recovery History File

Generic API Syntax

/* File: sqlutil.h */

/* API: Update Recovery History File */

/* ... */

SQL_API_RC SQL_API_FN

 sqlghupd (

unsigned short ObjectPartLen,

unsigned short NewLocationLen,

unsigned short NewDeviceTypeLen,

unsigned short NewCommentLen,

char * pObjectPart,

char * pNewLocation,

char * pNewDeviceType,

char * pNewComment,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

 API Parameters
ObjectPartLen

Input. A 2-byte unsigned integer specifying the length in bytes of the
pObjectPart string.

NewLocationLen
Input. A 2-byte unsigned integer specifying the length in bytes of the
pNewLocation string. Set to zero if a new location is not provided.

NewDeviceTypeLen
Input. A 2-byte unsigned integer specifying the length in bytes of the
pNewDeviceType string. Set to zero if a new device type is not provided.

NewCommentLen
Input. A 2-byte unsigned integer specifying the length in bytes of the
pNewComment string. Set to zero if a new comment is not provided.

pObjectPart
Input. A string specifying the identifier for the backup, restore, unload, or
load copy image. This parameter has the form of a time stamp with a
sequence number from 001 to 999.

pNewLocation
Input. A string specifying a new location for the backup, restore, unload, or
load copy image. Setting this parameter to NULL, or pointing to zero,
leaves the value unchanged.

pNewDeviceType
Input. A string specifying a new device type for storing the backup, restore,
unload, or load copy image. Setting this parameter to NULL, or pointing to
zero, leaves the value unchanged.

268 API Reference

sqluhupd - Update Recovery History File

pNewComment
Input. A string specifying a new comment to describe the entry. Setting this
parameter to NULL, or pointing to zero, leaves the comment unchanged.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax

UPDATE RECOVERY HISTORY USING :value

REXX API Parameters
value

A compound REXX host variable containing information pertaining to the
new location of a recovery history file entry. In the following, XXX
represents the host variable name:

XXX.0 Number of elements in the variable (must be between 1 and 4)

XXX.1 OBJECT_PART (time stamp with a sequence number from
001 to 999)

XXX.2 New location for the backup or copy image (this parameter is
optional)

XXX.3 New device used to store the backup or copy image (this
parameter is optional)

XXX.4 New comment (this parameter is optional).

 Sample Programs
C \sqllib\samples\c\rechist.c

COBOL \sqllib\samples\cobol\rechist.cbl

FORTRAN \sqllib\samples\fortran\rechist.f

REXX \sqllib\samples\rexx\rechist.cmd

 Usage Notes
This is an update function, and all information prior to the change is replaced and
cannot be recreated. These changes are not logged.

The recovery history file is used for recording purposes only. It is not used directly by
the restore or the roll-forward functions. During a restore, the location of the backup can
be specified, and the history file is useful for tracking this location. The information can
subsequently be provided to “sqlubkp - Backup Database” on page 230. Similarly, if the

 Chapter 1. Application Programming Interfaces 269

sqluhupd - Update Recovery History File

location of a load copy image is moved, roll-forward recovery must be informed of the
new location and storage media. For additional details, see the Administration Guide
and “sqluroll - Rollforward Database” on page 300.

 See Also
“sqluhcls - Close Recovery History File Scan” on page 254
“sqluhgne - Get Next Recovery History File Entry” on page 256
“sqluhops - Open Recovery History File Scan” on page 259
“sqluhprn - Prune Recovery History File” on page 264.

270 API Reference

sqluimpr - Import

sqluimpr - Import
Inserts data from an external file with a supported file format into a table or view. A
faster alternative is “sqluload - Load” on page 282.

 Authorization
¹ IMPORT using the INSERT option requires one of the following:

 sysadm
 dbadm

CONTROL privilege on the table or view
INSERT and SELECT privilege on the table or view.

¹ IMPORT to an existing table using the INSERT_UPDATE, REPLACE, or the
REPLACE_CREATE option, requires one of the following:

 sysadm
 dbadm

CONTROL privilege on the table or view.

¹ IMPORT to a table that does not exist using the CREATE, or the
REPLACE_CREATE option, requires one of the following:

 sysadm
 dbadm

CREATETAB authority on the database, and one of:
– IMPLICIT_SCHEMA authority on the database, if the schema name of the

table does not exist
– CREATEIN privilege on the schema, if the schema of the table exists.

 Required Connection
Database

API Include File
sqlutil.h

 Chapter 1. Application Programming Interfaces 271

sqluimpr - Import

C API Syntax

/* File: sqlutil.h */

/* API: Import */

/* ... */

SQL_API_RC SQL_API_FN

 sqluimpr (

char * pDataFileName,

sqlu_media_list * pLobPathList,

struct sqldcol * pDataDescriptor,

struct sqlchar * pActionString,

char * pFileType,

struct sqlchar * pFileTypeMod,

char * pMsgFileName,

 short CallerAction,

 struct sqluimpt_in* pImportInfoIn,

 struct sqluimpt_out* pImportInfoOut,

long * pNullIndicators,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlutil.h */

/* API: Import */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgimpr (

unsigned short DataFileNameLen,

unsigned short FileTypeLen,

unsigned short MsgFileNameLen,

char * pDataFileName,

sqlu_media_list * pLobPathList,

struct sqldcol * pDataDescriptor,

struct sqlchar * pActionString,

char * pFileType,

struct sqlchar * pFileTypeMod,

char * pMsgFileName,

 short CallerAction,

 struct sqluimpt_in* pImportInfoIn,

 struct sqluimpt_out* pImportInfoOut,

long * NullIndicators,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

272 API Reference

sqluimpr - Import

 API Parameters
DataFileNameLen

Input. A 2-byte unsigned integer representing the length in bytes of the
data file name.

FileTypeLen
Input. A 2-byte unsigned integer representing the length in bytes of the file
type.

MsgFileNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
message file name.

pDataFileName
Input. A string containing the path and the name of the external file from
which the data is to be imported.

pLobPathList
Input. An sqlu_media_list using media_type SQLU_LOCAL_MEDIA and the
sqlu_media_entry structure listing paths on the client where the LOB files
can be found.

pDataDescriptor
Input. Pointer to an sqldcol structure containing information about the
columns being selected for import from the external file. The value of the
dcolmeth field determines how the remainder of the information provided in
this parameter is interpreted by IMPORT. Valid values for this field during
an IMPORT (defined in sqlutil) are:
SQL_METH_N

Names
SQL_METH_P

Positions
SQL_METH_L

Locations
SQL_METH_D

Default.

If dcolmeth is SQL_METH_N, selection of columns from the external file is by
name.

If dcolmeth is SQL_METH_P, selection of columns from the external file is by
position.

If dcolmeth is SQL_METH_L, selection of columns from the external file is by
location. The database manager rejects an IMPORT call with a location
pair that is invalid because of any one of the following conditions:

¹ Either the beginning or the ending location is not in the range from 1 to
the largest signed 2-byte integer.

¹ The ending location is smaller than the beginning location.

¹ The input column width defined by the beginning/end location pair is
not compatible with the type and the length of the target column.

A location pair with both locations equal to zero indicates that a nullable
column is to be filled with nulls. If pDataDescriptor is NULL, or is set to

 Chapter 1. Application Programming Interfaces 273

sqluimpr - Import

SQL_METH_D, default selection of columns from the external file is done. In
this case, the number of columns and the column specification array are
both ignored. The first n columns of data in the external file are taken in
their natural order, where n is the number of database columns into which
the data is to be imported.

Anything that is not a valid specification of external columns, either by
name, position, location, or default, is an error.

For more information, see “SQLDCOL” on page 361.
pActionString

Input. Pointer to a structure containing a 2-byte length field, followed by an
array of characters. The array identifies the columns into which data is to
be imported.

The character array is of the form:

{INSERT|INSERT_UPDATE|REPLACE|CREATE|REPLACE_CREATE}

INTO tname [(tcolumn-list)]

INSERT
The imported data is to be added to the data in the table, and
the previously existing table data should not be changed.

INSERT_UPDATE
The imported rows are added for data with primary keys that
are not in the table, and are updated for data with matching
primary keys. This option is only valid when the target table
has a primary key, and the specified (or implied) list of target
columns being imported includes all columns for the primary
key. This option cannot be applied to views.

REPLACE
The previously existing table data is deleted before the
imported data is inserted into the table. The table definition
and index definitions are not disturbed. (Indexes are deleted
and replaced if indexixf is in FileTypeMod, and FileType is
SQL_IXF.) If the table is not already defined, an error is
returned.

Attention: If an error occurs after the existing data is deleted,
that data is lost.

CREATE
If the specified table name is not already defined, the table
definition and the row contents are created using the PC/IXF
information in the specified PC/IXF file. If the file was
previously exported by the database manager, indexes are
also created. If the specified table name is already defined, an
error is returned. This option is valid for the PC/IXF file format
only.

274 API Reference

sqluimpr - Import

REPLACE_CREATE
If the specified table name is already defined, the table row
contents are replaced using the PC/IXF row information in the
PC/IXF file. If the table name is not already defined, the table
definition and row contents are created using the PC/IXF
information in the PC/IXF file. If the PC/IXF file was exported
by the database manager, indexes are also created. This
option is valid for the PC/IXF file format only.

Attention: If an error occurs after the existing data is deleted,
that data is lost.

Additional elements of the pActionString array are:

tname
The name of the table or view into which the data is to be
inserted. Can use an alias for REPLACE, INSERT_UPDATE,
or INSERT, except in the case of a down-level server, when a
qualified or unqualified name should be used. If it is a view, it
cannot be a read-only view.

tcolumn-list
A list of column names within the table or view into which the
data is to be inserted. Commas must separate the list
elements. If column names are not present, column names as
defined in CREATE TABLE and ALTER TABLE statements are
used.

The tname and the tcolumn-list correspond to the tablename and the
colname list of SQL INSERT statements, and have the same restrictions.

The columns in tcolumn-list and the external columns (either specified or
implied) are matched according to their position in the list or the structure
(data from the first column specified in the sqldcol structure is inserted into
the table or view field corresponding to the first element of the tcolumn-list).

If unequal numbers of columns are specified, the number of columns
actually processed is the lesser of the two numbers. This could result in an
error (because there are no values to place in some non-nullable table
fields) or an informational message (because some external file columns
are ignored).

pFileType
Input. A string that indicates the format of the data within the external file.
Supported external file formats (defined in sqlutil) are:
SQL_DEL

Delimited ASCII, for exchange with dBase, BASIC, and the IBM
Personal Decision Series programs, and many other database
managers and file managers.

SQL_ASC
Nondelimited ASCII.

 Chapter 1. Application Programming Interfaces 275

sqluimpr - Import

SQL_WSF
Worksheet formats for exchange with Lotus Symphony and 1-2-3
programs.

SQL_IXF
PC version of the Integrated Exchange Format, the preferred method
for exporting data from a table so that it can be imported later into the
same table or into another database manager table.

pFileTypeMod
Input. A pointer to a structure containing a 2-byte long field, followed by an
array of characters that specify one or more processing options. If this
pointer is NULL, or the structure pointed to has zero characters, this action
is interpreted as selection of a default specification.

Not all options can be used with all of the supported file types.

For more information, see the Command Reference.
pMsgFileName

Input. A string containing the destination for error, warning, and
informational messages. Can be the path and the name of an operating
system file or a standard device. If a file already exists, it is appended to. If
it does not exist, a file is created.

CallerAction
Input. The action requested by the caller. Valid values (defined in sqlutil)
are:
SQLU_INITIAL

Initial call. CallerAction must be set to this value on the first call to the
API.

If the initial call or any subsequent call returns and requires the caller to
perform some action prior to completing the requested import, the caller
action must be set to one of the following:
SQLU_CONTINUE

Continue processing. The action requested by the utility has completed,
so the system can continue processing the initial request.

SQLU_TERMINATE
Terminate processing. The action requested was not performed, so the
system terminates the initial request.

pImportInfoIn
Input. An input structure. For information about this structure, see
“SQLUIMPT-IN” on page 430.

pImportInfoOut
Output. An output structure. For information about this structure, see
“SQLUIMPT-OUT” on page 431.

NullIndicators
Input. For ASC files only. An array of integers that indicate whether or not
the column data is nullable. The number of elements in this array must
match the number of columns in the input file; there is a one-to-one
ordered correspondence between the elements of this array and the
columns being imported from the data file. That is, the number of elements
must equal the dcolnum field of the pDataDescriptor parameter. Each

276 API Reference

sqluimpr - Import

element of the array contains a number identifying a column in the data file
that is to be used as a null indicator field, or a zero indicating that the table
column is not nullable. If the element is not zero, the identified column in
the data file must contain a Y or an N. A Y indicates that the table column
data is null, and N indicates that the table column data is not null.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax

IMPORT FROM datafile OF filetype

[MODIFIED BY :filetmod]

[METHOD {L|N|P} USING :dcoldata]

[COMMITCOUNT :commitcnt] [RESTARTCOUNT :restartcnt]

MESSAGES msgfile

{INSERT|REPLACE|CREATE|INSERT_UPDATE|REPLACE_CREATE}

INTO tname [(:columns)]

[OUTPUT INTO :output]

CONTINUE IMPORT

STOP IMPORT

REXX API Parameters
datafile

Name of the file from which the data is to be imported.
filetype

The format of the data within the external file. The file formats supported
are:

DEL Delimited ASCII

ASC Nondelimited ASCII

WSF Worksheet formats

IXF PC version of Integrated Exchange Format.

filetmod
A host variable containing additional information unique to the chosen file
type. If no MODIFIED BY clause is specified, the default filetmod is used.

L|N|P
A character that indicates the method to be used to select columns within
the external file. Valid values are:

L Location

 Chapter 1. Application Programming Interfaces 277

sqluimpr - Import

N Name

P Position.

dcoldata
A compound REXX host variable containing information about the columns
selected for import from the external file. The content of the structure
depends upon the method selected. In the following description, XXX is the
name of the host variable:

 ¹ Location method

XXX.0 Number of elements in the remainder of the host variable
XXX.1 A number representing the starting location of this column

in the input file. This column is used as the first column in
the database

XXX.2 A number representing the ending location of the column
XXX.3 A number representing the beginning location of this

column in the input file. This column becomes the second
column in the database

XXX.4 A number representing the ending location of the column
XXX.5 and so on.

 ¹ Name method

XXX.0 Number of column names contained within the host
variable

XXX.1 First name
XXX.2 Second name
XXX.3 and so on.

 ¹ Position method

XXX.0 Number of column positions contained within the host
variable

XXX.1 A column position in the external file
XXX.2 A column position in the external file
XXX.3 and so on.

tname
Name of the target table or view. Data cannot be imported to a read-only
view.

columns
A REXX host variable containing the names of columns within the table or
view into which the data is to be inserted. In the following, XXX is the
name of the host variable:

XXX.0 Number of columns

XXX.1 First column name

XXX.2 Second column name

XXX.3 and so on.

278 API Reference

sqluimpr - Import

msgfile
File or device name where error and warning messages are sent. Path can
be used for files.

commitcnt
A host variable specifying that a COMMIT is to be performed after every
commitcnt imported records.

restartcnt
A host variable specifying that an import is to be started at record
(restartcnt+1). The first restartcnt records are to be skipped.

output
A compound REXX host variable into which information from the import will
be passed. In the following, XXX is the name of the host variable:

XXX.1 Number of records read from the file during import

XXX.2 Number of records skipped before inserting or updating begins

XXX.3 Number of rows inserted into the target table

XXX.4 Number of rows of the target table updated with information
from the imported records

XXX.5 Number of records that could not be imported

XXX.6 Number of records imported successfully and committed to the
database, including rows inserted, rows updated, rows
skipped, and rows rejected.

 Sample Programs
C \sqllib\samples\c\impexp.sqc

COBOL \sqllib\samples\cobol\impexp.sqb

FORTRAN \sqllib\samples\fortran\impexp.sqf

REXX \sqllib\samples\rexx\impexp.cmd

 Usage Notes
IMPORT accepts input data with minor incompatibility problems (for example, character
data can be imported using padding or truncation, and numeric data can be imported
with a different numeric data type), but data with major incompatibility problems is not
accepted.

IMPORT (in PC/IXF format) can be used to recover a previously exported table. The
table returns to the state it was in when exported. This is distinct from the backup utility.

An INSERT, INSERT_UPDATE, REPLACE, or REPLACE_CREATE keyword in the
parameter list controls whether the existing data in the table or view is deleted before
the rows of imported data are added:

INSERT
Inserts new rows, has no effect on existing rows.

 Chapter 1. Application Programming Interfaces 279

sqluimpr - Import

INSERT_UPDATE
Inserts new rows, and updates existing rows that have matching keys.

REPLACE
Deletes all rows and repopulates the table.

REPLACE_CREATE
If the table exists, deletes all rows and repopulates the table. If the table does not
exist, creates and populates the table.

The caller action repeat call facility provides support for multiple PC/IXF files created on
platforms that support diskettes.

Be sure to complete all table operations and release all locks before calling this API.
This can be done by issuing a COMMIT after closing all cursors opened WITH HOLD,
or by issuing a ROLLBACK.

When importing part of a file after a system failure, record the number of records
imported every time a COMMIT is done. Whenever a COMMIT is performed, two
messages are written to the message file: one indicates the number of records to be
committed, and the other is written after a successful COMMIT. When restarting the
import after a failure, specify the number of records to skip, as determined from the last
successful COMMIT.

Importing IXF files to a remote database is much faster if the IXF file is on a hard drive
rather than on diskettes. Non-default values for pDataDescriptor, or specifying an
explicit list of table columns in the pActionString, makes importing to a remote database
slower.

Importing to a remote database requires enough disk space on the server for a copy of
the input data file, the output message file, and potential growth in the size of the
database.

If IMPORT is run against a remote database, and the output message file is very long
(more than 60KB), the message file returned to the user on the client may be missing
messages from the middle of the import. The first 30KB of message information and the
last 30KB of message information are always retained.

After the old rows are deleted during a REPLACE or REPLACE_CREATE, the utility
performs an automatic COMMIT. Consequently, if the system fails, or the application
interrupts the database manager after the records are deleted, part or all of the old data
is lost. Ensure that the old data is no longer needed before using these options.

When the log becomes full during a CREATE, REPLACE, or REPLACE_CREATE, the
utility performs an automatic COMMIT on inserted records. If the system fails, or the
application interrupts the database manager after an automatic COMMIT, a table with
partially filled data remains in the database. Use the REPLACE or the
REPLACE_CREATE option to execute the whole import again, or use INSERT with the
restartcount parameter set to the number of rows successfully imported.

280 API Reference

sqluimpr - Import

By default, automatic commits are not done for the INSERT or the INSERT_UPDATE
option. However, they are done if the commitcnt parameter is not zero. A full log results
in a rollback.

IMPORT adds rows to the target table using the SQL INSERT statement. The utility
issues one INSERT statement for each row of data in the input file. If an INSERT
statement fails, one of two actions result:

¹ If it is likely that subsequent INSERT statements can be successful, a warning
message is written to the message file, and processing continues.

¹ If it is likely that subsequent INSERT statements will fail, and there is potential for
database damage, an error message is written to the message file, and processing
halts.

Data cannot be imported to a system table.

Views cannot be created with the IMPORT API.

One cannot REPLACE or REPLACE_CREATE an object table if it has any dependents
other than itself, or an object view if its base table has any dependents (including itself).

To replace such a table or a view, do the following:

1. Drop all foreign keys in which the table is a parent.
 2. Execute IMPORT.

3. Alter the table to recreate the foreign keys.

If an error occurs while recreating foreign keys, modify the data so that it will maintain
referential integrity.

Referential constraints and key definitions are not preserved when creating tables using
the PC/IXF file format.

 See Also
“sqluexpr - Export” on page 241
“sqluload - Load” on page 282.

 Chapter 1. Application Programming Interfaces 281

sqluload - Load

sqluload - Load
Loads data from files, tapes, or named pipes into a DB2 table.

 Scope
This API only affects the node on which it is executed.

In a multi-node environment, this API can be used only with ASC or DEL files. IXF files
can be loaded only if the table exists on a single node nodegroup.

 Authorization
One of the following:

 sysadm
 dbadm

 Required Connection
Database. If implicit connect is enabled, a connection to the default database is
established.

Instance. An explicit attachment is not required. If a connection to the database has
been established, an implicit attachment to the local instance is attempted.

API Include File
sqlutil.h

282 API Reference

sqluload - Load

C API Syntax

/* File: sqlutil.h */

/* API: Load */

/* ... */

SQL_API_RC SQL_API_FN

 sqluload (

sqlu_media_list * pDataFileList,

sqlu_media_list * pLobPathList,

struct sqldcol * pDataDescriptor,

struct sqlchar * pActionString,

char * pFileType,

struct sqlchar * pFileTypeMod,

char * pLocalMsgFileName,

char * pRemoteMsgFileName,

 short CallerAction,

struct sqluload_in * pLoadInfoIn,

struct sqluload_out * pLoadInfoOut,

sqlu_media_list * pWorkDirectoryList,

sqlu_media_list * pCopyTargetList,

long * pNullIndicators,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

 Chapter 1. Application Programming Interfaces 283

sqluload - Load

Generic API Syntax

/* File: sqlutil.h */

/* API: Load */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgload (

unsigned short FileTypeLen,

unsigned short LocalMsgFileNameLen,

unsigned short RemoteMsgFileNameLen,

sqlu_media_list * pDataFileList,

sqlu_media_list * pLobPathList,

struct sqldcol * pDataDescriptor,

struct sqlchar * pActionString,

char * pFileType,

struct sqlchar * pFileTypeMod,

char * pLocalMsgFileName,

char * pRemoteMsgFileName,

 short CallerAction,

struct sqluload_in * pLoadInfoIn,

struct sqluload_out * pLoadInfoOut,

sqlu_media_list * pWorkDirectoryList,

sqlu_media_list * pCopyTargetList,

long * pNullIndicators,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

 API Parameters
FileTypeLen

Input. A 2-byte unsigned integer representing the length in bytes of the file
type parameter.

LocalMsgFileNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
local message file name parameter.

RemoteMsgFileNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
remote message file name parameter.

pDataFileList
Input. A pointer to an sqlu_media_list structure used to provide a list of
source files, devices, vendors or pipes.

The information provided in this structure depends on the value of the
media_type field. Valid values (defined in sqlutil) are:
SQLU_SERVER_LOCATION

If the media_type field is set to this value, the caller provides
information via sqlu_location_entry structures. The sessions field

284 API Reference

sqluload - Load

indicates the number of sqlu_location_entry structures provided. This is
used for files, devices, and named pipes.

SQLU_ADSM_MEDIA
If the media_type field is set to this value, the sqlu_vendor structure is
used, where filename is the unique identifier for the data to be loaded.
There should only be one sqlu_vendor entry, regardless of the value of
sessions. The sessions field indicates the number of ADSM sessions to
initiate. LOAD will start the sessions with different sequence numbers,
but with the same data in the one sqlu_vendor entry.

SQLU_OTHER_MEDIA
If the media_type field is set to this value, the sqlu_vendor structure is
used, where shr_lib is the shared library name, and filename is the
unique identifier for the data to be loaded. There should only be one
sqlu_vendor entry, regardless of the value of sessions. The sessions
field indicates the number of other vendor sessions to initiate. LOAD
will start the sessions with different sequence numbers, but with the
same data in the one sqlu_vendor entry.

Wherever a file name is provided, it should be fully qualified.
pLobPathList

Input. A pointer to an sqlu_media_list structure. For IXF, ASC, and DEL
filetypes, a list of fully qualified paths or devices to identify the location of
the individual LOB files to be loaded. The file names are found in the
IXF/ASC/DEL files, and are appended to the paths provided.

The information provided in this structure depends on the value of the
media_type field. Valid values (defined in sqlutil) are:
SQLU_LOCAL_MEDIA

If set to this value, the caller provides information via sqlu_media_entry
structures. The sessions field indicates the number of sqlu_media_entry
structures provided.

SQLU_ADSM_MEDIA
If set to this value, the sqlu_vendor structure is used, where filename is
the unique identifier for the data to be loaded. There should only be
one sqlu_vendor entry, regardless of the value of sessions. The
sessions field indicates the number of ADSM sessions to initiate. LOAD
will start the sessions with different sequence numbers, but with the
same data in the one sqlu_vendor entry.

SQLU_OTHER_MEDIA
If set to this value, the sqlu_vendor structure is used, where shr_lib is
the shared library name, and filename is the unique identifier for the
data to be loaded. There should only be one sqlu_vendor entry,
regardless of the value of sessions. The sessions field indicates the
number of other vendor sessions to initiate. LOAD will start the
sessions with different sequence numbers, but with the same data in
the one sqlu_vendor entry.

pDataDescriptor
Input. Pointer to an sqldcol structure containing information about the
columns being selected for loading from the external file.

 Chapter 1. Application Programming Interfaces 285

sqluload - Load

If the pFileType parameter is set to SQL_ASC, the dcolmeth field of this
structure must be SQL_METH_L. The user indicates the start and end
locations for each column to be loaded.

If the file type is SQL_DEL, dcolmeth can be either SQL_METH_P or
SQL_METH_D. If it is SQL_METH_P, the user must provide the column position
from which the data comes. If it is SQL_METH_D, the first column in the file
will be loaded into the first column of the table, and so on.

If the file type is SQL_IXF, dcolmeth can be one of SQL_METH_P, SQL_METH_D,
or SQL_METH_N. The rules for DEL files apply here, except that SQL_METH_N

indicates that file column names are to be provided in the sqldcol structure.

For more information, see “SQLDCOL” on page 361.
pActionString

Input. Specifies an action that affects the table. Pointer to an sqlchar
structure that contains the following string:

"INSERT|REPLACE|RESTART|TERMINATE

into tbname [(column_list)][FOR EXCEPTION e_tbname]"

INSERT
Adds the loaded data to the table without changing the existing table
data.

REPLACE
Deletes all existing data from the table, and inserts the loaded data.
The table definition and index definitions are not changed.

RESTART
Restarts LOAD after a previous load was interrupted.

It is important to keep track of the last commit point. This information is
stored in the message file and is passed to LOAD. Use “sqluqry - Load
Query” on page 291 to get this information if the database connection
was lost during the load.

TERMINATE
Terminates a previously interrupted load and moves the table spaces in
which the table resides from load pending state to recovery pending
state. The table spaces cannot be used until a backup has been
restored and the table spaces have been rolled forward. A restart
should be issued before attempting to complete an interrupted load.

Note: This option is not recommended for general use; it should only
be selected if an unrecoverable error has occurred.

into tbname
Specifies the table within the database into which the data is to be
loaded. The table cannot be a system catalog table. An alias, or the
fully qualified or unqualified table name can be specified. A qualified
table name is in the form schema.tablename. If an unqualified table
name is specified, the table will be qualified with the current
authorization ID.

286 API Reference

sqluload - Load

(column_list)
Specifies the columns within the table into which the data is to be
inserted. The column names must be separated by commas. If a name
contains spaces or lowercase characters, it must be enclosed by
quotation marks.

FOR EXCEPTION e_tbname
Specifies the exception table into which rows in error will be copied.
Any row that is in violation of a unique index or a primary key index is
copied.

pFileType
Input. A string that indicates the format of the data within the external file.
Supported external file formats (defined in sqlutil) are:
SQL_ASC

Non-delimited ASCII.
SQL_DEL

Delimited ASCII.
SQL_IXF

IXF (integrated exchange format, PC version) exported from the same
or from another DB2 table.

For more information about file formats, see the Command Reference.
pFileTypeMod

Input. A pointer to a structure containing a 2-byte long field, followed by an
array of characters that specify one or more processing options. If this
pointer is NULL, or the structure pointed to has zero characters, this action
is interpreted as selection of a default specification.

Not all options can be used with all of the supported file types.

For more information, see the Command Reference.
pLocalMsgFileName

Input. A string containing the local file name to be used for output
messages.

pRemoteMsgFileName
Input. A string containing the base name to be used on the server for
temporary files. Temporary files are created to store messages,
consistency points, and to delete phase information. Different extensions
will be appended to this name for the various files. For more information
about remote files, see page 289).

CallerAction
Input. Specifies an action that affects the utility. Valid values (defined in
sqlutil) are:
SQLU_INITIAL

Initial call. Must be set to this value or to SQLU_NOINTERRUPT for the
first call.

SQLU_CONTINUE
Continue processing. The action requested by the utility has completed,
so the system can continue processing the request. This option could
be specified, for example, after a tape has been changed.

 Chapter 1. Application Programming Interfaces 287

sqluload - Load

SQLU_TERMINATE
Terminate processing. Causes the load utility to exit prematurely,
leaving the table spaces being loaded in RECOVER_PENDING and
QUIESCE_EXCLUSIVE state.

SQLU_NOINTERRUPT
Initial call. Do not suspend processing. Must be set to this value or to
SQLU_INITIAL for the first call.

SQLU_ABORT
Abort processing. Causes the load utility to exit prematurely, leaving the
table spaces being loaded in LOAD_PENDING state. This option
should be specified if further processing of the data is not to be done.

SQLU_RESTART
Restart processing.

SQLU_DEVICE_TERMINATE
Terminate a single device. This option should be specified if the utility
is to stop reading data from the device, but further processing of the
data is to be done.

pLoadInfoIn
Input. Optional pointer to the sqluload_in structure containing additional
input parameters. See “SQLULOAD-IN” on page 433.

pLoadInfoOut
Output. Optional pointer to the sqluload_out structure containing additional
output parameters. See “SQLULOAD-OUT” on page 437.

pWorkDirectoryList
Input. Optional work directories used for sorting index keys. If not provided,
the sqllib/tmp directory is used.

pCopyTargetList
Input. If a copy image is to be created, this parameter contains target
paths, devices, or a shared library to which the copy image is to be written.

The values provided in this structure depend on the value of the
media_type field. Valid values for this field (defined in sqlutil) are:
SQLU_LOCAL_MEDIA

If the copy is to be written to local media, set the media_type to this
value and provide information about the targets in sqlu_media_entry
structures. The sessions field specifies the number of sqlu_media_entry
structures provided.

SQLU_ADSM_MEDIA
If the copy is to be written to ADSM, use this value. No further
information is required.

SQLU_OTHER_MEDIA
If a vendor product is to be used, use this value and provide further
information via an sqlu_vendor structure. Set the shr_lib field of this
structure to the shared library name of the vendor product. Provide only
one sqlu_vendor entry, regardless of the value of sessions. The
sessions field specifies the number of sqlu_media_entry structures
provided. LOAD will start the sessions with different sequence
numbers, but with the same data provided in the one sqlu_vendor
entry.

288 API Reference

sqluload - Load

pNullIndicators
Input. For ASC files only. An array of integers that indicate whether or not
the column data is nullable. There is a one-to-one ordered correspondence
between the elements of this array and the columns being loaded from the
data file. That is, the number of elements must equal the dcolnum field of
the pDataDescriptor parameter. Each element of the array contains a
number identifying a location in the data file that is to be used as a null
indicator field, or a zero indicating that the table column is not nullable. If
the element is not zero, the identified location in the data file must contain
a Y or an N. A Y indicates that the table column data is null, and N indicates
that the table column data is not null.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

 Sample Programs
C \sqllib\samples\c\tload.sqc

COBOL \sqllib\samples\cobol\tload.sqb

FORTRAN \sqllib\samples\fortran\tload.sqf

 Usage Notes
Data is loaded in the sequence that appears in the input file. If a particular sequence is
desired, the data should be sorted before a load is attempted.

The load utility builds indexes based on existing definitions. The exception tables are
used to handle duplicates on unique keys. The utility does not perform referential
integrity or constraint checking. If these are included in the table definition, the tables
are placed in check pending state, and the user must either force the check flag, or
execute the SET CONSTRAINTS statement.

Remote Files

Remote file is a base file name to which DB2 appends different extensions to create
files used by other functions (for example, .msg for sqluqry).

The remote file resides on the server machine and is accessed by the DB2 instance
exclusively. Therefore, it is imperative that any file name qualification given to this
parameter reflects the directory structure of the server, not the client, and that the DB2
instance owner has read and write permission on this file. In addition, the user must

 Chapter 1. Application Programming Interfaces 289

sqluload - Load

ensure that two loads are not issued that have the same fully-qualified remote file
name.

There are several ways that the remote file name can be selected and qualified when
the user has just given a partially qualified name, or no name at all:

¹ No remote file name is given in a load operation where the user is on the same
machine as the database instance. In this case, the load utility will use the name
db2utmp and qualify it with the current working directory of the user. Two loads
from the same directory with this option will clash on the use of the remote file
name, therefore this option is not recommended.

¹ No remote file name is given in a load operation, where the user is on a different
machine than the database instance. In this case, the load utility will generate a
name that will reside in the database directory. This effectively prevents the user
from using the load query facility, since it requires the name of the remote file. In
addition, the file name generated is not guaranteed to be unique, and therefore
clashes may occur between different load operations. Therefore this option is not
recommended.

¹ A non-fully-qualified file name is given in a load operation, where the user is on the
same machine as the database instance. In this case the name is qualified by
using the current directory of the user. The user must ensure that two loads are not
issued from the same directory with the same remote file name.

¹ A non-fully-qualified file name is given in a load operation, where the user is on a
different machine than the database instance. In this case the load utility will reject
the file name. It must be fully qualified from the client.

¹ A fully-qualified file name is given in a load operation. This will be the file name
used. The user must ensure that two loads are not issued with the same remote
file name. This is the recommended usage.

Note: In an MPP system, the remote file must reside on a local disk, not on an NFS
mount. If the file is on an NFS mount, there will be a significant performance
decrement during the load operation.

 See Also
“sqluqry - Load Query” on page 291
“sqluvqdp - Quiesce Tablespaces for Table” on page 324.

290 API Reference

sqluqry - Load Query

sqluqry - Load Query
Queries the server as to the status of the load.

 Authorization
None

 Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Load Query */

/* ... */

SQL_API_RC SQL_API_FN

 sqluqry (

char * pLocalMsgFileName,

char * pRemoteMsgFileName,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlutil.h */

/* API: Load Query */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgqry (

unsigned short LocalMsgFileNameLen,

unsigned short RemoteMsgFileNameLen,

char * pLocalMsgFileName,

char * pRemoteMsgFileName,

struct sqlca * pSqlca);

/* ... */

 API Parameters
LocalMsgFileNameLen

Input. A 2-byte unsigned integer representing the length in bytes of the
name of the local message file.

 Chapter 1. Application Programming Interfaces 291

sqluqry - Load Query

RemoteMsgFileNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
name of the remote message file.

pLocalMsgFileName
Input. A string containing the name of the local file to be used for output
messages.

pRemoteMsgFileName
Input. A string containing the base name to be used on the server for
temporary files of a load currently in progress.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

 Sample Programs
C \sqllib\samples\c\qload.sqc

COBOL \sqllib\samples\cobol\qload.sqb

FORTRAN \sqllib\samples\fortran\qload.sqf

 Usage Notes
This API reads the status of the load from the file specified by pRemoteMsgFileName
and places the results in the file specified by pLocalMsgFileName. The remote file
specified will be the same as the remote file specified on the call to the LOAD API.

292 API Reference

sqlureot - Reorganize Table

sqlureot - Reorganize Table
Reorganizes a table by reconstructing the rows to eliminate fragmented data, and by
compacting information.

 Scope
This API affects all nodes in the nodegroup.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint
 dbadm

CONTROL privilege on the table.

 Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Reorganize Table */

/* ... */

SQL_API_RC SQL_API_FN

 sqlureot (

_SQLOLDCHAR * pTableName,

_SQLOLDCHAR * pIndexName,

_SQLOLDCHAR * pTablespace,

struct sqlca * pSqlca);

/* ... */

 Chapter 1. Application Programming Interfaces 293

sqlureot - Reorganize Table

Generic API Syntax

/* File: sqlutil.h */

/* API: Reorganize Table */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgreot (

unsigned short TablespaceLen,

unsigned short IndexNameLen,

unsigned short TableNameLen,

struct sqlca * pSqlca,

_SQLOLDCHAR * pTablespace,

_SQLOLDCHAR * pIndexName,

_SQLOLDCHAR * pTableName);

/* ... */

 API Parameters
TablespaceLen

Input. A 2-byte unsigned integer representing the length in bytes of the
table space string. Set to zero if no table space is specified.

IndexNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
index name. Set to zero if no index is specified.

TableNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
table name.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

pTablespace
Input. A string containing the name of the temporary table space if the
caller wants a secondary work area when reorganizing a table. May be
NULL.

pIndexName
Input. The fully qualified index name to be used when reorganizing the user
table. The records in the reorganized table are physically ordered
according to this index. Setting this parameter to NULL causes the data to
be reorganized in no specific order.

pTableName
Input. Name of the table to be reorganized. Can be an alias, except in the
case of a down-level server, when the fully qualified name of the table
must be used.

294 API Reference

sqlureot - Reorganize Table

REXX API Syntax

REORG TABLE tablename [INDEX iname] [USE tablespace_id]

REXX API Parameters
tablename

The fully qualified name of the table.
iname

The fully qualified index name used to reorganize the table. If an index
name is not specified, the data is reorganized in no specific order.

tablespace_id
The name of a temporary table space.

 Sample Programs
C \sqllib\samples\c\dbstat.sqc

COBOL \sqllib\samples\cobol\dbstat.sqb

FORTRAN \sqllib\samples\fortran\dbstat.sqf

REXX \sqllib\samples\rexx\dbstat.cmd

 Usage Notes
Tables that have been modified so many times that data is fragmented and access
performance is noticeably slow are candidates for reorganization. Use "REORGCHK" in
the Command Reference to determine whether a table needs reorganizing. Be sure to
complete all database operations and release all locks before calling REORGANIZE
TABLE. This may be done by issuing a COMMIT after closing all cursors opened
WITH HOLD, or by issuing a ROLLBACK. After reorganizing a table, use “sqlustat -
Runstats” on page 319 to update the table statistics, and “sqlarbnd - Rebind” on
page 23 to rebind the packages that use this table.

If the table is partitioned onto several nodes, and the table reorganization fails on any
of the affected nodes, then only the failing nodes will have the table reorganization
rolled back.

Note: If the reorganization is not successful, temporary files should not be deleted.
The database manager uses these files to recover the database.

If the name of an index is specified, the database manager reorganizes the data
according to the order in the index. To maximize performance, specify an index that is
often used in SQL queries.

REORGANIZE TABLE cannot be used on views.

REORGANIZE TABLE cannot be used on a DMS table while an online backup of a
table space in which the table resides is being performed.

 Chapter 1. Application Programming Interfaces 295

sqlureot - Reorganize Table

To complete a table space roll-forward recovery following a table reorganization, both
data and LONG table spaces must be roll-forward enabled.

If the table contains LOB columns that do not use the COMPACT option, the LOB
DATA storage object can be significantly larger following table reorganization. This can
be a result of the order in which the rows were reorganized, and the types of table
spaces used (SMS/DMS).

DB2 Version 2 servers do not support down-level client requests to reorganize a table.
Since pre-Version 2 servers do not support table spaces, the pTablespace parameter is
treated as the Version 1 path parameter, when Version 2 clients are used with a
down-level server.

If a Version 2 client requests to reorganize a table on a Version 2 server, and that
request includes a path instead of a temporary table space in the pTablespace
parameter (for example, an old application, specifying a temporary file path, being
executed on Version 2 clients), REORG chooses a temporary table space in which to
place the work files on behalf of the user. A valid temporary table space name
containing a path separator character (/ or \) should not be specified, because it will be
interpreted as a temporary path (pre-Version 2 request), and REORG will choose a
temporary table space on behalf of the user.

 See Also
“sqlarbnd - Rebind” on page 23
“sqlustat - Runstats” on page 319.

296 API Reference

sqlurlog - Asynchronous Read Log

sqlurlog - Asynchronous Read Log
Provides the caller with the ability to extract certain log records from the DB2 Common
Server database logs, and to query the Log Manager for current log state information.
This API can only be used on databases with recoverable database logs (the
configuration parameters LOGRETAIN or USEREXIT enabled).

 Authorization
One of the following:

 sysadm
 dbadm

 Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Asynchronous Read Log */

/* ... */

SQL_API_RC SQL_API_FN

 sqlurlog (

unsigned long CallerAction,

SQLU_LSN * pStartLsn,

SQLU_LSN * pEndLsn,

char * pLogBuffer,

unsigned long LogBufferSize,

SQLU_RLOG_INFO * pReadLogInfo,

struct sqlca * pSqlca);

/* ... */

 API Parameters
CallerAction

Input. Specifies the action to be performed.
SQLU_RLOG_READ

Read the database log from the starting log sequence to the ending log
sequence number and return all propagatable log records within this
range.

SQLU_RLOG_READ_SINGLE
Read a single log record (propagatable or not) identified by the starting
log sequence number.

 Chapter 1. Application Programming Interfaces 297

sqlurlog - Asynchronous Read Log

SQLU_RLOG_QUERY
Query the database log. Results of the query will be sent back via the
SQLU_RLOG_INFO structure (see “SQLU-RLOG-INFO” on page 422).

pStartLsn
Input. The starting log sequence number specifies the starting relative byte
address for the reading of the log. This value must be the start of an actual
log record.

pEndLsn
Input. The ending log sequence number specifies the ending relative byte
address for the reading of the log. This value must be greater than
startLsn, and does not need to be the end of an actual log record.

pLogBuffer
Output. The buffer where all the propagatable log records read within the
specified range are stored sequentially. This buffer must be large enough
to hold a single log record. As a guideline, this buffer should be a minimum
of 32 bytes. Its maximum size is dependent on the size of the requested
range. Each log record in the buffer is prefixed by a six byte lsn (log
sequence number), representing the lsn of the following log record.

LogBufferSize
Output. Specifies the size, in bytes, of the log buffer.

pReadLogInfo
Output. A structure detailing information regarding the call and the
database log. For more information about this structure, see
“SQLU-RLOG-INFO” on page 422.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

 Usage Notes
If the requested action is to read the log, the caller will provide a Log Sequence
Number (lsn) range and a buffer to hold the log records. The ASYNCHRONOUS READ
LOG API reads the log sequentially, bounded by the requested lsn range, and returns
log records associated with tables having the DATA CAPTURE option CHANGES, and
an SQLU_RLOG_INFO structure with the current active log information. If the
requested action is query, the API returns an SQLU_RLOG_INFO structure with the
current active log information.

To use the Asynchronous Log Reader, first query the database log for a valid starting
lsn. Following the query call, the read log information structure (SQLU-RLOG-INFO) will
contain a valid starting lsn (in the initialLSN member), to be used on a read call. The
end of the current active log will be in the curActiveLSN member of the read log
information structure. The value used as the ending lsn on a read can be one of the
following:

¹ The value of the curActiveLSN
¹ A value greater than initialLSN
¹ FFFF FFFF FFFF which is interpreted by the asynchronous log reader as the end of

the current log.

298 API Reference

sqlurlog - Asynchronous Read Log

For more information about the read log information structure, see “SQLU-RLOG-INFO”
on page 422.

The propagatable log records read within the starting and ending lsn range are returned
in the log buffer. A log record does not contain its lsn, it is contained in the buffer
before the actual log record. Descriptions of the various DB2 Common Server log
records returned by sqlurlog can be found in Appendix F, “DB2 Common Server Log
Records” on page 501.

After the initial read, in order to read the next sequential log record, add 1 to the last
read lsn returned in SQLU-RLOG-INFO. Resubmit the call, with this new starting lsn
and a valid ending lsn. The next block of records is then read. An sqlca code of
SQLU_RLOG_READ_TO_CURRENT means the log reader has read to the end of the
current active log.

 Chapter 1. Application Programming Interfaces 299

sqluroll - Rollforward Database

sqluroll - Rollforward Database
Recovers a database by applying transactions recorded in the database log files. Called
after a database or a table space backup has been restored, or if any table spaces
have been taken offline by the database due to a media error. The database must be
recoverable (that is, either logretain, userexit, or both of these database configuration
parameters must be set on) before the database can be recovered with roll-forward
recovery.

 Scope
In a multi-node environment, this API can only be called from the catalog node. A
database or table space rollforward call specifying a point-in-time affects all nodes that
are listed in the db2nodes.cfg file. A database or table space rollforward call specifying
end of logs affects the nodes that are specified. If no nodes are specified, it affects all
nodes that are listed in the db2nodes.cfg file.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
None. This API establishes a database connection.

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Rollforward Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqluroll (

struct rfwd_input * pRfwdInput,

struct rfwd_output * pRfwdOuput,

struct sqlca * pSqlca);

/* ... */

300 API Reference

sqluroll - Rollforward Database

Generic API Syntax

/* File: sqlutil.h */

/* API: Rollforward Database */

/* ... */

SQL_API_RC SQL_API_RN

 sqlgroll (

struct grfwd_input * grfwdin,

struct rfwd_output * rfwdout,

struct sqlca * sqlca);

SQL_STRUCTURE grfwd_input

{

unsigned short DbAliasLen,

unsigned short StopTimeLen,

unsigned short UserNameLen,

unsigned short PasswordLen,

unsigned short OverflowLogPathLen,

unsigned long Version,

char * pDbAlias,

unsigned short CallerAction,

char * pStopTime,

char * pUserName,

char * pPassword,

char * pOverflowLogPath,

unsigned short NumChngLgOvrflw,

struct sqlurf_newlogpath * pChngLogOvrflw,

unsigned short ConnectMode,

struct sqlu_tablespace_bkrst_list * pTablespaceList,

 short AllNodeFlag,

 short NumNodes,

SQL_PDB_NODE_TYPE * pNodeList,

 short NumNodeInfo

}

/* ... */

 API Parameters
pRfwdInput

Input. A pointer to the rfwd_input structure. For more information about this
structure, see “RFWD-INPUT” on page 334.

pRfwdOutput
Output. A pointer to the rfwd_output structure. For more information about
this structure, see “RFWD-OUTPUT” on page 337.

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

 Chapter 1. Application Programming Interfaces 301

sqluroll - Rollforward Database

StopTimeLen
Input. A 2-byte unsigned integer representing the length in bytes of the
stop time parameter. Set to zero if no stop time is provided.

UserNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
user name. Set to zero if no user name is provided.

PasswordLen
Input. A 2-byte unsigned integer representing the length in bytes of the
password. Set to zero if no password is provided.

OverflowLogPathLen
Input. A 2-byte unsigned integer representing the length in bytes of the
overflow log path. Set to zero if no overflow log path is provided.

Version
Input. The version ID of the rollforward parameters. It is defined as
SQLUM_RFWD_VERSION.

pDbAlias
Input. A string containing the database alias. This is the alias that is
cataloged in the system database directory.

CallerAction
Input. Specifies action to be taken. Valid values (defined in sqlutil) are:
SQLUM_ROLLFWD

Rollforward to the point in time specified by pPointInTime. For database
rollforward, the database is left in rollforward-pending state. For table
space rollforward to a point in time, the table spaces are left in
rollforward-in-progress state.

SQLUM_STOP
End roll-forward recovery. No new log records are processed and
uncommitted transactions are backed out. The rollforward-pending state
of the database or table spaces is turned off. Synonym is
SQLUM_COMPLETE.

SQLUM_ROLLFWD_STOP
Rollforward to the point in time specified by pPointInTime, and end
roll-forward recovery. The rollforward-pending state of the database or
table spaces is turned off. Synonym is
SQLUM_ROLLFWD_COMPLETE.

SQLUM_QUERY
Query values for pNextArcFileName, pFirstDelArcFileName,
pLastDelArcFileName, and pLastCommitTime. Return database status
and a node number.

SQLUM_PARM_CHECK
Validate parameters without performing the roll forward.

SQLUM_CANCEL
Cancel the rollforward operation that is currently running. The database
or table space are put in recovery pending state.

Note: This option cannot be used while the rollforward is actually
running. It can be used if the rollforward is paused (that is,
waiting for a STOP), or if a system failure occurred during the
rollforward. It should be used with caution.

302 API Reference

sqluroll - Rollforward Database

Rolling databases forward may require a load recovery using tape devices.
The rollforward API will return with a warning message if user intervention
on a device is required. The API can be called again with one of the
following three caller actions:
SQLUM_LOADREC_CONTINUE

Continue using the device that generated the warning message (for
example, when a new tape has been mounted).

SQLUM_LOADREC_DEVICE_TERMINATE
Stop using the device that generated the warning message (for
example, when there are no more tapes).

SQLUM_LOADREC_TERMINATE
Terminate all devices being used by load recovery.

pStopTime
Input. A character string containing a time stamp in ISO format. Database
recovery will stop when this time stamp is exceeded. Specify
SQLUM_INFINITY_TIMESTAMP to roll forward as far as possible. May be
NULL for SQLUM_QUERY, SQLUM_PARM_CHECK, and any of the load recovery
(SQLUM_LOADREC_xxx) caller actions.

pUserName
Input. A string containing the user name of the application. May be NULL.

pPassword
Input. A string containing the password of the supplied user name (if any).
May be NULL.

pOverflowLogPath
Input. This parameter is used to specify an alternate log path to be used.
In addition to the active log files, archived log files need to be moved (by
the user) into the logpath (see “sqlfxdb - Get Database Configuration” on
page 201) before they can be used by this utility. This can be a problem if
the user does not have sufficient space in the logpath. The overflow log
path is provided for this reason. During roll-forward recovery, the required
log files are searched, first in the logpath, and then in the overflow log
path. The log files needed for table space roll-forward recovery can be
brought into either the logpath or the overflow log path. If the caller does
not specify an overflow log path, the default value is the logpath. In a
multi-node environment, the overflow log path must be a valid, fully
qualified path; the default path is the default overflow log path for each
node. In a single-node environment, the overflow log path can be relative if
the server is local.

NumChngLgOvrflw
MPP only. The number of changed overflow log paths. These new log
paths override the default overflow log path for the specified node only.

pChngLogOvrflw
MPP only. A pointer to a structure containing the fully qualified names of
changed overflow log paths. These new log paths override the default
overflow log path for the specified node only.

ConnectMode
Input. Valid values (defined in sqlutil) are:

 Chapter 1. Application Programming Interfaces 303

sqluroll - Rollforward Database

SQLUM_OFFLINE
Offline roll forward. This value must be specified for database
roll-forward recovery.

SQLUM_ONLINE
Online roll forward.

pTablespaceList
Input. A pointer to a structure containing the names of the table spaces to
be rolled forward to the end-of-logs or to a specific point in time. If not
specified, the table spaces needing rollforward will be selected.

AllNodeFlag
MPP only. Input. Indicates whether the rollforward operation is to be
applied to all nodes defined in db2nodes.cfg. Valid values are:
SQLURF_NODE_LIST

Apply to nodes in a node list that is passed in pNodeList.
SQLURF_ALL_NODES

Apply to all nodes. pNodeList should be NULL. This is the default
value.

SQLURF_ALL_EXCEPT
Apply to all nodes except those in a node list that is passed in
pNodeList.

SQLURF_CAT_NODE_ONLY
Apply to the catalog node only. pNodeList should be NULL.

NumNodes
Input. Specifies the number of nodes in the pNodeList array.

pNodeList
Input. A pointer to an array of node numbers on which to perform the
roll-forward recovery.

NumNodeInfo
Input. Defines the size of the output parameter pNodeInfo, which must be
large enough to hold status information from each node that is being rolled
forward. In a single-node environment, this parameter should be set to 1.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

304 API Reference

sqluroll - Rollforward Database

REXX API Syntax

ROLLFORWARD DATABASE database-alias [USING :value] [USER username USING password]

[rollforward_action_clause | load_recovery_action_clause]

where rollforward_action_clause stands for:

{ TO point-in-time [AND STOP] |

 {

[TO END OF LOGS [AND STOP] | STOP | CANCEL | QUERY STATUS | PARM CHECK }

[ON {:nodelist | ALL NODES [EXCEPT :nodelist]}]

 }

 }

[TABLESPACE {ONLINE |:tablespacenames [ONLINE]}]

[OVERFLOW LOG PATH default-log-path [:logpaths]]

and load_recovery_action_clause stands for:

LOAD RECOVERY { CONTINUE | DEVICE_TERMINATE | TERMINATE }

REXX API Parameters
database-alias

Alias of the database to be rolled forward.
value

A compound REXX host variable containing the output values. In the
following, XXX represents the host variable name:

XXX.0 Number of elements in the variable

XXX.1 The application ID

XXX.2 Number of replies received from nodes

XXX.2.1.1 First node number

XXX.2.1.2 First state information

XXX.2.1.3 First next archive file needed

XXX.2.1.4 First first archive file to be deleted

XXX.2.1.5 First last archive file to be deleted

XXX.2.1.6 First last commit time

XXX.2.2.1 Second node number

XXX.2.2.2 Second state information

XXX.2.2.3 Second next archive file needed

XXX.2.2.4 Second first archive file to be deleted

XXX.2.2.5 Second last archive file to be deleted

XXX.2.2.6 Second last commit time

 Chapter 1. Application Programming Interfaces 305

sqluroll - Rollforward Database

XXX.2.3.x and so on.

username
Identifies the user name under which the database is to be rolled forward.

password
The password used to authenticate the user name.

point-in-time
A time stamp in ISO format, yyyy-mm-dd-hh.mm.ss.nnnnnn (year, month,
day, hour, minutes,seconds, microseconds), expressed in Coordinated
Universal Time (UTC).

tablespacenames
A compound REXX host variable containing a list of table spaces to be
rolled forward. In the following, XXX is the name of the host variable:

XXX.0 Number of table spaces to be rolled forward

XXX.1 First table space name

XXX.2 Second table space name

XXX.x and so on.

default-log-path
The default overflow log path to be searched for archived logs during
recovery

logpaths
A compound REXX host variable containing a list of alternate log paths to
be searched for archived logs during recovery. In the following, XXX is the
name of the host variable:

XXX.0 Number of changed overflow log paths

XXX.1.1 First node

XXX.1.2 First overflow log path

XXX.2.1 Second node

XXX.2.2 Second overflow log path

XXX.3.1 Third node

XXX.3.2 Third overflow log path

XXX.x.1 and so on.

nodelist
A compound REXX host variable containing a list of nodes. In the
following, XXX is the name of the host variable:

XXX.0 Number of nodes

XXX.1 First node

XXX.2 Second node

XXX.x and so on.

306 API Reference

sqluroll - Rollforward Database

 Sample Programs
C \sqllib\samples\c\backrest.c

COBOL \sqllib\samples\cobol\backrest.cbl

FORTRAN \sqllib\samples\fortran\backrest.f

 Usage Notes
The database manager uses the information stored in the archived and the active log
files to reconstruct the transactions performed on the database since its last backup.

The action performed when this API is called depends on the rollforward_pending flag
of the database prior to the call. This can be queried using “sqlfxdb - Get Database
Configuration” on page 201. The rollforward_pending flag is set to DATABASE if the
database is in roll-forward pending state. It is set to TABLESPACE if one or more table
spaces are in SQLB_ROLLFORWARD_PENDING or SQLB_ROLLFORWARD_IN_PROGRESS state. The
rollforward_pending flag is set to NO if neither the database nor any of the table spaces
needs to be rolled forward.

If the database is in roll-forward pending state when this API is called, the database will
be rolled forward. Table spaces are returned to normal state after a successful
database roll-forward, unless an abnormal state causes one or more table spaces to go
offline. If the rollforward_pending flag is set to TABLESPACE, only those table spaces that
are in roll-forward pending state, or those table spaces requested by name, will be
rolled forward.

Note: If table space rollforward terminates abnormally, table spaces that were being
rolled forward will be put in SQLB_ROLLFORWARD_IN_PROGRESS state. In the next
invocation of ROLLFORWARD DATABASE, only those table spaces in
SQLB_ROLLFORWARD_IN_PROGRESS state will be processed. If the set of selected
table space names does not include all table spaces that are in
SQLB_ROLLFORWARD_IN_PROGRESS state, the table spaces that are not required will
be put into SQLB_RESTORE_PENDING state.

If the database is not in roll-forward pending state and no point in time is specified, any
table spaces that are in rollforward-in-progress state will be rolled forward to the end of
logs. If no table spaces are in rollforward-in-progress state, any table spaces that are in
rollforward pending state will be rolled forward to the end of logs.

This API reads the log files, beginning with the log file that is matched with the backup
image. The name of this log file can be determined by calling this API with a caller
action of SQLUM_QUERY before rolling forward any log files.

The transactions contained in the log files are reapplied to the database. The log is
processed as far forward in time as information is available, or until the time specified
by the stop time parameter.

Recovery stops when any one of the following events occurs:

¹ No more log files are found

 Chapter 1. Application Programming Interfaces 307

sqluroll - Rollforward Database

¹ A time stamp in the log file exceeds the completion time stamp specified by the
stop time parameter

¹ An error occurs while reading the log file.

Some transactions might not be recovered. The value returned in pLastCommitTime
indicates the time stamp of the last committed transaction that was applied to the
database.

If the need for database recovery was caused by application or human error, the user
may want to provide a time stamp value in pStopTime, indicating that recovery should
be stopped before the time of the error. This applies only to full database roll-forward
recovery, and to table space rollforward to a point in time. It also permits recovery to be
stopped before a log read error occurs, determined during an earlier failed attempt to
recover.

When the rollforward_recovery flag is set to DATABASE, the database is not available for
use until roll-forward recovery is terminated. Termination is accomplished by calling the
API with a caller action of SQLUM_STOP or SQLUM_ROLLFORWARD_STOP to bring the database
out of roll-forward pending state. If the rollforward_recovery flag is TABLESPACE, the
database is available for use. However, the table spaces in SQLB_ROLLFORWARD_PENDING
and SQLB_ROLLFORWARD_IN_PROGRESS states will not be available until the API is called to
perform table space roll-forward recovery. If rolling forward table spaces to a point in
time, the table spaces are placed in backup pending state after a successfull
rollforward.

Rolling databases forward may involve prerequisites and restrictions that are beyond
the scope of this manual. For more detailed information, see the Administration Guide.

 See Also
“sqluload - Load” on page 282
“sqlurst - Restore Database” on page 309.

308 API Reference

sqlurst - Restore Database

sqlurst - Restore Database
Rebuilds a damaged or corrupted database that has been backed up using BACKUP
DATABASE. The restored database is in the same state it was in when the backup
copy was made. This utility can also restore to a database with a name different from
the database name in the backup image (in addition to being able to restore to a new
database).

The utility can also be used to restore previous versions of DB2 databases.

If, at the time of the backup operation, the database was enabled for roll-forward
recovery, the database can be brought to the state it was in prior to the occurrence of
the damage or corruption by issuing sqluroll after successful execution of sqlurst .

This utility can also restore from a table space level backup.

 Scope
This API only affects the node from which it is called.

 Authorization
To restore to an existing database, one of the following:

 sysadm
 sysctrl
 sysmaint

To restore to a new database, one of the following:

 sysadm
 sysctrl

 Required Connection
Database, to restore to an existing database. This API automatically establishes a
connection to the specified database.

Instance and database, to restore to a new database. The instance attachment is
required to create the database.

To restore to a new database at an instance different from the current instance (as
defined by the value of the DB2INSTANCE environment variable), it is necessary to
first attach to the instance where the new database will reside.

API Include File
sqlutil.h

 Chapter 1. Application Programming Interfaces 309

sqlurst - Restore Database

C API Syntax

/* File: sqlutil.h */

/* API: Restore Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqlurst (

char * pSourceDbAlias,

char * pTargetDbAlias,

unsigned long BufferSize,

unsigned long RollforwardMode,

unsigned long RestoreType,

unsigned long RestoreMode,

unsigned long CallerAction,

char * pApplicationId,

char * pTimestamp,

char * pTargetPath,

unsigned long NumBuffers,

struct sqlu_tablespace_bkrst_list * pTablespaceList,

struct sqlu_media_list * pMediaSourceList,

char * pUserName,

char * pPassword,

void * pReserved2,

unsigned long VendorOptionsSize,

void * pVendorOptions,

unsigned long Parallelism,

void * pRestoreInfo,

void * pContainerPageList,

void * pReserved3,

struct sqlca * pSqlca);

/* ... */

310 API Reference

sqlurst - Restore Database

Generic API Syntax

/* File: sqlutil.h */

/* API: Restore Database */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgrst (

unsigned short SourceDbAliasLen,

unsigned short TargetDbAliasLen,

unsigned short TimestampLen,

unsigned short TargetPathLen,

unsigned short UserNameLen,

unsigned short PasswordLen,

unsigned short * pReserved1,

char * pSourceDbAlias,

char * pTargetDbAlias,

unsigned long BufferSize,

unsigned long RollforwardMode,

unsigned long RestoreType,

unsigned long RestoreMode,

unsigned long CallerAction,

char * pApplicationId,

char * pTimestamp,

char * pTargetPath,

unsigned long NumBuffers,

struct sqlu_tablespace_bkrst_list * pTablespaceList,

struct sqlu_media_list * pMediaSourceList,

char * pUserName,

char * pPassword,

void * pReserved2,

unsigned long Parallelism,

unsigned short RestoreInfoSize,

void * pRestoreInfo,

unsigned short ContainerPageListSize,

void * pContainerPageList,

unsigned long VendorOptionsSize,

void * pVendorOptions,

void * pReserved3,

struct sqlca * pSqlca);

/* ... */

 API Parameters
SourceDbAliasLen

Input. A 2-byte unsigned integer representing the length in bytes of the
source database alias.

TargetDbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
target database alias. Set to zero if no target database alias is specified.

 Chapter 1. Application Programming Interfaces 311

sqlurst - Restore Database

TimestampLen
Input. A 2-byte unsigned integer representing the length in bytes of the
time stamp. Set to zero if no time stamp is provided.

TargetPathLen
Input. A 2-byte unsigned integer representing the length in bytes of the
target directory. Set to zero if no target path is provided.

UserNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
user name. Set to zero if no user name is provided.

PasswordLen
Input. A 2-byte unsigned integer representing the length in bytes of the
password. Set to zero if no password is provided.

pReserved1
Reserved for future use.

pSourceDbAlias
Input. A string containing the database alias of the source database backup
image.

pTargetDbAlias
Input. A string containing the target database alias. If this parameter is null,
the pSourceDbAlias alias is used.

BufferSize
Input. Restore buffer size in allocation units of 4KB. Minimum is 16 units.

RollforwardMode
Input. Indicates whether or not to place the database in rollforward pending
state at the end of the restore. Valid values (defined in sqlutil) are:
SQLUD_ROLLFWD

Place the database in roll-forward pending state after it has been
successfully restored.

SQLUD_NOROLLFWD
Do not place the database in roll-forward pending state after it has
been successfully restored.

If, following a successful restore, the database is in roll-forward pending
state, “sqluroll - Rollforward Database” on page 300 must be executed
before the database can be used.

RestoreType
Input. Specifies the type of restore. Valid values (defined in sqlutil) are:
SQLUD_FULL

Restore everything from the backup image. This will be run offline.
SQLUD_ONLINE_TABLESPACE

Restore only the table space level backups. This will be run online.
SQLUD_HISTORY

Restore only the recovery history file.
CallerAction

Input. Specifies the type of action to be taken. Valid values (defined in
sqlutil) are:
SQLUD_RESTORE

Start the restore.

312 API Reference

sqlurst - Restore Database

SQLUD_NOINTERRUPT
Start the restore. Specifies that the restore will run unattended, and that
scenarios which normally require user intervention will either be
attempted without first returning to the caller, or will generate an error.
Use this caller action, for example, when all of the media required for
the restore are known to have been mounted, and utility prompts are
not desired.

SQLUD_CONTINUE
Continue the restore after the user has performed some action
requested by the utility (mount a new tape, for example).

SQLUD_TERMINATE
Terminate the restore after the user has failed to perform some action
requested by the utility.

SQLUD_DEVICE_TERMINATE
Remove a particular device from the list of devices used by the restore
utility. When a particular device has exhausted its input, restore will
return a warning to the caller. Call restore again with this caller action,
and the device which generated the warning will be removed from the
list of devices being used.

SQLUD_PARM_CHECK
Validate parameters without performing the restore.

SQLUD_RESTORE_STORDEF
Initial call. Table space container redefinition requested.

CallerAction must be set to SQLUD_RESTORE, SQLUD_NOINTERRUPT,
SQLUD_RESTORE_STORDEF, or SQLUD_PARM_CHECK on the first call.

pApplicationId
Output. Supply a buffer of length SQLU_APPLID_LEN+1 (defined in sqlutil).
Restore will return a string identifying the agent servicing the application.
Can be used with the database system monitor APIs to monitor some
aspects of the application.

pTimestamp
Input. A string representing the time stamp of the backup image. This field
is optional if there is only one backup image in the source specified.

pTargetPath
Input. A string containing the relative or fully qualified name of the target
database directory. Used if a new database is to be created for the
restored backup.

NumBuffers
Input. The number of buffers to be used for the restore.

pTablespaceList
Specifies one or more table spaces to be restored. Used when restoring a
subset of the backup image.

The following restrictions apply:
¹ The backup image must have been created by DB2 Version 3.
¹ The database must be recoverable; that is, log retain or user exits

must be enabled.

 Chapter 1. Application Programming Interfaces 313

sqlurst - Restore Database

¹ The database being restored to must be the same database that was
used to create the backup image.

¹ This function is not supported by back level APIs.
¹ This function is not available when restoring from a user exit on OS/2.
¹ The rollforward utility will ensure that table spaces restored in an MPP

environment are synchronized with any other node containing the
same table spaces.

pMediaSourceList
Input. Source media for the backup image. See structure
“SQLU-MEDIA-LIST” on page 417. The information the caller needs to
provide in this structure is dependent upon the value of the media_type
field. Valid values for this field (defined in sqlutil) are:
SQLU_LOCAL_MEDIA

Local devices (a combination of tapes, disks or diskettes). Provide a list
of sqlu_media_entry. On OS/2 or the Windows operating system, the
entries can be directory paths only, not tape device names.

SQLU_ADSM_MEDIA
ADSM. No additional input is required, and the ADSM shared library
provided with DB2 is used. If a different version of ADSM is desired,
use SQLU_OTHER_MEDIA and provide the shared library name.

SQLU_OTHER_MEDIA
Vendor product. Provide the shared library name in an sqlu_vendor
structure.

SQLU_USER_EXIT
User exit. No additional input is required (available on OS/2 only).

For more information, see the Administration Guide.
pUserName

Input. A string containing the user name to be used for connection.
pPassword

Input. A string containing the password to be used with the user name for
connection.

pReserved2
Reserved for future use.

Parallelism
Input. Degree of parallelism (number of buffer manipulators).

RestoreInfoSize
Reserved for future use.

pRestoreInfo
Reserved for future use.

ContainerPageListSize
Reserved for future use.

pContainerPageList
Reserved for future use.

VendorOptionsSize
Input. The length of the options field.

pVendorOptions
Input. To be used by the vendor to pass information from the application to
the vendor functions. This data structure must be flat; that is, no level of

314 API Reference

sqlurst - Restore Database

indirection is supported. Note that byte-reversal is not done, and the code
page for this data is not checked.

pReserved3
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax

RESTORE DATABASE source-database-alias [USING :value] [USER username USING password]

[TABLESPACE :tablespacenames] [ONLINE | HISTORY FILE]

[LOAD shared-library [OPTIONS vendor-options] [OPEN num-sessions SESSIONS] |

 FROM :source-area | USE ADSM [OPEN num-sessions SESSIONS] | USER_EXIT]

[TAKEN AT timestamp] [TO target-directory] [INTO target-database-alias]

[ACTION caller-action] [WITH num-buffers BUFFERS] [BUFFERSIZE buffer-size]

[WITHOUT ROLLING FORWARD] [PARALLELISM parallelism-degree]

REXX API Parameters
source-database-alias

Alias of the source database from which the database backup image was
taken.

value
A compound REXX host variable to which the database restore information
is returned. In the following, XXX represents the host variable name:

XXX.0 Number of elements in the variable (always 1)

XXX.1 An application ID that identifies the agent that serves the
application.

username
Identifies the user name to be used for connection.

password
The password used to authenticate the user name.

tablespacenames
A compound REXX host variable containing a list of table spaces to be
restored. In the following, XXX is the name of the host variable:

XXX.0 Number of table spaces to be restored

XXX.1 First table space name

XXX.2 Second table space name

XXX.3 and so on.

 Chapter 1. Application Programming Interfaces 315

sqlurst - Restore Database

HISTORY FILE
Specifies to restore the history file from the backup.

shared-library
The name of the shared library (DLL on OS/2 or the Windows operating
system) containing the vendor restore I/O functions to be used. It may
contain the full path. If the full path is not given, defaults to the path on
which the user exit program resides.

vendor-options
Information required by the vendor functions.

num-sessions
The number of I/O sessions to be used with ADSM or the vendor product.

source-area
A compound REXX host variable that indicates on which directory or
device the backup image resides. The default value is the current directory.
On OS/2 or the Windows operating system, the entries can be directory
paths only, not tape device names.

timestamp
The time stamp of the database backup.

target-directory
The directory of the target database.

target-database-alias
Alias of the target database. If the target database does not exist, it will be
created.

caller-action
Specifies action to be taken. Valid values are:
SQLUD_RESTORE

Start the restore.
SQLUD_NOINTERRUPT

Start the restore. Specifies that the restore will run unattended, and that
scenarios which normally require user intervention will either be
attempted without first returning to the caller, or will generate an error.
Use this caller action, for example, when all of the media required for
the restore are known to have been mounted, and utility prompts are
not desired.

SQLUD_CONTINUE
Continue the restore after the user has performed some action
requested by the utility (mount a new tape, for example).

SQLUD_TERMINATE
Terminate the restore after the user has failed to perform some action
requested by the utility.

SQLUD_DEVICE_TERMINATE
Remove a particular device from the list of devices used by the restore
utility. When a particular device has exhausted its input, restore will
return a warning to the caller. Call restore again with this caller action,
and the device which generated the warning will be removed from the
list of devices being used.

SQLUD_PARM_CHECK
Validate parameters without performing the restore.

316 API Reference

sqlurst - Restore Database

SQLUD_RESTORE_STORDEF
Initial call. Table space container redefinition requested.

num-buffers
Number of backup buffers to be used.

buffer-size
Backup buffer size in allocation units of 4KB. Minimum is 16 units.

parallelism-degree
Number of buffer manipulators.

 Sample Programs
C \sqllib\samples\c\backrest.c

COBOL \sqllib\samples\cobol\backrest.cbl

FORTRAN \sqllib\samples\fortran\backrest.f

 Usage Notes
For offline restore, this utility connects to the database in exclusive mode. The utility
fails if any application, including the calling application, is already connected to the
database that is being restored. In addition, the request will fail if the operating system
restore utility is being used to perform the restore, and any application, including the
calling application, is already connected to any database on the same workstation. If
the connect is successful, the API locks out other applications until the restore is
completed.

The current database configuration file will not be replaced by the backup copy unless it
is unusable. If the file is replaced, a warning message is returned.

The database or table space must have been backed up using “sqlubkp - Backup
Database” on page 230.

If the caller action is SQLUD_NOINTERRUPT, the restore continues without prompting the
application. If the caller action is SQLUD_RESTORE, and the utility is restoring to an
existing database, the utility returns control to the application with a message
requesting some user interaction. After handling the user interaction, the application
calls RESTORE DATABASE again, with the caller action set to indicate whether
processing is to continue (SQLUD_CONTINUE) or terminate (SQLUD_TERMINATE) on the
subsequent call. The utility finishes processing, and returns an SQLCODE in the sqlca.

To close a device when finished, set the caller action to SQLUD_DEVICE_TERMINATE. If, for
example, a user is restoring from 3 tape volumes using 2 tape devices, and one of the
tapes has been restored, the application obtains control from the API with an
SQLCODE indicating end of tape. The application can prompt the user to mount
another tape, and if the user indicates "no more", return to the API with caller action
SQLUD_DEVICE_TERMINATE to signal end of the media device. The device driver will be
terminated, but the rest of the devices involved in the restore will continue to have their
input processed until all segments of the restore set have been restored (the number of
segments in the restore set is placed on the last media device during the backup

 Chapter 1. Application Programming Interfaces 317

sqlurst - Restore Database

process). This caller action can be used with devices other than tape (vendor
supported devices).

To perform a parameter check before returning to the application, set caller action to
SQLUD_PARM_CHECK.

Set caller action to SQLUD_RESTORE_STORDEF when performing a redirected restore; used
in conjunction with “sqlbstsc - Set Tablespace Containers” on page 51. For more
information, see the Administration Guide.

If an error occurs, the utility terminates and returns the error in the sqlca structure.

If a system failure occurs during a critical stage of restoring a database, the user will
not be able to successfully connect to the database until a successful restore is
performed. This condition will be detected when the connection is attempted, and an
error message is returned. If the backed-up database is not configured for roll-forward
recovery, and there is a usable current configuration file with either of these parameters
enabled, following the restore, the user will be required to either take a new backup of
the database, or disable the log retain and user exit parameters before connecting to
the database.

Although the restored database will not be dropped (unless restoring to a non-existent
database), if the restore fails, it will not be usable.

If the restore type specifies that the recovery history file on the backup is to be
restored, it will be restored over the existing recovery history file for the database,
effectively erasing any changes made to the history file after the backup that is being
restored. If this is undesirable, restore the history file to a new or test database so that
its contents can be viewed without destroying any updates that have taken place.

 See Also
“sqlbstsc - Set Tablespace Containers” on page 51
“sqlemgdb - Migrate Database” on page 145
“sqlfxdb - Get Database Configuration” on page 201
“sqlubkp - Backup Database” on page 230
“sqluroll - Rollforward Database” on page 300.

318 API Reference

sqlustat - Runstats

sqlustat - Runstats
Updates statistics about the characteristics of a table and any associated indexes.
These characteristics include, among many others, number of records, number of
pages, and average record length. The optimizer uses these statistics when
determining access paths to the data.

This utility should be called when a table has had many updates, after reorganizing a
table, or after creating a new index.

Statistics are collected based on the table partition that is resident on the node where
the API executes. Global table statistics are derived by multiplying the values obtained
at a node by the number of nodes on which the table is completely stored. The global
statistics are stored in the catalog tables.

The node from which the API is called does not have to contain a partition for the table:

¹ If the API is called from a node that contains a partition for the table, the utility
executes at this node.

¹ If the API is called from a node that does not contain a table partition, the request
is sent to the first node in the nodegroup that holds a partition for the table. The
utility then executes at this node.

 Scope
This API can be called from any node in the db2nodes.cfg file. It can be used to update
the catalogs on the catalog node.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint
 dbadm

CONTROL privilege on the table.

 Required Connection
Database

API Include File
sqlutil.h

 Chapter 1. Application Programming Interfaces 319

sqlustat - Runstats

C API Syntax

/* File: sqlutil.h */

/* API: Run Statistics */

/* ... */

SQL_API_RC SQL_API_FN

 sqlustat (

_SQLOLDCHAR * pTableName,

unsigned short NumIndexes,

_SQLOLDCHAR ** ppIndexList,

unsigned char StatsOption,

unsigned char ShareLevel,

struct sqlca * pSqlca);

/* ... */

Generic API Syntax

/* File: sqlutil.h */

/* API: Run Statistics */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgstat (

unsigned short TableNameLen,

unsigned short NumIndexes,

unsigned char StatsOption,

unsigned char ShareLevel,

unsigned short * pIndexLens,

struct sqlca * pSqlca,

_SQLOLDCHAR ** ppIndexList,

_SQLOLDCHAR * pTableName);

/* ... */

 API Parameters
TableNameLen

Input. A 2-byte unsigned integer representing the length in bytes of the
table name.

NumIndexes
Input. The number of indexes specified in this call. This value is used with
the StatsOption parameter. Valid values are:
0

All the indexes are to be calculated.
n

The number of indexes contained in the index list. The names of the
indexes to be calculated are specified in ppIndexList.

320 API Reference

sqlustat - Runstats

StatsOption
Input. Statistical option, indicating which calculations are to be performed.
Valid values (defined in sqlutil) are:
SQL_STATS_TABLE

Table only.
SQL_STATS_EXTTABLE_ONLY

Table with extended (distribution) statistics.
SQL_STATS_BOTH

Both table and indexes.
SQL_STATS_EXTTTABLE_INDEX

Both table (with distribution statistics) and basic indexes.
SQL_STATS_INDEX

Indexes only.
SQL_STATS_EXTINDEX_ONLY

Extended statistics for indexes only.
SQL_STATS_EXTINDEX_TABLE

Extended statistics for indexes and basic table statistics.
SQL_STATS_ALL

Extended statistics for indexes and table statistics with distribution
statistics.

ShareLevel
Input. Specifies how the statistics are to be gathered with respect to other
users. Valid values (defined in sqlutil) are:
SQL_STATS_REF

Allows others to have read-only access while the statistics are being
gathered.

SQL_STATS_CHG
Allows others to have read and write access while the statistics are
being gathered.

pIndexLens
Input. An array of 2-byte unsigned integers representing the length in bytes
of each of the index names in the index list.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

ppIndexList
Input. An array of strings. Each string contains one fully qualified index
name.

pTableName
Input. The table on which to update statistics. Can be an alias, except in
the case of down-level servers, when the fully qualified table name must be
used.

 Chapter 1. Application Programming Interfaces 321

sqlustat - Runstats

REXX API Syntax

RUNSTATS ON TABLE tname

[WITH :statsopt INDEXES {ALL | USING :value}]

[SHRLEVEL {REFERENCE|CHANGE}]

REXX API Parameters
tname

The fully qualified name of the table on which statistics are to be gathered.
statsopt

A host variable containing a statistical option, indicating which calculations
are to be performed. Valid values are:

T Indicates that basic statistics are to be updated for the specified table
only. This is the default

D Indicates that extended (distribution) statistics are to be updated for
the specified table

B Indicates that basic statistics are to be updated for both the specified
table and the specified indexes

E Indicates that extended statistics are to be updated for the specified
table, and that basic statistics are to be updated for the indexes

I Indicates that basic statistics are to be updated for the specified
indexes only

X Indicates that extended statistics are to be updated for the specified
indexes only

Y Indicates that basic statistics are to be updated for the specified
table, and that extended statistics are to be updated for the indexes

A Indicates that extended statistics are to be updated for both the
specified table and the specified indexes.

value
A compound REXX host variable containing the names of the indexes for
which statistics are to be generated. In the following, XXX represents the
host variable name:

XXX.0 The number of indexes specified in this call

XXX.1 First fully qualified index name

XXX.2 Second fully qualified index name

XXX.3 and so on.

REFERENCE
Other users can have read-only access while updates are being made.

322 API Reference

sqlustat - Runstats

CHANGE
Other users can have read or write access while updates are being made.
This is the default.

 Sample Programs
C \sqllib\samples\c\dbstat.sqc

COBOL \sqllib\samples\cobol\dbstat.sqb

FORTRAN \sqllib\samples\fortran\dbstat.sqf

 Usage Notes
Use RUNSTATS to update statistics:

¹ On tables that have been modified many times (for example, if a large number of
updates have been made, or if a significant amount of data has been inserted or
deleted)

¹ On tables that have been reorganized

¹ When a new index has been created.

After statistics have been updated, new access paths to the table can be created by
rebinding the packages using “sqlabndx - Bind” on page 10.

Statistics for tables only should be collected before any indexes are created. This will
ensure that statistics gathered during index creation are not overlaid by estimates
gathered during the calculation of table statistics.

If index statistics are requested, and statistics have never been run on the table
containing the index, statistics on both the table and indexes are calculated.

After calling this API the application should issue a COMMIT to release the locks.

To allow new access plans to be generated, the packages that reference the target
table must be rebound after using this API.

In FORTRAN, use “sqlgaddr - Get Address” on page 207 to initialize the pointers in the
index list.

 See Also
"REORGCHK" in the Command Reference
“sqlfxdb - Get Database Configuration” on page 201
“sqlureot - Reorganize Table” on page 293.

 Chapter 1. Application Programming Interfaces 323

sqluvqdp - Quiesce Tablespaces for Table

sqluvqdp - Quiesce Tablespaces for Table
Quiesces table spaces for a table. There are three valid quiesce modes: share, intent to
update, and exclusive. There are three possible table space states resulting from the
quiesce function: QUIESCED SHARE, QUIESCED UPDATE, and QUIESCED
EXCLUSIVE.

 Scope
In a single-node environment, this API quiesces all table spaces involved in a load
operation in exclusive mode for the duration of the load. In an MPP environment, this
API acts locally on a node. It quiesces only that portion of table spaces belonging to the
node on which the load is performed.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint
 dbadm

 Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */

/* API: Quiesce Tablespaces for Table */

/* ... */

SQL_API_RC SQL_API_FN

 sqluvqdp (

char * pTableName,

 long QuiesceMode,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

324 API Reference

sqluvqdp - Quiesce Tablespaces for Table

Generic API Syntax

/* File: sqlutil.h */

/* API: Quiesce Tablespaces for Table */

/* ... */

SQL_API_RC SQL_API_FN

 sqlgvqdp (

unsigned short TableNameLen,

char * pTableName,

 long QuiesceMode,

void * pReserved,

struct sqlca * pSqlca);

/* ... */

 API Parameters
TableNameLen

Input. A 2-byte unsigned integer representing the length in bytes of the
table name.

pTableName
Input. A string containing the table name as used in the system catalog.
This may be a two-part name with the schema and the table name
separated by a period (.). If the schema is not provided, the authorization
ID used in the connection will be used as the schema. The table cannot be
a system catalog table. This field is mandatory.

QuiesceMode
Input. Specifies the quiesce mode. Valid values (defined in sqlutil) are:
SQLU_QUIESCEMODE_SHARE

For share mode
SQLU_QUIESCEMODE_INTENT_UPDATE

For intent to update mode
SQLU_QUIESCEMODE_EXCLUSIVE

For exclusive mode
SQLU_QUIESCEMODE_RESET

To reset the state of the table spaces to normal if either of the following
is true:
¹ The caller owns the quiesce
¹ The caller who sets the quiesce disconnects, creating a "phantom

quiesce"
SQLU_QUIESCEMODE_RESET_OWNED

To reset the state of the table spaces to normal if the caller owns the
quiesce.

This field is mandatory.
pReserved

Reserved for future use.

 Chapter 1. Application Programming Interfaces 325

sqluvqdp - Quiesce Tablespaces for Table

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

REXX API Syntax

QUIESCE TABLESPACES FOR TABLE table_name

{SHARE | INTENT TO UPDATE | EXCLUSIVE | RESET}

REXX API Parameters
table_name

Name of the table as used in the system catalog. This may be a two-part
name with the schema and the table name separated by a period (.). If the
schema is not provided, the authorization ID used in the connection will be
used as the schema.

 Sample Programs
C \sqllib\samples\c\tload.sqc

COBOL \sqllib\samples\cobol\tload.sqb

FORTRAN \sqllib\samples\fortran\tload.sqf

REXX \sqllib\samples\rexx\quitab.cmd

 Usage Notes
When the quiesce share request is received, the transaction requests intent share locks
for the table spaces and a share lock for the table. When the transaction obtains the
locks, the state of the table spaces is changed to QUIESCED SHARE. The state is
granted to the quiescer only if there is no conflicting state held by other users. The
state of the table spaces is recorded in the table space table, along with the
authorization ID and the database agent ID of the quiescer, so that the state is
persistent.

The table cannot be changed while the table spaces for the table are in QUIESCED
SHARE state. Other share mode requests to the table and table spaces will be allowed.
When the transaction commits or rolls back, the locks are released, but the table
spaces for the table remain in QUIESCED SHARE state until the state is explicitly
reset.

When the quiesce exclusive request is made, the transaction requests super exclusive
locks on the table spaces, and a super exclusive lock on the table. When the
transaction obtains the locks, the state of the table spaces changes to QUIESCED
EXCLUSIVE. The state of the table spaces, along with the authorization ID and the
database agent ID of the quiescer, are recorded in the table space table. Since the
table spaces are held in super exclusive mode, no other access to the table spaces is

326 API Reference

sqluvqdp - Quiesce Tablespaces for Table

allowed. The user who invokes the quiesce function (the quiescer), however, has
exclusive access to the table and the table spaces.

When a quiesce update request is made, the table spaces are locked in intent
exclusive (IX) mode, and the table is locked in update (U) mode. The state of the table
spaces with the quiescer is recorded in the table space table.

There is a limit of five quiescers on a table space at any given time. Since QUIESCED
EXCLUSIVE is incompatible with any other state, and QUIESCED UPDATE is
incompatible with another QUIESCED UPDATE, the five quiescer limit, if reached, must
have at least four QUIESCED SHARE and at most one QUIESCED UPDATE.

A quiescer can upgrade the state of a table space from a less restrictive state to a
more restrictive one (for example, S to U, or U to X). If a user requests a state lower
than one that is already held, the original state is returned. States are not downgraded.

The quiesced state of a table space must be reset explicitly by using
SQLU_QUIESCEMODE_RESET.

 See Also
“sqluload - Load” on page 282.

 Chapter 1. Application Programming Interfaces 327

sqluvqdp - Quiesce Tablespaces for Table

328 API Reference

Additional REXX APIs

Chapter 2. Additional REXX APIs

This chapter describes DB2 application programming interfaces that are only supported
in the REXX programming language.

 Copyright IBM Corp. 1993, 1997 329

Change Isolation Level

Change Isolation Level
Changes the way that DB2 isolates data from other processes while a database is
being accessed.

 Authorization
None

 Required Connection
None

REXX API Syntax

CHANGE SQLISL TO {RR|CS|UR|RS|NC}

REXX API Parameters
RR

Repeatable read.
CS

Cursor stability. This is the default.
UR

Uncommitted read.
RS

Read stability.
NC

No commit.

 Sample Program
REXX \sqllib\samples\rexx\chgisl.cmd

330 API Reference

 Chapter 3. Data Structures

This chapter describes the data structures used to access the database manager. The
following data structures are provided:

“RFWD-INPUT” on page 334
Transfers rollforward information between an application and the database
manager

“RFWD-OUTPUT” on page 337
Transfers rollforward information between an application and the database
manager

“SQL-AUTHORIZATIONS” on page 340
Returns authorizations information

“SQL-DIR-ENTRY” on page 343
Passes Database Connection Services directory information

“SQLA-FLAGINFO” on page 345
Holds flagger information

“SQLB-TBS-STATS” on page 347
Returns additional table space statistics to an application program

“SQLB-TBSCONTQRY-DATA” on page 349
Returns container data to an application program

“SQLB-TBSPQRY-DATA” on page 351
Returns table space data to an application program

“SQLCA” on page 355
Returns error information to an application

“SQLCHAR” on page 357
Transfers variable length data between an application and the database
manager

“SQLDA” on page 358
Transfers collections of data between an application and the database
manager

“SQLDCOL” on page 361
Passes column information to the IMPORT and EXPORT APIs

“SQLE-ADDN-OPTIONS” on page 365
Passes information to the ADD NODE API

“SQLE-CONN-SETTING” on page 367
Specifies connection setting types and values

“SQLE-NODE-APPC” on page 370
Passes information for cataloging APPC nodes

“SQLE-NODE-APPN” on page 371
Passes information for cataloging APPN nodes

“SQLE-NODE-CPIC” on page 372
Passes information for cataloging CPIC nodes

“SQLE-NODE-IPXSPX” on page 373
Passes information for cataloging IPX/SPX nodes

“SQLE-NODE-LOCAL” on page 374
Passes information for cataloging LOCAL nodes

 Copyright IBM Corp. 1993, 1997 331

“SQLE-NODE-NETB” on page 375
Passes information for cataloging NetBIOS nodes

“SQLE-NODE-NPIPE” on page 376
Passes information for cataloging named pipe nodes

“SQLE-NODE-STRUCT” on page 377
Passes information for cataloging nodes

“SQLE-NODE-TCPIP” on page 379
Passes information for cataloging TCP/IP nodes

“SQLE-REG-NWBINDERY” on page 380
Passes information for registering/deregistering the DB2 server in/from the
bindery on the NetWare file server

“SQLE-START-OPTIONS” on page 381
Holds the database manager start-up options

“SQLEDBCOUNTRYINFO” on page 385
Transfers country information between an application and the database
manager

“SQLEDBDESC” on page 386
Passes creation parameters to the CREATE DATABASE API

“SQLEDBSTOPOPT” on page 392
Holds the database manager stop options

“SQLEDINFO” on page 394
Returns a copy of a single directory entry from the system or local
database directory

“SQLENINFO” on page 397
Returns a copy of a single directory entry from the node directory

“SQLFUPD” on page 400
Passes configuration file information

“SQLM-COLLECTED” on page 407
Transfers Database System Monitor collection count information between
an application and the database manager

“SQLM-RECORDING-GROUP” on page 410
Transfers Database System Monitor monitor group information between an
application and the database manager

“SQLMA” on page 412
Sends database monitor requests from an application to the database
manager

“SQLOPT” on page 414
Transfers bind parameters to the BIND API and precompile options to the
PRECOMPILE PROGRAM API

“SQLU-LSN” on page 416
Contains the definition of the log sequence number used by the
ASYNCHRONOUS READ LOG API

“SQLU-MEDIA-LIST” on page 417
Holds a list of target media (BACKUP) or source media (RESTORE) for the
backup image. Also used for the import, export and load APIs

“SQLU-RLOG-INFO” on page 422
Contains information regarding a call to the ASYNCHRONOUS READ LOG
API

332 API Reference

“SQLU-TABLESPACE-BKRST-LIST” on page 423
Provides a list of table space names

“SQLUEXPT-OUT” on page 425
Transfers export information between an application and the database
manager

“SQLUHINFO” on page 426
Used by the recovery history file APIs to return information from the
recovery history file

“SQLUIMPT-IN” on page 430
Transfers import information between an application and the database
manager

“SQLUIMPT-OUT” on page 431
Transfers import information between an application and the database
manager

“SQLULOAD-IN” on page 433
Transfers load information between an application and the database
manager

“SQLULOAD-OUT” on page 437
Transfers load information between an application and the database
manager

“SQLUPI” on page 439
Contains partitioning information, such as the partitioning map and the
partitioning key of a table

“SQLXA-RECOVER” on page 441
Used by the transaction APIs to return a list of indoubt transactions

“SQLXA-XID” on page 443
Used by the transaction APIs to identify a transaction.

 Chapter 3. Data Structures 333

RFWD-INPUT

 RFWD-INPUT
This structure is used to pass information to “sqluroll - Rollforward Database” on
page 300.

Table 6. Fields in the RFWD-INPUT Structure

Field Name Data Type Description

VERSION UNSIGNED LONG Rollforward version.

PDBALIAS Pointer Database alias.

CALLERACTION UNSIGNED SHORT Action.

PSTOPTIME Pointer Stop time.

PUSERNAME Pointer User name.

PPASSWORD Pointer Password.

POVERFLOWLOGPATH Pointer Overflow log path.

NUMCHNGLGOVRFLW UNSIGNED SHORT Number of changed overflow log paths (MPP
only).

PCHNGLOGOVRFLW Structure Changed overflow log paths (MPP only).

CONNECTMODE UNSIGNED SHORT Connect mode.

PTABLESPACELIST Structure A pointer to a list of table space names. For
information about this structure, see
“SQLU-TABLESPACE-BKRST-LIST” on page 423.

ALLNODEFLAG SHORT All node flag.

NUMNODES SHORT Size of the node list.

PNODELIST Pointer List of node numbers.

NUMNODEINFO SHORT Size of pNodeInfo in “RFWD-OUTPUT” on
page 337.

NODENUM SQL_PDB_NODE_TYPE Node number.

PATHLEN UNSIGNED SHORT Length of the new log path.

LOGPATH CHAR(255) New overflow log path.

334 API Reference

RFWD-INPUT

 Language Syntax
C Structure

/* File: sqlutil.h */

/* Structure: RFWD-INPUT */

/* ... */

SQL_STRUCTURE rfwd_input

{

 unsigned long version;

 char *pDbAlias;

 unsigned short CallerAction;

 char *pStopTime;

 char *pUserName;

 char *pPassword;

 char *pOverflowLogPath;

 unsigned short NumChngLgOvrflw;

struct sqlurf_newlogpath *pChngLogOvrflw;

 unsigned short ConnectMode;

struct sqlu_tablespace_bkrst_list *pTablespaceList;

 short AllNodeFlag;

 short NumNodes;

 SQL_PDB_NODE_TYPE *pNodeList;

 short NumNodeInfo;

};

/* ... */

/* File: sqlutil.h */

/* Structure: SQLURF-NEWLOGPATH */

/* ... */

SQL_STRUCTURE sqlurf_newlogpath

{

 SQL_PDB_NODE_TYPE nodenum;

 unsigned short pathlen;

 char logpath[SQL_LOGPATH_SZ+SQL_LOGFILE_NAME_SZ+1];

};

/* ... */

 Chapter 3. Data Structures 335

RFWD-INPUT

COBOL Structure

* File: sqlutil.cbl

01 SQL-RFWD-INPUT.

05 SQL-VERSION PIC 9(9) COMP-5.

05 SQL-DBALIAS USAGE IS POINTER.

05 SQL-CALLERACTION PIC 9(4) COMP-5.

 05 FILLER PIC X(2).

05 SQL-STOPTIME USAGE IS POINTER.

05 SQL-USERNAME USAGE IS POINTER.

05 SQL-PASSWORD USAGE IS POINTER.

05 SQL-OVERFLOWLOGPATH USAGE IS POINTER.

05 SQL-NUMCHANGE PIC 9(4) COMP-5.

 05 FILLER PIC X(2).

05 SQL-P-CHNG-LOG-OVRFLW USAGE IS POINTER.

05 SQL-CONNECTMODE PIC 9(4) COMP-5.

 05 FILLER PIC X(2).

05 SQL-P-TABLESPACE-LIST USAGE IS POINTER.

05 SQL-ALLNODEFLAG PIC S9(4) COMP-5.

05 SQL-NUMNODES PIC S9(4) COMP-5.

05 SQL-NODELIST USAGE IS POINTER.

05 SQL-NUMNODEINFO PIC S9(4) COMP-5.

 05 FILLER PIC X(2).

*

* File: sqlutil.cbl

01 SQLURF-NEWLOGPATH.

05 SQL-NODENUM PIC S9(4) COMP-5.

05 SQL-PATHLEN PIC 9(4) COMP-5.

 05 SQL-LOGPATH PIC X(254).

 05 FILLER PIC X.

 05 FILLER PIC X(1).

*

336 API Reference

RFWD-OUTPUT

 RFWD-OUTPUT
This structure is used to pass information from “sqluroll - Rollforward Database” on
page 300.

Table 7 (Page 1 of 2). Fields in the RFWD-OUTPUT Structure

Field Name Data Type Description

PAPPLICATIONID Pointer The address of a buffer of length
SQLU_APPLID_LEN+1 (defined in sqlutil) to hold an
application identifier returned from the API. This
identifier can be used with the database system
monitor APIs to monitor some aspects of the
application. If this information is not of interest,
supply the NULL pointer. In a multi-node
environment, returns only the application identifier
for the catalog node.

PNUMREPLIES Pointer Number of node replies received. Each node that
replies fills in an sqlurf_info structure in pNodeInfo.
In a single-node environment, the value of this
parameter is 1.

PNODEINFO Structure Node reply information. A user defined array of
NumNodeInfo sqlurf_info structures.

NODENUM SQL_PDB_NODE_TYPE Node number.

STATE LONG State information.

NEXTARCLOG UNSIGNED CHAR(13) A 12-byte buffer to hold the returned name of the
next archived log file required. If a caller action
other than SQLUM_QUERY is supplied, the value
returned in this field indicates that an error
occurred when accessing the file. Possible causes
are:

¹ The file was not found in the database log
directory, nor on the path specified by the
overflow log path parameter

¹ The user exit program failed to return the
archived file.

FIRSTARCDEL UNSIGNED CHAR(13) A 12-byte buffer to hold the returned name of the
first archived log file no longer needed for
recovery. This file, and all files up to and including
lastarcdel, can be moved to make room on the
disk.

For example, if the values returned in firstarcdel
and lastarcdel are S0000001.LOG and
S0000005.LOG, the following log files can be
moved:

 S0000001.LOG

 S0000002.LOG

 S0000003.LOG

 S0000004.LOG

 S0000005.LOG

LASTARCDEL UNSIGNED CHAR(13) A 12-byte buffer to hold the returned name of the
last archived log file that can be removed from the
database log directory.

 Chapter 3. Data Structures 337

RFWD-OUTPUT

Possible values for STATE (defined in sqlutil) are:

SQLURFQ_NOT_AVAILABLE
Could not connect to the node.

SQLURFQ_NOT_RFW_PENDING
Database is not rollforward pending.

SQLURFQ_DB_RFW_PENDING
Database is rollforward pending.

SQLURFQ_TBL_RFW_PENDING
Table space is rollforward pending.

SQLURFQ_DB_RFW_IN_PROGRESS
Database rollforward in progress.

SQLURFQ_TBL_RFW_IN_PROGRESS
Table space rollforward in progress.

SQLURFQ_DB_RFW_STOPPING
Database rollforward was interrupted while processing a STOP request.

SQLURFQ_TBL_RFW_STOPPING
Table space rollforward was interrupted while processing a STOP request.

Table 7 (Page 2 of 2). Fields in the RFWD-OUTPUT Structure

Field Name Data Type Description

LASTCOMMIT UNSIGNED CHAR(27) A 26-character string containing a time stamp in
ISO format. This value represents the time stamp
of the last committed transaction after the
rollforward operation terminates.

 Language Syntax
C Structure

/* File: sqlutil.h */

/* Structure: RFWD-OUTPUT */

/* ... */

SQL_STRUCTURE rfwd_output

{

 char *pApplicationId;

 long *pNumReplies;

struct sqlurf_info *pNodeInfo;

};

/* ... */

338 API Reference

RFWD-OUTPUT

/* File: sqlutil.h */

/* Structure: SQLURF-INFO */

/* ... */

SQL_STRUCTURE sqlurf_info

{

 SQL_PDB_NODE_TYPE nodenum;

 long state;

 unsigned char nextarclog[SQLUM_ARCHIVE_FILE_LEN+1];

 unsigned char firstarcdel[SQLUM_ARCHIVE_FILE_LEN+1];

 unsigned char lastarcdel[SQLUM_ARCHIVE_FILE_LEN+1];

 unsigned char lastcommit[SQLUM_TIMESTAMP_LEN+1];

};

/* ... */

COBOL Structure

* File: sqlutil.cbl

01 SQL-RFWD-OUTPUT.

05 SQL-APPLID USAGE IS POINTER.

05 SQL-NUMREPLIES USAGE IS POINTER.

05 SQL-P-NODE-INFO USAGE IS POINTER.

*

* File: sqlutil.cbl

01 SQLURF-INFO.

05 SQL-NODENUM PIC S9(4) COMP-5.

 05 FILLER PIC X(2).

05 SQL-STATE PIC S9(9) COMP-5.

 05 SQL-NEXTARCLOG PIC X(12).

 05 FILLER PIC X.

 05 SQL-FIRSTARCDEL PIC X(12).

 05 FILLER PIC X.

 05 SQL-LASTARCDEL PIC X(12).

 05 FILLER PIC X.

 05 SQL-LASTCOMMIT PIC X(26).

 05 FILLER PIC X.

 05 FILLER PIC X(2).

*

 Chapter 3. Data Structures 339

SQL-AUTHORIZATIONS

 SQL-AUTHORIZATIONS
This structure is used to return information after a call to “sqluadau - Get
Authorizations” on page 227. The data type of all fields is SMALLINT. The first half of
the following table contains authorities granted directly to a user. The second half of the
table contains authorities granted to the groups to which a user belongs.

Table 8. Fields in the SQL-AUTHORIZATIONS Structure

Field Name Description

SQL_AUTHORIZATIONS_LEN Size of structure.

SQL_SYSADM_AUTH SYSADM authority.

SQL_SYSCTRL_AUTH SYSCTRL authority.

SQL_SYSMAINT_AUTH SYSMAINT authority.

SQL_DBADM_AUTH DBADM authority.

SQL_CREATETAB_AUTH CREATETAB authority.

SQL_CREATET_NOT_FENC_AUTH CREATE_NOT_FENCED authority.

SQL_BINDADD_AUTH BINDADD authority.

SQL_CONNECT_AUTH CONNECT authority.

SQL_IMPLICIT_SCHEMA_AUTH IMPLICIT_SCHEMA authority.

SQL_SYSADM_GRP_AUTH User belongs to a group which holds SYSADM
authority.

SQL_SYSCTRL_GRP_AUTH User belongs to a group which holds SYSCTRL
authority.

SQL_SYSMAINT_GRP_AUTH User belongs to a group which holds SYSMAINT
authority.

SQL_DBADM_GRP_AUTH User belongs to a group which holds DBADM
authority.

SQL_CREATETAB_GRP_AUTH User belongs to a group which holds CREATETAB
authority.

SQL_CREATE_NON_FENC_GRP_AUTH User belongs to a group which holds
CREATE_NOT_FENCED authority.

SQL_BINDADD_GRP_AUTH User belongs to a group which holds BINDADD
authority.

SQL_CONNECT_GRP_AUTH User belongs to a group which holds CONNECT
authority.

SQL_IMPLICIT_SCHEMA_GRP_AUTH User belongs to a group which holds
IMPLICIT_SCHEMA authority.

Note: SYSADM, SYSMAINT, and SYSCTRL are only indirect authorities and cannot be granted directly to
the user. They are available only through the groups to which the user belongs.

340 API Reference

SQL-AUTHORIZATIONS

 Language Syntax
C Structure

/* File: sqlutil.h */

/* Structure: SQL-AUTHORIZATIONS */

/* ... */

SQL_STRUCTURE sql_authorizations

{

 short sql_authorizations_len;

 short sql_sysadm_auth;

 short sql_dbadm_auth;

 short sql_createtab_auth;

 short sql_bindadd_auth;

 short sql_connect_auth;

 short sql_sysadm_grp_auth;

 short sql_dbadm_grp_auth;

 short sql_createtab_grp_auth;

 short sql_bindadd_grp_auth;

 short sql_connect_grp_auth;

 short sql_sysctrl_auth;

 short sql_sysctrl_grp_auth;

 short sql_sysmaint_auth;

 short sql_sysmaint_grp_auth;

 short sql_create_not_fenc_auth;

 short sql_create_not_fenc_grp_auth;

 short sql_implicit_schema_auth;

 short sql_implicit_schema_grp_auth;

};

/* ... */

 Chapter 3. Data Structures 341

SQL-AUTHORIZATIONS

COBOL Structure

* File: sqlutil.cbl

01 SQL-AUTHORIZATIONS.

05 SQL-AUTHORIZATIONS-LEN PIC S9(4) COMP-5.

05 SQL-SYSADM-AUTH PIC S9(4) COMP-5.

05 SQL-DBADM-AUTH PIC S9(4) COMP-5.

05 SQL-CREATETAB-AUTH PIC S9(4) COMP-5.

05 SQL-BINDADD-AUTH PIC S9(4) COMP-5.

05 SQL-CONNECT-AUTH PIC S9(4) COMP-5.

05 SQL-SYSADM-GRP-AUTH PIC S9(4) COMP-5.

05 SQL-DBADM-GRP-AUTH PIC S9(4) COMP-5.

05 SQL-CREATETAB-GRP-AUTH PIC S9(4) COMP-5.

05 SQL-BINDADD-GRP-AUTH PIC S9(4) COMP-5.

05 SQL-CONNECT-GRP-AUTH PIC S9(4) COMP-5.

05 SQL-SYSCTRL-AUTH PIC S9(4) COMP-5.

05 SQL-SYSCTRL-GRP-AUTH PIC S9(4) COMP-5.

05 SQL-SYSMAINT-AUTH PIC S9(4) COMP-5.

05 SQL-SYSMAINT-GRP-AUTH PIC S9(4) COMP-5.

05 SQL-CREATE-NOT-FENC-AUTH PIC S9(4) COMP-5.

05 SQL-CREATE-NOT-FENC-GRP-AUTH PIC S9(4) COMP-5.

05 SQL-IMPLICIT-SCHEMA-AUTH PIC S9(4) COMP-5.

05 SQL-IMPLICIT-SCHEMA-GRP-AUTH PIC S9(4) COMP-5.

*

342 API Reference

SQL-DIR-ENTRY

 SQL-DIR-ENTRY
This structure is used by the DCS directory APIs.

Table 9. Fields in the SQL-DIR-ENTRY Structure

Field Name Data Type Description

STRUCT_ID SMALLINT Structure identifier. Set to SQL_DCS_STR_ID
(defined in sqlenv).

RELEASE SMALLINT Release version (assigned by the API).

CODEPAGE SMALLINT Code page for comment.

COMMENT CHAR(30) Optional description of the database.

LDB CHAR(8) Local name of the database; must match database
alias in system database directory.

TDB CHAR(18) Actual name of the database.

AR CHAR(32) Name of the application client.

PARM CHAR(512) Contains transaction program prefix, transaction
program name, SQLCODE mapping file name, and
disconnect and security option.

Note: The character fields passed in this structure must be null terminated or blank filled up to the length
of the field.

 Language Syntax
C Structure

/* File: sqlenv.h */

/* Structure: SQL-DIR-ENTRY */

/* ... */

SQL_STRUCTURE sql_dir_entry

{

 unsigned short struct_id;

 unsigned short release;

 unsigned short codepage;

_SQLOLDCHAR comment[SQL_CMT_SZ + 1];

_SQLOLDCHAR ldb[SQL_DBNAME_SZ + 1];

_SQLOLDCHAR tdb[SQL_LONG_NAME_SZ + 1];

_SQLOLDCHAR ar[SQL_AR_SZ + 1];

_SQLOLDCHAR parm[SQL_PARAMETER_SZ + 1];

};

/* ... */

 Chapter 3. Data Structures 343

SQL-DIR-ENTRY

COBOL Structure

* File: sqlenv.cbl

01 SQL-DIR-ENTRY.

05 STRUCT-ID PIC 9(4) COMP-5.

05 RELEASE-LVL PIC 9(4) COMP-5.

05 CODEPAGE PIC 9(4) COMP-5.

 05 COMMENT PIC X(30).

 05 FILLER PIC X.

 05 LDB PIC X(8).

 05 FILLER PIC X.

 05 TDB PIC X(18).

 05 FILLER PIC X.

 05 AR PIC X(32).

 05 FILLER PIC X.

 05 PARM PIC X(512).

 05 FILLER PIC X.

 05 FILLER PIC X(1).

*

344 API Reference

SQLA-FLAGINFO

 SQLA-FLAGINFO
This structure is used to hold flagger information.

Table 10. Fields in the SQLA-FLAGINFO Structure

Field Name Data Type Description

VERSION SMALLINT Input field that must be set to
SQLA_FLAG_VERSION (defined in sqlaprep).

MSGS Structure An imbedded sqla_flagmsgs structure.

Table 11. Fields in the SQLA-FLAGMSGS Structure

Field Name Data Type Description

COUNT SMALLINT Output field set to the number of messages
returned by the flagger.

SQLCA Array Array of SQLCA structures returning information
from the flagger.

 Language Syntax
C Structure

/* File: sqlaprep.h */

/* Structure: SQLA-FLAGINFO */

/* ... */

SQL_STRUCTURE sqla_flaginfo

{

 short version;

 short padding;

 struct sqla_flagmsgs msgs;

};

/* ... */

/* File: sqlaprep.h */

/* Structure: SQLA-FLAGMSGS */

/* ... */

SQL_STRUCTURE sqla_flagmsgs

{

 short count;

 short padding;

SQL_STRUCTURE sqlca sqlca[SQLA_FLAG_MAXMSGS];

};

/* ... */

 Chapter 3. Data Structures 345

SQLA-FLAGINFO

COBOL Structure

* File: sqlaprep.cbl

01 SQLA-FLAGINFO.

05 SQLFLAG-VERSION PIC 9(4) COMP-5.

 05 FILLER PIC X(2).

 05 SQLFLAG-MSGS.

10 SQLFLAG-MSGS-COUNT PIC 9(4) COMP-5.

 10 FILLER PIC X(2).

10 SQLFLAG-MSGS-SQLCA OCCURS 10 TIMES.

*

346 API Reference

SQLB-TBS-STATS

 SQLB-TBS-STATS
This structure is used to return additional table space statistics to an application
program.

Table 12. Fields in the SQLB-TBS-STATS Structure

Field Name Data Type Description

TOTALPAGES INTEGER Total operating system space occupied by the
table space (in 4KB pages). For DMS, this is the
sum of the container sizes (including overhead).
For SMS, this is the sum of all file space used for
the tables stored in this table space. This is the
only piece of information returned for SMS table
spaces; the other fields are set to this value or
zero.

USEABLEPAGES INTEGER For DMS, equal to TOTALPAGES minus
(overhead plus partial extents). For SMS, equal to
TOTALPAGES.

USEDPAGES INTEGER For DMS, the total number of pages in use. For
more information, see "Designing and Choosing
Table Spaces" in the Administration Guide. For
SMS, equal to TOTALPAGES.

FREEPAGES INTEGER For DMS, equal to USEABLEPAGES minus
USEDPAGES. For SMS, not applicable.

HIGHWATERMARK INTEGER For DMS, the high water mark is the current "end"
of the table space address space. In other words,
the page number of the first free extent following
the last allocated extent of a table space.

Note that this is not really a "high water mark", but
rather a "current water mark", since the value can
decrease. For SMS, this is not applicable.

 Language Syntax
C Structure

/* File: sqlutil.h */

/* Structure: SQLB-TBS-STATS */

/* ... */

SQL_STRUCTURE SQLB_TBS_STATS

{

 unsigned long totalPages;

 unsigned long useablePages;

 unsigned long usedPages;

 unsigned long freePages;

 unsigned long highWaterMark;

};

/* ... */

 Chapter 3. Data Structures 347

SQLB-TBS-STATS

COBOL Structure

* File: sqlutil.cbl

01 SQLB-TBS-STATS.

05 SQL-TOTAL-PAGES PIC 9(9) COMP-5.

05 SQL-USEABLE-PAGES PIC 9(9) COMP-5.

05 SQL-USED-PAGES PIC 9(9) COMP-5.

05 SQL-FREE-PAGES PIC 9(9) COMP-5.

05 SQL-HIGH-WATER-MARK PIC 9(9) COMP-5.

*

348 API Reference

SQLB-TBSCONTQRY-DATA

 SQLB-TBSCONTQRY-DATA
This structure is used to return container data to an application program.

Possible values for CONTTYPE (defined in sqlutil) are:

SQLB_CONT_PATH
Specifies a directory path (SMS only).

SQLB_CONT_DISK
Specifies a raw device (DMS only).

SQLB_CONT_FILE
Specifies a file (DMS only).

Table 13. Fields in the SQLB-TBSCONTQRY-DATA Structure

Field Name Data Type Description

ID INTEGER Container identifier.

NTBS INTEGER Always 1.

TBSID INTEGER Table space identifier.

NAMELEN INTEGER Length of the container name (for languages other
than C).

NAME CHAR(256) Container name.

UNDERDBDIR INTEGER Either 1 (container is under the DB directory) or 0
(container is not under the DB directory).

CONTTYPE INTEGER Container type.

TOTALPAGES INTEGER Total number of pages occupied by the table
space container.

USEABLEPAGES INTEGER For DMS, TOTALPAGES minus overhead. For
SMS, equal to TOTALPAGES.

OK INTEGER Either 1 (container is accessible) or 0 (container is
inaccessible). Zero indicates an abnormal situation
that usually requires the attention of the database
administrator.

 Chapter 3. Data Structures 349

SQLB-TBSCONTQRY-DATA

 Language Syntax
C Structure

/* File: sqlutil.h */

/* Structure: SQLB-TBSCONTQRY-DATA */

/* ... */

SQL_STRUCTURE SQLB_TBSCONTQRY_DATA

{

 unsigned long id;

 unsigned long nTbs;

 unsigned long tbsID;

 unsigned long nameLen;

 char name[SQLB_MAX_CONTAIN_NAME_SZ];

 unsigned long underDBDir;

 unsigned long contType;

 unsigned long totalPages;

 unsigned long useablePages;

 unsigned long ok;

};

/* ... */

COBOL Structure

* File: sqlutbcq.cbl

01 SQLB-TBSCONTQRY-DATA.

05 SQL-ID PIC 9(9) COMP-5.

05 SQL-N-TBS PIC 9(9) COMP-5.

05 SQL-TBS-ID PIC 9(9) COMP-5.

05 SQL-NAME-LEN PIC 9(9) COMP-5.

 05 SQL-NAME PIC X(256).

05 SQL-UNDER-DBDIR PIC 9(9) COMP-5.

05 SQL-CONT-TYPE PIC 9(9) COMP-5.

05 SQL-TOTAL-PAGES PIC 9(9) COMP-5.

05 SQL-USEABLE-PAGES PIC 9(9) COMP-5.

05 SQL-OK PIC 9(9) COMP-5.

*

350 API Reference

SQLB-TBSPQRY-DATA

 SQLB-TBSPQRY-DATA
This structure is used to return table space data to an application program.

Possible values for FLAGS (defined in sqlutil) are:

SQLB_TBS_SMS
System Managed Space

Table 14. Fields in the SQLB-TBSPQRY-DATA Structure

Field Name Data Type Description

TBSPQVER CHAR(8) Structure version identifier.

ID INTEGER Internal identifier for the table space.

NAMELEN INTEGER Length of the table space name.

NAME CHAR(128) Null-terminated name of the table space.

TOTALPAGES INTEGER Number of pages specified by CREATE
TABLESPACE (DMS only).

USEABLEPAGES INTEGER TOTALPAGES minus overhead (DMS only). This
value is rounded down to the next multiple of 4KB.

FLAGS INTEGER Bit attributes for the table space.

PAGESIZE INTEGER Page size (in bytes) of the table space. Currently
fixed at 4KB.

EXTSIZE INTEGER Extent size (in pages) of the table space.

PREFETCHSIZE INTEGER Prefetch size.

NCONTAINERS INTEGER Number of containers in the table space.

TBSSTATE INTEGER Table space states.

LIFELSN CHAR(6) Time stamp identifying the origin of the table
space.

FLAGS2 INTEGER Bit attributes for the table space.

MINIMUMRECTIME CHAR(27) Earliest point in time that may be specified by
point-in-time table space rollforward.

STATECHNGOBJ INTEGER If TBSSTATE is SQLB_LOAD_PENDING or
SQLB_DELETE_PENDING, the object ID in table
space STATECHANGEID that caused the table
space state to be set. Otherwise zero.

STATECHNGID INTEGER If TBSSTATE is SQLB_LOAD_PENDING or
SQLB_DELETE_PENDING, the table space ID of
the object STATECHANGEOBJ that caused the
table space state to be set. Otherwise zero.

NQUIESCERS INTEGER If TBSSTATE is SQLB_QUIESCED_SHARE,
UPDATE, or EXCLUSIVE, the number of
quiescers of the table space and the number of
entries in QUIESCERS.

QUIESCEID INTEGER The table space ID of the object QUIESCEOBJ
that caused the table space to be quiesced.

QUIESCEOBJ INTEGER The object ID in table space QUIESCEID that
caused the table space to be quiesced.

RESERVED CHAR(32) Reserved for future use.

 Chapter 3. Data Structures 351

SQLB-TBSPQRY-DATA

SQLB_TBS_DMS
Database Managed Space

SQLB_TBS_ANY
Regular contents

SQLB_TBS_LONG
Long field data

SQLB_TBS_TMP
Temporary data.

Possible values for TBSSTATE (defined in sqlutil) are:

SQLB_NORMAL
Normal

SQLB_QUIESCED_SHARE
Quiesced: SHARE

SQLB_QUIESCED_UPDATE
Quiesced: UPDATE

SQLB_QUIESCED_EXCLUSIVE
Quiesced: EXCLUSIVE

SQLB_LOAD_PENDING
Load pending

SQLB_DELETE_PENDING
Delete pending

SQLB_BACKUP_PENDING
Backup pending

SQLB_ROLLFORWARD_IN_PROGRESS
Roll forward in progress

SQLB_ROLLFORWARD_PENDING
Roll forward pending

SQLB_RESTORE_PENDING
Restore pending

SQLB_DISABLE_PENDING
Disable pending

SQLB_REORG_IN_PROGRESS
Reorganization in progress

SQLB_BACKUP_IN_PROGRESS
Backup in progress

SQLB_STORDEF_PENDING
Storage must be defined

SQLB_RESTORE_IN_PROGRESS
Restore in progress

SQLB_STORDEF_ALLOWED
Storage may be defined

SQLB_STORDEF_FINAL_VERSION
Storage definition is in 'final' state

SQLB_STORDEF_CHANGED
Storage definition was changed prior to roll forward

SQLB_REBAL_IN_PROGRESS
DMS rebalancer is active

352 API Reference

SQLB-TBSPQRY-DATA

SQLB_PSTAT_DELETION
Table space deletion in progress

SQLB_PSTAT_CREATION
Table space creation in progress.

Possible values for FLAGS2 (defined in sqlutil) are:

SQLB_STATE_SET
For service use only.

 Language Syntax
C Structure

/* File: sqlutil.h */

/* ... */

SQL_STRUCTURE SQLB_TBSPQRY_DATA

{

 char tbspqverfflSQLB_SVERSION_SIZE“;

 unsigned long id;

 unsigned long nameLen;

 char namefflSQLB_MAX_TBS_NAME_SZ“;

 unsigned long totalPages;

 unsigned long useablePages;

 unsigned long flags;

 unsigned long pageSize;

 unsigned long extSize;

 unsigned long prefetchSize;

 unsigned long nContainers;

 unsigned long tbsState;

 char lifeLSNffl6“;

 char padffl2“;

 unsigned long flags2;

 char minimumRecTimefflSQL_STAMP_STRLEN+1“;

 char pad1ffl1“;

 unsigned long StateChngObj;

 unsigned long StateChngID;

 unsigned long nQuiescers;

 struct SQLB_QUIESCER_DATA quiescerfflSQLB_MAX_QUIESCERS“;

 char reservedffl32“;

};

/* ... */

 Chapter 3. Data Structures 353

SQLB-TBSPQRY-DATA

/* File: sqlutil.h */

/* ... */

SQL_STRUCTURE SQLB_QUIESCER_DATA

{

 unsigned long quiesceId;

 unsigned long quiesceObject;

};

/* ... */

COBOL Structure

* File: sqlutbsp.cbl

01 SQLB-TBSPQRY-DATA.

 05 SQL-TBSPQVER PIC X(8).

05 SQL-ID PIC 9(9) COMP-5.

05 SQL-NAME-LEN PIC 9(9) COMP-5.

 05 SQL-NAME PIC X(128).

05 SQL-TOTAL-PAGES PIC 9(9) COMP-5.

05 SQL-USEABLE-PAGES PIC 9(9) COMP-5.

05 SQL-FLAGS PIC 9(9) COMP-5.

05 SQL-PAGE-SIZE PIC 9(9) COMP-5.

05 SQL-EXT-SIZE PIC 9(9) COMP-5.

05 SQL-PREFETCH-SIZE PIC 9(9) COMP-5.

05 SQL-N-CONTAINERS PIC 9(9) COMP-5.

05 SQL-TBS-STATE PIC 9(9) COMP-5.

 05 SQL-LIFE-LSN PIC X(6).

 05 SQL-PAD PIC X(2).

05 SQL-FLAGS2 PIC 9(9) COMP-5.

 05 SQL-MINIMUM-REC-TIME PIC X(26).

 05 FILLER PIC X.

 05 SQL-PAD1 PIC X(1).

05 SQL-STATE-CHNG-OBJ PIC 9(9) COMP-5.

05 SQL-STATE-CHNG-ID PIC 9(9) COMP-5.

05 SQL-N-QUIESCERS PIC 9(9) COMP-5.

05 SQL-QUIESCER OCCURS 5 TIMES.

10 SQL-QUIESCE-ID PIC 9(9) COMP-5.

10 SQL-QUIESCE-OBJECT PIC 9(9) COMP-5.

 05 SQL-RESERVED PIC X(32).

*

354 API Reference

SQLCA

 SQLCA
The SQL Communication Area (SQLCA) structure is used by the database manager to
return error information to an application program. This structure is updated after every
API call and SQL statement issued.

For detailed information about the SQLCA structure, including a description of its fields,
see the SQL Reference.

 Language Syntax
C Structure

/* File: sqlca.h */

/* Structure: SQLCA */

/* ... */

SQL_STRUCTURE sqlca

{

 _SQLOLDCHAR sqlcaid[8];

 long sqlcabc;

 #ifdef DB2_SQL92E

 long sqlcade;

 #else

 long sqlcode;

 #endif

 short sqlerrml;

 _SQLOLDCHAR sqlerrmc[70];

 _SQLOLDCHAR sqlerrp[8];

 long sqlerrd[6];

 _SQLOLDCHAR sqlwarn[11];

 #ifdef DB2_SQL92E

 _SQLOLDCHAR sqlstat[5];

 #else

 _SQLOLDCHAR sqlstate[5];

 #endif

};

/* ... */

 Chapter 3. Data Structures 355

SQLCA

COBOL Structure

* File: sqlca.cbl

01 SQLCA SYNC.

05 SQLCAID PIC X(8) VALUE "SQLCA ".

05 SQLCABC PIC S9(9) COMP-5 VALUE 136.

05 SQLCODE PIC S9(9) COMP-5.

 05 SQLERRM.

05 SQLERRP PIC X(8).

05 SQLERRD OCCURS 6 TIMES PIC S9(9) COMP-5.

 05 SQLWARN.

10 SQLWARN0 PIC X.

10 SQLWARN1 PIC X.

10 SQLWARN2 PIC X.

10 SQLWARN3 PIC X.

10 SQLWARN4 PIC X.

10 SQLWARN5 PIC X.

10 SQLWARN6 PIC X.

10 SQLWARN7 PIC X.

10 SQLWARN8 PIC X.

10 SQLWARN9 PIC X.

10 SQLWARNA PIC X.

05 SQLSTATE PIC X(5).

*

356 API Reference

SQLCHAR

 SQLCHAR
This structure is used to pass variable length data to the database manager.

Table 15. Fields in the SQLCHAR Structure

Field Name Data Type Description

LENGTH SMALLINT Length of the character string pointed to by DATA.

DATA CHAR(n) An array of characters of length LENGTH.

 Language Syntax
C Structure

/* File: sql.h */

/* Structure: SQLCHAR */

/* ... */

SQL_STRUCTURE sqlchar

{

 short length;

 _SQLOLDCHAR data[1];

};

/* ... */

COBOL Structure

This is not defined in any header file. The following is an example showing how it can
be done:

* Replace maxlen with the appropriate value:

01 SQLCHAR.

49 SQLCHAR-LEN PIC S9(4) COMP-5.

49 SQLCHAR-DATA PIC X(maxlen).

 Chapter 3. Data Structures 357

SQLDA

 SQLDA
The SQL Descriptor Area (SQLDA) structure is a collection of variables that is required
for execution of the SQL DESCRIBE statement. The SQLDA variables are options that
can be used with the PREPARE, OPEN, FETCH, EXECUTE, and CALL statements.

An SQLDA communicates with dynamic SQL; it can be used in a DESCRIBE
statement, modified with the addresses of host variables, and then reused in a FETCH
statement.

SQLDAs are supported for all languages, but predefined declarations are provided only
for C, REXX, FORTRAN, and COBOL. In REXX, the SQLDA is somewhat different than
in the other languages; for information about the use of SQLDAs in REXX, see the
Embedded SQL Programming Guide.

The meaning of the information in an SQLDA depends on its use. In PREPARE and
DESCRIBE, an SQLDA provides information to an application program about a
prepared statement. In OPEN, EXECUTE, FETCH, and CALL, an SQLDA describes
host variables.

For detailed information about the SQLDA structure, including a description of its fields,
see the SQL Reference.

 Language Syntax
C Structure

/* File: sqlda.h */

/* Structure: SQLDA */

/* ... */

SQL_STRUCTURE sqlda

{

 _SQLOLDCHAR sqldaid[8];

 long sqldabc;

 short sqln;

 short sqld;

 struct sqlvar sqlvar[1];

};

/* ... */

358 API Reference

SQLDA

/* File: sqlda.h */

/* Structure: SQLVAR */

/* ... */

SQL_STRUCTURE sqlvar

{

 short sqltype;

 short sqllen;

 _SQLOLDCHAR *SQL_POINTER sqldata;

 short *SQL_POINTER sqlind;

struct sqlname sqlname;

};

/* ... */

/* File: sqlda.h */

/* Structure: SQLNAME */

/* ... */

SQL_STRUCTURE sqlname

{

 short length;

 _SQLOLDCHAR data[30];

};

/* ... */

/* File: sqlda.h */

/* Structure: SQLVAR2 */

/* ... */

SQL_STRUCTURE sqlvar2

{

union sql8bytelen len;

char *SQL_POINTER sqldatalen;

struct sqldistinct_type sqldatatype_name;

};

/* ... */

 Chapter 3. Data Structures 359

SQLDA

/* File: sqlda.h */

/* Structure: SQL8BYTELEN */

/* ... */

union sql8bytelen

{

 long reserve1[2];

 long sqllonglen;

};

/* ... */

/* File: sqlda.h */

/* Structure: SQLDISTINCT-TYPE */

/* ... */

SQL_STRUCTURE sqldistinct_type

{

 short length;

 char data[27];

 char reserved1[3];

};

/* ... */

COBOL Structure

* File: sqlda.cbl

01 SQLDA SYNC.

05 SQLDAID PIC X(8) VALUE "SQLDA ".

05 SQLDABC PIC S9(9) COMP-5.

05 SQLN PIC S9(4) COMP-5.

05 SQLD PIC S9(4) COMP-5.

05 SQLVAR-ENTRIES OCCURS 0 TO 1489 TIMES

 10 SQLVAR.

10 SQLVAR2 REDEFINES SQLVAR.

*

360 API Reference

SQLDCOL

 SQLDCOL
This structure is used to pass variable column information to “sqluimpr - Import” on
page 271, “sqluexpr - Export” on page 241, and “sqluload - Load” on page 282.

The valid values for DCOLMETH (defined in sqlutil) are:

SQL_METH_N
Names. When importing or loading, use the column names provided via this
structure to identify the data to import or load from the external file. The case of
these column names must match the case of the corresponding names in the

Table 16. Fields in the SQLDCOL Structure

Field Name Data Type Description

DCOLMETH SMALLINT A character indicating the
method to be used to select
columns within the data file.

DCOLNUM SMALLINT The number of columns
specified in the array
DCOLNAME.

DCOLNAME Array An array of DCOLNUM sqldcoln
structures.

Table 17. Fields in the SQLDCOLN Structure

Field Name Data Type Description

DCOLNLEN SMALLINT Length of the data pointed to by
DCOLNPTR.

DCOLNPTR Pointer Pointer to a data element
determined by DCOLMETH.

Note: The DCOLNLEN and DCOLNPTR fields are repeated for each column specified.

Table 18. Fields in the SQLLOCTAB Structure

Field Name Data Type Description

LOCPAIR Array An array of sqllocpair
structures.

Table 19. Fields in the SQLLOCPAIR Structure

Field Name Data Type Description

BEGIN_LOC SMALLINT Starting position of the column
data in the external file.

END_LOC SMALLINT Ending position of the column
data in the external file.

 Chapter 3. Data Structures 361

SQLDCOL

system catalogs. When exporting, use the column names provided via this structure
as the column names in the output file.

The dcolnptr pointer of each element of the dcolname array points to an array of
characters, of length dcolnlen bytes, that make up the name of a column to be
imported or loaded. The dcolnum field, which must be positive, indicates the
number of elements in the dcolname array.

This method is invalid if the external file does not contain column names (DEL or
ASC format files, for example).

SQL_METH_P
Positions. When importing or loading, use starting column positions provided via this
structure to identify the data to import or load from the external file. This method is
not valid when exporting data.

The dcolnptr pointer of each element of the dcolname array is ignored, while the
dcolnlen field contains a column position in the external file. The dcolnum field,
which must be positive, indicates the number of elements in the dcolname array.

The lowest valid column position value is 1 (indicating the first column), and the
highest valid value depends on the external file type. Positional selection is not
valid for import of ASC files.

SQL_METH_L
Locations. When importing or loading, use starting and ending column positions
provided via this structure to identify the data to import or load from the external file.
This method is not valid when exporting data.

The dcolnptr field of the first element of the dcolname array points to an sqlloctab
structure, which consists of an array of sqllocpair structures. The number of
elements in this array is determined by the dcolnum field of the sqldcol structure,
which must be positive. Each element in the array is a pair of 2-byte integers that
indicate where the column begins and ends. The first element of each location pair
is the byte within the file where the column begins, and the second element is the
byte where the column ends. The first byte position within a row in the file is
considered byte position 1. The columns can overlap.

This method is the only valid method for importing or loading ASC files.
SQL_METH_D

Default. When importing or loading, the first column of the file is loaded or imported
into the first column of the table, and so on. When exporting, the default names are
used for the columns in the external file.

The dcolnum and dcolname fields of the sqldcol structure are both ignored, and the
columns from the external file are taken in their natural order.

A column from the external file can be used in the array more than once. It is not
necessary to use every column from the external file.

362 API Reference

SQLDCOL

 Language Syntax
C Structure

/* File: sqlutil.h */

/* Structure: SQLDCOL */

/* ... */

SQL_STRUCTURE sqldcoln

{

 short dcolnlen;

 char *dcolnptr;

};

/* ... */

/* File: sqlutil.h */

/* Structure: SQLDCOLN */

/* ... */

SQL_STRUCTURE sqldcoln

{

 short dcolnlen;

 char *dcolnptr;

};

/* ... */

/* File: sqlutil.h */

/* Structure: SQLLOCTAB */

/* ... */

SQL_STRUCTURE sqlloctab

{

struct sqllocpair locpair[1];

};

/* ... */

/* File: sqlutil.h */

/* Structure: SQLLOCPAIR */

/* ... */

SQL_STRUCTURE sqllocpair

{

 short begin_loc;

 short end_loc;

};

/* ... */

 Chapter 3. Data Structures 363

SQLDCOL

COBOL Structure

* File: sqlutil.cbl

01 SQL-DCOLDATA.

05 SQL-DCOLMETH PIC S9(4) COMP-5.

05 SQL-DCOLNUM PIC S9(4) COMP-5.

05 SQLDCOLN OCCURS 0 TO 255 TIMES DEPENDING ON SQL-DCOLNUM.

10 SQL-DCOLNLEN PIC S9(4) COMP-5.

 10 FILLER PIC X(2).

10 SQL-DCOLN-PTR USAGE IS POINTER.

*

* File: sqlutil.cbl

01 SQL-LOCTAB.

05 SQL-LOC-PAIR OCCURS 1 TIMES.

10 SQL-BEGIN-LOC PIC S9(4) COMP-5.

10 SQL-END-LOC PIC S9(4) COMP-5.

*

364 API Reference

SQLE-ADDN-OPTIONS

 SQLE-ADDN-OPTIONS
This structure is used to pass information to “sqleaddn - Add Node” on page 65.

Valid values for TBLSPACE_TYPE (defind in sqlenv) are:

SQLE_TABLESPACES_NONE
Do not create any temporary table spaces.

SQLE_TABLESPACES_LIKE_NODE
The containers for the temporary table spaces should be the same as those for the
specified node.

SQLE_TABLESPACES_LIKE_CATALOG
The containers for the temporary table spaces should be the same as those for the
catalog node of each database.

Table 20. Fields in the SQLE-NODE-APPN Structure

Field Name Data Type Description

SQLADDID CHAR An "eyecatcher" value which must be set to
SQLE_ADDOPTID_V51.

TBLSPACE_TYPE UNSIGNED LONG Specifies the type of temporary table space
definitions to be used for the node being added.
See below for values.

TBLSPACE_NODE SQL_PDB_NODE_TYPE Specifies the node number from which the
temporary table space definitions should be
obtained. The node number must exist in the
db2nodes.cfg file, and is only used if the
tblspace_type field is set to
SQLE_TABLESPACES_LIKE_NODE.

 Language Syntax
C Structure

/* File: sqlenv.h */

/* Structure: SQLE-ADDN-OPTIONS */

/* ... */

SQL_STRUCTURE sqle_addn_options

{

 char sqladdid[8];

 unsigned long tblspace_type;

 SQL_PDB_NODE_TYPE tblspace_node;

};

/* ... */

 Chapter 3. Data Structures 365

SQLE-ADDN-OPTIONS

COBOL Structure

* File: sqlenv.cbl

01 SQLE-ADDN-OPTIONS.

 05 SQLADDID PIC X(8).

05 SQL-TBLSPACE-TYPE PIC 9(9) COMP-5.

05 SQL-TBLSPACE-NODE PIC S9(4) COMP-5.

 05 FILLER PIC X(2).

*

366 API Reference

SQLE-CONN-SETTING

 SQLE-CONN-SETTING
This structure is used to specify connection setting types and values (see “sqleqryc -
Query Client” on page 162, and “sqlesetc - Set Client” on page 176).

Table 21. Fields in the SQLE-CONN-SETTING Structure

Field Name Data Type Description

TYPE SMALLINT Setting type.

VALUE SMALLINT Setting value.

 Connection Settings
The valid entries for the SQLE-CONN-SETTING TYPE element and the associated
descriptions for each entry are listed below (defined in sqlenv and sql):

Table 22 (Page 1 of 3). Connection Settings

Type Value Description

SQL_CONNECT_TYPE SQL_CONNECT_1 Type 1 CONNECTs enforce the single
database per unit of work semantics of
older releases, also known as the rules
for remote unit of work (RUOW).

SQL_CONNECT_2 Type 2 CONNECTs support the
multiple databases per unit of work
semantics of DUOW.

SQL_RULES SQL_RULES_DB2 Enable the SQL CONNECT statement
to switch the current connection to an
established (dormant) connection.

SQL_RULES_STD Permit only the establishment of a new
connection through the SQL CONNECT
statement. The SQL SET
CONNECTION statement must be used
to switch the current connection to a
dormant connection.

SQL_DISCONNECT SQL_DISCONNECT_EXPL Removes those connections that have
been explicitly marked for release by
the SQL RELEASE statement at
commit.

SQL_DISCONNECT_COND Breaks those connections that have no
open WITH HOLD cursors at commit,
and those that have been marked for
release by the SQL RELEASE
statement.

SQL_DISCONNECT_AUTO Breaks all connections at commit.

SQL_SYNCPOINT SQL_SYNC_TWOPHASE Requires a Transaction Manager (TM)
to coordinate two-phase commits
among databases that support this
protocol.

SQL_SYNC_ONEPHASE Uses one-phase commits to commit the
work done by each database in multiple
database transactions. Enforces single
updater, multiple read behavior.

 Chapter 3. Data Structures 367

SQLE-CONN-SETTING

Table 22 (Page 2 of 3). Connection Settings

Type Value Description

SQL_SYNC_NONE Uses one-phase commits to commit
work done, but does not enforce single
updater, multiple read behavior.

SQL_MAX_NETBIOS_CONNECTIONS Between 1 and 254 This specifies the maximum number of
concurrent connections that can be
made using a NETBIOS adapter in an
application.

SQL_DEFERRED_PREPARE SQL_DEFERRED_PREPARE_NO The PREPARE statement will be
executed at the time it is issued.

SQL_DEFERRED_PREPARE_YES Execution of the PREPARE statement
will be deferred until the corresponding
OPEN, DESCRIBE, or EXECUTE
statement is issued. The PREPARE
statement will not be deferred if it uses
the INTO clause, which requires an
SQLDA to be returned immediately.
However, if the PREPARE INTO
statement is issued for a cursor that
does not use any parameter markers,
the processing will be optimized by
pre-OPENing the cursor when the
PREPARE is executed.

SQL_DEFERRED_PREPARE_ALL Same as YES, except that a PREPARE
INTO statement which contains
parameter markers is deferred. If a
PREPARE INTO statement does not
contain parameter markers,
pre-OPENing of the cursor will still be
performed. If the PREPARE statement
uses the INTO clause to return an
SQLDA, the application must not
reference the content of this SQLDA
until the OPEN, DESCRIBE, or
EXECUTE statement is issued and
returned.

SQL_CONNECT_NODE Between 0 and 999, or the keyword
SQL_CONN_CATALOG_NODE.

Specifies the node to which a connect
is to be made. Overrides the value of
the environment variable DB2NODE.

For example, if nodes 1, 2, and 3 are
defined, the client only needs to be
able to access one of these nodes. If
only node 1 containing databases has
been cataloged, and this parameter is
set to 3, the next connect attempt will
result in a connection at node 3, after
an initial connection at node 1.

368 API Reference

SQLE-CONN-SETTING

Table 22 (Page 3 of 3). Connection Settings

Type Value Description

SQL_ATTACH_NODE Between 0 and 999. Specifies the node to which an attach is
to be made. Overrides the value of the
environment variable DB2NODE.

For example, if nodes 1, 2, and 3 are
defined, the client only needs to be
able to access one of these nodes. If
only node 1 containing databases has
been cataloged, and this parameter is
set to 3, then the next attach attempt
will result in an attachment at node 3,
after an initial attachment at node 1.

Note: These field names are defined for the C programming language. There are similar names for FORTRAN and COBOL,
which have the same semantics.

 Language Syntax
C Structure

/* File: sqlenv.h */

/* Structure: SQLE-CONN-SETTING */

/* ... */

SQL_STRUCTURE sqle_conn_setting

{

 unsigned short type;

 unsigned short value;

};

/* ... */

COBOL Structure

* File: sqlenv.cbl

01 SQLE-CONN-SETTING.

05 SQLE-CONN-SETTING-ITEM occurs 5 times.

10 SQLE-CONN-TYPE pic s9(4) comp-5.

10 SQLE-CONN-VALUE pic s9(4) comp-5.

*

 Chapter 3. Data Structures 369

SQLE-NODE-APPC

 SQLE-NODE-APPC
This structure is used to catalog APPC nodes (see “sqlectnd - Catalog Node” on
page 89).

Table 23. Fields in the SQLE-NODE-APPC Structure

Field Name Data Type Description

LOCAL_LU CHAR(8) Local_lu name.

PARTNER_LU CHAR(8) Alias Partner_lu name.

MODE CHAR(8) Mode.

Note: The character fields passed in this structure must be null terminated or blank filled up to the length
of the field.

 Language Syntax
C Structure

/* File: sqlenv.h */

/* Structure: SQLE-NODE-APPC */

/* ... */

SQL_STRUCTURE sqle_node_appc

{

_SQLOLDCHAR local_lu[SQL_LOCLU_SZ + 1];

_SQLOLDCHAR partner_lu[SQL_RMTLU_SZ + 1];

_SQLOLDCHAR mode[SQL_MODE_SZ + 1];

};

/* ... */

COBOL Structure

* File: sqlenv.cbl

01 SQL-NODE-APPC.

 05 LOCAL-LU PIC X(8).

 05 FILLER PIC X.

 05 PARTNER-LU PIC X(8).

 05 FILLER PIC X.

 05 TRANS-MODE PIC X(8).

 05 FILLER PIC X.

*

370 API Reference

SQLE-NODE-APPN

 SQLE-NODE-APPN
This structure is used to catalog APPN nodes (see “sqlectnd - Catalog Node” on
page 89).

Table 24. Fields in the SQLE-NODE-APPN Structure

Field Name Data Type Description

NETWORKID CHAR(8) Network ID.

REMOTE_LU CHAR(8) Alias Remote_lu name.

LOCAL_LU CHAR(8) Alias Local_lu name.

MODE CHAR(8) Mode.

Note: The character fields passed in this structure must be null terminated or blank filled up to the length
of the field.

 Language Syntax
C Structure

/* File: sqlenv.h */

/* Structure: SQLE-NODE-APPN */

/* ... */

SQL_STRUCTURE sqle_node_appn

{

_SQLOLDCHAR networkid[SQL_NETID_SZ + 1];

_SQLOLDCHAR remote_lu[SQL_RMTLU_SZ + 1];

_SQLOLDCHAR local_lu[SQL_LOCLU_SZ + 1];

_SQLOLDCHAR mode[SQL_MODE_SZ + 1];

};

/* ... */

COBOL Structure

* File: sqlenv.cbl

01 SQL-NODE-APPN.

 05 NETWORKID PIC X(8).

 05 FILLER PIC X.

 05 REMOTE-LU PIC X(8).

 05 FILLER PIC X.

 05 LOCAL-LU PIC X(8).

 05 FILLER PIC X.

 05 TRANS-MODE PIC X(8).

 05 FILLER PIC X.

*

 Chapter 3. Data Structures 371

SQLE-NODE-CPIC

 SQLE-NODE-CPIC
This structure is used to catalog CPIC nodes (see “sqlectnd - Catalog Node” on
page 89).

Valid values for SECURITY_TYPE (defined in sqlenv) are:

SQL_CPIC_SECURITY_NONE
SQL_CPIC_SECURITY_SAME
SQL_CPIC_SECURITY_PROGRAM

Table 25. Fields in the SQLE-NODE-CPIC Structure

Field Name Data Type Description

SYM_DEST_NAME CHAR(8) Symbolic destination name of
remote partner.

SECURITY_TYPE SMALLINT Security type.

Note: The character fields passed in this structure must be null terminated or blank filled up to the length
of the field.

 Language Syntax
C Structure

/* File: sqlenv.h */

/* Structure: SQLE-NODE-CPIC */

/* ... */

SQL_STRUCTURE sqle_node_cpic

{

 _SQLOLDCHAR sym_dest_name[SQL_SYM_DEST_NAME_SZ+1];

unsigned short security_type;

};

/* ... */

COBOL Structure

* File: sqlenv.cbl

01 SQL-NODE-CPIC.

 05 SYM-DEST-NAME PIC X(8).

 05 FILLER PIC X.

 05 FILLER PIC X(1).

05 SECURITY-TYPE PIC 9(4) COMP-5.

*

372 API Reference

SQLE-NODE-IPXSPX

 SQLE-NODE-IPXSPX
This structure is used to catalog IPX/SPX nodes (see “sqlectnd - Catalog Node” on
page 89).

Table 26. Fields in the SQLE-NODE-IPXSPX Structure

Field Name Data Type Description

FILESERVER CHAR(48) Name of the NetWare file server where the DB2
server instance is registered.

OBJECTNAME CHAR(48) The database manager server instance is
represented as the object, objectname, on the
NetWare file server. The server's IPX/SPX
internetwork address is stored and retrieved from
this object.

Note: The character fields passed in this structure must be null terminated or blank filled up to the length
of the field.

 Language Syntax
C Structure

/* File: sqlenv.h */

/* Structure: SQLE-NODE-IPXSPX */

/* ... */

SQL_STRUCTURE sqle_node_ipxspx

{

 char fileserver[SQL_FILESERVER_SZ+1];

 char objectname[SQL_OBJECTNAME_SZ+1];

};

/* ... */

COBOL Structure

* File: sqlenv.cbl

01 SQL-NODE-IPXSPX.

 05 SQL-FILESERVER PIC X(48).

 05 FILLER PIC X.

 05 SQL-OBJECTNAME PIC X(48).

 05 FILLER PIC X.

*

 Chapter 3. Data Structures 373

SQLE-NODE-LOCAL

 SQLE-NODE-LOCAL
This structure is used to catalog local nodes (see “sqlectnd - Catalog Node” on
page 89).

Table 27. Fields in the SQLE-NODE-LOCAL Structure

Field Name Data Type Description

INSTANCE_NAME CHAR(8) Name of an instance.

Note: The character fields passed in this structure must be null terminated or blank filled up to the length
of the field.

 Language Syntax
C Structure

/* File: sqlenv.h */

/* Structure: SQLE-NODE-LOCAL */

/* ... */

SQL_STRUCTURE sqle_node_local

{

 char instance_name[SQL_INSTNAME_SZ+1];

};

/* ... */

COBOL Structure

* File: sqlenv.cbl

01 SQL-NODE-LOCAL.

 05 SQL-INSTANCE-NAME PIC X(8).

 05 FILLER PIC X.

*

374 API Reference

SQLE-NODE-NETB

 SQLE-NODE-NETB
This structure is used to catalog NetBIOS nodes (see “sqlectnd - Catalog Node” on
page 89).

Table 28. Fields in the SQLE-NODE-NETB Structure

Field Name Data Type Description

ADAPTER SMALLINT Local LAN adapter.

REMOTE_NNAME CHAR(8) Nname of the remote
workstation that is stored in the
database manager configuration
file on the server instance.

Note: The character fields passed in this structure must be null terminated or blank filled up to the length
of the field.

 Language Syntax
C Structure

/* File: sqlenv.h */

/* Structure: SQLE-NODE-NETB */

/* ... */

SQL_STRUCTURE sqle_node_netb

{

unsigned short adapter;

_SQLOLDCHAR remote_nname[SQL_RMTLU_SZ + 1];

};

/* ... */

COBOL Structure

* File: sqlenv.cbl

01 SQL-NODE-NETB.

05 ADAPTER PIC 9(4) COMP-5.

 05 REMOTE-NNAME PIC X(8).

 05 FILLER PIC X.

 05 FILLER PIC X(1).

*

 Chapter 3. Data Structures 375

SQLE-NODE-NPIPE

 SQLE-NODE-NPIPE
This structure is used to catalog named pipe nodes (see “sqlectnd - Catalog Node” on
page 89).

Table 29. Fields in the SQLE-NODE-NPIPE Structure

Field Name Data Type Description

COMPUTERNAME CHAR(15) Computer name.

INSTANCE_NAME CHAR(8) Name of an instance.

Note: The character fields passed in this structure must be null terminated or blank filled up to the length
of the field.

 Language Syntax
C Structure

/* File: sqlenv.h */

/* Structure: SQLE-NODE-NPIPE */

/* ... */

SQL_STRUCTURE sqle_node_npipe

{

 char computername[SQL_COMPUTERNAME_SZ+1];

 char instance_name[SQL_INSTNAME_SZ+1];

};

/* ... */

COBOL Structure

* File: sqlenv.cbl

01 SQL-NODE-NPIPE.

 05 COMPUTERNAME PIC X(15).

 05 FILLER PIC X.

 05 INSTANCE-NAME PIC X(8).

 05 FILLER PIC X.

*

376 API Reference

SQLE-NODE-STRUCT

 SQLE-NODE-STRUCT
This structure is used to catalog nodes (see “sqlectnd - Catalog Node” on page 89).

Valid values for PROTOCOL (defined in sqlenv) are:

SQL_PROTOCOL_APPC
SQL_PROTOCOL_APPN
SQL_PROTOCOL_CPIC
SQL_PROTOCOL_IPXSPX
SQL_PROTOCOL_LOCAL
SQL_PROTOCOL_NETB
SQL_PROTOCOL_NPIPE
SQL_PROTOCOL_SOCKS
SQL_PROTOCOL_TCPIP

Table 30. Fields in the SQLE-NODE-STRUCT Structure

Field Name Data Type Description

STRUCT_ID SMALLINT Structure identifier.

CODEPAGE SMALLINT Code page for comment.

COMMENT CHAR(30) Optional description of the
node.

NODENAME CHAR(8) Local name for the node where
the database is located.

PROTOCOL CHAR(1) Communications protocol type.

Note: The character fields passed in this structure must be null terminated or blank filled up to the length
of the field.

 Language Syntax
C Structure

/* File: sqlenv.h */

/* Structure: SQLE-NODE-STRUCT */

/* ... */

SQL_STRUCTURE sqle_node_struct

{

unsigned short struct_id;

unsigned short codepage;

_SQLOLDCHAR comment[SQL_CMT_SZ + 1];

_SQLOLDCHAR nodename[SQL_NNAME_SZ + 1];

 unsigned char protocol;

};

/* ... */

 Chapter 3. Data Structures 377

SQLE-NODE-STRUCT

COBOL Structure

* File: sqlenv.cbl

01 SQL-NODE-STRUCT.

05 STRUCT-ID PIC 9(4) COMP-5.

05 CODEPAGE PIC 9(4) COMP-5.

 05 COMMENT PIC X(30).

 05 FILLER PIC X.

 05 NODENAME PIC X(8).

 05 FILLER PIC X.

 05 PROTOCOL PIC X.

 05 FILLER PIC X(1).

*

378 API Reference

SQLE-NODE-TCPIP

 SQLE-NODE-TCPIP
This structure is used to catalog TCP/IP nodes (see “sqlectnd - Catalog Node” on
page 89).

Note: To catalog a TCP/IP SOCKS node, set the PROTOCOL type in the node
directory structure to SQL_PROTOCOL_SOCKS before calling the sqlectnd API (see
“SQLE-NODE-STRUCT” on page 377).

Table 31. Fields in the SQLE-NODE-TCPIP Structure

Field Name Data Type Description

HOSTNAME CHAR(255) The name of the TCP/IP host on which the DB2
server instance resides.

SERVICE_NAME CHAR(14) TCP/IP service name or associated port number of
the DB2 server instance.

Note: The character fields passed in this structure must be null terminated or blank filled up to the length
of the field.

 Language Syntax
C Structure

/* File: sqlenv.h */

/* Structure: SQLE-NODE-TCPIP */

/* ... */

SQL_STRUCTURE sqle_node_tcpip

{

 _SQLOLDCHAR hostname[SQL_HOSTNAME_SZ+1];

 _SQLOLDCHAR service_name[SQL_SERVICE_NAME_SZ+1];

};

/* ... */

COBOL Structure

* File: sqlenv.cbl

01 SQL-NODE-TCPIP.

 05 HOSTNAME PIC X(255).

 05 FILLER PIC X.

 05 SERVICE-NAME PIC X(14).

 05 FILLER PIC X.

*

 Chapter 3. Data Structures 379

SQLE-REG-NWBINDERY

 SQLE-REG-NWBINDERY
This structure is used to register/deregister the DB2 server in/from the bindery on the
NetWare file server (see “sqleregs - Register” on page 165, and “sqledreg - Deregister”
on page 108).

Table 32. Fields in the SQLE-REG-NWBINDERY Structure

Field Name Data Type Description

UID CHAR(48) User ID used to log into the NetWare file server.

PSWD CHAR(128) Password used to validate the user ID.

 Language Syntax
C Structure

/* File: sqlenv.h */

/* Structure: SQLE-REG-NWBINDERY */

/* ... */

SQL_STRUCTURE sqle_reg_nwbindery

{

 char uid[SQL_NW_UID_SZ+1];

 unsigned short reserved_len_1;

 char pswd[SQL_NW_PSWD_SZ+1];

 unsigned short reserved_len_2;

};

/* ... */

COBOL Structure

* File: sqlenv.cbl

01 SQLE-REG-NWBINDERY.

 05 SQL-UID PIC X(48).

 05 FILLER PIC X.

 05 FILLER PIC X(1).

05 SQL-UID-LEN PIC 9(4) COMP-5.

 05 SQL-PSWD PIC X(128).

 05 FILLER PIC X.

 05 FILLER PIC X(1).

05 SQL-PSWD-LEN PIC 9(4) COMP-5.

*

380 API Reference

SQLE-START-OPTIONS

 SQLE-START-OPTIONS
This structure is used to provide the database manager start-up options.

Table 33 (Page 1 of 2). Fields in the SQLE-START-OPTIONS Structure

Field Name Data Type Description

SQLOPTID CHAR An "eyecatcher" value which
must be set to
SQLE_STARTOPTID_V51.

ISPROFILE UNSIGNED LONG Indicates whether a profile is
specified. If this field indicates
that a profile is not specified,
the file db2profile is used.

PROFILE CHAR(236) The name of the profile file to
be executed at each node to
define the DB2 environment
(MPP only). This file is
executed before the nodes are
started. The default value is
db2profile.

ISNODENUM UNSIGNED LONG Indicates whether a node
number is specified. If specified,
the start command only affects
the specified node.

NODENUM SQL_PDB_NODE_TYPE Node number.

OPTION UNSIGNED LONG Specifies an action. See below
for values.

ISHOSTNAME UNSIGNED LONG Indicates whether a host name
is specified.

HOSTNAMEa CHAR(256) System name.

ISPORT UNSIGNED LONG Indicates whether a port
number is specified.

PORTa SQL_PDB_PORT_TYPE Port number.

ISNETNAME UNSIGNED LONG Indicates whether a net name is
specified.

NETNAMEa CHAR(256) Net name.

TBLSPACE_TYPE UNSIGNED LONG Specifies the type of temporary
table space definitions to be
used for the node being added.
See below for values.

TBLSPACE_NODE SQL_PDB_NODE_TYPE Specifies the node number from
which the temporary table
space definitions should be
obtained. The node number
must exist in the db2nodes.cfg

file, and is only used if the
tblspace_type field is set to
SQLE_TABLESPACES_LIKE_NODE.

ISCOMPUTER UNSIGNED LONG Indicates whether a computer
name is specified. Valid on
OS/2 or the Windows operating
system only.

 Chapter 3. Data Structures 381

SQLE-START-OPTIONS

Valid values for OPTION (defind in sqlenv) are:

SQLE_NONE
Issue the normal db2start operation.

SQLE_ADDNODE
Issue the ADD NODE command.

SQLE_RESTART
Issue the RESTART DATABASE command.

SQLE_STANDALONE
Start the node in STANDALONE mode.

For more information about these options, see the Command Reference.

Valid values for TBLSPACE_TYPE (defind in sqlenv) are:

SQLE_TABLESPACES_NONE
Do not create any temporary table spaces.

SQLE_TABLESPACES_LIKE_NODE
The containers for the temporary table spaces should be the same as those for the
specified node.

SQLE_TABLESPACES_LIKE_CATALOG
The containers for the temporary table spaces should be the same as those for the
catalog node of each database.

Table 33 (Page 2 of 2). Fields in the SQLE-START-OPTIONS Structure

Field Name Data Type Description

COMPUTER CHAR(16) Computer name. Valid on OS/2
or the Windows operating
system only.

PUSERNAME CHAR Logon account user name.
Valid on OS/2 or the Windows
operating system only.

PPASSWORD CHAR Logon account password. Valid
on OS/2 or the Windows
operating system only.

a This field is valid only for the SQLE_ADDNODE or the SQLE_RESTART value of the OPTION field.

382 API Reference

SQLE-START-OPTIONS

 Language Syntax
C Structure

/* File: sqlenv.h */

/* Structure: SQLE-START-OPTIONS */

/* ... */

SQL_STRUCTURE sqle_start_options

{

 char sqloptid[8];

 unsigned long isprofile;

 char profile[SQL_PROFILE_SZ+1];

 unsigned long isnodenum;

 SQL_PDB_NODE_TYPE nodenum;

 unsigned long option;

 unsigned long ishostname;

 char hostname[SQL_HOSTNAME_SZ+1];

 unsigned long isport;

 SQL_PDB_PORT_TYPE port;

 unsigned long isnetname;

 char netname[SQL_HOSTNAME_SZ+1];

 unsigned long tblspace_type;

 SQL_PDB_NODE_TYPE tblspace_node;

 unsigned long iscomputer;

 char computer[SQL_COMPUTERNAME_SZ+1];

 char *pUserName;

 char *pPassword;

};

/* ... */

 Chapter 3. Data Structures 383

SQLE-START-OPTIONS

COBOL Structure

* File: sqlenv.cbl

01 SQLE-START-OPTIONS.

 05 SQLOPTID PIC X(8).

05 SQL-ISPROFILE PIC 9(9) COMP-5.

 05 SQL-PROFILE PIC X(235).

 05 FILLER PIC X.

05 SQL-ISNODENUM PIC 9(9) COMP-5.

05 SQL-NODENUM PIC S9(4) COMP-5.

 05 FILLER PIC X(2).

05 SQL-OPTION PIC 9(9) COMP-5.

05 SQL-ISHOSTNAME PIC 9(9) COMP-5.

 05 SQL-HOSTNAME PIC X(255).

 05 FILLER PIC X.

05 SQL-ISPORT PIC 9(9) COMP-5.

05 SQL-PORT PIC S9(9) COMP-5.

05 SQL-ISNETNAME PIC 9(9) COMP-5.

 05 SQL-NETNAME PIC X(255).

 05 FILLER PIC X.

05 SQL-TBLSPACE-TYPE PIC 9(9) COMP-5.

05 SQL-TBLSPACE-NODE PIC S9(4) COMP-5.

 05 FILLER PIC X(2).

05 SQL-ISCOMPUTER PIC 9(9) COMP-5.

 05 SQL-COMPUTER PIC X(15).

 05 FILLER PIC X.

05 SQL-P-USER-NAME USAGE IS POINTER.

05 SQL-P-PASSWORD USAGE IS POINTER.

*

384 API Reference

SQLEDBCOUNTRYINFO

 SQLEDBCOUNTRYINFO
This structure is used to provide codeset and territory options to “sqlecrea - Create
Database” on page 81.

Table 34. Fields in the SQLEDBCOUNTRYINFO Structure

Field Name Data Type Description

SQLDBCODESET CHAR(9) Database codeset.

SQLDBLOCALE CHAR(5) Database territory.

 Language Syntax
C Structure

/* File: sqlenv.h */

/* Structure: SQLEDBCOUNTRYINFO */

/* ... */

SQL_STRUCTURE sqledbcountryinfo

{

char sqldbcodeset[SQL_CODESET_LEN + 1];

char sqldblocale[SQL_LOCALE_LEN + 1];

};

/* ... */

COBOL Structure

* File: sqlenv.cbl

01 SQLEDBCOUNTRYINFO.

 05 SQLDBCODESET PIC X(9).

 05 FILLER PIC X.

 05 SQLDBLOCALE PIC X(5).

 05 FILLER PIC X.

*

 Chapter 3. Data Structures 385

SQLEDBDESC

 SQLEDBDESC
The Database Description Block (SQLEDBDESC) structure can be used during a call to
“sqlecrea - Create Database” on page 81 to specify permanent values for database
attributes. These attributes include database comment, collating sequences, and table
space definitions.

The Tablespace Description Block structure (SQLETSDESC) is used to specify the
attributes of any of the three initial table spaces.

Table 35. Fields in the SQLEDBDESC Structure

Field Name Data Type Description

SQLDBDID CHAR(8) A structure identifier and "eye-catcher" for storage dumps. It is
a string of eight bytes that must be initialized with the value of
SQLE_DBDESC_2 (defined in sqlenv). The contents of this field
are validated for version control.

SQLDBCCP INTEGER The code page of the database comment. This value is no
longer used by the database manager.

SQLDBCSS INTEGER A value indicating the source of the database collating
sequence.

SQLDBUDC CHAR(256) The nth byte of this field contains the sort weight of the code
point whose underlying decimal representation is n in the
code page of the database. If SQLDBCSS is not equal to
SQL_CS_USER, this field is ignored.

SQLDBCMT CHAR(30) The comment for the database.

SQLDBSGP INTEGER Reserved field. No longer used.

SQLDBNSG SHORT A value which indicates the number of file segments to be
created in the database. The minimum value for this field is 1
and the maximum value for this field is 256. If a value of -1 is
supplied, this field will default to 1.

Note: SQLDBNSG set to zero produces a default for Version
1 compatibility.

SQLTSEXT INTEGER A value, in 4KB pages, which indicates the default extent size
for each table space in the database. The minimum value for
this field is 2 and the maximum value for this field is 256. If a
value of -1 is supplied, this field will default to 32.

SQLCATTS Pointer A pointer to a table space description control block,
SQLETSDESC, which defines the catalog table space. If null,
a default catalog table space based on the values of
SQLTSEXT and SQLDBNSG will be created.

SQLUSRTS Pointer A pointer to a table space description control block,
SQLETSDESC, which defines the user table space. If null, a
default user table space based on the values of SQLTSEXT
and SQLDBNSG will be created.

SQLTMPTS Pointer A pointer to a table space description control block,
SQLETSDESC, which defines the temporary table space. If
null, a default temporary table space based on the values of
SQLTSEXT and SQLDBNSG will be created.

386 API Reference

SQLEDBDESC

Valid values for SQLDBCSS (defined in sqlenv) are:

SQL_CS_SYSTEM
Collating sequence from system.

SQL_CS_USER
Collating sequence from user.

SQL_CS_NONE
None.

SQLE_CS_COMPATABILITY
Use pre-Version 5 collating sequence.

Table 36. Fields in the SQLETSDESC Structure

Field Name Data Type Description

SQLTSDID CHAR(8) A structure identifier and "eye-catcher" for storage dumps. It is
a string of eight bytes that must be initialized with the value of
SQLE_DBTSDESC_1 (defined in sqlenv). The contents of this field
are validated for version control.

SQLEXTNT INTEGER Table space extentsize, in 4KB pages. If a value of -1 is
supplied, this field will default to the current value of the
dft_extent_sz configuration parameter.

SQLPRFTC INTEGER Table space prefetchsize, in 4KB pages. If a value of -1 is
supplied, this field will default to the current value of the
dft_prefetch_sz configuration parameter.

SQLPOVHD DOUBLE Table space I/O overhead, in milliseconds. If a value of -1 is
supplied, this field will default to an internal database manager
value (currently 24.1 ms) that could change with future
releases.

SQLTRFRT DOUBLE Table space I/O transfer rate, in milliseconds. If a value of -1
is supplied, this field will default to an internal database
manager value (currently 0.9 ms) that could change with
future releases.

SQLTSTYP CHAR(1) Indicates whether the table space is system-managed or
database-managed.

SQLCCNT SMALLINT Number of containers being assigned to the table space.
Indicates how many
SQLCTYPE/SQLCSIZE/SQLCLEN/SQLCONTR values follow.

CONTAINR Array An array of sqlccnt SQLETSCDESC structures.

Table 37. Fields in the SQLETSCDESC Structure

Field Name Data Type Description

SQLCTYPE CHAR(1) Identifies the type of this container.

SQLCSIZE INTEGER Size of the container identified in SQLCONTR, specified in
4KB pages. Valid only when SQLTSTYP is set to
SQL_TBS_TYP_DMS.

SQLCLEN SMALLINT Length of following SQLCONTR value.

SQLCONTR CHAR(256) Container string.

 Chapter 3. Data Structures 387

SQLEDBDESC

Valid values for SQLTSTYPE (defined in sqlenv) are:

SQL_TBS_TYP_SMS
System managed

SQL_TBS_TYP_DMS
Database managed.

Valid values for SQLCTYPE (defined in sqlenv) are:

SQL_TBSC_TYP_DEV
Device. Valid only when SQLTSTYP = SQL_TBS_TYP_DMS.

SQL_TBSC_TYP_FILE
File. Valid only when SQLTSTYP = SQL_TBS_TYP_DMS.

SQL_TBSC_TYP_PATH
Path (directory). Valid only when SQLTSTYP = SQL_TBS_TYP_SMS.

 Language Syntax
C Structure

/* File: sqlenv.h */

/* Structure: SQLEDBDESC */

/* ... */

SQL_STRUCTURE sqledbdesc

{

 _SQLOLDCHAR sqldbdid[8];

 long sqldbccp;

 long sqldbcss;

 unsigned char sqldbudc[SQL_CS_SZ];

 _SQLOLDCHAR sqldbcmt[SQL_CMT_SZ+1];

 _SQLOLDCHAR pad[1];

 unsigned long sqldbsgp;

 short sqldbnsg;

 char pad2[2];

 long sqltsext;

struct SQLETSDESC *sqlcatts;

struct SQLETSDESC *sqlusrts;

struct SQLETSDESC *sqltmpts;

};

/* ... */

388 API Reference

SQLEDBDESC

/* File: sqlenv.h */

/* Structure: SQLETSDESC */

/* ... */

SQL_STRUCTURE SQLETSDESC

{

 char sqltsdid[8];

 long sqlextnt;

 long sqlprftc;

 double sqlpovhd;

 double sqltrfrt;

 char sqltstyp;

 char pad1;

 short sqlccnt;

struct SQLETSCDESC containr[1];

};

/* ... */

/* File: sqlenv.h */

/* Structure: SQLETSCDESC */

/* ... */

SQL_STRUCTURE SQLETSCDESC

{

 char sqlctype;

 char pad1[3];

 long sqlcsize;

 short sqlclen;

 char sqlcontr[SQLB_MAX_CONTAIN_NAME_SZ];

 char pad2[2];

};

/* ... */

 Chapter 3. Data Structures 389

SQLEDBDESC

COBOL Structure

* File: sqlenv.cbl

01 SQLEDBDESC.

 05 SQLDBDID PIC X(8).

05 SQLDBCCP PIC S9(9) COMP-5.

05 SQLDBCSS PIC S9(9) COMP-5.

 05 SQLDBUDC PIC X(256).

 05 SQLDBCMT PIC X(30).

 05 FILLER PIC X.

 05 SQL-PAD PIC X(1).

05 SQLDBSGP PIC 9(9) COMP-5.

05 SQLDBNSG PIC S9(4) COMP-5.

 05 SQL-PAD2 PIC X(2).

05 SQLTSEXT PIC S9(9) COMP-5.

05 SQLCATTS USAGE IS POINTER.

05 SQLUSRTS USAGE IS POINTER.

05 SQLTMPTS USAGE IS POINTER.

*

* File: sqletsd.cbl

01 SQLETSDESC.

 05 SQLTSDID PIC X(8).

05 SQLEXTNT PIC S9(9) COMP-5.

05 SQLPRFTC PIC S9(9) COMP-5.

 05 SQLPOVHD USAGE COMP-2.

 05 SQLTRFRT USAGE COMP-2.

 05 SQLTSTYP PIC X.

 05 SQL-PAD1 PIC X.

05 SQLCCNT PIC S9(4) COMP-5.

05 SQL-CONTAINR OCCURS 001 TIMES.

 10 SQLCTYPE PIC X.

 10 SQL-PAD1 PIC X(3).

10 SQLCSIZE PIC S9(9) COMP-5.

10 SQLCLEN PIC S9(4) COMP-5.

 10 SQLCONTR PIC X(256).

 10 SQL-PAD2 PIC X(2).

*

390 API Reference

SQLEDBDESC

* File: sqlenv.cbl

01 SQLETSCDESC.

 05 SQLCTYPE PIC X.

 05 SQL-PAD1 PIC X(3).

05 SQLCSIZE PIC S9(9) COMP-5.

05 SQLCLEN PIC S9(4) COMP-5.

 05 SQLCONTR PIC X(256).

 05 SQL-PAD2 PIC X(2).

*

 Chapter 3. Data Structures 391

SQLEDBSTOPOPT

 SQLEDBSTOPOPT
This structure is used to provide the database manager stop options.

Valid values for OPTION (defind in sqlenv) are:

SQLE_NONE
Issue the normal db2stop operation.

SQLE_FORCE
Issue the FORCE APPLICATION (ALL) command.

SQLE_DROP
Drop the node from the db2nodes.cfg file.

For more information about these options, see the Command Reference.

Valid values for CALLERAC (defind in sqlenv) are:

SQLE_DROP
Initial call. This is the default value.

SQLE_CONTINUE
Subsequent call. Continue processing after a prompt.

SQLE_TERMINATE
Subsequent call. Terminate processing after a prompt.

Table 38. Fields in the SQLEDBSTOPOPT Structure

Field Name Data Type Description

ISPROFILE UNSIGNED LONG Indicates whether a profile is
specified. If this field indicates
that a profile is not specified,
the file db2profile is used.

PROFILE CHAR(236) The name of the profile file that
was executed at startup to
define the DB2 environment for
those nodes that were started
(MPP only). If a profile for
“sqlepstart - Start Database
Manager” on page 156 was
specified, the same profile must
be specified here.

ISNODENUM UNSIGNED LONG Indicates whether a node
number is specified. If specified,
the start command only affects
the specified node.

NODENUM SQL_PDB_NODE_TYPE Node number.

OPTION UNSIGNED LONG Option.

CALLERAC UNSIGNED LONG Caller action. This field is valid
only for the SQLE_DROP value
of the OPTION field.

392 API Reference

SQLEDBSTOPOPT

 Language Syntax
C Structure

/* File: sqlenv.h */

/* Structure: SQLEDBSTOPOPT */

/* ... */

SQL_STRUCTURE sqledbstopopt

{

 unsigned long isprofile;

 char profile[SQL_PROFILE_SZ+1];

 unsigned long isnodenum;

 SQL_PDB_NODE_TYPE nodenum;

 unsigned long option;

 unsigned long callerac;

};

/* ... */

COBOL Structure

* File: sqlenv.cbl

01 SQLEDBSTOPOPT.

05 SQL-ISPROFILE PIC 9(9) COMP-5.

 05 SQL-PROFILE PIC X(235).

 05 FILLER PIC X.

05 SQL-ISNODENUM PIC 9(9) COMP-5.

05 SQL-NODENUM PIC S9(4) COMP-5.

 05 FILLER PIC X(2).

05 SQL-OPTION PIC 9(9) COMP-5.

05 SQL-CALLERAC PIC 9(9) COMP-5.

*

 Chapter 3. Data Structures 393

SQLEDINFO

 SQLEDINFO
This structure is used to return information after a call to “sqledgne - Get Next
Database Directory Entry” on page 100. It is shared by both the system database
directory and the local database directory.

Valid values for TYPE (defind in sqlenv) are:

SQL_INDIRECT
Database created by the current instance (as defined by the value of the
DB2INSTANCE environment variable).

SQL_REMOTE
Database resides at a different instance.

SQL_HOME
Database resides on this volume (always HOME in local database directory).

SQL_DCE
Database resides in DCE directories.

Table 39. Fields in the SQLEDINFO Structure

Field Name Data Type Description

ALIAS CHAR(8) An alternate database name.

DBNAME CHAR(8) The name of the database.

DRIVE CHAR(215) The local database directory path name where the
database resides. This field is returned only if the
system database directory is opened for scan.

Note: On OS/2, this field is CHAR(2); on
Windows NT, it is CHAR(12).

INTNAME CHAR(8) A token identifying the database subdirectory. This
field is returned only if the local database directory
is opened for scan.

NODENAME CHAR(8) The name of the node where the database is
located. This field is returned only if the cataloged
database is a remote database.

DBTYPE CHAR(20) Database manager release information.

COMMENT CHAR(30) The comment associated with the database.

COM_CODEPAGE SMALLINT The code page of the comment. Not used.

TYPE CHAR(1) Entry type. See below for values.

AUTHENTICATION SMALLINT Authentication type. See below for values.

GLBDBNAME CHAR(255) The global name of the target database in the
global (DCE) directory, if the entry is of type
SQL_DCE.

DCEPRINCIPAL CHAR(1024) The DCE principal name if the authentication is of
type DCE.

CAT_NODENUM SHORT Catalog node number.

NODENUM SHORT Node number.

Note: Both system and local database directory use the same structure, but only certain fields are valid
for each. Each character field returned is blank filled up to the length of the field.

394 API Reference

SQLEDINFO

Valid values for AUTHENTICATION (defined in sqlenv) are:

SQL_AUTHENTICATION_SERVER
Authentication of the user name and password takes place at the server.

SQL_AUTHENTICATION_CLIENT
Authentication of the user name and password takes place at the client.

SQL_AUTHENTICATION_DCS
Used for DDCS.

SQL_AUTHENTICATION_DCE
Authentication takes place using DCE Security Services.

SQL_AUTHENTICATION_NOT_SPECIFIED
DB2 no longer requires authentication to be kept in the database directory. Specify
this value when connecting to anything other than a down-level (DB2 V2 or less)
server.

 Language Syntax
C Structure

/* File: sqlenv.h */

/* Structure: SQLEDINFO */

/* ... */

SQL_STRUCTURE sqledinfo

{

 _SQLOLDCHAR alias[SQL_ALIAS_SZ];

 _SQLOLDCHAR dbname[SQL_DBNAME_SZ];

 _SQLOLDCHAR drive[SQL_DRIVE_SZ];

 _SQLOLDCHAR intname[SQL_INAME_SZ];

 _SQLOLDCHAR nodename[SQL_NNAME_SZ];

 _SQLOLDCHAR dbtype[SQL_DBTYP_SZ];

 _SQLOLDCHAR comment[SQL_CMT_SZ];

 short com_codepage;

 _SQLOLDCHAR type;

unsigned short authentication;

 char glbdbname[SQL_DIR_NAME_SZ];

 _SQLOLDCHAR dceprincipal[SQL_DCEPRIN_SZ];

 short cat_nodenum;

 short nodenum;

};

/* ... */

 Chapter 3. Data Structures 395

SQLEDINFO

COBOL Structure

* File: sqlenv.cbl

01 SQLEDINFO.

 05 SQL-ALIAS PIC X(8).

 05 SQL-DBNAME PIC X(8).

 05 SQL-DRIVE PIC X(215).

 05 SQL-INTNAME PIC X(8).

 05 SQL-NODENAME PIC X(8).

 05 SQL-DBTYPE PIC X(20).

 05 SQL-COMMENT PIC X(30).

 05 FILLER PIC X(1).

05 SQL-COM-CODEPAGE PIC S9(4) COMP-5.

 05 SQL-TYPE PIC X.

 05 FILLER PIC X(1).

05 SQL-AUTHENTICATION PIC 9(4) COMP-5.

 05 SQL-GLBDBNAME PIC X(255).

 05 SQL-DCEPRINCIPAL PIC X(1024).

 05 FILLER PIC X(1).

05 SQL-CAT-NODENUM PIC S9(4) COMP-5.

05 SQL-NODENUM PIC S9(4) COMP-5.

*

396 API Reference

SQLENINFO

 SQLENINFO
This structure returns information after a call to “sqlengne - Get Next Node Directory
Entry” on page 150.

Table 40. Fields in the SQLENINFO Structure

Field Name Data Type Description

NODENAME CHAR(8) Used for the NetBIOS protocol; the nname of the
node where the database is located (valid in
system directory only).

LOCAL_LU CHAR(8) Used for the APPN protocol; local logical unit.

PARTNER_LU CHAR(8) Used for the APPN protocol; partner logical unit.

MODE CHAR(8) Used for the APPN protocol; transmission service
mode.

COMMENT CHAR(30) The comment associated with the node.

COM_CODEPAGE SMALLINT The code page of the comment. This field is no
longer used by the database manager.

ADAPTER SMALLINT Used for the NetBIOS protocol; the local network
adapter.

NETWORKID CHAR(8) Used for the APPN protocol; network ID.

PROTOCOL CHAR(1) Communications protocol.

SYM_DEST_NAME CHAR(8) Used for the APPC protocol; the symbolic
destination name.

SECURITY_TYPE SMALLINT Used for the APPC protocol; the security type. See
below for values.

HOSTNAME CHAR(255) Used for the TCP/IP protocol; the name of the
TCP/IP host on which the DB2 server instance
resides.

SERVICE_NAME CHAR(14) Used for the TCP/IP protocol; the TCP/IP service
name or associated port number of the DB2 server
instance.

FILESERVER CHAR(48) Used for the IPX/SPX protocol; the name of the
NetWare file server where the DB2 server instance
is registered.

OBJECTNAME CHAR(48) The database manager server instance is
represented as the object, objectname, on the
NetWare file server. The server's IPX/SPX
internetwork address is stored and retrieved from
this object.

INSTANCE_NAME CHAR(8) Used for the local and NPIPE protocols; the name
of the server instance.

COMPUTERNAME CHAR(15) Used by the NPIPE protocol; the server node's
computer name.

SYSTEM_NAME CHAR(21) The DB2 system name of the remote server.

REMOTE_INSTNAME CHAR(8) The name of the DB2 server instance.

CATALOG_NODE_TYPE CHAR Catalog node type.

OS_TYPE UNSIGNED
SHORT

Identifies the operating system of the server.

Note: Each character field returned is blank filled up to the length of the field.

 Chapter 3. Data Structures 397

SQLENINFO

Valid values for SECURITY_TYPE (defined in sqlenv) are:

SQL_CPIC_SECURITY_NONE
SQL_CPIC_SECURITY_SAME
SQL_CPIC_SECURITY_PROGRAM

 Language Syntax
C Structure

/* File: sqlenv.h */

/* Structure: SQLENINFO */

/* ... */

SQL_STRUCTURE sqleninfo

{

 _SQLOLDCHAR nodename[SQL_NNAME_SZ];

 _SQLOLDCHAR local_lu[SQL_LOCLU_SZ];

 _SQLOLDCHAR partner_lu[SQL_RMTLU_SZ];

 _SQLOLDCHAR mode[SQL_MODE_SZ];

 _SQLOLDCHAR comment[SQL_CMT_SZ];

unsigned short com_codepage;

unsigned short adapter;

 _SQLOLDCHAR networkid[SQL_NETID_SZ];

 _SQLOLDCHAR protocol;

 _SQLOLDCHAR sym_dest_name[SQL_SYM_DEST_NAME_SZ];

unsigned short security_type;

 _SQLOLDCHAR hostname[SQL_HOSTNAME_SZ];

 _SQLOLDCHAR service_name[SQL_SERVICE_NAME_SZ];

 char fileserver[SQL_FILESERVER_SZ];

 char objectname[SQL_OBJECTNAME_SZ];

 char instance_name[SQL_INSTNAME_SZ];

 char computername[SQL_COMPUTERNAME_SZ];

 char system_name[SQL_SYSTEM_NAME_SZ];

 char remote_instname[SQL_REMOTE_INSTNAME_SZ];

 _SQLOLDCHAR catalog_node_type;

unsigned short os_type;

};

/* ... */

398 API Reference

SQLENINFO

COBOL Structure

* File: sqlenv.cbl

01 SQLENINFO.

 05 SQL-NODE-NAME PIC X(8).

 05 SQL-LOCAL-LU PIC X(8).

 05 SQL-PARTNER-LU PIC X(8).

 05 SQL-MODE PIC X(8).

 05 SQL-COMMENT PIC X(30).

05 SQL-COM-CODEPAGE PIC 9(4) COMP-5.

05 SQL-ADAPTER PIC 9(4) COMP-5.

 05 SQL-NETWORKID PIC X(8).

 05 SQL-PROTOCOL PIC X.

 05 SQL-SYM-DEST-NAME PIC X(8).

 05 FILLER PIC X(1).

05 SQL-SECURITY-TYPE PIC 9(4) COMP-5.

 05 SQL-HOSTNAME PIC X(255).

 05 SQL-SERVICE-NAME PIC X(14).

 05 SQL-FILESERVER PIC X(48).

 05 SQL-OBJECTNAME PIC X(48).

 05 SQL-INSTANCE-NAME PIC X(8).

 05 SQL-COMPUTERNAME PIC X(15).

 05 SQL-SYSTEM-NAME PIC X(21).

 05 SQL-REMOTE-INSTNAME PIC X(8).

 05 SQL-CATALOG-NODE-TYPE PIC X.

05 SQL-OS-TYPE PIC 9(4) COMP-5.

*

 Chapter 3. Data Structures 399

SQLFUPD

 SQLFUPD
This structure passes information about database configuration files and the database
manager configuration file. It is used with the database configuration and database
manager configuration APIs.

Valid data types for the token element are:

Uint16 Unsigned 2-byte integer
Sint16 Signed 2-byte integer
Uint32 Unsigned 4-byte integer
Sint32 Signed 4-byte integer
float 4-byte floating-point decimal
char(n) String of length n (not including null termination).

Table 41. Fields in the SQLFUPD Structure

Field Name Data Type Description

TOKEN UINT16 Specifies the configuration value to return or
update.

PTRVALUE Pointer A pointer to an application allocated buffer that
holds the data specified by TOKEN.

Database Configuration File Entries
For a brief description of the database configuration parameters, see “sqlfxdb - Get
Database Configuration” on page 201. For more information about these parameters,
see the Administration Guide. Valid entries for the SQLFUPD token element are listed
below:

Table 42 (Page 1 of 3). Updateable Database Configuration Parameters

Parameter
Name Token Token Value Data Type

adsm_mgmtclass SQLF_DBTN_ADSM_MGMTCLASS 307 char(30)

adsm_nodename SQLF_DBTN_ADSM_NODENAME 306 char(64)

adsm_owner SQLF_DBTN_ADSM_OWNER 305 char(64)

adsm_password SQLF_DBTN_ADSM_PASSWORD 501 char(64)

app_ctl_heap_sz SQLF_DBTN_APP_CTL_HEAP_SZ 500 Uint16

applheapsz SQLF_DBTN_APPLHEAPSZ 51 Uint16

autorestart SQLF_DBTN_AUTO_RESTART 25 Uint16

avg_appls SQLF_DBTN_AVG_APPLS 47 Uint16

buffpage SQLF_DBTN_BUFF_PAGE 90 Uint32

catalogcache_sz SQLF_DBTN_CATALOGCACHE_SZ 56 Sint32

chngpgs_thresh SQLF_DBTN_CHNGPGS_THRESH 38 Uint16

copyprotect SQLF_DBTN_COPY_PROTECT 22 Uint16

dbheap SQLF_DBTN_DBHEAP 50 Uint16

dft_degree SQLF_DBTN_DFT_DEGREE 301 Sint32

400 API Reference

SQLFUPD

Table 42 (Page 2 of 3). Updateable Database Configuration Parameters

Parameter
Name Token Token Value Data Type

dft_extent_sz SQLF_DBTN_DFT_EXTENT_SZ 54 Uint32

dft_loadrec_ses SQLF_DBTN_DFT_LOADREC_SES 42 Sint16

dft_prefetch_sz SQLF_DBTN_DFT_PREFETCH_SZ 40 Sint16

dft_queryopt SQLF_DBTN_DFT_QUERYOPT 57 Sint32

dft_sqlmathwarn SQLF_DBTN_DFT_SQLMATHWARN 309 Sint16

dir_obj_name SQLF_DBTN_DIR_OBJ_NAME 46 char(255)

discover SQLF_DBTN_DISCOVER 308 Uint16

dlchktime SQLF_DBTN_DLCHKTIME 9 Uint32

estore_seg_sz SQLF_DBTN_ESTORE_SEG_SZ 303 Sint32

indexrec SQLF_DBTN_INDEXREC 30 Uint16

indexsort SQLF_DBTN_INDEXSORT 35 Uint16

locklist SQLF_DBTN_LOCKLIST 1 Uint16

locktimeout SQLF_DBTN_LOCKTIMEOUT 34 Sint16

logbufsz SQLF_DBTN_LOGBUFSZ 33 Uint16

logfilsiz SQLF_DBTN_LOGFIL_SIZ 92 Uint32

logprimary SQLF_DBTN_LOGPRIMARY 16 Uint16

logretain SQLF_DBTN_LOG_RETAIN 23 Uint16

logsecond SQLF_DBTN_LOGSECOND 17 Uint16

maxappls SQLF_DBTN_MAXAPPLS 6 Uint16

maxfilop SQLF_DBTN_MAXFILOP 3 Uint16

maxlocks SQLF_DBTN_MAXLOCKS 15 Uint16

mincommit SQLF_DBTN_MINCOMMIT 32 Uint16

newlogpath SQLF_DBTN_NEWLOGPATH 20 char(242)

num_estore_segs SQLF_DBTN_NUM_ESTORE_SEGS 304 Sint32

num_freqvalues SQLF_DBTN_NUM_FREQVALUES 36 Uint16

num_iocleaners SQLF_DBTN_NUM_IOCLEANERS 37 Uint16

num_ioservers SQLF_DBTN_NUM_IOSERVERS 39 Uint16

num_quantiles SQLF_DBTN_NUM_QUANTILES 48 Uint16

pckcachesz SQLF_DBTN_PCKCACHE_SZ 505 Uint32

rec_his_retentn SQLF_DBTN_REC_HIS_RETENTN 43 Sint16

seqdetect SQLF_DBTN_SEQDETECT 41 Uint16

softmax SQLF_DBTN_SOFTMAX 5 Uint16

sortheap SQLF_DBTN_SORT_HEAP 52 Uint32

stat_heap_sz SQLF_DBTN_STAT_HEAP_SZ 45 Uint32

stmtheap SQLF_DBTN_STMTHEAP 53 Uint16

userexit SQLF_DBTN_USER_EXIT 24 Uint16

util_heap_sz SQLF_DBTN_UTIL_HEAP_SZ 55 Uint32

SQLF_DBTN_DETSa 21 Uint16

 Chapter 3. Data Structures 401

SQLFUPD

Table 42 (Page 3 of 3). Updateable Database Configuration Parameters

Parameter
Name Token Token Value Data Type

a SQLF_DBTN_DETS is a Uint16 composite parameter, the bits of which indicate database attributes. This
allows for the specification of a number of parameters at once. The tokens defining the bits that make up
this composite parameter are:

Bit SQLF_COPY_PROTECT (xxx1) : copyprotect

Bit SQLF_ENABLE_LOG_RETAIN (xx1x) : logretain

Bit SQLF_ENABLE_USER_EXIT (x1xx) : userexit

Bit SQLF_ENABLE_AUTO_RESTART (1xxx) : autorestart

Table 43 (Page 1 of 2). Non-updateable Database Configuration Parameters

Parameter Name Token
Token
Value

Data
Type

backup_pending SQLF_DBTN_BACKUP_PENDING 112 Uint16

codepage SQLF_DBTN_CODEPAGE 101 Uint16

codeset SQLF_DBTN_CODESET 120 char(9)a

collate_info SQLF_DBTN_COLLATE_INFO 44 char(260)

country SQLF_DBTN_COUNTRY 100 Uint16

database_consistent SQLF_DBTN_CONSISTENT 111 Uint16

database_level SQLF_DBTN_DATABASE_LEVEL 124 Uint16

log_retain_status SQLF_DBTN_LOG_RETAIN_STATUS 114 Uint16

loghead SQLF_DBTN_LOGHEAD 105 char(12)

logpath SQLF_DBTN_LOGPATH 103 char(242)

multipage_alloc SQLF_DBTN_MULTIPAGE_ALLOC 506 Uint16

nextactive SQLF_DBTN_NEXTACTIVE 107 char(12)

numsegs SQLF_DBTN_NUMSEGS 122 Uint16

release SQLF_DBTN_RELEASE 102 Uint16

restore_pending SQLF_DBTN_RESTORE_PENDING 503 Uint16

rollfwd_pending SQLF_DBTN_ROLLFWD_PENDING 113 Uint16

territory SQLF_DBTN_TERRITORY 121 char(5)b

user_exit_status SQLF_DBTN_USER_EXIT_STATUS 115 Uint16

SQLF_DBTN_INTFLAGSa 104 Uint16

402 API Reference

SQLFUPD

Table 43 (Page 2 of 2). Non-updateable Database Configuration Parameters

Parameter Name Token
Token
Value

Data
Type

a SQLF_DBTN_INTFLAGS is a Uint16 parameter, the bits of which indicate database status. This allows
for the specification of a number of parameters at once. The tokens defining the bits that make up this
composite parameter are:

Bit SQLF_CONSISTENT (xxxx xxx1): database_consistent

Bit SQLF_BACKUP_PENDING (xxxx x1xx): backup_pending

Bit SQLF_LOG_RETAIN (xxx1 xxxx): log_retain_status

Bit SQLF_USER_EXIT (xx1x xxxx): user_exit_status

Bit SQLF_RESTORE_PENDING (1xxx xxxx): restore_pending

The combination of the following two bits:

Bit SQLF_ROLLFWD_PENDING (xxxx 1xxx)

 Bit SQLF_TBS_ROLLFWD (x1xx xxxx)

makes up the rollfwd_pending parameter.

If the SQLF_ROLLFWD_PENDING bit is on, the database requires

rolling forward (rollfwd_pending = SQLF_ENABLE = 1).

If the SQLF_ROLLFWD_PENDING bit is off, and the

SQLF_TBS_ROLLFWD bit is on, one or more table spaces need

to be rolled forward (rollfwd_pending =

SQLF_ROLLFWD_TABLESPACE = 2).

If both bits are off, roll-forward is not pending

(rollfwd_pending = SQLF_DISABLE = 0).

a char(17) on HP-UX and Solaris.

b char(33) on HP-UX and Solaris.

Database Manager Configuration File Entries
For a brief description of the database manager configuration parameters, see “sqlfxsys
- Get Database Manager Configuration” on page 204. For more information about
these parameters, see the Administration Guide. Valid entries for the SQLFUPD token
element are listed below:

Table 44 (Page 1 of 3). Updateable Database Manager Configuration Parameters

Parameter
Name Token Token Value Data Type

agent_stack_sz SQLF_KTN_AGENT_STACK_SZ 61 Uint16

agentpri SQLF_KTN_AGENTPRI 26 Sint16

aslheapsz SQLF_KTN_ASLHEAPSZ 15 Uint32

authentication SQLF_KTN_AUTHENTICATION 78 Uint16

backbufsz SQLF_KTN_BACKBUFSZ 18 Uint32

comm_bandwidth SQLF_KTN_COMM_BANDWIDTH 307 float

conn_elapse SQLF_KTN_CONN_ELAPSE 508 Uint16

cpuspeed SQLF_KTN_CPUSPEED 42 float

dft_account_str SQLF_KTN_DFT_ACCOUNT_STR 28 char(25)

dft_client_adpt SQLF_KTN_DFT_CLIENT_ADPT 82 Uint16

dft_client_comm SQLF_KTN_DFT_CLIENT_COMM 77 char(31)

dft_monswitches SQLF_KTN_DFT_MONSWITCHESa 29 Uint16

 Chapter 3. Data Structures 403

SQLFUPD

Table 44 (Page 2 of 3). Updateable Database Manager Configuration Parameters

Parameter
Name Token Token Value Data Type

dft_mon_bufpool SQLF_KTN_DFT_MON_BUFPOOL 33 Uint16

dft_mon_lock SQLF_KTN_DFT_MON_LOCK 34 Uint16

dft_mon_sort SQLF_KTN_DFT_MON_SORT 35 Uint16

dft_mon_stmt SQLF_KTN_DFT_MON_STMT 31 Uint16

dft_mon_table SQLF_KTN_DFT_MON_TABLE 32 Uint16

dft_mon_uow SQLF_KTN_DFT_MON_UOW 30 Uint16

dftdbpath SQLF_KTN_DFTDBPATH 27 char(215)

diaglevel SQLF_KTN_DIAGLEVEL 64 Uint16

diagpath SQLF_KTN_DIAGPATH 65 char(215)

dir_cache SQLF_KTN_DIR_CACHE 40 Uint16

dir_obj_name SQLF_KTN_DIR_OBJ_NAME 75 char(255)

dir_path_name SQLF_KTN_DIR_PATH_NAME 74 char(255)

dir_type SQLF_KTN_DIR_TYPE 73 Uint16

discover SQLF_KTN_DISCOVER 304 Uint16

discover_comm SQLF_KTN_DISCOVER_COMM 305 char(35)

discover_inst SQLF_KTN_DISCOVER_INST 308 Uint16

dos_rqrioblk SQLF_KTN_DOS_RQRIOBLK 72 Uint16

drda_heap_sz SQLF_KTN_DRDA_HEAP_SZ 41 Uint16

fcm_num_anchors SQLF_KTN_FCM_NUM_ANCHORS 506 Sint32

fcm_num_buffers SQLF_KTN_FCM_NUM_BUFFERS 503 Uint32

fcm_num_connect SQLF_KTN_FCM_NUM_CONNECT 505 Sint32

fcm_num_rqb SQLF_KTN_FCM_NUM_RQB 504 Uint32

fileserver SQLF_KTN_FILESERVER 47 char(48)

indexrec SQLF_KTN_INDEXREC 20 Uint16

intra_parallel SQLF_KTN_INTRA_PARALLEL 306 Sint16

ipx_socket SQLF_KTN_IPX_SOCKET 71 char(4)

java_heap_sz SQLF_KTN_JAVA_HEAP_SZ 310 Sint32

jdk11_path SQLF_KTN_JDK11_PATH 311 char(255)

keepdari SQLF_KTN_KEEPDARI 81 Uint16

max_connretries SQLF_KTN_MAX_CONNRETRIES 509 Uint16

max_coordagents SQLF_KTN_MAX_COORDAGENTS 501 Sint32

max_querydegree SQLF_KTN_MAX_QUERYDEGREE 303 Sint32

max_time_diff SQLF_KTN_MAX_TIME_DIFF 510 Uint16

maxagents SQLF_KTN_MAXAGENTS 12 Uint32

maxcagents SQLF_KTN_MAXCAGENTS 13 Sint32

maxdari SQLF_KTN_MAXDARI 80 Sint32

maxtotfilop SQLF_KTN_MAXTOTFILOP 45 Uint16

min_priv_mem SQLF_KTN_MIN_PRIV_MEM 43 Uint32

mon_heap_sz SQLF_KTN_MON_HEAP_SZ 79 Uint16

404 API Reference

SQLFUPD

Table 44 (Page 3 of 3). Updateable Database Manager Configuration Parameters

Parameter
Name Token Token Value Data Type

nname SQLF_KTN_NNAME 7 char(8)

num_initagents SQLF_KTN_NUM_INITAGENTS 500 Uint32

num_poolagents SQLF_KTN_NUM_POOLAGENTS 502 Sint32

numdb SQLF_KTN_NUMDB 6 Uint16

objectname SQLF_KTN_OBJECTNAME 48 char(48)

priv_mem_thresh SQLF_KTN_PRIV_MEM_THRESH 44 Sint32

query_heap_sz SQLF_KTN_QUERY_HEAP_SZ 49 Sint32

restbufsz SQLF_KTN_RESTBUFSZ 19 Uint32

resync_interval SQLF_KTN_RESYNC_INTERVAL 68 Uint16

route_obj_name SQLF_KTN_ROUTE_OBJ_NAME 76 char(255)

rqrioblk SQLF_KTN_RQRIOBLK 1 Uint16

sheapthres SQLF_KTN_SHEAPTHRES 21 Uint32

spm_name SQLF_KTN_SPM_NAME 92 char(8)

spm_log_file_sz SQLF_KTN_SPM_LOG_FILE_SZ 90 Sint32

spm_max_resync SQLF_KTN_SPM_MAX_RESYNC 91 Sint32

ss_logon SQLF_KTN_SS_LOGON 309 Uint16

start_stop_time SQLF_KTN_START_STOP_TIME 511 Uint16

svcename SQLF_KTN_SVCENAME 24 char(14)

sysadm_group SQLF_KTN_SYSADM_GROUP 39 char(16)

sysctrl_group SQLF_KTN_SYSCTRL_GROUP 63 char(16)

sysmaint_group SQLF_KTN_SYSMAINT_GROUP 62 char(16)

tm_database SQLF_KTN_TM_DATABASE 67 char(8)

tp_mon_name SQLF_KTN_TP_MON_NAME 66 char(19)

tpname SQLF_KTN_TPNAME 25 char(64)

trust_allclnts SQLF_KTN_TRUST_ALLCLNTS 301 Uint16

trust_clntauth SQLF_KTN_TRUST_CLNTAUTH 302 Uint16

udf_mem_sz SQLF_KTN_UDF_MEM_SZ 69 Uint16

a SQLF_KTN_DFT_MONSWITCHES is a Uint16 parameter, the bits of which indicate the default monitor
switch settings. This allows for the specification of a number of parameters at once. The individual bits
making up this composite parameter are:

Bit 1 (xxxx xxx1): dft_mon_uow

Bit 2 (xxxx xx1x): dft_mon_stmt

Bit 3 (xxxx x1xx): dft_mon_table

Bit 4 (xxxx 1xxx): dft_mon_buffpool

Bit 5 (xxx1 xxxx): dft_mon_lock

Bit 6 (xx1x xxxx): dft_mon_sort

Table 45. Non-updateable Database Manager Configuration Parameters

Parameter Name Token
Token
Value

Data
Type

nodetype SQLF_KTN_NODETYPE 100 Uint16

release SQLF_KTN_RELEASE 101 Uint16

 Chapter 3. Data Structures 405

SQLFUPD

 Language Syntax
C Structure

/* File: sqlutil.h */

/* Structure: SQLFUPD */

/* ... */

SQL_STRUCTURE sqlfupd

{

 unsigned short token;

 char *ptrvalue;

};

/* ... */

COBOL Structure

* File: sqlutil.cbl

01 SQL-FUPD.

05 SQL-TOKEN PIC 9(4) COMP-5.

 05 FILLER PIC X(2).

05 SQL-VALUE-PTR USAGE IS POINTER.

*

406 API Reference

SQLM-COLLECTED

 SQLM-COLLECTED
This structure is used to return information after a call to the Database System Monitor
APIs.

For information about programming the database monitor, see the System Monitor
Guide and Reference.

Table 46. Fields in the SQLM-COLLECTED Structure

Field Name Data Type Description

SIZE UNSIGNED LONG The size of the structure.

DB2 UNSIGNED LONG Obsolete.

DATABASES UNSIGNED LONG Obsolete.

TABLE_DATABASES UNSIGNED LONG Obsolete.

LOCK_DATABASES UNSIGNED LONG Obsolete.

APPLICATIONS UNSIGNED LONG Obsolete.

APPLINFOS UNSIGNED LONG Obsolete.

DCS_APPLINFOS UNSIGNED LONG Obsolete.

SERVER_DB2_TYPE UNSIGNED LONG The database manager server type (defined in
sqlutil.h).

TIME_STAMP TIMESTAMP Time that the snapshot was taken.

GROUP_STATES OBJECT SQLM_
RECORDING_
GROUP

Current state of the monitor switch.

SERVER_PRDID CHAR(20) Product name and version number of the database
manager on the server.

SERVER_NNAME CHAR(20) Configuration node name of the server.

SERVER_
INSTANCE_NAME

CHAR(20) Instance name of the database manager.

RESERVED CHAR(22) Reserved for future use.

NODE_NUMBER UNSIGNED SHORT Number of the node sending data.

TIME_ZONE_DISP LONG The difference (in seconds) between GMT and
local time.

NUM_TOP_LEVEL_
STRUCTS

UNSIGNED LONG The total number of high-level structures returned
in the snapshot output buffer. A high-level
structure can be composed of several lower-level
data structures. This counter replaces the
individual counters (such as table_databases) for
each high-level structure, which are now obsolete.

TABLESPACE_
DATABASES

UNSIGNED LONG Obsolete.

SERVER_VERSION UNSIGNED LONG The version of the server returning the data.

 Chapter 3. Data Structures 407

SQLM-COLLECTED

 Language Syntax
C Structure

/* File: sqlmon.h */

/* Structure: SQLM-COLLECTED */

/* ... */

typedef struct sqlm_collected

{

 unsigned long size;

 unsigned long db2;

 unsigned long databases;

 unsigned long table_databases;

 unsigned long lock_databases;

 unsigned long applications;

 unsigned long applinfos;

 unsigned long dcs_applinfos;

 unsigned long server_db2_type;

 sqlm_timestamp time_stamp;

 sqlm_recording_group group_states[SQLM_NUM_GROUPS];

 _SQLOLDCHAR server_prdid[SQLM_IDENT_SZ];

 _SQLOLDCHAR server_nname[SQLM_IDENT_SZ];

 _SQLOLDCHAR server_instance_name[SQLM_IDENT_SZ];

 _SQLOLDCHAR reserved[22];

unsigned short node_number;

 long time_zone_disp;

 unsigned long num_top_level_structs;

 unsigned long tablespace_databases;

 unsigned long server_version;

}sqlm_collected;

/* ... */

408 API Reference

SQLM-COLLECTED

COBOL Structure

* File: sqlmonct.cbl

01 SQLM-COLLECTED.

05 SQLM-SIZE PIC 9(9) COMP-5.

05 DB2 PIC 9(9) COMP-5.

05 DATABASES PIC 9(9) COMP-5.

05 TABLE-DATABASES PIC 9(9) COMP-5.

05 LOCK-DATABASES PIC 9(9) COMP-5.

05 APPLICATIONS PIC 9(9) COMP-5.

05 APPLINFOS PIC 9(9) COMP-5.

05 DCS-APPLINFOS PIC 9(9) COMP-5.

05 SERVER-DB2-TYPE PIC 9(9) COMP-5.

 05 TIME-STAMP.

10 SECONDS PIC 9(9) COMP-5.

10 MICROSEC PIC 9(9) COMP-5.

05 GROUP-STATES OCCURS 6.

10 INPUT-STATE PIC 9(9) COMP-5.

10 OUTPUT-STATE PIC 9(9) COMP-5.

 10 START-TIME.

 05 SERVER-PRDID PIC X(20).

 05 SERVER-NNAME PIC X(20).

 05 SERVER-INSTANCE-NAME PIC X(20).

 05 RESERVED PIC X(32).

05 TABLESPACE-DATABASES PIC 9(9) COMP-5.

05 SERVER-VERSION PIC 9(9) COMP-5.

*

 Chapter 3. Data Structures 409

SQLM-RECORDING-GROUP

 SQLM-RECORDING-GROUP
This structure is used to return information after a call to the Database System Monitor
APIs.

For both input_state and output_state, a particular monitor switch is identified by its
index in the array passed to “sqlmon - Get/Update Monitor Switches” on page 212. The
constants that map the indexes to the switches are called SQLM_XXXX_SW, where XXXX
is the name of the monitor group. These constants are defined in sqlmon.h.

For information about programming the database monitor, see the System Monitor
Guide and Reference.

Table 47. Fields in the SQLM-RECORDING-GROUP Structure

Field Name Data Type Description

INPUT_STATE INTEGER Required state for the specific monitor group.

OUTPUT_STATE INTEGER Returned information on the state of the specific
monitor switch.

START_TIME Structure Time stamp when the monitoring group switch was
turned on.

Table 48. Fields in the SQLM-TIMESTAMP Structure

Field Name Data Type Description

SECONDS INTEGER The date and time, expressed as the number of
seconds since January 1, 1970 (GMT).

MICROSEC INTEGER The number of elapsed microseconds in the
current second.

 Language Syntax
C Structure

/* File: sqlmon.h */

/* Structure: SQLM-RECORDING-GROUP */

/* ... */

typedef struct sqlm_recording_group

{

 unsigned long input_state;

 unsigned long output_state;

 sqlm_timestamp start_time;

}sqlm_recording_group;

/* ... */

410 API Reference

SQLM-RECORDING-GROUP

/* File: sqlmon.h */

/* Structure: SQLM-TIMESTAMP */

/* ... */

typedef struct sqlm_timestamp

{

unsigned long seconds;

unsigned long microsec;

}sqlm_timestamp;

/* ... */

COBOL Structure

* File: sqlmonct.cbl

01 SQLM-RECORDING-GROUP OCCURS 6 TIMES.

05 INPUT-STATE PIC 9(9) COMP-5.

05 OUTPUT-STATE PIC 9(9) COMP-5.

 05 START-TIME.

10 SECONDS PIC 9(9) COMP-5.

10 MICROSEC PIC 9(9) COMP-5.

*

* File: sqlmonct.cbl

01 SQLM-TIMESTAMP.

05 SECONDS PIC 9(9) COMP-5.

05 MICROSEC PIC 9(9) COMP-5.

*

 Chapter 3. Data Structures 411

SQLMA

 SQLMA
The SQL Monitor Area (SQLMA) structure is used to send database monitor snapshot
requests to the database manager. It is also used to estimate the size (in bytes) of the
snapshot output.

Valid values for OBJ_TYPE (defined in sqlmon) are:

SQLMA_DB2
DB2 related information

SQLMA_DBASE
Database related information

SQLMA_APPL
Application information organized by the application ID

SQLMA_AGENT_ID
Application information organized by the agent ID

SQLMA_DBASE_TABLES
Table information for a database

SQLMA_DBASE_APPLS
Application information for a database

SQLMA_DBASE_APPLINFO
Summary application information for a database

SQLMA_DBASE_LOCKS
Locking information for a database

SQLMA_DBASE_ALL
Database information for all active databases in the database manager

SQLMA_APPL_ALL
Application information for all active applications in the database manager

Table 49. Fields in the SQLMA Structure

Field Name Data Type Description

OBJ_NUM INTEGER Number of objects to be monitored.

OBJ_VAR Array An array of sqlm_obj_struct structures containing
descriptions of objects to be monitored. The length
of the array is determined by OBJ_NUM.

Table 50. Fields in the SQLM-OBJ-STRUCT Structure

Field Name Data Type Description

AGENT_ID INTEGER The application handle of the application to be
monitored. Specified only if OBJ_TYPE requires
an agent_id (application handle).

OBJ_TYPE INTEGER The type of object to be monitored.

OBJECT CHAR(36) The name of the object to be monitored. Specified
only if OBJ_TYPE requires a name, such as
appl_id, or a database alias.

412 API Reference

SQLMA

SQLMA_APPLINFO_ALL
Summary application information for all active applications in the database manager

SQLMA_DCS_APPLINFO_ALL
Database Connection Services application information summary for all active
applications in the database manager.

For information about programming the database monitor, see the System Monitor
Guide and Reference.

 Language Syntax
C Structure

/* File: sqlmon.h */

/* Structure: SQLMA */

/* ... */

typedef struct sqlma

{

unsigned long obj_num;

 sqlm_obj_struct obj_var[1];

}sqlma;

/* ... */

/* File: sqlmon.h */

/* Structure: SQLM-OBJ-STRUCT */

/* ... */

typedef struct sqlm_obj_struct

{

unsigned long agent_id;

unsigned long obj_type;

 _SQLOLDCHAR object[SQLM_OBJECT_SZ];

}sqlm_obj_struct;

/* ... */

COBOL Structure

* File: sqlmonct.cbl

01 SQLMA.

05 OBJ-NUM PIC 9(9) COMP-5.

05 OBJ-VAR OCCURS 0 TO 100 TIMES DEPENDING ON OBJ-NUM.

10 AGENT-ID PIC 9(9) COMP-5.

10 OBJ-TYPE PIC 9(9) COMP-5.

 10 OBJECT PIC X(36).

*

 Chapter 3. Data Structures 413

SQLOPT

 SQLOPT
This structure is used to pass bind options to “sqlabndx - Bind” on page 10, and
precompile options to “sqlaprep - Precompile Program” on page 18.

For more information about valid values for TYPE and VAL, see “sqlabndx - Bind” on
page 10 and “sqlaprep - Precompile Program” on page 18.

Table 51. Fields in the SQLOPT Structure

Field Name Data Type Description

HEADER Structure An sqloptheader structure.

OPTION Array An array of sqloptions structures. The number of
elements in this array is determined by the value
of the allocated field of the header.

Table 52. Fields in the SQLOPTHEADER Structure

Field Name Data Type Description

ALLOCATED INTEGER Number of elements in the option array of the
sqlopt structure.

USED INTEGER Number of elements in the option array of the
sqlopt structure actually used. This is the number
of option pairs (TYPE and VAL) supplied.

Table 53. Fields in the SQLOPTIONS Structure

Field Name Data Type Description

TYPE INTEGER Bind/precompile option type.

VAL INTEGER Bind/precompile option value.

Note: The TYPE and VAL fields are repeated for each bind/precompile option specified.

 Language Syntax
C Structure

/* File: sql.h */

/* Structure: SQLOPT */

/* ... */

SQL_STRUCTURE sqloptheader

{

unsigned long allocated;

unsigned long used;

};

/* ... */

414 API Reference

SQLOPT

/* File: sql.h */

/* Structure: SQLOPTHEADER */

/* ... */

SQL_STRUCTURE sqloptheader

{

unsigned long allocated;

unsigned long used;

};

/* ... */

/* File: sql.h */

/* Structure: SQLOPTIONS */

/* ... */

SQL_STRUCTURE sqloptions

{

unsigned long type;

unsigned long val;

};

/* ... */

COBOL Structure

* File: sql.cbl

01 SQLOPT.

 05 SQLOPTHEADER.

10 ALLOCATED PIC 9(9) COMP-5.

10 USED PIC 9(9) COMP-5.

05 SQLOPTIONS OCCURS 1 TO 50 DEPENDING ON ALLOCATED.

10 SQLOPT-TYPE PIC 9(9) COMP-5.

10 SQLOPT-VAL PIC 9(9) COMP-5.

 10 SQLOPT-VAL-PTR REDEFINES SQLOPT-VAL

*

 Chapter 3. Data Structures 415

SQLU-LSN

 SQLU-LSN
This union, used by “sqlurlog - Asynchronous Read Log” on page 297, contains the
definition of the log sequence number. A log sequence number (lsn) represents a
relative byte address within the database log. All log records are identified by this
number. It represents the log record’s byte offset from the beginning of the database
log.

Table 54. Fields in the SQLU-LSN Union

Field Name Data Type Description

lsnChar Array of UNSIGNED
CHAR

Specifies the 6-member character array log
sequence number.

lsnWord Array of UNSIGNED
SHORT

Specifies the 3-member short array log sequence
number.

 Language Syntax
C Structure

typedef union SQLU_LSN

{

unsigned char lsnChar [6] ;

unsigned short lsnWord [3] ;

} SQLU_LSN;

416 API Reference

SQLU-MEDIA-LIST

 SQLU-MEDIA-LIST
This structure is used to:

¹ Hold a list of target media for the backup image (see “sqlubkp - Backup Database”
on page 230)

¹ Hold a list of source media for the backup image (see “sqlurst - Restore Database”
on page 309)

¹ Pass information to “sqluload - Load” on page 282.

Table 55. Fields in the SQLU-MEDIA-LIST Structure

Field Name Data Type Description

MEDIA_TYPE CHAR(1) A character indicating media type.

SESSIONS INTEGER Indicates the number of elements in the array
pointed to by the target field of this structure.

TARGET Union This field is a pointer to one of three types of
structures. The type of structure pointed to is
determined by the value of the media_type field.
For more information on what to provide in this
field, see the appropriate API.

Table 56. Fields in the SQLU-MEDIA-LIST-TARGETS Structure

Field Name Data Type Description

MEDIA Pointer A pointer to an sqlu_media_entry structure.

VENDOR Pointer A pointer to an sqlu_vendor structure.

LOCATION Pointer A pointer to an sqlu_location_entry structure.

Table 57. Fields in the SQLU-MEDIA-ENTRY Structure

Field Name Data Type Description

RESERVE_LEN INTEGER Length of the media_entry field. For languages
other than C.

MEDIA_ENTRY CHAR(215) Path for a backup image used by the backup and
restore utilities.

Table 58. Fields in the SQLU-VENDOR Structure

Field Name Data Type Description

RESERVE_LEN1 INTEGER Length of the shr_lib field. For languages other
than C.

SHR_LIB CHAR(255) Name of a shared library supplied by vendors for
storing or retrieving data.

RESERVE_LEN2 INTEGER Length of the filename field. For languages other
than C.

FILENAME CHAR(255) File name to identify the load input source when
using a shared library.

 Chapter 3. Data Structures 417

SQLU-MEDIA-LIST

Valid values for MEDIA_TYPE (defined in sqlutil) are:

SQLU_LOCAL_MEDIA
Local devices (tapes, disks, or diskettes)

SQLU_SERVER_LOCATION
Server devices (tapes, disks, or diskettes; load only). Can be specified only for the
pDataFileList parameter.

SQLU_ADSM_MEDIA
ADSM

SQLU_OTHER_MEDIA
Vendor library

SQLU_USER_EXIT
User exit (OS/2 only)

SQLU_PIPE_MEDIA
Named pipe (for vendor APIs only)

SQLU_DISK_MEDIA
Disk (for vendor APIs only)

SQLU_DISKETTE_MEDIA
Diskette (for vendor APIs only)

SQLU_TAPE_MEDIA
Tape (for vendor APIs only).

Table 59. Fields in the SQLU-LOCATION-ENTRY Structure

Field Name Data Type Description

RESERVE_LEN INTEGER Length of the location_entry field. For languages
other than C.

LOCATION_ENTRY CHAR(256) Name of input data files for the load utility.

 Language Syntax
C Structure

/* File: sqlutil.h */

/* Structure: SQLU-MEDIA-LIST */

/* ... */

typedef SQL_STRUCTURE sqlu_media_list

{

 char media_type;

 char filler[3];

 long sessions;

union sqlu_media_list_targets target;

} sqlu_media_list;

/* ... */

418 API Reference

SQLU-MEDIA-LIST

/* File: sqlutil.h */

/* Structure: SQLU-MEDIA-LIST-TARGETS */

/* ... */

union sqlu_media_list_targets

{

 struct sqlu_media_entry *media;

 struct sqlu_vendor *vendor;

 struct sqlu_location_entry *location;

};

/* ... */

/* File: sqlutil.h */

/* Structure: SQLU-MEDIA-ENTRY */

/* ... */

typedef SQL_STRUCTURE sqlu_media_entry

{

 unsigned long reserve_len;

 char media_entry[SQLU_DB_DIR_LEN+1];

} sqlu_media_entry;

/* ... */

/* File: sqlutil.h */

/* Structure: SQLU-VENDOR */

/* ... */

typedef SQL_STRUCTURE sqlu_vendor

{

 unsigned long reserve_len1;

 char shr_lib[SQLU_SHR_LIB_LEN+1];

 unsigned long reserve_len2;

 char filename[SQLU_SHR_LIB_LEN+1];

} sqlu_vendor;

/* ... */

 Chapter 3. Data Structures 419

SQLU-MEDIA-LIST

/* File: sqlutil.h */

/* Structure: SQLU-LOCATION-ENTRY */

/* ... */

typedef SQL_STRUCTURE sqlu_location_entry

{

 unsigned long reserve_len;

 char location_entry[SQLU_MEDIA_LOCATION_LEN+1];

} sqlu_location_entry;

/* ... */

COBOL Structure

* File: sqlutil.cbl

01 SQLU-MEDIA-LIST.

 05 SQL-MEDIA-TYPE PIC X.

 05 SQL-FILLER PIC X(3).

05 SQL-SESSIONS PIC S9(9) COMP-5.

 05 SQL-TARGET.

10 SQL-MEDIA USAGE IS POINTER.

 10 SQL-VENDOR REDEFINES SQL-MEDIA

 10 SQL-LOCATION REDEFINES SQL-MEDIA

 10 FILLER REDEFINES SQL-MEDIA

*

* File: sqlutil.cbl

01 SQLU-MEDIA-ENTRY.

05 SQL-MEDENT-LEN PIC 9(9) COMP-5.

 05 SQL-MEDIA-ENTRY PIC X(215).

 05 FILLER PIC X.

*

* File: sqlutil.cbl

01 SQLU-VENDOR.

05 SQL-SHRLIB-LEN PIC 9(9) COMP-5.

 05 SQL-SHR-LIB PIC X(255).

 05 FILLER PIC X.

05 SQL-FILENAME-LEN PIC 9(9) COMP-5.

 05 SQL-FILENAME PIC X(255).

 05 FILLER PIC X.

*

420 API Reference

SQLU-MEDIA-LIST

* File: sqlutil.cbl

01 SQLU-LOCATION-ENTRY.

05 SQL-LOCATION-LEN PIC 9(9) COMP-5.

 05 SQL-LOCATION-ENTRY PIC X(255).

 05 FILLER PIC X.

*

 Chapter 3. Data Structures 421

SQLU-RLOG-INFO

 SQLU-RLOG-INFO
This structure contains information regarding calls to “sqlurlog - Asynchronous Read
Log” on page 297. The read log information structure contains information on the status
of the call and the database log.

Table 60. Fields in the SQLU-RLOG-INFO Structure

Field Name Data Type Description

initialLSN SQLU_LSN Specifies the lsn value of the first log record
written to the database after the first connect is
issued. For more information on the SQLU_LSN
structure, see “SQLU-LSN” on page 416.

firstReadLSN SQLU_LSN Specifies the lsn value of the first log record read.

lastReadLSN SQLU_LSN Specifies the lsn value of the last log record byte
read.

curActiveLSN SQLU_LSN Specifies the lsn value of the current active log.

logRecsWritten UNSIGNED LONG Specifies the number of log records written to the
buffer.

logBytesWritten UNSIGNED LONG Specifies the number of bytes written to the buffer.

 Language Syntax
C Structure

typedef SQL_STRUCTURE SQLU_RLOG_INFO

{

SQLU_LSN initialLSN ;

SQLU_LSN firstReadLSN ;

SQLU_LSN lastReadLSN ;

SQLU_LSN curActiveLSN ;

unsigned long logRecsWritten ;

unsigned long logBytesWritten ;

} SQLU_RLOG_INFO;

422 API Reference

SQLU-TABLESPACE-BKRST-LIST

 SQLU-TABLESPACE-BKRST-LIST
This structure is used to provide a list of table space names.

Table 61. Fields in the SQLU-TABLESPACE-BKRST-LIST Structure

Field Name Data Type Description

NUM_ENTRY INTEGER Number of entries in the list pointed to by the
tablespace field.

TABLESPACE Pointer A pointer to an sqlu_tablespace_entry structure.

Table 62. Fields in the SQLU-TABLESPACE-ENTRY Structure

Field Name Data Type Description

RESERVE_LEN INTEGER Length of the character string provided in the
tablespace_entry field. For languages other than
C.

TABLESPACE_ENTRY CHAR(19) Table space name.

 Language Syntax
C Structure

/* File: sqlutil.h */

/* Structure: SQLU-TABLESPACE-BKRST-LIST */

/* ... */

typedef SQL_STRUCTURE sqlu_tablespace_bkrst_list

{

 long num_entry;

struct sqlu_tablespace_entry *tablespace;

} sqlu_tablespace_bkrst_list;

/* ... */

/* File: sqlutil.h */

/* Structure: SQLU-TABLESPACE-ENTRY */

/* ... */

typedef SQL_STRUCTURE sqlu_tablespace_entry

{

 unsigned long reserve_len;

 char tablespace_entry[SQLU_MAX_TBS_NAME_LEN+1];

 char filler[1];

} sqlu_tablespace_entry;

/* ... */

 Chapter 3. Data Structures 423

SQLU-TABLESPACE-BKRST-LIST

COBOL Structure

* File: sqlutil.cbl

01 SQLU-TABLESPACE-BKRST-LIST.

05 SQL-NUM-ENTRY PIC S9(9) COMP-5.

05 SQL-TABLESPACE USAGE IS POINTER.

*

* File: sqlutil.cbl

01 SQLU-TABLESPACE-ENTRY.

05 SQL-TBSP-LEN PIC 9(9) COMP-5.

 05 SQL-TABLESPACE-ENTRY PIC X(18).

 05 FILLER PIC X.

 05 SQL-FILLER PIC X(1).

*

424 API Reference

SQLUEXPT-OUT

 SQLUEXPT-OUT
This structure is used to pass information from “sqluexpr - Export” on page 241.

Table 63. Fields in the SQLUEXPT-OUT Structure

Field Name Data Type Description

SIZEOFSTRUCT INTEGER Size of the structure.

ROWSEXPORTED INTEGER Number of records exported from the database
into the target file.

 Language Syntax
C Structure

/* File: sqlutil.h */

/* Structure: SQL-UEXPT-OUT */

/* ... */

SQL_STRUCTURE sqluexpt_out

{

 unsigned long sizeOfStruct;

 unsigned long rowsExported;

};

/* ... */

COBOL Structure

* File: sqlutil.cbl

01 SQL-UEXPT-OUT.

05 SQL-SIZE-OF-UEXPT-OUT PIC 9(9) COMP-5 VALUE 8.

05 SQL-ROWSEXPORTED PIC 9(9) COMP-5 VALUE 0.

*

 Chapter 3. Data Structures 425

SQLUHINFO

 SQLUHINFO
This structure is used to return information after a call to “sqluhgne - Get Next
Recovery History File Entry” on page 256.

Table 64 (Page 1 of 2). Fields in the SQLUHINFO Structure

Field Name Data Type Description

SQLUHINFOID CHAR(8) A structure identifier and "eye-catcher" for storage
dumps. It is a string of eight bytes that must be
initialized with the string "SQLUHINF". No symbolic
definition for this string exists.

SQLUHINFOBC INTEGER Size of this structure in bytes. Use the
SQLUHINFOSIZE macro (defined in sqlutil) to set
this field.

SQLN SMALLINT Number of table space elements.

SQLD SMALLINT Number of used table space elements.

OPERATION CHAR(1) Type of operation performed: B for backup, R for
restore, U for unload, and L for load.

OBJECT CHAR(1) Granularity of the operation: D for full database, P

for table space, and T for table.

OBJECT_PART CHAR(17) The first 14 characters are a time stamp with
format yyyymmddhhnnss, indicating when the
operation was done. The next 3 characters are a
sequence number. Each backup and unload
operation can result in multiple entries in this file
when the backup image or unload image is saved
in multiple files or on multiple tapes. The sequence
number allows multiple locations to be specified.
Restore and load operations have only a single
entry in this file, which corresponds to sequence
number '001' of the corresponding backup or
unload. The time stamp, combined with the
sequence number, must be unique.

OPTYPE CHAR(1) Operation type. Additional qualification of the
operation. For a full database or table space level
backup: F indicates an offline backup, and N
indicates an online backup. For a load: R indicates
replace, A indicates append, and C indicates copy.
Any other operation will leave this field blank.

DEVICE_TYPE CHAR(1) Device type. This field determines how the
LOCATION field is interpreted: D indicates disk, K
indicates diskette, T indicates tape, A indicates
ADSM, U indicates user exit, and O indicates other
(for other vendor device support).

FIRST_LOG CHAR(12) The earliest log file ID (ranging from S0000000 to
S9999999):

¹ Required to apply roll forward recovery for an
online backup

¹ Required to apply roll forward recovery for an
offline backup

¹ Applied after restoring a full database or table
space level backup that was current when the
unload/load started.

426 API Reference

SQLUHINFO

Table 64 (Page 2 of 2). Fields in the SQLUHINFO Structure

Field Name Data Type Description

LAST_LOG CHAR(12) The latest log file ID (ranging from S0000000 to
S9999999):

¹ Required to apply roll forward recovery for an
online backup

¹ Required to apply roll forward recovery to the
current point in time for an offline backup

¹ Applied after restoring a full database or table
space level backup that was current when the
unload/load finished (will be the same as
FIRST_LOG if roll forward recovery is not
applied).

BACKUP_ID CHAR(14) A time stamp with format yyyymmddhhnnss that
references one or more file lines (depending on
sequence number) representing backup
operations. For a full database restore, this
references the full database backup that was
restored. For a table space restore, this references
the table space backup, or full database backup
used to restore the specified table spaces. This
field is otherwise left blank.

TABLE_CREATOR CHAR(8) Table creator. Blank except for unload and load
operations.

TABLE_NAME CHAR(18) Table name. Blank except for unload and load
operations.

NUM_OF_
TABLESPACES

CHAR(5) Number of table spaces involved in the backup or
restore. Each table space backup contains one or
more table spaces. Each table space restore
replaces one or more table spaces. If this field is
not zero (indicating a table space level backup or
restore), the next lines in this file contain the name
of the table space backed up or restored,
represented by an 18-character string. One table
space name appears on each line.

LOCATION CHAR(255) For backups, and copies for loads and unloads,
this field indicates where the data has been saved.
For operations that require multiple entries in the
file, the sequence number defined by
OBJECT_PART identifies which part of the backup
or unload is found in the specified location. For
restores and loads, the location always identifies
where the first part of the data restored or loaded
(corresponding to sequence '001' for multi-part
backups and unloads) has been saved. The data
in LOCATION is interpreted differently, depending
on DEVICE_TYPE:

¹ For disk or diskette (D or K), a fully qualified
file name

¹ For tape (T), a volume label
¹ For ADSM (A), the server name
¹ For user exit or other (U or O), free form text.

COMMENT CHAR(30) Free form text comment.

TABLESPACE Array An array of SQLN sqluhtsp structures.

 Chapter 3. Data Structures 427

SQLUHINFO

Table 65. Fields in the SQLUHTSP Structure

Field Name Data Type Description

TABLESPACE_NAME CHAR(18) A string containing the name of a table space.

 Language Syntax
C Structure

/* File: sqlutil.h */

/* Structure: SQLUHINFO */

/* ... */

SQL_STRUCTURE sqluhinfo

{

 char sqluhinfoid[8];

 long sqluhinfobc;

 short sqln;

 short sqld;

 char operation[SQLUH_OP_SZ+1];

 char object[SQLUH_OBJ_SZ+1];

 char object_part[SQLUH_OBJPART_SZ+1];

 char optype[SQLUH_OPTYPE_SZ+1];

 char device_type[SQLUH_DEVTYPE_SZ+1];

 char first_log[SQLUH_FIRSTLOG_SZ+1];

 char last_log[SQLUH_LASTLOG_SZ+1];

 char backup_id[SQLUH_BACKID_SZ+1];

 char table_creator[SQLUH_TCREATE_SZ+1];

 char table_name[SQLUH_TNAME_SZ+1];

 char num_of_tablespaces[SQLUH_NUMTABLESPACE_SZ+1];

 char location[SQLUH_LOC_SZ+1];

 char comment[SQLUH_COMMENT_SZ+1];

struct sqluhtsp tablespace[1];

};

/* ... */

/* File: sqlutil.h */

/* Structure: SQLUHTSP */

/* ... */

SQL_STRUCTURE sqluhtsp

{

 char tablespace_name[SQLUH_TABLESPACENAME_SZ+1];

 char filler;

};

/* ... */

428 API Reference

SQLUHINFO

COBOL Structure

* File: sqlutil.cbl

01 SQLUHINFO.

 05 SQLUHINFOID PIC X(8).

05 SQLUHINFOBC PIC S9(9) COMP-5.

05 SQLH-SQLN PIC S9(4) COMP-5.

05 SQLH-SQLD PIC S9(4) COMP-5.

 05 SQL-OPERATION PIC X(1).

 05 FILLER PIC X.

 05 SQL-OBJECT PIC X(1).

 05 FILLER PIC X.

 05 SQL-OBJECT-PART PIC X(17).

 05 FILLER PIC X.

 05 SQL-OPTYPE PIC X(1).

 05 FILLER PIC X.

 05 SQL-DEVICE-TYPE PIC X(1).

 05 FILLER PIC X.

 05 SQL-FIRST-LOG PIC X(12).

 05 FILLER PIC X.

 05 SQL-LAST-LOG PIC X(12).

 05 FILLER PIC X.

 05 SQL-BACKUP-ID PIC X(14).

 05 FILLER PIC X.

 05 SQL-TABLE-CREATOR PIC X(8).

 05 FILLER PIC X.

 05 SQL-TABLE-NAME PIC X(18).

 05 FILLER PIC X.

05 SQL-NUM-OF-TABLESPACES PIC X(5).

 05 FILLER PIC X.

 05 SQL-LOCATION PIC X(255).

 05 FILLER PIC X.

 05 SQL-COMMENT PIC X(30).

 05 FILLER PIC X.

05 SQL-TABLESPACE OCCURS 1 TIMES.

10 SQL-TABLESPACE-NAME PIC X(18).

 10 FILLER PIC X.

 10 SQL-FILLER PIC X.

*

* File: sqlutil.cbl

01 SQLUHTSP.

 05 SQL-TABLESPACE-NAME PIC X(18).

 05 FILLER PIC X.

 05 SQL-FILLER PIC X.

*

 Chapter 3. Data Structures 429

SQLUIMPT-IN

 SQLUIMPT-IN
This structure is used to pass information to “sqluimpr - Import” on page 271.

Table 66. Fields in the SQLUIMPT-IN Structure

Field Name Data Type Description

SIZEOFSTRUCT INTEGER Size of this structure in bytes.

COMMITCNT INTEGER The number of records to import before committing
them to the database. A COMMIT is performed
whenever commitcnt records are imported.

RESTARTCNT INTEGER The number of records to skip before starting to
insert/update records. This parameter should be
used if a previous attempt to import records fails
after some records have been committed to the
database. The parameter's value represents a
starting point for the next import.

 Language Syntax
C Structure

/* File: sqlutil.h */

/* Structure: SQLUIMPT-IN */

/* ... */

SQL_STRUCTURE sqluimpt_in

{

 unsigned long sizeOfStruct;

 unsigned long commitcnt;

 unsigned long restartcnt;

};

/* ... */

COBOL Structure

* File: sqlutil.cbl

01 SQL-UIMPT-IN.

05 SQL-SIZE-OF-UIMPT-IN PIC 9(9) COMP-5 VALUE 12.

05 SQL-COMMITCNT PIC 9(9) COMP-5 VALUE 0.

05 SQL-RESTARTCNT PIC 9(9) COMP-5 VALUE 0.

*

430 API Reference

SQLUIMPT-OUT

 SQLUIMPT-OUT
This structure is used to pass information from “sqluimpr - Import” on page 271.

Table 67. Fields in the SQLUIMPT-OUT Structure

Field Name Data Type Description

SIZEOFSTRUCT INTEGER Size of this structure in bytes.

ROWSREAD INTEGER Number of records read from the file during import.

ROWSSKIPPED INTEGER Number of records skipped before inserting or
updating begins.

ROWSINSERTED INTEGER Number of rows inserted into the target table.

ROWSUPDATED INTEGER Number of rows in the target table updated with
information from the imported records (records
with the same key already exist in the table).

ROWSREJECTED INTEGER Number of records that could not be imported.

ROWSCOMMITTED INTEGER Number of records imported successfully and
committed to the database.

 Language Syntax
C Structure

/* File: sqlutil.h */

/* Structure: SQLUIMPT-OUT */

/* ... */

SQL_STRUCTURE sqluimpt_out

{

 unsigned long sizeOfStruct;

 unsigned long rowsRead;

 unsigned long rowsSkipped;

 unsigned long rowsInserted;

 unsigned long rowsUpdated;

 unsigned long rowsRejected;

 unsigned long rowsCommitted;

};

/* ... */

 Chapter 3. Data Structures 431

SQLUIMPT-OUT

COBOL Structure

* File: sqlutil.cbl

01 SQL-UIMPT-OUT.

05 SQL-SIZE-OF-UIMPT-OUT PIC 9(9) COMP-5 VALUE 28.

05 SQL-ROWSREAD PIC 9(9) COMP-5 VALUE 0.

05 SQL-ROWSSKIPPED PIC 9(9) COMP-5 VALUE 0.

05 SQL-ROWSINSERTED PIC 9(9) COMP-5 VALUE 0.

05 SQL-ROWSUPDATED PIC 9(9) COMP-5 VALUE 0.

05 SQL-ROWSREJECTED PIC 9(9) COMP-5 VALUE 0.

05 SQL-ROWSCOMMITTED PIC 9(9) COMP-5 VALUE 0.

*

432 API Reference

SQLULOAD-IN

 SQLULOAD-IN
This structure is used to input information during a call to “sqluload - Load” on
page 282.

Table 68 (Page 1 of 2). Fields in the SQLULOAD-IN Structure

Field Name Data Type Description

SIZEOFSTRUCT UNSIGNED
LONG

Size of this structure in bytes.

SAVECNT UNSIGNED
LONG

The number of records to load before establishing a
consistency point. This value is converted to a page
count, and rounded up to intervals of the extent size. Since
a message is issued at each consistency point, this option
should be selected if the load will be monitored using
“sqluqry - Load Query” on page 291. If the value of
savecnt is not sufficiently high, the synchronization of
activities performed at each consistency point will impact
performance.

The default value is 0, meaning that no consistency points
will be established, unless necessary.

RESTARTCNT UNSIGNED
LONG

The number of records to skip before starting to load
records. This parameter should be used if a previous
attempt to load records fails after some records have been
committed to the database. The parameter's value
represents a starting point for the next load.

ROWCNT UNSIGNED
LONG

The number of physical records to be loaded. Allows a
user to load only the first rowcnt rows in a file.

WARNINGCNT UNSIGNED
LONG

Stops the load after warningcnt warnings. Set this
parameter if no warnings are expected, but verification that
the correct file and table are being used is desired. If
warningcnt is 0, or this option is not specified, the load will
continue regardless of the number of warnings issued.

If the load is stopped because the threshold of warnings
was encountered, another load can be started in
RESTART mode by specifying the restartcnt option.
Alternatively, another load can be initiated in REPLACE
mode, starting at the beginning of the input file.

DATA_BUFFER_SIZE UNSIGNED
LONG

The number of 4KB pages (regardless of the degree of
parallelism) to use as buffered space for transferring data
within the utility. If the value specified is less than the
algorithmic minimum, the minimum required resource is
used, and no warning is returned.

This memory is allocated directly from the utility heap,
whose size can be modified through the util_heap_sz
database configuration parameter.

If a value is not specified, an intelligent default is
calculated by the utility at run time. The default is based on
a percentage of the free space available in the utility heap
at the instantiation time of the loader, as well as some
characteristics of the table.

 Chapter 3. Data Structures 433

SQLULOAD-IN

Table 68 (Page 2 of 2). Fields in the SQLULOAD-IN Structure

Field Name Data Type Description

SORT_BUFFER_SIZE UNSIGNED
LONG

The number of 4KB pages of memory that are to be used
for sorting the index keys during a load operation.

Note: Sort buffer size has a very large impact on sort
performance. Therefore, for very large tables (for
example, tables in excess of 100M), this buffer
should be set as large as possible.

If a value is not specified, the utility uses the larger of:

¹ 2MB for OS/2 or Windows NT, or 6MB for all other
platforms

¹ The minimum size allowed by the sort algorithm
¹ 15% of the free space remaining in the utility heap.

If a value greater than zero, but less than the required
minimum is specified, the minimum value for that load is
returned.

HOLD_QUIESCE UNSIGNED
SHORT

A flag whose value is set to TRUE if the utility is to leave the
table in quiesced exclusive state after the load, and to
FALSE if it is not.

RESTARTPHASE CHAR(1) Phase at which to restart the load operation. See below for
values.

STATSOPT CHAR(1) Granularity of statistics to collect. See below for values.

CPU_PARALLELISM UNSIGNED
SHORT

The number of processes or threads that the load utility
will spawn for parsing, converting and formatting records
when building table objects. This parameter is designed to
exploit SMP parallelism. It is particularly useful when
loading presorted data, because record order in the source
data is preserved. If the value of this parameter is zero,
the load utility uses an intelligent default value at run time.

Note: If this parameter is used with tables containing
either LOB or LONG VARCHAR fields, its value
becomes one, regardless of the number of system
CPUs or the value specified by the user.

DISK_PARALLELISM UNSIGNED
SHORT

The number of processes or threads that the load utility
will spawn for writing data to the table space containers. If
a value is not specified, the utility selects an intelligent
default based on the number of table space containers and
the characteristics of the table.

NON_RECOVERABLE UNSIGNED
SHORT

Set to SQLU_NON_RECOVERABLE_LOAD if the load transaction is
to be marked as non-recoverable, and it will not be
possible to recover it by a subsequent rollforward action.
The rollforward utility will skip the transaction, and will
mark the table into which data was being loaded as
"invalid". The utility will also ignore any subsequent
transactions against that table. After the roll forward is
completed, such a table can only be dropped.

With this option, table spaces are not put in backup
pending state following the load operation, and a copy of
the loaded data does not have to be made during the load.

Set to SQLU_RECOVERABLE_LOAD if the load transaction is to
be marked as recoverable.

434 API Reference

SQLULOAD-IN

Valid values for RESTARTPHASE (defined in sqlutil) are:

SQLU_LOAD_PHASE
Restart at load phase.

SQLU_BUILD_PHASE
Restart at build phase.

SQLU_DELETE_PHASE
Restart at delete phase.

Valid values for STATSOPT (defined in sqlutil) are:

SQLU_STATS_NONE
SQL_STATS_EXTTABLE_ONLY
SQL_STATS_EXTTABLE_INDEX
SQL_STATS_INDEX
SQL_STATS_TABLE
SQL_STATS_EXTINDEX_ONLY
SQL_STATS_EXTINDEX_TABLE
SQL_STATS_ALL
SQL_STATS_BOTH

 Language Syntax
C Structure

/* File: sqlutil.h */

/* Structure: SQLULOAD-IN */

/* ... */

SQL_STRUCTURE sqluload_in

{

 unsigned long sizeOfStruct;

 unsigned long savecnt;

 unsigned long restartcnt;

 unsigned long rowcnt;

 unsigned long warningcnt;

 unsigned long data_buffer_size;

 unsigned long sort_buffer_size;

 unsigned short hold_quiesce;

 char restartphase;

 char statsopt;

 unsigned short cpu_parallelism;

 unsigned short disk_parallelism;

 unsigned short non_recoverable;

};

/* ... */

 Chapter 3. Data Structures 435

SQLULOAD-IN

COBOL Structure

* File: sqlutil.cbl

01 SQLULOAD-IN.

05 SQL-SIZE-OF-STRUCT PIC 9(9) COMP-5 VALUE 40.

05 SQL-SAVECNT PIC 9(9) COMP-5.

05 SQL-RESTARTCOUNT PIC 9(9) COMP-5.

05 SQL-ROWCNT PIC 9(9) COMP-5.

05 SQL-WARNINGCNT PIC 9(9) COMP-5.

05 SQL-DATA-BUFFER-SIZE PIC 9(9) COMP-5.

05 SQL-SORT-BUFFER-SIZE PIC 9(9) COMP-5.

05 SQL-HOLD-QUIESCE PIC 9(4) COMP-5.

 05 SQL-RESTARTPHASE PIC X.

 05 SQL-STATSOPT PIC X.

05 SQL-CPU-PARALLELISM PIC 9(4) COMP-5.

05 SQL-DISK-PARALLELISM PIC 9(4) COMP-5.

05 SQL-NON-RECOVERABLE PIC 9(4) COMP-5.

 05 FILLER PIC X(2).

*

436 API Reference

SQLULOAD-OUT

 SQLULOAD-OUT
This structure is used to output information after a call to “sqluload - Load” on
page 282.

Table 69. Fields in the SQLULOAD-OUT Structure

Field Name Data Type Description

SIZEOFSTRUCT UNSIGNED LONG Size of this structure in bytes.

ROWSREAD UNSIGNED LONG Number of records read during
the load.

ROWSSKIPPED UNSIGNED LONG Number of records skipped
before the load begins.

ROWSLOADED UNSIGNED LONG Number of rows loaded into the
target table.

ROWSREJECTED UNSIGNED LONG Number of records that could
not be loaded.

ROWSDELETED UNSIGNED LONG Number of duplicate rows
deleted.

ROWSCOMMITTED UNSIGNED LONG The total number of processed
records: The number of records
loaded successfully and
committed to the database, plus
the number of skipped and
rejected records.

 Language Syntax
C Structure

/* File: sqlutil.h */

/* Structure: SQLULOAD-OUT */

/* ... */

SQL_STRUCTURE sqluload_out

{

 unsigned long sizeOfStruct;

 unsigned long rowsRead;

 unsigned long rowsSkipped;

 unsigned long rowsLoaded;

 unsigned long rowsRejected;

 unsigned long rowsDeleted;

 unsigned long rowsCommitted;

};

/* ... */

 Chapter 3. Data Structures 437

SQLULOAD-OUT

COBOL Structure

* File: sqlutil.cbl

01 SQLULOAD-OUT.

05 SQL-SIZE-OF-STRUCT PIC 9(9) COMP-5 VALUE 28.

05 SQL-ROWS-READ PIC 9(9) COMP-5.

05 SQL-ROWS-SKIPPED PIC 9(9) COMP-5.

05 SQL-ROWS-LOADED PIC 9(9) COMP-5.

05 SQL-ROWS-REJECTED PIC 9(9) COMP-5.

05 SQL-ROWS-DELETED PIC 9(9) COMP-5.

05 SQL-ROWS-COMMITTED PIC 9(9) COMP-5.

*

438 API Reference

SQLUPI

 SQLUPI
This structure is used to store partitioning information, such as the partitioning map and
the partitioning key of a table.

Table 71 shows the SQL data types and lengths for the SQLUPI data structure. The
SQLTYPE column specifies the numeric value that represents the data type of an item.

Table 70. Fields in the SQLUPI Structure

Field Name Data Type Description

PMAPLEN INTEGER The length of the partitioning map in bytes. For a
single-node table, the value is
sizeof(SQL_PDB_NODE_TYPE). For a mult-inode
table, the value is SQL_PDB_MAP_SIZE *

sizeof(SQL_PDB_NODE_TYPE).

PMAP SQL_PDB_NODE_TYPE The partitioning map.

SQLD INTEGER The number of used SQLPARTKEY elements; that
is, the number of keyparts in a partitioning key.

SQLPARTKEY Structure The description of a partitioning column in a
partitioning key. The maximum number of
partitioning columns is
SQL_MAX_NUM_PART_KEYS.

Table 71 (Page 1 of 2). SQL Data Types and Lengths for the SQLUPI Structure

Data type
SQLTYPE (Nulls
Not Allowed)

SQLTYPE (Nulls
Allowed) SQLLEN AIX

Date 384 385 Ignored Yes

Time 388 389 Ignored Yes

Timestamp 392 393 Ignored Yes

Variable-length
character string

448 449 Length of the
string

Yes

Fixed-length
character string

452 453 Length of the
string

Yes

Long character
string

456 457 Ignored No

Null-terminated
character string

460 461 Length of the
string

Yes

Floating point 480 481 Ignored Yes

Decimal 484 485 Byte 1 =
precision Byte 2
= scale

Yes

Large integer 496 497 Ignored Yes

Small integer 500 501 Ignored Yes

Variable-length
graphic string

464 465 Length in
double-byte
characters

Yes

 Chapter 3. Data Structures 439

SQLUPI

Table 71 (Page 2 of 2). SQL Data Types and Lengths for the SQLUPI Structure

Data type
SQLTYPE (Nulls
Not Allowed)

SQLTYPE (Nulls
Allowed) SQLLEN AIX

Fixed-length
graphic string

468 469 Length in
double-byte
characters

Yes

Long graphic
string

472 473 Ignored No

 Language Syntax
C Structure

/* File: sqlutil.h */

/* Structure: SQLUPI */

/* ... */

SQL_STRUCTURE sqlupi

{

 unsigned short pmaplen;

 SQL_PDB_NODE_TYPE pmap[SQL_PDB_MAP_SIZE];

 unsigned short sqld;

struct sqlpartkey sqlpartkey[SQL_MAX_NUM_PART_KEYS];

};

/* ... */

/* File: sqlutil.h */

/* Structure: SQLPARTKEY */

/* ... */

SQL_STRUCTURE sqlpartkey

{

 unsigned short sqltype;

 unsigned short sqllen;

};

/* ... */

440 API Reference

SQLXA-RECOVER

 SQLXA-RECOVER
Used by the transaction APIs to return information about indoubt transactions (see
Appendix B, “Transaction APIs” on page 447).

Possible values for LOGFULL (defined in sqlxa) are:

SQLXA_TRUE
True

SQLXA_FALSE
False.

Possible values for CONNECTED (defined in sqlxa) are:

SQLXA_TRUE
True. The transaction is undergoing normal syncpoint processing, and is waiting for
the second phase of the two-phase commit.

Table 72. Fields in the SQLXA-RECOVER Structure

Field Name Data Type Description

TIMESTAMP INTEGER Time stamp when the
transaction entered the
prepared (indoubt) state. This
is the number of seconds the
local time zone is displaced
from Coordinated Universal
Time.

XID CHAR(140) XA identifier assigned by the
transaction manager to uniquely
identify a global transaction.

DBALIAS CHAR(16) Alias of the database where the
indoubt transaction is found.

APPLID CHAR(30) Application identifier assigned
by the database manager for
this transaction.

SEQUENCE_NO CHAR(4) The sequence number assigned
by the database manager as an
extension to the APPLID.

AUTH_ID CHAR(8) ID of the user who ran the
transaction.

LOG_FULL CHAR(1) Indicates whether this
transaction caused a log full
condition.

CONNECTED CHAR(1) Indicates whether an application
is connected.

INDOUBT_STATUS CHAR(1) Possible values are listed
below.

RESERVED CHAR(9) The first byte is used to indicate
the type of indoubt transaction:
0 indicates RM, and 1 indicates
TM.

 Chapter 3. Data Structures 441

SQLXA-RECOVER

SQLXA_FALSE
False. The transaction was left indoubt by an earlier failure, and is now waiting for
re-sync from a transaction manager.

Possible values for INDOUBT_STATUS (defined in sqlxa) are:

SQLXA_TS_PREP
Prepared

SQLXA_TS_HCOM
Heuristically committed

SQLXA_TS_HROL
Heuristically rolled back

SQLXA_TS_END
Idle.

 Language Syntax
C Structure

/* File: sqlxa.h */

/* Structure: SQLXA-RECOVER */

/* ... */

typedef struct sqlxa_recover_t

{

 unsigned long timestamp;

 SQLXA_XID xid;

 _SQLOLDCHAR dbalias[SQLXA_DBNAME_SZ];

 _SQLOLDCHAR applid[SQLXA_APPLID_SZ];

 _SQLOLDCHAR sequence_no[SQLXA_SEQ_SZ];

 _SQLOLDCHAR auth_id[SQLXA_USERID_SZ];

 char log_full;

 char connected;

 char indoubt_status;

 char originator;

 char reserved[8];

} SQLXA_RECOVER;

/* ... */

442 API Reference

SQLXA-XID

 SQLXA-XID
Used by the transaction APIs to identify XA transactions (see Appendix B, “Transaction
APIs” on page 447).

Table 73. Fields in the SQLXA-XID Structure

Field Name Data Type Description

FORMATID INTEGER XA format ID.

GTRID_LENGTH INTEGER Length of the global transaction
ID.

BQUAL_LENGTH INTEGER Length of the branch identifier.

DATA CHAR[128] GTRID, followed by BQUAL and
trailing blanks, for a total of 128
bytes.

Note: The maximum size for GTRID and BQUAL is 64 bytes each.

 Language Syntax
C Structure

/* File: sqlxa.h */

/* Structure: SQLXA-XID */

/* ... */

typedef struct sqlxa_xid_t SQLXA_XID;

/* ... */

/* File: sqlxa.h */

/* Structure: SQLXA-XID-T */

/* ... */

struct sqlxa_xid_t

{

 long formatID;

 long gtrid_length;

 long bqual_length;

 char data[SQLXA_XIDDATASIZE];

};

/* ... */

 Chapter 3. Data Structures 443

SQLXA-XID

444 API Reference

 Appendix A. Naming Conventions

This section provides information about the conventions that apply when naming
database manager objects, such as databases and tables, and authentication IDs.

¹ Character strings that represent names of database manager objects can contain
any of the following: a-z, A-Z, 0-9, @, #, and $.

¹ The first character in the string must be an alphabetic character, @, #, or $; it
cannot be a number or the letter sequences SYS, DBM, or IBM.

¹ Unless otherwise noted, names can be entered in lowercase letters; however, the
database manager processes them as if they were uppercase.

The exception to this is character strings that represent names under the systems
network architecture (SNA). Many values, such as logical unit names (partner_lu
and local_lu), are case sensitive. The name must be entered exactly as it appears
in the SNA definitions that correspond to those terms.

¹ A database name or database alias is a unique character string containing from
one to eight letters, numbers, or keyboard characters from the set described
above.

Databases are cataloged in the system and local database directories by their
aliases in one field, and their original name in another. For most functions, the
database manager uses the name entered in the alias field of the database
directories. (The exceptions are CHANGE DATABASE COMMENT and CREATE
DATABASE, where a directory path must be specified.)

¹ The long identifier or alias for a database table or view, and the name of a column
within a table or a view, are unique character strings 1 to 18 characters in length.

A fully qualified table name consists of the schema.tablename. The schema is the
unique user ID under which the table was created.

¹ Authentication IDs (both user IDs and group IDs) cannot exceed eight characters in
length.

For more information about naming conventions, see the Administration Guide.

 Copyright IBM Corp. 1993, 1997 445

446 API Reference

 Appendix B. Transaction APIs

Databases can be used in a distributed transaction processing (DTP) environment; for
information about this topic and heuristic operations, see the Administration Guide.

 Heuristic APIs
A set of APIs is provided for tool writers to perform heuristic functions on indoubt
transactions when the resource owner (such as the database administrator) cannot wait
for the Transaction Manager (TM) to perform the re-sync action. This condition may
occur if, for example, the communication line is broken, and an indoubt transaction is
tying up needed resources. For the database manager, these resources include locks
on tables and indexes, log space, and storage used by the transaction. Each indoubt
transaction also decreases, by one, the maximum number of concurrent transactions
that could be processed by the database manager.

The heuristic APIs have the capability to query, commit, and roll back indoubt
transactions, and to cancel transactions that have been heuristically committed or rolled
back, by removing the log records and releasing log pages.

Attention: The heuristic APIs should be used with caution and only as a last resort.
The TM should drive the re-sync events. If the TM has an operator command to start
the re-sync action, it should be used. If the user cannot wait for a TM-initiated re-sync,
heuristic actions are necessary.

Although there is no set way to perform these actions, the following guidelines may be
helpful:

¹ Use the sqlxphqr function to display the indoubt transactions. They have a status
= 'P' (prepared), and are not connected. The gtrid portion of an xid is the global
transaction ID that is identical to that in other resource managers (RM) that
participate in the global transaction.

¹ Use knowledge of the application and the operating environment to identify the
other participating RMs.

¹ If the transaction manager is CICS, and the only RM is a CICS resource, perform a
heuristic rollback.

¹ If the transaction manager is not CICS, use it to determine the status of the
transaction that has the same gtrid as does the indoubt transaction.

¹ If at least one RM has committed or rolled back, perform a heuristic commit or a
rollback.

¹ If they are all in the prepared state, perform a heuristic rollback.

¹ If at least one RM is not available, perform a heuristic rollback.

If the transaction manager is available, and the indoubt transaction is due to the RM not
being available in the second phase, or in an earlier re-sync, the DBA should determine

 Copyright IBM Corp. 1993, 1997 447

from the TM's log what action has been taken against the other RMs, and then do the
same. The gtrid is the matching key between the TM and the RMs.

Do not execute “sqlxhfrg - Forget Transaction Status” on page 449 unless a
heuristically committed or rolled back transaction happens to cause a log full condition.
The forget function releases the log space occupied by this indoubt transaction. If a
transaction manager eventually performs a re-sync action for this indoubt transaction,
the TM could make the wrong decision to commit or to roll back other RMs, because no
record was found in this RM. In general, a missing record implies that the RM has
rolled back.

448 API Reference

sqlxhfrg - Forget Transaction Status

sqlxhfrg - Forget Transaction Status
Permits the RM to erase knowledge of a heuristically completed transaction (that is,
one that has been committed or rolled back heuristically).

 Authorization
One of the following:

 sysadm
 dbadm

 Required Connection
Database

API Include File
sqlxa.h

C API Syntax

/* File: sqlxa.h */

/* API: Forget Transaction Status */

/* ... */

extern int SQL_API_FN sqlxhfrg(

 SQLXA_XID *pTransId,

 struct sqlca *pSqlca

);

/* ... */

 API Parameters
pTransId

Input. XA identifier of the transaction to be heuristically forgotten, or
removed from the database log.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

 Usage Notes
Only transactions with a status of heuristically committed or rolled back can have the
FORGET operation applied to them.

For information about the SQLXA_XID structure, see “SQLXA-XID” on page 443.

 Appendix B. Transaction APIs 449

sqlxphcm - Commit an Indoubt Transaction

sqlxphcm - Commit an Indoubt Transaction
Commits an indoubt transaction (that is, a transaction that is prepared to be
committed). If the operation succeeds, the transaction's state becomes heuristically
committed.

 Scope
This API only affects the node on which it is issued.

 Authorization
One of the following:

 sysadm
 dbadm

 Required Connection
Database

API Include File
sqlxa.h

C API Syntax

/* File: sqlxa.h */

/* API: Commit an Indoubt Transaction */

/* ... */

extern int SQL_API_FN sqlxphcm(

 int exe_type,

 SQLXA_XID *pTransId,

 struct sqlca *pSqlca

);

/* ... */

 API Parameters
exe_type

Input. If EXE_THIS_NODE is specified, the operation is executed only at this
node.

pTransId
Input. XA identifier of the transaction to be heuristically committed.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

450 API Reference

sqlxphcm - Commit an Indoubt Transaction

 Usage Notes
Only transactions with a status of prepared can be committed. Once heuristically
committed, the database manager remembers the state of the transaction until “sqlxhfrg
- Forget Transaction Status” on page 449 is issued.

For information about the SQLXA_XID structure, see “SQLXA-XID” on page 443.

 Appendix B. Transaction APIs 451

sqlxphqr - List Indoubt Transactions

sqlxphqr - List Indoubt Transactions
Gets a list of all indoubt transactions for the currently connected database.

 Scope
This API only affects the node on which it is issued.

 Authorization
One of the following:

 sysadm
 dbadm

 Required Connection
Database

API Include File
sqlxa.h

C API Syntax

/* File: sqlxa.h */

/* API: List Indoubt Transactions */

/* ... */

extern int SQL_API_FN sqlxphqr(

 int exe_type,

 SQLXA_RECOVER **ppIndoubtData,

 long *pNumIndoubts,

 struct sqlca *pSqlca

);

/* ... */

 API Parameters
exe_type

Input. If EXE_THIS_NODE is specified, the operation is executed only at this
node.

ppIndoubtData
Output. Supply the address of a pointer to an SQLXA_RECOVER structure
to hold the indoubt transactions. This API allocates sufficient space to hold
the list of indoubt transactions, and returns a pointer to this space. The
space is released only when the process terminates. Do not use “sqlefmem
- Free Memory” on page 117 to free this memory, since it contains pointers
to other dynamically allocated structures which will not be freed. For more
information, see “SQLXA-RECOVER” on page 441.

452 API Reference

sqlxphqr - List Indoubt Transactions

pNumIndoubts
Output. The API will return the number of indoubt transactions returned in
ppIndoubtData.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

 Appendix B. Transaction APIs 453

sqlxphrl - Roll Back an Indoubt Transaction

sqlxphrl - Roll Back an Indoubt Transaction
Rolls back an indoubt transaction (that is, a transaction that has been prepared). If the
operation succeeds, the transaction's state becomes heuristically rolled back.

 Scope
This API only affects the node on which it is issued.

 Authorization
One of the following:

 sysadm
 dbadm

 Required Connection
Database

API Include File
sqlxa.h

C API Syntax

/* File: sqlxa.h */

/* API: Roll Back an Indoubt Transaction */

/* ... */

extern int SQL_API_FN sqlxphrl(

 int exe_type,

 SQLXA_XID *pTransId,

 struct sqlca *pSqlca

);

/* ... */

 API Parameters
exe_type

Input. If EXE_THIS_NODE is specified, the operation is executed only at this
node.

pTransId
Input. XA identifier of the transaction to be heuristically rolled back.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

454 API Reference

sqlxphrl - Roll Back an Indoubt Transaction

 Usage Notes
Only transactions with a status of prepared or idle can be rolled back. Once
heuristically rolled back, the database manager remembers the state of the transaction
until “sqlxhfrg - Forget Transaction Status” on page 449 is issued.

For information about the SQLXA_XID structure, see “SQLXA-XID” on page 443.

 Appendix B. Transaction APIs 455

sqlxphrl - Roll Back an Indoubt Transaction

456 API Reference

Appendix C. Precompiler Customization APIs

There is a set of precompiler service APIs which enable the customization of
precompilers. Information about what these APIs are, and how to use them, is available
electronically as follows:

 ¹ CompuServe

The file is located in the IBM DB2 Family Forum on CompuServe (GO IBMDB2).
Once in this forum, you can get a file called PREPAPI.TXT from Library 1. This file
must be downloaded in ASCII format.

 ¹ Internet

An anonymous FTP site containing this information is available. The site is called
ps.boulder.ibm.com . The file, called prepapi.txt, is located in the directory
/ps/products/db2/info. This file is in ASCII format.

For more generic information about what is available on CompuServe and the Internet,
or how to access it, see “Contacting IBM” on page 543.

If you do not have access to either electronic forum and would like to get a copy of this
information, you can call IBM Service as described in the Service Information Flyer.

 Copyright IBM Corp. 1993, 1997 457

458 API Reference

Appendix D. Backup and Restore APIs for Vendor Products

DB2 provides interfaces that can be used by third-party media management products to
store and retrieve data for backup and restore functions. This functionality is designed
to augment the backup and restore data targets of diskette, disk, tape (UNIX based
systems only), and ADSM, that are supported as a standard part of DB2.

These third-party media management products will be referred to as vendor products in
the remainder of this appendix.

DB2 defines a set of function prototypes that provide a general purpose data interface
to backup and restore that can be used by many vendors. These functions are to be
provided by the vendor in a shared library on UNIX based systems, or DLL on OS/2 or
the Windows operating system. When the functions are invoked by DB2, the shared
library or DLL specified by the calling backup or restore routine is loaded and the
functions provided by the vendor are called to perform the required tasks.

This appendix is divided into four parts:

¹ Operational overview of DB2’s interaction with vendor products.
¹ Detailed descriptions of DB2’s vendor APIs.
¹ Information on the data structures used in the API calls.
¹ Details on invoking backup and restore using vendor products.

 Operational Overview
Five functions are defined to interface DB2 and the vendor product:

¹ sqluvint - Initialize and Link to Device
¹ sqluvget - Reading Data from Device
¹ sqluvput - Writing Data to Device
¹ sqluvend - Unlink the Device
¹ sqluvdel - Delete Committed Session

DB2 will call these functions, and they should be provided by the vendor product in a
shared library on UNIX based systems, or in a DLL on OS/2 or the Windows operating
system.

Note: The shared library or DLL code will be run as part of the database engine code.
Therefore, it must be reentrant and thoroughly debugged. An errant function
may compromise data integrity of the database.

The sequence of functions that DB2 will call in a specific backup or restore session
depends on these factors:

¹ The number of sessions that will be utilized (one or more)?
¹ Whether it is a backup or a restore.
¹ The PROMPTING mode that is specified on the backup or restore.
¹ The characteristics of the device that the data is stored on.
¹ Any errors encountered during the operation.

 Copyright IBM Corp. 1993, 1997 459

Number of Sessions
DB2 supports the backup and restore of database objects using one or more data
streams or sessions. A backup or restore using three sessions would require three
physical or logical devices to be available. When vendor device support is being used,
it is the vendor’s functions that are responsible for managing the interface to each
physical or logical device. DB2 simply sends or receives data buffers to or from the
vendor provided functions.

The number of sessions to be used is specified as a parameter by the application that
calls the backup or restore database function. This value is provided in the INIT-INPUT
structure used by sqluvint (see “sqluvint - Initialize and Link to Device” on page 467).

DB2 will continue to initialize sessions until the specified number is reached, or it
receives an SQLUV_MAX_LINK_GRANT warning return code from an sqluvint call. In
order to warn DB2 that it has reached the maximum number of sessions that it can
support, the vendor product will require code to track the number of active sessions.
Failure to warn DB2 could lead to a DB2 initialize session request that fails, resulting in
a termination of all sessions and the failure of the entire backup or restore operation.

When the operation is backup, DB2 writes a media header record at the beginning of
each session. It contains information that DB2 utilizes to identify the session during a
restore. DB2 uniquely identifies each session by appending a sequence number to the
name of the backup. It starts at 1 (one) for the first session and is incremented by one
each time another session is initiated with an sqluvint call for a backup or restore
operation. For more details, see “INIT-INPUT” on page 483.

When the backup is successfully completed, DB2 writes a media trailer to the last
session it closes. This trailer includes information that tells DB2 how many sessions
were used to perform the backup. During restore, this information is used to ensure all
the sessions, or data streams, have been restored.

Operation with No Errors, Warnings or Prompting
For backup, the following sequence of calls will be issued by DB2 for each session.

sqluvint, action = SQLUV_WRITE

 followed by 1 to n

 sqluvput

 followed by 1

sqluvend, action = SQLUV_COMMIT

When DB2 issues an sqluvend call (action SQLUV_COMMIT), it expects the vendor
product to appropriately save the output data. A return code of SQLUV_OK to DB2
indicates success.

The DB2-INFO structure, used on the sqluvint call, contains the information required to
identify the backup (see “DB2-INFO” on page 479). A sequence number is supplied.

460 API Reference

The vendor product may choose to save this information. DB2 will use it during restore
to identify the backup that will be restored.

For restore, the sequence of calls for each session is:

sqluvint, action = SQLUV_READ

 followed by 1 to n

 sqluvget

 followed by 1

sqluvend, action = SQLUV_COMMIT

The information in the DB2-INFO structure used on the sqluvint call will contain the
information required to identify the backup. Sequence number is not supplied. DB2
expects that all backup objects (session outputs committed during backup) will be
returned, and is not sensitive to the order in which they are restored, but does check
the media tail to ensure that they have all been processed.

Note: Not all vendor products will keep a record of the names of the backup objects.
This is most likely when the backups are being done to tapes, or other media of
limited capacity. During the initialization of restore sessions, the identification
information can be utilized to stage the necessary backup objects so that they
are available when required; this may be most useful when juke boxes or
robotic systems are used to store the backups. DB2 will always check the
media header (first record in each session's output) to ensure that the correct
data is being restored.

 PROMPTING Mode
When a backup or restore is initiated, two prompting modes are possible:

¹ WITHOUT PROMPTING or NOINTERRUPT where there is no opportunity for the
vendor product to write messages to the user, or for the user to respond to them.

¹ PROMPTING or INTERRUPT where the user can receive and respond to
messages from the vendor product.

For PROMPTING mode, backup and restore define three possible user responses:

 ¹ Continue

The operation of writing or reading data to the device will resume.

 ¹ Device terminate

The device will receive no additional data and the session is terminated.

 ¹ Terminate

The entire backup or restore operation is terminated.

The use of the PROMPTING and WITHOUT PROMPTING modes is discussed in the
sections that follow.

 Appendix D. Backup and Restore APIs for Vendor Products 461

 Device Characteristics
For the purposes of the vendor device support APIs, two general types of devices are
defined:

¹ Limited capacity devices requiring user action to change the media, for example, a
tape drive, diskette, or CDROM drive.

¹ Very large capacity devices where normal operations do not require the user be
involved with handling media; for example, a juke box, or an intelligent, robotic
media handling device.

A limited capacity device may require that the user be prompted to load additional
media during the backup or restore operation. Generally DB2 is not sensitive to the
order in which the media is loaded for either backup or restore. It also provides facilities
to pass vendor media handling messages to the user. This prompting requires that the
backup or restore operation be initiated with PROMPTING on. The media handling
message text is specified in the description field of the return code structure.

If PROMPTING is on and DB2 receives an SQLUV_ENDOFMEDIA or an
SQLUV_ENDOFMEDIA_NO_DATA return code from a sqluvput (write) or sqluvget
(read) call, then DB2 will:

¹ Mark the last buffer sent to the session to be resent, if the call was sqluvput . It will
be put to a session later.

¹ Call the session with sqluvend (action = SQLUV_COMMIT). If successful
(SQLUV_OK return code), DB2 will:

– Write a message to the user containing a vendor media handling message
from the return code structure that signaled end-of-media.

– Prompt the user for a continue, device terminate, or terminate response.

Based on the user response, DB2 will:

¹ If continue , DB2 will initialize another session using the sqluvint call, and when
successful, begin writing data to or reading data from the session. To identify the
session uniquely when writing, DB2 increments the sequence number. The
sequence number is available in the DB2-INFO structure used with sqluvint , and
is in the media header record, which is the first data record sent to the session.

DB2 will not start more sessions than requested when backup or restore is started
or indicated by the vendor product with a SQLUV_MAX_LINK_GRANT warning on
an sqluvint .

¹ If device terminate , DB2 will not attempt to initialize another session, and the
number of active session will be reduced by one. DB2 will not allow all sessions to
be terminated by device terminate responses; at least one must be kept active until
the backup or restore operation completes (for example, all data is processed).

¹ If terminate , DB2 will terminate the backup or restore operation. For more
information on exactly what DB2 does to terminate the sessions, see “If Error
Conditions Are Returned to DB2” on page 463.

462 API Reference

Since the performance of backup or restore is often dependent on the number of
devices being used, it is important that parallelism be maintained. For backup, users
should be encouraged to respond to the prompting with a continue, unless they know
that the remaining active sessions will hold the data that is still to be written out. For
restore, users should use the continue response until all media has been processed or
is being processed (for example, all the tapes have been read or are being read).

If the backup or restore mode is WITHOUT PROMPTING and DB2 receives an
SQLUV_ENDOFMEDIA or an SQLUV_ENDOFMEDIA_NO_DATA return code from a
session, it will terminate the session and not attempt to open another session. If all
sessions return end-of-media to DB2 before the backup or restore is complete, then the
backup or restore operation will fail. Because of this, WITHOUT PROMPTING should
be used carefully with limited capacity devices. However, it makes sense to operate in
this mode with very large capacity devices.

It is possible for the vendor product to hide media mounting and switching actions from
DB2, so that the device appears to have infinite capacity. Some very large capacity
devices operate in this mode. In these cases, it is critical that all the data that was
backed up be returned to DB2 in the same order when a restore operation is in
progress. Failure to do so could result in missing data, but DB2 would assume a
successful restore operation, since it has no way of detecting the missing data.

DB2 writes data to the vendor product with the assumption that each buffer will be
contained on one and only one media (for example, a tape). It is possible for the
vendor product to split these buffers across multiple media without DB2's knowledge. In
these cases, the order in which the media is processed during a restore is critical, since
the vendor product will be responsible for returning reconstructed buffers from the
multiple media to DB2. Failure to do so will result in a failure of the restore operation.

If Error Conditions Are Returned to DB2
When performing a backup or restore operation, DB2 expects that all sessions will
complete successfully, or the entire backup or restore operation fails. A session signals
completed correctly (for example, committed) to DB2 with an SQLUV_OK return code
on the call sqluvend , action = SQLUV_COMMIT.

If unrecoverable errors are encountered, the session will be terminated by DB2. These
can be DB2 errors, or errors returned to DB2 from the vendor product. Since all
sessions must commit successfully to have a complete backup or restore, the failure of
one will cause DB2 to terminate the other sessions associated with the operation.

If the vendor product decides to respond to a call from DB2 with an unrecoverable
return code, the vendor product can optionally provide additional information to the user
using message text placed in the description field of the RETURN-CODE structure. This
message text will be presented to the user along with the DB2 information, so that
corrective action may be taken.

There will be backup scenarios where a session has committed successfully, and
another session associated with the backup operation experiences an unrecoverable
error. Since all sessions must complete successfully before a backup operation is

 Appendix D. Backup and Restore APIs for Vendor Products 463

successful, DB2 must delete the output data in the committed sessions. This is
accomplished with the following sequence of calls:

¹ Using an sqluvint call, action = SQLUV_READ, DB2 will initialize a session using
the same information originally used to start the committed session.

¹ The vendor product should verify the existence of the object using the data in the
DB2-INFO structure, and return SQLUV_OK if it is found.

¹ DB2 will then utilize a sqluvdel call to request deletion of the object (previously
committed output).

¹ Assuming the sqluvdel is successful, an sqluvend , action = SQLUV_COMMIT will
be issued to terminate the session.

The information in the DB2-INFO structure will contain a valid sequence number during
the initialization call to uniquely identify the object (committed session output) to be
deleted.

 Warning Conditions
It is possible for DB2 to receive warning return codes from the vendor product; for
example, under the condition that a device is not ready or some other correctable
condition has occurred. This is true for both read and write operations.

On the sqluvput and sqluvget calls, the vendor can set the return code to
SQLUV_WARNING and optionally provide additional information to the user using
message text placed in the description field of the return code structure. This message
text will be presented to the user, so that corrective action may be taken. Again the
user can respond in one of three ways: continue, device terminate, or terminate. The
mechanism used to accomplish communication with the user is the same as for
end-of-media conditions.

DB2's actions will be:

¹ For continue, DB2 will attempt to rewrite the buffer using sqluvput if the operation
is backup. If the operation is restore, DB2 will issue an sqluvget call, to read the
next buffer.

¹ For device terminate or terminate, DB2 will terminate the entire backup or restore
in the same way that it would for an unrecoverable error (for example, terminate
active sessions and delete committed sessions).

Details about possible return codes for each function call and DB2 reactions are
specified in the following API sections.

Operational Hints and Tips
This section provides some hints and tips when building vendor products.

464 API Reference

Recovery History File
A recovery history file can be used as an aid in database recovery operations. It is
associated with each database and is automatically updated with each backup or
restore operation. A general overview of the file is provided in the Administration Guide.
The information in the file can be viewed, updated and pruned through the following
facilities:

 ¹ Control Center

¹ Command Line Processor

 – LIST BACKUP/HISTROY
 – PRUNE HISTORY

– UPDATE RECOVERY HISTORY FILE

 ¹ APIs

– sqluhcls, sqluhgne, slquhops, sqluhprn, and sqluhupd.

For information about the layout of the file, see “SQLUHINFO” on page 426.

When a backup operation completes, a record or records are written to the file. If the
output of the backup operation was directed to vendor devices, the DEVICE field in the
history record will contain a O, and the LOCATION field will contain either:

¹ The vendor file name supplied when the backup was invoked.

¹ The name of the shared library if there was no vendor file name supplied when the
backup was invoked.

See “Invoking Backup/Restore Using Vendor Products” on page 487 for more details
about specifying this option. If the vendor file name is not specified, LOCATION will be
blank.

The LOCATION field can be updated using any of the above facilities. This capability
can be utilized to update the location of the backup information if limited capacity
devices (for example, removable media) have been used to hold the backup, and the
media is physically moved to a different storage location (for example, off-site). If this is
done, then this file can be utilized to assist in locating a backup when a recovery is
necessary.

Functions and Data Structures
The following sections describe the generic functions and data structures available for
use by the vendor products.

The APIs for vendor products are:

¹ “sqluvint - Initialize and Link to Device” on page 467
¹ “sqluvget - Reading Data from Device” on page 471
¹ “sqluvput - Writing Data to Device” on page 473
¹ “sqluvend - Unlink the Device and Release its Resources” on page 475
¹ “sqluvdel - Delete Committed Session” on page 477

 Appendix D. Backup and Restore APIs for Vendor Products 465

The data structures used by the vendor APIs are:

“DB2-INFO” on page 479
Contains information identifying DB2 to the vendor device.

“VENDOR-INFO” on page 482
Contains information identifying the vendor and version of the device.

“INIT-INPUT” on page 483
Sets up a logical link between DB2 and the vendor device.

“INIT-OUTPUT” on page 484
Contains output from the device.

“DATA” on page 485
Contains data transferred between DB2 and the vendor device.

“RETURN-CODE” on page 486
Contains return code and explanation of the error.

466 API Reference

sqluvint - Initialize and Link to Device

sqluvint - Initialize and Link to Device
This function is called to provide information for initialization and establishment of a
logical link between DB2 and the vendor device.

 Authorization
One of the following:

 ¹ sysadm
 ¹ dbadm

 Required Connection
Database

API Include File
sql.h

C API Syntax

/* File: sqluvend.h */

/* API: Initialize and Link to Device */

/* ... */

int sqluvint (

 struct Init_input *,

 struct Init_output *,

 struct Return_code *);

/* ... */

 API Parameters
Init_input

Input. Structure that contains information provided by DB2 to establish a
logical link with the vendor device.

Init_output
Output. Structure that contains the output returned by the vendor device.

Return_code
Output. Structure that contains the return code to be passed to DB2, and a
brief text explanation.

 Usage Notes
For each media I/O session, DB2 will call this function to obtain a device handle. If for
any reason, the vendor function encounters an error during initialization, it will indicate it
via a return code. If the return code indicates an error, DB2 may choose to terminate
the operation by calling the sqluvend function. Details on possible return codes, and
the DB2 reaction to each of these, is contained in the return codes table (see Table 74
on page 468).

 Appendix D. Backup and Restore APIs for Vendor Products 467

sqluvint - Initialize and Link to Device

The INIT-INPUT structure contains elements that can be used by the vendor product to
determine if the backup or restore can proceed:

¹ size_HI_order and size_LOW_order

This is the estimated size of the backup. They can be used to determine if the
vendor devices can handle the size of the backup image. They can be used to
estimate the quantity of removable media that will be required to hold the backup.
It might be beneficial to fail at the first sqluvint call if problems are anticipated.

 ¹ req_sessions

The number of user requested sessions can be used in conjunction with the
estimated size and the prompting level to determine if the backup or restore
operation is possible.

 ¹ prompt_lvl

The prompting level indicates to the vendor if it is possible to prompt for actions
such as changing removable media (for example, put another tape in the tape
drive). This might suggest that the operation cannot proceed since there will be no
way to prompt the user.

If the prompting level is WITHOUT PROMPTING and the quantity of removable
media is greater than the number of sessions requested, DB2 will not be able to
complete the operation successfully (see “PROMPTING Mode” on page 461 and
“Device Characteristics” on page 462 for more information).

DB2 names the backup being written or the restore to be read via fields in the
DB2-INFO structure. In the case of an action = SQLUV_READ, the vendor product
must check for the existence of the named object. If it cannot be found, the return code
should be set to SQLUV_OBJ_NOT_FOUND so that DB2 will take the appropriate
action.

After initialization is completed successfully, DB2 will continue by issuing other data
transfer functions, but may terminate the session at any time with an sqluvend call.

 Return Codes

Table 74 (Page 1 of 3). Valid Return Codes for sqluvint and Resulting DB2 Action

Literal in Header
File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. sqluvput, sqluvget or
sqluvdel (see
comments)

If action = SQLUV_WRITE, the next call will be
sqluvput (to BACKUP data). If action =
SQLUV_READ, verify the existence of the
named object prior to returning SQLUV_OK; the
next call could be a sqluvget (to RESTORE
data) or an sqluvdel (to delete a committed
session).

SQLUV_LINK_EXIST Session activated
previously.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

468 API Reference

sqluvint - Initialize and Link to Device

Table 74 (Page 2 of 3). Valid Return Codes for sqluvint and Resulting DB2 Action

Literal in Header
File Description Probable Next Call Other Comments

SQLUV_COMM_
ERROR

Communication error
with device.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_INV_VERSION The DB2 and vendor
products are
incompatible.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_INV_ACTION Invalid action is
requested. This could
also be used to
indicate that the
combination of
parameters results in
an operation which is
not possible.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_NO_DEV_
AVAIL

No device is available
for use at the
moment.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_OBJ_NOT_
FOUND

Object specified
cannot be found. This
should be used when
the action on the
sqluvint call is 'R'
(read) and the
requested object
cannot be found
based on the criteria
specified in the
DB2-INFO structure.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_OBJS_FOUND More than 1 object
matches the specified
criteria. This will
result when the
action on the sqluvint
call is 'R' (read) and
more than one object
matches the criteria
in the DB2-INFO
structure.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_INV_USERID Invalid userid
specified.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_INV_
PASSWORD

Invalid password
provided.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_INV_OPTIONS Invalid options
encountered in the
vendor options field.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

 Appendix D. Backup and Restore APIs for Vendor Products 469

sqluvint - Initialize and Link to Device

Table 74 (Page 3 of 3). Valid Return Codes for sqluvint and Resulting DB2 Action

Literal in Header
File Description Probable Next Call Other Comments

SQLUV_INIT_FAILED Initialization failed
and the session is to
be terminated.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_DEV_ERROR Device error. no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_MAX_LINK_
GRANT

Max number of links
established.

sqluvput, sqluvget or
sqluvdel (see
comments)

This is treated as a warning by DB2. The
warning tells DB2 not to open additional
sessions with the vendor product, because the
maximum number of sessions it can support has
been reached (note: this could be due to device
availability). If action = SQLUV_WRITE
(BACKUP), the next call will be sqluvput. If
action = SQLUV_READ, you should verify the
existence of the named object prior to returning
SQLUV_MAX_LINK_GRANT; the next call could
be a sqluvget (to RESTORE data) or an sqluvdel
(to delete a committed session).

SQLUV_IO_ERROR I/O error. no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_NOT_
ENOUGH_SPACE

There is not enough
space to store the
entire backup image;
the size estimate is
provided as a 64 bit
value in bytes.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

470 API Reference

sqluvget - Reading Data from Device

sqluvget - Reading Data from Device
After initialization, this function can be called to read data from the device.

 Authorization
One of the following:

 ¹ sysadm
 ¹ dbadm

 Required Connection
Database

API Include File
sql.h

C API Syntax

/* File: sqluvend.h */

/* API: Reading Data from Device */

/* ... */

int sqluvget (

void * pVendorCB,

 struct Data *,

 struct Return_code *);

/* ... */

 API Parameters
pVendorCB

Input. Pointer to space allocated for the DATA structure (including the data
buffer) and Return_code.

Data
Output. Data buffer filled with data if the function call is successful.

Return_code
Output. The return code from the API call.

 Usage Notes
This is used by the restore function.

 Return Codes

Table 75 (Page 1 of 2). Valid Return Codes for sqluvget and Resulting DB2 Action

Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. sqluvget DB2 processes the data

 Appendix D. Backup and Restore APIs for Vendor Products 471

sqluvget - Reading Data from Device

Table 75 (Page 2 of 2). Valid Return Codes for sqluvget and Resulting DB2 Action

Literal in Header File Description Probable Next Call Other Comments

SQLUV_COMM_ERROR Communication error with
device.

sqluvend, action =
SQLU_ABORTa

The session will be
terminated.

SQLUV_INV_ACTION Invalid action is requested. sqluvend, action =
SQLU_ABORTa

The session will be
terminated.

SQLUV_INV_DEV_HANDLE Invalid device handle. sqluvend, action =
SQLU_ABORTa

The session will be
terminated.

SQLUV_INV_BUFF_SIZE Invalid buffer size specified. sqluvend, action =
SQLU_ABORTa

The session will be
terminated.

SQLUV_DEV_ERROR Device error. sqluvend, action =
SQLU_ABORTa

The session will be
terminated.

SQLUV_WARNING Warning. This should not be
used to indicate
end-of-media to DB2; use
SQLUV_ENDOFMEDIA or
SQLUV_ENDOFMEDIA_NO_
DATA for this purpose.
However, device not ready
conditions can be indicated
using this return code.

sqluvget, or sqluvend, action
=SQLU_ABORT

See the explanation of
DB2's handling of warnings
(“Warning Conditions” on
page 464).

SQLUV_LINK_NOT_EXIST No link currently exists. sqluvend, action =
SQLU_ABORTa

The session will be
terminated.

SQLUV_MORE_DATA Operation successful; more
data available.

sqluvget

SQLUV_ENDOFMEDIA_NO_
DATA

End of media and 0 bytes
read (for example, end of
tape).

sqluvend See the explanation of
DB2's handling of
end-of-media conditions
under “PROMPTING Mode”
on page 461, and “Device
Characteristics” on
page 462.

SQLUV_ENDOFMEDIA End of media and > 0 bytes
read, (for example, end of
tape).

sqluvend DB2 processes the data,
and then handles the
end-of-media condition as
described under
“PROMPTING Mode” on
page 461, and “Device
Characteristics” on
page 462.

SQLUV_IO_ERROR I/O error. sqluvend, action =
SQLU_ABORTa

The session will be
terminated.

Next call:

¹ a If the next call will be an sqluvend, action = SQLU_ABORT, this session will be terminated. In addition, all other active
sessions are terminated with sqluvend, action = SQLU_ABORT.

472 API Reference

sqluvput - Writing Data to Device

sqluvput - Writing Data to Device
After initialization, this function can be used to write data to the device.

 Authorization
One of the following:

 ¹ sysadm
 ¹ dbadm

 Required Connection
Database

API Include File
sql.h

C API Syntax

/* File: sqluvend.h */

/* API: Writing Data to Device */

/* ... */

int sqluvput (

void * pVendorCB,

 struct Init_output *,

 struct Return_code *);

/* ... */

 API Parameters
pVendorCB

Input. Pointer to space allocated for the DATA structure (including the data
buffer) and Return_code.

Data
Output. Data buffer filled with data to be written out.

Return_code
Output. The return code from the API call.

 Usage Notes
This is used in the backup function.

 Appendix D. Backup and Restore APIs for Vendor Products 473

sqluvput - Writing Data to Device

 Return Codes

Table 76. Valid Return Codes for sqluvput and Resulting DB2 Action

Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. sqluvput or sqluvend, if
complete (for example, DB2
has no more data)

Inform other processes of
successful operation.

SQLUV_COMM_ERROR Communication error with
device.

sqluvend, action =
SQLU_ABORTa

The session will be
terminated.

SQLUV_INV_ACTION Invalid action is requested. sqluvend, action =
SQLU_ABORTa

The session will be
terminated.

SQLUV_INV_DEV_HANDLE Invalid device handle. sqluvend, action =
SQLU_ABORTa

The session will be
terminated.

SQLUV_INV_BUFF_SIZE Invalid buffer size specified. sqluvend, action =
SQLU_ABORTa

The session will be
terminated.

SQLUV_ENDOFMEDIA End of media reached, for
example, end of tape.

sqluvend See the explanation of
DB2's handling of
end-of-media conditions
under “PROMPTING Mode”
on page 461, and “Device
Characteristics” on
page 462.

SQLUV_DATA_RESEND Device requested to have
buffer sent again.

sqluvput DB2 will retransmit the last
buffer. This will only be
done once.

SQLUV_DEV_ERROR Device error. sqluvend, action =
SQLU_ABORTa

The session will be
terminated.

SQLUV_WARNING Warning. This should not be
used to indicate
end-of-media to DB2; use
SQLUV_ENDOFMEDIA for
this purpose. However,
device not ready conditions
can be indicated using this
return code.

sqluvput See the explanation of
DB2's handling of warnings
in “Warning Conditions” on
page 464.

SQLUV_LINK_NOT_EXIST No link currently exists. sqluvend, action =
SQLU_ABORTa

The session will be
terminated.

SQLUV_IO_ERROR I/O error. sqluvend, action =
SQLU_ABORTa

The session will be
terminated.

Next call:

¹ a If the next call will be an sqluvend, action = SQLU_ABORT, this session will be terminated. In addition, all other active
sessions are terminated with sqluvend, action = SQLU_ABORT. Committed sessions are deleted with an sqluvint, sqluvdel,
and sqluvend sequence of calls (see “If Error Conditions Are Returned to DB2” on page 463).

474 API Reference

sqluvend - Unlink the Device

sqluvend - Unlink the Device and Release its Resources
Ends or unlinks the device, and frees all its related resources. The vendor has to free
or release unused resources before returning to DB2 (for example, allocated space and
file handles).

 Authorization
One of the following:

 ¹ sysadm
 ¹ dbadm

 Required Connection
Database

API Include File
sql.h

C API Syntax

/* File: sqluvend.h */

/* API: Unlink the Device and Release its Resources */

/* ... */

int sqluvend (

long int action,

void * pVendorCB,

 struct Init_output *,

 struct Return_code *);

/* ... */

 API Parameters
action

Input. Used to commit or abort the session:
¹ SQLU_COMMIT (0 = to commit)
¹ SQLU_ABORT (1 = to abort)

pVendorCB
Input. Pointer to the Init_output structure.

Init_output
Output. Space for Init_output deallocated. The data has been committed to
stable storage for a backup if action is to commit. The data is purged for a
backup if the action is to abort.

Return code
Output. The return code from the API call.

 Appendix D. Backup and Restore APIs for Vendor Products 475

sqluvend - Unlink the Device

 Usage Notes
This function will be called for each session opened.

There are two possible action codes:

 ¹ Commit

Output of data to this session, or the reading of data from the session, is complete.

For a write (BACKUP) session, if the vendor returns to DB2 with a return code of
SQLUV_OK, DB2 will assume that the output data has been appropriately saved
by the vendor's product, and can be accessed if referenced in a later sqluvint call.

For a read (RESTORE) session, if the vendor returns to DB2 with a return code of
SQLUV_OK, the data should not be deleted, because it may be needed again.

If the vendor returns SQLUV_COMMIT_FAILED, DB2 must assume that there are
problems with the entire backup or restore. All active sessions will be terminated by
sqluvend calls with action = SQLUV_ABORT. For a backup operation, committed
sessions will receive a sqluvint , sqluvdel , and sqluvend sequence of calls (see
“If Error Conditions Are Returned to DB2” on page 463).

 ¹ Abort

A problem has been encountered by DB2, and there will be no more reading of
data or writing of data to the session.

For a write (BACKUP) session, the vendor should delete the partial output dataset,
and use a SQLUV_OK return code if the partial output is deleted. Also, DB2
assumes that there are problems with the entire backup. All active sessions will be
terminated by sqluvend calls with action = SQLUV_ABORT, and committed
sessions will receive a sqluvint , sqluvdel , and sqluvend sequence of calls (see
“If Error Conditions Are Returned to DB2” on page 463).

For a read (RESTORE) session, the vendor should not delete the data (because it
may be needed again), but should clean up and return to DB2 with a SQLUV_OK
return code. DB2 will terminate all the restore sessions by sqluvend calls with
action = SQLUV_ABORT. If the vendor returns SQLUV_ABORT_FAILED to DB2,
the caller will not be notified of this error, because DB2 returns the first fatal failure
and ignores subsequent failures. In this case, for DB2 to have called sqluvend with
action = SQLUV_ABORT, an initial fatal error must have occurred.

 Return Codes

Table 77. Valid Return Codes for sqluvend and Resulting DB2 Action

Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. no further calls Free all memory allocated
for this session and
terminate.

SQLUV_COMMIT_FAILED Commit request failed. no further calls Free all memory allocated
for this session and
terminate.

476 API Reference

sqluvdel - Delete Committed Session

sqluvdel - Delete Committed Session
Deletes committed sessions.

 Authorization
One of the following:

 ¹ sysadm
 ¹ dbadm

 Required Connection
Database

API Include File
sql.h

C API Syntax

/* File: sqluvend.h */

/* API: Delete Committed Session */

/* ... */

int sqluvdel (

 struct Init_input *,

 struct Init_output *,

 struct Return_code *);

/* ... */

 API Parameters
Init_input

Input. Space allocated for Init_input and Return_code.
Return_code

Output. Return code from the API call. The object pointed to by the
Init_input structure is deleted.

 Usage Notes
If multiple sessions are opened, and some sessions are committed but one of them
fails, this function is called to delete each committed session. An sqluvint call will
precede this call and will be utilized to identify the output data to be deleted. If the
return code from this call is a SQLUV_DELETE_FAILED, DB2 will not notify the caller
of this error, because DB2 returns the first fatal failure and ignores subsequent failures.
In this case, for DB2 to have called sqluvdel , an initial fatal error must have occurred.

 Appendix D. Backup and Restore APIs for Vendor Products 477

sqluvdel - Delete Committed Session

 Return Codes

Table 78. Valid Return Codes for sqluvdel and Resulting DB2 Action

Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. sqluvend The next call will terminate
the session.

SQLUV_DELETE_FAILED Delete request failed. sqluvend The next call will terminate
the session.

478 API Reference

DB2-INFO

 DB2-INFO
This structure contains information provided by DB2 to identify itself to the vendor
device.

Note: All fields are NULL terminated strings.

Table 79 (Page 1 of 2). Fields in the DB2-INFO Structure

Field Name Data Type Description

DB2_id char An identifier for the DB2 product. Maximum length
of string it points to is 8 characters.

version char The current version of the DB2 product. Maximum
length of string it points to is 8 characters.

release char The current release of the DB2 product. Set to
NULL if it is insignificant. Maximum length of string
it points to is 8 characters.

level char The current level of the DB2 product. Set to NULL
if it is insignificant. Maximum length of string it
points to is 8 characters.

action char Specifies the action to be taken. Maximum length
of string it points to is 1 character.

filename char The file name used to identify the backup image. If
it is NULL, the server_id, db2instance, dbname,
and timestamp will uniquely identify the backup
image. Maximum length of string it points to is 255
characters.

server_id char A unique name identifying the server where the
database resides. Maximum length of string it
points to is 8 characters.

db2instance char The db2instance ID. This is the user ID invoking
the command. Maximum length of string it points
to is 8 characters.

type char Specifies the type of backup to be taken. '0' for full
database backup and '3' for table space level
backup.

dbname char The name of the database to be backed up or
restored. Maximum length of string it points to is 8
characters.

alias char The alias of the database to be backed up or
restored. Maximum length of string it points to is 8
characters.

timestamp char The time stamp used to identify the backup image.
Maximum length of string it points to is 26
characters.

sequence char Specifies the file extension for the backup image.
It starts at one for the first session and is
incremented by one each time another session is
initiated with an sqluvint call. Maximum length of
string it points to is 3 characters.

obj_list struct sqlu_gen_list Lists the objects in the backup image. This is
provided to the vendors for their information only.

 Appendix D. Backup and Restore APIs for Vendor Products 479

DB2-INFO

The filename, or server_id, db2instance, type, dbname and timestamp uniquely
identifies the backup image. The sequence number specified by seq identifies the file
extension. When a backup image is to be restored, the same values must be used to
retrieve the backup image. Depending on the vendor product, if filename is used, the
other parameters may be set to NULL, and vice versa.

Table 79 (Page 2 of 2). Fields in the DB2-INFO Structure

Field Name Data Type Description

max_bytes_per_txn long Specifies to the vendor in bytes, the transfer buffer
size specified by the user.

image_filename char Reserved for future use.

reserve void Reserved for future use.

nodename char Name of the node at which the backup was
generated.

password char Password for the node at which the backup was
generated.

owner char ID of the backup originator.

mcNameP char Management class.

nodeNum char Node number.

480 API Reference

DB2-INFO

 Language Syntax
C Structure

/* File: sqluvend.h */

/* ... */

typedef struct DB2_info

{

 char *DB2_id;

 char *version;

 char *release;

 char *level;

 char *action;

 char *filename;

 char *server_id;

 char *db2instance;

 char *type;

 char *dbname;

 char *alias;

 char *timestamp;

 char *sequence;

 struct sqlu_gen_list *obj_list;

 long max_bytes_per_txn;

 char *image_filename;

 void *reserve;

 char *nodename;

 char *password;

 char *owner;

 char *mcNameP;

 char nodeNum;

} DB2_info;

/* ... */

 Appendix D. Backup and Restore APIs for Vendor Products 481

VENDOR-INFO

 VENDOR-INFO
This structure contains information to identify the vendor and the version of the device
being used.

Note: All fields are NULL terminated strings.

Table 80. Fields in the VENDOR-INFO Structure

Field Name Data Type Description

vendor_id char An identifier for the vendor. Maximum length of
string it points to is 64 characters.

version char The current version of the vendor product.
Maximum length of string it points to is 8
characters.

release char The current release of the vendor product. Set to
NULL if it is insignificant. Maximum length of string
it points to is 8 characters.

level char The current level of the vendor product. Set to
NULL if it is insignificant. Maximum length of string
it points to is 8 characters.

server_id char A unique name identifying the server where the
database resides. Maximum length of string it
points to is 8 characters.

max_bytes_per_txn long The maximum supported transfer buffer size.
Specified by the vendor in bytes. This is used only
if the return code from the vendor initialize function
is SQLUV_BUFF_SIZE, indicating an invalid buffer
size is specified.

num_objects_in_backup long The number of sessions that were used to make a
complete backup. This is used to determine when
all backup images have been processed during a
restore.

reserve void Reserved for future use.

 Language Syntax
C Structure

typedef struct Vendor_info

{

 char *vendor_id;

 char *version;

 char *release;

 char *level;

 char *server_id;

 long max_bytes_per_txn;

 long num_objects_in_backup;

 void *reserve;

} Vendor_info;

482 API Reference

INIT-INPUT

 INIT-INPUT
This structure contains information provided by DB2 to set up and to establish a logical
link with the vendor device.

Note: All fields are NULL terminated strings.

Table 81. Fields in the INIT-INPUT Structure

Field Name Data Type Description

DB2_session struct DB2_info A description of the session from the DB2
perspective.

size_options unsigned short The length for the options field.

size_HI_order unsigned long High order 32 bits of DB size estimate in bytes;
total size is 64 bits.

size_LOW_order unsigned long Low order 32 bits of DB size estimate in bytes;
total size is 64 bits.

num_sessions unsigned short Number of sessions requested by the user when
backup or restore was invoked.

prompt_lvl char Prompting level requested by the user when
backup or restore was invoked. Maximum length
of string it points to is 1 character.

options void This information is passed from the application
when the backup or restore function is invoked.
This data structure must be flat. In other words, no
level of indirection is supported. Note that
byte-reversal is not done, and that code page is
not checked for this data.

reserve void Reserved for future use.

 Language Syntax
C Structure

typedef struct Init_input

{

 struct DB2_info *DB2_session;

 unsigned short size_options;

 unsigned long size_HI_order;

 unsigned long size_LOW_order;

 unsigned short num_sessions;

 char *prompt_lvl;

 void *options;

 void *reserve;

} Init_input;

 Appendix D. Backup and Restore APIs for Vendor Products 483

INIT-OUTPUT

 INIT-OUTPUT
This structure contains the output returned by the vendor device.

Table 82. Fields in the INIT-OUTPUT Structure

Field Name Data Type Description

vendor_session struct Vendor_info Contains information to identify the vendor to DB2.

pVendorCB void Vendor control block.

reserve void Reserved for future use.

 Language Syntax
C Structure

typedef struct Init_output

{

 struct Vendor_info *vendor_session;

 void *pVendorCB;

 void *reserve;

} Init_output;

484 API Reference

DATA

 DATA
This structure contains data transferred (read and write) between DB2 and the vendor
device.

Table 83. Fields in the DATA Structure

Field Name Data Type Description

obj_num long The sequence number assigned by DB2 during
backup.

buff_size long The size of the buffer.

actual_buf_size long The actual number of bytes sent or received. This
must not exceed buff_size.

dataptr void Pointer to the data buffer. DB2 allocates space for
the buffer.

reserve void Reserved for future use.

 Language Syntax
C Structure

typedef struct Data

{

 long obj_num;

 long buff_size;

 long actual_buff_size;

 void *dataptr;

 void *reserve;

} Data;

 Appendix D. Backup and Restore APIs for Vendor Products 485

RETURN-CODE

 RETURN-CODE
This structure contains the return code and a short text explanation of the error to be
returned to DB2.

Table 84. Fields in the RETURN-CODE Structure

Field Name Data Type Description

return_code long Return code from the vendor function.

description char A short text description of the return code.

reserve void Reserved for future use.

 Language Syntax
C Structure

typedef struct Return_code

{

 long return_code,

 char description[60],

 void *reserve,

} Return_code;

The following are the valid return codes accepted from vendor products:

SQLUV_OK Operation is successful

SQLUV_LINK_EXIST Session activated previously

SQLUV_COMM_ERROR Communication error with device

SQLUV_INV_VERSION The DB2 and vendor products are incompatible

SQLUV_INV_ACTION Invalid action is requested

SQLUV_NO_DEV_AVAIL No device is available for use at the moment

SQLUV_OBJ_NOT_FOUND Object specified cannot be found

SQLUV_OBJS_FOUND More than 1 object matching specification is
found

SQLUV_INV_USERID Invalid user ID specified

SQLUV_INV_PASSWORD Invalid password provided

SQLUV_INV_OPTIONS Invalid options specified

SQLUV_INIT_FAILED Initialization failed

SQLUV_INV_DEV_HANDLE Invalid device handle

SQLUV_BUFF_SIZE Invalid buffer size specified

SQLUV_DATA_RESEND Device requested that last buffer be sent again

486 API Reference

SQLUV_COMMIT_FAILED Commit request failed

SQLUV_DEV_ERROR Device error

SQLUV_WARNING Warning, see return code

SQLUV_LINK_NOT_EXIST Session not activated previously

SQLUV_MORE_DATA More data to come

SQLUV_ENDOFMEDIA_NO_DATA End of media encountered with no data

SQLUV_ENDOFMEDIA End of media encountered

SQLUV_MAX_LINK_GRANT Maximum number of links established

SQLUV_IO_ERROR I/O error encountered

SQLUV_DELETE_FAILED Delete object fails

SQLUV_INV_BKUP_FNAME Invalid backup file name provided

SQLUV_NOT_ENOUGH_SPACE Insufficient space for estimated database size

Invoking Backup/Restore Using Vendor Products
Parameters are available to specify the use of vendor products for backup and restore
through these interfaces:

¹ Database Director backup and restore tools
¹ Command Line Processor (CLP) BACKUP and RESTORE commands
¹ Backup and Restore API function calls.

The Database Director
The Database Director is the GUI interface for database administration shipped with
DB2. Information on invoking the Database Director is contained in the Command
Reference.

Its use is documented through help panels provided with the director. These should be
reviewed to gain an understanding of the backup and restore tools that are part of the
director.

The following parameters are used to specify the use of vendor device support:

To Specify Database Director Input Variables (for
both Backup and Restore)

Use of vendor device and library name Select Use Library, and specify the library
name (on UNIX based systems) or the DLL
name (on OS/2 or the Windows operating
system).

Number of sessions Sessions

Vendor options not supported

Vendor filename not supported

 Appendix D. Backup and Restore APIs for Vendor Products 487

To Specify Database Director Input Variables (for
both Backup and Restore)

Transfer buffer size For backup: Size of each Buffer For restore:
not applicable.

The Command Line Processor
The command line processor (CLP) is the non-GUI tool shipped with DB2 that can be
utilized for database administration and other tasks. The BACKUP DATABASE and
RESTORE DATABASE CLP commands are documented in the Command Reference.

The specification of vendor device support is handled by the following parameters:

To Specify Command Line Processor Parameter

for Backup for Restore

Use of vendor device and
library name

library-name shared-library

Number of sessions num-sessions num-sessions

Vendor options not supported not supported

Vendor file name not supported not supported

Transfer buffer size buffer-size buffer-size

Backup and Restore API Function Calls
Two API function calls are provided to support backup and restore: sqlubkup for
backup (see “sqlubkp - Backup Database” on page 230), and sqlursto for restore (see
“sqlurst - Restore Database” on page 309).

A number of parameters on these API calls support the invocation and passing of data
to the vendor device support functions:

To Specify API Parameter (for both sqlubkup and
sqlursto)

Use of vendor device and library name In structure sqlu_media_list, specify a
media-type of SQLU_OTHER_MEDIA, and
then in structure sqlu_vendor, specify the
shared library or DLL in shr_lib.

Number of sessions In structure sqlu_media_list, specify
sessions.

Vendor options PVendorOptions

Vendor file name In structure sqlu_media_list, specify a
media-type of SQLU_OTHER_MEDIA, and
then in structure sqlu_vendor, specify the file
name using filename.

Transfer buffer size BufferSize

488 API Reference

Appendix E. Threaded Applications with Concurrent Access

In the default implementation of threaded applications against a DB2 database,
serialization of access to the database is enforced by the database APIs. If one thread
performs a database call that is blocked for some reason (that is, the table is already in
exclusive use), all other threads will be blocked as well. In addition, all threads within a
process share a commit scope. True concurrent access to a database can only be
achieved through separate processes, or by using the APIs that are described in this
section.

This section describes APIs that can be used to allocate and manipulate separate
enviroments (contexts) for the use of database APIs and embedded SQL. Each
context is a separate entity, and any connection or attachment using one context is
independent of all other contexts (and thus all other connections or attachments within
a process). In order for work to be done on a context, it must first be associated with a
thread. A thread must always have a context when making database API calls or when
using embedded SQL. If these APIs to manipuate contexts are not used, all threads
within a process share the same context. If these APIs are used, each thread can have
its own context. It will have a separate connection to a database or attachment to an
instance, and will have its own commit scope.

Contexts need not be associated with a given thread for the duration of a connection or
attachment. One thread can attach to a context, connect to a database, detach from the
context, and then a second thread can attach to the context and continue doing work
using the already existing database connection. Contexts can be passed around among
threads in a process, but not among processes.

If the new APIs are not used, the old behavior is in effect, and existing applications
need not change.

Even if the new APIs are used, the following APIs continue to be serialized:

¹ sqlabndx - Bind
¹ sqlaprep - Precompile Program
¹ sqluexpr - Export
¹ sqluimpr - Import.

The new APIs can be used with embedded SQL and the transaction APIs.

These APIs have no effect (that is, they are no-ops) on platforms that do not support
application threading.

Note: CLI automatically uses the new scheme (it creates a new context for each
incoming connection), and it is up to the user to disable this explicitly. For more
information, see the CLI Guide and Reference.

 Copyright IBM Corp. 1993, 1997 489

sqleAttachToCtx - Attach to Context

sqleAttachToCtx - Attach to Context
Makes the current thread use a specified context. All subsequent database calls made
on this thread will use this context. If more than one thread is attached to a given
context, access is serialized for these threads, and they share a commit scope.

 Scope
The scope of this API is limited to the immediate process.

 Authorization
None

 Required Connection
Database

API Include File
sql.h

C API Syntax

int sqleAttachToCtx (

void *pCtx,

void *reserved,

struct sqlca *pstSqlca);

 API Parameters
pCtx

Input. A structure defining the context.

Note: pCtx must be a valid context previously allocated by “sqleBeginCtx
- Create and Attach to an Application Context” on page 491.

reserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

490 API Reference

sqleBeginCtx - Create and Attach to an Application Context

sqleBeginCtx - Create and Attach to an Application Context
Creates an application context, or creates and then attaches to an application context.
More than one application context can be created. Each context has its own commit
scope. Different threads can attach to different contexts (see “sqleAttachToCtx - Attach
to Context” on page 490). Any database API calls made by such threads will not be
serialized with one another.

 Scope
The scope of this API is limited to the immediate process.

 Authorization
None

 Required Connection
Database

API Include File
sql.h

C API Syntax

int sqleBeginCtx (

void **ppCtx,

long lOptions,

void *reserved,

struct sqlca *pstSqlca);

 API Parameters
ppCtx

Output. A structure defining the context. This API allocates a data area out
of private memory for the storage of context information.

lOptions
Input. Valid values are:
SQL_CTX_CREATE_ONLY

The context memory will be allocated, but there will be no attachment.
SQL_CTX_BEGIN_ALL

The context memory will be allocated, and then a call to
“sqleAttachToCtx - Attach to Context” on page 490 will be made for the
current thread. If this option is used, the ppCtx parameter can be
NULL. If the thread is already attached to a context, the call will fail.

reserved
Reserved for future use.

 Appendix E. Threaded Applications with Concurrent Access 491

sqleBeginCtx - Create and Attach to an Application Context

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

492 API Reference

sqleDetachFromCtx - Detach From Context

sqleDetachFromCtx - Detach From Context
Detaches the context being used by the current thread. The context will be detached
only if an attach to that context has previously been made.

 Scope
The scope of this API is limited to the immediate process.

 Authorization
None

 Required Connection
Database

API Include File
sql.h

C API Syntax

int sqleDetachFromCtx (

void *pCtx,

void *reserved,

struct sqlca *pstSqlca);

 API Parameters
pCtx

Input. A structure defining the context.

Note: pCtx must be a valid context previously allocated by “sqleBeginCtx
- Create and Attach to an Application Context” on page 491.

reserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

 Appendix E. Threaded Applications with Concurrent Access 493

sqleEndCtx - Detach and Destroy Application Context

sqleEndCtx - Detach and Destroy Application Context
Frees all memory associated with a given context.

 Scope
The scope of this API is limited to the immediate process.

 Authorization
None

 Required Connection
None

API Include File
sql.h

C API Syntax

int sqleEndCtx (

void **pCtx,

long lOptions,

void *reserved,

struct sqlca *pstSqlca);

 API Parameters
pCtx

Output. A structure defining the context. This API frees a data area in
private memory used for the storage of context information.

lOptions
Input. Valid values are:
SQL_CTX_FREE_ONLY

The context memory will be freed only if a prior detach has been done.

Note: pCtx must be a valid context previously allocated by
“sqleBeginCtx - Create and Attach to an Application Context” on
page 491.

SQL_CTX_END_ALL
If necessary, a call to “sqleDetachFromCtx - Detach From Context” on
page 493 will be made before the memory is freed.

Note: A detach will be done even if the context is still in use. If this
option is used, the ppCtx parameter can be NULL, but if
passed, it must be a valid context previously allocated by
“sqleBeginCtx - Create and Attach to an Application Context” on
page 491. A call to “sqleGetCurrentCtx - Get Current Context”

494 API Reference

sqleEndCtx - Detach and Destroy Application Context

on page 496 will be made, and the current context freed from
there.

reserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

 Usage Notes
If a database connection exists, or the context has been attached by another thread,
this call will fail.

Note: If a context calls an API that establishes an instance attachment (for example,
“sqlfxdb - Get Database Configuration” on page 201), it is necessary to detach
from the instance using “sqledtin - Detach” on page 115 before calling
sqleEndCtx .

 Appendix E. Threaded Applications with Concurrent Access 495

sqleGetCurrentCtx - Get Current Context

sqleGetCurrentCtx - Get Current Context
Returns the current context associated with a thread.

 Scope
The scope of this API is limited to the immediate process.

 Authorization
None

 Required Connection
Database

API Include File
sql.h

C API Syntax

int sqleGetCurrentCtx (

void **ppCtx,

void *reserved,

struct sqlca *pstSqlca);

 API Parameters
ppCtx

Input. A structure defining the context.
reserved

Reserved for future use.
pSqlca

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

496 API Reference

sqleInterruptCtx - Interrupt Context

sqleInterruptCtx - Interrupt Context
Interrupts the specified context.

 Scope
The scope of this API is limited to the immediate process.

 Authorization
None

 Required Connection
Database

API Include File
sql.h

C API Syntax

int sqleInterruptCtx (

void *pCtx,

void *reserved,

struct sqlca *pstSqlca);

 API Parameters
pCtx

Input. A structure defining the context.

Note: pCtx must be a valid context previously allocated by “sqleBeginCtx
- Create and Attach to an Application Context” on page 491.

reserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 355.

 Usage Notes
During processing, this API:

¹ Switches to the context that has been passed in
¹ Sends an interrupt
¹ Switches to the original context

 ¹ Exits.

 Appendix E. Threaded Applications with Concurrent Access 497

sqleSetTypeCtx - Set Application Context Type

sqleSetTypeCtx - Set Application Context Type
Sets the application context type. This API should be the first database API called
inside an application.

 Scope
The scope of this API is limited to the immediate process.

 Authorization
None

 Required Connection
Database

API Include File
sql.h

C API Syntax

int sqleSetTypeCtx (

long lOptions);

 API Parameters
lOptions

Input. Valid values are:
SQL_CTX_ORIGINAL

All threads will use the same context, and concurrent access will be
blocked. This is the default if none of these APIs is called.

SQL_CTX_MULTI_MANUAL
All threads will use separate contexts, and it is up to the application to
manage the contex for each thread. See
¹ “sqleBeginCtx - Create and Attach to an Application Context” on

page 491
¹ “sqleAttachToCtx - Attach to Context” on page 490
¹ “sqleDetachFromCtx - Detach From Context” on page 493
¹ “sqleEndCtx - Detach and Destroy Application Context” on

page 494.

The following restrictions/changes apply when this option is used:

¹ When termination is normal, automatic COMMIT at process termination
is disabled. All outstanding transactions are rolled back, and all
COMMITs must be done explicitly.

498 API Reference

sqleSetTypeCtx - Set Application Context Type

¹ “sqleintr - Interrupt” on page 140 interrupts all contexts. To interrupt a
specific context, use “sqleInterruptCtx - Interrupt Context” on
page 497.

 Usage Notes
This API must be called before any other database call, and only the first call is
effective.

 Appendix E. Threaded Applications with Concurrent Access 499

sqleSetTypeCtx - Set Application Context Type

500 API Reference

Appendix F. DB2 Common Server Log Records

This section describes the structure of the DB2 common server log records returned by
“sqlurlog - Asynchronous Read Log” on page 297.

All DB2 common server log records begin with a log manager header. This header
includes the total log record size, the log record type, and transaction-specific
information. It does not include information about accounting, statistics, traces, or
performance evaluation. For more information, see “ Log Manager Header” on
page 503.

Log records are uniquely identified by a log sequence number (LSN). The LSN
represents a relative byte address, within the database log, for the first byte of the log
record. It marks the offset of the log record from the beginning of the database log.

The log records written by a single transaction are uniquely identifiable by a field in the
log record header. The unique transaction identifier is a six-byte field that increments by
one whenever a new transaction is started. All log records written by a single
transaction contain the same identifier.

When a transaction performs writable work against a table with DATA CAPTURE
CHANGES on, or invokes a log writing utility, the transaction is marked as
propagatable. Only propagatable transactions have their transaction manager log
records marked as propagatable.

Table 85 (Page 1 of 2). DB2 Common Server Log Records

Data Manager

“Initialize Table” on page 506 New permanent table creation.

“Import Replace (Truncate)” on page 508 Import replace activity.

“Rollback Insert” on page 508 Rollback row insert.

“Reorg Table” on page 508 REORG committed.

“Create Index, Drop Index” on page 509 Index activity.

“Create Table, Drop Table, Rollback Create
Table, Rollback Drop Table” on page 509

Table activity.

“Alter Propagation, Alter Check Pending,
Rollback Propagation Change, Rollback
Check Pending Change” on page 509

Propagation and pending activity.

“Alter Table Add Columns, Rollback Add
Columns” on page 510

Adding columns to existing tables.

“Insert Record, Delete Record, Rollback
Delete Record, Rollback Update Record” on
page 511

Table record activity.

“Update Record” on page 514 Row updates where storage location not
changed.

 Copyright IBM Corp. 1993, 1997 501

Table 85 (Page 2 of 2). DB2 Common Server Log Records

Long Field Manager

“Add Long Field Record” on page 516 Long field record activity.

LOB Manager

“Insert LOB Data Log Record (AFIM_DATA)”
on page 517

Adding LOB data with logging.

“Insert LOB Data Log Record
(AFIM_AMOUNT)” on page 517

Adding LOB data without logging.

Transaction Manager

“Normal Commit” on page 518 Transaction commits.

“Heuristic Commit” on page 518 Indoubt transaction commits.

“MPP Coordinator Commit” on page 519 Transaction commits. This is written on a
coordinator node for an application that
performs updates on at least one
subordinator node.

“MPP Subordinator Commit” on page 519 Transaction commits. This is written on a
subordinator node.

“Normal Abort” on page 519 Transaction aborts.

“Heuristic Abort” on page 520 Indoubt transaction aborts.

“Local Pending List” on page 520 Transaction commits with a pending list
existing.

“Global Pending List” on page 520 Transaction commits (two-phase) with a
pending list existing.

“XA Prepare” on page 521 XA transaction preparation in two-phase
commit environments.

“MPP Subordinator Prepare” on page 521 MPP transaction preparation in two-phase
commit environments. This log record only
exists on subordinator nodes.

Utility Manager

“Migration Begin” on page 522 Catalog migration starts.

“Migration End” on page 523 Catalog migration completes.

“Load Start” on page 523 Table load starts.

“Load Pending List” on page 523 Table load completes.

“Backup End” on page 524 Backup activity completes.

“Tablespace Rolled Forward” on page 524 Table space rollforward completes.

“Tablespace Roll Forward to PIT Begins” on
page 524

Marks the beginning of a table space
rollforward to a point in time.

“Tablespace Roll Forward to PIT Ends” on
page 524

Marks the end of a table space rollforward
to a point in time.

502 API Reference

Log Manager Header

Log Manager Header
All DB2 common server log records begin with a log manager header. This header
contains information detailing the log record and transaction information of the log
record writer.

Table 86 (Page 1 of 2). Log Manager Log Record Header (LogManagerLogRecordHeader)

Description Type Offset (Bytes)

Length of the entire log record int 0(4)

Type of log recorda short 4(2)

Log record general flagb short 6(2)

Log Sequence Number of the previous log
record written by this transaction. It is used
to chain log records by transaction. If the
value is 0000 0000 0000, this is the first log
record written by the transaction.

SQLU_LSNc 8(6)

Unique transaction identifier SQLU_TIDd 14(6)

Log Sequence Number of the log record for
this transaction prior to the log record being
compensated. (Note: For compensation log
records only.)

SQLU_LSN 20(6)

Log Sequence Number of the log record for
this transaction being compensated. (Note:
For propagatable compensation log records
only.)

SQLU_LSN 26(6)

Total Length for Log Manager Log Record Header:

¹ Non Compensation: 20 bytes
¹ Compensation: 26 bytes
¹ Propagatable Compensation: 32 bytes

 Appendix F. DB2 Common Server Log Records 503

Data Manager Log Records

Table 86 (Page 2 of 2). Log Manager Log Record Header (LogManagerLogRecordHeader)

Description Type Offset (Bytes)

Definitions and Values:

a Valid log record types

A Normal Abort p Tablespace roll forward to PIT starts

c MPP coordinator commit q Tablespace roll forward to PIT ends

C Compensation Q Global Pending List

D Tablespace Rolled Forward R Redo

E Local Pending List s MPP subordinate commit

G Load Pending List U Undo

I Heuristic Abort V Migration Begin

J Load Start W Migration End

M Normal Commit X Prepare

N Normal Y Heuristic Commit

o Backup Start z MPP prepare

O Backup End Z XA prepare

b Log record general flag constants

 Redo Always 0x0001

 Propagatable 0x0002

 Conditionally Recoverable 0x0080

c Log Sequence Number (LSN)

A unique log record identifier representing the relative byte address

of the log record within the database log.

SQLU_LSN: union { char [6] ;

short [3] ;

 }

d Transaction Identifier (TID)

A unique log record identifier representing the transaction.

SQLU_TID: union { char [6] ;

short [3] ;

 }

Data Manager Log Records
Data manager log records are the result of DDL, DML, or Utility activities.

There are two types of data manager log records:

¹ Data Management System (DMS) logs have a component identifier of 1 in their
header.

¹ Data Object Manager (DOM) logs have a component identifier of 4 in their header.

Table 87 (Page 1 of 2). DMS Log Record Header Structure (DMSLogRecordHeader)

Description Type Offset (Bytes)

Component identifier (=1) unsigned char 0(1)

504 API Reference

Data Manager Log Records

Table 87 (Page 2 of 2). DMS Log Record Header Structure (DMSLogRecordHeader)

Description Type Offset (Bytes)

Function identifiera unsigned char 1(1)

Table identifiers
 Tablespace identifier
 Table identifier

unsigned short 2(2)

Total Length: 6 bytes

Definitions and Values:

a Valid function identifier values

SQLD_MIN_DP 100 MIN DBMS LOG FUNCTION ID

SQLD_MAX_DP 149 MAX DBMS LOG FUNCTION ID

ADDCOLUMNS_DP 102 Add columns via alter tbl

CRNEWPG_DP 103 Create new page

UNDOADDCOLUMNS_DP 104 Undo add columns

ALTERPROP_DP 105 Alter prop flag

DELREC_DP 106 Delete record on page

UNDOALTERPROP_DP 107 Undo alter prop flag

ALTERPENDING_DP 108 Alter check pending flag

ALTERDEFAULTS_DP 109 Alter user defaults add flag

UNDOADD_DP 110 Undo add a record

UNDODEL_DP 111 Undo delete a record

UNDOUPDT_DP 112 Undo update a record

CRSYSPGR_DP 114 Initialize sys page DTR

REORGPAGE_DP 117 Reorg page

INSREC_DP 118 Insert record on page

UPDREC_DP 120 Update record on

UPDCHGONLY_DP 121 Log only updated

CREATEPERM_DP 128 Initialize a DAT object

UNDOALTERDEFAULTS_DP 131 Undo alter user default flag

 UNDOALTERPENDING_DP 132 Undo alter pending flag

Table 88. DOM Log Record Header Structure (DOMLogRecordHeader)

Description Type Offset (Bytes)

Component identifier (=4) unsigned char 0(1)

Function identifiera unsigned char 1(1)

Object identifiers
 Tablespace identifier
 Object identifier

unsigned short 2(2)

Table identifiers
 Tablespace identifier
 Table identifier

unsigned short 6(2)

Object type unsigned char 10(1)

Flags unsigned char 11(1)

Total Length: 12 bytes

a For a list of valid function identifier values, see Table 87 on page 504.

 Appendix F. DB2 Common Server Log Records 505

Data Manager Log Records

Note: All data manager log record offsets are from the end of the log manager record
header.

All log records whose function identifier short name begins with UNDO are log records
written during the UNDO or ROLLBACK of the action in question.

The ROLLBACK can be a result of:

¹ The user issuing the ROLLBACK transaction statement
¹ A deadlock causing the ROLLBACK of a selected transaction
¹ The ROLLBACK of uncommitted transactions following a crash recovery
¹ The ROLLBACK of uncommitted transactions following a RESTORE and

ROLLFORWARD of the logs.

 Initialize Table
The initialize table log record is written when a new permanent table is being created; it
signifies table initialization. This record appears after any log records that create the
DATA storage object, and before any log records that create the LF and LOB storage
objects. This is a Redo log record.

Table 89 (Page 1 of 2). Initialize Table Log Record Structure

Description Type Offset (Bytes)

Log header DMSLogRecordHeader 0(6)

File create LSN SQLU_LSN 6(6)

Table directory record variable 12(72)

 record type unsigned char 12(1)

 reserved char 13(1)

 index flag unsigned short 14(2)

index root page unsigned long 16(4)

 TDESC recid long 20(4)

 reserved char 24(56)

 flagsa unsigned long 80(4)

Table description length 84(4)

Table description record variable 88(variable)

 record type unsigned char 88(1)

 reserved char 89(1)

number of columns unsigned short 90(2)

 array variable long 92(variable)

Total Length: 88 bytes plus table description record length

Note: a Bit 0x00000020 indicates that the table was created with the NOT LOGGED
INITIALLY option, and that no DML activity on this table is logged until the transaction
that created the table has been committed.

506 API Reference

Data Manager Log Records

Table 89 (Page 2 of 2). Initialize Table Log Record Structure

Description Type Offset (Bytes)

Table Description Record Details:

column descriptor array
(number of columns) * 8, where each element of the array contains:
¹ field typeb (unsigned short, 2 bytes)
¹ length (2 bytes)

– If BLOB, CLOB, or DBCLOB, this field is not used. For the
maximum length of this field, see the array that follows the
column descriptor array.

– If not DECIMAL, length is the maximum length of the field (short).
– If PACKED DECIMAL: Byte 1, unsigned char, precision (total

length) Byte 2, unsigned char, scale (fraction digits).
¹ null flagc (unsigned short, 2 bytes)
¹ field offset (unsigned short, 2 bytes) This is the offset from the start of

the formatted record to where the field's fixed value can be found.
LOB descriptor array

(number of LOB, CLOB, and DBCLOB fields) * 12, where each element of
the array contains:
¹ length (MAX LENGTH OF FIELD, unsigned long, 4 bytes)
¹ reserved (internal, unsigned long, 4 bytes)
¹ log flag (IS COLUMN LOGGED, unsigned long. 4 bytes)

The first LOB, CLOB, or DBCLOB encountered in the column descriptor
array uses the first element in the LOB descriptor array. The second LOB,
CLOB, or DBCLOB encountered in the column descriptor array uses the
second element in the LOB descriptor array, and so on.

b field type

 SMALLINT 0x0000

 INTEGER 0x0001

 DECIMAL 0x0002

 DOUBLE 0x0003

 REAL 0x0004

 CHAR 0x0100

 VARCHAR 0x0101

 LONG VARCHAR 0x0104

 DATE 0x0105

 TIME 0x0106

 TIMESTAMP 0x0107

 BLOB 0x0108

 CLOB 0x0109

 GRAPHIC 0x0200

 VARGRAPH 0x0201

 LONG VARG 0x0202

 DBCLOB 0x0203

c null flag
¹ mutually exclusive: allows nulls, or does not allow nulls
¹ valid options: no default, type default, or user default

 ISNULL 0x01

 NONULLS 0x02

 TYPE_DEFAULT 0x04

 USER_DEFAULT 0x08

 Appendix F. DB2 Common Server Log Records 507

Data Manager Log Records

Import Replace (Truncate)
The import replace (truncate) log record is written when an IMPORT REPLACE action
is being executed. This record indicates the reinitialization of the table (no user records,
new life LSN). The second set of pool and object IDs in the log header identify the table
being truncated (IMPORT REPLACE). This is a Redo log record.

Table 90. Import Replace (Truncate) Log Record Structure

Description Type Offset (Bytes)

Log header DOMLogRecordHeader 0(12)

internal variable 12(variable)

Total Length: 12 bytes plus variable length

 Rollback Insert
The rollback insert log record is written when an insert row action (INSERT RECORD)
is rolled back. This is a Compensation log record.

Table 91. Rollback Insert Log Record Structure

Description Type Offset (Bytes)

Log header DMSLogRecordHeader 0(6)

Padding char[] 6(2)

RID long 8(4)

Record length unsigned short 12(2)

Free space unsigned short 14(2)

Total Length: 16 bytes

 Reorg Table
The reorg table log record is written when the REORG utility has committed to
completing the reorganization of a table. This is a Normal log record.

Table 92. Reorg Table Log Record Structure

Description Type Offset (Bytes)

Log header DOMLogRecordHeader 0(12)

Internal variable 12(252)

Index tokena unsigned short 2(264)

Temporary tablespace IDb unsigned short 2(266)

Total Length: 268 bytes

Note:

a If not 0, it is the index by which the reorg is clustered (clustering index). b If not 0, it is the
temporary table space that was used to build the reorg.

508 API Reference

Data Manager Log Records

Create Index, Drop Index
These log records are written when indexes are created or dropped. The two elements
of the log record are:

¹ The index root page, which is an internal identifier

¹ The index token, which is equivalent to the IID column in SYSIBM.SYSINDEXES.
If the value for this element is 0, the log record represents an action on an internal
index, and is not related to any user index.

This is a Undo log record.

Table 93. Create Index, Drop Index Log Records Structure

Description Type Offset (Bytes)

Log header DOMLogRecordHeader 0(12)

Padding char[] 12(2)

Index token unsigned short 14(2)

Index root page unsigned long 16(4)

Total Length: 20 bytes

Create Table, Drop Table, Rollback Create Table, Rollback Drop Table
These log records are written when the DATA object for a permanent table is created
or dropped. The DATA object is created during a CREATE TABLE, and prior to table
initialization (Initialize Table). Create table and drop table are Normal log records.
Rollback create table and rollback drop table are Compensation log records.

Table 94. Create Table, Drop Table, Rollback Create Table, Rollback Drop Table Log
Records Structure

Description Type Offset (Bytes)

Log header DOMLogRecordHeader 0(12)

Internal variable 12(56)

Total Length: 68 bytes

Alter Propagation, Alter Check Pending, Rollback Propagation Change, Rollback
Check Pending Change

The alter check pending log record is written when the state of a table is changed as a
result of adding or validating constraints. A table is in CHECK PENDING STATE when
the flag value for this PENDING state is 1 (TRUE = CHECK PENDING). Access to a
table is restricted when it is in the CHECK PENDING state.

The alter propagation log record is written when the user changes the propagation state
of a table with an ALTER TABLE statement. Valid flag values are:

¹ 0 (false = propagation off)
¹ 1 (true = propagation on).

 Appendix F. DB2 Common Server Log Records 509

Data Manager Log Records

Alter propagation and alter check pending are Normal log records. Rollback
propagation change and rollback check pending change are Compensation log records.

Table 95. Alter Propagation, Alter Check Pending, Rollback Propagation Change, Rollback
Check Pending Change Log Records Structure

Description Type Offset (Bytes)

Log header DMSLogRecordHeader 0(6)

Padding char[] 6(2)

Old flag value int 8(4)

New flag value int 12(4)

Total Length: 16 bytes

Alter Table Add Columns, Rollback Add Columns
The alter table add columns log record is written when the user is adding columns to an
existing table using an ALTER TABLE statement. Complete information on the old
columns and the resulting columns (new columns equals resulting columns minus old
columns) is logged.

¹ Column count elements represent the old number of columns and the new total
number of columns (new or added columns equals new columns minus old
columns).

¹ LOB count elements are used internally. They represent the number of BLOB,
CLOB, and DBCLOB fields.

¹ VAR flag elements are used internally. They indicate whether any fields are of
variable length.

¹ The parallel arrays contain information about the columns defined in the table. The
old parallel array defines the table prior to the ALTER TABLE statement, while the
new parallel array defines the table resulting from ALTER TABLE statement.

¹ Each parallel array consists of:

– An array equivalent to the column descriptor array in the table description
record (see “Initialize Table” on page 506).

– A second array equivalent to the LOB descriptor array in the table description
record. However, since this array is parallel to the first, the only elements used
are those whose corresponding element in the first array are of type BLOB,
CLOB, or DBCLOB.

Alter table add columns is a Normal log record. Rollback add columns is a
Compensation log record.

Table 96 (Page 1 of 2). Alter Table Add Columns, Rollback Add Columns Log Records
Structure

Description Type Offset (Bytes)

Log header DMSLogRecordheader 0(6)

510 API Reference

Data Manager Log Records

Table 96 (Page 2 of 2). Alter Table Add Columns, Rollback Add Columns Log Records
Structure

Description Type Offset (Bytes)

Padding char[] 6(2)

Old column count int 8(4)

New column count int 12(4)

Old LOB count int 16(4)

New LOB count int 20(4)

Old LF count int 24(4)

New LF count int 28(4)

Old VAR flag value int 32(4)

New VAR flag value int 36(4)

Old parallel arraysa variable 40(variable)

New parallel arraysb variable variable

Total Length: 40 bytes plus 2 sets of parallel arrays; array size is (old/new column count) *
20.

Array Elements:

a Each element in this array is 8 bytes long.
b Each element in this array is 12 bytes long.

For information about the column descriptor array or the LOB descriptor array, see Table 89
on page 506).

Insert Record, Delete Record, Rollback Delete Record, Rollback Update Record
These log records are written when rows are inserted into or deleted from a table.
Insert record and delete record log records are generated during an update if the
location of the record being updated must be changed to accommodate the modified
record data. Insert record and delete record are Normal log records. Rollback delete
record and rollback update record are Compensation log records.

Table 97 (Page 1 of 2). Insert Record, Delete Record, Rollback Delete Record, Rollback
Update Record Log Records Structure

Description Type Offset (Bytes)

Log header DMSLogRecordHeader 0(6)

Padding char[] 6(2)

RID long 8(4)

Record length unsigned short 12(2)

Free space unsigned short 14(2)

Record offset unsigned short 16(2)

Record header and data variable 18(variable)

 Appendix F. DB2 Common Server Log Records 511

Data Manager Log Records

Formatted User Data Record

The formatted record can be a combination of fixed and variable length data. All fields
contain a fixed length portion. In addition, there are seven field types that have variable
length parts:

 ¹ VARCHAR
 ¹ LONG VARCHAR
 ¹ BLOB

Table 97 (Page 2 of 2). Insert Record, Delete Record, Rollback Delete Record, Rollback
Update Record Log Records Structure

Description Type Offset (Bytes)

Total Length: 18 bytes plus Record length

Record Header and Data Details:

Record header
4 bytes

¹ Record typea (unsigned char, 1 byte). Records are one of two
classes:

 – Updatable
 – Special control

 A value of 0 or 4 indicates that the record can be viewed.

Each class has three types:

 – Normal
 – Pointer
 – Overflow

¹ Reserved (char, 1 byte)

¹ Record length (unsigned short, 2 bytes)

Record
variable
¹ Record type (unsigned char, 1 byte). Updatable records are one of

two types:
 – Internal control

– Formatted user data
 A value of 1 signifies a formatted user data record.

¹ Reserved (char, 1 byte)
¹ The rest of the record is dependent upon the record type and the

table descriptor record defined for the table. If the record type is
internal control, the data cannot be viewed. The following fields apply
to user data records:

– Fixed length (unsigned short, 2 bytes). This is the length of all
fixed portions of the data row.

– Formatted record (fixed and variable length). For more
information about formatted records, see "Formatted User Data
Record".

a Record data can only be viewed if the record type (specified in the record
header) is updatable (that is, not special control).

512 API Reference

Data Manager Log Records

 ¹ CLOB
 ¹ VARGRAPHIC
 ¹ LONG VARG
 ¹ DBCLOB

Field Lengths

The length of the fixed portion of the different field types can be determined as follows:

 ¹ DECIMAL

This field is a standard packed decimal in the form: nnnnnn...s. The length of the
field is: (precision + 2)/2. The sign nibble (s) is xC for positive (+), and xD or xB for
negative (−).

¹ SMALLINT INTEGER DOUBLE REAL CHAR GRAPHIC

The length field in the element for this column in the table descriptor record
contains the fixed length size of the field.

 ¹ DATE

This field is a 4-byte packed decimal in the form: yyyymmdd. For example, April 3,
1996 is represented as x‘19960403’.

 ¹ TIME

This field is a 3-byte packed decimal in the form: hhmmss. For example, 1:32PM
is represented as x‘133200’.

 ¹ TIMESTAMP

This field is a 10-byte packed decimal in the form: yyyymmddhhmmssuuuuuu
(DATE|TIME|microseconds).

¹ VARCHAR LONG VARCHAR BLOB CLOB VARGRAPHIC LONG VARG DBCLOB

The length of the fixed portion of all the variable length fields is 4.

Note: For element addresses, see Table 89 on page 506.

For more detailed information about field types, see the SQL Reference.

The following sections describe the location of the fixed portion of each field within the
formatted record.

Table Descriptor Record

The table descriptor record describes the column format of the table. It contains an
array of column structures, whose elements represent field type, field length, null flag,
and field offset. The latter is the offset from the beginning of the formatted record,
where the fixed length portion of the field is located.

 Appendix F. DB2 Common Server Log Records 513

Data Manager Log Records

For columns that are nullable (as specified by the null flag), there is an additional byte
following the fixed length portion of the field. This byte contains one of two values:

¹ NOT NULL (0x00)
 ¹ NULL (0x01)

If the null flag within the formatted record for a column that is nullable is set to 0x00,
there is a valid value in the fixed length data portion of the record. If the null flag value
is 0x01, the data field value is NULL.

The formatted user data record contains the table data that is visible to the user. It is
formatted as a fixed length record, followed by a variable length section.

All variable field types have a 4-byte fixed data portion in the fixed length section (plus
a null flag, if the column is nullable). The first 2 bytes (short) represent the offset from
the beginning of the fixed length section, where the variable data is located. The next 2
bytes (short) specify the length of the variable data referenced by the offset value.

Table 98. Table Descriptor Record Structure

Table Descriptor
Record

record type number of columns column structure

 ¹ field type
 ¹ length
 ¹ null flag
 ¹ field offset

LOB information

Note: For more information, see Table 89 on page 506.

Table 99. Formatted User Data Record Structure

Formatted User
Data Record

record type length of fixed
section

fixed length section variable data
section

Note: For more information, see Table 97 on page 511.

 Update Record
The update record log record is written when a row is updated, and if its storage
location does not change. There are two available log record formats; they are identical
to the insert record and the delete record log records (see “Insert Record, Delete
Record, Rollback Delete Record, Rollback Update Record” on page 511). One contains
the pre-update image of the row being updated; the other contains the post-update
image of the row being updated. This is a Normal log record.

514 API Reference

Long Field Manager Log Records

Table 100. Update Record Log Record Structure

Description Type Offset (Bytes)

Log header DMSLogRecordHeader 0(6)

Padding char[] 6(2)

RID long 8(4)

New Record length unsigned short 12(2)

Free space unsigned short 14(2)

Record offset unsigned short 16(2)

Old record header and data variable 18(variable)

Log header DMSLogRecordHeader variable(6)

Padding char[] variable(2)

RID long variable(4)

Old record length unsigned short variable(2)

Free space unsigned short variable(2)

Record offset unsigned short variable(2)

New record header and
data

variable variable(variable)

Total Length: 36 bytes plus 2 Record lengths

Long Field Manager Log Records
Long field manager log records are written only if a database is configured with LOG
RETAIN on or USEREXITS enabled. They are written whenever long field data is
inserted into a table. When long field data is updated, the update is treated as a delete
of the old long field value, followed by an insert of the new value.

To conserve log space, long field data inserted into tables is not logged if the database
is configured for circular logging. In addition, when a long field value is updated, the
before image is shadowed and not logged.

All long field manager log records begin with a header.

All long field manager log record offsets are from the end of the log manager log record
header.

Table 101 (Page 1 of 2). Long Field Manager Log Record Header
(LongFieldLogRecordHeader)

Description Type Offset (Bytes)

Originator code (component
identifier = 3)

unsigned char 0(1)

Operation type unsigned char 1(1)

 Appendix F. DB2 Common Server Log Records 515

LOB Manager Log Records

Table 101 (Page 2 of 2). Long Field Manager Log Record Header
(LongFieldLogRecordHeader)

Description Type Offset (Bytes)

Pool identifier unsigned short 2(2)

Object identifier unsigned short 4(2)

Parent pool identifiera unsigned short 6(2)

Parent object identifierb unsigned short 8(2)

Total Length: 10 bytes

Note:

a Pool ID of the data object
b Object ID of the data object

Add Long Field Record
This log record is written whenever long field data is inserted. The length of the data is
rounded up to the next 512-byte boundary.

Table 102. Add Long Field Record Log Record Structure

Description Type Offset (Bytes)

Log header LongFieldLogRecordHeader 0(10)

Long field lengtha unsigned short 10(2)

File offsetb unsigned long 12(4)

Long field data char[] 16(variable)

Note:

a Long field data length in 512-byte sectors (actual data length is not logged)
b 512-byte sector offset into long field object where data is to be inserted

LOB Manager Log Records
LOB manager log records are written only if a database is configured with LOG
RETAIN on or USEREXITS enabled. The log records are written whenever LOB data is
inserted into a table. When LOB data is updated, the update is treated as a delete of
the old LOB value, followed by an insert of the new value. If the LOB manager is able
to determine that the new value is simply the old value with new data appended to it,
the new data is appended to the old data. In this case, only the new data is logged.

For LOB columns that were created with the NOT LOGGED option, a log record is still
written if the database is forward recoverable. However, instead of logging the actual
data, only the quantity of data and its position within the LOB object are logged. During
forward recovery, zeros (not user data) are written to the LOB object.

For any LOB value inserted, multiple LOB records may be written. A single LOB record
will not contain more than 32 768 bytes of data.

516 API Reference

LOB Manager Log Records

In order to conserve log space, LOB data inserted into tables is not logged if the
database is configured for circular logging. In addition, when a LOB value is updated,
the before image is shadowed and not logged.

All LOB manager log records begin with a log record header.

All LOB manager log record offsets are from the end of the log manager log record
header.

Table 103. LOB Manager Log Record Header Structure

Description Type Offset (Bytes)

Originator code (component
identifier = 5)

unsigned char 0(1)

Operation identifier unsigned char 1(1)

Pool identifier unsigned short 2(2)

Object identifier unsigned short 4(2)

Parent pool identifier unsigned short 6(2)

Parent object identifier unsigned short 8(2)

Object type unsigned char 10(1)

Total Length: 11 bytes

Insert LOB Data Log Record (AFIM_DATA)
This log record is written when LOB data is inserted into a LOB column, or appended to
an existing LOB value, and logging of the data has been specified.

Table 104. Insert LOB Data Log Record (AFIM_DATA)

Description Type Offset (Bytes)

Log header LOBLogRecordHeader 0(11)

Padding char 11(1)

Data length unsigned long 12(4)

Byte address in object double 16(8)

LOB data variable 24(variable)

Total Length: 24 bytes plus LOB data

Insert LOB Data Log Record (AFIM_AMOUNT)
This log record is written instead of the AFIM_DATA log record if logging for the LOB
column has been turned off.

Table 105 (Page 1 of 2). Insert LOB Data Log Record (AFIM_AMOUNT)

Description Type Offset (Bytes)

Log header LOBLogRecordHeader 0(11)

 Appendix F. DB2 Common Server Log Records 517

Transaction Manager Log Records

Table 105 (Page 2 of 2). Insert LOB Data Log Record (AFIM_AMOUNT)

Description Type Offset (Bytes)

Padding char 11(1)

Data length unsigned long 12(4)

Byte address in object double 16(8)

Total Length: 24 bytes

Transaction Manager Log Records
The transaction manager produces log records signifying the completion of transaction
events (for example, commit or rollback). The time stamps in the log records are in
Coordinated Universal Time (CUT), and mark the time (in seconds) since January 01,
1970.

 Normal Commit
This log record is written for XA transactions in a single-node environment, or on the
coordinator node in MPP. It is only used for XA applications. The log record is written
when a transaction commits after one of the following events:

¹ A user has issued a COMMIT
¹ An implicit commit occurs during a CONNECT RESET.

Table 106. Normal Commit Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Time transaction committed unsigned long 20(4)

Authorization identifier of
the applicationa

char [] 24(9)

Total Length: 33 bytes propagatable (24 bytes non-propagatable)

Note: a If the log record is marked as propagatable

 Heuristic Commit
This log record is written when an indoubt transaction is committed.

Table 107 (Page 1 of 2). Heuristic Commit Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Time transaction committed unsigned long 20(4)

Authorization identifier of
the applicationa

char [] 24(9)

Total Length: 33 bytes propagatable (24 bytes non-propagatable)

518 API Reference

Transaction Manager Log Records

Table 107 (Page 2 of 2). Heuristic Commit Log Record Structure

Description Type Offset (Bytes)

Note: a If the log record is marked as propagatable

MPP Coordinator Commit
This log record is written on a coordinator node for an application that performs updates
on at least one subordinator node.

Table 108. MPP Coordinator Commit Log Record Structure

Description Type

Log header LogManagerLogRecordHeader

MPP identifier of the transaction SQLP_GXID

Maximum node number 2 bytes

TNL variable, (max node no / 8) + 1

Authorization identifier char []

MPP Subordinator Commit
This log record is written on a subordinator node in MPP.

Table 109. MPP Subordinator Commit Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

MPP identifier of the
transaction

SQLP_GXID 20(20)

Authorization identifier char [] 40(9)

Total Length: 49 bytes

 Normal Abort
This log record is written when a transaction aborts after one of the following events:

¹ A user has issued a ROLLBACK
¹ A deadlock occurs
¹ An implicit rollback occurs during crash recovery
¹ An implicit rollback occurs during ROLLFORWARD recovery.

Table 110 (Page 1 of 2). Normal Abort Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Authorization identifier of
the applicationa

char [] 20(9)

 Appendix F. DB2 Common Server Log Records 519

Transaction Manager Log Records

Table 110 (Page 2 of 2). Normal Abort Log Record Structure

Description Type Offset (Bytes)

Total Length: 29 bytes propagatable (20 bytes non-propagatable)

Note: a If the log record is marked as propagatable

 Heuristic Abort
This log record is written when an indoubt transaction is aborted.

Table 111. Heuristic Abort Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Authorization identifier of
the applicationa

char [] 20(9)

Total Length: 29 bytes propagatable (20 bytes non-propagatable)

Note: a If the log record is marked as propagatable

Local Pending List
This log record is written if a transaction commits and a pending list exists. The pending
list is a linked list of nonrecoverable operations (such as deletion of a file) that can only
be performed when the user/application issues a COMMIT. The variable length
structure contains the pending list entries.

Table 112. Local Pending List Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Time transaction committed unsigned long 20(4)

Authorization identifier of
the applicationa

char [] 24(9)

Pending list entries variable 33(variable)

Total Length: 33 bytes plus pending list entries propagatable (24 bytes plus pending list
entries non-propagatable)

Note: a If the log record is marked as propagatable

Global Pending List
This log record is written if a transaction involved in a two-phase commit commits, and
a pending list exists. The pending list contains nonrecoverable operations (such as
deletion of a file) that can only be performed when the user/application issues a
COMMIT. The variable length structure contains the pending list entries.

520 API Reference

Transaction Manager Log Records

Table 113. Global Pending List Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Time transaction committed unsigned long 20(4)

Authorization identifier of
the applicationa

char [] 24(9)

Global pending list entries variable 32(variable)

Total Length: 33 bytes plus pending list entries propagatable (24 bytes plus pending list
entries non-propagatable)

Note: a If the log record is marked as propagatable

 XA Prepare
This log record is written for XA transactions in a single-node environment, or on the
coordinator node in MPP. It is only used for XA applications. The log record is written to
mark the preparation of the transaction as part of a two-phase commit. The XA prepare
log record describes the application that started the transaction, and is used to recreate
an indoubt transaction.

Table 114. XA Prepare Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Log space used by
transaction

unsigned long 20(4)

XA identifier of the
transaction

variable 24(140)

Application name char [] 164(20)

Application identifier char [] 184(32)

Sequence number char [] 216(4)

Authorization identifier char [] 220(8)

Database alias used by
client

char [] 228(20)

Code page identifier unsigned long 248(4)

Time transaction prepared unsigned long 252(4)

Synclog information variable 256(variable)

Total Length: 256 bytes plus variable

MPP Subordinator Prepare
This log record is written for MPP transactions on subordinator nodes. The log record is
written to mark the preparation of the transaction as part of a two-phase commit. The
MPP subordinator prepare log record describes the application that started the
transaction, and is used to recreate an indoubt transaction.

 Appendix F. DB2 Common Server Log Records 521

Utility Manager Log Records

Table 115. MPP Subordinator Prepare Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Log space used by
transaction

unsigned long 20(4)

Coordinator LSN unsigned char 24(6)

MPP identifier of the
transaction

SQLP_GXID 30(20)

Application name char [] 50(20)

Application identifier char [] 70(32)

Sequence number char [] 102(4)

Authorization identifier char [] 106(8)

Database alias used by
client

char [] 114(20)

Code page identifier unsigned long 134(4)

Time transaction prepared unsigned long 138(4)

Total Length: 142 bytes

Utility Manager Log Records
The utility manager produces log records associated with the following DB2 common
server utilities:

 ¹ Migration
 ¹ Load
 ¹ Backup
¹ Table space rollforward.

The log records signify the beginning or the end of the requested activity. All utility
manager log records are marked as propagatable regardless of the tables that they
affect.

 Migration Begin
This log record is associated with the beginning of catalog migration.

Table 116. Migration Begin Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Migration start time char[] 20(10)

Migrate from release unsigned short 30(2)

Migrate to release unsigned short 32(2)

Total Length: 34 bytes

522 API Reference

Utility Manager Log Records

 Migration End
This log record is associated with the successful completion of catalog migration.

Table 117. Migration End Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Migration end time char[] 20(10)

Migrate to release unsigned short 30(2)

Total Length: 32 bytes

 Load Start
This log record is associated with the beginning of a load.

Table 118. Load Start Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Log record identifier unsigned long 20(4)

Pool identifier unsigned short 24(2)

Object identifier unsigned short 26(2)

Flag unsigned char 28(1)

Object pool list variable 29(variable)

Total Length: 29 bytes plus variable

Load Pending List
This log record is written when a load transaction commits. The pending list is a linked
list of nonrecoverable operations which are deferred until the transaction commits. No
commit log record follows this transaction.

Table 119. Load Pending List Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Time transaction committed unsigned long 20(4)

Authorization identifier of
the applicationa

char[] 24(9)

Pending list entries variable 33(variable)

Total Length: 33 bytes plus pending list entries propagatable (24 bytes plus pending list
entries non-propagatable)

Note: a If the log record is marked as propagatable

 Appendix F. DB2 Common Server Log Records 523

Utility Manager Log Records

 Backup End
This log record is associated with the end of a successful backup.

Table 120. Backup End Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Backup end time unsigned long 20(4)

Total Length: 24 bytes

Tablespace Rolled Forward
This log record is associated with table space ROLLFORWARD recovery. It is written
for each table space that is successfully rolled forward.

Table 121. Table Space Rolled Forward Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0(20)

Table space identifier unsigned short 20(2)

Total Length: 22 bytes

Tablespace Roll Forward to PIT Begins
This log record is associated with table space ROLLFORWARD recovery. It marks the
beginning of a table space rollforward to a point in time.

Table 122. Table Space Roll Forward to PIT Begins Log Record Structure

Description Type Offset (Bytes)

Time stamp to which table
spaces are being rolled
forward.

unsigned long 0(4)

Time stamp for this log
record.

unsigned long 4(4)

Number of pools being
rolled forward.

unsigned short 8(2)

Integer list of pool IDs that
are being rolled forward.

int*numpools 10(variable)

Total Length: 10 bytes plus variable

Tablespace Roll Forward to PIT Ends
This log record is associated with table space ROLLFORWARD recovery. It marks the
end of a table space rollforward to a point in time.

524 API Reference

Utility Manager Log Records

Table 123. Table Space Roll Forward to PIT Ends Log Record Structure

Description Type Offset (Bytes)

Time stamp for this log
record.

unsigned long 0(4)

Time stamp to which table
spaces were rolled forward.

unsigned long 4(4)

A flag whose value is TRUE
if the roll forward was
successful, or FALSE if the
roll forward was canceled.

int 8(4)

Total Length: 12 bytes

 Appendix F. DB2 Common Server Log Records 525

Utility Manager Log Records

526 API Reference

Appendix G. Application Migration Considerations

This section describes issues that should be considered before migrating an application
to Version 5.

There are four possible operating scenarios:

1. Running pre-Version 5 applications against databases that have not been migrated
2. Running pre-Version 5 applications against migrated databases
3. Updating applications with Version 5 APIs
4. Running Version 5 applications against migrated databases.

The first and the fourth are consistent operating environments that do not require
qualification.

The second, in which only the databases have been migrated, should work without
changes to any application, because back-level applications are supported. However,
as with any new version, a small number of incompatibilities can occur, and these are
described in the Administration Guide.

For the third scenario, in which applications are to be updated with Version 5 APIs, the
following points should be considered:

¹ All pre-Version 5 APIs that have been discontinued in Version 5 are still defined in
the Version 5 header files, so that older applications will compile and link with
Version 5 headers.

¹ Discontinued APIs should be removed from applications as soon as possible to
enable these applications to take full advantage of the new functions available in
Version 5, and to position the applications for future enhancements.

¹ The names of the APIs listed below have changed because of new functionality in
Version 5. Users should scan for these names in their application source code to
identify the changes required following Version 5 migration of the application.

APIs that are not listed do not require changes following migration of an
application.

Note that an application may contain the generic version of an API call, depending
on the application programming language being used. In all cases, the generic
version of the API name is identical to the C version of the name, with the
exception that the fourth character is always g.

 Copyright IBM Corp. 1993, 1997 527

Changed APIs and Data Structures

Table 124. Discontinued APIs

V2 Name Descriptive Name V5 Name

sqlbftsq Fetch Tablespace Query sqlbftpq

sqlbstsq Single Tablespace Query sqlbstpq

sqlbtsq Tablespace Query sqlbmtsq

sqlectdd Catalog Database sqlecadb

sqlepstr Start Database Manager (DB2 Parallel
Edition Version 1.2)

sqlepstart

sqlestar Start Database Manager (DB2 Version 2) sqlepstart

sqlestop Stop Database Manager sqlepstp

sqlubkup Backup Database sqlubkp

sqlugrpi Get Row Partitioning Information (DB2
Parallel Edition Version 1.x)

sqlugrpn

sqluprfw Rollforward Database (DB2 Parallel Edition
Version 1.x)

sqluroll

sqlurllf Rollforward Database (DB2 Version 2) sqluroll

sqlursto Restore Database sqlurst

sqlxhcom Commit an Indoubt Transaction sqlxphcm

sqlxhqry List Indoubt Transactions sqlxphqr

sqlxhrol Roll Back an Indoubt Transaction sqlxphrl

SQLB-TBSQRY-DATA Table space data structure. SQLB-TBSPQRY-DATA

SQLEDBSTRTOPT Start Database Manager data structure
(DB2 Parallel Edition Version 1.2)

SQLE-START-OPTIONS

528 API Reference

Appendix H. How the DB2 Library Is Structured

The DB2 Universal Database library consists of SmartGuides, online help, and books.
This section describes the information that is provided, and how to access it.

To help you access product information online, DB2 provides the Information Center on
OS/2, Windows 95, and the Windows NT operating systems. You can view task
information, DB2 books, troubleshooting information, sample programs, and DB2
information on the Web. “About the Information Center” on page 536 has more details.

 SmartGuides
SmartGuides help you complete some administration tasks by taking you through each
task one step at a time. SmartGuides are available on OS/2, Windows 95, and the
Windows NT operating systems. The following table lists the SmartGuides.

SmartGuide Helps you to... How to Access...

Add Database Catalog a database on a client workstation. From the Client Configuration
Assistant, click on Add .

Create Database Create a database, and to perform some basic
configuration tasks.

From the Control Center, click with the
right mouse button on the Databases
icon and select Create ->New.

Performance
Configuration

Tune the performance of a database by
updating configuration parameters to match your
business requirements.

From the Control Center, click with the
right mouse button on the database
you want to tune and select Configure
performance .

Backup Database Determine, create, and schedule a backup plan. From the Control Center, click with the
right mouse button on the database
you want to backup and select
Backup ->Database using
SmartGuide .

Restore Database Recover a database after a failure. It helps you
understand which backup to use, and which logs
to replay.

From the Control Center, click with the
right mouse button on the database
you want to restore and select
Restore ->Database using
SmartGuide .

Create Table Select basic data types, and create a primary
key for the table.

From the Control Center, click with the
right mouse button on the Tables icon
and select Create ->Table using
SmartGuide .

Create Table Space Create a new table space. From the Control Center, click with the
right mouse button on the Table
spaces icon and select Create ->Table
space using SmartGuide .

 Copyright IBM Corp. 1993, 1997 529

 Online Help
Online help is available with all DB2 components. The following table describes the
various types of help.

Type of Help Contents How to Access...

Command Help Explains the syntax of
commands in the
command line
processor.

From the command line processor in
interactive mode, enter:

? command

where command is a keyword or the entire
command.

For example, ? catalog displays help for all
the CATALOG commands, whereas ?
catalog database displays help for the
CATALOG DATABASE command.

Control Center
Help

Explains the tasks
you can perform in a
window or notebook.
The help includes
prerequisite
information you need
to know, and
describes how to use
the window or
notebook controls.

From a window or notebook, click on the
Help push button or press the F1 key.

Message Help Describes the cause
of a message
number, and any
action you should
take.

From the command line processor in
interactive mode, enter:

? message number

where message number is a valid message
number.

For example, ? SQL30081 displays help
about the SQL30081 message.

To view message help one screen at a time,
enter:

? XXXnnnnn | more

where XXX is the message prefix, such as
SQL, and nnnnn is the message number,
such as 30081.

To save message help in a file, enter:

? XXXnnnnn > filename.ext

where filename.ext is the file where you want
to save the message help.

Note: On UNIX-based systems, enter:

\? XXXnnnnn | more or

\? XXXnnnnn > filename.ext

530 API Reference

Type of Help Contents How to Access...

SQL Help Explains the syntax of
SQL statements.

From the command line processor in
interactive mode, enter:

help statement

where statement is an SQL statement.

For example, help SELECT displays help
about the SELECT statement.

SQLSTATE Help Explains SQL states
and class codes.

From the command line processor in
interactive mode, enter:

? sqlstate or ? class-code

where sqlstate is a valid five digit SQL state
and class-code is a valid two digit class
code.

For example, ? 08003 displays help for the
08003 SQL state, whereas ? 08 displays
help for the 08 class code.

 Appendix H. How the DB2 Library Is Structured 531

 DB2 Books
The table in this section lists the DB2 books. They are divided into two groups:

¹ Cross-platform books: These books are for DB2 on any of the supported platforms.

¹ Platform-specific books: These books are for DB2 on a specific platform. For
example, there is a separate Quick Beginnings book for DB2 on OS/2, Windows
NT, and UNIX-based operating systems.

Most books are available in HTML and PostScript format, and in hardcopy that you can
order from IBM. The exceptions are noted in the table.

You can obtain DB2 books and access information in a variety of different ways:

View To view an HTML book, you can do the following:

¹ If you are running DB2 administration tools on OS/2, Windows 95, or
the Windows NT operating systems, you can use the Information
Center. “About the Information Center” on page 536 has more details.

¹ Use the open file function of the Web browser supplied by DB2 (or one
of your own) to open the following page:

 sqllib/doc/html/index.htm

The page contains descriptions of and links to the DB2 books. The
path is located on the drive where DB2 is installed.

You can also open the page by double-clicking on the DB2 Online
Books icon. Depending on the system you are using, the icon is in the
main product folder or the Windows Start menu.

Search To search for information in the HTML books, you can do the following:

¹ Click on Search the DB2 Books at the bottom of any page in the
HTML books. Use the search form to find a specific topic.

¹ Click on Index at the bottom of any page in an HTML book. Use the
Index to find a specific topic in the book.

¹ Display the Table of Contents or Index of the HTML book, and then
use the find function of the Web browser to find a specific topic in the
book.

¹ Use the bookmark function of the Web browser to quickly return to a
specific topic.

¹ Use the search function of the Information Center to find specific
topics. “About the Information Center” on page 536 has more details.

Print To print a book on a PostScript printer, look for the file name shown in the
table.

Order To order a hardcopy book from IBM, use the form number.

532 API Reference

Book Name Book Description Form Number

File Name

Cross-Platform Books

Administration Getting Started Introduces basic DB2 database administration
concepts and tasks, and walks you through the
primary administrative tasks.

S10J-8154

db2k0x50

Administration Guide Contains information required to design, implement,
and maintain a database to be accessed either locally
or in a client/server environment.

S10J-8157

db2d0x50

API Reference Describes the DB2 application programming interfaces
(APIs) and data structures you can use to manage
your databases. Explains how to call APIs from your
applications.

S10J-8167

db2b0x50

CLI Guide and Reference Explains how to develop applications that access DB2
databases using the DB2 Call Level Interface, a
callable SQL interface that is compatible with the
Microsoft ODBC specification.

S10J-8159

db2l0x50

Command Reference Explains how to use the command line processor, and
describes the DB2 commands you can use to manage
your database.

S10J-8166

db2n0x50

DB2 Connect Enterprise Edition
Quick Beginnings

Provides planning, installing, configuring, and using
information for DB2 Connect Enterprise Edition. Also
contains installation and setup information for all
supported clients.

S10J-7888

db2cyx50

DB2 Connect Personal Edition
Quick Beginnings

Provides planning, installing, configuring, and using
information for DB2 Connect Personal Edition.

S10J-8162

db2c1x50

DB2 Connect User's Guide Provides concepts, programming and general using
information about the DB2 Connect products.

S10J-8163

db2c0x50

DB2 Connectivity Supplement Provides setup and reference information for
customers who want to use DB2 for AS/400, DB2 for
OS/390, DB2 for MVS, or DB2 for VM as DRDA
Application Requesters with DB2 Universal Database
servers, and customers who want to use DRDA
Application Servers with DB2 Connect (formerly
DDCS) application requesters.

Note: Available in HTML and PostScript formats
only.

No form number

db2h1x50

Embedded SQL Programming
Guide

Explains how to develop applications that access DB2
databases using embedded SQL, and includes
discussions about programming techniques and
performance considerations.

S10J-8158

db2a0x50

Glossary Provides a comprehensive list of all DB2 terms and
definitions.

Note: Available in HTML format only.

No form number

db2t0x50

 Appendix H. How the DB2 Library Is Structured 533

Book Name Book Description Form Number

File Name

Installing and Configuring DB2
Clients

Provides installation and setup information for all DB2
Client Application Enablers and DB2 Software
Developer's Kits.

Note: Available in HTML and PostScript formats
only.

No form number

db2iyx50

Master Index Contains a cross reference to the major topics
covered in the DB2 library.

Note: Available in PostScript format and hardcopy
only.

S10J-8170

db2w0x50

Message Reference Lists messages and codes issued by DB2, and
describes the actions you should take.

S10J-8168

db2m0x50

Replication Guide and Reference Provides planning, configuring, administering, and
using information for the IBM Replication tools
supplied with DB2.

S95H-0999

db2e0x50

Road Map to DB2 Programming Introduces the different ways your applications can
access DB2, describes key DB2 features you can use
in your applications, and points to detailed sources of
information for DB2 programming.

S10J-8155

db2u0x50

SQL Getting Started Introduces SQL concepts, and provides examples for
many constructs and tasks.

S10J-8156

db2y0x50

SQL Reference Describes SQL syntax, semantics, and the rules of the
language. Also includes information about
release-to-release incompatibilities, product limits, and
catalog views.

S10J-8165

db2s0x50

System Monitor Guide and
Reference

Describes how to collect different kinds of information
about your database and the database manager.
Explains how you can use the information to
understand database activity, improve performance,
and determine the cause of problems.

S10J-8164

db2f0x50

Troubleshooting Guide Helps you determine the source of errors, recover
from problems, and use diagnostic tools in
consultation with DB2 Customer Service.

S10J-8169

db2p0x50

What's New Describes the new features, functions, and
enhancements in DB2 Universal Database.

Note: Available in HTML and PostScript formats
only.

No form number

db2q0x50

Platform-Specific Books

Building Applications for UNIX
Environments

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a UNIX system.

S10J-8161

db2axx50

Building Applications for
Windows and OS/2
Environments

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a Windows or OS/2 system.

S10J-8160

db2a1x50

534 API Reference

Book Name Book Description Form Number

File Name

DB2 Extended Enterprise Edition
Quick Beginnings

Provides planning, installing, configuring, and using
information for DB2 Universal Database Extended
Enterprise Edition for AIX.

S72H-9620

db2v3x50

DB2 Personal Edition Quick
Beginnings

Provides planning, installing, configuring, and using
information for DB2 Universal Database Personal
Edition on OS/2, Windows 95, and the Windows NT
operating systems.

S10J-8150

db2i1x50

DB2 SDK for Macintosh Building
Your Applications

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a Macintosh system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

S50H-0528

sqla7x02

DB2 SDK for SCO OpenServer
Building Your Applications

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a SCO OpenServer system.

Note: Available for DB2 Version 2.1.2 only.

S89H-3242

sqla9x02

DB2 SDK for Silicon Graphics
IRIX Building Your Applications

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a Silicon Graphics system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

S89H-4032

sqlaax02

DB2 SDK for SINIX Building
Your Applications

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a SINIX system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

S50H-0530

sqla8x00

Quick Beginnings for OS/2 Provides planning, installing, configuring, and using
information for DB2 Universal Database on OS/2. Also
contains installing and setup information for all
supported clients.

S10J-8147

db2i2x50

Quick Beginnings for UNIX Provides planning, installing, configuring, and using
information for DB2 Universal Database on
UNIX-based platforms. Also contains installing and
setup information for all supported clients.

S10J-8148

db2ixx50

Quick Beginnings for Windows
NT

Provides planning, installing, configuring, and using
information for DB2 Universal Database on the
Windows NT operating system. Also contains
installing and setup information for all supported
clients.

S10J-8149

db2i6x50

 Appendix H. How the DB2 Library Is Structured 535

Notes:

1. The character in the sixth position of the file name indicates the language of a
book. For example, the file name db2d0e50 indicates that the Administration Guide
is in English. The following letters are used in the file names to indicate the
language of a book:

2. For late breaking information that could not be included in the DB2 books, see the
README file. Each DB2 product includes a README file which you can find in the
directory where the product is installed.

Language Identifier Language Identifier
Brazilian Portuguese B Hungarian H
Bulgarian U Italian I
Czech X Norwegian N
Danish D Polish P
English E Russian R
Finnish Y Slovenian L
French F Spanish Z
German G Swedish S

About the Information Center
The Information Center provides quick access to DB2 product information. The
Information Center is available on OS/2, Windows 95, and the Windows NT operating
systems. You must install the DB2 administration tools to see the Information Center.

Depending on your system, you can access the Information Center from the:

¹ Main product folder
¹ Toolbar in the Control Center
¹ Windows Start menu.

The Information Center provides the following kinds of information. Click on the
appropriate tab to look at the information:

Tasks Lists tasks you can perform using DB2.

Reference Lists DB2 reference information, such as keywords, commands,
and APIs.

Books Lists DB2 books.

Troubleshooting Lists categories of error messages and their recovery actions.

Sample Programs Lists sample programs that come with the DB2 Software
Developer's Kit. If the Software Developer's Kit is not installed,
this tab is not displayed.

Web Lists DB2 information on the World Wide Web. To access this
information, you must have a connection to the Web from your
system.

536 API Reference

When you select an item in one of the lists, the Information Center launches a viewer to
display the information. The viewer might be the system help viewer, an editor, or a
Web browser, depending on the kind of information you select.

The Information Center provides search capabilities so you can look for specific topics,
and filter capabilities to limit the scope of your searches.

 Appendix H. How the DB2 Library Is Structured 537

538 API Reference

 Appendix I. Notices

Any reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM’s licensed program may be used. Any functionally equivalent
product, program or service that does not infringe any of IBM’s intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the

IBM Director of Licensing,
 IBM Corporation,

500 Columbus Avenue,
Thornwood, NY, 10594

 USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Canada Limited
 Department 071

1150 Eglinton Ave. East
North York, Ontario

 M3C 1H7
 CANADA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

This publication may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

 Trademarks
The following terms are trademarks or registered trademarks of the IBM Corporation in
the United States and/or other countries:

 Copyright IBM Corp. 1993, 1997 539

ACF/VTAM
ADSTAR
AISPO
AIX
AIXwindows
AnyNet
APPN
AS/400
CICS
C Set++
C/370
DATABASE 2
DatagLANce
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
Distributed Relational Database Architecture
DRDA
Extended Services
FFST
First Failure Support Technology
IBM
IMS
Lan Distance

MVS/ESA
MVS/XA
NetView
OS/400
OS/390
OS/2
PowerPC
QMF
RACF
RISC System/6000
SAA
SP
SQL/DS
SQL/400
S/370
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WIN-OS/2

Trademarks of Other Companies
The following terms are trademarks or registered trademarks of the companies listed:

C-bus is a trademark of Corollary, Inc.

HP-UX is a trademark of Hewlett-Packard.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks or
registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

Solaris is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a double asterisk
(**), may be trademarks or service marks of others.

540 API Reference

 Index

Special Characters
(AFIM_DATA) insert LOB data log record 517

A
abnormal termination

restart 168
access path

creating new 323
ACTIVATE DATABASE (sqle_activate_db) 59
add long field record log record 516
ADD NODE (sqleaddn) 65
AFIM_AMOUNT (insert LOB data log record) 517
alias

naming conventions 445
alter check pending log record 509
alter propagation log record 509
alter table add columns log record 510
APIs, directory of 1
application design

code page values, allocating storage for 185, 203
installing signal handler routine 144
pointer manipulation 207
providing pointer manipulation 208, 210
setting collating sequence 87

application migration 527
application program

access through database manager 10
ASYNCHRONOUS READ LOG (sqlurlog) 297
ATTACH (sqleatin) 68
ATTACH TO CONTEXT (sqleAttachToCtx) 490
authentication ID

naming conventions 445
authorities

granting when creating a database 86
authority level

direct, defined 229
for creating databases, granting 87
indirect, defined 229
retrieving user's 227

B
backup and restore with vendor products 459
BACKUP DATABASE (sqlubkp) 230

backup end 524
BIND

to create new access path 323
BIND (sqlabndx) 10
bind option types and values 13
binding

application programs to databases 10
defaults 12
errors during 86

C
case sensitivity

in naming conventions 445
CATALOG DATABASE (sqlecadb) 72
CATALOG DCS DATABASE (sqlegdad) 123
CATALOG NODE (sqlectnd) 89
CHANGE DATABASE COMMENT (sqledcgd) 94
CHANGE ISOLATION LEVEL (REXX only) 330
CLOSE DATABASE DIRECTORY SCAN (sqledcls) 98
CLOSE DCS DIRECTORY SCAN (sqlegdcl) 126
CLOSE NODE DIRECTORY SCAN (sqlencls) 148
CLOSE RECOVERY HISTORY FILE SCAN

(sqluhcls) 254
CLOSE TABLESPACE CONTAINER QUERY

(sqlbctcq) 27
CLOSE TABLESPACE QUERY (sqlbctsq) 29
COBOL

pointer manipulation 207
providing pointer manipulation 208, 210

collating sequence
user-defined 81
user-defined, sample 87

column
naming conventions 445
specifying for importing 275

comment
database, changing 94

COMMIT AN INDOUBT TRANSACTION
(sqlxphcm) 450

compilers
supported ix

concurrency
controlling 330

configuration, database
checking 201

 Copyright IBM Corp. 1993, 1997 541

configuration, database (continued)
resetting to default 188
updating 194

configuration, database manager
checking 204
resetting to default 191
updating 198

conventions, naming
for aliases 445
for authentication IDs 445
for columns 445
for database manager objects 445
for databases 445
for tables 445
for views 445
in SNA 445

COPY MEMORY (sqlgmcpy) 210
CREATE AND ATTACH TO AN APPLICATION

CONTEXT (sqleBeginCtx) 491
CREATE DATABASE (sqlecrea) 81
CREATE DATABASE AT NODE (sqlecran) 79
create index log record 509
create table log record 509

D
data manager log records

alter check pending 509
alter propagation 509
alter table add columns 510
create index 509
create table 509
delete record 511
description 504
drop index 509
drop table 509
import replace (truncate) 508
initialize table 506
insert record 511
reorg table 508
rollback add columns 510
rollback check pending change 509
rollback create table 509
rollback delete record 511
rollback drop table 509
rollback insert 508
rollback propagation change 509
update record 514

data skew, redistributing data in nodegroup 237

DATA structure 485
data structures

list of 331
vendor product 466

database
binding application programs 10
checking configuration 201
concurrent request processing 330
creating 81
deleting, ensuring recovery with log files 112
dropping 110
importing file to table 271
isolating data 330
naming conventions 445

database configuration
checking 201
file 201
network parameter values 196
resetting to default 188
updating 194

database configuration file
valid entries 400

Database Connection Services (DCS) directory
cataloging entries 123
copy entries from 133
retrieving entries from 131
uncataloging entries 128

database directory
retrieving next entry from 100

database manager
starting 156
stopping 159

database manager configuration
checking 204
file 206
network parameter values 200
resetting to default 191
updating 198

database manager configuration file
valid entries 403

DB2 Connect
supported connections to other systems 124

DB2-INFO structure 479
DEACTIVATE DATABASE (sqle_deactivate_db) 62
default

database configuration, resetting to 188
database manager configuration, resetting to 191

DELETE COMMITTED SESSION (sqluvdel) 477
delete record log record 511

542 API Reference

DEREFERENCE ADDRESS (sqlgdref) 208
DEREGISTER (sqledreg) 108
DETACH (sqledtin) 115
DETACH AND DESTROY APPLICATION CONTEXT

(sqleEndCtx) 494
DETACH FROM CONTEXT (sqleDetachFromCtx) 493
directories

cataloging 89
Database Connection Services

retrieving entries from 131
Database Connection Services (DCS), cataloging

entries 123
Database Connection Services (DCS), uncataloging

entries 128
Database Connection Services, copy entries

from 133
deleting entries 182
local database 103
OPEN DCS DIRECTORY SCAN 136
retrieving entries from 150
retrieving next entry from 100
system database 103
system database, cataloging 72
uncataloging 179

discontinued APIs and data structures 528
DROP DATABASE (sqledrpd) 110
DROP DATABASE AT NODE (sqledpan) 106
drop index log record 509
DROP NODE VERIFY (sqledrpn) 113
drop table log record 509

E
error message

restore 318
error messages

database configuration file 185, 203
database description block structure 87
dropping remote database 112
during binding 12
during roll-forward 303
invalid checksum, database configuration file 189,

196
invalid checksum, database manager configuration

file 192, 200
retrieving from SQLCODE field 15
return codes 17, 226

ESTIMATE SIZE REQUIRED FOR sqlmonss() OUTPUT
BUFFER (sqlmonsz) 218

EXPORT (sqluexpr) 241
exporting

choosing file formats for 246
specifying column names 243
to PC/IXF format 246

F
FETCH TABLESPACE CONTAINER QUERY

(sqlbftcq) 31
FETCH TABLESPACE QUERY (sqlbftpq) 34
FORCE APPLICATION (sqlefrce) 119
FORGET TRANSACTION STATUS (sqlxhfrg) 449
FORTRAN

pointer manipulation 207
providing pointer manipulation 208, 210

FREE MEMORY (sqlefmem) 117

G
GET ADDRESS (sqlgaddr) 207
GET AUTHORIZATIONS (sqluadau) 227
GET CURRENT CONTEXT (sqleGetCurrentCtx) 496
GET DATABASE CONFIGURATION (sqlfxdb) 201
GET DATABASE CONFIGURATION DEFAULTS

(sqlfddb) 184
GET DATABASE MANAGER CONFIGURATION

(sqlfxsys) 204
GET DATABASE MANAGER CONFIGURATION

DEFAULTS (sqlfdsys) 186
GET DCS DIRECTORY ENTRIES (sqlegdgt) 133
GET DCS DIRECTORY ENTRY FOR DATABASE

(sqlegdge) 131
GET ERROR MESSAGE (sqlaintp) 15
GET INSTANCE (sqlegins) 138
GET NEXT DATABASE DIRECTORY ENTRY

(sqledgne) 100
GET NEXT NODE DIRECTORY ENTRY

(sqlengne) 150
GET NEXT RECOVERY HISTORY FILE ENTRY

(sqluhgne) 256
GET ROW PARTITIONING NUMBER (sqlugrpn) 248
GET SNAPSHOT (sqlmonss) 215
GET SQLSTATE MESSAGE (sqlogstt) 224
GET TABLE PARTITIONING INFORMATION

(sqlugtpi) 252
GET TABLESPACE STATISTICS (sqlbgtss) 37
GET/UPDATE MONITOR SWITCHES (sqlmon) 212
global pending list log record 520

 Index 543

H
heuristic aborts log record 520
heuristic commit log record 518
host systems

connections supported by DDCS 124

I
IMPORT (sqluimpr) 271
import replace (truncate) log record 508
importing

delimited ACSII file 243, 275
file to database table 271
Non-delimited ASCII file 243, 275
PC/IXF

file 243, 275
PC/IXF files 280
prerequisites for 280
to remote database 280
WSF file 243, 275

INIT-INPUT structure 483
INIT-OUTPUT structure 484
INITIALIZE AND LINK TO DEVICE (sqluvint) 467
initialize table log record 506
INSERT keyword

use in importing 279
insert LOB data log record (AFIM_AMOUNT) 517
insert LOB data log record (AFIM_DATA) 517
insert record log record 511
INSERT_UPDATE CREATE keyword

use in importing 279
INSTALL SIGNAL HANDLER (sqleisig) 143
INTERRUPT (sqleintr) 140
INTERRUPT CONTEXT (sqleInterruptCtx) 497
isolation level

changing 330

K
keywords

CREATE, use in importing 274
INSERT_UPDATE CREATE, use in importing 279
INSERT_UPDATE, use in importing 274
INSERT, use in importing 274, 279
REPLACE_CREATE, use in importing 274, 279
REPLACE, use in importing 274, 279

L
LIST DRDA INDOUBT TRANSACTIONS (sqlcspqy) 57
LIST INDOUBT TRANSACTIONS (sqlxphqr) 452
LOAD (sqluload) 282
load pending list 523
LOAD QUERY (sqluqry) 291
load start 523
LOB manager log records

description 516
insert LOB data log (AFIM_AMOUNT) 517
insert LOB data log (AFIM_DATA) 517

local database directory
open scan 103

local pending list log record 520
locks

changing 330
resetting maximum to default 188
verifying maximum number 201

log
file, use of in roll-forward 337
recovery, allocating 81

log record header 503
log records

add long field record 516
alter check pending 509
alter propagation 509
alter table add columns 510
backup end 524
create index 509
create table 509
data manager 504
DB2 logs 501
delete record 511
drop table 509
global pending list 520
header 503
heuristic aborts 520
heuristic commit 518
import replace (truncate) 508
initialize table 506
insert LOB data log (AFIM_AMOUNT) 517
insert LOB data log (AFIM_DATA) 517
insert record 511
load pending list 523
load start 523
LOB manager 516
local pending list 520
long field manager 515
migration begin 522

544 API Reference

log records (continued)
migration end 523
MPP coordinator commit 519
MPP subordinator commit 519
MPP subordinator prepare 521
normal abort 519
normal commit 518
reorg table 508
returned by sqlurlog 501
rollback add columns 510
rollback check pending change 509
rollback create table 509
rollback delete record 511
rollback drop table 509
rollback insert 508
rollback propagation change 509
rollback update record 511
tablespace roll forward to PIT begins 524
tablespace roll forward to PIT ends 524
tablespace rolled forward 524
transaction manager 518
update record 514
utility 522
XA prepare 521

log sequence number (LSN) 501
long field manager log records

add long field record 516
description 515

LSN (log sequence number) 501

M
MIGRATE DATABASE (sqlemgdb) 145
migration

application 527
migration begin log record 522
migration end log record 523
MPP coordinator commit log record 519
MPP subordinator commit log record 519
MPP subordinator prepare log record 521
multiple concurrent requests

changing isolation level to control 330

N
naming conventions

for aliases 445
for authentication IDs 445
for columns 445
for database manager objects 445

naming conventions (continued)
for databases 445
for tables 445
for views 445
in SNA 445

node
directory 89
directory entries, retrieving 150
OPEN DCS DIRECTORY SCAN 136

node, SOCKS 377, 379
non-propagatable 501
normal abort log record 519
normal commit log record 518

O
OPEN DATABASE DIRECTORY SCAN (sqledosd) 103
OPEN DCS DIRECTORY SCAN (sqlegdsc) 136
OPEN NODE DIRECTORY SCAN (sqlenops) 153
OPEN RECOVERY HISTORY FILE SCAN

(sqluhops) 259
OPEN TABLESPACE CONTAINER QUERY

(sqlbotcq) 42
OPEN TABLESPACE QUERY (sqlbotsq) 45
optimization 293

P
package

creating with BIND 10
force new access paths, after running statistics 323
recreating 23

partitioning information, table, obtaining 252
performance, improving

by reorganizing tables 295
pointer

manipulation 207
pointers

manipulation of 208, 210
precompile option types and values 20
PRECOMPILE PROGRAM (sqlaprep) 18
privileges

direct, defined 229
granting when creating a database 87
indirect, defined 229
retrieving user's 227

propagatable 501
PRUNE RECOVERY HISTORY FILE (sqluhprn) 264

 Index 545

Q
QUERY CLIENT (sqleqryc) 162
QUIESCE TABLESPACES FOR TABLE

(sqluvqdp) 324

R
READING DATA FROM DEVICE (sqluvget) 471
REBIND (sqlarbnd) 23
recovering a database 309
REDISTRIBUTE NODEGROUP (sqludrdt) 237
REGISTER (sqleregs) 165
reorg table log record 508
REORGANIZE TABLE (sqlureot) 293
REPLACE keyword

use in importing 279
REPLACE_CREATE keyword

use in importing 279
RESET DATABASE CONFIGURATION (sqlfrdb) 188
RESET DATABASE MANAGER CONFIGURATION

(sqlfrsys) 191
RESET MONITOR (sqlmrset) 221
RESTART DATABASE (sqlerstd) 168
RESTORE DATABASE (sqlurst) 309
restore set 265
restoring earlier versions of DB2 databases 309
RETURN-CODE structure 486
RFWD-INPUT structure 334
RFWD-OUTPUT structure 337
ROLL BACK AN INDOUBT TRANSACTION

(sqlxphrl) 454
rollback add columns log record 510
rollback check pending change log record 509
rollback create table log record 509
rollback delete record log record 511
rollback drop table log record 509
rollback insert log record 508
rollback propagation change log record 509
rollback update record log record 511
ROLLFORWARD DATABASE (sqluroll) 300
RUNSTATS (sqlustat) 319

S
sample programs, directory of 5
schema

created when creating a database 86
SET ACCOUNTING STRING (sqlesact) 171

SET APPLICATION CONTEXT TYPE
(sqleSetTypeCtx) 498

SET CLIENT (sqlesetc) 176
SET RUNTIME DEGREE (sqlesdeg) 173
SET TABLESPACE CONTAINERS (sqlbstsc) 51
SIGALRM signal 158

starting the database manager 158
SIGINT signal, starting database manager 158
signal handling

INSTALL SIGNAL HANDLER 143
INTERRUPT 140

SINGLE TABLESPACE QUERY (sqlbstpq) 48
SOCKS node 377, 379
SQL-AUTHORIZATIONS structure 340
SQL-DIR-ENTRY structure 343
SQL-UEXPT-OUT structure 425
SQLA-FLAGINFO structure 345
SQLB-TBS-STATS structure 347
SQLB-TBSCONTQRY-DATA structure 349
SQLB-TBSPQRY-DATA structure 351
SQLCA structure 355

retrieving error messages from 15, 224
SQLCHAR structure 357
SQLDA structure 358
SQLDCOL structure 361
SQLE-ADDN-OPTIONS structure 365
SQLE-CONN-SETTING structure 367
SQLE-NODE-APPC structure 370
SQLE-NODE-APPN structure 371
SQLE-NODE-CPIC structure 372
SQLE-NODE-IPXSPX structure 373
SQLE-NODE-LOCAL structure 374
SQLE-NODE-NETB structure 375
SQLE-NODE-NPIPE structure 376
SQLE-NODE-STRUCT structure 377
SQLE-NODE-TCPIP structure 379
SQLE-REG-NWBINDERY structure 380
SQLE-START-OPTIONS structure 381
SQLEDBCOUNTRYINFO structure 385
SQLEDBDESC structure 386
SQLEDBSTOPOPT structure 392
SQLEDINFO structure 394
SQLENINFO structure 397
SQLETSDESC structure

field descriptions 386
SQLFUPD structure 400
SQLFUPD token element

valid database configuration file entries 400
valid database manager configuration file

entries 403

546 API Reference

SQLM-COLLECTED structure 407
SQLM-RECORDING-GROUP structure 410
SQLMA structure 412
SQLOPT structure 414
SQLSTATE messages

retrieving from SQLSTATE field 224
SQLU-LSN structure 416
SQLU-MEDIA-LIST structure 417
SQLU-RLOG-INFO structure 422
SQLU-TABLESPACE-BKRST-LIST structure 423
SQLUHINFO structure 426
SQLUIMPT-IN structure 430
SQLUIMPT-OUT structure 431
SQLULOAD-IN structure 433
SQLULOAD-OUT structure 437
SQLUPI structure 439
SQLXA-RECOVER structure 441
SQLXA-XID structure 443
START DATABASE MANAGER (sqlepstart) 156
STOP DATABASE MANAGER (sqlepstp) 159
storage

physical 293
system database directory

cataloging 72
open scan 103
uncataloging 179

T
table

importing file to 271
naming conventions 445

TABLESPACE CONTAINER QUERY (sqlbtcq) 54
TABLESPACE QUERY (sqlbmtsq) 39
tablespace roll forward to PIT begins 524
tablespace roll forward to PIT ends 524
tablespace rolled forward 524
TCP/IP using SOCKS 377, 379
termination

abnormal 168
normal 160

transaction identifier
log records 501

transaction manager log records
description 518
global pending list 520
heuristic aborts 520
heuristic commit 518
local pending list 520
MPP coordinator commit 519

transaction manager log records (continued)
MPP subordinator commit 519
MPP subordinator prepare 521
normal abort 519
normal commit 518
XA prepare 521

U
UNCATALOG DATABASE (sqleuncd) 179
UNCATALOG DCS DATABASE (sqlegdel) 128
UNCATALOG NODE (sqleuncn) 182
uncataloging

system database directory 179
UNLINK THE DEVICE (sqluvend) 475
UPDATE DATABASE CONFIGURATION (sqlfudb) 194
UPDATE DATABASE MANAGER CONFIGURATION

(sqlfusys) 198
update record log record 514
UPDATE RECOVERY HISTORY FILE (sqluhupd) 267
utility log records

backup end 524
description 522
load pending list 523
load start 523
migration begin 522
migration end 523
tablespace roll forward to PIT begins 524
tablespace roll forward to PIT ends 524
tablespace rolled forward 524

V
vendor products

backup and restore 459
DATA structure 485
DB2-INFO structure 479
DELETE COMMITTED SESSION 477
description 459
INIT-INPUT structure 483
INIT-OUTPUT structure 484
INITIALIZE AND LINK TO DEVICE 467
operation 459
READING DATA FROM DEVICE 471
RETURN-CODE structure 486
sqluvdel 477
sqluvend 475
sqluvget 471
sqluvint 467
sqluvput 473

 Index 547

vendor products (continued)
UNLINK THE DEVICE 475
VENDOR-INFO structure 482
WRITING DATA TO DEVICE 473

VENDOR-INFO structure 482
view

naming conventions 445

W
warning message

exporting columns 246
restore 317

WRITING DATA TO DEVICE (sqluvput) 473

X
XA prepare log record 521

548 API Reference

 Contacting IBM

This section lists ways you can get more information
from IBM.

If you have a technical problem, please take the time to
review and carry out the actions suggested by the
Troubleshooting Guide before contacting DB2 Customer
Support. Depending on the nature of your problem or
concern, this guide will suggest information you can
gather to help us to serve you better.

For information or to order any of the DB2 Universal
Database products contact an IBM representative at a
local branch office or contact any authorized IBM
software remarketer.

Telephone

If you live in the U.S.A., call one of the following
numbers:

¹ 1-800-237-5511 to learn about available service
options.

¹ 1-800-IBM-CALL (1-800-426-2255) or
1-800-3IBM-OS2 (1-800-342-6672) to order
products or get general information.

¹ 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the
United States, see Appendix A of the IBM Software
Support Handbook. You can access this document by
selecting the "Roadmap to IBM Support" item at:
http://www.ibm.com/support/.

Note that in some countries, IBM-authorized dealers
should contact their dealer support structure instead of
the IBM Support Center.

World Wide Web
http://www.software.ibm.com/data/
http://www.software.ibm.com/data/db2/library/

The DB2 World Wide Web pages provide current DB2
information about news, product descriptions, education
schedules, and more. The DB2 Product and Service
Technical Library provides access to frequently asked
questions, fixes, books, and up-to-date DB2 technical
information. (Note that this information may be in English
only.)

Anonymous FTP Sites
ftp.software.ibm.com

Log on as anonymous. In the directory /ps/products/db2,
you can find demos, fixes, information, and tools
concerning DB2 and many related products.

Internet Newsgroups
comp.databases.ibm-db2, bit.listserv.db2-l

These newsgroups are available for users to discuss
their experiences with DB2 products.

CompuServe
GO IBMDB2 to access the IBM DB2 Family forums

All DB2 products are supported through these forums.

To find out about the IBM Professional Certification
Program for DB2 Universal Database, go to
http://www.software.ibm.com/data/db2/db2tech/db2cert.html

 Copyright IBM Corp. 1993, 1997 549

ÉÂÔÙ

Part Number: 10J8167

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

S10J-8167-00

1
0
J
8
1
6
7

