

IBM DB2 Universal Database ÉÂÔ

System Monitor Guide and Reference
Version 5

 S10J-8164-00

IBM DB2 Universal Database ÉÂÔ

System Monitor Guide and Reference
Version 5

 S10J-8164-00

Before using this information and the product it supports, be sure to read the general information under Appendix E,
“Notices” on page 283.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties and any state-
ments provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in U.S. or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1993, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

About This Book . vii
Who Should Use This Book . vii
How This Book is Structured . vii
Conventions . viii

Chapter 1. Introducing the Database System Monitor 1
Database System Monitor Capabilities . 1

Chapter 2. Using the Database System Monitor 3
Database Manager Maintains Operation and Performance Data 3

Monitor Switches Control Data Collected by the Database Manager 3
Accessing Monitor Data . 4

Snapshot Monitoring . 4
Authority Required for Snapshot Monitoring 6
Snapshot Monitor Interface . 7
Information Available by Taking Snapshots . 7
Snapshot Uses an Instance Connection . 9
Availability of Snapshot Monitor Data . 10

Event Monitors . 10
Authority Required for Event Monitoring . 15
Using Event Monitors . 15
Querying the State of an Event Monitor . 17
Information Available from Event Monitors 17
Using Pipe Event Monitors . 18

When Counters are Initialized . 20
Resetting Monitor Data . 21
System Monitor Memory Requirements - (mon_heap_sz) 23
Partitioned Database Considerations . 23

Taking a Snapshot on Multi-node Systems 23
Using Event Monitors on Multi-node Systems 25
Monitoring Subsections . 26

DB2 Productivity Tools . 27
System Monitor Definitions . 28

Chapter 3. Database System Monitor Data Elements 31
How to Read the Data Element Tables . 32

Element Types . 33
Server Identification and Status . 33

Start Database Manager Timestamp . 34
Configuration NNAME at Monitoring (Server) Node 34
Server Instance Name . 35
Database Manager Type at Monitored (Server) Node 35
Server Product/Version ID . 36
Server Version . 36
Service Level . 37

 Copyright IBM Corp. 1993, 1997 iii

Server Operating System . 37
Product Name . 38
Product Identification . 38
Status of DB2 Instance . 39

Database Identification and Status . 39
Database Name . 39
Database Path . 40
Database Activation Timestamp . 41
Database Deactivation Timestamp . 41
Status of Database . 42
Catalog Node Network Name . 42
Database Location . 43
Catalog Node Number . 43
Last Backup Timestamp . 44

Application Identification and Status . 44
Application Handle (agent ID) . 45
Application Status . 46
ID of Code Page Used by Application . 48
Application Status Change Time . 48
Application Name . 49
Application ID . 50
Sequence Number . 52
Authorization ID . 52
Configuration NNAME of Client . 53
Client Product/Version ID . 53
Database Alias Used by Application . 54
Host Product/Version ID . 55
Outbound Application ID . 55
Outbound Sequence Number . 56
User Login ID . 56
DRDA Correlation Token . 57
Client Process ID . 57
Client Operating Platform . 58
Client Communication Protocol . 58
Database Country Code . 59
Application Agent Priority . 59
Application Priority Type . 60
User Authorization Level . 60
Coordinating Node . 61
Connection Request Start Timestamp . 62
Connection Request Completion Timestamp 62
Previous Unit of Work Completion Timestamp 62
Unit of Work Start Timestamp . 63
Unit of Work Stop Timestamp . 64
Unit of Work Completion Status . 65
Previous Transaction Stop Time . 65
Application Idle Time . 66
DB2 Agent Information . 66

iv System Monitor Guide and Reference

Database Manager Configuration . 66
Agents and Connections . 67
Sort . 78
Fast Communication Manager . 84

Database Configuration . 90
Buffer Pool Activity . 90
Non-buffered I/O Activity . 114
Catalog Cache . 119
Package Cache . 122
Database Heap . 126
Logging . 127

Database and Application Activity . 130
Locks and Deadlocks . 130
Lock Wait Information . 140
Rollforward Monitoring . 147
Table Activity . 149
SQL Cursors . 160
SQL Statement Activity . 164
SQL Statement Details . 174
Subsection Details . 183
Intra-query Parallelism . 189
CPU Usage . 191
Snapshot Monitoring Elements . 192

Chapter 4. Event Monitor Output . 195
Output Stream Format . 195
Matching Event Records with Their Application 200
File Event Monitor Buffering . 201

Blocked Event Monitors . 202
Non-Blocked Event Monitors . 202
File Event Monitor Target . 202

Programming to Read an Event Monitor Trace 204
Reading the Data Stream . 205
Swapping Bytes in Numerical Values . 206
Reading the Event Records . 206
Reading the Log Header . 208
Printing Event Records . 209
Reading Events from a FILE Trace . 211

Appendix A. Database System Monitor Interfaces 213
CREATE EVENT MONITOR Command and SQL 214
db2eva - Event Analyzer Command . 222
db2evmon - Event Monitor Trace Formatter Command 224
DROP EVENT MONITOR Command and SQL 226
EVENT_MON_STATE SQL Function . 227
GET DATABASE MANAGER MONITOR SWITCHES Command 228
GET MONITOR SWITCHES Command . 230
GET SNAPSHOT Command . 232

 Contents v

LIST ACTIVE DATABASES Command . 235
LIST APPLICATIONS - Command . 237
LIST DCS APPLICATIONS - Command . 239
RESET MONITOR Command . 241
SET EVENT MONITOR STATE Command and SQL 242
sqlmon - Get/Update Monitor Switches API . 244
sqlmonss - Get Snapshot API . 248
sqlmonsz - Estimate Size Required for sqlmonss() Output Buffer API 260
sqlmrset - Reset Monitor API . 263
UPDATE MONITOR SWITCHES Command . 266

Appendix B. Parallel Edition Version 1.2 Users 269
API Changes . 270
Obsolete Commands . 270

Appendix C. DB2 Version 1 sqlestat Users 271

Appendix D. How the DB2 Library Is Structured 273
SmartGuides . 273
Online Help . 274
DB2 Books . 276
About the Information Center . 280

Appendix E. Notices . 283
Trademarks . 283
Trademarks of Other Companies . 284

Index . 285

Contacting IBM . 287

vi System Monitor Guide and Reference

About This Book

Your DB2 Database Manager is instrumented to gather data on its operation and per-
formance. You can use this data to:

¹ Monitor database activities
¹ Assist in problem determination

 ¹ Analyze performance
¹ Help configure the system.

The DB2 DBMS function that collects this data is called the database system monitor.
This book describes how to use the database system monitor.

Various tools allow users to exploit the strengths of the database system monitor with
minimal explicit knowledge of its associated commands, APIs, or data formats. Some of
these tools, for example the Control Center, are described briefly, but for detailed infor-
mation you should refer to the Administration Getting Started.

Who Should Use This Book
This book is for any users who require an understanding of the operation of the DB2
database system monitor, including how to program to its interface.

It is intended for database administrators, system administrators, security administrators
and system operators who are maintaining a database accessed by local or remote
clients. It is also for software developers who are interested in building software tools
that use the DB2 database system monitor to assist in these administrative functions.

How This Book is Structured
This book starts with a description of the database system monitor and then details the
data that you can collect with it.

Chapter 1, Introducing the Database System Monitor, introduces the database system
monitor and describes its capabilities.

Chapter 2, Using the Database System Monitor, describes the information that is avail-
able from the database system monitor: how to collect it and how to work with it.

Chapter 3, Database System Monitor Data Elements, provides details of the informa-
tion elements that you can collect with the database system monitor.

Chapter 4, Event Monitor Output, is for programmers who want to write applications
that read records from an event monitor trace.

Appendix A, Database System Monitor Interfaces, contains detailed descriptions of the
commands, SQL statements, APIs, and tools that you may need to use with the data-
base system monitor. Detailed information is provided for each API routine.

 Copyright IBM Corp. 1993, 1997 vii

Appendix B, Parallel Edition Version 1.2 Users, is intended for DB2 Parallel Edition
Version 1.2. users of database system monitor who are upgrading their system to DB2
Version 5.

Appendix C, DB2 Version 1 sqlestat Users, is intended for DB2 Version 1 sqlestat
users.

Appendix D, How the DB2 Library Is Structured describes the DB2 library; including
books and online help.

Appendix E, Notices contains notice and trademark information.

 Conventions
You will find this book easier to use if you look for these conventions:

¹ Boldface type indicates an important item or concept

¹ Italics type indicates new terms, data elements, configuration parameters, or book
titles.

¹ Monospace type indicates an example of text that is displayed on the screen or
contained in a file.

¹ UPPERCASE TYPE indicates a file name, command name, or acronym.

Text in examples can be black or a lighter type.

db2 commands and output associated with the
database system monitor are in black type
other db2 commands used are in lighter type

viii System Monitor Guide and Reference

Chapter 1. Introducing the Database System Monitor

This chapter gives you a brief overview of the database system monitor’s capabilities. It
also discusses the integral role that the database system monitor plays in monitoring
database activity and performance.

If you want to get started quickly, read this chapter and Chapter 2, “Using the Data-
base System Monitor” on page 3. The information in these two chapters, combined with
the reference material in Appendix A, “Database System Monitor Interfaces” on
page 213, provides the information required to use the database system monitor.

Chapter 3, “Database System Monitor Data Elements” on page 31 provides complete
details on all the data available with the database system monitor.

Database System Monitor Capabilities
The capabilities of the database system monitor opens several possibilities:

¹ Activity monitoring

For example, using the database system monitor you can obtain:

– The list of database connections:
- The status of each connection.
- The SQL that each is executing.
- The locks that each holds.

– The tables being accessed and the number of rows read and written for each.

You can also track the progression of a query or application using information,
such as:

– The cursors that are currently open for this application.
– The number of rows read or CPU consumed (if available from the operating

system) by this application.
– How long each query has been running.
– How long an application has been idle.

¹ Problem determination

You can collect data to help diagnose the cause of poor system and application
performance. For example:

– By tracing deadlocks you can determine conflicts between applications that
lead to poor overall system performance.

– By looking at the amount of time applications spent waiting for locks and which
application is holding these locks you can identify applications that fail to
commit their transactions, a common cause of poor system performance.

 Copyright IBM Corp. 1993, 1997 1

¹ Performance analysis

You can use the information available to analyze the performance of individual
applications or SQL queries. For example, you can monitor for:

– The CPU consumed by each individual statement or application.
– The time it takes to run a statement.
– The number of rows read and returned.
– The use of database resources, such as buffer pool, prefetchers, and SQL

cache.

These run-time metrics are useful in tuning queries for optimal utilization of your
database resources. Modifying a query or certain system parameters can result in
dramatic performance improvements. The impact of your modifications can be
measured with the database system monitor.

You can also track the usage of indexes and tables, and in a partitioned database,
the progression of a query on each partition. Adding indices or repartitioning the
data often results in significant performance improvements.

Carrying out some these performance analysis tasks may also require input that is
obtained from the operating system, such as system load or the amount of free
storage, or from other DB2 tools such as the db2 explain facility . For example,
the db2expln application lets you analyze the access plan generated by the SQL
compiler, which can then be compared with the run-time information available from
the database system monitor.

¹ System configuration

You can assemble the information necessary to evaluate and tune the effective-
ness of your database manager and database configuration.

You can use the database system monitor to help monitor, tune, and manage your
databases whether they are local or remote.

2 System Monitor Guide and Reference

Chapter 2. Using the Database System Monitor

This chapter describes the data that is available from the DB2 Version 5 database
system monitor. It explains how you can either take a snapshot of this data, or request
the database manager to log information when certain events take place.

It describes the types of snapshots that you can take, and how they can be taken using
CLP (command line processor) commands or APIs (application programming inter-
faces). It details the types of event monitors that can be used for data collection, and
how to collect that information using commands or tools that come with DB2.

Database Manager Maintains Operation and Performance Data
Built into the database manager is the ability to collect data about its operation and
performance, and that of the applications using it. The database manager maintains
information at the following levels:

 ¹ Database manager
 ¹ Database
¹ Application (database connection)

 ¹ Table
 ¹ Table space
 ¹ Buffer pool
 ¹ Transaction
 ¹ Statement
 ¹ Subsection

Collecting some of this data introduces some processing overhead. For example, in
order to calculate the execution time of an SQL statement, the database manager must
make a call to the operating system to obtain timestamps before and after statement
execution. These types of system calls are generally expensive. In order to minimize
the overhead involved in maintaining monitoring information, monitor switches control
the collection of potentially expensive data by the database manager.

Monitor Switches Control Data Collected by the Database Manager
The database system monitor will always collect some basic information, but you can
use the switches to govern the amount of expensive data collected. Monitor switches
can be set:

¹ Explicitly , this is usually done using the UPDATE MONITOR SWITCHES
command.

You can also set these switches in the database manager configuration file if you
want data collection to start from the moment the server is started. You should
note that setting switches in this way means that they cannot be turned off without
stopping the database management system. Switches are explained in “Resetting
Monitor Data” on page 21. For more information on configuration see the
dft_monswitches configuration parameters in the Administration Guide.

 Copyright IBM Corp. 1993, 1997 3

¹ Implicitly , when an event monitor is activated. Event monitors are explained in
“Event Monitors” on page 10.

To see if your database manager is currently collecting any monitor data issue the
command:

db2 get database manager monitor switches

 The resulting output indicates the database manager switch settings and the time that
they were turned on.

DBM System Monitor Information Collected

Buffer Pool Activity Information (BUFFERPOOL) = OFF

Lock Information (LOCK) = OFF

Sorting Information (SORT) = ON 04-18-1997 10:11:01.738400

SQL Statement Information (STATEMENT) = OFF

Table Activity Information (TABLE) = OFF

Unit of Work Information (UOW) = OFF

In this example, in addition to collecting basic-level information, the database manager
is collecting all information under control of the sort switch.

Accessing Monitor Data
There are two ways to access the monitor data collected by the database manager:

 ¹ Snapshot monitoring

Taking a snapshot gives you information for a specific point in time. A snapshot is
a picture of the current state of activity in the database manager for a particular
object or group of objects.

 ¹ Event monitors

You can request the database manager to automatically log monitor data to files or
a named pipe when specific events occur. This allows you to collect information
about transient events that are difficult to monitor through snapshots, such as
deadlocks and transaction completions.

 Snapshot Monitoring
The snapshot monitor provides two categories of information for each level being
monitored:

 ¹ State

This includes information such as:

– the current status of the database
– information on the current or most recent unit of work
– the list of locks being held by an application
– the status of an application
– the current number of connections to a database

4 System Monitor Guide and Reference

– the most recent SQL statement performed by an application
– run-time values for configurable system parameters.

 ¹ Counters

These accumulate counts for activities from the time monitoring started until the
time a snapshot is taken. Such as:

– the number of deadlocks that have occurred
– the number of transactions performed on a database
– the amount of time an application has waited on locks.

For example, you can obtain a list of the locks held by applications connected to a
database by taking a database lock snapshot. First, turn on the LOCK switch (UPDATE
MONITOR SWITCHES), so that the time spent waiting for locks is collected.

db2 update monitor switches using LOCK on
db2 connect to sample

db2 +c list tables for all # this command will require locks
on the database catalogs

db2 get snapshot for locks on sample

Note: You can create and populate the sample database by running
sqllib/misc/db2sampl.

Issuing the GET SNAPSHOT command returns the following.

 Chapter 2. Using the Database System Monitor 5

Database Lock Snapshot

 Database name = SAMPLE

 Database path = /home/bourbon/bourbon/NODE0000/SQL00005/

 Input database alias = SAMPLE

 Locks held = 6

 Applications currently connected = 1

 Applications currently waiting on locks = 0

 Snapshot timestamp = 04-11-1997 10:40:29.976539

 Application handle = 1

 Application ID = LOCAL.bourbon.970411143813

 Sequence number = 0001

 Application name = db2bp_32

 Authorization ID = BOURBON

 Application status = UOW Waiting

 Status change time = Not Collected

 Application code page = 850

 Locks held = 6

 Total wait time (ms) = 0

 Object Type Tablespace Name Table Schema Table Name Mode Status

 --------------- -------------------- -------------------- -------------------- ---- ----------

 Row SYSCATSPACE SYSIBM SYSTABLES NS Granted

 Table SYSCATSPACE SYSIBM SYSTABLES IS Granted

 Table SYSCATSPACE SYSIBM SYSTABLESPACES S Granted

 Row SYSCATSPACE SYSIBM SYSPLAN S Granted

 Table SYSCATSPACE SYSIBM SYSPLAN IS Granted

 Internal S Granted

Figure 1. Results of GET SNAPSHOT FOR LOCKS Command

From this snapshot, you can see that there is currently one application connected to the
SAMPLE database, and it is holding six locks.

 Locks held = 6

Applications currently connected = 1

Note that the time (Status change time) when the Application status became UOW
Waiting is returned as Not Collected, because the UOW switch is OFF.

The lock snapshot also returns the total time spent waiting for locks (so far), by applica-
tions connected to this database.

Total wait time (ms) = 0

This is an example of an accumulating counter. “Resetting Monitor Data” on page 21
explains how counters can be reset to zero.

Authority Required for Snapshot Monitoring
To perform any of the snapshot monitor tasks, you must have SYSMAINT, SYSCTRL,
or SYSADM authority for the database manager instance that you wish to monitor.

6 System Monitor Guide and Reference

Snapshot Monitor Interface
Snapshot monitoring is invoked using the following application programming interfaces
(APIs):

sqlmon() set or query monitor switch settings
sqlmonrset() reset system monitor counters
sqlmonss() take a snapshot
sqlmonsz() estimate the size of the data that would be returned for a particular

invocation of sqlmonss()

The Command Line Processor (CLP) provides a convenient command-based front-end
to the snapshot APIs. For example, the GET SNAPSHOT command invokes the
sqlmonss() API. Appendix A, “Database System Monitor Interfaces” on page 213 con-
tains detailed information on the commands and APIs associated with the database
system monitor.

DB2
Database Manager

APIs Commands

Tools

sqlrset()
sqlmonss()

sqlmon()
sqlmonsz()

reset monitor switches
get snapshot
list applications
list dcs applications
list active databases
get dbm monitor switches
get monitor switches
update monitor switches

db2gov
db2batch

Control
Center

monitor
data

dbm
switches

GUIDatabase
System
Monitor

Snapshot Interface

Event
Monitor

Figure 2. Snapshot Monitoring Interfaces

Information Available by Taking Snapshots
The following table lists all the supported snapshot request types. For certain request
types, some information is returned only if the associated monitor switch is set ON. See
Chapter 3, “Database System Monitor Data Elements” on page 31 to determine if a
required counter is under switch control.

 Chapter 2. Using the Database System Monitor 7

In the table, the API Request type column identifies the value that is supplied as input
to the SQLMA input structure in the sqlmonss() Snapshot API routine.

API request type CLP command Information returned

List of connections

SQLMA_APPLINFO_ALL list applications [show
detail]

Application identification information for all appli-
cations currently connected to a database that is
managed by the DB2 instance on the node
where snapshot is taken.

SQLMA_DBASE_APPLINFO list applications for data-
base dbname [show
detail]

Same as SQLMA_APPLINFO_ALL for each
application currently connected to the specified
database.

SQLMA_DCS_APPLINFO_ALL list dcs applications Application identification information for all DCS
applications currently connected to a database
that is managed by the DB2 instance on the
node where snapshot is taken.

Database manager snapshot

SQLMA_DB2 get snapshot for dbm Database manager level information, including
internal monitor switch settings.

get dbm monitor switches Returns internal monitor switch settings.

Database snapshot

SQLMA_DBASE get snapshot for database
on dbname

Database level information and counters for a
database. Information is returned only if there is
at least one application connected to the data-
base.

SQLMA_DBASE_ALL get snapshot for all data-
bases

Same as SQLMA_DBASE for each database
active on the node.

list active databases The number of connections to each active data-
base. Includes databases that were started
using the ACTIVATE DATABASE command, but
have no connections.

Application snapshot

SQLMA_APPL get snapshot for applica-
tion applid appl-id

Application level information, includes cumula-
tive counters, status information, and most
recent SQL statement executed (if statement
switch is set).

SQLMA_AGENT_ID get snapshot for applica-
tion agentid appl-handle

Same as SQLMA_APPL.

SQLMA_DBASE_APPLS get snapshot for applica-
tions on dbname

Same as SQLMA_APPL, for each application
that is connected to the database on the node.

SQLMA_APPL_ALL get snapshot for all appli-
cations

Same as SQLMA_APPL, for each application
that is active on the node.

Table snapshot

8 System Monitor Guide and Reference

API request type CLP command Information returned

SQLMA_DBASE_TABLES get snapshot for tables on
dbname

Table activity information at the database and
application level for each application connected
to the database, and at the table level for each
table that was accessed by an application con-
nected to the database. Requires the table
switch.

Lock snapshot

SQLMA_APPL_LOCKS get snapshot for locks for
application applid appl-id

List of locks held by the application. Also, lock
wait information if any and the lock switch is
ON.

SQLMA_APPL_LOCKS_AGENT_ID get snapshot for locks for
application agentid appl-
handle

Same as SQLMA_APPL_LOCKS.

SQLMA_DBASE_LOCKS get snapshot for locks on
dbname

Lock information at the database level, and
application level for each application connected
to the database. Requires the lock switch.

Table space snapshot

SQLMA_DBASE_TABLESPACES get snapshot for
tablespace on dbname

Information about table space activity at the
database level, the application level for each
application connected to the database, and the
table space level for each table space that has
been accessed by an application connected to
the database. Requires the buffer pool switch.

Buffer pool snapshot

SQLMA_BUFFERPOOLS_ALL get snapshot for all
bufferpools

Buffer pool activity counters. Requires the buffer
pool switch.

SQLMA_DBASE_BUFFERPOOLS get snapshot for
bufferpools on dbname

Same as SQLMA_BUFFERPOOLS_ALL, but for
specified database only.

Snapshot Uses an Instance Connection
You do not need to be connected to a database in order to use the snapshot
APIs. They are performed under an instance connection , which is a connection
between an application and an instance of the DB2 database manager.

The instance attachment is usually done implicitly to the instance specified by the
DB2INSTANCE environment variable when the first database system monitor API is
invoked by the application. It can also be done explicitly, using the ATTACH TO NODE
command.

Once an application is attached, all system monitor requests that it invokes are directed
to that instance. This allows a client to monitor a remote server, by simply attaching to
the instance on it.

 Chapter 2. Using the Database System Monitor 9

Availability of Snapshot Monitor Data
If all applications disconnect from a database, then the system monitor data for that
database is no longer available. To obtain monitor information for all database activity
during a given period you may want to use an event monitor. Alternatively, you can
keep the database active until your final snapshot has been taken, either by starting it
with the ACTIVATE DATABASE command, or by maintaining a permanent connection
to the database.

 Event Monitors
In contrast to taking a point in time snapshot, an event monitor writes out database
system monitor data to either a file or a named pipe, when one of the following events
occurs:

¹ end of a transaction
¹ end of a statement

 ¹ a deadlock
¹ start of a connection
¹ end of a connection

 ¹ database activation
 ¹ database deactivation
¹ end of a statement’s subsection (when a database is partitioned)

An event monitor effectively provides the ability to obtain a trace of the activity on a
database.

For example, you can request that DB2 logs the occurrence of deadlocks between con-
nections to a database. First, you must create and activate a DEADLOCK event
monitor:

db2 connect to sample db2 connect to sample
db2 "create event monitor dlockmon for

deadlocks write to file ’/tmp/dlocks’"
mkdir /tmp/dlocks
db2 "set event monitor dlockmon state 1"

db2 "create event monitor dlockmon for
deadlocks write to file ’c:\tmp\dlocks’"

mkdir c:\tmp\dlocks
db2 "set event monitor dlockmon state 1"

For UNIX systems For OS/2 and Windows systems
Monitor Session Monitor Session

Now, two applications using the database enter a deadlock. That is, each one is
holding a lock that the other one needs in order to continue processing. The deadlock
is eventually detected and resolved by the DB2 deadlock detector component, which
will rollback one of the transactions. The following figures illustrate this scenario.

10 System Monitor Guide and Reference

db2 +c "insert into staff values (1, ’Ofer’,
1, ’Mgr’, 0, 0, 0)"

DB20000I The SQL command completed
successfully.

db2 connect to sample

Application 1

Note: The +c option turns autocommit off for CLP.

Application 1 is now holding an exclusive lock on a row of the staff table.

db2 connect to sample
db2 +c "insert into department values (’1’,

’System Monitor’, ’1’, ’A00’, NULL)"
DB20000I The SQL command completed
successfully.

Application 2

Application 2 now has an exclusive lock on a row of the department table.

db2 +c select deptname from department

Application 1

Assuming cursor stability, Application 1 needs a share lock on each row of the depart-
ment table as the rows are fetched, but a lock on the last row cannot be obtained
because Application 2 has an exclusive lock on it. Application 1 enters a LOCK WAIT
state, while it waits for the lock to be released.

db2 +c select name from staff

Application 2

Application 2 also enters a LOCK WAIT state, while waiting for Application 1 to release
its exclusive lock on the last row of the staff table.

 Chapter 2. Using the Database System Monitor 11

These applications are now in a deadlock. This waiting will never be resolved because
each application is holding a resource that the other one needs to continue. Eventually,
the deadlock detector checks for deadlocks (see the dlchktime database manager con-
figuration parameter in the Administration Guide) and chooses a victim to rollback:

SQLN0991N The current transaction has been
rolled back because of a deadlock or timeout.
Reason code "2". SQLSTATE=40001

Application 2

At this point the event monitor logs a deadlock event to its target. Application 1 can
now continue:

DEPTNAME

PLANNING
INFORMATION CENTER
. . .

SOFTWARE SUPPORT
SYSTEM MONITOR

9 record(s) selected

Application 1

Because an event monitor buffers its output and this scenario did not generate enough
event records to fill a buffer, the event monitor is turned off to force it to flush its
buffers:

db2 "set event monitor dlockmon state 0"
DB20000I The SQL command completed
successfully.

Monitor Session

The event trace is written as a binary file. It that can now be formatted using the
db2evmon tool:

db2evmon -path /tmp/dlocks

Reading /tmp/dlocks/00000000.evt . . .

Monitor Session

This will format and print to stdout, a trace similar to the following:

12 System Monitor Guide and Reference

--

EVENT LOG HEADER

Event Monitor name: DLOCKMON

Server Product ID: SQL05000

Version of event monitor data: 5

Byte order: BIG ENDIAN

Number of nodes in db2 instance: 1

Codepage of database: 850

Country code of database: 1

Server instance name: bourbon

--

--

Database Name: SAMPLE

Database Path: /home/bourbon/bourbon/NODE0000/SQL00002/

First connection timestamp: 06-03-1997 13:31:13.607548

Event Monitor Start time: 06-03-1997 13:32:11.676071

--

3) Connection Header Event ...

Appl Handle: 0

Appl Id: *LOCAL.bourbon.970603173114 - Monitor session

Appl Seq number: 0001

DRDA AS Correlation Token: *LOCAL.bourbon.970603173113

 Program Name : db2bp_32

Authorization Id: BOURBON

 Execution Id : bourbon

Codepage Id: 850

Country code: 1

Client Process Id: 63590

Client Database Alias: sample

Client Product Id: SQL05000

Client Platform: AIX

Client Communication Protocol: Local

Client Network Name:

Connect timestamp: 06-03-1997 13:31:13.607548

4) Connection Header Event ...

Appl Handle: 1 - Application 1

Appl Id: *LOCAL.bourbon.970603173330

Appl Seq number: 0001

DRDA AS Correlation Token: *LOCAL.bourbon.970603173329

 Program Name : db2bp_32

Authorization Id: BOURBON

 Execution Id : bourbon

Codepage Id: 850

Country code: 1

Client Process Id: 119710

Client Database Alias: sample

Client Product Id: SQL05000

Client Platform: AIX

Client Communication Protocol: Local

Client Network Name:

Connect timestamp: 06-03-1997 13:33:29.518568

5) Connection Header Event ...

Appl Handle: 2

Appl Id: *LOCAL.bourbon.970603173409 - Application 2

Appl Seq number: 0001

DRDA AS Correlation Token: *LOCAL.bourbon.970603173408

 Program Name : db2bp_32

Authorization Id: BOURBON

 Execution Id : bourbon

Codepage Id: 850

Country code: 1

Client Process Id: 33984

Client Database Alias: sample

 Chapter 2. Using the Database System Monitor 13

Client Product Id: SQL05000

Client Platform: AIX

Client Communication Protocol: Local

Client Network Name:

Connect timestamp: 06-03-1997 13:34:08.972643

6) Deadlock Event ...

Number of applications deadlocked: 2 - Deadlock

Deadlock detection time: 06-03-1997 13:36:48.817786

Rolled back Appl Id: : *LOCAL.bourbon.970603173409

Rolled back Appl seq number: : 0001

7) Deadlocked Connection ...

Appl Id: *LOCAL.bourbon.970603173409

Appl Seq number: 0001

Appl Id of connection holding the lock: *LOCAL.bourbon.970603173330

Seq. no. of connection holding the lock:

Lock wait start time: 06-03-1997 13:36:43.251687

Deadlock detection time: 06-03-1997 13:36:48.817786

Table of lock waited on : STAFF

Schema of lock waited on : BOURBON

Tablespace of lock waited on : USERSPACE1

Type of lock: Row

Mode of lock: X

Lock object name: 39

8) Deadlocked Connection ...

Appl Id: *LOCAL.bourbon.970603173330

Appl Seq number: 0001

Appl Id of connection holding the lock: *LOCAL.bourbon.970603173409

Seq. no. of connection holding the lock:

Lock wait start time: 06-03-1997 13:35:32.227521

Deadlock detection time: 06-03-1997 13:36:48.817786

Table of lock waited on : DEPARTMENT

Schema of lock waited on : BOURBON

Tablespace of lock waited on : USERSPACE1

Type of lock: Row

Mode of lock: X

Lock object name: 15

This event monitor trace shows that there was 1 application connected to the database
when the event monitor was activated. This is indicated by the first Connection Header
Event record in the output (record number 3). A Connection Event Header is generated
for each active connection when an event monitor is turned on, and for each subse-
quent connection, once it becomes active. The other two Connection Headers, (records
4 and 5) were generated when the two applications connected.

The trace also shows that a deadlock occurred (record number 6). It shows which locks
on which tables caused this deadlock (record numbers 7 and 8), and which application
the deadlock detector chose to roll back (record number 6).

The db2eva graphical tool can also be used for formatting a trace. It is particularly
useful for handling file traces that are too large to be read with db2evmon. It displays
collected information in a tabular format. It includes a number of different view options,
which allows you to filter unwanted records and drill down to the periods of interest in
the trace. For instance, you can decide to display only the transaction events for a
given connection. It also allows you to view the statement text for static SQL that it
automatically fetches from the DB catalog (the text is only available for dynamic SQL in
the event monitor trace).

14 System Monitor Guide and Reference

You can invoke this tool with the db2eva command (see “db2eva - Event Analyzer
Command” on page 222), or by selecting the Event Analyzer from the GUI.

Note: The files must be available on the machine where you invoked db2eva.

The db2eva tool is available on OS/2 and Windows systems.

Authority Required for Event Monitoring
To define and use an event monitor on a database, you must have at least DBADM
authority on that database.

Using Event Monitors
As illustrated in the sample scenario, collecting system monitor data with an event
monitor is a three step process:

1. Create the event monitor
2. Activate the event monitor
3. Read the trace produced.

Create the event monitor.

Specify the events to be monitored. An event monitor is created and activated by using
SQL statements. Unlike snapshot monitoring, where data can be collected at the data-
base manager level, an event monitor only gathers data for a single database.

Creating an event monitor stores its definition in the event monitor database system
catalogs:

SYSCAT.EVENTMONITORS event monitors defined for the database
SYSCAT.EVENTS events monitored for the database

It is necessary to connect to the database when defining an event monitor.

Activate the event monitor.

Activating an event monitor starts a process or thread, which records monitor data to
either a named pipe or a file as events occur. You may want an event monitor to be
activated as soon as the database is started, so that all activity is monitored from
start-up. This can be done by creating an AUTOSTART event monitor:

db2 "create event monitor DLOCKMON
for deadlocks write to file ’/tmp/dlocks’
AUTOSTART"

This event monitor will be automatically started every time the database is activated,
either by using the ACTIVATE DATABASE command, or when the first application con-
nects. Note that creating an AUTOSTART event monitor does not activate it. This event

 Chapter 2. Using the Database System Monitor 15

monitor will be activated the next time the database is stopped and re-activated. An
event monitor that has not been automatically started must be manually started:

db2 set event monitor dlockmon state 1

All event monitors for a database are stopped when the database is deactivated.

Read the trace produced.

Reading a trace can be done using the db2evmon applet, or by writing your own appli-
cation (see Chapter 4, “Event Monitor Output” on page 195). The Control Center and
Event Analyzer (parts of the DB2 GUI) can be used to create and activate event moni-
tors, and to read the traces produced by FILE event monitors.

Figure 3 illustrates the process and interface for using event monitors.

DB2
Database Manager

Event
Monitor

SQL and CLP commands
create event monitor
set event monitor
drop event monitor
event_mon_state Control Center

Event Analyzer
(db2eva)

monitor
data

dbm
switches

GUI

system
catalog

named pipe

file(s)

db2evmon

db2evmon

Database
System
Monitor

event monitor
definitions

event
records

event
records

Figure 3. Event Monitoring Interfaces

16 System Monitor Guide and Reference

As illustrated in Figure 3, event monitors are created and activated using the following
SQL statements:

¹ CREATE EVENT MONITOR stores the event monitor definition in the database
system catalogs for event monitors.

¹ SET EVENT MONITOR activates the event monitor, starting an output thread that
will WRITE monitor data to either a file or named pipe. The trace produced can be
formatted by the db2evmon or db2eva tools.

¹ DROP EVENT MONITOR deletes the event monitor definition from the database
system catalogs for event monitors. An active event monitor cannot be dropped.

Querying the State of an Event Monitor
You can determine if an event monitor is active by using the SQL function
EVENT_MON_STATE:

db2 connect to sample
db2 "select evmonname, EVENT_MON_STATE(evmonname)
from syscat.eventmonitors"

NAME 2
-------------- -------
DLOCKMON 0

1 record(s) selected

A returned value of 0 indicates that the event monitor is inactive.

Information Available from Event Monitors
Event monitors return information that is similar to the information available using the
snapshot API. In these cases, it is an event that controls when the snapshot is taken.
For example, a connection event monitor basically takes an application snapshot just
before the connection is terminated.

 Chapter 2. Using the Database System Monitor 17

 Event Types
When you define an event monitor you must declare the event types that will be moni-
tored. The following table lists the event types supported and indicates the information
returned. Note: an event monitor can be defined for more than one event type.

Note: In addition to the above information, all event monitors trace the establishment
of connections to the database, by generating a connection header record for
each active connection when the event monitor is turned ON, and for each sub-
sequent connection, thereafter.

See “Output Stream Format” on page 195 for a list of the records generated for each
event type.

Event type When data is collected Information returned

Deadlock Detection of a deadlock The applications involved and locks in con-
tention.

Statements End of SQL statement Statement start/stop time, CPU used, text of
dynamic SQL, SQLCA (return code of SQL
statement), and other metrics such as fetch
count.

End of subsection For partitioned databases: CPU consumed,
execution time, table and tablequeue infor-
mation.

Transactions End of unit of work Unit of work start/stop time, previous UOW
time, CPU consumed, locking and logging
metrics.

Connections End of connection All application level counters.

Database Database deactivation or
last connect reset

All database level counters.

Buffer pools Counters for buffer pool, prefetchers, page
cleaners and direct I/O for each buffer pool.

Table spaces Counters for buffer pool, prefetchers, page
cleaners and direct I/O for each table space.

Tables Rows read/written for each table.

Using Pipe Event Monitors
A pipe event monitor allows you to process event records in real time. Another impor-
tant advantage to using pipe event monitors is that your application can ignore
unwanted data as it reads it off the pipe, giving the opportunity to considerably reduce
storage requirements. It also allows an application to store event monitor data, in real-
time, into an SQL database.

When you direct data to a pipe, I/O is always blocked and the only buffering is that
performed by the pipe. It is the responsibility of the monitoring application to promptly
read the data from the pipe as the event monitor writes the event data. If the event
monitor is unable to write the data to the pipe (for example, because the pipe is full),
monitor data will be lost.

18 System Monitor Guide and Reference

The steps for using pipe event monitors are essentially the same on all operating
systems. However, implementation can be different. The following section describes the
basic steps, and highlights the differences between UNIX based systems, Windows NT,
and OS/2.

1. Define the event monitor

db2 connect to sample

On AIX, and other UNIX platforms:

db2 create event monitor STMT2 for statements

write to PIPE '/tmp/evmpipe1'

On Windows NT:

db2 create event monitor STMT2 for statements

write to PIPE '\\.\pipe\evmpipe1'

 On OS/2:

db2 create event monitor STMT2 for statements

write to PIPE '\pipe\evmpipe1'

2. Create the named pipe

In UNIX (this includes AIX environments), use the mkfifo() function or mkfifo
command. In OS/2, use the DosCreateNPipe() function. In Windows NT, use the
CreateNamedPipe() function. The pipe name must be the same as the target path
specified on the CREATE EVENT MONITOR statement.

3. Open the named pipe

In UNIX, use the open() function. In OS/2, use the DosConnectNPipe() function. In
Windows NT, use the ConnectNamedPipe() function.

You can also use the db2evmon application, specifying the database and pipe
name, for example:

db2evmon -db sample -evm STMT2

This will open the named pipe and wait for the event monitor to write to it.

4. Activate the event monitor

If the event monitor is started automatically, you do not need to take any specific
action to start it unless the database is already active (however, the pipe must
already be opened).

db2 set event monitor stmt2 state 1

5. Read data from the named pipe

In UNIX, use the read() function. In OS/2, use the DosRead() function. In Windows
NT, use the ReadFile() function. Your application may stop reading data from the
pipe at any time. When it reads an EOF, there is no more monitor data. See
Chapter 4, “Event Monitor Output” on page 195 for how to read the event monitor
data.

6. Deactivate the event monitor

db2 set event monitor stmt2 state 0

This statement can be used to stop any event monitor, even one that was started
automatically. If you do not explicitly stop an event monitor, it will be stopped when:

 Chapter 2. Using the Database System Monitor 19

¹ The last application disconnects from the database

¹ It experiences an error while writing to the named pipe: for example, the moni-
toring application closes the pipe before deactivating the event monitor. In this
case, the event monitor will turn itself off and log a system-error-level message
in the diagnostic log, db2diag.log.

7. Close the named pipe.

In UNIX, use the close() function. In OS/2, use the DosDisConnectNPipe() function.
In Windows NT, use the DisconnectNamedPipe() function.

8. Delete the named pipe.

In UNIX, use the unlink() function. In OS/2, use the DosClose() function. In
Windows NT, use the CloseHandle() function.

For UNIX-based operating systems, named pipes are like files, so you do not have to
delete them and create them again before each use.

 Pipe Overflows
In addition, there must be enough space in the named pipe. If the application does not
read the data fast enough from the named pipe, the pipe will fill up and overflow. Pipe
overflows can also occur on platforms (such as OS/2) where the creator of the pipe can
define the size of the named pipe buffer. The smaller the buffer, the greater the chance
of an overflow occurring. When a pipe overflow occurs, the monitor creates overflow
event records indicating that an overflow has occurred. The event monitor is not turned
off, but monitor data is lost. If there are outstanding overflow event records when the
monitor is deactivated, a diagnostic message will be logged. Otherwise, the overflow
event records will be written to the pipe when possible.

If your operating system allows you to define the size of the pipe buffer, use a pipe
buffer of at least 32K. For high-volume event monitors, you should set the monitoring
application's process priority equal to or higher (lower nice value on AIX) than the agent
process priority (see the section on Priority of Agents in the Administration Guide).

When Counters are Initialized
The data collected by the database manager includes several accumulating counters.
These counters are incremented during the operation of the database, for example,
every time an application commits a transaction.

Counters are initialized when their applicable object becomes active. For example, the
number of buffer pool pages read for a database (a basic element) is set to zero when
the database is activated.

Counters under switch control are reset to zero when their associated switch is turned
on.

Counters returned by event monitors are reset to zero when the event monitor is acti-
vated.

20 System Monitor Guide and Reference

Resetting Monitor Data
Each event monitor and any application using the snapshot monitor APIs has its own
logical view of the DB2 monitor data and switches. This means that when counters are
reset or initialized, it only affects the event monitor or application that reset or initialized
them.

Event monitor data cannot be reset, except by turning the monitor off, and then on
again.

An application taking snapshots can reset its view of the counters at any time by using
the RESET MONITOR command.

When issuing its first snapshot API, an application inherits the default settings from the
database manager configuration. For example, assuming that the statement switch was
set in the database manager configuration file:

db2 update dbm cfg using DFT_MON_STMT on

 db2start

Issuing a GET MONITOR SWITCHES command will show that the statement switch is
ON.

db2 get monitor switches

Monitor Recording Switches

Buffer Pool Activity Information (BUFFERPOOL) = OFF

Lock Information (LOCK) = OFF

Sorting Information (SORT) = OFF

SQL Statement Information (STATEMENT) = ON 05-25-1997 10:44:34.820446

Table Activity Information (TABLE) = OFF

Unit of Work Information (UOW) = OFF

Turning OFF the statement switch from the command line will only affect the application
issuing the command. The statement switch will still be ON for other applications
(unless they have also turned it OFF). For example:

db2 update monitor switches using STATEMENT OFF

DB20000I The UPDATE MONITOR SWITCHES command completed successfully

Then query your application’s switches.

db2 get monitor switches

 Chapter 2. Using the Database System Monitor 21

Monitor Recording Switches

Buffer Pool Activity Information (BUFFERPOOL) = OFF

Lock Information (LOCK) = OFF

Sorting Information (SORT) = OFF

SQL Statement Information (STATEMENT) = OFF

Table Activity Information (TABLE) = OFF

Unit of Work Information (UOW) = OFF

Querying the database manager switches will show that the update did not affect its
settings:

db2 get database manager monitor switches

DBM System Monitor Information Collected

Buffer Pool Activity Information (BUFFERPOOL) = OFF

Lock Information (LOCK) = OFF

Sorting Information (SORT) = OFF

SQL Statement Information (STATEMENT) = ON 05-25-1997 10:44:34

Table Activity Information (TABLE) = OFF

Unit of Work Information (UOW) = OFF

When a monitoring application turns off a monitor switch or resets a data element
counter, the DB2 server does not reset its own internal counters. Instead, it re-initialize
the private logical view for that user. Other monitoring applications or event monitors
are not affected.

You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the UPDATE
MONITOR SWITCHES command. See “UPDATE MONITOR SWITCHES Command”
on page 266 for information on this command.

The database manager keeps track of all the applications using the snapshot monitor
APIs and their switch settings. If a switch is set in its configuration, then the database
manager always collects that monitor data. If a switch is OFF in the configuration, then
the database manager will collect data as long as there is at least one application with
this switch turned ON.

Chapter 3, “Database System Monitor Data Elements” on page 31 shows the data ele-
ments associated with each switch group.

Internally, event monitors also use switches to instruct the engine as to which data
should be collected. However, this is an implementation issue, and the switch settings
for a particular event monitor cannot be queried.

An actual DBMS monitor switch is set as long as at least one application or event
monitor needs it, or if it is set in the configuration file.

22 System Monitor Guide and Reference

System Monitor Memory Requirements - (mon_heap_sz)
The memory required for maintaining the private views of the database system monitor
system monitor data is allocated from the monitor heap. Its size is controlled by the
mon_heap_sz configuration parameter. The amount of memory required for monitoring
activity varies widely depending on the number of monitoring applications and event
monitors, the switches set, and the level of database activity. The following formula pro-
vides an approximation of the number of pages required for the monitor heap.

(number of monitoring applications + 1) *

(number of databases *

(800 + (number of tables accessed * 20) +

((number of applications connected + 1) *

(600 + (number of table spaces * 100)))))

 / 4096

You may need to experiment with this value, increasing it if monitor commands occa-
sionally fail with an SQLCODE of -973, when the database manager switches are on.

Partitioned Database Considerations
The database system monitor interface is the same for all types of systems, whether
they use single partition or multiple partition databases and whether intra-query
parallelism is used. All the commands and APIs are exactly the same. The only differ-
ence is the output; more complex systems generally return more information.

Taking a Snapshot on Multi-node Systems
On systems that use inter-partition parallelism, taking a snapshot only returns monitor
data from the instance where the application is attached. For example, assuming a
table that is located in two database partitions, that is some of its rows are stored on
one node (Node 100) and others are stored on another node (Node 200).

db2 connect to sample
db2 list applications

Auth Id Appl Appl Application Id DB # of
Name Handle Name Agents

BOURBON db2bp_32 6553638 *LOCAL.bourbon.970414221746 SAMPLE 1

Node 100

Taking a snapshot on Node 200 initially returns no data:

Note: The LIST APPLICATION command uses the database system monitor. Invoking
it actually calls the the snapshot API sqlmonss() with a request of type
SQLMA_APPLINFO_ALL.

 Chapter 2. Using the Database System Monitor 23

db2 list applications
SQL1611W No data was returned from Database System Monitor.

Node 200

Now, issuing a query from Node 100 will result in a secondary connection to Node 200
to fetch the rows that reside in that partition:

db2 +c select lastname from employee

Huras
Ofer
Bourbonnais
Musker
Cartwright

Node 100

Now there is a subagent for the application running on Node 200:

db2 list applications

Auth Id Appl Appl Application Id DB # of
Name Handle Name Agents

BOURBON db2bp_32 6553638 *LOCAL.bourbon.970414221746 SAMPLE 1

Node 200

And there are now two agents running on Node 100; the coordinator agent and a
subagent:

db2 list applications

Auth Id Appl Appl Application Id DB # of
Name Handle Name Agents

BOURBON db2bp_32 6553638 *LOCAL.bourbon.970414221746 SAMPLE

Node 100

2

On the non-coordinating node, you can determine where the coordinator resides, and
check if the application originated on the node that issued the snapshot, using:

24 System Monitor Guide and Reference

db2 list application show detail

Appl Application Id Coordinating Coordinator
Handle Node Number pid/thread

6553638 *LOCAL.bourbon.970414221746 100 66204

Node 200

The Application Handle returned, 6553638 is unique across all nodes. The node
number corresponds to one of the nodes listed in the db2nodes.cfg configuration file
(see the Administration Guide).

Using the application handle, you can request monitor information on any node by
issuing a GET SNAPSHOT FOR APPLICATION, which will return data if the application
is connected on that node. You can also FORCE the application, which will work from
any node:

db2 force application (6553638)
DB20000I The FORCE APPLICATION command completed successfully.
DB221024I This command is asynchronous and may not be ef fective
immediately.

Node 200

Using Event Monitors on Multi-node Systems
An event monitor uses an operating system process or a thread to write its trace. The
node where this process or thread runs is called the monitor node . An event monitor
can be monitoring events as they occur locally on the monitor node, or globally as they
occur on any node where the DB2 database manager is running. A global event
monitor writes a single trace that contains activity from all nodes.

Whether an event monitor is local or global is referred to as its monitoring scope .
Both the monitor node and monitor scope are part of an event monitor’s definition. For
example:

db2 connect to sample
db2 "create event monitor DLOCKS for

deadlocks write to file ’/tmp/dlocks’
ON NODE 5 GLOBAL"

This global event monitor will report deadlocks that involve any nodes in the system. Its
I/O component will physically run on Node 5, writing its records to files in the
/tmp/dlocks directory on that node.

 Chapter 2. Using the Database System Monitor 25

You can look at the definition for this monitor in the system catalog:

db2 "select evmonname,nodenum, monscope
from syscat.eventmonitors"

EVMONNAME NODENUM MONSCOPE
------------------ --------------- ----------------
DLOCKS 5 G

1 record(s) selected

The returned information shows event monitor DLOCKS is defined as global and its
monitor node is 5.

Note: In DB2 Version 5, only deadlock event monitors can be defined as global, all
other event monitors must be defined as local.

 Monitoring Subsections
On systems that use inter-partition parallelism, the SQL compiler partitions the access
plan for an SQL statement into subsections . Each subsection is executed by a dif-
ferent DB2 agent.

The access plan for an SQL statement generated by the DB2 code generator during
compilation can be obtained using the db2expln or dynexpln commands (see the
Command Reference). As an example, selecting all the rows from a table that is parti-
tioned across several nodes might result in an access plan having two subsections:

1. Subsection 0, the coordinator subsection, whose role is to collect rows fetched by
the other DB2 agents (subagents) and return them to the application.

2. Subsection 1, whose role is to perform a table scan and return the rows to the
coordinating agent.

In this simple example, subsection 1 would be distributed across all the database parti-
tions. There would be a subagent executing this subsection on each physical node of
the nodegroup to which this table belongs. See Administration Guide for more infor-
mation on these concepts.

The database system monitor allows you to correlate run-time information with the
access plan, which is compile-time information. With inter-partition parallelism, it breaks
information down to the subsection level. For example, when the statement monitor
switch is ON, a GET SNAPSHOT FOR APPLICATION will return information for each
subsection executing on this node, as well as totals for the statement.

The subsection information returned for an application snapshot includes:

¹ the number of table rows read/written
 ¹ CPU consumption
 ¹ elapsed time

26 System Monitor Guide and Reference

¹ the number of tablequeue rows sent and received from other agents working on
this statement. This allows you to track the execution of a long running query by
taking a series of snapshots.

¹ subsection status. If the subsection is in a WAIT state, because it is waiting for
another agent to send or receive data, then the information also identifies the node
or nodes preventing the subsection from progressing in its execution. You may
then take a snapshot on these nodes to investigate the situation.

The information logged by a statement event monitor for each subsection after it has
finished executing includes: CPU consumption, total execution, time, and several other
counters.

DB2 Productivity Tools
The database system monitor is a very powerful function of the DB2 database
manager. It can be exploited to develop productivity tools for the database administrator
(DBA) and database developer. The following are a few examples of productivity tools
that use the function of the database system monitor, and are included with the DB2
product:

 ¹ db2batch

An application that uses snapshot monitoring to collect metrics for tuning SQL
queries. It can be found in sqllib/misc/db2batch. See the Administration Guide for
more information.

 ¹ db2gov

The DB2 governor is an application that uses snapshot monitoring to supervise the
load and usage of the database manager. It provides the functions to FORCE or
change the run-time priority of applications exceeding certain limits. These limits
are specified by the DBA in the db2gov configuration file. Application limits and
privileges can be expressed using several different parameters, for example
maximum amount of CPU. It can be found in sqllib/adm/db2gov. See Adminis-
tration Guide for more information.

 ¹ db2evmon

An application that formats the data stream created by an event monitor. It can be
found in sqllib/misc/db2evmon.

 ¹ Control Center

A GUI for snapshot and event monitoring. For snapshots, it allows you to define
performance variables in terms of the metrics returned by the database system
monitor and graph them over time. For example, you can request that it take a
snapshot and graph the progression of a performance variable over the last eight
hours. Alerts can be set to notify the DBA when certain threshold are reached. For
event monitors, it allows you to create, activate, start, stop, and delete event moni-
tors. See the online help for the Control Center for more information.

 Chapter 2. Using the Database System Monitor 27

 ¹ Event Analyzer

A GUI for viewing file event monitor traces. Information collected on connections,
deadlocks, overflows, transactions, statements, and subsections is organized and
displayed in a tabular format. See the online help for the Event Analyzer for more
information.

System Monitor Definitions
 ¹ Data Element

A piece of information collected by the database system monitor. Snapshot and
Event Monitors are the two different interfaces for accessing data elements. Some
elements are only accessible with the event monitor (for example, connections
involved in a deadlock), and others are only available with snapshot monitoring (for
example, data maintained at the database manager level - total number of data-
base agents).

¹ Basic Data Element

Performance data that is always collected or maintained by the DB2 server, even
when all monitor switches are off.

¹ Database System Monitor

The function of the DB2 database manager that maintains information about its
operation and performance.

 ¹ Event Analyzer

A function of the DB2 administration GUI for viewing event monitor traces.

 ¹ Event Monitoring

Using an event monitor to monitor database activity and performance by obtaining
traces of the data collected when specific events occur (for example, the end of a
transaction). It is requested from the DB2 server using an SQL interface.

 ¹ Monitor Switch

Instructs the DB2 database manager to collect those data elements that involve a
non-negligible processing or memory overhead for a group of monitor data.

¹ Monitored Level or Object

An object about which the database system monitor can return performance, infor-
mational, or status data: for example, the database manager, a database, a con-
nection, or a transaction.

 ¹ Monitoring Application

An application using the snapshot API or an event monitor. Each monitoring appli-
cation has its own logical view of the data collected by the DB2 server. This
means that if a monitoring application resets its counters, it does not affect the
counters collected by other monitoring applications. The reset API resets counters
for snapshot monitoring. Turning off/on an event monitor resets its counters.

28 System Monitor Guide and Reference

Counters and switches can only be reset for an event monitor by deactivating and
reactivating it.

 ¹ Snapshot Monitoring

Using the system monitor API to monitor database activity and performance by
sampling the monitor data maintained by the DB2 server. This API consists of:

sqlmon() set or query monitor switch settings
sqlmonrset() reset system monitor counters
sqlmonss() take a snapshot
sqlmonsz() estimate the size of the data that would be returned for a partic-

ular invocation of sqlmonss()

 ¹ Snapshot Monitor

A function of the Control Center GUI for snapshot monitoring. It provides the ability
to follow trends, define performance variables in terms of data elements, and set
alerts when thresholds for these variables are reached.

 Chapter 2. Using the Database System Monitor 29

30 System Monitor Guide and Reference

Chapter 3. Database System Monitor Data Elements

This chapter describes the information that is available from the database system
monitor. The information returned by database system monitor falls into the following
categories:

¹ identification for the database manager, an application, or a database connection
being monitored.

¹ data primarily intended to help you to configure the system.
¹ database activity at various levels including application, table, or statement. This

information can be used for activity monitoring, problem determination, and per-
formance analysis. But it can also be used for configuration.

In this chapter, data elements are organized by their primary use category. When
applicable, elements that have multiple uses may be referred to by associated elements
in other categories. Multi-use data element information only appears in its main cate-
gory, it is not duplicated in other categories. Refer to data elements in the Index, if you
have trouble finding a data element.

The information is grouped as follows:

¹ “Server Identification and Status” on page 33
¹ “Database Identification and Status” on page 39
¹ “Application Identification and Status” on page 44

– “DB2 Agent Information” on page 66
¹ “Database Manager Configuration” on page 66

– “Agents and Connections” on page 67
– “Sort” on page 78
– “Fast Communication Manager” on page 84

¹ “Database Configuration” on page 90
– “Buffer Pool Activity” on page 90

- “Extended Storage” on page 110
– “Non-buffered I/O Activity” on page 114
– “Catalog Cache” on page 119
– “Package Cache” on page 122
– “Database Heap” on page 126
– “Logging” on page 127

¹ “Database and Application Activity” on page 130
– “Locks and Deadlocks” on page 130
– “Lock Wait Information” on page 140
– “Rollforward Monitoring” on page 147
– “Table Activity” on page 149
– “SQL Cursors” on page 160
– “SQL Statement Activity” on page 164
– “SQL Statement Details” on page 174
– “Subsection Details” on page 183
– “Intra-query Parallelism” on page 189
– “CPU Usage” on page 191
– “Snapshot Monitoring Elements” on page 192

 Copyright IBM Corp. 1993, 1997 31

Note: For Extended Enterprise Edition users, snapshot elements only apply to the par-
tition where the snapshot was issued.

How to Read the Data Element Tables
The section for each data element begins with a table that lists standard information.
An example is shown in Figure 4, followed by an explanation of each part of the table.

Snapshot Information Level

Event Type
Database
Connection
Statement

API Element Name
Element Type

Related Information

Database
Application

Resettable

API Structure(s)

Event Record(s)
sqlm_db_event
sqlm_conn_event
sqlm_stmt_event

total_sorts
counter

See Resettable
See Switches
See Sort Overflows

sqlm_dbase
sqlm_appl

Yes

Monitor Switch
Sort
Sort

1

5

4

6

7

8

32

Figure 4. Sample Element Table

1. The level of information that can be captured by the snapshot monitor.

2. The API structures where captured snapshot information is returned.

3. The snapshot monitor switch that must be set to obtain this information.

4. Whether or not the counter can be reset (snapshot monitor only).

5. The event monitor must be created with this event type to collect this information.

6. The data structure where captured event information is returned.

7. The name and type of element, as returned in the API structure or event record.

8. References to related data elements.

This table is followed by a description of the element and information on how you can
use it when monitoring your database.

32 System Monitor Guide and Reference

 Element Types
Data elements are classified by the following categories:

 ¹ Counter

A counter counts the number of times an activity occurs. Counter values increase
during monitoring. Most are resettable.

 ¹ Gauge

A gauge indicates the current value for an item. This value can go up and down
depending on database activity (for example, the number of locks held).

 ¹ Water mark

A water mark indicates the highest (maximum) or lowest (minimum) value an
element reached since monitoring was started. These are not resettable.

 ¹ Information

An information element provides reference-type details of your monitoring activities.
This can include items such as node names, aliases, and path details.

 ¹ Timestamp

A timestamp indicates the date and time that an activity took place, by providing
the number of seconds and microseconds that have elapsed since January 1,
1970. In the C language, for example, this can be converted to calendar date and
time using the ctime() function.

 ¹ Time

Time returns the number of seconds and microseconds spent on an activity.

Server Identification and Status
The following elements provide identification and status information about the server:

¹ “Start Database Manager Timestamp” on page 34
¹ “Configuration NNAME at Monitoring (Server) Node” on page 34
¹ “Server Instance Name” on page 35
¹ “Database Manager Type at Monitored (Server) Node” on page 35
¹ “Server Product/Version ID” on page 36
¹ “Server Version” on page 36
¹ “Service Level” on page 37
¹ “Server Operating System” on page 37
¹ “Product Name” on page 38
¹ “Product Identification” on page 38
¹ “Status of DB2 Instance” on page 39

 Chapter 3. Database System Monitor Data Elements 33

Start Database Manager Timestamp

Description: The date and time that the database manager was started using the
db2start command.

Usage: This element may be used with the Snapshot Time monitor element to calcu-
late the elapsed time since the database manager was started up until the snapshot
was taken.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_db2

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

db2start_time
timestamp

Related Information ¹ “Snapshot Time” on page 193

Configuration NNAME at Monitoring (Server) Node

Description: The name of the node being monitored by the database system monitor.

Usage: This element can be used to identify the database server node you are moni-
toring. This information can be useful if you are saving your monitor output in a file or
database for later analysis and you need to differentiate the data from different data-
base server nodes. This node name is determined based on the nname configuration
parameter.

If you are using the database system monitor APIs, note that the API constant
SQLM_IDENT_SZ is used to define the length of this element. Only the first 8 charac-
ters are currently used.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_collected

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

server_nname
information

Related Information ¹ “Configuration NNAME of Client” on page 53

34 System Monitor Guide and Reference

Server Instance Name

Description: The name of the database manager instance for which the snapshot was
taken.

Usage: If more than one instance of the database manager is present on the same
system, this data item is used to uniquely identify the instance for which the snapshot
call was issued. Along with Configuration NNAME at Monitoring (Server) Node, this
information can be useful if you are saving your monitor output in a file or database for
later analysis, and you need to differentiate the data from different instances of the
database manager.

If you are using the database system monitor APIs, note that the API constant
SQLM_IDENT_SZ is used to define the length of this element. Only the first 8 charac-
ters are currently used.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_collected

Monitor Switch
Basic

Resettable No

Event Type
Event Log Header

Event Record(s)
sqlm_event_log_header

API Element Name
Element Type

server_instance_name
information

Related Information ¹ “Configuration NNAME at Monitoring (Server) Node”
on page 34

Database Manager Type at Monitored (Server) Node

Description: Identifies the type of database manager being monitored.

Usage: It contains one of the following types of configurations for the database
manager:

API Symbolic Constant Command Line Processor Output
sqlf_nt_server Database Server with local and remote clients
sqlf_nt_stand_req Database Server with local clients

The API symbolic constants are defined in the include file sqlutil.h.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_collected

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

server_db2_type
information

Related Information ¹ “Configuration NNAME at Monitoring (Server) Node”
on page 34

 Chapter 3. Database System Monitor Data Elements 35

Server Product/Version ID

Description: The product and version that is running on the server.

Usage: It is in the form PPPVVRRM, where:

PPP is SQL

VV identifies a 2-digit version number (with high-order 0 in the case of a 1-digit
version)

RR identifies a 2-digit release number (with high-order 0 in the case of a 1-digit
release)

M identifies a 1-digit modification level

If you are using the database system monitor APIs, note that the API constant
SQLM_IDENT_SZ is used to define the length of this element. Only the first 8 charac-
ters are currently used.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_collected

Monitor Switch
Basic

Resettable No

Event Type
Database Manager

Event Record(s)
sqlm_event_log_header

API Element Name
Element Type

server_prdid
information

Related Information ¹ “Client Product/Version ID” on page 53

 Server Version

Description: The version of the server returning the information.

Usage: This field identifies the level of the database server collecting database system
monitor information. This allows applications to interpret the data based on the level of
the server returning the data. Valid values are:

SQLM_VERSION1 Data was returned by DB2 Version 1

SQLM_VERSION2 Data was returned by DB2 Version 2

SQLM_VERSION5 Data was returned by DB2 Universal Database Version 5

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_collected

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

server_version
information

Related Information ¹ “Server Product/Version ID” on page 36

36 System Monitor Guide and Reference

 Service Level

Description: This is the current corrective service level of the server.

Usage: Used to provide information when requesting service or reporting a problem
with DB2 on OS/2. This element will be blank for non-OS/2 systems.

Note: This element is similar to the corr_serv_lvl field in the sqlestat output. See
Appendix C, “DB2 Version 1 sqlestat Users” on page 271 for more information
on sqlestat equivalent data elements.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_db2

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

service_level
information

Related Information ¹ “Product Identification” on page 38

Server Operating System

Description: The operating system running the database server.

Usage: This element can be used for problem determination for remote applications.
Values for this field can be found in the header file sqlmon.h.

Note: This element is similar to the db_type field in the sqlestat output. See
Appendix C, “DB2 Version 1 sqlestat Users” on page 271 for more information
on sqlestat equivalent data elements.

Snapshot Information Level
Database

API Structure(s)
sqlm_dbase

Monitor Switch
Basic

Resettable No

Event Type
Database

Event Record(s)
sqlm_db_event

API Element Name
Element Type

server_platform
information

Related Information ¹ “Client Operating Platform” on page 58
¹ “Database Location” on page 43

 Chapter 3. Database System Monitor Data Elements 37

 Product Name

Description: Details of the version of the server that is running.

Usage: Used to provide information when requesting service or reporting a problem
with DB2 on OS/2. This element will be blank for non-OS/2 systems.

Note: This element is similar to the product_name field in the sqlestat output. See
Appendix C, “DB2 Version 1 sqlestat Users” on page 271 for more information
on sqlestat equivalent data elements.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_db2

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

product_name
information

Related Information ¹ “Product Identification” on page 38
¹ “Service Level” on page 37

 Product Identification

Description: Details of the type of the server that is running.

Usage: Used to provide information when requesting service or reporting a problem
with DB2 on OS/2. This element will be blank for non-OS/2 systems.

Note: This element is similar to the component_id field in the sqlestat output. See
Appendix C, “DB2 Version 1 sqlestat Users” on page 271 for more information
on sqlestat equivalent data elements.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_db2

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

component_id
information

Related Information ¹ “Product Name” on page 38
¹ “Service Level” on page 37

38 System Monitor Guide and Reference

Status of DB2 Instance

Description: The current status of the instance of the database manager.

Usage: You can use this element to determine the state of your database manager
instance.

The value returned is always SQLM_DB2_ACTIVE.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_db2

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

db2_status
information

Related Information ¹ “Status of Database” on page 42

Database Identification and Status
The following elements provide identification and status information about the database:

 ¹ “Database Name”
¹ “Database Path” on page 40
¹ “Database Activation Timestamp” on page 41
¹ “Database Deactivation Timestamp” on page 41
¹ “Status of Database” on page 42
¹ “Catalog Node Network Name” on page 42
¹ “Database Location” on page 43
¹ “Catalog Node Number” on page 43
¹ “Last Backup Timestamp” on page 44

 Database Name
Snapshot Information Level
Database
Application
Table Space

Table
Lock
DCS Application

API Structure(s)
sqlm_dbase
sqlm_appl_id_info
sqlm_tablespace_header
sqlm_bufferpool
sqlm_table_header
sqlm_dbase_lock
sqlm_dcs_applinfo

Monitor Switch
Basic
Basic
Buffer Pool
Buffer Pool
Table
Basic
Basic

Resettable No

Event Type
Database

Event Record(s)
sqlm_dbheader_event

API Element Name
Element Type

db_name
information

 Chapter 3. Database System Monitor Data Elements 39

Description: The real name of the database for which information is collected or to
which the application is connected. This is the name the database was given when
created.

Usage: You may use this element to identify the specific database to which the data
applies.

For applications that are not using DDCS to connect to a DRDA host database, you
can use this element in conjunction with the Database Path monitor element to uniquely
identify the database and help relate the different levels of information provided by the
monitor.

If you are using the database system monitor APIs, note that the API constant
SQLM_IDENT_SZ is used to define the length of this element. Only the first 8 charac-
ters are currently used for DB2 databases, and the first 18 characters are used for
DRDA host databases.

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Last Reset Timestamp” on page 192
¹ “Input Database Alias” on page 193
¹ “Database Alias Used by Application” on page 54
¹ “Database Path” on page 40

 Database Path

Description: The full path of the location where the database is stored on the moni-
tored system.

Usage: This element can be used with the Database Name monitor element to identify
the specific database to which the data applies.

Snapshot Information Level
Database
Application
Table Space

Table
Lock

API Structure(s)
sqlm_dbase
sqlm_appl_id_info
sqlm_tablespace_header
sqlm_bufferpool
sqlm_table_header
sqlm_dbase_lock

Monitor Switch
Basic
Basic
Buffer Pool
Buffer Pool
Table
Basic

Resettable No

Event Type
Database

Event Record(s)
sqlm_dbheader_event

API Element Name
Element Type

db_path
information

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Input Database Alias” on page 193
¹ “Database Name” on page 39

40 System Monitor Guide and Reference

Database Activation Timestamp

Description: The date and time of the connection to the database (at the database
level, this is the first connection to the database), or when the activate database was
issued.

Usage: Use this element with the Database Deactivation Timestamp monitor element
to calculate the total connection time.

Snapshot Information Level
Database
Table Space
Table

API Structure(s)
sqlm_dbase
sqlm_tablespace_header
sqlm_table_header

Monitor Switch
Basic
Buffer Pool
Basic

Resettable No

Event Type
Database

Connection

Event Record(s)
sqlm_db_event
sqlm_dbheader_event
sqlm_connheader_event

API Element Name

Element Type

db_conn_time
conn_time
timestamp

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Connection Request Start Timestamp” on page 62
¹ “Snapshot Time” on page 193

Database Deactivation Timestamp

Description: The date and time that the application disconnected from the database
(at the database level, this is the time the last application disconnected).

Usage: Use this element to calculate the elapsed time since:

¹ The database was active (for information at the database level)
¹ The connection was active (for information at the connection level).

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

disconn_time
timestamp

Related Information ¹ None

 Chapter 3. Database System Monitor Data Elements 41

Status of Database

Description: The current status of the database.

Usage: You can use this element to determine the state of your database.

Values for this field are:

Snapshot Information Level
Database

API Structure(s)
sqlm_dbase

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

db_status
information

Related Information ¹ “Status of DB2 Instance” on page 39

API Constant Description

SQLM_DB_ACTIVE The database is active.

SQLM_DB_QUIESCE_PEND The database is in quiesce-pending state. New connections
to the database are not permitted and new units of work
cannot be started. Depending on the quiesce request,
active units of work will be allowed to complete or will be
rolled back immediately.

SQLM_DB_QUIESCED The database has been quiesced. New connections to the
database are not permitted and new units of work cannot
be started.

SQLM_DB_ROLLFWD A rollforward is in progress on the database.

Catalog Node Network Name

Description: The network name of the catalog node. On OS/2, the netbios name of
the server where the database is located.

Usage: Use this element to determine the location of a database.

Note: This element is similar to the node field in the sqlestat output. See Appendix C,
“DB2 Version 1 sqlestat Users” on page 271 for more information on sqlestat
equivalent data elements.

Snapshot Information Level
Database

API Structure(s)
sqlm_dbase

Monitor Switch
Basic

Resettable No

Event Type
Database

Event Record(s)
sqlm_db_event

API Element Name
Element Type

catalog_node_name
information

Related Information ¹ None

42 System Monitor Guide and Reference

 Database Location

Description: The location of the database in relation to the application.

Usage: Determine the relative location of the database server with respect to the
application taking the snapshot. Values are:

 ¹ SQLM_LOCAL
 ¹ SQLM_REMOTE

Note: This element is similar to the location field in the sqlestat output. See
Appendix C, “DB2 Version 1 sqlestat Users” on page 271 for more information
on sqlestat equivalent data elements.

Snapshot Information Level
Database

API Structure(s)
sqlm_dbase

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

db_location
information

Related Information ¹ “Server Operating System” on page 37

Catalog Node Number

Description: The node number of the node where the database catalog tables are
stored.

Usage: The catalog node is the node where all system catalog tables are stored. All
access to system catalog tables must go through this node. See the Administration
Guide for information on system catalog tables.

Snapshot Information Level
Database

API Structure(s)
sqlm_dbase

Monitor Switch
Basic

Resettable No

Event Type
Database

Event Record(s)
sqlm_db_event

API Element Name
Element Type

catalog_node
information

Related Information ¹ None

 Chapter 3. Database System Monitor Data Elements 43

Last Backup Timestamp

Description: The date and time that the latest database backup was completed.

Usage: You may use this element to help you identify a database that has not been
backed up recently, or to identify which database backup file is the most recent. If the
database has never been backed up, this timestamp is initialized to zero.

Snapshot Information Level
Database

API Structure(s)
sqlm_dbase

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

last_backup
timestamp

Related Information ¹ None

Application Identification and Status
The following elements provide information about databases and their related applica-
tions.

¹ “Application Handle (agent ID)” on page 45
¹ “Application Status” on page 46
¹ “ID of Code Page Used by Application” on page 48
¹ “Application Status Change Time” on page 48
¹ “Application Name” on page 49
¹ “Application ID” on page 50
¹ “Sequence Number” on page 52
¹ “Authorization ID” on page 52
¹ “Configuration NNAME of Client” on page 53
¹ “Client Product/Version ID” on page 53
¹ “Database Alias Used by Application” on page 54
¹ “Host Product/Version ID” on page 55
¹ “Outbound Application ID” on page 55
¹ “Outbound Sequence Number” on page 56
¹ “User Login ID” on page 56
¹ “DRDA Correlation Token” on page 57
¹ “Client Process ID” on page 57
¹ “Client Operating Platform” on page 58
¹ “Client Communication Protocol” on page 58
¹ “Database Country Code” on page 59
¹ “Application Agent Priority” on page 59
¹ “Application Priority Type” on page 60
¹ “User Authorization Level” on page 60
¹ “Coordinating Node” on page 61
¹ “Connection Request Start Timestamp” on page 62
¹ “Connection Request Completion Timestamp” on page 62
¹ “Previous Unit of Work Completion Timestamp” on page 62
¹ “Unit of Work Start Timestamp” on page 63

44 System Monitor Guide and Reference

¹ “Unit of Work Stop Timestamp” on page 64
¹ “Unit of Work Completion Status” on page 65
¹ “Previous Transaction Stop Time” on page 65
¹ “Application Idle Time” on page 66

Application Handle (agent ID)

Description: A system-wide unique ID for the application. On multi-node systems,
where a database is partitioned, this ID will be the same on every node where the
application may make a secondary connection.

Usage: The application handle can be used to uniquely identify an active application
(application handle is synonymous with agent Id).

Note: The name agent_id is still used in the APIs, so that old applications can still be
compiled with the Version 5 header files.

It can be used as input to GET SNAPSHOT commands that require an agent Id.

When reading event traces, it can be used to match event records with a given applica-
tion.

It can be used as input to the FORCE APPLICATION command or API. On multi-node
systems this command can be issued from any node where the application has a con-
nection. Its effect is global

Snapshot Information Level
Application
Lock
DCS Application

API Structure(s)
sqlm_appl_id_info
sqlm_appl_lock
sqlm_dcs_applinfo

Monitor Switch
Basic
Basic
Basic

Resettable No

Event Type
Connection
Statement

Event Record(s)
sqlm_connheader_event
sqlm_stmt_event
sqlm_subsection_event

API Element Name
Element Type

agent_id
information

Related Information ¹ None

 Chapter 3. Database System Monitor Data Elements 45

 Application Status

Description: The current status of the application.

Usage: This element can help you diagnose potential application problems. Values for
this field are:

Snapshot Information Level
Application
Lock

API Structure(s)
sqlm_appl_id_info
sqlm_appl_lock

Monitor Switch
Basic
Basic

Resettable No

API Element Name
Element Type

appl_status
information

Related Information ¹ “Application Status Change Time” on page 48
¹ “Statement Operation” on page 176

API Constant Description

SQLM_CONNECTPEND Database Connect Pending: The application has initi-
ated a database connection but the request has not yet
completed.

SQLM_CONNECTED Database Connect Completed: The application has
initiated a database connection and the request has com-
pleted.

SQLM_UOWEXEC Unit of Work Executing: The database manager is
executing requests on behalf of the unit of work.

SQLM_UOWWAIT Unit of Work waiting: The database manager is
waiting on behalf of the unit of work in the application.
This status typically means that the system is executing
in the application's code.

SQLM_LOCKWAIT Lock Wait: The unit of work is waiting for a lock. After
the lock is granted, the status is restored to its previous
value.

SQLM_COMMIT_ACT Commit Active: The unit of work is committing its data-
base changes.

SQLM_ROLLBACK_ACT Rollback Active: The unit of work is rolling back its
database changes.

SQLM_RECOMP Recompiling: The database manager is recompiling
(that is, rebinding) a plan on behalf of the application.

SQLM_COMP Compiling: The database manager is compiling an
SQL statement or precompiling a plan on behalf of the
application.

SQLM_INTR Request Interrupted: An interrupt of a request is in
progress.

46 System Monitor Guide and Reference

API Constant Description

SQLM_DISCONNECTPEND Database Disconnect Pending: The application has
initiated a database disconnect but the command has not
yet completed executing. The application may not have
explicitly executed the database disconnect command.
The database manager will disconnect from a database if
the application ends without disconnecting.

SQLM_TPREP Transaction Prepared: The unit of work is part of a
global transaction that has entered the prepared phase of
the two-phase commit protocol.

SQLM_THCOMT Transaction Heuristically Committed: The unit of
work is part of a global transaction that has been
heuristically committed.

SQLM_THABRT Transaction Heuristically Rolled Back: The unit of
work is part of a global transaction that has been
heuristically rolled-back.

SQLM_TEND Transaction Ended: The unit of work is part of a global
transaction that has ended but has not yet entered the
prepared phase of the two-phase commit protocol.

SQLM_CREATE_DB Creating Database: The agent has initiated a request
to create a database and that request has not yet com-
pleted.

SQLM_RESTART Restarting Database: The application is restarting a
database in order to perform crash recovery.

SQLM_RESTORE Restoring Database: The application is restoring a
backup image to the database.

SQLM_BACKUP Backing Up Database: The application is performing a
backup of the database.

SQLM_LOAD Data Fast Load: The application is performing a “fast
load” of data into the database.

SQLM_UNLOAD Data Fast Unload: The application is performing a “fast
unload” of data from the database.

SQLM_IOERROR_WAIT Wait to Disable Table space: The application has
detected an I/O error and is attempting to disable a par-
ticular table space. The application has to wait for all
other active transactions on the table space to complete
before it can disable the table space.

SQLM_QUIESCE_TABLESPACE Quiescing a Table space: The application is per-
forming a quiesce table space request.

 Chapter 3. Database System Monitor Data Elements 47

ID of Code Page Used by Application

Description: The code page identifier.

Usage: For snapshot monitor data, this is the code page at the node where the moni-
tored application started. This identifier may be used for problem determination for
remote applications. You may use this information to ensure that data conversion is
supported between the application code page and the database code page (or for
DRDA host databases, the host CCSID). For information about supported code pages,
see the Administration Guide.

For event monitor data, this is the code page of the database for which event data is
collected. You can use this element to determine whether your event monitor applica-
tion is running under a different code page from that used by the database. Data written
by the event monitor uses the database code page. If your event monitor application
uses a different code page, you may need to perform some character conversion to
make the data readable.

Snapshot Information Level
Application
Lock
DCS Application

API Structure(s)
sqlm_appl_id_info
sqlm_appl_lock
sqlm_dcs_applinfo

Monitor Switch
Basic
Basic
Basic

Resettable No

Event Type
Event Log Header
Connection

Event Record(s)
sqlm_event_log_header
sqlm_connheader_event

API Element Name
Element Type

codepage_id
information

Related Information ¹ None

Application Status Change Time

Description: The date and time the application entered its current status.

Usage: This element allows you to determine how long an application has been in its
current status. If it has been in the same status for a long period of time, this may
indicate that it has a problem.

Snapshot Information Level
Application
Lock

API Structure(s)
sqlm_appl_id_info
sqlm_appl_lock

Monitor Switch
Unit of Work
Unit of Work

Resettable No

API Element Name
Element Type

status_change_time
timestamp

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Application Status” on page 46

48 System Monitor Guide and Reference

 Application Name

Description: The name of the application running at the client as known to the data-
base manager or DDCS.

Usage: This element may be used with Application ID to relate data items with your
application.

In a client/server environment, this name is passed from the client to the server to
establish the database connection. For DRDA-AS connections, this name is the DRDA
external name.

Note: Although the name of the application that is executing could be more than 20
bytes, only the first 20 bytes after the last path separator are used to set this
element.

The application name is not available for applications running on the following
down-level database client products:

¹ DB2 Version 1
¹ IBM Extended Services for OS/2

In situations where the client application code page is different from the code page
under which the database system monitor is running, you can useID of Code Page
Used by Application to help translate Application Name.

Snapshot Information Level
Application
Lock
DCS Application

API Structure(s)
sqlm_appl_id_info
sqlm_appl_lock
sqlm_dcs_applinfo

Monitor Switch
Basic
Basic
Basic

Resettable No

Event Type
Connection

Event Record(s)
sqlm_connheader_event

API Element Name
Element Type

appl_name
information

Related Information ¹ “Application ID” on page 50
¹ “ID of Code Page Used by Application” on page 48

 Chapter 3. Database System Monitor Data Elements 49

 Application ID

Description: This identifier is generated when the application connects to the database
at the database manager or when DDCS receives a request to connect to a DRDA
database.

Usage: This ID is known on both the client and server, so you can use it to correlate
the client and server parts of the application. For DDCS applications, you will also
need to use Outbound Application ID to correlate the client and server parts of the
application.

This identifier is unique across the network. There are different formats for the applica-
tion ID, which are dependent on the communication protocol between the client and the
server machine on which the database manager and/or DDCS are running. Each of the
formats consists of three parts separated by periods.

 1. APPC

Format Network.LU Name.Application instance

Example CAIBMTOR.OSFDBX0.930131194520

Details This application ID is the displayable format of an actual SNA LUWID
(Logical Unit-of-Work ID) that flows on the network when an APPC
conversation is allocated. APPC-generated application IDs are made
up by concatenating the network name, the LU name, and the LUWID
instance number, which create a unique label for the client/server
application. The network name and LU name can each be a maximum
of 8 characters. The application instance corresponds to the
12-decimal-character LUWID instance number.

 2. TCP/IP

Format *TCPIP.IPAddr.Application instance

Example *TCPIP.A12CF9E8.930131214645

Snapshot Information Level
Application
DCS Application
Lock

API Structure(s)
sqlm_appl_id_info
sqlm_dcs_applinfo
sqlm_appl_lock

Monitor Switch
Basic
Basic
Basic

Resettable No

Event Type
Connection

Statement
Transaction
Deadlock

Event Record(s)
sqlm_conn_event
sqlm_connheader_event
sqlm_stmt_event
sqlm_xaction_event
sqlm_dlconn_event

API Element Name
Element Type

appl_id
information

Related Information ¹ “Outbound Application ID” on page 55
¹ “Client Communication Protocol” on page 58

50 System Monitor Guide and Reference

Details A TCP/IP-generated application ID is made up by concatenating the
string “*TCPIP,” the IP address in hexadecimal characters, and a
unique identifier for the instance of this application. The IP address is
a 32-bit number displayed as a maximum of 8 hexadecimal characters.

 3. IPX/SPX

Format Netid.nodeid.Application instance

Example C11A8E5C.400011528250.0131214645

Details An IPX/SPX-generated application ID is made up by concatenating a
character network ID (8 hexadecimal characters), a node id (12
hexadecimal characters), and a unique identifier for the instance of the
application. The application instance corresponds to a
10-decimal-character time stamp of the form MMDDHHMMSS.

 4. NetBIOS

Format *NETBIOS.nname.Application instance

Example *NETBIOS.SBOIVIN.930131214645

Details A NetBIOS application ID is made up by concatenating the string
“*NETBIOS,” the nname defined in the client's database configuration
file, and a unique identifier for the instance of this application.

 5. Local Applications

Format *LOCAL.DB2 instance.Application instance

Example *LOCAL.DB2INST1.930131235945

Details The application ID generated for a local application is made up by con-
catenating the string *LOCAL, the name of the DB2 instance, and a
unique identifier for the instance of this application.

Use Client Communication Protocol to determine which communications protocol the
connection is using and, as a result, the format of the application ID.

 Chapter 3. Database System Monitor Data Elements 51

 Sequence Number

Description: This element is reserved for future use. In this release, its value always
be “0001.” It may contain different values in future releases of the product.

Snapshot Information Level
Application
DCS Application

API Structure(s)
sqlm_appl_id_info
sqlm_dcs_applinfo

Monitor Switch
Basic
Basic

Resettable No

Event Type
Connection

Statement
Transaction
Deadlock

Event Record(s)
sqlm_conn_event
sqlm_connheader_event
sqlm_stmt_event
sqlm_xaction_event
sqlm_dlconn_event

API Element Name
Element Type

sequence_no
information

Related Information ¹ None

 Authorization ID

Description: The authorization ID of the user who invoked the application that is
being monitored. On a DDCS gateway node, this is the user's authorization ID on the
host.

Usage: You can use this element to determine who is performing the monitoring, and
to uniquely identify the application that is running.

If you are using the database system monitor APIs, note that the API constant
SQLM_IDENT_SZ is used to define the length of this element. Only the first 8 charac-
ters are currently used.

Snapshot Information Level
Application
Lock
DCS Application

API Structure(s)
sqlm_appl_id_info
sqlm_appl_lock
sqlm_dcs_applinfo

Monitor Switch
Basic
Basic
Basic

Resettable No

Event Type
Connection

Event Record(s)
sqlm_connheader_event

API Element Name
Element Type

auth_id
information

Related Information ¹ “Application Name” on page 49

52 System Monitor Guide and Reference

 Configuration NNAME of Client

Description: The nname in the database manager configuration file at the client node.

Usage: You can use this element to identify the client node that is running the applica-
tion.

If you are using the database system monitor APIs, note that the API constant
SQLM_IDENT_SZ is used to define the length of this element. Only the first 8 charac-
ters are currently used.

Snapshot Information Level
Application
DCS Application

API Structure(s)
sqlm_appl_id_info
sqlm_dcs_applinfo

Monitor Switch
Basic
Basic

Resettable No

Event Type
Connection

Event Record(s)
sqlm_connheader_event

API Element Name
Element Type

client_nname
information

Related Information ¹ “Configuration NNAME at Monitoring (Server) Node”
on page 34

Client Product/Version ID

Description: The product and version that is running on the client.

Usage: You can use this element to identify the product and code version of the data-
base client. It is in the form PPPVVRRM, where:

¹ PPP identifies the product, which is “SQL” for the DB2 products
¹ VV identifies a 2-digit version number (with high-order 0 in the case of a 1-digit

version)
¹ RR identifies a 2-digit release number (with high-order 0 in the case of a 1-digit

release)
¹ M identifies a 1-digit modification level.

Snapshot Information Level
Application
DCS Application

API Structure(s)
sqlm_appl_id_info
sqlm_dcs_applinfo

Monitor Switch
Basic
Basic

Resettable No

Event Type
Connection

Event Record(s)
sqlm_connheader_event

API Element Name
Element Type

client_prdid
information

Related Information ¹ “Server Product/Version ID” on page 36

 Chapter 3. Database System Monitor Data Elements 53

If you are using the database system monitor APIs, note that the API constant
SQLM_IDENT_SZ is used to define the length of this element. Only the first 8 charac-
ters are currently used.

Database Alias Used by Application

Description: The alias of the database provided by the application to connect to the
database.

Usage: This element can be used to identify the actual database that the application
is accessing. The mapping between this name and Database Name could be done by
using the database directories at the client node and the database manager server
node.

This is the alias defined within the database manager where the database connection
request originated.

If you are using the database system monitor APIs, note that the API constant
SQLM_IDENT_SZ is used to define the length of this element. Only the first 8 charac-
ters are currently used.

This element can also be used to help you determine the authentication type, since
different database aliases can have different authentication types.

Snapshot Information Level
Application
Lock
DCS Application

API Structure(s)
sqlm_appl_id_info
sqlm_appl_lock
sqlm_dcs_applinfo

Monitor Switch
Basic
Basic
Basic

Resettable No

Event Type
Connection

Event Record(s)
sqlm_connheader_event

API Element Name
Element Type

client_db_alias
information

Related Information ¹ All other database-level information
¹ All other application-level information
¹ “Last Reset Timestamp” on page 192
¹ “Input Database Alias” on page 193
¹ “Database Name” on page 39

54 System Monitor Guide and Reference

Host Product/Version ID

Description: The product and version that is running on the server.

Usage: Used to identify the product and code version of the DRDA host database
product. It is in the form PPPVVRRM, where:

¹ PPP identifies the host DRDA product
– ARI for DB2 for VSE and VM
– DSN for DB2 for MVS/ESA
– QSQ for DB2 for AS/400
– SQL for other DB2 products.

¹ VV identifies a 2-digit version number (with high-order 0 in the case of a 1-digit
version)

¹ RR identifies a 2-digit release number (with high-order 0 in the case of a 1-digit
release)

¹ M identifies a 1-digit modification level

This field is defined as SQLM_IDENT_SZ characters long to allow for future expansion,
but only the first 8 characters are presently used.

Snapshot Information Level
DCS Application

API Structure(s)
sqlm_dcs_applinfo

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

host_prdid
information

Related Information ¹ None

Outbound Application ID

Description: This identifier is generated when the application connects to the DRDA
host database. It is used to connect the DDCS gateway to the host, while the Applica-
tion ID is used to connect a client to the DDCS gateway.

Usage: You may use this element in conjunction withApplication ID to correlate the
client and server parts of the application information.

This identifier is unique across the network.

Format Network.LU Name.Application instance

Example CAIBMTOR.OSFDBM0.930131194520

Snapshot Information Level
DCS Application

API Structure(s)
sqlm_dcs_applinfo

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

outbound_appl_id
information

Related Information ¹ “Application ID” on page 50

 Chapter 3. Database System Monitor Data Elements 55

Details This application ID is the displayable format of an actual SNA LUWID
(Logical Unit-of-Work ID) that flows on the network when an APPC conver-
sation is allocated. APPC-generated application IDs are made up by con-
catenating the network name, the LU name, and the LUWID instance
number, which creates a unique label for the client/server application. The
network name and LU name can each be a maximum of 8 characters. The
application instance corresponds to the 12-decimal-character LUWID
instance number.

Outbound Sequence Number

Description: This element is reserved for future use. In this release, its value will
always be “0001.” It may contain different values in future releases of the product.

Snapshot Information Level
DCS Application

API Structure(s)
sqlm_dcs_applinfo

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

outbound_sequence_no
information

Related Information ¹ None

User Login ID

Description: The ID that the user specified when logging in to the operating system.
This ID is distinct from Authorization ID, which the user specifies when connecting to
the database.

Usage: You can use this element to determine who is running the application that you
are monitoring.

For operating systems such as OS/2 that do not support the concept of “logging in,” this
field will be the same as Authorization ID .

If you are using the database system monitor APIs, note that the API constant
SQLM_IDENT_SZ is used to define the length of this element. Only the first 8 charac-
ters are currently used.

Snapshot Information Level
Application

API Structure(s)
sqlm_applinfo
sqlm_appl

Monitor Switch
Basic
Basic

Resettable No

Event Type
Connection

Event Record(s)
sqlm_connheader_event

API Element Name
Element Type

execution_id
information

Related Information ¹ “Authorization ID” on page 52

56 System Monitor Guide and Reference

DRDA Correlation Token

Description: The DRDA AS correlation token.

Usage: The DRDA correlation token is used for correlating the processing between
the application server and the application requester. It is an identifier dumped into logs
when errors arise, that you can use to identify the conversation that is in error. In some
cases, it will be the LUWID of the conversation.

If communications are not using DRDA, this element is blank.

If you are using the database system monitor APIs, note that the API constant
SQLM_APPLID_SZ is used to define the length of this element.

Snapshot Information Level
Application

API Structure(s)
sqlm_applinfo
sqlm_appl

Monitor Switch
Basic
Basic

Resettable No

Event Type
Connection

Event Record(s)
sqlm_connheader_event

API Element Name
Element Type

corr_token
information

Related Information ¹ None

Client Process ID

Description: The process ID of the client application that made the connection to the
database.

Usage: You can use this element to correlate monitor information such as CPU and
I/O time to your client application.

In the case of a DRDA AS connection, this element will be set to 0.

Snapshot Information Level
Application

API Structure(s)
sqlm_applinfo
sqlm_appl

Monitor Switch
Basic
Basic

Resettable No

Event Type
Connection

Event Record(s)
sqlm_connheader_event

API Element Name
Element Type

client_pid
information

Related Information ¹ None

 Chapter 3. Database System Monitor Data Elements 57

Client Operating Platform

Description: The operating system on which the client application is running.

Usage: This element can be used for problem determination for remote applications.
Values for this field can be found in the header file sqlmon.h.

Snapshot Information Level
Application

API Structure(s)
sqlm_applinfo
sqlm_appl

Monitor Switch
Basic
Basic

Resettable No

Event Type
Connection

Event Record(s)
sqlm_connheader_event

API Element Name
Element Type

client_platform
information

Related Information ¹ “Server Operating System” on page 37

Client Communication Protocol

Description: The communication protocol that the client application is using to com-
municate with the server.

Usage: This element can be used for problem determination for remote applications.
Values for this field are:

API Constant Communication Protocol
SQLM_PROT_UNKNOWN (note 1)
SQLM_PROT_LOCAL none (note 2)
SQLM_PROT_APPC APPC
SQLM_PROT_TCPIP TCP/IP
SQLM_PROT_IPXSPX IPX/SPX
SQLM_PROT_NETBIOS NETBIOS

Snapshot Information Level
Application

API Structure(s)
sqlm_applinfo
sqlm_appl

Monitor Switch
Basic
Basic

Resettable No

Event Type
Connection

Event Record(s)
sqlm_connheader_event

API Element Name
Element Type

client_protocol
information

Related Information ¹ None

58 System Monitor Guide and Reference

Notes:

1. The client is communicating using an unknown protocol. This value will only be
returned if future clients connect with a down-level server.

2. The client is running on the same node as the server and no communications pro-
tocol is in use.

Database Country Code

Description: The country code of the database for which the monitor data is collected.
Country code information is recorded in the database configuration file (see the Admin-
istration Guide).

For DRDA AS connections, this element will be set to 0.

Snapshot Information Level
Application

API Structure(s)
sqlm_applinfo
sqlm_appl

Monitor Switch
Basic
Basic

Resettable No

Event Type
Event Log Header
Connection

Event Record(s)
sqlm_event_log_header
sqlm_connheader_event

API Element Name
Element Type

country_code
information

Related Information ¹ None

Application Agent Priority

Description: The priority of the agents working for this application.

Usage: You can use this element to check if applications are running with the
expected priorities. Application priorities can be set by an administrator. They can be
changed by the governor utility (db2gov).

The governor is used by DB2 to monitor and change the behavior of applications
running against a database. This information is used to schedule applications and
balance system resources.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl

Monitor Switch
Basic

Resettable No

Event Type
Connection

Event Record(s)
sqlm_conn_event

API Element Name
Element Type

appl_priority
information

Related Information ¹ “Application Priority Type” on page 60

 Chapter 3. Database System Monitor Data Elements 59

A governor daemon collects statistics about the applications by taking snapshots. It
checks these statistics against the rules governing applications running on that data-
base. If the governor detects a rule violation, it takes the appropriate action. These
rules and actions were specified by you in the governor configuration file.

If the action associated with a rule is to change an application's priority, the governor
changes the priority of the agents in the partition where the violation was detected.

See the Administration Guide for more information on the governor.

Application Priority Type

Description: Operating system priority for the application that is running.

Usage: Dynamic priority is recalculated by the operating system based on usage.
Static priority does not change.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl

Monitor Switch
Basic

Resettable No

Event Type
Connection

Event Record(s)
sqlm_conn_event

API Element Name
Element Type

appl_priority_type
information

Related Information ¹ “Query Cost Estimate” on page 183
¹ “Application Agent Priority” on page 59

User Authorization Level

Description: The highest authority level granted to an application.

Usage: The operations allowed by an application are granted either directly or indi-
rectly in the sql.h.

These are the authorizations granted explicitly to a user:

 ¹ SQL_SYSADMIN
 ¹ SQL_DBADM

Snapshot Information Level
Application

API Structure(s)
sqlm_appl
sqlm_applinfo

Monitor Switch
Basic
Basic

Resettable No

Event Type
Connection

Event Record(s)
sqlm_conn_event

API Element Name
Element Type

authority_lvl
information

Related Information ¹ None

60 System Monitor Guide and Reference

 ¹ SQL_CREATETAB
 ¹ SQL_BINDADD
 ¹ SQL_CONNECT
 ¹ SQL_CREATE_NOT_FENC
 ¹ SQL_SYSCTRL
 ¹ SQL_SYSMAINT

The following are indirect authorizations inherited from group or public:

 ¹ SQL_SYSADM_GRP
 ¹ SQL_DBADM_GRP
 ¹ SQL_CREATETAB_GRP
 ¹ SQL_BINDADD_GRP
 ¹ SQL_CONNECT_GRP
 ¹ SQL_CREATE_NOT_FENC_GRP
 ¹ SQL_SYSCTRL_GRP
 ¹ SQL_SYSMAINT_GRP

See the Administration Guide for detailed information on authority levels.

 Coordinating Node

Description: In a multi-node system, the node number of the node where the applica-
tion connected or attached to the instance.

Usage: Each connected application is served by one coordinator node.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl

Monitor Switch
Basic

Resettable No

Event Type
Connection

Event Record(s)
sqlm_conn_event

API Element Name
Element Type

coord_node
information

Related Information ¹ None

 Chapter 3. Database System Monitor Data Elements 61

Connection Request Start Timestamp

Description: The date and time that an application started a connection request.

Usage: Use this element to determine when the application started its connection
request to the database.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

appl_con_time
timestamp

Related Information ¹ “Connection Request Completion Timestamp” on
page 62

¹ All information related to the application

Connection Request Completion Timestamp

Description: The date and time that a connection request was granted.

Usage: Use this element to determine when a connection request to the database
was granted.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

conn_complete_time
timestamp

Related Information ¹ “Connection Request Start Timestamp” on page 62
¹ All information related to the application

Previous Unit of Work Completion Timestamp

Description: This is the time the unit of work completed.

Usage: You may use this element with Unit of Work Stop Timestamp to calculate the
total elapsed time between COMMIT/ROLLBACK points, and with Unit of Work Start

Snapshot Information Level
Application

API Structure(s)
sqlm_appl

Monitor Switch
Unit of Work

Resettable No

API Element Name
Element Type

prev_uow_stop_time
timestamp

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Unit of Work Start Timestamp” on page 63
¹ “Unit of Work Stop Timestamp” on page 64
¹ “Connection Request Completion Timestamp” on

page 62

62 System Monitor Guide and Reference

Timestamp to calculate the time spent in the application between units of work. The
time of one of the following:

¹ For applications currently within a unit of work, this is the time that the latest unit of
work completed.

¹ For applications not currently within a unit of work (the application has completed a
unit of work, but not yet started a new one), this is the stop time of the last unit of
work that completed prior to the one that just completed. The stop time of the one
just completed is indicated “Unit of Work Stop Timestamp” on page 64.

¹ For applications within their first unit of work, this is the database connection
request completion time.

Unit of Work Start Timestamp

Description: The date and time that the unit of work first required database
resources.

Usage: This resource requirement occurs at the first SQL statement execution of that
unit of work:

¹ For the first unit of work, it is the time of the first database request (SQL statement
execution) after Connection Request Completion Timestamp .

¹ For subsequent units of work, it is the time of the first database request (SQL
statement execution) after the previous COMMIT or ROLLBACK.

Note: The SQL Reference defines the boundaries of a unit of work as the COMMIT or
ROLLBACK points.

The database system monitor excludes the time spent between the
COMMIT/ROLLBACK and the next SQL statement from its definition of a unit of work.
This measurement method reflects the time spent by the database manager in proc-
essing database requests, separate from time spent in application logic before the first
SQL statement of that unit of work. The unit of work elapsed time does include the time
spent running application logic between SQL statements within the unit of work.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl

Monitor Switch
Unit of Work

Resettable No

API Element Name
Element Type

uow_start_time
timestamp

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Unit of Work Stop Timestamp” on page 64
¹ “Previous Unit of Work Completion Timestamp” on

page 62
¹ “Connection Request Completion Timestamp” on

page 62

 Chapter 3. Database System Monitor Data Elements 63

You may use this element with Unit of Work Stop Timestamp to calculate the total
elapsed time of the unit of work and with Previous Unit of Work Completion Timestamp
to calculate the time spent in the application between units of work.

You can use the Unit of Work Stop Timestamp and the Previous Unit of Work Com-
pletion Timestamp to calculate the elapsed time for the SQL Reference’s definition of a
unit of work.

Unit of Work Stop Timestamp

Description: The date and time that the most recent unit of work completed, which
occurs when database changes are committed or rolled back.

Usage: You may use this element with Previous Unit of Work Completion Timestamp
to calculate the total elapsed time between COMMIT/ROLLBACK points, and with Unit
of Work Start Timestamp to calculate the elapsed time of the latest unit of work.

The timestamp contents will be set as follows:

¹ When the application has completed a unit of work and has not yet started a new
one (as defined in Unit of Work Start Timestamp). this element will be a valid, non-
zero timestamp

¹ When the application is currently executing a unit of work, this element will contain
zeros

¹ When the application first connects to the database, this element is set to Con-
nection Request Completion Timestamp. .

As a new unit of work is started, the contents of this element are moved toPrevious
Unit of Work Completion Timestamp .

Snapshot Information Level
Application

API Structure(s)
sqlm_appl

Monitor Switch
Unit of Work

Resettable No

API Element Name
Element Type

uow_stop_time
timestamp

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Unit of Work Start Timestamp” on page 63
¹ “Previous Unit of Work Completion Timestamp” on

page 62
¹ “Connection Request Completion Timestamp” on

page 62

64 System Monitor Guide and Reference

Unit of Work Completion Status

Description: The status of the unit of work and how it stopped.

Usage: You may use this element to determine if the unit of work ended due to a
deadlock or abnormal termination. It may have been:

¹ Committed due to a commit statement
¹ Rolled back due to a rollback statement
¹ Rolled back due to a deadlock
¹ Rolled back due to an abnormal termination
¹ Committed at normal application termination.

Note: API users should refer to the header file (sqlmon.h) containing definitions of
database system monitor constants.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl

Monitor Switch
Unit of Work

Resettable No

Event Type
Transaction

Event Record(s)
sqlm_xaction_event

API Element Name

Element Type

uow_comp_status (Snapshot)
status (Event)
information

Related Information ¹ “Resetting Monitor Data” on page 21

Previous Transaction Stop Time

Description: The completion time of the last unit of work.

Usage: You may use this element to calculate the time spent in the application
between units of work.

This is the unit of work that completed prior to the unit of work for which this transaction
event is generated.

For applications within their first unit of work, this is the database connection request
completion time.

Event Type
Transaction

Event Record(s)
sqlm_xaction_event

API Element Name
Element Type

prev_stop_time
timestamp

Related Information ¹ None

 Chapter 3. Database System Monitor Data Elements 65

Application Idle Time

Description: Number of seconds since an application has issued any requests to the
server. This includes applications that have not terminated a transaction, for example
not issued a commit or rollback.

Usage: This information can be used to implement applications that force users that
have been idle for a specified number of seconds.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl

Monitor Switch
Statement

Resettable No

API Element Name
Element Type

appl_idle_time
information

Related Information ¹ “Query Cost Estimate” on page 183
¹ “Application Agent Priority” on page 59
¹ “Application Priority Type” on page 60

DB2 Agent Information
The following database system monitor elements provide information about agents:

¹ “Process or Thread ID”

Process or Thread ID

Description: The process Id (UNIX systems) or thread Id (OS/2 or Windows systems)
of a DB2 agent.

Usage: You can use this element to link database system monitor information to other
sources of diagnostic information, such as system traces. You can also use it to
monitor how agents working for a database application use system resources.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl
sqlm_agent

Monitor Switch
Basic
Statement

Resettable No

API Element Name
Element Type

coord_agent_pid
agent_pid
information

Related Information ¹ None

Database Manager Configuration
The following elements provide database manager configuration information.

66 System Monitor Guide and Reference

Agents and Connections
Agents are how work gets done using the database manager. An agent is a process or
thread that carries out the requests made by a client application. Each connected
application is served by exactly 1 coordinator agent and possibly, a set of
subordinator agents or subagents . Subagents are used for parallel SQL processing in
partitioned databases and on SMP machines. Agents are classified as follows:

 ¹ Coordinator agent

This is the initial agent to which a local or remote application connects. There is
one coordinator agent dedicated to each database connection or instance attach-
ment. The maximum number of coordinating agents per partition is controlled by
the max_coordagents configuration parameter.

 ¹ Subagent

In partitioned databases, additional agents can be enlisted by the coordinator agent
to speed up SQL processing. Subagents are selected from the agent pool and are
returned there when their work is done. The size of the agent pool is controlled by
the num_poolagents configuration parameter.

 ¹ Associated agent

A coordinator or subagent that is doing work for an application is associated with
that application. After it is finished an application’s work, it goes into the agent pool
as an idle agent, but it remains associated with that application. If the application
attempts to do more work, DB2 will search the agent pool for an agent already
associated with the application and assign the work to it. If none is found, DB2 will
attempt to get an agent to satisfy the request by:

1. Choosing an idle agent that is not associated with an application.

2. Creating an agent, if an idle agent is not available.

3. Finding an agent that is associated with another application. For example, if an
agent cannot be created because maxagents has been reached, DB2 will try
to take an idle agent associated with another application. This is referred to as
a stolen agent .

The maxagents configuration parameter defines the maximum number of agents,
regardless of type, that can exist for an instance. The maxagents value does not create
any agents. The initial number of agents that are created in the agent pool at
DB2START is determined by the num_initagents configuration parameter.

Assuming no idle agents, each connection creates a new agent, unless
max_coordagents has been reached. If subagents are not used, max_coordagents
equals maxagents. If subagents are used, some combination of coordinator agents and
subagents could reach maxagents.

When an agent is assigned work, it attempts to obtain a token or permission to process
the transaction. The database manager controls the number of tokens available using
the maxcagents configuration parameter. If a token is not available, the agent will sleep
until one becomes available, at which time the requested work will be processed. This

 Chapter 3. Database System Monitor Data Elements 67

allows you to use maxcagents to control the load, or number of concurrently executing
transactions, the server handles.

The following elements provide agent and connection information:

¹ “Remote Connections To Database Manager”
¹ “Remote Connections Executing in the Database Manager” on page 69
¹ “Local Connections” on page 69
¹ “Local Connections Executing in the Database Manager” on page 70
¹ “Local Databases with Current Connects” on page 71
¹ “Connects Since First Database Connect” on page 71
¹ “Applications Connected Currently” on page 72
¹ “Applications Executing in the Database Currently” on page 72
¹ “Agents Registered” on page 73
¹ “Agents Waiting for a Token” on page 73
¹ “Maximum Number of Agents Registered” on page 74
¹ “Maximum Number of Agents Waiting” on page 74
¹ “Number of Idle Agents” on page 75
¹ “Agents Assigned From Pool” on page 75
¹ “Agents Created Due to Empty Agent Pool” on page 76
¹ “Maximum Number of Coordinating Agents” on page 76
¹ “Stolen Agents” on page 77
¹ “Maximum Number of Associated Agents” on page 77
¹ “Committed Private Memory” on page 78
¹ “Secondary Connections” on page 78

Remote Connections To Database Manager

Description: The total number of current connections initiated from remote clients to
the instance of the database manager that is being monitored.

Usage: Shows the number of connections from remote clients to databases in this
instance. This value will change frequently, so you may need to sample it at specific
intervals over an extended period of time to get a realistic view of system usage. This
number does not include applications that were initiated from the same instance as the
database manager.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_db2

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

rem_cons_in
gauge

Related Information ¹ “Remote Connections Executing in the Database
Manager” on page 69

¹ “Local Connections” on page 69
¹ “Local Connections Executing in the Database

Manager” on page 70

68 System Monitor Guide and Reference

When used in conjunction with the Local Connections monitor element, these elements
can help you adjust the setting of the max_coordagents configuration parameter,
described in the Administration Guide.

Remote Connections Executing in the Database Manager

Description: The number of remote applications that are currently connected to a
database and are currently processing a unit of work within the database manager
instance being monitored.

Usage: This number can help you determine the level of concurrent processing occur-
ring on the database manager. This value will change frequently, so you may need to
sample it at specific intervals over an extended period of time to get a realistic view of
system usage. This number does not include applications that were initiated from the
same instance as the database manager.

When used in conjunction with the Local Connections Executing in the Database
Manager monitor element, this element can help you adjust the setting of the
maxcagents configuration parameter, described in the Administration Guide.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_db2

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

rem_cons_in_exec
gauge

Related Information ¹ “Remote Connections To Database Manager” on
page 68

¹ “Local Connections” on page 69
¹ “Local Connections Executing in the Database

Manager” on page 70

 Local Connections

Description: The number of local applications that are currently connected to a local
database within the database manager instance being monitored.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_db2

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

local_cons
gauge

Related Information ¹ “Remote Connections To Database Manager” on
page 68

¹ “Remote Connections Executing in the Database
Manager” on page 69

¹ “Local Connections Executing in the Database
Manager” on page 70

 Chapter 3. Database System Monitor Data Elements 69

Usage: This number can help you determine the level of concurrent processing occur-
ring in the database manager. This value will change frequently, so you may need to
sample it at specific intervals over an extended period of time to get a realistic view of
system usage.

This number only includes applications that were initiated from the same instance as
the database manager. The applications are connected, but may or may not be exe-
cuting a unit of work in the database.

When used in conjunction with the Remote Connections To Database Manager monitor
element, this element can help you adjust the setting of the maxagents configuration
parameter, described in the Administration Guide.

Local Connections Executing in the Database Manager

Description: The number of local applications that are currently connected to a local
database within the database manager instance being monitored and are currently
processing a unit of work.

Usage: This number can help you determine the level of concurrent processing occur-
ring in the database manager. This value will change frequently, so you may need to
sample it at specific intervals over an extended period of time to get a realistic view of
system usage. This number only includes applications that were initiated from the same
instance as the database manager.

When used in conjunction with the Remote Connections Executing in the Database
Manager monitor element, this element can help you adjust the setting of the
maxcagents configuration parameter, described in the Administration Guide.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_db2

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

local_cons_in_exec
gauge

Related Information ¹ “Remote Connections To Database Manager” on
page 68

¹ “Remote Connections Executing in the Database
Manager” on page 69

¹ “Local Connections” on page 69

70 System Monitor Guide and Reference

Local Databases with Current Connects

Description: The number of local databases that have applications connected.

Usage: This value gives an indication of how many database information records you
can expect when gathering data at the database level.

The applications can be running locally or remotely, and may or may not be executing a
unit of work within the database manager

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_db2

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

con_local_dbases
gauge

Related Information ¹ None

Connects Since First Database Connect

Description: Indicates the number of connections to the database (coordinator
agents).

Usage: You can use this element in conjunction with the Database Activation
Timestamp and the Start Database Manager Timestamp monitor elements to calculate
the frequency at which applications have connected to the database.

If the frequency of connects is low, you may want to do a dummy connect initially
before connecting any other application, because of the extra overhead that sometimes
accompanies the first connect to a database (for example, initial buffer pool allocation
or autorestart). This will result in subsequent connects being processed at a higher rate.
You could also use the ACTIVATE DATABASE command.

Note: When you reset this element, its value is set to the number of applications that
are currently connected, not to zero.

Snapshot Information Level
Database

API Structure(s)
sqlm_dbase

Monitor Switch
Basic

Resettable Yes

Event Type
Database

Event Record(s)
sqlm_db_event

API Element Name
Element Type

total_cons
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Database Activation Timestamp” on page 41
¹ “Applications Connected Currently” on page 72
¹ “Applications Executing in the Database Currently”

on page 72
¹ “Secondary Connections” on page 78

 Chapter 3. Database System Monitor Data Elements 71

Applications Connected Currently

Description: Indicates the number of applications that are currently connected to the
database.

Usage: You may use this element to help you understand the level of activity within a
database and the amount of system resource being used.

It can help you adjust the setting of the maxappls and max_coordagents configuration
parameters, which are described in the Administration Guide. For example, its value is
always the same as maxappls, you may want to increase the value of maxappls. See
the Remote Connections To Database Manager and the Local Connections monitor ele-
ments for more information.

Snapshot Information Level
Database
Lock

API Structure(s)
sqlm_dbase
sqlm_dbase_lock

Monitor Switch
Basic
Basic

Resettable No

API Element Name
Element Type

appls_cur_cons
gauge

Related Information ¹ “Applications Executing in the Database Currently”
on page 72

¹ “Connects Since First Database Connect” on
page 71

¹ “Remote Connections To Database Manager” on
page 68

¹ “Local Connections” on page 69

Applications Executing in the Database Currently

Description: Indicates the number of applications that are currently connected to the
database, and for which the database manager is currently processing a request.

Usage: You can use this element to understand how many of the database manager
agent tokens are being used by applications connected to this database. If the sum of

Snapshot Information Level
Database

API Structure(s)
sqlm_dbase

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

appls_in_db2
gauge

Related Information ¹ “Applications Connected Currently” on page 72
¹ “Connects Since First Database Connect” on

page 71
¹ “Remote Connections Executing in the Database

Manager” on page 69
¹ “Local Connections Executing in the Database

Manager” on page 70
¹ “Current Agents Waiting On Locks” on page 144

72 System Monitor Guide and Reference

Remote Connections Executing in the Database Manager and Local Connections Exe-
cuting in the Database Manager is equal to the value of the maxcagents configuration
parameter, you may want to increase the value of that parameter, as described in the
Administration Guide.

 Agents Registered

Description: The number of agents registered in the database manager instance that
is being monitored (coordinator agents and subagents).

Usage: You can use this element to help evaluate your setting for the maxagents con-
figuration parameter.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_db2

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

agents_registered
gauge

Related Information ¹ None

Agents Waiting for a Token

Description: The number of agents waiting for a token so they can execute a trans-
action in the database manager.

Usage: You can use this element to help evaluate your setting for the maxcagents
configuration parameter.

Each application has a dedicated coordinator agent to process database requests
within the database manager. Each agent has to get a token before it can execute a
transaction. The maximum number of agents that can execute database manager trans-
actions is limited by the configuration parameter maxcagents. For more information
about this parameter, see the Administration Guide.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_db2

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

agents_waiting_on_token
gauge

Related Information ¹ “Agents Registered” on page 73

 Chapter 3. Database System Monitor Data Elements 73

Maximum Number of Agents Registered

Description: The maximum number of agents that the database manager has ever
registered, at the same time, since it was started (coordinator agents and subagents).

Usage: You may use this element to help you evaluate your setting of the maxagents
configuration parameter, described in the Administration Guide.

The number of agents registered at the time the snapshot was taken is recorded by
Agents Registered.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_db2

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

agents_registered_top
water mark

Related Information ¹ “Agents Registered” on page 73
¹ “Maximum Number of Agents Waiting” on page 74

Maximum Number of Agents Waiting

Description: The maximum number of agents that have ever been waiting for a token,
at the same time, since the database manager was started.

Usage: You may use this element to help you evaluate your setting of the maxcagents
configuration parameter, described in the Administration Guide.

The number of agents waiting for a token at the time the snapshot was taken is
recorded by Agents Waiting for a Token.

If the maxcagents parameter is set to its default value (-1), no agents should wait for a
token and the value of this monitor element should be zero.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_db2

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

agents_waiting_top
water mark

Related Information ¹ “Agents Waiting for a Token” on page 73
¹ “Maximum Number of Agents Registered” on

page 74

74 System Monitor Guide and Reference

Number of Idle Agents

Description: The number of agents in the agent pool that are currently unassigned to
an application and are, therefore, “idle.”

Usage: You can use this element to help set the num_poolagents configuration
parameter. Having idle agents available to service requests for agents can improve per-
formance. See the Administration Guide for more information.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_db2

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

idle_agents
gauge

Related Information ¹ “Maximum Number of Agents Registered” on
page 74

¹ “Maximum Number of Agents Waiting” on page 74
¹ “Agents Registered” on page 73

Agents Assigned From Pool

Description: The number of agents assigned from the agent pool.

Usage: This element can be used with “Agents Created Due to Empty Agent Pool” on
page 76 to determine how often an agent must be created because the pool is empty.

If the ratio of

Agents Created Due to Empty Agent Pool / Agents Assigned From Pool

is high, it may indicate that the num_poolagents configuration parameter should be
increased. A low ratio suggests that num_poolagents is set too high, and that some of
the agents in the pool are rarely used and are wasting system resources.

A high ratio can indicate that the overall workload for this node is too high. You can
adjust the workload by lowering the maximum number of coordinating agents specified
by the maxcagents configuration parameter, or by redistributing data among the nodes.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_db2

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

agents_from_pool
counter

Related Information ¹ “Agents Created Due to Empty Agent Pool” on
page 76

¹ “Maximum Number of Coordinating Agents” on
page 76

 Chapter 3. Database System Monitor Data Elements 75

See the Administration Guide for more information on the Agent Pool Size
(num_poolagents) and Maximum Number of Concurrent Coordinating Agents
(maxcagents) configuration parameters.

Agents Created Due to Empty Agent Pool

Description: The number of agents created because the agent pool was empty.

Usage: In conjunction with Agents Assigned From Pool, you can calculate the ratio of

Agents Created Due to Empty Agent Pool / Agents Assigned From Pool

See “Agents Assigned From Pool” on page 75 for information on using this element.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_db2

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

agents_created_empty_pool
counter

Related Information ¹ “Agents Assigned From Pool” on page 75
¹ “Maximum Number of Coordinating Agents” on

page 76

Maximum Number of Coordinating Agents

Description: The maximum number of coordinating agents working at one time.

Usage: If the peak number of coordinating agents represents too high a workload for
this node, you can reduce the number that can be concurrently executing a transaction
by changing the maxcagents configuration parameter.

See the Administration Guide for more information on the Maximum Number of Concur-
rent Coordinating Agents (maxcagents) configuration parameter.

Snapshot Information Level
Database Manager
Database

API Structure(s)
sqlm_db2
sqlm_dbase

Basic
Basic

Resettable No

API Element Name
Element Type

coord_agents_top
water mark

Related Information ¹ “Agents Assigned From Pool” on page 75
¹ “Agents Created Due to Empty Agent Pool” on

page 76

76 System Monitor Guide and Reference

 Stolen Agents

Description: The number of times that agents are stolen from an application. Agents
are stolen when an idle agent associated with an application is reassigned to work on a
different application.

Usage: This element can be used in conjunction with“Maximum Number of Associated
Agents” to evaluate the load that this application places on the system.

Snapshot Information Level
Database Manager
Application

API Structure(s)
sqlm_db2
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

API Element Name
Element Type

agents_stolen
counter

Related Information ¹ “Number of Agents Working on a Statement” on
page 190

Maximum Number of Associated Agents

Description: The maximum number of subagents associated with this application.

Usage: If the peak number of subagents is close to the num_poolagents configuration
parameter, this might indicate too high a workload for this node.

See the Administration Guide for more information on the Agent Pool Size
(num_poolagents) configuration parameter.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

associated_agents_top
water mark

Related Information ¹ “Agents Assigned From Pool” on page 75
¹ “Agents Created Due to Empty Agent Pool” on

page 76

 Chapter 3. Database System Monitor Data Elements 77

Committed Private Memory

Description: The amount of private memory that the instance of the database
manager has currently committed at the time of the snapshot.

Usage: You can use this element to help set the min_priv_mem configuration param-
eter (see the Administration Guide) to ensure you have enough private memory avail-
able.

This element is only applicable to platforms where DB2 uses threads (such as OS/2).

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_db2

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

comm_private_mem
gauge

Related Information ¹ none

 Secondary Connections

Description: The number of connections made by a subagent to the database at the
node.

Usage: You can use this element in conjunction with the Connects Since First Data-
base Connect, Database Activation Timestamp, and the Start Database Manager
Timestamp monitor elements to calculate the frequency at which applications have con-
nected to the database.

Snapshot Information Level
Database

API Structure(s)
sqlm_dbase

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

total_sec_cons
counter

Related Information ¹ “Connects Since First Database Connect” on
page 71

¹ “Start Database Manager Timestamp” on page 34
¹ “Database Activation Timestamp” on page 41

 Sort
The following elements provide information about the database manager sort work
performed:

¹ “Total Sort Heap Allocated” on page 79
¹ “Post Threshold Sorts” on page 80
¹ “Piped Sorts Requested” on page 80
¹ “Piped Sorts Accepted” on page 81
¹ “Total Sorts” on page 82
¹ “Total Sort Time” on page 82

78 System Monitor Guide and Reference

¹ “Sort Overflows” on page 83
¹ “Active Sorts” on page 84

Total Sort Heap Allocated

Description: The total number of allocated pages of sort heap space for all sorts at
the level chosen and at the time the snapshot was taken.

Usage: The amount of memory allocated for each sort may be some or all of the
available sort heap size. Sort heap size is the amount of memory available for each
sort as defined in the database configuration parameter sortheap.

It is possible for a single application to have concurrent sorts active. For example, in
some cases a SELECT statement with a subquery can cause concurrent sorts.

Information may be collected at two levels:

¹ At the database manager level, it represents the sum of sort heap space allocated
for all sorts in all active databases in the database manager

¹ At the database level, it represents the sum of the sort heap space allocated for all
sorts in a database.

Normal memory estimates do not include sort heap space. If excessive sorting is occur-
ring, the extra memory used for the sort heap should be added to the base memory
requirements for running the database manager. Generally, the larger the sort heap, the
more efficient the sort. Appropriate use of indexes can reduce the amount of sorting
required.

You may use the information returned at the database manager level to help you tune
the sheapthres configuration parameter. If the element value is greater than or equal to
sheapthres, it means that the sorts are not getting the full sort heap as defined by the
sortheap parameter.

Snapshot Information Level
Database Manager
Database

API Structure(s)
sqlm_db2
sqlm_dbase

Monitor Switch
Basic
Basic

Resettable No

API Element Name
Element Type

sort_heap_allocated
gauge

Related Information ¹ “Total Sorts” on page 82

 Chapter 3. Database System Monitor Data Elements 79

Post Threshold Sorts

Description: The number of sorts that have requested heaps after the sort heap
threshold has been reached.

Usage: Under normal conditions, the database manager will allocate sort heap using
the value specified by the sortheap configuration parameter. If the amount of memory
allocated to sort heaps exceeds the sort heap threshold (sheapthres configuration
parameter), the database manager will allocate sort heap using a value less than that
specified by the sortheap configuration parameter.

Each active sort on the system allocates memory, which may result in sorting taking up
too much of the system memory available. Sorts that start after the sort heap threshold
has been reached may not receive an optimum amount of memory to execute, but, as
a result, the entire system may benefit. By modifying the sort heap threshold and sort
heap size configuration parameters, the performance of sort operations and/or the
overall system can be improved. If this element's value is high, you can:

¹ Increase the sort heap threshold (sheapthres) or,
¹ Adjust applications to use fewer or smaller sorts via SQL query changes.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_db2

Monitor Switch
Sort

Resettable Yes

API Element Name
Element Type

post_threshold_sorts
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Statement Sorts” on page 181
¹ “Active Sorts” on page 84

Piped Sorts Requested

Description: The number of piped sorts that have been requested.

Usage: Each active sort on the system allocates memory, which may result in sorting
taking up too much of the available system memory.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_db2

Monitor Switch
Basic

Resettable Yes

API Element Name
Element Type

piped_sorts_requested
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Piped Sorts Accepted” on page 81
¹ “Post Threshold Sorts” on page 80

80 System Monitor Guide and Reference

The sort list heap (sortheap) and sort heap threshold (sheapthres) configuration param-
eters help to control the amount of memory used for sort operations. These parameters
are also used to determine whether a sort will be piped.

Since piped sorts may reduce disk I/O, allowing more piped sorts can improve the per-
formance of sort operations and possibly the performance of the overall system. A
piped sort is not be accepted if the sort heap threshold will be exceeded when the sort
heap is allocated for the sort. See Piped Sorts Accepted for more information if you are
experiencing piped sort rejections.

The SQL EXPLAIN output will show whether the optimizer requests a piped sort. For
more information on piped and non-piped sorts see the Administration Guide.

Piped Sorts Accepted

Description: The number of piped sorts that have been accepted.

Usage: Each active sort on the system allocates memory, which may result in sorting
taking up too much of the available system memory.

When the number of accepted piped sorts is low compared to the number requested,
you can improve sort performance by adjusting one or both of the following configura-
tion parameters:

 ¹ sortheap
 ¹ sheapthres

If piped sorts are being rejected, you might consider decreasing your sort heap or
increasing your sort heap threshold. You should be aware of the possible implications
of either of these options. If you increase the sort heap threshold, then there is the
possibility that more memory will remain allocated for sorting. This could cause the
paging of memory to disk. If you decrease the sort heap, you might require an extra
merge phase that could slow down the sort.

See the Administration Guide for more information on sorts.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_db2

Monitor Switch
Basic

Resettable Yes

API Element Name
Element Type

piped_sorts_accepted
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Piped Sorts Requested” on page 80
¹ “Post Threshold Sorts” on page 80

 Chapter 3. Database System Monitor Data Elements 81

 Total Sorts

Description: The total number of sorts that have been executed.

Usage: At a database or application level, use this value with Sort Overflows to calcu-
late the percentage of sorts that need more heap space. You can also use it with Total
Sort Time to calculate the average sort time.

If the number of sort overflows is small with respect to the total sorts, then increasing
the sort heap size may have little impact on performance, unless this buffer size is
increased substantially.

At a statement level, use this element to identify statements which are performing large
numbers of sorts. These statements may benefit from additional tuning to reduce the
number of sorts. You can also use the SQL EXPLAIN statement to identify the number
of sorts a statement performs. See the Administration Guide for more information.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Sort
Sort

Resettable Yes

Event Type
Database
Connection
Statement

Event Record(s)
sqlm_db_event
sqlm_conn_event
sqlm_stmt_event

API Element Name
Element Type

total_sorts
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Sort Overflows” on page 83
¹ “Total Sort Time” on page 82

Total Sort Time
Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl
sqlm_stmt

Monitor Switch
Sort
Sort
Sort

Resettable Yes

Event Type
Database
Connection
Statement

Event Record(s)
sqlm_db_event
sqlm_conn_event
sqlm_stmt_event

API Element Name
Element Type

total_sort_time
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Total Sorts” on page 82
¹ “Total Sorts” on page 82

82 System Monitor Guide and Reference

Description: The total elapsed time (in milliseconds) for all sorts that have been exe-
cuted.

Usage: At a database or application level, use this element with Total Sorts to calcu-
late the average sort time, which can indicate whether or not sorting is an issue as far
as performance is concerned.

At a statement level, use this element to identify statements that spend a lot of time
sorting. These statements may benefit from additional tuning to reduce the sort time.

This count also includes sort time of temporary tables created during related operations.
It provides information for one statement, one application, or all applications accessing
one database.

When using data elements providing elapsed times, you should consider:

1. Elapsed times are affected by system load, so the more processes you have
running, the higher this elapsed time value.

2. To calculate this data element at a database level, the database system monitor
sums the application-level times. This can result in double counting elapsed times
at a database level, since more than one application process can be running at the
same time.

To provide meaningful data from the database level, you should normalize the data
to a lower level. For example:

 total sort time / total sorts

provides information about the average elapsed time for each sort.

 Sort Overflows

Description: The total number of sorts that ran out of sort heap and may have
required disk space for temporary storage.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl
sqlm_stmt

Monitor Switch
Sort
Sort
Sort

Resettable Yes

Event Type
Database
Connection
Statement

Event Record(s)
sqlm_db_event
sqlm_conn_event
sqlm_stmt_event

API Element Name
Element Type

sort_overflows
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Total Sorts” on page 82

 Chapter 3. Database System Monitor Data Elements 83

Usage: At a database or application level, use this element in conjunction with Total
Sorts to calculate the percentage of sorts that had to overflow to disk. If this percentage
is high, you may want adjust the database configuration by increasing the value of
sortheap.

At a statement level, use this element to identify statements that require large sorts.
These statements may benefit from additional tuning to reduce the amount of sorting
required.

When a sort overflows, additional overhead will be incurred because the sort will
require a merge phase and can potentially require more I/O, if data needs to be written
to disk.

This element provides information for one statement, one application, or all applications
accessing one database.

 Active Sorts

Description: The number of sorts in the database that currently have a sort heap allo-
cated.

Usage: Use this value in conjunction with Total Sort Heap Allocated to determine the
average sort heap space used by each sort. If the sortheap configuration parameter is
substantially larger than the average sort heap used, you may be able to lower the
value of this parameter. (See the Administration Guide for more details.)

This value includes heaps for sorts of temporary tables that were created during rela-
tional operations.

Snapshot Information Level
Database

API Structure(s)
sqlm_dbase

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

active_sorts
counter

Related Information ¹ “Total Sort Heap Allocated” on page 79
¹ “Total Sorts” on page 82

Fast Communication Manager
The following database system monitor elements provide information about the Fast
Communication Manager (FCM):

¹ “FCM Buffers Currently Free” on page 85
¹ “Minimum FCM Buffers Free” on page 85
¹ “Message Anchors Currently Free” on page 86
¹ “Minimum Message Anchors” on page 86
¹ “Connection Entries Currently Free” on page 87
¹ “Minimum Connection Entries” on page 87
¹ “Request Blocks Currently Free” on page 88
¹ “Minimum Request Blocks” on page 88

84 System Monitor Guide and Reference

¹ “Number of Nodes” on page 89
¹ “Connection Status” on page 89
¹ “Total FCM Buffers Sent” on page 90
¹ “Total FCM Buffers Received” on page 90

FCM Buffers Currently Free

Description: This element indicates the number of FCM buffers currently free.

Usage: Use the number of FCM buffers currently free in conjunction with the
fcm_num_buffers configuration parameter to determine the current FCM buffer pool
utilization. You can use this information to tune fcm_num_buffers.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_fcm

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

buff_free
gauge

Related Information ¹ “Minimum FCM Buffers Free” on page 85

Minimum FCM Buffers Free

Description: The lowest number of free FCM buffers reached during processing.

Usage: Use this element in conjunction with the fcm_num_buffers configuration
parameter to determine the maximum FCM buffer pool utilization. If buff_free_bottom is
low, you should increase fcm_num_buffers to ensure that operations do not run out of
FCM buffers. If buff_free_bottom is high, you can decrease fcm_num_buffers to con-
serve system resources.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_fcm

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

buff_free_bottom
water mark

Related Information ¹ “FCM Buffers Currently Free” on page 85

 Chapter 3. Database System Monitor Data Elements 85

Message Anchors Currently Free

Description: This element indicates the number of message anchors currently free.

Usage: Use the number of message anchors currently free in conjunction with the
fcm_num_anchors configuration parameter to determine the current message anchor
utilization. You can use this information to tune fcm_num_anchors.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_fcm

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

MA_free
gauge

Related Information ¹ “Minimum Message Anchors” on page 86

Minimum Message Anchors

Description: The lowest number of free message anchors reached during processing.

Usage: Use this element in conjunction with the fcm_num_anchors configuration
parameter to determine the maximum message anchors utilization. If MA_free_bottom
is low, you should increase fcm_num_anchors to ensure that operations do not run out
of message anchors. If MA_free_bottom is high, you can decrease fcm_num_anchors
to conserve system resources.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_fcm

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

MA_free_bottom
water mark

Related Information ¹ “Message Anchors Currently Free” on page 86

86 System Monitor Guide and Reference

Connection Entries Currently Free

Description: This element indicates the number of connection entries currently free.

Usage: Use the number of connection entries currently free in conjunction with the
fcm_num_connect configuration parameter to determine the current connection entry
utilization. You can use this information to tune fcm_num_connect.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_fcm

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

CE_free
gauge

Related Information ¹ “Minimum Connection Entries” on page 87

Minimum Connection Entries

Description: The lowest number of free connection entries reached during processing.

Usage: Use this element in conjunction with the fcm_num_connect configuration
parameter to determine the maximum connection entry utilization. If CE_free_bottom is
low, you should increase fcm_num_connect to ensure that operations do not run out of
connection entries. If CE_free_bottom is high, you can decrease fcm_num_connect to
conserve system resources.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_fcm

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

CE_free_bottom
water mark

Related Information ¹ “Connection Entries Currently Free” on page 87

 Chapter 3. Database System Monitor Data Elements 87

Request Blocks Currently Free

Description: This element indicates the number of request blocks currently free.

Usage: Use the number of request blocks currently free in conjunction with the
fcm_num_rqb configuration parameter to determine the current request block utilization.
You can use this information to tune fcm_num_rqb.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_fcm

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

RB_free
gauge

Related Information ¹ “Request Blocks Currently Free” on page 88

Minimum Request Blocks

Description: The lowest number of free request blocks reached during processing.

Usage: Use this element in conjunction with the fcm_num_rqb configuration parameter
to determine the maximum request block utilization. If RB_free_bottom is low, you
should increase fcm_num_rqb to ensure that operations do not run out of request
blocks. If RB_free_bottom is high, you can decrease fcm_num_rqb to conserve system
resources.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_fcm

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

RB_free_bottom
water mark

Related Information ¹ “Request Blocks Currently Free” on page 88

88 System Monitor Guide and Reference

Number of Nodes

Description: The number of nodes in the current configuration.

Usage: Use this element to determine the number of sqlm_fcm_node structures that
will be returned.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_fcm

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

number_nodes
information

Related Information ¹ None

 Connection Status

Description: This element indicates the status of the communication connection
status between the node issuing the GET SNAPSHOT command and other nodes listed
in the db2nodes.cfg file.

Usage: The connection values are :

SQLM_FCM_CONNECT_INACTIVE No current connection
SQLM_FCM_CONNECT_ACTIVE Connection is active
SQLM_FCM_CONNECT_CONGESTED Connection is congested

Two nodes can be active, but the communication connection between them will remain
inactive, unless there is some communication between those nodes.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_fcm_node

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

connection_status
information

Related Information ¹ “Total FCM Buffers Sent” on page 90
¹ “Total FCM Buffers Received” on page 90

 Chapter 3. Database System Monitor Data Elements 89

Total FCM Buffers Sent

Description: The total number of FCM buffers that have been sent from the node
issuing the GET SNAPSHOT command to the node identified by the node_number (see
the db2nodes.cfg file).

Usage: You can use this element to measure the level of traffic between the current
node and the remote node. If the total number of FCM buffers sent to this node is high,
you may want to redistribute the database, or move tables to reduce the inter-node
traffic.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_fcm_node

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

total_buffers_sent
counter

Related Information ¹ “Connection Status” on page 89
¹ “Total FCM Buffers Received” on page 90

Total FCM Buffers Received

Description: The total number of FCM buffers received by the node issuing the GET
SNAPSHOT command from the node identified by the node_number (see the
db2nodes.cfg file).

Usage: You can use this element to measure the level of traffic between the current
node and the remote node. If the total number of FCM buffers received from this node
is high, you may want to redistribute the database, or move tables to reduce the inter-
node traffic.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_fcm_node

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

total_buffers_rcvd
counter

Related Information ¹ “Connection Status” on page 89
¹ “Total FCM Buffers Sent” on page 90

 Database Configuration
The following elements provide information particularly helpful for database configura-
tion.

Buffer Pool Activity
The database server reads and updates all data from a buffer pool. Data is copied from
disk to a buffer pool as it is required by applications.

90 System Monitor Guide and Reference

Pages are placed in a buffer pool:

¹ by the agent. This is synchronous I/O.

¹ by the I/O servers (prefetchers). This is asynchronous I/O.

Pages are written to disk from a buffer pool:

¹ by the agent, synchronously

¹ by page cleaners, asynchronously

If the server needs to read a page of data, and that page is already in the buffer pool,
then the ability to access that page is much faster than if the page had to be read from
disk. It is desirable to hit as many pages as possible in the buffer pool. Avoiding disk
I/O is the main issue when trying to improve the performance of your server And so,
proper configuration of the buffer pools are probably the most important consideration
for performance tuning.

Buffer Pool Hit Ratio
The buffer pool hit ratio indicates the percentage of time that the database manager did
not need to load a page from disk in order to service a page request. That is, the page
was already in the buffer pool. The greater the buffer pool hit ratio, the lower the fre-
quency of disk I/O.

The buffer pool hit ratio can be calculated as follows:

(1 - ((pool_data_p_reads + pool_index_p_reads) /

(pool_data_l_reads + pool_index_l_reads))) * 100%

This calculation takes into account all of the pages (index and data) that are cached by
the buffer pool.

For a large database, increasing the buffer pool size may have minimal effect on the
buffer pool hit ratio. Its number of data pages may be so large, that the statistical
chances of a hit are not improved increasing its size. But you might find that tuning the
index buffer pool hit ratio achieves the desired result. This can be achieved using two
methods:

1. Split the data and indices into two different buffer pools and tune them separately.

2. Use one buffer pool, but increase its size until the index hit ratio stops increasing.
The index buffer pool hit ratio can be calculated as follows:

(1 - ((pool_index_p_reads) / (pool_index_l_reads))) * 100%

The first method is often more effective, but because it requires indices and data to
reside in different tablespaces, it may not be an option for existing databases. It also
requires tuning two buffer pools instead of one, which can be a more difficult task, par-
ticularly when memory is constrained.

 Chapter 3. Database System Monitor Data Elements 91

 Prefetchers
You should also consider the impact that prefetchers may be having on the hit ratio.
Prefetchers read data pages into the buffer pool anticipating their need by an applica-
tion (asynchronously). In most situations, these pages are read just before they are
needed (the desired case). However, prefetchers can cause unnecessary I/O by
reading pages into the buffer pool that will not be used. For example, an application
starts reading through a table. This is detected and prefetching starts, but the applica-
tion fills an application buffer and stops reading. Meanwhile, prefetching has been done
for a number of additional pages. I/O has occurred for pages that will not be used and
the buffer pool is partially taken up with those pages.

 Page Cleaners
Page cleaners monitor the buffer pool and asynchronously write pages to disk. Their
goals are:

¹ Ensure that agents will always find free pages in the buffer pool. If an agent does
not find free pages in the buffer pool, it must clean them itself, and the associated
application will have a poorer response.

¹ Speed database recovery, if a system crash occurs. The more pages that have
been written to disk, the smaller the number of log file records that must be proc-
essed to recover the database.

Although dirty pages are written out to disk, the pages are not removed from the buffer
pool right away, unless the space is needed to read in new pages.

Note: Buffer pool information is typically gathered at a table space level, but the facili-
ties of the database system monitor can roll this information up to the buffer
pool and database levels. Depending on your type of analysis, you may need to
examine this data at any or all of these levels.

The following elements provide information about buffer pool activity. For an overview
how the database manager uses buffer pools, see the Administration Guide.

¹ “Buffer Pool Data Logical Reads” on page 93
¹ “Buffer Pool Data Physical Reads” on page 94
¹ “Buffer Pool Data Writes” on page 95
¹ “Buffer Pool Index Logical Reads” on page 96
¹ “Buffer Pool Index Physical Reads” on page 97
¹ “Buffer Pool Index Writes” on page 98
¹ “Total Buffer Pool Physical Read Time” on page 99
¹ “Total Buffer Pool Physical Write Time” on page 100
¹ “Database Files Closed” on page 100
¹ “Buffer Pool Asynchronous Data Reads” on page 101
¹ “Buffer Pool Asynchronous Data Writes” on page 102
¹ “Buffer Pool Asynchronous Index Writes” on page 103
¹ “Buffer Pool Asynchronous Index Reads” on page 104
¹ “Buffer Pool Asynchronous Read Time” on page 105
¹ “Buffer Pool Asynchronous Write Time” on page 106
¹ “Buffer Pool Asynchronous Read Requests” on page 107
¹ “Buffer Pool Log Space Cleaners Triggered” on page 107

92 System Monitor Guide and Reference

¹ “Buffer Pool Victim Page Cleaners Triggered” on page 108
¹ “Buffer Pool Threshold Cleaners Triggered” on page 109
¹ “Buffer Pool Information” on page 109
¹ “Time Waited for Prefetch” on page 110

Buffer Pool Data Logical Reads

Description: Indicates the number of logical read requests for data pages that have
gone through the buffer pool.

Usage: This count includes accesses to data that is:

¹ Already in the buffer pool when the database manager needs to process the page
¹ Read into the buffer pool before the database manager can process the page.

In conjunction with Buffer Pool Data Physical Reads, you can calculate the data page
hit ratio for the buffer pool using the following formula:

 1 - (buffer pool data physical reads / buffer pool data logical reads)

In conjunction with Buffer Pool Data Physical Reads, Buffer Pool Index Physical Reads,
and Buffer Pool Index Logical Reads, you can calculate the overall buffer pool hit ratio
using the following formula:

 1 - ((buffer pool data physical reads + buffer pool index physical reads)

/ (buffer pool data logical reads + buffer pool index logical reads))

Increasing buffer pool size will generally improve the hit ratio, but you will reach a point
of diminishing return. Ideally, if you could a buffer pool large enough to store your entire
database, then once the system is up and running you would get a hit ratio of 100%.

Snapshot Information Level
Database
Table Space

Application

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info
sqlm_appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space
Connection

Event Record(s)
sqlm_db_event
sqlm_tablespace_event
sqlm_conn_event

API Element Name
Element Type

pool_data_l_reads
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Database Activation Timestamp” on page 41
¹ “Connection Request Start Timestamp” on page 62
¹ “Buffer Pool Data Physical Reads” on page 94
¹ “Buffer Pool Data Writes” on page 95
¹ “Buffer Pool Index Logical Reads” on page 96
¹ “Buffer Pool Index Physical Reads” on page 97

 Chapter 3. Database System Monitor Data Elements 93

However, this is realistic in most cases. the significance of the hit ratio really depends
on the size of you data, and the way it is accessed. A very large database where data
is accessed evenly would have a poor hit ratio. There is little you can do with very large
tables. In such case, you would focus your attention on smaller, frequently accessed
tables, and on the indices. Perhaps, assigning them to an individual buffer pools, for
which you can aim for higher hit ratios.

Buffer Pool Data Physical Reads

Description: The number of read requests that required I/O to get data pages into the
buffer pool.

Usage: See Buffer Pool Data Logical Reads and Buffer Pool Asynchronous Data
Reads for information about how to use this element.

Snapshot Information Level
Database
Table Space

Application

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info
sqlm_appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space
Connection

Event Record(s)
sqlm_db_event
sqlm_tablespace_event
sqlm_conn_event

API Element Name
Element Type

pool_data_p_reads
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Database Activation Timestamp” on page 41
¹ “Connection Request Start Timestamp” on page 62
¹ “Buffer Pool Data Logical Reads” on page 93
¹ “Buffer Pool Data Writes” on page 95
¹ “Buffer Pool Index Logical Reads” on page 96
¹ “Buffer Pool Index Physical Reads” on page 97
¹ “Buffer Pool Asynchronous Data Reads” on

page 101

94 System Monitor Guide and Reference

Buffer Pool Data Writes

Description: Indicates the number of times a buffer pool data page was physically
written to disk.

Usage: If a buffer pool data page is written to disk for a high percentage of the Buffer
Pool Data Physical Reads, you may be able to improve performance by increasing the
number of buffer pool pages available for the database.

A buffer pool data page is written to disk for the following reasons:

¹ To free a page in the buffer pool so another page can be read
¹ To flush the buffer pool.

The system does not always write a page to make room for a new one. If the page has
not been updated, it can simply be replaced. This replacement is not counted for this
element.

The data page can be written by an asynchronous page-cleaner agent before the buffer
pool space is required. These asynchronous page writes are included in the value of
this element in addition to synchronous page writes (see Buffer Pool Asynchronous
Data Writes).

When calculating this percentage, disregard the number of physical reads required to
initially fill the buffer pool. To determine the number of pages written:

1. Run your application (to load the buffer)
2. Note the value of this element
3. Run your application again

Snapshot Information Level
Database
Table Space

Application

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info
sqlm_appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space
Connection

Event Record(s)
sqlm_db_event
sqlm_tablespace_event
sqlm_conn_event

API Element Name
Element Type

pool_data_writes
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Database Activation Timestamp” on page 41
¹ “Connection Request Start Timestamp” on page 62
¹ “Buffer Pool Data Logical Reads” on page 93
¹ “Buffer Pool Data Physical Reads” on page 94
¹ “Total Buffer Pool Physical Write Time” on page 100
¹ “Buffer Pool Asynchronous Data Writes” on

page 102

 Chapter 3. Database System Monitor Data Elements 95

4. Subtract the value recorded in step 2 from the new value of this element.

In order to prevent the buffer pool from being deallocated between the runnings of your
application, you should either;

¹ activate the database with the ACTIVATE DATABASE command
¹ have an idle application connected to the database.

If all applications are updating the database, increasing the size of the buffer pool may
not have much impact on performance since most of the buffer pool pages contain
updated data, which must be written to disk. However, if the updated pages can be
used by other units of work before being written out, the buffer pool can save a write
and a read, which will improve your performance.

See the Administration Guide for more information about buffer pool size.

Buffer Pool Index Logical Reads

Description: Indicates the number of logical read requests for index pages that have
gone through the buffer pool.

Usage: This count includes accesses to index pages that are:

¹ Already in the buffer pool when the database manager needs to process the page
¹ Read into the buffer pool before the database manager can process the page.

In conjunction with Buffer Pool Index Physical Reads, you can calculate the index page
hit ratio for the buffer pool using one of the following:

 1 - (buffer pool index physical reads / buffer pool index logical reads)

Snapshot Information Level
Database
Table Space

Application

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info
sqlm_appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space
Connection

Event Record(s)
sqlm_db_event
sqlm_tablespace_event
sqlm_conn_event

API Element Name
Element Type

pool_index_l_reads
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Database Activation Timestamp” on page 41
¹ “Connection Request Start Timestamp” on page 62
¹ “Buffer Pool Index Physical Reads” on page 97
¹ “Buffer Pool Index Writes” on page 98
¹ “Buffer Pool Data Physical Reads” on page 94
¹ “Buffer Pool Data Writes” on page 95
¹ “Buffer Pool Data Logical Reads” on page 93

96 System Monitor Guide and Reference

To calculate the overall buffer pool hit ratio, see Buffer Pool Data Logical Reads.

If the hit ratio is low, increasing the number of buffer pool pages may improve perform-
ance. See the Administration Guide for more information about buffer pool size.

Buffer Pool Index Physical Reads

Description: Indicates the number of physical read requests to get index pages into
the buffer pool.

Usage: See Buffer Pool Index Logical Reads for information about how to use this
element.

Snapshot Information Level
Database
Table Space

Application

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info
sqlm_appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space
Connection

Event Record(s)
sqlm_db_event
sqlm_tablespace_event
sqlm_conn_event

API Element Name
Element Type

pool_index_p_reads
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Database Activation Timestamp” on page 41
¹ “Connection Request Start Timestamp” on page 62
¹ “Buffer Pool Index Logical Reads” on page 96
¹ “Buffer Pool Index Writes” on page 98
¹ “Buffer Pool Data Logical Reads” on page 93
¹ “Buffer Pool Data Physical Reads” on page 94

 Chapter 3. Database System Monitor Data Elements 97

Buffer Pool Index Writes

Description: Indicates the number of times a buffer pool index page was physically
written to disk.

Usage: Like a data page, a buffer pool index page is written to disk for the following
reasons:

¹ To free a page in the buffer pool so another page can be read
¹ To flush the buffer pool.

The system does not always write a page to make room for a new one. If the page has
not been updated, it can simply be replaced. This replacement is not counted for this
element.

The index page can be written by an asynchronous page-cleaner agent before the
buffer pool space is required. These asynchronous index page writes are included in
the value of this element in addition to synchronous index page writes (see Buffer Pool
Asynchronous Index Writes).

If a buffer pool index page is written to disk for a high percentage of theBuffer Pool
Index Physical Reads , you may be able to improve performance by increasing the
number of buffer pool pages available for the database.

When calculating this percentage, disregard the number of physical reads required to
initially fill the buffer pool. To determine the number of pages written:

1. Run your application (to load the buffer)
2. Note the value of this element
3. Run your application again

Snapshot Information Level
Database
Table Space

Application

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info
sqlm_appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space
Connection

Event Record(s)
sqlm_db_event
sqlm_tablespace_event
sqlm_conn_event

API Element Name
Element Type

pool_index_writes
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Database Activation Timestamp” on page 41
¹ “Connection Request Start Timestamp” on page 62
¹ “Buffer Pool Index Logical Reads” on page 96
¹ “Buffer Pool Index Physical Reads” on page 97
¹ “Buffer Pool Asynchronous Index Writes” on

page 103

98 System Monitor Guide and Reference

4. Subtract the value recorded in step 2 from the new value of this element.

In order to prevent the buffer pool from being deallocated between the runnings of your
application, you should either:

¹ activate the database with the ACTIVATE DATABASE command
¹ have an idle application connected to the database.

If all applications are updating the database, increasing the size of the buffer pool may
not have much impact on performance, since most of the pages contain updated data
which must be written to disk.

See the Administration Guide for more information about buffer pool size.

Total Buffer Pool Physical Read Time

Description: Provides the total amount of elapsed time spent processing read
requests that caused data or index pages to be physically read from disk to buffer pool.

Usage: You can use this element with Buffer Pool Data Physical Reads and Buffer
Pool Index Physical Reads to calculate the average page-read time. This average is
important since it may indicate the presence of an I/O wait, which in turn may indicate
that you should be moving data to a different device.

At the database and table space levels, this element includes the value of Buffer Pool
Asynchronous Read Time.

Snapshot Information Level
Database
Table Space

Application

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info
sqlm_appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space
Connection

Event Record(s)
sqlm_db_event
sqlm_tablespace_event
sqlm_conn_event

API Element Name
Element Type

pool_read_time
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Buffer Pool Data Physical Reads” on page 94
¹ “Buffer Pool Index Physical Reads” on page 97
¹ “Database Activation Timestamp” on page 41
¹ “Connection Request Start Timestamp” on page 62
¹ “Buffer Pool Asynchronous Read Time” on page 105

 Chapter 3. Database System Monitor Data Elements 99

Total Buffer Pool Physical Write Time

Description: Provides the total amount of time spent physically writing data or index
pages from the buffer pool to disk.

Usage: You can use this element with Buffer Pool Data Writes and Buffer Pool Index
Writes to calculate the average page-write time. This average is important since it may
indicate the presence of an I/O wait, which in turn may indicate that you should be
moving data to a different device.

At the database and table space levels, this element includes the value of Buffer Pool
Asynchronous Write Time.

Snapshot Information Level
Database
Table Space

Application

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info
sqlm_appl

Monitor Switch
Buffer Pool
Buffer Poo
Buffer Pooll
Buffer Pool

Resettable Yes

Event Type
Database
Table Space
Connection

Event Record(s)
sqlm_db_event
sqlm_tablespace_event
sqlm_conn_event

API Element Name
Element Type

pool_write_time
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Buffer Pool Data Writes” on page 95
¹ “Buffer Pool Index Writes” on page 98
¹ “Database Activation Timestamp” on page 41
¹ “Connection Request Start Timestamp” on page 62

Database Files Closed

Description: The total number of database files closed.

Snapshot Information Level
Database
Table Space

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space

Event Record(s)
sqlm_db_event
sqlm_tablespace_event

API Element Name
Element Type

files_closed
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20

100 System Monitor Guide and Reference

Usage: The database manager opens files for reading and writing into and out of the
buffer pool. The maximum number of database files open by an application at any time
is controlled by the maxfilop configuration parameter. If the maximum is reached, one
file will be closed before the new file is opened. Note that the actual number of files
opened may not equal the number of files closed.

You can use this element to help you determine the best value for the maxfilop config-
uration parameter (see the Administration Guide for more information).

Buffer Pool Asynchronous Data Reads

Description: The number of pages read asynchronously into the buffer pool.

Usage: You can use this element with Buffer Pool Data Physical Reads to calculate
the number of physical reads that were performed synchronously (that is, physical data
page reads that were performed by database manager agents). Use the following
formula:

 buffer pool data physical reads - buffer pool asynchronous data reads

By comparing the ratio of asynchronous to synchronous reads, you can gain insight into
how well the prefetchers are working. This element can be helpful when you are tuning
the num_ioservers configuration parameter (see the Administration Guide).

Asynchronous reads are performed by database manager prefetchers. For information
about these prefetchers, see the Administration Guide.

Snapshot Information Level
Database
Table Space

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space

Event Record(s)
sqlm_db_event
sqlm_tablespace_event

API Element Name
Element Type

pool_async_data_reads
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Buffer Pool Asynchronous Read Time” on page 105
¹ “Buffer Pool Data Physical Reads” on page 94
¹ “Buffer Pool Asynchronous Read Requests” on

page 107
¹ “Direct Reads From Database” on page 115

 Chapter 3. Database System Monitor Data Elements 101

Buffer Pool Asynchronous Data Writes

Description: The number of times a buffer pool data page was physically written to
disk by either an asynchronous page cleaner, or a prefetcher. A prefetcher may have
written dirty pages to disk to make space for the pages being prefetched.

Usage: You can use this element with Buffer Pool Data Writes to calculate the
number of physical write requests that were performed synchronously (that is, physical
data page writes that were performed by database manager agents). Use the following
formula:

buffer pool data writes - buffer pool asynchronous data writes

By comparing the ratio of asynchronous to synchronous writes, you can gain insight
into how well the buffer pool page cleaners are performing. This ratio can be helpful
when you are tuning the num_iocleaners configuration parameter.

For more information about asynchronous page cleaners, see the Administration Guide.

Snapshot Information Level
Database
Table Space

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space

Event Record(s)
sqlm_db_event
sqlm_tablespace_event

API Element Name
Element Type

pool_async_data_writes
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Buffer Pool Asynchronous Index Writes” on

page 103
¹ “Buffer Pool Data Writes” on page 95
¹ “Buffer Pool Asynchronous Write Time” on page 106
¹ “Buffer Pool Log Space Cleaners Triggered” on

page 107
¹ “Buffer Pool Victim Page Cleaners Triggered” on

page 108
¹ “Buffer Pool Threshold Cleaners Triggered” on

page 109
¹ “Direct Writes to Database” on page 116

102 System Monitor Guide and Reference

Buffer Pool Asynchronous Index Writes

Description: The number of times a buffer pool index page was physically written to
disk by either an asynchronous page cleaner, or a prefetcher. A prefetcher may have
written dirty pages to disk to make space for the pages being prefetched.

Usage: You can use this element with Buffer Pool Index Writes to calculate the
number of physical index write requests that were performed synchronously. That is,
physical index page writes that were performed by database manager agents. Use the
following formula:

buffer pool index writes - buffer pool asynchronous index writes

By comparing the ratio of asynchronous to synchronous writes, you can gain insight
into how well the buffer pool page cleaners are performing. This ratio can be helpful
when you are tuning the num_iocleaners configuration parameter.

For more information about asynchronous page cleaners, see the Administration Guide.

Snapshot Information Level
Database
Table Space

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space

Event Record(s)
sqlm_db_event
sqlm_tablespace_event

API Element Name
Element Type

pool_async_index_writes
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Buffer Pool Asynchronous Data Writes” on

page 102
¹ “Buffer Pool Asynchronous Index Reads” on

page 104
¹ “Buffer Pool Index Writes” on page 98
¹ “Buffer Pool Asynchronous Write Time” on page 106
¹ “Buffer Pool Log Space Cleaners Triggered” on

page 107
¹ “Buffer Pool Victim Page Cleaners Triggered” on

page 108
¹ “Buffer Pool Threshold Cleaners Triggered” on

page 109
¹ “Direct Writes to Database” on page 116

 Chapter 3. Database System Monitor Data Elements 103

Buffer Pool Asynchronous Index Reads

Description: The number of index pages read asynchronously into the buffer pool by
a prefetcher.

Usage: You can use this element with Buffer Pool Index Physical Reads to calculate
the number of physical reads that were performed synchronously (that is, physical index
page reads that were performed by database manager agents). Use the following
formula:

 buffer pool index physical reads - buffer pool asynchronous index reads

By comparing the ratio of asynchronous to synchronous reads, you can gain insight into
how well the prefetchers are working. This element can be helpful when you are tuning
the num_ioservers configuration parameter (see the Administration Guide).

Asynchronous reads are performed by database manager prefetchers. For information
about these prefetchers, see the Administration Guide.

Snapshot Information Level
Database
Table Space

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space

Event Record(s)
sqlm_db_event
sqlm_tablespace_event

API Element Name
Element Type

pool_async_index_reads
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Buffer Pool Asynchronous Data Writes” on

page 102
¹ “Buffer Pool Asynchronous Index Writes” on

page 103
¹ “Buffer Pool Index Physical Reads” on page 97
¹ “Buffer Pool Asynchronous Read Time” on page 105
¹ “Buffer Pool Log Space Cleaners Triggered” on

page 107
¹ “Buffer Pool Victim Page Cleaners Triggered” on

page 108
¹ “Buffer Pool Threshold Cleaners Triggered” on

page 109
¹ “Direct Reads From Database” on page 115

104 System Monitor Guide and Reference

Buffer Pool Asynchronous Read Time

Description: The total elapsed time spent reading by database manager prefetchers.

Usage: You can use this element to calculate the elapsed time for synchronous
reading, using the following formula:

total buffer pool physical read time - buffer pool asynchronous read time

You can also use this element to calculate the average asynchronous read time using
the following formula:

buffer pool asynchronous read time / buffer pool asynchronous data reads

These calculations can be used to understand the I/O work being performed.

Snapshot Information Level
Database
Table Space

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space

Event Record(s)
sqlm_db_event
sqlm_tablespace_event

API Element Name
Element Type

pool_async_read_time
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Buffer Pool Asynchronous Data Reads” on

page 101
¹ “Total Buffer Pool Physical Read Time” on page 99
¹ “Buffer Pool Asynchronous Read Requests” on

page 107
¹ “Direct Read Time” on page 118

 Chapter 3. Database System Monitor Data Elements 105

Buffer Pool Asynchronous Write Time

Description: The total elapsed time spent writing data or index pages from the buffer
pool to disk by database manager page cleaners.

Usage: To calculate the elapsed time spent writing pages synchronously, use the fol-
lowing formula:

 total buffer pool physical write time - buffer pool asynchronous write time

You can also use this element to calculate the average asynchronous read time using
the following formula:

 buffer pool asynchronous write time

/ (buffer pool asynchronous data writes + buffer pool asynchronous index writes)

These calculations can be used to understand the I/O work being performed.

Snapshot Information Level
Database
Table Space

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space

Event Record(s)
sqlm_db_event
sqlm_tablespace_event

API Element Name
Element Type

pool_async_write_time
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Buffer Pool Asynchronous Data Writes” on

page 102
¹ “Buffer Pool Asynchronous Index Writes” on

page 103
¹ “Total Buffer Pool Physical Write Time” on page 100
¹ “Buffer Pool Asynchronous Read Requests” on

page 107
¹ “Direct Write Time” on page 118

106 System Monitor Guide and Reference

Buffer Pool Asynchronous Read Requests

Description: The number of asynchronous read requests.

Usage: To calculate the average number of data pages read per asynchronous
request, use the following formula:

 buffer pool asynchronous data reads / buffer pool asynchronous read requests

This average can help you determine the amount of asynchronous I/O done in each
interaction with the prefetcher.

Snapshot Information Level
Database
Table Space

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space

Event Record(s)
sqlm_db_event
sqlm_tablespace_event

API Element Name
Element Type

pool_async_data_read_reqs
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Buffer Pool Asynchronous Data Reads” on

page 101

Buffer Pool Log Space Cleaners Triggered

Description: The number of times a page cleaner was invoked because the logging
space used had reached a predefined criterion for the database.

Usage: This element can be used to help evaluate whether you have enough space
for logging, and whether you need more log files or larger log files.

Snapshot Information Level
Database

API Structure(s)
sqlm_dbase

Monitor Switch
Buffer Pool

Resettable Yes

Event Type
Database

Event Record(s)
sqlm_db_event

API Element Name
Element Type

pool_lsn_gap_clns
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Buffer Pool Victim Page Cleaners Triggered” on

page 108
¹ “Buffer Pool Threshold Cleaners Triggered” on

page 109

 Chapter 3. Database System Monitor Data Elements 107

The page cleaning criterion is determined by the setting for the softmax configuration
parameter. Page cleaners are triggered if the oldest page in the buffer pool contains an
update described by a log record that is older than the current log position by the crite-
rion value. See the Administration Guide for more information.

Buffer Pool Victim Page Cleaners Triggered

Description: The number of times a page cleaner was invoked because a synchro-
nous write was needed during the victim buffer replacement for the database.

Usage: Using the following formula, you may calculate what percentage of all cleaner
invocations are represented by this element:

buffer pool victim page cleaners triggered

/ (buffer pool victim page cleaners triggered

+ buffer pool threshold cleaners triggered

+ buffer pool log space cleaners triggered)

If this ratio is low, it may indicate that you have defined too many page cleaners. If your
chngpgs_thresh is set too low, you may be writing out pages that you will dirty later.
Aggressive cleaning defeats one purpose of the buffer pool, that is to defer writing to
the last possible moment.

If this ratio is high, it may indicate that you have too few page cleaners defined. Too
few page cleaners will increase recovery time after failures (see the Administration
Guide).

Note: Although dirty pages are written out to disk, the pages are not removed from the
buffer pool right away, unless the space is needed to read in new pages.

Snapshot Information Level
Database

API Structure(s)
sqlm_dbase

Monitor Switch
Buffer Pool

Resettable Yes

Event Type
Database

Event Record(s)
sqlm_db_event

API Element Name
Element Type

pool_drty_pg_steal_clns
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Buffer Pool Log Space Cleaners Triggered” on

page 107
¹ “Buffer Pool Threshold Cleaners Triggered” on

page 109

108 System Monitor Guide and Reference

Buffer Pool Threshold Cleaners Triggered

Description: The number of times a page cleaner was invoked because a buffer pool
had reached the dirty page threshold criterion for the database.

Usage: The threshold is set by the chngpgs_thresh configuration parameter. It is a
percentage applied to the buffer pool size. When the number of dirty pages in the pool
exceeds this value, the cleaners are triggered.

If this value is set too low, pages might be written out too early, requiring them to be
read back in. If set too high, then too many pages may accumulate, requiring users to
write out pages synchronously. See the Administration Guide for more information.

Snapshot Information Level
Database

API Structure(s)
sqlm_dbase

Monitor Switch
Buffer Pool

Resettable Yes

Event Type
Database

Event Record(s)
sqlm_db_event

API Element Name
Element Type

pool_drty_pg_thrsh_clns
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Buffer Pool Log Space Cleaners Triggered” on

page 107

Buffer Pool Information

Description: Data management counters for a buffer pool.

Usage: Activity performed for a bufferpool.

Snapshot Information Level
Table Space

API Structure(s)
sqlm_bufferpool

Monitor Switch
Buffer Pool

Resettable No

Event Type
Table Space

Event Record(s)
sqlm_bufferpool_event

API Element Name
Element Type

bp_info
information

Related Information ¹ “Resetting Monitor Data” on page 21

 Chapter 3. Database System Monitor Data Elements 109

Time Waited for Prefetch

Description: The time an application spent waiting for an I/O server (prefetcher) to
finish loading pages into the buffer pool.

Usage: This element can be used to experiment with changing the number of I/O
servers, and I/O server sizes.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Buffer Pool
Buffer Pool

Resettable No

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

prefetch_wait_time
counter

Related Information ¹ None

 Extended Storage
Extended storage provides a secondary level of storage for buffer pools. This allows a
user to access memory beyond the maximum allowed for each process. Extended
storage consists of segments that will be allocated in addition to the buffer pools. The
extended storage will assign pages to segments that are attached or detached, as
needed. The number and size of segments are configurable. Attachment is allowed to
only one segment at a given time.

There is one extended storage for all buffer pools, and each buffer pool can be config-
ured to use it or not. See the Administration Guide for more information.

Extended storage should only be used on systems with very large amount of real
memory. These are systems that have more memory than can be attached to by a
single process.

Using Extended Storage Counters: If you have extended storage set on for a buffer
pool, all pages removed from the buffer pool will be written to extended storage. Each
of these writes has a cost associated with it. Some of these pages may never be
required or they may be forced out of extended storage before they are ever read back
into the buffer pool.

You can calculate the extended storage read/write ratio as follows:

(data + index copied from extended storage)

/ (data + index copied to extended storage)

Where the numerator in this equation is pages from extended storage to buffer pool
and the denominator is pages from buffer pool to extended storage.

110 System Monitor Guide and Reference

The top portion of this equation represents a performance saving. When a page is
transferred from extended storage to buffer pool, you save a system I/O call. However,
you still incur the cost of attaching to the extended memory segment, copying the page,
and detaching from the segment. The bottom part represents the cost of transferring a
page to extended storage, that is, attaching to the segment, copying the page, and
detaching.

The higher the ratio, the more likely you are to benefit from extended storage. In
general, extended storage is particularly useful if I/O activity is very high on your
system.

There is a crossover point where the cost of copying pages to be removed from the
buffer pool to extended storage equals the savings from reading pages from extended
storage, instead of having to read them from disk. This crossover point is affected by:

¹ cost of an I/O on your system
¹ cost of copying data in memory and accessing shared memory segments

It is difficult to establish an exact crossover point. To establish a baseline, you must
experiment by enabling extended storage for different buffer pools, and determine
whether it improves your overall database performance. This can be measured by using
application benchmarks. For instance, you may want to monitor transaction rates and
execution time. See the Administration Guide for information on benchmarking.

Once you have established that extended storage is beneficial for some buffer pools.
You want to measure the read/write ratio to obtain a baseline. This ratio is most impor-
tant during database creation and initial setup. After that, you want to monitor this ratio
to ensure that it is not deviating from the initial baseline.

The following elements provide information about buffer pools and extended storage.
For more information on how the database manager uses extended storage, see the
Administration Guide.

¹ “Buffer Pool Data Pages to Extended Storage” on page 112
¹ “Buffer Pool Index Pages to Extended Storage” on page 112
¹ “Buffer Pool Data Pages from Extended Storage” on page 113
¹ “Buffer Pool Index Pages from Extended Storage” on page 114

 Chapter 3. Database System Monitor Data Elements 111

Buffer Pool Data Pages to Extended Storage

Description: Number of buffer pool data pages copied to extended storage.

Usage: Pages are copied from the buffer pool to extended storage, when they are
selected as victim pages. This copying is required to make space for new pages in the
buffer pool.

Snapshot Information Level
Database
Table Space

Application

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info
sqlm_appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Connection
Table Space

Event Record(s)
sqlm_db_event
sqlm_conn_event
sqlm_tablespace_event

API Element Name
Element Type

pool_data_to_estore
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Buffer Pool Index Pages to Extended Storage” on

page 112
¹ “Buffer Pool Data Pages from Extended Storage” on

page 113
¹ “Buffer Pool Index Pages from Extended Storage” on

page 114

Buffer Pool Index Pages to Extended Storage
Snapshot Information Level
Database
Table Space

Application

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info
sqlm_appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Connection
Table Space

Event Record(s)
sqlm_db_event
sqlm_conn_event
sqlm_tablespace_event

API Element Name
Element Type

pool_index_to_estore
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Buffer Pool Data Pages to Extended Storage” on

page 112
¹ “Buffer Pool Data Pages from Extended Storage” on

page 113
¹ “Buffer Pool Index Pages from Extended Storage” on

page 114

112 System Monitor Guide and Reference

Description: Number of buffer pool index pages copied to extended storage.

Usage: Pages are copied from the buffer pool to extended storage, when they are
selected as victim pages. This copying is required to make space for new pages in the
buffer pool.

Buffer Pool Data Pages from Extended Storage

Description: Number of buffer pool data pages copied from extended storage.

Usage: Required pages are copied from extended storage to the buffer pool, if they
are not in the buffer pool, but are in extended storage. This copying may incur the cost
of connecting to the shared memory segment, but saves the cost of a disk read.

Snapshot Information Level
Database
Table Space

Application

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info
sqlm_appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Connection
Table Space

Event Record(s)
sqlm_db_event
sqlm_conn_event
sqlm_tablespace_event

API Element Name
Element Type

pool_data_from_estore
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Buffer Pool Data Pages to Extended Storage” on

page 112
¹ “Buffer Pool Index Pages to Extended Storage” on

page 112
¹ “Buffer Pool Index Pages from Extended Storage” on

page 114

 Chapter 3. Database System Monitor Data Elements 113

Buffer Pool Index Pages from Extended Storage

Description: Number of buffer pool index pages copied from extended storage.

Usage: Required index pages are copied from extended storage to the buffer pool, if
they are not in the buffer pool, but are in extended storage. This copying may incur the
cost of connecting to the shared memory segment, but saves the cost of a disk read.

Snapshot Information Level
Database
Table Space

Application

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info
sqlm_appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Connection
Table Space

Event Record(s)
sqlm_db_event
sqlm_conn_event
sqlm_tablespace_event

API Element Name
Element Type

pool_index_from_estore
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Buffer Pool Data Pages to Extended Storage” on

page 112
¹ “Buffer Pool Index Pages to Extended Storage” on

page 112
¹ “Buffer Pool Data Pages from Extended Storage” on

page 113

Non-buffered I/O Activity
The following elements provide information about I/O activity that does not use the
buffer pool:

¹ “Direct Reads From Database” on page 115
¹ “Direct Writes to Database” on page 116
¹ “Direct Read Requests” on page 117
¹ “Direct Write Requests” on page 117
¹ “Direct Read Time” on page 118
¹ “Direct Write Time” on page 118

114 System Monitor Guide and Reference

Direct Reads From Database

Description: The number of read operations that do not use the buffer pool.

Usage: Use the following formula to calculate the average number of sectors that are
read by a direct read:

 direct reads from database / direct read requests

When using system monitors to track I/O, this data element helps you distinguish data-
base I/O from non-database I/O on the device.

Direct reads are performed in units, the smallest being a 512-byte sector. They are
used when:

¹ Reading LONG VARCHAR columns
¹ Reading LOB (large object) columns
¹ Performing a backup

Snapshot Information Level
Database
Table Space

Application

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info
sqlm_appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Connection
Table Space

Event Record(s)
sqlm_db_event
sqlm_conn_event
sqlm_tablespace_event

API Element Name
Element Type

direct_reads
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Direct Read Requests” on page 117
¹ “Direct Read Time” on page 118
¹ “Direct Writes to Database” on page 116

 Chapter 3. Database System Monitor Data Elements 115

Direct Writes to Database

Description: The number of write operations that do not use the buffer pool.

Usage: Use the following formula to calculate the average number of sectors that are
written by a direct write.

 direct writes to database / direct write requests

When using system monitors to track I/O, this data element helps you distinguish data-
base I/O from non-database I/O on the device.

Direct writes are performed in units, the smallest being a 512-byte sector. They are
used when:

¹ Writing LONG VARCHAR columns
¹ Writing LOB (large object) columns
¹ Performing a restore
¹ Performing a load.

Snapshot Information Level
Database
Table Space

Application

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info
sqlm_appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Connection
Table Space

Event Record(s)
sqlm_db_event
sqlm_conn_event
sqlm_tablespace_event

API Element Name
Element Type

direct_writes
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Direct Write Requests” on page 117
¹ “Direct Write Time” on page 118
¹ “Direct Reads From Database” on page 115

116 System Monitor Guide and Reference

Direct Read Requests

Description: The number of requests to perform a direct read of one or more sectors
of data.

Usage: Use the following formula to calculate the average number of sectors that are
read by a direct read:

 direct reads from database / direct read requests

Snapshot Information Level
Database
Table Space

Application

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info
sqlm_appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Connection
Table Space

Event Record(s)
sqlm_db_event
sqlm_conn_event
sqlm_tablespace_event

API Element Name
Element Type

direct_read_reqs
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Direct Reads From Database” on page 115
¹ “Direct Read Time” on page 118
¹ “Direct Write Requests” on page 117

Direct Write Requests

Description: The number of requests to perform a direct write of one or more sectors
of data.

Snapshot Information Level
Database
Table Space

Application

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info
sqlm_appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Connection
Table Space

Event Record(s)
sqlm_db_event
sqlm_conn_event
sqlm_tablespace_event

API Element Name
Element Type

direct_write_reqs
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Direct Writes to Database” on page 116
¹ “Direct Write Time” on page 118
¹ “Direct Read Requests” on page 117

 Chapter 3. Database System Monitor Data Elements 117

Usage: Use the following formula to calculate the average number of sectors that are
written by a direct write:

 direct writes to database / direct write requests

Direct Read Time

Description: The elapsed time (in milliseconds) required to perform the direct reads.

Usage: Use the following formula to calculate the average direct read time per sector:

 direct read time / direct reads from database

A high average time may indicate an I/O conflict.

Snapshot Information Level
Database
Table Space

Application

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info
sqlm_appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Connection
Table Space

Event Record(s)
sqlm_db_event
sqlm_conn_event
sqlm_tablespace_event

API Element Name
Element Type

direct_read_time
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Direct Reads From Database” on page 115
¹ “Direct Read Requests” on page 117
¹ “Direct Write Time” on page 118

Direct Write Time
Snapshot Information Level
Database
Table Space

Application

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_bp_info
sqlm_appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Connection
Table Space

Event Record(s)
sqlm_db_event
sqlm_conn_event
sqlm_tablespace_event

API Element Name
Element Type

direct_write_time
counter

118 System Monitor Guide and Reference

Description: The elapsed time (in milliseconds) required to perform the direct writes.

Usage: Use the following formula to calculate the average direct write time per sector:

 direct write time / direct writes to database

A high average time may indicate an I/O conflict.

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Direct Writes to Database” on page 116
¹ “Direct Write Requests” on page 117
¹ “Direct Read Time” on page 118

 Catalog Cache
The catalog cache stores table descriptors for tables, views, and aliases. A descriptor
stores information about a table, view, or alias in a condensed internal format. When a
transaction references a table, it causes an insert of a table descriptor into the cache,
so that subsequent transactions referencing that same table can use that descriptor and
avoid reading from disk. (Transactions reference a table descriptor when compiling an
SQL statement.)

The following database system monitor elements are used for catalog caches:

¹ “Catalog Cache Lookups”
¹ “Catalog Cache Inserts” on page 120
¹ “Catalog Cache Overflows” on page 121
¹ “Catalog Cache Heap Full” on page 122

Catalog Cache Lookups

Description: The number of times that the catalog cache was referenced to obtain
table descriptor information.

Usage: This element includes both successful and unsuccessful accesses to the
catalog cache. The catalog cache is referenced whenever a table, view, or alias name
is processed during the compilation of an SQL statement.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database

Event Record(s)
sqlm_db_event

API Element Name
Element Type

cat_cache_lookups
counter

Related Information ¹ “Catalog Cache Inserts” on page 120
¹ “Catalog Cache Overflows” on page 121
¹ “Catalog Cache Heap Full” on page 122

 Chapter 3. Database System Monitor Data Elements 119

To calculate the catalog cache hit ratio use the following formula:

(1 - (cat_cache_inserts / cat_cache_lookups))

indicates how well the catalog cache is avoiding catalog accesses. If the ratio is high
(more than 0.8), then the cache is performing well. A smaller ratio might suggest that
the catalogcache_sz should be increased. You should expect a large ratio immediately
following the first connection to the database.

The execution of Data Definition Language (DDL) SQL statements involving a table,
view, or alias will evict the table descriptor information for that object from the catalog
cache causing it to be re-inserted on the next reference. Therefore, the heavy use of
DDLs may also increase the ratio.

See the Administration Guide for more information on the Catalog Cache Size config-
uration parameter.

Catalog Cache Inserts

Description: The number of times that the system tried to insert table descriptor infor-
mation into the catalog cache.

Usage: Table descriptor information is usually inserted into the cache following a
failed lookup to the catalog cache while processing a table, view, or alias reference in
an SQL statement. The catalog cache inserts value includes attempts to insert table
descriptor information that fail due to catalog cache overflow and heap full conditions.

See “Catalog Cache Lookups” on page 119 for more catalog cache information.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database

Event Record(s)
sqlm_db_event

API Element Name
Element Type

cat_cache_inserts
counter

Related Information ¹ “Catalog Cache Lookups” on page 119
¹ “Catalog Cache Overflows” on page 121
¹ “Catalog Cache Heap Full” on page 122
¹ “Data Definition Language (DDL) SQL Statements”

on page 169

120 System Monitor Guide and Reference

Catalog Cache Overflows

Description: The number of times that an insert into the catalog cache failed due the
catalog cache being full.

Usage: The catalog cache space is filled with table descriptor information.

The cache entries for transactions that compile SQL statements, either by issuing
dynamic SQL statements or by binding a package, will not be eligible to be removed
from the cache until that transaction has either been committed or rolled back. Catalog
cache space is reclaimed by evicting table descriptor information for tables, views, or
aliases that are not currently in use by any transaction. Once a transaction has experi-
enced a catalog cache overflow, all subsequent attempts by the same transaction to
insert table descriptor information into the catalog cache will also result in an an over-
flow.

Note: A transaction involved in an overflow will proceed, but its descriptor information
is not inserted into the cache.

If catalog cache overflows is large, the catalog cache may be too small for the work-
load. Enlarging the catalog cache may improve its performance. If the workload
includes transactions which compile a large number of SQL statements referencing
many tables, views, and aliases in a single unit of work, then compiling fewer SQL
statements in a single transaction may improve the performance of the catalog cache.
Or if it includes binding of packages containing many SQL statements referencing many
tables, views or aliases, you can try splitting packages so that they include fewer SQL
statements to improve performance.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

cat_cache_overflows
counter

Related Information ¹ “Catalog Cache Lookups” on page 119
¹ “Catalog Cache Inserts” on page 120

 Chapter 3. Database System Monitor Data Elements 121

Catalog Cache Heap Full

Description: The number of times that an insert into the catalog cache failed due to a
heap-full condition in the database heap.

Usage: The catalog cache draws its storage dynamically from the database heap and
even if the cache storage has not reached its limit, inserts into the catalog cache may
fail due to a lack of space in the database heap.

If the catalog cache heap full count is not zero, then this insert failure condition can be
corrected by increasing the database heap size or reducing the catalog cache size.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

cat_cache_heap_full
counter

Related Information ¹ “Package Cache Inserts” on page 124
¹ “Data Definition Language (DDL) SQL Statements”

on page 169
¹ “Dynamic SQL Statements Attempted” on page 165
¹ “Static SQL Statements Attempted” on page 164

 Package Cache
The package and section information required for the execution of dynamic and static
SQL statements are placed in the package cache as required. This information is
required whenever a dynamic or static statement is being executed. The package
cache exists at a database level. This means that agents with similar environments can
share the benefits of another agent’s work. For static SQL statements, this can mean
avoiding catalog access. For dynamic SQL statements, this can mean avoiding the cost
of compilation.

The following database system monitor elements are used for package caches:

¹ “Package Cache Lookups” on page 123
¹ “Package Cache Inserts” on page 124
¹ “Section Lookups” on page 125
¹ “Section Inserts” on page 126

122 System Monitor Guide and Reference

Package Cache Lookups

Description: The number of times that an application looked for a section or package
in the package cache. At a database level, it indicates the overall number of references
since the database was started, or monitor data was reset.

Note: This counter includes the cases where the section is already loaded in the
cache and when the section has to be loaded into the cache.

Usage: To calculate the package cache hit ratio use the following formula:

1 - (Package Cache Inserts / Package Cache Lookups)

The package cache hit ratio tells you whether or not the package cache is being used
effectively. If the hit ratio is high (more than 0.8), the cache is performing well. A
smaller ratio may indicate that the package cache should be increased.

You will need to experiment with the size of the package cache to find the optimal
number for the pckcachesz configuration parameter. For example, you might be able to
use a smaller package cache size if there is no increase in the pkg_cache_inserts data
element when you decrease the size of the cache. Decreasing the package cache size
frees up system resources for other work. It is also possible that you could improve
overall system performance by increasing the size of the package cache if by doing so,
you decrease the number of package cache inserts. This experimentation is best done
under full workload conditions.

You can use this data element with ddl_sql_stmts to determine whether or not the exe-
cution of DDL statements is impacting the performance of the package cache. Sections
for dynamic SQL statements can become invalid when DDL statements are executed.
Invalid sections are implicitly prepared by the system when next used. The execution of
a DDL statement could invalidate a number of sections and the resulting extra over-
head incurred when preparing those sections could significantly impact performance. In
this case, the package cache hit ratio reflects the implicit recompilation of invalid

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

pkg_cache_lookups
counter

Related Information ¹ “Package Cache Inserts” on page 124
¹ “Section Lookups” on page 125
¹ “Section Inserts” on page 126
¹ “Static SQL Statements Attempted” on page 164
¹ “Dynamic SQL Statements Attempted” on page 165
¹ “Data Definition Language (DDL) SQL Statements”

on page 169

 Chapter 3. Database System Monitor Data Elements 123

sections and not the insertion of new sections into the cache, so increasing the size of
the package cache will not improve overall performance. You might find it less con-
fusing to tune the cache for an application on its own before working in the full environ-
ment.

It is necessary to determine the role that DDL statements are playing in the value of the
package cache hit ratio before deciding on what action to take. If DDL statements rarely
occur, then cache performance may be improved by increasing its size. If DDL state-
ments are frequent, then improvements may require that you limit the use of DDL state-
ments (possibly to specific time periods).

The static_sql_stmts and dynamic_sql_stmts counts can be used to help provide infor-
mation on the quantity and type of sections being cached.

See the Administration Guide for more information on the Package Cache Size
(pckcachesz) configuration parameter.

Note: You may want to use this information at the database level to calculate the
average package cache hit ratio all each applications. You should look at this
information at an application level to find out the exact package cache hit ratio
for a given application. It may not be worthwhile to increase the size of the
package cache in order to satisfy the cache requirements of an application that
only executes infrequently.

Package Cache Inserts

Description: The total number of times that a requested section was not available for
use and had to be loaded into the package cache. This count includes any implicit pre-
pares performed by the system.

Usage: In conjunction with "Package Cache Lookups", you can calculate the package
cache hit ratio using the following formula:

1 - (Package Cache Inserts / Package Cache Lookups)

 See “Package Cache Lookups” on page 123 for information on using this element.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

pkg_cache_inserts
counter

Related Information ¹ “Package Cache Lookups” on page 123
¹ “Section Lookups” on page 125
¹ “Section Inserts” on page 126

124 System Monitor Guide and Reference

 Section Lookups

Description: Lookups of SQL sections by an application from its SQL work area.

Usage: Each agent has access to a unique SQL work area where the working copy of
any executable section is kept. In partitioned databases, this work area is shared by all
non-SMP agents. In other environments and with SMP agents, each agent has its own
unique SQL work area.

This counter indicates how many times the SQL work area was accessed by agents for
an application. It is a cumulative total of all lookups on all SQL work heaps for agents
working for this application.

You can use this element in conjunction with “Section Inserts” on page 126 to tune the
size of the heap used for the SQL work area. In partitioned databases this size is con-
trolled by the app_ctl_heap_sz configuration parameter. SQL work area size in other
database environments use the the applheapsz configuration parameter. The size of
the SQL work area for SMP agents is controlled by applheapsz in all environments.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

appl_section_lookups
counter

Related Information ¹ “Package Cache Lookups” on page 123
¹ “Package Cache Inserts” on page 124
¹ “Section Inserts” on page 126

 Chapter 3. Database System Monitor Data Elements 125

 Section Inserts

Description: Inserts of SQL sections by an application from its SQL work area.

Usage: The working copy of any executable section is stored in a unique SQL work
area. This is a count of when a copy was not available and had to be inserted. See
“Section Lookups” on page 125 for more information on using sections.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

appl_section_inserts
counter

Related Information ¹ “Package Cache Lookups” on page 123
¹ “Package Cache Inserts” on page 124
¹ “Section Lookups” on page 125

 Database Heap
The following database system monitor elements are used for database heaps:

¹ “Maximum Database Heap Allocated”

Maximum Database Heap Allocated

Description: The largest amount of database heap allocated and used by the data-
base, since the first application connected to the database (in bytes).

Usage: You may use this element to evaluate the setting of the dbheap configuration
parameter, which is described in the Administration Guide. The dbheap parameter limits
the amount of storage that can be allocated for database heap.

If the value of this element is the same as the dbheap parameter, it is quite likely that
an application has received an error indicating that there was not enough storage avail-
able.

Snapshot Information Level
Database

API Structure(s)
sqlm_dbase

Monitor Switch
Basic

Resettable No

Event Type
Database

Event Record(s)
sqlm_db_event

API Element Name
Element Type

db_heap_top
water mark

Related Information ¹ None

126 System Monitor Guide and Reference

 Logging
The following database system monitor elements are used only when circular logging is
being used. That is, they are not used if either the logretain or userexit configuration
parameter is enabled.

¹ “Maximum Secondary Log Space Used”
¹ “Maximum Total Log Space Used” on page 128
¹ “Secondary Logs Allocated Currently” on page 129

The following database system monitor elements are used for all types of logging:

¹ “Number of Log Pages Read” on page 129
¹ “Number of Log Pages Written” on page 130
¹ “Unit of Work Log Space Used” on page 130

For more information about logging and log configuration parameters, see the Adminis-
tration Guide.

Maximum Secondary Log Space Used

Description: The maximum amount of secondary log space used (in bytes).

Usage: You may use this element in conjunction withSecondary Logs Allocated Cur-
rently and Maximum Total Log Space Used to show your current dependency on sec-
ondary logs. If this value is high, you may need larger log files, or more primary log
files, or more frequent COMMIT statements within your application.

As a result, you may need to adjust the following configuration parameters:

 ¹ logfilsz
 ¹ logprimary
 ¹ logsecond
 ¹ logretain

The value will be zero if the database does not have any secondary log files. This
would be the case if there were none defined.

For more information, see the Administration Guide.

Snapshot Information Level
Database

API Structure(s)
sqlm_dbase

Monitor Switch
Basic

Resettable No

Event Type
Database

Event Record(s)
sqlm_db_event

API Element Name
Element Type

sec_log_used_top
water mark

Related Information ¹ “Unit of Work Log Space Used” on page 130
¹ “Secondary Logs Allocated Currently” on page 129
¹ “Maximum Total Log Space Used” on page 128

 Chapter 3. Database System Monitor Data Elements 127

Note: While the database system monitor information is given in bytes, the configura-
tion parameters are set in pages, which are each 4K bytes.

Maximum Total Log Space Used

Description: The maximum amount of total log space used (in bytes).

Usage: You can use this element to help you evaluate the amount of primary log
space that you have allocated. Comparing the value of this element with the amount of
primary log space you have allocated can help you to evaluate your configuration
parameter settings. Your primary log space allocation can be calculated using the fol-
lowing formula:

logprimary x logfilsiz x 4096 (see note below)

You can use this element in conjunction with Maximum Secondary Log Space Used
and Secondary Logs Allocated Currently to show your current dependency on sec-
ondary logs.

This value includes space used in both primary and secondary log files, and is only
returned if circular logging is used. (That is, it is not returned if either the logretain or
userexit configuration parameter is enabled.)

As a result, you may need to adjust the following configuration parameters:

 ¹ logfilsz
 ¹ logprimary
 ¹ logsecond
 ¹ logretain

For more information, see the Administration Guide.

Note: While the database system monitor information is given in bytes, the configura-
tion parameters are set in pages, which are each 4K bytes.

Snapshot Information Level
Database

API Structure(s)
sqlm_dbase

Monitor Switch
Basic

Resettable No

Event Type
Database

Event Record(s)
sqlm_db_event

API Element Name
Element Type

tot_log_used_top
water mark

Related Information ¹ “Unit of Work Log Space Used” on page 130
¹ “Secondary Logs Allocated Currently” on page 129
¹ “Maximum Secondary Log Space Used” on

page 127

128 System Monitor Guide and Reference

Secondary Logs Allocated Currently

Description: The total number of secondary log files that are currently being used for
the database.

Usage: You may use this element in conjunction withMaximum Secondary Log Space
Used and Maximum Total Log Space Used to show your current dependency on sec-
ondary logs. If this value is consistently high, you may need larger log files, or more
primary log files, or more frequent COMMIT statements within your application.

As a result, you may need to adjust the following configuration parameters:

 ¹ logfilsz
 ¹ logprimary
 ¹ logsecond
 ¹ logretain

For more information, see the Administration Guide.

Snapshot Information Level
Database

API Structure(s)
sqlm_dbase

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

sec_logs_allocated
gauge

Related Information ¹ “Unit of Work Log Space Used” on page 130
¹ “Maximum Secondary Log Space Used” on

page 127
¹ “Maximum Total Log Space Used” on page 128

Number of Log Pages Read

Description: The number of log pages read from disk by the logger.

Usage: You can use this element with an operating system monitor to quantify the
amount of I/O on a device that is attributable to database activity.

Snapshot Information Level
Database

API Structure(s)
sqlm_dbase

Monitor Switch
Basic

Resettable Yes

Event Type
Database

Event Record(s)
sqlm_db_event

API Element Name
Element Type

log_reads
counter

Related Information ¹ “When Counters are
Initialized” on page 20

¹ “Number of Log Pages
Written” on page 130

 Chapter 3. Database System Monitor Data Elements 129

Number of Log Pages Written

Description: The number of log pages written to disk by the logger.

Usage: You may use this element with an operating system monitor to quantify the
amount of I/O on a device that is attributable to database activity.

Snapshot Information Level
Database

API Structure(s)
sqlm_dbase

Monitor Switch
Basic

Resettable Yes

Event Type
Database

Event Record(s)
sqlm_db_event

API Element Name
Element Type

log_writes
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Number of Log Pages Read” on page 129

Unit of Work Log Space Used

Description: The amount of log space (in bytes) used in the current unit of work of
the monitored application.

Usage: You may use this element to understand the logging requirements at the unit
of work level.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl

Monitor Switch
Unit of Work

Resettable No

Event Type
Transaction

Event Record(s)
sqlm_xaction_event

API Element Name

Element Type

uow_log_space_used (Snapshot)
log_space_used (Event)
gauge

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Secondary Logs Allocated Currently” on page 129
¹ “Maximum Secondary Log Space Used” on

page 127
¹ “Maximum Total Log Space Used” on page 128

Database and Application Activity
The following sections provide information on database and application activity.

Locks and Deadlocks
The following elements provide information about locks and deadlocks:

¹ “Locks Held” on page 131
¹ “Total Lock List Memory In Use” on page 132

130 System Monitor Guide and Reference

¹ “Deadlocks Detected” on page 133
¹ “Lock Escalations” on page 134
¹ “Exclusive Lock Escalations” on page 135
¹ “Lock Mode” on page 136
¹ “Lock Status” on page 137
¹ “Lock Object Type Waited On” on page 137
¹ “Lock Object Name” on page 138
¹ “Number of Lock Timeouts” on page 139
¹ “Maximum Number of Locks Held” on page 139
¹ “Connections Involved in Deadlock” on page 140

 Locks Held

Description: The number of locks currently held.

Usage: If the monitor information is at the database level, this is the total number of
locks currently held by all applications in the database.

If it is at the application level, this is the total number of locks currently held by all
agents for the application. How you use this element depends on the level of informa-
tion being returned from the database system monitor.

¹ At the database level, you can use it in one of two ways:

– This element can provide summary information about locking. For example,
you can calculate the average number of locks per application by dividing the
value of this element by Applications Connected Currently. If the resulting
number is high, it may indicate that you can tune one of your applications to
improve performance.

– You can also compare the value of this element against the results of the fol-
lowing formula to determine the number of additional locks that may be
requested. This comparison can help you determine if the configuration param-
eters need adjusting or your applications need tuning.

(locklist * 4096 / 36) - locks held = # remaining

where:

Snapshot Information Level
Database
Application
Lock

API Structure(s)
sqlm_dbase
sqlm_appl
sqlm_dbase_lock
sqlm_appl_lock

Monitor Switch
Basic
Basic
Basic
Basic

Resettable No

API Element Name
Element Type

locks_held
gauge

Related Information ¹ “Lock Escalations” on page 134
¹ “Exclusive Lock Escalations” on page 135
¹ “Maximum Number of Locks Held” on page 139

 Chapter 3. Database System Monitor Data Elements 131

- locklist is the configuration parameter as described in the Administration
Guide

- 4096 is the number of bytes in one 4K page
- 36 is the number of bytes required for each lock.

Note: You may also use “Total Lock List Memory In Use” in a similar fashion.

¹ At the application level, you can use this counter to determine if the application is
approaching the maximum number of locks available to it, as defined by the
maxlocks configuration parameter. This parameter indicates the percentage of the
lock list that each application can use before lock escalations occur. Lock esca-
lations can result in a decrease in concurrency between applications connected to
a database. (See the Administration Guide for more information about this param-
eter.)

Since the maxlocks parameter is specified as a percentage and this element is a
counter, you can compare the count provided by this element against the total
number of locks that can be held by an application, as calculated using the fol-
lowing formula:

(locklist * 4096 / 36) * (maxlocks / 100)

If you have a large number of locks, you may need to perform more commits within
your application so that some of the locks can be released.

Total Lock List Memory In Use

Description: The total amount of lock list memory (in bytes) that is in use.

Usage: This element may be used in conjunction with the locklist configuration param-
eter to calculate the lock list utilization. If the lock list utilization is high, you may want to
consider increasing the size of that parameter. See the Administration Guide for more
information.

Note: When calculating utilization, it is important to note that the locklist configuration
parameter is allocated in pages of 4K bytes each, while this monitor element
provides results in bytes.

Snapshot Information Level
Database

API Structure(s)
sqlm_dbase

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

lock_list_in_use
gauge

Related Information ¹ None

132 System Monitor Guide and Reference

 Deadlocks Detected

Description: The total number of deadlocks that have occurred.

Usage: This element can indicate that applications are experiencing contention prob-
lems. These problems could be caused by the following situations:

¹ Lock escalations are occurring for the database
¹ An application may be locking tables explicitly when system-generated row locks

may be sufficient
¹ An application may be using an inappropriate isolation level when binding
¹ Catalog tables are locked for repeatable read
¹ Applications are getting the same locks in different orders, resulting in deadlock.

You may be able to resolve the problem by determining in which applications (or appli-
cation processes) the deadlocks are occurring. You may then be able to modify the
application to better enable it to execute concurrently. Some applications, however, may
not be capable of running concurrently.

You can use the connection timestamp monitor elements (“Last Reset Timestamp” on
page 192, Database Activation Timestamp , and Connection Request Start Timestamp)
to determine the severity of the deadlocks. For example, 10 deadlocks in 5 minutes is
much more severe than 10 deadlocks in 5 hours.

The descriptions for the related elements listed above may also provide additional
tuning suggestions.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Lock

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

deadlocks
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Database Activation Timestamp” on page 41
¹ “Connection Request Start Timestamp” on page 62
¹ “Lock Escalations” on page 134
¹ “Exclusive Lock Escalations” on page 135
¹ “Application ID Holding Lock” on page 146

 Chapter 3. Database System Monitor Data Elements 133

 Lock Escalations

Description: The number of times that locks have been escalated from several row
locks to a table lock.

Usage: A lock is escalated when the total number of locks held by an application
reaches the maximum amount of lock list space available to the application, or the lock
list space consumed by all applications is approaching the total lock list space. The
amount of lock list space available is determined by the maxlocks and locklist config-
uration parameters.

When an application reaches the maximum number of locks allowed and there are no
more locks to escalate, it will then use space in the lock list allocated for other applica-
tions. When the entire lock list is full, an error occurs.

This data item includes a count of all lock escalations, including exclusive lock esca-
lations.

There are several possible causes for excessive lock escalations:

¹ The lock list size (locklist) may be too small for the number of concurrent applica-
tions

¹ The percent of the lock list usable by each application (maxlocks) may be too small
¹ One or more applications may be using an excessive number of locks.

To resolve these problems, you may be able to:

¹ Increase the locklist configuration parameter value. See the Administration Guide
for a description of this configuration parameter.

¹ Increase the maxlocks configuration parameter value. See the Administration Guide
for a description of this configuration parameter.

¹ Identify the applications with large numbers of locks (see Maximum Number of
Locks Held), or those that are holding too much of the lock list, using the following
formula:

(((locks held * 36) / (locklist * 4096)) * 100)

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection
Transaction

Event Record(s)
sqlm_db_event
sqlm_conn_event
sqlm_xaction_event

API Element Name
Element Type

lock_escals
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Database Activation Timestamp” on page 41
¹ “Exclusive Lock Escalations” on page 135
¹ “Maximum Number of Locks Held” on page 139

134 System Monitor Guide and Reference

 and comparing the value to maxlocks. These applications can also cause lock
escalations in other applications by using too large a portion of the lock list. These
applications may need to resort to using table locks instead of row locks, although
table locks may cause an increase in “Lock Waits” on page 141 and “Time Waited
On Locks” on page 142.

¹ Identify applications holding too much of the lock list, using the following formula:

Exclusive Lock Escalations

Description: The number of times that locks have been escalated from several row
locks to one exclusive table lock, or the number of times an exclusive lock on a row
caused the table lock to become an exclusive lock.

Usage: Other applications cannot access data held by an exclusive lock; therefore it is
important to track exclusive locks since they can impact the concurrency of your data.

A lock is escalated when the total number of locks held by an application reaches the
maximum amount of lock list space available to the application. The amount of lock list
space available is determined by the locklist and maxlocks configuration parameters.

When an application reaches the maximum number of locks allowed and there are no
more locks to escalate, it will then use space in the lock list allocated for other applica-
tions. When the entire lock list is full, an error occurs.

See “Lock Escalations” on page 134 for possible causes and resolutions to excessive
exclusive lock escalations.

An application may be using exclusive locks when share locks are sufficient. Although
share locks may not reduce the total number of lock escalations share lock escalations
may be preferable to exclusive lock escalations.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection
Transaction

Event Record(s)
sqlm_db_event
sqlm_conn_event
sqlm_xaction_event

API Element Name
Element Type

x_lock_escals
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Database Activation Timestamp” on page 41
¹ “Lock Escalations” on page 134
¹ “Connection Request Start Timestamp” on page 62
¹ “Maximum Number of Locks Held” on page 139

 Chapter 3. Database System Monitor Data Elements 135

 Lock Mode

Description: The type of lock being held.

Usage: This mode can help you determine the source of contention for resources.

This element indicates one of the following, depending on the type of monitor informa-
tion being examined:

¹ The type of lock another application holds on the object that this application is
waiting to lock (for application-monitoring and deadlock-monitoring levels)

¹ The type of lock held on the object by this application (for object-lock levels).

The values for this field are:

Snapshot Information Level
Application
Lock

API Structure(s)
sqlm_appl
sqlm_lock
sqlm_lock_wait

Monitor Switch
Lock
Lock
Lock

Resettable No

Event Type
Deadlock

Event Record(s)
sqlm_dlconn_event

API Element Name
Element Type

lock_mode
information

Related Information ¹ “Resetting Monitor Data” on page 21
¹ Other lock information

Mode Type of Lock API Constant

No Lock SQLM_LNON
IS Intention Share Lock SQLM_LOIS
IX Intention Exclusive Lock SQLM_LOIX
S Share Lock SQLM_LOOS
SIX Share with Intention Exclusive Lock SQLM_LSIX
X Exclusive Lock SQLM_LOOX
IN Intent None SQLM_LOIN
Z Super Exclusive Lock SQLM_LOOZ
U Update Lock SQLM_LOOU
NS Next Key Share Lock SQLM_LONS
NX Next Key Exclusive Lock SQLM_LONX
W Weak Exclusive Lock SQLM_LOOW
NW Next Key Weak Exclusive Lock SQLM_LONW

136 System Monitor Guide and Reference

 Lock Status

Description: Indicates the internal status of the lock.

Usage: This element can help explain what is happening when an application is
waiting to obtain a lock on an object. While it may appear that the application already
has a lock on the object it needs, it may have to wait to obtain a different type of lock
on the same object.

The lock can be in one of the following statuses:

Granted state indicates that the application has the lock in the state specified
by “Lock Mode” on page 136.

Converting state indicates that the application is trying to change the lock held
to a different type; for example, changing from a share lock to
an exclusive lock.

Note: API users should refer to the sqlmon.h header file containing definitions of data-
base system monitor constants.

Snapshot Information Level
Lock

API Structure(s)
sqlm_lock

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

lock_status
information

Related Information ¹ “Lock Mode” on page 136
¹ “Lock Object Type Waited On” on page 137
¹ “Table File ID” on page 159

Lock Object Type Waited On

Description: The type of object against which the application holds a lock (for object-
lock-level information), or the type of object for which the application is waiting to obtain
a lock (for application-level and deadlock-level information).

Usage: This element can help you determine the source of contention for resources.

Snapshot Information Level
Application

Lock

API Structure(s)
sqlm_appl
sqlm_appl_lock
sqlm_lock
sqlm_lock_wait

Monitor Switch
Lock
Lock
Basic
Lock

Resettable No

Event Type
Deadlock

Event Record(s)
sqlm_dlconn_event

API Element Name
Element Type

lock_object_type
information

Related Information ¹ “Resetting Monitor Data” on page 21

 Chapter 3. Database System Monitor Data Elements 137

The objects may be one of the following types:

 ¹ Table space
 ¹ Table
¹ Record (or row)
¹ Internal (another type of lock held internally by the database manager).

Lock Object Name

Description: This element is provided for informational purposes only. It is the name
of the object for which the application holds a lock (for object-lock-level information), or
the name of the object for which the application is waiting to obtain a lock (for
application-level and deadlock-level information).

Usage: It is the name of the object for table-level locks is the file ID (FID) for SMS
and DMS table spaces. For row-level locks, the object name is the row ID (RID). For
table space locks, the object name is blank.

To determine the table holding the lock, use Table Name and Table Schema Name
instead of the file ID, since the file ID may not be unique.

To determine the table space holding the lock, use Table Space Name .

Snapshot Information Level
Application
Lock

API Structure(s)
sqlm_appl
sqlm_appl_lock
sqlm_lock

Monitor Switch
Lock
Lock
Basic

Resettable No

Event Type
Deadlock

Event Record(s)
sqlm_dlconn_event

API Element Name
Element Type

lock_object_name
information

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Lock Object Type Waited On” on page 137
¹ “Table Space Name” on page 143
¹ “Table Name” on page 151
¹ “Table Schema Name” on page 152

138 System Monitor Guide and Reference

Number of Lock Timeouts

Description: The number of times that a request to lock an object timed-out instead of
being granted.

Usage: This element can help you adjust the setting for the locktimeout database con-
figuration parameter. If the number of lock time-outs becomes excessive when com-
pared to normal operating levels, you may have an application that is holding locks for
long durations. In this case, this element may indicate that you should analyze some of
the other elements related to “Locks and Deadlocks” on page 130 to determine if you
have an application problem.

You could also have too few lock time-outs if your locktimeout database configuration
parameter is set too high. In this case, your applications may wait excessively to obtain
a lock. See the Administration Guide for more information.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

lock_timeouts
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ Other elements in “Locks and Deadlocks” on

page 130

Maximum Number of Locks Held

Description: The maximum number of locks held during this transaction.

Usage: You can use this element to determine if your application is approaching the
maximum number of locks available to it, as defined by the maxlocks configuration
parameter. This parameter indicates the percentage of the lock list that each application
can use before lock escalations occur. Lock escalations can result in a decrease in
concurrency between applications connected to a database. (See the Administration
Guide for more information about this parameter.)

Event Type
Transaction

Event Record(s)
sqlm_xaction_event

API Element Name
Element Type

locks_held_top
counter

Related Information ¹ “Locks Held” on page 131
¹ “Lock Escalations” on page 134
¹ “Exclusive Lock Escalations” on page 135

 Chapter 3. Database System Monitor Data Elements 139

Since the maxlocks parameter is specified as a percentage and this element is a
counter, you can compare the count provided by this element against the total number
of locks that can be held by an application, as calculated using the following formula:

(locklist * 4096 / 36) * (maxlocks / 100)

If you have a large number of locks, you may need to perform more commits within
your application so that some of the locks can be released.

Connections Involved in Deadlock

Description: The number of connections that are involved in the deadlock.

Usage: Use this element in your monitoring application to identify how many deadlock
connection event records will follow in the event monitor data stream.

Event Type
Deadlock

Event Record(s)
sqlm_deadlock_event

API Element Name
Element Type

dl_conns
gauge

Related Information ¹ None

Lock Wait Information
The following elements provide information is returned when a DB2 agent working on
behalf of an application is waiting to obtain a lock:

¹ “Lock Waits” on page 141
¹ “Time Waited On Locks” on page 142
¹ “Table Space Name” on page 143
¹ “Current Agents Waiting On Locks” on page 144
¹ “Total Time Unit of Work Waited on Locks” on page 144
¹ “Lock Wait Start Timestamp” on page 145
¹ “Agent ID Holding Lock” on page 145
¹ “Application ID Holding Lock” on page 146
¹ “Sequence Number Holding Lock” on page 147
¹ “Rolled Back Application” on page 147

140 System Monitor Guide and Reference

 Lock Waits

Description: The total number of times that applications or connections waited for
locks.

Usage: At the database level, this is the total number of times that applications have
had to wait for locks within this database.

At the application-connection level, this is the total number of times that this connection
requested a lock but had to wait because another connection was already holding a
lock on the data.

This element may be used with Time Waited On Locks to calculate, at the database
level, the average wait time for a lock. This calculation can be done at either the data-
base or the application-connection level.

If the average lock wait time is high, you should look for applications that hold many
locks, or have lock escalations, with a focus on tuning your applications to improve con-
currency, if appropriate. If escalations are the reason for a high average lock wait time,
then the values of one or both of the locklist and maxlocks configuration parameters
may be too low. See the Administration Guide for more information.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Lock
Lock

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

lock_waits
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Connection Request Start Timestamp” on page 62
¹ “Time Waited On Locks” on page 142

 Chapter 3. Database System Monitor Data Elements 141

Time Waited On Locks

Description: The total elapsed time waited for a lock.

Usage: At the database level, this is the total amount of elapsed time that all applica-
tions were waiting for a lock within this database.

At the application-connection and transaction levels, this is the total amount of elapsed
time that this connection or transaction has waited for a lock to be granted to it.

This element may be used in conjunction with the Lock Waits monitor element to calcu-
late the average wait time for a lock. This calculation can be performed at either the
database or the application-connection level.

When using data elements providing elapsed times, you should consider:

¹ Elapsed times are affected by system load, so the more processes you have
running, the higher this elapsed time value.

¹ To calculate this data element at the database level, the database system monitor
sums the application-level times. This can result in double counting elapsed times
at a database level, since more than one application process can be running at the
same time.

To provide meaningful data, you can calculate the average wait time for a lock, as
described above.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl
sqlm_appl_lock

Monitor Switch
Lock
Lock

Resettable Yes

Event Type
Database
Connection
Transaction

Event Record(s)
sqlm_db_event
sqlm_conn_event
sqlm_xaction_event

API Element Name
Element Type

lock_wait_time
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Current Agents Waiting On Locks” on page 144
¹ “Lock Waits” on page 141

142 System Monitor Guide and Reference

Table Space Name

Description: The name of a table space.

Usage: This element can help you determine the source of contention for resources.

It is equivalent to the TBSPACE column in the database catalog table
SYSCAT.TABLESPACE. At the application level, application-lock level, and deadlock
monitoring level, this is the name of the table space that the application is waiting to
lock. Another application currently holds a lock on this table space.

At the lock level, this is the name of the table space against which the application cur-
rently holds a lock.

At the table space level (when the buffer pool monitor group is ON), this is the name of
the table space for which information is returned.

If you are using the database system monitor APIs, note that the API constant
SQLM_IDENT_SZ is used to define the length of this element. Only the first 18 charac-
ters are currently used.

Snapshot Information Level
Table Space
Application
Lock

API Structure(s)
sqlm_tablespace
sqlm_appl_lock
sqlm_lock
sqlm_lock_wait

Monitor Switch
Buffer Pool
Basic
Lock
Lock

Resettable No

Event Type
Deadlock
Table Space

Event Record(s)
sqlm_dlconn_event
sqlm_tablespace_header

API Element Name
Element Type

tablespace_name
information

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Lock Object Type Waited On” on page 137

 Chapter 3. Database System Monitor Data Elements 143

Current Agents Waiting On Locks

Description: Indicates the number of agents waiting on a lock.

Usage: When used in conjunction with Applications Connected Currently, this element
indicates the percentage of applications waiting on locks. If this number is high, the
applications may have concurrency problems, and you should identify applications that
are holding locks or exclusive locks for long periods of time.

Snapshot Information Level
Database
Lock

API Structure(s)
sqlm_dbase
sqlm_dbase_lock

Monitor Switch
Basic
Basic

Resettable No

API Element Name
Element Type

locks_waiting
gauge

Related Information ¹ “Applications Connected Currently” on page 72

Total Time Unit of Work Waited on Locks

Description: The total amount of elapsed time this unit of work has spent waiting for
locks.

Usage: This element can help you determine the severity of the resource contention
problem.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl

Monitor Switch
Unit of Work

Resettable No

API Element Name
Element Type

uow_lock_wait_time
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ Application-level information on locks

144 System Monitor Guide and Reference

Lock Wait Start Timestamp

Description: The date and time that this application started waiting to obtain a lock on
the object that is currently locked by another application.

Usage: This element can help you determine the severity of resource contention.

Snapshot Information Level
Application
Lock

API Structure(s)
sqlm_appl
sqlm_lock_wait

Monitor Switch
Lock
Lock

Resettable No

Event Type
Deadlock

Event Record(s)
sqlm_dlconn_event

API Element Name
Element Type

lock_wait_start_time
timestamp

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Agent ID Holding Lock” on page 145

Agent ID Holding Lock

Description: The application handle of the agent holding a lock for which this applica-
tion is waiting. The lock monitor group must be turned on to obtain this information.

Usage: This element can help you determine which applications are in contention for
resources.

If this element is 0 (zero) and the application is waiting for a lock, this indicates that the
lock is held by an indoubt transaction. You can use either “Application ID Holding Lock”
on page 146 or the command line processor LIST INDOUBT TRANSACTIONS
command (which displays the application ID of the CICS agent that was processing the
transaction when it became indoubt) to determine the indoubt transaction, and then
either commit it or roll it back.

Note that more than one application can hold a shared lock on an object for which this
application is waiting. See “Lock Mode” on page 136 for information about the type of
lock that the application holds. If you are taking an application snapshot, only one of the

Snapshot Information Level
Application

Lock

API Structure(s)
sqlm_appl
sqlm_appl_lock
sqlm_lock_wait

Monitor Switch
Lock
Lock
Lock

Resettable No

API Element Name
Element Type

agent_id_holding_lock
information

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Lock Wait Start Timestamp” on page 145
¹ “Application ID Holding Lock” on page 146

 Chapter 3. Database System Monitor Data Elements 145

agent IDs holding a lock on the object will be returned. If you are taking a lock snap-
shot, all of the agent IDs holding a lock on the object will be identified.

Application ID Holding Lock

Description: The application ID of the application that is holding a lock on the object
that this application is waiting to obtain.

Usage: This element can help you determine which applications are in contention for
resources. Specifically, it can help you identify the application handle (agent ID) and
table ID that are holding the lock. Note that you may use the LIST APPLICATIONS
command to obtain information to relate the application ID with an agent ID. However, it
is a good idea to collect this type of information when you take the snapshot, as it could
be unavailable if the application ends before you run the LIST APPLICATIONS
command.

If you are using the database system monitor APIs, note that the API constant
SQLM_APPLID_SZ is used to define the length of this element. Only the first 30 char-
acters are currently used.

Note that more than one application can hold a shared lock on an object for which this
application is waiting to obtain a lock. See “Lock Mode” on page 136 for information
about the type of lock that the application holds. If you are taking an application snap-
shot, only one of the application IDs holding a lock on the object will be returned. If you
are taking a lock snapshot, all of the application IDs holding a lock on the object will be
returned.

Snapshot Information Level
Application

Lock

API Structure(s)
sqlm_appl
sqlm_appl_lock
sqlm_lock_wait

Monitor Switch
Lock
Lock
Lock

Resettable No

Event Type
Deadlock

Event Record(s)
sqlm_dlconn_event

API Element Name
Element Type

appl_id_holding_lk
information

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Agent ID Holding Lock” on page 145
¹ “Deadlocks Detected” on page 133

146 System Monitor Guide and Reference

Sequence Number Holding Lock

Description: This element is reserved for future use. In this release, its value will
always be “0001.” In future releases of the product, it may contain different values.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl
sqlm_appl_lock

Monitor Switch
Basic
Basic

Resettable No

Event Type
Deadlock

Event Record(s)
sqlm_dlconn_event

API Element Name
Element Type

sequence_no_holding_lk
information

Related Information ¹ None

Rolled Back Application

Description: Application id that was rolled back when a deadlock occurred.

Usage: A system administrator can use this information to determine which application
did not complete its updates, and determine which applications should be restarted

Event Type
Deadlock

Event Record(s)
sqlm_deadlock_event

API Element Name
Element Type

rolled_back_appl_id
information

Related Information ¹ “Service Level” on page 37
¹ “Maximum Number of Coordinating Agents” on

page 76

 Rollforward Monitoring
Recovering database changes can be a time consuming process. You can use the
database system monitor to monitor the progression of a recovery. The following ele-
ments provide information about rollforward status:

¹ “Rollforward Timestamp” on page 148
¹ “Tablespace Being Rolled Forward” on page 148
¹ “Rollforward Type” on page 148
¹ “Log Being Rolled Forward” on page 149
¹ “Log Phase” on page 149
¹ “Number of Rollforward Table Spaces” on page 149

 Chapter 3. Database System Monitor Data Elements 147

 Rollforward Timestamp

Description: The timestamp of the log being processed.

Usage: If a rollforward is in progress, this is the timestamp of the log record being
processed. This is an indicator of the data changes that will be recovered.

Snapshot Information Level
Table Space

API Structure(s)
sqlm_rollfwd_info

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

rf_timestamp
timestamp

Related Information ¹ “Tablespace Being Rolled Forward” on page 148

Tablespace Being Rolled Forward

Description: The name of the table space currently rolled forward.

Usage: If a rollforward is in progress, this element identifies the table spaces involved.

Snapshot Information Level
Table Space

API Structure(s)
sqlm_rollfwd_ts_info

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

ts_name
information

Related Information ¹ “Rollforward Timestamp” on page 148

 Rollforward Type

Description: The type of rollforward in progess.

Usage: An indicator of whether recovery is happening at a database or table space
level. For more information on rollforward recovery at the database or table space level
see the Administration Guide.

Snapshot Information Level
Table Space

API Structure(s)
sqlm_rollfwd_info

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

rf_type
information

Related Information ¹ None

148 System Monitor Guide and Reference

Log Being Rolled Forward

Description: The log being processed.

Usage: If a rollforward is in progress, this element identifies the log involved.

Snapshot Information Level
Table Space

API Structure(s)
sqlm_rollfwd_info

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

rf_log_num
information

Related Information ¹ None

 Log Phase

Description: The status of the recovery.

Usage: This element indicates the progression of a recovery. It indicates if the
recovery is in an undo (rollback) or redo (rollforward) phase.

Snapshot Information Level
Table Space

API Structure(s)
sqlm_rollfwd_info

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

rf_status
information

Related Information ¹ None

Number of Rollforward Table Spaces

Description: The number of table spaces involved in a rollforward.

Usage: This is a counter of the table spaces involved in recovery.

Snapshot Information Level
Table Space

API Structure(s)
sqlm_rollfwd_info

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

rf_num_tspaces
counter

Related Information ¹ None

 Table Activity
The following elements provide information about the tables:

¹ “Table Type” on page 150
¹ “Table Name” on page 151
¹ “Table Schema Name” on page 152
¹ “Rows Deleted” on page 153

 Chapter 3. Database System Monitor Data Elements 149

¹ “Rows Inserted” on page 153
¹ “Rows Updated” on page 154
¹ “Rows Selected” on page 154
¹ “Rows Written” on page 155
¹ “Rows Read” on page 156
¹ “Accesses to Overflowed Records” on page 157
¹ “Internal Rows Deleted” on page 157
¹ “Internal Rows Updated” on page 158
¹ “Internal Rows Inserted” on page 159
¹ “Table File ID” on page 159

 Table Type

Description: The type of table for which information is returned.

Usage: You can use this element to help identify the table for which information is
returned. If the table is a user table or a system catalog table, you can use Table Name
and Table Schema Name to identify the table.

The type of table may be one of the following:

 ¹ User table.
¹ User table that has been dropped. The table type will only be updated after the

changes are committed (either explicitly or implicitly).
¹ Temporary table. Information regarding temporary tables is returned, even though

the tables are not kept in the database after being used. You may still find informa-
tion about this type of table useful.

¹ System catalog table.
¹ Reorganization table. A table created and used by the database manager while

performing a reorganization of another table.

Snapshot Information Level
Table

API Structure(s)
sqlm_table

Monitor Switch
Table

Resettable No

Event Type
Table

Event Record(s)
sqlm_table_event

API Element Name
Element Type

table_type
information

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Table File ID” on page 159

150 System Monitor Guide and Reference

 Table Name

Description: The name of the table.

Usage: Along with Table Schema Name, this element can help you determine the
source of contention for resources.

At the application-level, application-lock level, and deadlock-monitoring-level, this is the
table that the application is waiting to lock, because it is currently locked by another
application. For snapshot monitoring, this item is only valid when the “lock” monitor
group information is turned on, and when Lock Object Type Waited On indicates that
the application is waiting to obtain a table lock.

For snapshot monitoring at the object-lock level, this item is returned for table-level and
row-level locks. The table reported at this level is the table against which this applica-
tion holds these locks.

For snapshot and event monitoring at the table level, this is the table for which informa-
tion has been collected. This element is blank for temporary tables, reorganization
tables, and tables that were dropped. Table names are only provided for catalog and
user tables. For snapshot monitoring, this element is only valid when the “table” monitor
group information is turned on.

If you are using the database system monitor APIs, note that the API constant
SQLM_IDENT_SZ is used to define the length of this element. Only the first 18 charac-
ters are currently used.

Snapshot Information Level
Table
Application

Lock

API Structure(s)
sqlm_table
sqlm_appl
sqml_appl_lock
sqlm_lock
sqlm_lock_wait

Monitor Switch
Table
Lock
Lock
Lock
Lock

Resettable No

Event Type
Table
Deadlock

Event Record(s)
sqlm_table_event
sqlm_dlconn_event

API Element Name
Element Type

table_name
information

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Table Schema Name” on page 152
¹ “Lock Object Type Waited On” on page 137

 Chapter 3. Database System Monitor Data Elements 151

Table Schema Name

Description: The schema of the table.

Usage: Along with Table Name, this element can help you determine the source of
contention for resources.

For application-level, application-lock-level, deadlock-monitoring-level, this is the
schema of the table that the application is waiting to lock, because it is currently locked
by another application. This element is only set if Lock Object Type Waited On indi-
cates that the application is waiting to obtain a table lock. For snapshot monitoring at
the application-level and application-lock levels, this item is only valid when the “lock”
monitor group information is turned on.

For snapshot monitoring at the object-lock level, this item is returned for table and row
level locks. The table reported at this level is the table against which this application
holds these locks.

For snapshot and event monitoring at the table level, this element identifies the schema
of the table for which information has been collected. This element is blank for tempo-
rary tables, reorganization tables, and tables that were dropped. Schema names are
provided only for catalog and user tables. For snapshot monitoring, this element is
valid only when the “table” monitor group information is turned on.

If you are using the database system monitor APIs, note that the API constant
SQLM_IDENT_SZ is used to define the length of this element. Only the first 8 charac-
ters are currently used.

Snapshot Information Level
Table
Application

Lock

API Structure(s)
sqlm_table
sqlm_appl
sqlm_appl_lock
sqlm_lock
sqlm_lock_wait

Monitor Switch
Table
Lock
Lock
Lock
Lock

Resettable No

Event Type
Table
Deadlock

Event Record(s)
sqlm_table_event
sqlm_dlconn_event

API Element Name
Element Type

table_schema
information

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Table Name” on page 151
¹ “Lock Object Type Waited On” on page 137

152 System Monitor Guide and Reference

 Rows Deleted

Description: This is the number of row deletions attempted.

Usage: You can use this element to gain insight into the current level of activity within
the database manager.

This count does not include the attempts counted in Internal Rows Deleted.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

rows_deleted
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Internal Rows Deleted” on page 157

 Rows Inserted

Description: This is the number of row insertions attempted.

Usage: You can use this element to gain insight into the current level of activity within
the database manager.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

rows_inserted
counter

Related Information ¹ “When Counters are Initialized” on page 20

 Chapter 3. Database System Monitor Data Elements 153

 Rows Updated

Description: This is the number of row updates attempted.

Usage: You can use this element to gain insight into the current level of activity within
the database manager.

This value does not include updates counted in Internal Rows Updated.. However, rows
that are updated by more than one update statement are counted for each update.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

rows_updated
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Internal Rows Updated” on page 158

 Rows Selected

Description: This is the number of rows that have been selected and returned to the
application.

Usage: You can use this element to gain insight into the current level of activity within
the database manager.

This element does not include a count of rows read for actions such as COUNT(*) or
joins.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

rows_selected
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Select SQL Statements Executed” on page 168

154 System Monitor Guide and Reference

 Rows Written

Description: This is the number of rows changed (inserted, deleted or updated) in the
table.

Usage: A high value for table-level information indicates there is heavy usage of the
table and you may want to use the Run Statistics (RUNSTATS) utility to maintain effi-
ciency of the packages used for this table.

For application-connections and statements, this element includes the number of rows
inserted, updated, and deleted in temporary tables.

At the application, transaction, and statement levels, this element can be useful for ana-
lyzing the relative activity levels, and for identifying candidates for tuning.

Snapshot Information Level
Table
Application

API Structure(s)
sqlm_table
sqlm_appl
sqlm_stmt
sqlm_subsection

Monitor Switch
Table
Basic
Basic
Statement

Resettable Yes

Event Type
Connection
Table
Statement
Transaction

Event Record(s)
sqlm_conn_event
sqlm_table_event
sqlm_stmt_event
sqlm_xaction_event

API Element Name
Element Type

rows_written
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Rows Read” on page 156
¹ “Internal Rows Inserted” on page 159
¹ “Internal Rows Deleted” on page 157
¹ “Internal Rows Updated” on page 158

 Chapter 3. Database System Monitor Data Elements 155

 Rows Read

Description: This is the number of rows read from the table.

Usage: This element helps you identify tables with heavy usage for which you may
want to create additional indexes. To avoid the maintenance of unnecessary indexes,
you may use the SQL EXPLAIN statement, described in the Administration Guide to
determine if the package uses an index.

This count is not the number of row that were returned to the calling application.
Rather, it is the number of rows that had to be read in order to return the result set. For
example, the following statement returns one row to the application, but many rows are
read to determine the average salary:

SELECT AVG(SALARY) FROM USERID.EMPLOYEE

This count includes the value in Accesses to Overflowed Records.

Snapshot Information Level
Table
Application

API Structure(s)
sqlm_table
sqlm_appl
sqlm_stmt
sqlm_subsection

Monitor Switch
Table
Basic
Basic
Statement

Resettable Yes

Event Type
Connection
Table
Statement
Transaction

Event Record(s)
sqlm_conn_event
sqlm_table_event
sqlm_stmt_event
sqlm_xaction_event

API Element Name
Element Type

rows_read
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Rows Written” on page 155
¹ “Accesses to Overflowed Records” on page 157

156 System Monitor Guide and Reference

Accesses to Overflowed Records

Description: The number of accesses (reads and writes) to overflowed rows of this
table.

Usage: Overflowed rows indicate that data fragmentation has occurred. If this number
is high, you may be able to improve table performance by reorganizing the table using
the REORG utility, which cleans up this fragmentation.

A row overflows if it is updated and no longer fits in the data page where it was ori-
ginally written. This usually happens as a result of an update of a VARCHAR or an
ALTER TABLE statement.

Snapshot Information Level
Table

API Structure(s)
sqlm_table

Monitor Switch
Table

Resettable Yes

Event Type
Table

Event Record(s)
sqlm_table_event

API Element Name
Element Type

overflow_accesses
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “When Counters are Initialized” on page 20
¹ “Rows Read” on page 156
¹ “Rows Written” on page 155

Internal Rows Deleted

Description: This is the number of rows deleted from the database as a result of
internal activity.

Usage: This element can help you gain insight into internal activity within the database
manager of which you might not be aware. If this activity is high, you may want to
evaluate your table design to determine if the referential constraints or triggers that you
have defined on your database are necessary.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl
sqlm_stmt

Monitor Switch
Basic
Basic
Basic

Resettable Yes

Event Type
Database
Connection
Statement

Event Record(s)
sqlm_db_event
sqlm_conn_event
sqlm_stmt_event

API Element Name
Element Type

int_rows_deleted
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Rows Deleted” on page 153

 Chapter 3. Database System Monitor Data Elements 157

Internal delete activity can be a result of:

¹ A cascading delete enforcing an ON CASCADE DELETE referential constraint
¹ A trigger being fired.

Internal Rows Updated

Description: This is the number of rows updated from the database as a result of
internal activity.

Usage: This element can help you gain insight into internal activity within the database
manager of which you might not be aware. If this activity is high, you may want to
evaluate your table design to determine if the referential constraints that you have
defined on your database are necessary.

Internal update activity can be a result of:

¹ A set null row update enforcing a referential constraint defined with the ON
DELETE SET NULL rule

¹ A trigger being fired.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl
sqlm_stmt

Monitor Switch
Basic
Basic
Basic

Resettable Yes

Event Type
Database
Connection
Statement

Event Record(s)
sqlm_db_event
sqlm_conn_event
sqlm_stmt_event

API Element Name
Element Type

int_rows_updated
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Rows Updated” on page 154

158 System Monitor Guide and Reference

Internal Rows Inserted

Description: The number of rows inserted into the database as a result of internal
activity caused by triggers.

Usage: This element can help you gain insight into the internal activity within the data-
base manager. If this activity is high, you may want to evaluate your design to deter-
mine if you can alter it to reduce this activity.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl
sqlm_stmt

Monitor Switch
Basic
Basic
Basic

Resettable Yes

Event Type
Database
Connection
Statement

Event Record(s)
sqlm_db_event
sqlm_conn_event
sqlm_stmt_event

API Element Name
Element Type

int_rows_inserted
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Rows Inserted” on page 153

Table File ID

Description: This is the file ID (FID) for the table.

Usage: This element is provided for information purposes only. It is returned for com-
patibility with previous versions of the database system monitor, and it may not
uniquely identify the table. Use Table Name and Table Schema Name to identify the
table.

Snapshot Information Level
Application
Table
Lock

API Structure(s)
sqlm_appl
sqlm_table
sqlm_appl_lock
sqlm_lock

Monitor Switch
Lock
Table
Lock
Lock

Resettable No

API Element Name
Element Type

table_file_id
information

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Table Name” on page 151
¹ “Table Schema Name” on page 152
¹ “Table Type” on page 150

 Chapter 3. Database System Monitor Data Elements 159

 SQL Cursors
The following elements provide information about the SQL cursors:

¹ “Open Remote Cursors”
¹ “Open Remote Cursors with Blocking” on page 161
¹ “Rejected Block Cursor Requests” on page 162
¹ “Accepted Block Cursor Requests” on page 162
¹ “Open Local Cursors” on page 163
¹ “Open Local Cursors with Blocking” on page 163

Open Remote Cursors

Description: The number of remote cursors currently open for this application,
including those cursors counted by Open Remote Cursors with Blocking.

Usage: You may use this element in conjunction withOpen Remote Cursors with
Blocking to calculate the percentage of remote cursors that are blocking cursors. If the
percentage is low, you may be able to improve performance by improving the row
blocking in the application. See Open Remote Cursors with Blocking for more informa-
tion.

For the number of open cursors used by applications connected to a local database,
see Open Local Cursors.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

open_rem_curs
gauge

Related Information ¹ “Open Remote Cursors with Blocking” on page 161
¹ “Open Local Cursors” on page 163

160 System Monitor Guide and Reference

Open Remote Cursors with Blocking

Description: The number of remote blocking cursors currently open for this applica-
tion.

Usage: You can use this element in conjunction withOpen Remote Cursors to calcu-
late the percentage of remote cursors that are blocking cursors. If the percentage is
low, you may be able to improve performance by improving the row blocking in the
application:

¹ Check the pre-compile options for record blocking for treatment of ambiguous
cursors

¹ Redefine cursors to allow for blocking (for example, if possible, specify FOR
FETCH ONLY on your cursors).

Rejected Block Cursor Requests and Accepted Block Cursor Requests provide addi-
tional information that may help you tune your configuration parameters to improve row
blocking in your application.

For the number of open blocking cursors used by applications connected to a local
database see Open Local Cursors with Blocking.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

open_rem_curs_blk
gauge

Related Information ¹ “Open Remote Cursors” on page 160
¹ “Rejected Block Cursor Requests” on page 162
¹ “Accepted Block Cursor Requests” on page 162
¹ “Open Local Cursors” on page 163
¹ “Open Local Cursors with Blocking” on page 163

 Chapter 3. Database System Monitor Data Elements 161

Rejected Block Cursor Requests

Description: The number of times that a request for an I/O block at server was
rejected and the request was converted to non-blocked I/O.

Usage: If there are many cursors blocking data, the communication heap may become
full. When this heap is full, an error is not returned. Instead, no more I/O blocks are
allocated for blocking cursors. If cursors are unable to block data, performance can be
affected.

If a large number of cursors were unable to perform data blocking, you may be able to
improve performance by:

¹ Increasing the size of the query_heap database manager configuration parameter.
For more information see the Administration Guide.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl

Monitor Switch
Basic

Resettable No

Event Type
Connection

Event Record(s)
sqlm_conn_event

API Element Name
Element Type

rej_curs_blk
counter

Related Information ¹ “Accepted Block Cursor Requests” on page 162
¹ “Open Local Cursors” on page 163
¹ “Open Local Cursors with Blocking” on page 163

Accepted Block Cursor Requests

Description: The number of times that a request for an I/O block was accepted.

Usage: You can use this element in conjunction withRejected Block Cursor Requests
to calculate the percentage of blocking requests that are accepted and/or rejected.

See Rejected Block Cursor Requests for suggestions on how to use this information to
tune your configuration parameters.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl

Monitor Switch
Basic

Resettable No

Event Type
Connection

Event Record(s)
sqlm_conn_event

API Element Name
Element Type

acc_curs_blk
counter

Related Information ¹ “Rejected Block Cursor Requests” on page 162
¹ “Open Local Cursors” on page 163
¹ “Open Local Cursors with Blocking” on page 163

162 System Monitor Guide and Reference

Open Local Cursors

Description: The number of local cursors currently open for this application, including
those cursors counted by Open Local Cursors with Blocking.

Usage: You may use this element in conjunction withOpen Local Cursors with
Blocking to calculate the percentage of local cursors that are blocking cursors. If the
percentage is low, you may be able to improve performance by improving the row
blocking in the application.

For cursors used by remote applications, see Open Remote Cursors.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

open_loc_curs
gauge

Related Information ¹ “Open Local Cursors with Blocking” on page 163
¹ “Open Remote Cursors” on page 160
¹ “Open Remote Cursors with Blocking” on page 161
¹ “Rejected Block Cursor Requests” on page 162
¹ “Accepted Block Cursor Requests” on page 162

Open Local Cursors with Blocking

Description: The number of local blocking cursors currently open for this application.

Usage: You may use this element in conjunction withOpen Local Cursors to calculate
the percentage of local cursors that are blocking cursors. If the percentage is low, you
may be able to improve performance by improving the row blocking in the application:

¹ Check the pre-compile options for record blocking for treatment of ambiguous
cursors

¹ Redefine cursors to allow for blocking (for example, if possible, specify FOR
FETCH ONLY on your cursors).

Snapshot Information Level
Application

API Structure(s)
sqlm_appl

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

open_loc_curs_blk
gauge

Related Information ¹ “Open Local Cursors” on page 163
¹ “Open Remote Cursors” on page 160
¹ “Open Remote Cursors with Blocking” on page 161
¹ “Rejected Block Cursor Requests” on page 162
¹ “Accepted Block Cursor Requests” on page 162

 Chapter 3. Database System Monitor Data Elements 163

Rejected Block Cursor Requests and Accepted Block Cursor Requests provide addi-
tional information that may help you tune your configuration parameters to improve row
blocking in your application.

For blocking cursors used by remote applications, see Open Remote Cursors with
Blocking.

SQL Statement Activity
The following elements provide information about SQL statement activity:

¹ “Static SQL Statements Attempted”
¹ “Dynamic SQL Statements Attempted” on page 165
¹ “Failed Statement Operations” on page 165
¹ “Commit Statements Attempted” on page 166
¹ “Rollback Statements Attempted” on page 167
¹ “Select SQL Statements Executed” on page 168
¹ “Update/Insert/Delete SQL Statements Executed” on page 168
¹ “Data Definition Language (DDL) SQL Statements” on page 169
¹ “Internal Automatic Rebinds” on page 170
¹ “Internal Commits” on page 171
¹ “Internal Rollbacks” on page 172
¹ “Internal Rollbacks Due To Deadlock” on page 173
¹ “SQL Requests Since Last Commit” on page 173
¹ “Statement Node” on page 174
¹ “Binds/Precompiles Attempted” on page 174

Static SQL Statements Attempted

Description: The number of static SQL statements that were attempted.

Usage: You can use this element to calculate the total number of successful SQL
statements at the database or application level:

Dynamic SQL Statements Attempted

+ Static SQL Statements Attempted

- Failed Statement Operations

= throughput during monitoring period

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

static_sql_stmts
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Failed Statement Operations” on page 165

164 System Monitor Guide and Reference

Dynamic SQL Statements Attempted

Description: The number of dynamic SQL statements that were attempted.

Usage: You can use this element to calculate the total number of successful SQL
statements at the database or application level:

Dynamic SQL Statements Attempted

+ Static SQL Statements Attempted

- Failed Statement Operations

= throughput during monitoring period

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

dynamic_sql_stmts
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Failed Statement Operations” on page 165

Failed Statement Operations

Description: The number of SQL statements that were attempted, but failed.

Usage: You can use this element to calculate the total number of successful SQL
statements at the database or application level:

Dynamic SQL Statements Attempted

+ Static SQL Statements Attempted

- Failed Statement Operations

= throughput during monitoring period

This count includes all SQL statements that received a negative SQLCODE.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

failed_sql_stmts
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Dynamic SQL Statements Attempted” on page 165
¹ “Static SQL Statements Attempted” on page 164

 Chapter 3. Database System Monitor Data Elements 165

This element may also help you in determining reasons for poor performance, since
failed statements mean time wasted by the database manager and as a result, lower
throughput for the database.

Commit Statements Attempted

Description: The total number of SQL COMMIT statements that have been
attempted.

Usage: A small rate of change in this counter during the monitor period may indicate
that applications are not doing frequent commits, which may lead to problems with
logging and data concurrency.

You can also use this element to calculate the total number of units of work by calcu-
lating the sum of the following:

commit statements attempted

 + internal commits

 + rollback statements attempted

 + internal rollbacks

Note: The units of work calculated will only include those since the later of:

¹ The connection to the database (for database-level information, this is the
time of the first connection)

¹ The last reset of the database monitor counters.

This calculation can be done at a database or application level.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

commit_sql_stmts
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Internal Commits” on page 171
¹ “Rollback Statements Attempted” on page 167
¹ “Internal Rollbacks” on page 172
¹ “Internal Rollbacks Due To Deadlock” on page 173

166 System Monitor Guide and Reference

Rollback Statements Attempted

Description: The total number of SQL ROLLBACK statements that have been
attempted.

Usage: A rollback can result from an application request, a deadlock, or an error situ-
ation. This element only counts the number of rollback statements issued from applica-
tions.

At the application level, this element can help you determine the level of database
activity for the application and the amount of conflict with other applications. At the
database level, it can help you determine the amount of activity in the database and the
amount of conflict between applications on the database.

Note: You should try to minimize the number of rollbacks, since higher rollback activity
results in lower throughput for the database.

It may also be used to calculate the total number of units of work, by calculating the
sum of the following:

commit statements attempted

 + internal commits

 + rollback statements attempted

 + internal rollbacks

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

rollback_sql_stmts
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Statement Type” on page 175
¹ “Commit Statements Attempted” on page 166
¹ “Internal Commits” on page 171
¹ “Internal Rollbacks” on page 172
¹ “Internal Rollbacks Due To Deadlock” on page 173

 Chapter 3. Database System Monitor Data Elements 167

Select SQL Statements Executed

Description: The number of SQL SELECT statements that were executed.

Usage: You can use this element to determine the level of database activity at the
application or database level.

You can also use the following formula to determine the ratio of SELECT statements to
the total statements:

select SQL statements executed

/ (static SQL statements attempted

+ dynamic SQL statements attempted)

This information can be useful for analyzing application activity and throughput.

Snapshot Information Level
Database
Table Space
Application

API Structure(s)
sqlm_dbase
sqlm_tablespace
sqlm_appl

Monitor Switch
Basic
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

select_sql_stmts
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Static SQL Statements Attempted” on page 164
¹ “Dynamic SQL Statements Attempted” on page 165

Update/Insert/Delete SQL Statements Executed

Description: The number of SQL UPDATE, INSERT, and DELETE statements that
were executed.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

uid_sql_stmts
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Static SQL Statements Attempted” on page 164
¹ “Dynamic SQL Statements Attempted” on page 165

168 System Monitor Guide and Reference

Usage: You can use this element to determine the level of database activity at the
application or database level.

You can also use the following formula to determine the ratio of UPDATE, INSERT and
DELETE statements to the total number of statements:

update/insert/delete SQL statements executed

 / (static SQL statements attempted + dynamic SQL statements attempted)

This information can be useful for analyzing application activity and throughput.

Data Definition Language (DDL) SQL Statements

Description: This element indicates the number of SQL Data Definition Language
(DDL) statements that were executed.

Usage: You can use this element to determine the level of database activity at the
application or database level. DDL statements are expensive to run due to their impact
on the system catalog tables. As a result, if the value of this element is high, you
should determine the cause, and possibly restrict this activity from being performed.

You can also use this element to determine the percentage of DDL activity using the
following formula:

 data definition language (DDL) SQL statements / total number of statements

This information can be useful for analyzing application activity and throughput. DDL
statements can also impact the package cache, by invalidating sections that are stored
there and causing additional system overhead due to section recompilation.

Examples of DDL statements are CREATE TABLE, CREATE VIEW, ALTER TABLE,
and DROP INDEX.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

ddl_sql_stmts
counter

Related Information ¹ “When Counters are Initialized” on page 20

 Chapter 3. Database System Monitor Data Elements 169

Internal Automatic Rebinds

Description: The number of automatic rebinds (or recompiles) that have been
attempted.

Usage: Automatic rebinds are the internal binds the system performs when an
package has been invalidated. The rebind is performed the first time that the database
manager needs to execute an SQL statement from the package. For example, pack-
ages are invalidated when you:

¹ Drop an object, such as a table, view, or index, on which the plan is dependent

¹ Add or drop a foreign key

¹ Revoke object privileges on which the plan is dependent.

You can use this element to determine the level of database activity at the application
or database level. Since internal automatic rebinds can have a significant impact on
performance, they should be minimized where possible.

You can also use this element to determine the percentage of rebind activity using the
following formula:

 internal automatic rebinds / total number of statements

This information can be useful for analyzing application activity and throughput.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

int_auto_rebinds
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Binds/Precompiles Attempted” on page 174

170 System Monitor Guide and Reference

 Internal Commits

Description: The total number of commits initiated internally by the database
manager.

Usage: An internal commit may occur during any of the following:

 ¹ A reorganization
 ¹ An import
¹ A bind or pre-compile
¹ An application ends without executing an explicit SQL COMMIT statement (on

UNIX).

This value, which does not include explicit SQL COMMIT statements, represents the
number of these internal commits since the later of:

¹ The connection to the database (for database-level information, this is the time of
the first connection)

¹ The last reset of the database monitor counters.

You can use this element to calculate the total number of units of work by calculating
the sum of the following:

commit statements attempted

 + internal commits

 + rollback statements attempted

 + internal rollbacks

Note: The units of work calculated will only include those since the later of:

¹ The connection to the database (for database-level information, this is the
time of the first connection)

¹ The last reset of the database monitor counters.

This calculation can be done at the application or the database level.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

int_commits
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Commit Statements Attempted” on page 166
¹ “Rollback Statements Attempted” on page 167
¹ “Internal Rollbacks” on page 172

 Chapter 3. Database System Monitor Data Elements 171

 Internal Rollbacks

Description: The total number of rollbacks initiated internally by the database
manager.

Usage: An internal rollback occurs when any of the following cannot complete
successfully:

 ¹ A reorganization
 ¹ An import
¹ A bind or pre-compile
¹ An application ends as a result of a deadlock situation or lock timeout situation
¹ An application ends without executing an explicit commit or rollback statement (on

Windows).

This value represents the number of these internal rollbacks since the later of:

¹ The connection to the database (for database-level information, this is the time of
the first connection)

¹ The last reset of the database monitor counters.

While this value does not include explicit SQL ROLLBACK statements, the count from
Internal Rollbacks Due To Deadlock is included.

You can use this element to calculate the total number of units of work by calculating
the sum of the following:

commit statements attempted

 + internal commits

 + rollback statements attempted

 + internal rollbacks

Note: The units of work calculated will include those since the later of:

¹ The connection to the database (for database-level information, this is the
time of the first connection)

¹ The last reset of the database monitor counters.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

int_rollbacks
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Commit Statements Attempted” on page 166
¹ “Internal Commits” on page 171
¹ “Rollback Statements Attempted” on page 167
¹ “Internal Rollbacks Due To Deadlock” on page 173

172 System Monitor Guide and Reference

This calculation can be done at the application or the database level.

Internal Rollbacks Due To Deadlock

Description: The total number of forced rollbacks initiated by the database manager
due to a deadlock. A rollback is performed on the current unit of work in an application
selected by the database manager to resolve the deadlock.

Usage: This element shows the number of deadlocks that have been broken and can
be used as an indicator of concurrency problems. It is important, since internal
rollbacks due to deadlocks lower the throughput of the database.

This value is included in the value given by Internal Rollbacks.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Connection

Event Record(s)
sqlm_conn_event

API Element Name
Element Type

int_deadlock_rollbacks
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Deadlocks Detected” on page 133
¹ “Rollback Statements Attempted” on page 167
¹ “Internal Rollbacks” on page 172

SQL Requests Since Last Commit

Description: Number of SQL requests that have been submitted since the last
commit.

Usage: You can use this element to monitor the progress of a transaction.

Note: This element is similar to the cur_reqs field in the sqlestat output. See
Appendix C, “DB2 Version 1 sqlestat Users” on page 271 for more information
on sqlestat equivalent data elements.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

sql_reqs_since_commit
information

Related Information ¹ None

 Chapter 3. Database System Monitor Data Elements 173

 Statement Node

Description: Node where the statement was executed.

Usage: Used to correlate each statement with the node where it was executed.

Snapshot Information Level
Application

API Structure(s)
sqlm_stmt

Monitor Switch
Statement

Resettable No

API Element Name
Element Type

stmt_node_number
information

Related Information ¹ None

 Binds/Precompiles Attempted

Description: The number of binds and pre-compiles attempted.

Usage: You can use this element to gain insight into the current level of activity within
the database manager.

This value does not include the count of Internal Automatic Rebinds, but it does include
binds that occur as a result of the REBIND PACKAGE command.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

binds_precompiles
counter

Related Information ¹ “When Counters are Initialized” on page 20
¹ “Internal Automatic Rebinds” on page 170

SQL Statement Details
The following elements provide details about the SQL statements:

¹ “Statement Type” on page 175
¹ “Statement Operation” on page 176
¹ “Package Name” on page 177
¹ “Section Number” on page 177
¹ “Cursor Name” on page 178
¹ “Application Creator” on page 179
¹ “Statement Operation Start Timestamp” on page 179
¹ “Statement Operation Stop Timestamp” on page 180
¹ “SQL Dynamic Statement Text” on page 180
¹ “Statement Sorts” on page 181

174 System Monitor Guide and Reference

¹ “Number of Successful Fetches” on page 182
¹ “SQL Communications Area (SQLCA)” on page 182
¹ “Query Number of Rows Estimate” on page 183
¹ “Query Cost Estimate” on page 183

 Statement Type

Description: The type of statement processed.

Usage: You can use this element to determine the type of statement that is executing.
It can be one of the following:

¹ A static SQL statement
¹ A dynamic SQL statement
¹ An operation other than an SQL statement; for example, a bind or pre-compile

operation.

For the snapshot monitor, this element describes the statement that is currently being
processed or was most recently processed.

Note: API users should refer to the sqlmon.h header file containing definitions of data-
base system monitor constants.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl
sqlm_stmt

Monitor Switch
Statement
Statement

Resettable No

Event Type
Statement

Event Record(s)
sqlm_stmt_event

API Element Name
Element Type

stmt_type
information

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “SQL Dynamic Statement Text” on page 180
¹ “Application Creator” on page 179
¹ “Section Number” on page 177
¹ “Package Name” on page 177

 Chapter 3. Database System Monitor Data Elements 175

 Statement Operation

Description: The statement operation currently being processed or most recently
processed (if none currently running).

Usage: You can use this element to determine the operation that is executing or
recently finished.

It can be one of the following.

For SQL operations:

 ¹ SELECT
 ¹ PREPARE
 ¹ EXECUTE
 ¹ EXECUTE IMMEDIATE
 ¹ OPEN
 ¹ FETCH
 ¹ CLOSE
 ¹ DESCRIBE
 ¹ STATIC COMMIT
 ¹ STATIC ROLLBACK
 ¹ FREE LOCATOR

For non-SQL operations:

 ¹ RUN STATISTICS
 ¹ REORG
 ¹ REBIND
 ¹ REDISTRIBUTE
¹ GET TABLE AUTHORIZATION
¹ GET ADMINISTRATIVE AUTHORIZATION

Snapshot Information Level
Application

API Structure(s)
sqlm_appl
sqlm_stmt

Monitor Switch
Basic
Statement

Resettable No

Event Type
Statement

Event Record(s)
sqlm_stmt_event

API Element Name

Element Type

stmt_operation (Snapshot)
operation (Event)
information

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Statement Type” on page 175
¹ “SQL Dynamic Statement Text” on page 180
¹ “Application Creator” on page 179
¹ “Section Number” on page 177
¹ “Package Name” on page 177
¹ “Number of Successful Fetches” on page 182

176 System Monitor Guide and Reference

Note: API users should refer to the sqlmon.h header file containing definitions of data-
base system monitor constants.

 Package Name

Description: The name of the package that contains the SQL statement currently exe-
cuting.

Usage: You may use this element to help identify the application program and the
SQL statement that is executing.

If you are using the database system monitor APIs, note that the API constant
SQLM_IDENT_SZ is used to define the length of this element. Only the first 8 charac-
ters are currently used.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl
sqlm_stmt

Monitor Switch
Statement
Statement

Resettable No

Event Type
Statement

Event Record(s)
sqlm_stmt_event

API Element Name
Element Type

package_name
information

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Application Creator” on page 179
¹ “Section Number” on page 177
¹ “SQL Dynamic Statement Text” on page 180

 Section Number

Description: The internal section number in the package for the SQL statement cur-
rently processing or most recently processed.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl
sqlm_stmt

Monitor Switch
Statement
Statement

Resettable No

Event Type
Statement

Event Record(s)
sqlm_stmt_event

API Element Name
Element Type

section_number
information

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “SQL Dynamic Statement Text” on page 180
¹ “Application Creator” on page 179
¹ “Package Name” on page 177

 Chapter 3. Database System Monitor Data Elements 177

Usage: For static SQL, you can use this element along with Application Creator and
Package Name to query the SYSCAT.STATEMENTS system catalog table and obtain
the static SQL statement text, using the sample query as follows:

SELECT SEQNO, SUBSTR(TEXT,1,120)

 FROM SYSCAT.STATEMENTS

WHERE PKGNAME = 'package_name' AND

PKGSCHEMA = 'creator' AND

 SECTNO = section_number

ORDER BY SEQNO

Note: Exercise caution in obtaining static statement text, because this query against
the system catalog table could cause lock contentions. Whenever possible, only
use this query when there is little other activity against the database.

 Cursor Name

Description: The name of the cursor corresponding to this SQL statement.

Usage: You may use this element to identify the SQL statement that is processing.
This name will be used on an OPEN, FETCH, CLOSE, and PREPARE of an SQL
SELECT statement. If a cursor is not used, this field will be blank.

If you are using the database system monitor APIs, note that the API constant
SQLM_IDENT_SZ is used to define the length of this element. Only the first 8 charac-
ters are currently used.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl
sqlm_stmt

Monitor Switch
Statement
Statement

Resettable No

Event Type
Statement

Event Record(s)
sqlm_stmt_event

API Element Name
Element Type

cursor_name
information

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “SQL Dynamic Statement Text” on page 180
¹ “Statement Type” on page 175
¹ “Number of Successful Fetches” on page 182

178 System Monitor Guide and Reference

 Application Creator

Description: The authorization ID of the user that pre-compiled the application.

Usage: You may use this element to help identify the SQL statement that is proc-
essing, in conjunction with the CREATOR column of the package section information in
the catalogs.

If you are using the database system monitor APIs, note that the API constant
SQLM_IDENT_SZ is used to define the length of this element. Only the first 8 charac-
ters are currently used.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl
sqlm_stmt

Monitor Switch
Statement
Statement

Resettable No

Event Type
Statement

Event Record(s)
sqlm_stmt_event

API Element Name
Element Type

creator
information

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Package Name” on page 177
¹ “Section Number” on page 177

Statement Operation Start Timestamp

Description: The date and time when the Statement Operation started executing.

Usage: You can use this element with Statement Operation Stop Timestamp to calcu-
late the elapsed statement operation execution time.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl
sqlm_stmt

Monitor Switch
Statement
Statement

Resettable No

API Element Name
Element Type

stmt_start
timestamp

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Statement Operation Stop Timestamp” on page 180
¹ “Statement Operation” on page 176

 Chapter 3. Database System Monitor Data Elements 179

Statement Operation Stop Timestamp

Description: The date and time when the Statement Operation stopped executing.

Usage: You can use this element with Statement Operation Start Timestamp to calcu-
late the elapsed statement operation execution time.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl
sqlm_stmt

Monitor Switch
Statement
Statement

Resettable No

Event Type
Statement

Event Record(s)
sqlm_stmt_event

API Element Name

Element Type

stmt_stop (Snapshot)
stop_time (event)
Timestamp

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Statement Operation Start Timestamp” on page 179
¹ “Statement Operation” on page 176

SQL Dynamic Statement Text

Description: This is the text of the dynamic SQL statement.

Usage: For snapshots, this statement text helps you identify what the application was
executing when the snapshot was taken, or most recently processed if no statement
was being processed right at the time the snapshot was taken.

For event monitors, it is returned in the Statement event record for all dynamic state-
ments.

Snapshot Information Level
Application

API Structure(s)
sqlm_stmt

Monitor Switch
Statement

Resettable No

Event Type
Statement

Event Record(s)
sqlm_stmt_event

API Element Name

Element Type

Relative offsets are used to return the text.
See data structures in sqlmon.h>
stmt_text (Event)
information

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Statement Operation” on page 176
¹ “Cursor Name” on page 178
¹ “Input Database Alias” on page 193
¹ “Application Creator” on page 179
¹ “Package Name” on page 177
¹ “Section Number” on page 177

180 System Monitor Guide and Reference

See Section Number for information on how to query the system catalog tables to
obtain static SQL statement text that is not provided due to performance considerations.

 Statement Sorts

Description: The total number of times that a set of data was sorted in order to
process the statement operation.

Usage: You can use this element to help identify the need for an index, since indexes
can reduce the need for sorting of data. Using the related elements in the above table
you can identify the SQL statement for which this element is providing sort information,
and then analyze this statement to determine index candidates by looking at columns
that are being sorted (for example, columns used in ORDER BY and GROUP BY
clauses and join columns). See explain in the Administration Guide for information on
checking whether your indexes are used to optimize sort performance.

This count includes sorts of temporary tables that were generated internally by the
database manager to execute the statement. The number of sorts is associated with
the first FETCH operation of the SQL statement. This information is returned to you
when the operation for the statement is the first FETCH. You should note that for
blocked cursors several fetches may be performed when the cursor is opened. In these
cases it can be difficult to use the snapshot monitor to obtain the number of sorts, since
a snapshot would need to be taken while DB2 was internally issuing the first FETCH.

A more reliable way to determine the number of sorts performed when using a blocked
cursor would be with an event monitor declared for statements. The total sorts counter,
in the statement event for the CLOSE cursor, contains the total number of sorts that
were performed while executing the statement for which the cursor was defined.

Snapshot Information Level
Application

API Structure(s)
sqlm_appl
sqlm_stmt

Monitor Switch
Statement
Statement

Resettable No

API Element Name
Element Type

stmt_sorts
counter

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Total Sorts” on page 82

 Chapter 3. Database System Monitor Data Elements 181

Number of Successful Fetches

Description: The number of successful fetches performed on a specific cursor.

Usage: You can use this element to gain insight into the current level of activity within
the database manager.

For performance reasons, a statement event monitor does not generated a statement
event record for every FETCH statement. A record event is only generated when a
FETCH returns a non-zero SQLCODE.

Snapshot Information Level
Application

API Structure(s)
sqlm_stmt

Monitor Switch
Statement

Resettable Yes

Event Type
Statement

Event Record(s)
sqlm_stmt_event

API Element Name
Element Type

fetch_count
counter

Related Information ¹ “Statement Type” on page 175
¹ “Statement Operation” on page 176
¹ “Cursor Name” on page 178
¹ “Statement Operation Start Timestamp” on page 179
¹ “Statement Operation Stop Timestamp” on page 180

SQL Communications Area (SQLCA)

Description: The SQLCA data structure that was returned to the application at state-
ment completion.

Usage: The SQLCA data structure can be used to determined if the statement com-
pleted successfully. See the SQL Reference or API Reference for information about the
content of the SQLCA.

Event Type
Statement

Event Record(s)
sqlm_stmt_event

API Element Name
Element Type

sqlca
information

Related Information ¹ “Statement Operation” on page 176

182 System Monitor Guide and Reference

Query Number of Rows Estimate

Description: An estimate of the number of rows that will be returned by a query.

Usage: This estimate by the SQL compiler can be compared with the run time actuals.

Snapshot Information Level
Application

API Structure(s)
sqlm_stmt

Monitor Switch
Statement

Resettable No

API Element Name
Element Type

query_card_estimate
information

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Query Cost Estimate” on page 183

Query Cost Estimate

Description: Estimated cost, in timerons, for a query, as determined by the SQL com-
piler.

Usage: This allows correlation of actual run-time with the compile-time estimates.

Snapshot Information Level
Application

API Structure(s)
sqlm_stmt

Monitor Switch
Statement

Resettable No

API Element Name
Element Type

query_cost_estimate
information

Related Information ¹ None

 Subsection Details
When a statement is executed against a partitioned database, it is divided into sub-
sections that may be executed on different nodes. An application may have several
subsections simultaneously executing on a node. See “Monitoring Subsections” on
page 26 and the Administration Guide for more information on subsections.

For problem determination, you may have to locate the problem subsection. For
example, a subsection may be waiting on a tablequeue, because one of the writers to
this tablequeue is in lock wait on another node. To get the overall picture for an appli-
cation, you may have to issue an application snapshot on each node where the applica-
tion is running.

The following database system monitor elements provide information about
Subsections:

¹ “Subsection Number” on page 184
¹ “Subsection Node Number” on page 184
¹ “Subsection Status” on page 185
¹ “Execution Elapsed Time” on page 185
¹ “Number of Agents Working on a Subsection” on page 186

 Chapter 3. Database System Monitor Data Elements 183

¹ “Waiting for Any Node to Send on a Tablequeue” on page 186
¹ “Waited for Node on a Tablequeue” on page 187
¹ “Total Number of Tablequeue Buffers Overflowed” on page 187
¹ “Current Number of Tablequeue Buffers Overflowed” on page 188
¹ “Number of Rows Read from Tablequeues” on page 188
¹ “Number of Rows Written to Tablequeues” on page 189

 Subsection Number

Description: Identifies the subsection associated with the returned information.

Usage: This number relates to the subsection number in the access plan that can be
obtained with db2expln (see Administration Guide).

Snapshot Information Level
Application

API Structure(s)
sqlm_subsection

Monitor Switch
Statement

Resettable No

Event Type
Statement

Event Record(s)
sqlm_subsection_event

API Element Name
Element Type

ss_number
information

Related Information ¹ None

Subsection Node Number

Description: Node where the subsection was executed.

Usage: Use to correlate each subsection with the database partition where it was exe-
cuted.

Snapshot Information Level
Application

API Structure(s)
sqlm_subsection

Monitor Switch
Statement

Resettable No

Event Type
Statement

Event Record(s)
sqlm_subsection_event

API Element Name
Element Type

ss_node_number
information

Related Information ¹ None

184 System Monitor Guide and Reference

 Subsection Status

Description: The current status of an executing subsection.

Usage: The current status values can be:

 ¹ executing
¹ waiting for a lock
¹ waiting to receive data on a tablequeue
¹ waiting to send data on a tablequeue

Snapshot Information Level
Application

API Structure(s)
sqlm_subsection

Monitor Switch
Statement

Resettable No

API Element Name
Element Type

ss_status
information

Related Information ¹ “Waited for Node on a Tablequeue” on page 187
¹ “Waiting for Any Node to Send on a Tablequeue” on

page 186

Execution Elapsed Time

Description: The time in seconds that it took a subsection to execute.

Usage: Allows you to track the progress of a subsection.

Snapshot Information Level
Application

API Structure(s)
sqlm_subsection

Monitor Switch
Statement

Resettable No

Event Type
Statement

Event Record(s)
sqlm_subsection_event

API Element Name
Element Type

ss_exec_time
counter

Related Information ¹ None

 Chapter 3. Database System Monitor Data Elements 185

Number of Agents Working on a Subsection

Description: Total number of subagents currently working on a subsection.

Usage: Indicates the current degree of parallelism. Helps you track how execution is
progressing.

Snapshot Information Level
Application

API Structure(s)
sqlm_subsection

Monitor Switch
Statement

Resettable No

Event Type
Statement

Event Record(s)
sqlm_subsection_event

API Element Name
Element Type

num_subagents
gauge

Related Information ¹ None

Waiting for Any Node to Send on a Tablequeue

Description: This flag is used to indicate that the subsection is blocked because it is
waiting to receive rows from any node.

Usage: If Subsection Status indicates waiting to receive data on a tablequeue and this
flag is TRUE, then the subsection is waiting to receive rows from any node. This gener-
ally indicates that the SQL statement has not processed to the point it can pass data to
the waiting agent. For example, the writing agent may be performing a sort and will not
write rows until the sort has completed. From the db2expln output, determine the sub-
section number associated with the tablequeue that the agent is waiting to receive rows
from. You can then examine the status of that subsection by taking a snapshot on each
node where it is executing.

Snapshot Information Level
Application

API Structure(s)
sqlm_subsection

Monitor Switch
Statement

Resettable No

API Element Name
Element Type

tq_wait_for_any
information

Related Information ¹ “Subsection Status” on page 185
¹ “Waited for Node on a Tablequeue” on page 187

186 System Monitor Guide and Reference

Waited for Node on a Tablequeue

Description: If the subsection status Subsection Status is waiting to receive or waiting
to send and Waiting for Any Node to Send on a Tablequeue is FALSE, then this is the
number of the node that this agent is waiting for.

Usage: This can be used for troubleshooting. You may want to take an application
snapshot on the node that the subsection is waiting for. For example, the application
could be in a lock wait on that node.

Snapshot Information Level
Application

API Structure(s)
sqlm_subsection

Monitor Switch
Statement

Resettable No

API Element Name
Element Type

tq_node_waited_for
information

Related Information ¹ “Subsection Status” on page 185
¹ “Waiting for Any Node to Send on a Tablequeue” on

page 186

Total Number of Tablequeue Buffers Overflowed

Description: Total number of tablequeue buffers overflowed to a temporary table.

Usage: Indicates the total number of tablequeue buffers that have been written to a
temporary table. See “Current Number of Tablequeue Buffers Overflowed” on page 188
for more information.

Snapshot Information Level
Application

API Structure(s)
sqlm_subsection

Monitor Switch
Statement

Resettable No

Event Type
Statement

Event Record(s)
sqlm_subsection_event

API Element Name
Element Type

tq_tot_send_spills
counter

Related Information ¹ “Subsection Status” on page 185
¹ “Current Number of Tablequeue Buffers Overflowed”

on page 188

 Chapter 3. Database System Monitor Data Elements 187

Current Number of Tablequeue Buffers Overflowed

Description: Current number of tablequeue buffers residing in a temporary table.

Usage: An agent writing to a tablequeue may be sending rows to several readers. The
writing agent will overflow buffers to a temporary table when the agent that it is cur-
rently sending rows to is not accepting rows and another agent requires rows in order
to proceed. Overflowing to temporary table allows both the writer and the other readers
to continue processing.

Rows that have been overflowed will be sent to the reading agent when it is ready to
accept more rows.

If this number is high, and queries fail with sqlcode -968, and there are messages in
db2diad.log indicating that your ran out of temporary space in the TEMP table space,
then tablequeue overflows may be the cause. This could indicate a problem on another
node (such as locking). You would investigate by taking snapshots on all the partitions
for this query.

There are also cases, perhaps because of the way data is partitioned, where many
buffers need to be overflowed for the query. In these cases you will need to add more
disk to the temporary table space.

Snapshot Information Level
Application

API Structure(s)
sqlm_subsection

Monitor Switch
Statement

Resettable No

API Element Name
Element Type

tq_cur_send_spills
gauge

Related Information ¹ “Subsection Status” on page 185
¹ “Total Number of Tablequeue Buffers Overflowed”

on page 187

Number of Rows Read from Tablequeues

Description: Total number of rows read from tablequeues.

Usage: If monitoring does not indicate that this number is increasing, then processing
progress is not taking place.

Snapshot Information Level
Application

API Structure(s)
sqlm_subsection

Monitor Switch
Statement

Resettable No

Event Type
Statement

Event Record(s)
sqlm_subsection_event

API Element Name
Element Type

tq_rows_read
counter

Related Information ¹ None

188 System Monitor Guide and Reference

If there is significant differences in this number between nodes, then some nodes may
be over utilized while others are being under utilized.

If this number is large, then there is a lot of data being shipped between nodes,
suggest that optimization might improve the access plan.

Number of Rows Written to Tablequeues

Description: Total number of rows written to tablequeues.

Usage: If monitoring does not indicate that this number is increasing, then processing
progress is not taking place.

If there is significant differences in this number between nodes, then some nodes may
be over utilized while others are being under utilized.

If this number is large, then there is a lot of data being shipped between nodes,
suggest that optimization might improve the access plan.

Snapshot Information Level
Application

API Structure(s)
sqlm_subsection

Monitor Switch
Statement

Resettable No

Event Type
Statement

Event Record(s)
sqlm_subsection_event

API Element Name
Element Type

tq_rows_written
counter

Related Information ¹ None

 Intra-query Parallelism
The following database system monitor elements provide information about queries for
which the degree of parallelism is greater than 1:

¹ “Number of Agents Working on a Statement” on page 190
¹ “Number of Agents Created” on page 190
¹ “Degree of Parallelism” on page 191

 Chapter 3. Database System Monitor Data Elements 189

Number of Agents Working on a Statement

Description: Number of concurrent agents currently executing a statement or sub-
section.

Usage: An indicator how well the query is parallelized. This is useful for tracking the
progress of query execution, by taking successive snapshots.

Snapshot Information Level
Statement

API Structure(s)
sqlm_stmt
sqlm_subsection

Monitor Switch
Statement
Statement

Resettable No

API Element Name
Element Type

num_agents
gauge

Related Information ¹ “Number of Agents Created” on page 190
¹ “Degree of Parallelism” on page 191

Number of Agents Created

Description: This is the maximum number of agents that were used when executing
the statement.

Usage: An indicator how well intra-query parallelism was realized.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_stmt

Monitor Switch
Statement
Statement

Resettable No

API Element Name
Element Type

agents_top
water mark

Related Information ¹ “Number of Agents Working on a Statement” on
page 190

¹ “Degree of Parallelism” on page 191

190 System Monitor Guide and Reference

Degree of Parallelism

Description: The degree of parallelism requested when the query was bound.

Usage: Use with “Number of Agents Created” on page 190, to determine if the query
achieved maximum level of parallelism.

Snapshot Information Level
Statement

API Structure(s)
sqlm_stmt

Monitor Switch
Statement

Resettable No

API Element Name
Element Type

degree_parallelism
information

Related Information ¹ “Number of Agents Working on a Statement” on
page 190

¹ “Number of Agents Created” on page 190

 CPU Usage
The CPU usage for an application is broken down into user CPU , which is the CPU
consumed while executing application code, and system CPU, which is the CPU con-
sumed executing system calls.

CPU consumption is available at the application, transaction, statement, and subsection
levels.

¹ “CPU Time Used”

CPU Time Used
Snapshot Information Level
Application
Statement
Subsection

API Structure(s)
sqlm_appl
sqlm_stmt
sqlm_subsection

Monitor Switch
Basic
Statement
Statement

Resettable Yes, at the application level
No, at other levels

Event Type
Connection
Transaction
Statement
Subsection

Event Record(s)
sqlm_conn_event
sqlm_xaction_event
sqlm_stmt_event
sqlm_subsection_event

API Element Name

Element Type

agent_usr_cpu_time
agent_sys_cpu_time
stmt_usr_cpu_time
stmt_sys_cpu_time
ss_usr_cpu_time
ss_sys_cpu_time
user_cpu_time
system_cpu_time
time

Related Elements ¹ None

 Chapter 3. Database System Monitor Data Elements 191

Description: The total CPU time (in seconds and microseconds) used by database
manager agents, while working on behalf of the application, transaction, statement, or
subsection.

System CPU represents the time spent in system calls. User CPU represents time
spent executing database manager code.

These counters include time spent on both SQL and non-SQL statements, as well as
any fenced user defined functions (UDF) or stored procedures executed by the applica-
tion.

Usage: These elements can help you identify applications or queries that consume
large amounts of CPU.

Note: If this information is not available for your operating system, these elements will
be returned as 0. For example, they are not available on OS/2.

Snapshot Monitoring Elements
The following elements provide information about monitoring applications. They are
returned as output for every snapshot:

¹ “Last Reset Timestamp”
¹ “Input Database Alias” on page 193
¹ “Snapshot Time” on page 193

Last Reset Timestamp

Description: Indicates the date and time that the monitor counters were reset for the
application issuing the GET SNAPSHOT.

Usage: You can use this element to help you determine the scope of information
returned by the database system monitor.

If the counters have never been reset, this element will be zero.

The database manager counters will only be reset if you reset all active databases.

Snapshot Information Level
Database Manager
Database
Application
Table Space
Table

API Structure(s)
sqlm_db2
sqlm_dbase
sqlm_appl
sqlm_tablespace_header
sqlm_table_header

Monitor Switch
Basic
Basic
Basic
Buffer Pool
Table

Resettable No

API Element Name
Element Type

last_reset
timestamp

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Input Database Alias” on page 193

192 System Monitor Guide and Reference

Input Database Alias

Description: The alias of the database provided when calling the snapshot function.

Usage: This element can be used to identify the specific database to which the
monitor data applies. It contains blanks unless you requested monitor information
related to a specific database.

The value of this field may be different than the value of the Database Alias Used by
Application monitor element since a database can have many different aliases. Different
applications and users can use different aliases to connect to the same database.

If you are using the database system monitor APIs, note that the API constant
SQLM_IDENT_SZ is used to define the length of this element. Only the first 8 charac-
ters are currently used.

Snapshot Information Level
Database
Application
Table Space
Buffer Pool
Table
Lock

API Structure(s)
sqlm_dbase
sqlm_appl_id_info
sqlm_tablespace_header
sqlm_bufferpool
sqlm_table_header
sqlm_dbase_lock

Monitor Switch
Basic
Basic
Buffer Pool
Buffer Pool
Table
Basic

Resettable No

API Element Name
Element Type

input_db_alias
information

Related Information ¹ “Resetting Monitor Data” on page 21
¹ “Last Reset Timestamp” on page 192
¹ “Database Alias Used by Application” on page 54

 Snapshot Time

Description: The date and time when the database system monitor information was
collected.

Usage: You can use this element to help relate data chronologically if you are saving
the results in a file or database for ongoing analysis.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_collected

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

time_stamp
timestamp

Related Information ¹ None

 Chapter 3. Database System Monitor Data Elements 193

194 System Monitor Guide and Reference

Chapter 4. Event Monitor Output

This chapter explains the contents and format of the trace produced by an event
monitor and different options that can be specified on the CREATE EVENT MONITOR
statement that can influence the trace. It shows how to program for reading this trace,
through the use of code samples.

Output Stream Format
The output of an event monitor is a binary stream of data structures that are exactly the
same for both pipe and file event monitors. You can format this trace using the
db2evmon productivity tool.

Event Monitor records are defined in the sqlmon.h header file. You can look at the
comments included in that file to see exactly which data elements are returned for each
event type.

The following table illustrates the order in which records may appear in the event
monitor stream. See “Information Available from Event Monitors” on page 17 for a list
of events that trigger the writing of event records. Records in a trace are logically
divided into three sections:

1. Prologue records - generated when an event monitor is activated.

2. Actual content records - generated as events occur.

3. Epilogue records - generated when a database is deactivated.

Record type Record name Information returned

Prologue

Event Log Header sqlm_event_log_header Characteristics of the trace, for example
server type and memory layout.

Database Header sqlm_dbheader_event Database name, path and activation time.

Event Monitor Start sqlm_evmon_start_event Time when the monitor was started or
restarted.

Connection Header sqlm_connheader_event One for each current connection, includes
connection time and application name.

Actual Contents (may appear mixed in with other connections).

Connection Header sqlm_connheader_event One for each connection after activation,
includes connection time and application
identification.

Statement Event sqlm_stmt_event Statement level data, including text for
dynamic statements.

Transaction Event sqlm_xaction_event Transaction level data.

Connection Event sqlm_conn_event Connection level data.

Deadlock Event sqlm_deadlock_event Deadlock level data.

 Copyright IBM Corp. 1993, 1997 195

Note: Event records may be generated for any connection and may therefore appear in
mixed order in the stream. This means that you may get a transaction event for Con-
nection 1, immediately followed by a connection event for Connection 2. However,
records belonging to a single connection or a single event, will appear in their logical
order. For example, a statement record (end of statement) always precedes a trans-
action record (end of UOW), if any. Similarly, a deadlock event record always precedes
the deadlocked connection event records for each connection involved in the deadlock.
The application id or application handle (agent_id) can be used to match records
with a connection.

For example, using the following event monitor,

Record type Record name Information returned

Deadlocked Connection
Event

sqlm_dlconn_event One for each connection involved, includes
applications involved and locks in con-
tention.

Overflow sqlm_overflow_event Number of records lost - generated when
reader cannot keep up with a (non-blocked)
event monitor.

Epilogue

Database Event sqlm_db_event Database level data.

Buffer Pool Event sqlm_bufferpool_event Buffer pool level data.

Table Space Event sqlm_tablespace_event Table space level data.

Table Event sqlm_table_event Table level data.

db2 "create event monitor ALL for
statements, transactions, connections,
deadlocks, database, bufferpools,
tablespaces, tables, write to
file ’/tmp/all’"

mkdir /tmp/all
db2 connect reset

db2 connect to sample

the following workload,

db2 connect to sample

db2 +c connect reset

db2 set event monitor ALL state 1
db2 select evmonname from

syscat.eventmonitors
db2 connect reset

Application 1 Application 2

196 System Monitor Guide and Reference

the following trace might be generated. Listed in this sample are some of the fields in
each event record to give a flavor of the type of information contained in a trace. See
“Event Monitors” on page 10 for an example of deadlock events. Note, the numbers in
this sample are used to illustrate the order in which records have been written.

PROLOGUE

The Prologue information is generated when set event monitor all state 1 is exe-
cuted. If this event monitor had been AUTOSTART, it would have been generated
when the database was activated.

1) sqlm_event_log_header

version: SQLM_DBMON_VERSION5 - Trace was produced by UDB V5

num_nodes_in_db2_instance: 1 - for a standalone system,

byte_order: SQLM_BIG_ENDIAN - on a UNIX or AIX box,

event_monitor_name: ALL - by event monitor: 'ALL'

2) sqlm_dbheader_event

db_name: SAMPLE - for database 'SAMPLE'

3) sqlm_connheader_event

agent_id: 14 - Application 1 - handle

appl_id: *LOCAL.bourbon.970602180712 - Application 1 - id with timestamp

CONTENTS

Generated when Application 1 issues select name from syscat.eventmonitors. At the
time that the event monitor is turned on, Application 2 has not yet connected.

 Chapter 4. Event Monitor Output 197

4) sqlm_stmt_event

 agent_id: 14

 appl_id: *LOCAL.bourbon.970602180712

 operation: SQLM_PREPARE

 package_name: SQLC2BA4

 cursor: SQLCUR201

@stmt_text_offset: SELECT EVMONNAME FROM SYSCAT.EVENTMONITORS

5) sqlm_stmt_event

 agent_id: 14

 appl_id: *LOCAL.bourbon.970602180712

 operation: SQLM_OPEN

 package_name: SQLC2BA4

 cursor: SQLCUR201

@stmt_text_offset: SELECT EVMONNAME FROM SYSCAT.EVENTMONITORS

6) sqlm_stmt_event

 agent_id: 14

 appl_id: *LOCAL.bourbon.970602180712

 operation: SQLM_FETCH

 package_name: SQLC2BA4

 cursor: SQLCUR201

@stmt_text_offset: SELECT EVMONNAME FROM SYSCAT.EVENTMONITORS

 fetch_count: 2

sqlca.sqlcode: 100 - (all rows in the SYSCAT.EVENTMONITORS table)

SQL0100W No row was found for FETCH, UPDATE or DELETE; or the result of a

query is an empty table. SQLSTATE=02000

NOTE - A fetch event is generated only if the fetch fails or encounters end of table

7) sqlm_stmt_event

 agent_id: 14

 appl_id: *LOCAL.bourbon.970602180712

 operation: SQLM_DESCRIBE

 package_name: SQLC2BA4

 cursor: SQLCUR201

@stmt_text_offset: SELECT EVMONNAME FROM SYSCAT.EVENTMONITORS

8) sqlm_stmt_event

 agent_id: 14

 appl_id: *LOCAL.bourbon.970602180712

 operation: SQLM_CLOSE

 package_name: SQLC2BA4

 cursor: SQLCUR201

@stmt_text_offset: SELECT EVMONNAME FROM SYSCAT.EVENTMONITORS

 fetch_count: 2

9) sqlm_stmt_event

 agent_id: 14

 appl_id: *LOCAL.bourbon.970602180712

operation: SQLM_STATIC_COMMIT - generated by CLP after the SELECT

 package_name: SQLC2BA4

10) sqlm_xaction_event

 agent_id: 14

 appl_id: *LOCAL.bourbon.970602180712

 status: SQLM_UOWCOMMIT

 rows_read: 7

198 System Monitor Guide and Reference

Application 2 is connecting to the database. Output is interleaved, as the DB2 agents
are executing simultaneously:

11) sqlm_connheader_event

agent_id: 15 - Application 2 - handle

appl_id: *LOCAL.bourbon.970602180714 - Application 2 - id with timestamp

12) sqlm_stmt_event

 agent_id: 15

 appl_id: *LOCAL.bourbon.970602180714

operation: SQLM_STATIC_COMMIT - generated by CLP on CONNECT

13) sqlm_xaction_event

 agent_id: 15

 appl_id: *LOCAL.bourbon.970602180714

 status: SQLM_UOWCOMMIT

14) sqlm_stmt_event

 agent_id: 15

 appl_id: *LOCAL.bourbon.970602180714

operation: SQLM_STATIC_COMMIT - generated on CONNECT RESET

15) sqlm_xaction_event

 agent_id: 15

 appl_id: *LOCAL.bourbon.970602180714

 status: SQLM_UOWCOMMIT

16) sqlm_conn_event

 agent_id: 15

 appl_id: *LOCAL.bourbon.970602180714

 commit_sql_stmts: 2

17) sqlm_stmt_event

 agent_id: 14

 appl_id: *LOCAL.bourbon.970602180712

operation: SQLM_STATIC_COMMIT - generated on CONNECT RESET

 package_name: SQLC2BA4

18) sqlm_xaction_event

 agent_id: 14

 appl_id: *LOCAL.bourbon.970602180712

 status: SQLM_UOWCOMMIT

 rows_read: 2

 locks_held_top: 7

19) sqlm_conn_event

 agent_id: 14

 appl_id: *LOCAL.bourbon.970602180712

 select_sql_stmts: 1

 rows_selected: 2

 Chapter 4. Event Monitor Output 199

Epilogue

The Epilogue information is generated during database deactivation (last application fin-
ished disconnecting):

20) sqlm_table_event

 table_schema: SYSIBM

 table_name: SYSTABLES

 table_type: SQLM_CATALOG_TABLE

 rows_read: 2

21) sqlm_table_event

 table_schema: SYSIBM

 table_name: SYSDBAUTH

 table_type: SQLM_CATALOG_TABLE

 rows_read: 3

22) sqlm_tablespace_event

 tablespace_name: SYSCATSPACE

23) sqlm_tablespace_event

 tablespace_name: TEMPSPACE1

24) sqlm_tablespace_event

 tablespace_name: USERSPACE1

25) sqlm_bufferpool_event

 bp_name: IBMDEFAULTBP

26) sqlm_db_event

 connections_top: 2

Note: A WHERE clause on the CREATE EVENT MONITOR SQL statement can be
used to restrict the applications that will generate events; see Appendix A,
“Database System Monitor Interfaces” on page 213 for details.

Matching Event Records with Their Application
Each record includes the application handle and application ID. These allow you to cor-
relate each record with the application for which the record was generated.

The application handle (agent_id) is unique system-wide for the duration of the applica-
tion. However, it will eventually be reused (a 16 bit counter is used to generate this
identifier). In most cases, this reuse is not a problem, since an application reading
records from the trace is able to detect a connection that was terminated. For example,
encountering (in the trace) a connection header with a known agent_ID implies that the
previous connection with this agent_ID was terminated.

The application ID is a string identifier that includes a timestamp and is guaranteed to
remain unique, even after stopping and restarting the database manager.

200 System Monitor Guide and Reference

File Event Monitor Buffering
The event monitor output thread buffers records, using two internal buffers, before
writing them to disk. Records are written to the trace only when a buffer is full. To force
an event monitor to flush its buffers you must turn it off. The size of these buffers can
be specified on the CREATE EVENT MONITOR statement with the BUFFERSIZE argu-
ment. Specifying larger buffers reduces the number of disk accesses.

Figure 5 illustrates how event records are generated for a FILE statement event
monitor: 2 applications are connected to a database, each having a single agent
working on its behalf.

DB2
Database Manager

buffer 1

buffer 2

Event
Monitor
output
thread

file(s)

Database
System
Monitor

DB2 agent

DB2 agent

buffer
full
flushed
to
target

event
records

data

data

Figure 5. Event Monitor Buffers

In this example, each application agent has just finished executing a statement and is
reporting the monitor data it has collected for its statement to the event monitor output
thread. The output thread formats the records and writes them into one of its two
buffers. The buffer gets written to a file when it is full. Having two buffers allows the
output thread to continue receiving data from database agents, while a buffer is being
written.

 Chapter 4. Event Monitor Output 201

Blocked Event Monitors
A blocked event monitor will suspend the agent(s) sending monitor data, when both of
its buffers are full, until a buffer has been written. This can introduce a significant per-
formance overhead, depending on the type of workload and the speed of the I/O
device. But, a blocked event monitor never discards event records, as long as it is
running. This is the default.

Non-Blocked Event Monitors
A non-blocked event monitor will simply discard monitor data coming from the agents
when the data is coming faster than it can write it. The following is an example of cre-
ating a non-blocked event monitor:

db2 "create event monitor STMT for
statements write to file ’/tmp/all’
NONBLOCKED"

 Overflows
An event monitor that has discarded event records generates an overflow event . It
specifies the start and stop time during which the monitor was discarding events, and
the number of events that were discarded during that period.

Unwritten Overflow Data: It is possible for an event monitor to terminate or be deac-
tivated with a pending overflow to report. If this occurs, the following message is written
to the db2diag.log:

DIA1603I Event Monitor monitor-name had a pending overflow

record when it was deactivated.

File Event Monitor Target
All the output of the event monitor goes in the directory supplied to the FILE argument
on the CREATE EVENT MONITOR statement.

When a file event monitor is first activated, a control file is created in this directory. This
binary file contains control information that is used to prevent two event monitors from
simultaneously writing to the same target, and to keep track of the file and file location
where the event monitor is supposed to write its next record. It is named db2event.ctl;
do not remove or modify this file.

Limiting Trace Size
By default, an event monitor writes its trace to a single file, called 00000000.evt. This
file will keep growing as long as there is space on the file system. You can limit the
maximum size of a trace using the MAXFILESIZE and MAXFILES arguments of the
create event monitor statement.

202 System Monitor Guide and Reference

Number of Files: The trace produced by an event monitor can be quite large, and
you may want to break it down into several files of a fixed size. This also allows you to
remove files after processing them, while the event monitor is still running.

Files are numbered sequentially, beginning with 00000000.evt. If you are using several
files, then when a file is full, output is automatically directed to the next file. For
example, the following event monitor will break down its trace into 4MB files. It keeps
creating files as long as there is space on the file system.

db2 "create event monitor BIGONE
for statements, transactions, connections,
deadlocks write to file ’/tmp/bigevmon’
MAXFILESIZE 1000
MAXFILES NONE"

This might result in the following files in its target directory.

File size (bytes)
/tmp/bigevmon/db2evmon.ctl 300
/tmp/bigevmon/00000000.evt 4079766
/tmp/bigevmon/00000001.evt 4095128
/tmp/bigevmon/00000002.evt 4095602

The highest numbered file is always the active file. When the number of files reaches
the maximum defined by MAXFILES, the event monitor deactivates itself and the fol-
lowing message is written to the DB2DIAG.LOG.

DIA1601I Event Monitor monitor-name was deactivated when

it reached its preset MAXFILES and MAXFILESIZE limit

You can avoid this situation by removing full files (see “Processing Data While Monitor
is Active”). Any event file except the active file can be removed while the event monitor
is still running.

Running out of Disk Space
When a File event monitor runs out of disk space, it shuts itself down, after logging a
system-error-level message in the error logs, db2diag.log and db2err.log.

Processing Data While Monitor is Active
You may want an event monitor to collect data continuously so that no events are ever
missed. For example, if you have a usage account system that uses an event monitor
to collect data, you may want to process the data each night beginning at 2:00 AM, at
which point you delete the files that have been processed.

An event monitor cannot be forced to switch to the next file unless you stop and restart
it. It must also be in APPEND mode. In order to keep track of which events have been

 Chapter 4. Event Monitor Output 203

processed in the active file, you can create an application that simply keeps track of the
file number and location of the last record processed. When processing the trace the
next time around, the application can simply seek to that file location.

Using Pipe event monitors is an easy way to read data produced by an active event
monitor (see “Using Pipe Event Monitors” on page 18).

Restarting a File Event Monitor
When a File event monitor is restarted, it can either erase any existing data, or append
to it.

An APPEND event monitor starts writing at the end of the file it was last using (the file
number is indicated in the db2evmon.ctl control file). If you have removed that file, then
the next file number in sequence is used. For example, in the example above, if you
remove all .evt files, and restart the event monitor, then event records will be written
into 00000003.evt. If you had not removed the files, then they would go into or append
to 00000002.evt. When an append event monitor is restarted, only the start_event is
generated. The event log header and database header are only generated for the first
activation.

A REPLACE event monitor always deletes existing event files, and starts writing at
00000000.evt.

Programming to Read an Event Monitor Trace
Each record in the binary event monitor stream, except for the log header, starts with
the size and type of the record. While reading the trace, it is extremely important that
the size of a record is used for skipping a record in the trace, both to ensure that your
application will be able to handle the traces produced by future releases of DB2, and
because byte padding is sometimes used in the output stream. WARNING: You
should never use sizeof() on event monitor records . Similarly, the type of every
record should be checked. Skipping unknown or unwanted records will allow your appli-
cation to handle any event monitor trace.

The log header describes the characteristics of the trace, containing information such
as the memory model (for example big endian) of the server where the trace was col-
lected, and the codepage of the database. You may have to do byte swapping on
numerical values, if the system where you read the trace has a different memory model
than the server (for example, Windows NT to UNIX). Codepage translation may also
need to be done, if the database is configured in a different language than the machine
from which you read the trace.

The following annotated fragments from the code samples in sqllib/samples/c_AIX illus-
trates the most important considerations in programming to read an event monitor
trace. Some error handling is omitted, for simplicity. This code should run on all plat-
forms, except for PIPE I/O routines (however, more platforms are addressed in the
actual code samples).

204 System Monitor Guide and Reference

Reading the Data Stream
The following routines illustrate how you can open, read, or skip bytes from a PIPE or
FILE on a UNIX platform.
//--

// File functions - Using the ANSI C library

//--

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

//--

FILE* openFile(char *file_name) {

return fopen(file_name,"rb"); /* returns NULL if file cannot be opened */

}

//--

int closeFile(FILE* handle) {

 return fclose(handle);

}

//--

int readFromFile(char* buffer, int size, FILE* fp) {

int rc=0; // returns 0 (success); EOF; or errno

int records_read = fread(buffer, size, 1, fp);

if (records_read != 1) {

 if (feof(fp))

rc = EOF;

else rc = errno;

} /* end if no data was returned */

 return rc;

} /* end readFromFile */

//--

// Pipe functions - for AIX

//--

#include <unistd.h> /* for pipe functions on AIX */

#include <fcntl.h> /* for definition of O_RDONLY and open() */

//--

int openNamedPipe (char *pipe_name) {

return open(pipe_name, O_RDONLY);

}

//--

int closeNamedPipe (int handle) {

 return close(handle);

}

//--

int readFromPipe(int handle, char* buffer, int size) {

 int rc=0;

 int num_bytes;

num_bytes = read(handle, buffer, size);

if (num_bytes != size) {

 if (num_bytes==0)

 rc=EOF;

else rc = num_bytes;

} /* end did not get the expected number of bytes back from read() */

 return rc;

} /* end readFromPipe */

//--

// Read data from Event Monitor trace (FILE or PIPE) returns 0 (success) or EOF

//--

int read_data(EventLog* evtlog,

 char* buffer,

 int size) {

 int rc=0;

if (evtlog->type == EVMFile) {

rc = readFromFile(buffer, size, evtlog->current_fp);

if (rc && rc!=EOF) {

 Chapter 4. Event Monitor Output 205

fprintf(stderr, "ERROR: Could not read from: %s\n",

 evtlog->current_fn);

 exit(1);

} /* end cannot read the log header from the file */

} /* end if the Event Monitor Log is read from a file */

 else {

rc = readFromPipe(evtlog->handle, buffer, size);

if (rc && rc!=EOF) {

fprintf(stderr, "ERROR: Could not read a data from: %s\n",

 evtlog->target);

 exit(2);

} /* end cannot read from the pipe */

} /* end else the Event Log is read from a pipe */

 return rc;

} /* end of read_data */

//--

// Skip n bytes from current position in the trace

//--

void skip_data(EventLog* evtlog, int n) {

if (evtlog->type == EVMFile)

fseek(evtlog->current_fp, n, SEEK_CUR);

else if (evtlog->type == EVMPipe) {

lseek(evtlog->handle, n, SEEK_CUR);

} /* end else pipe event monitor */

} /* end skip_data */

Swapping Bytes in Numerical Values
This code is required when transferring data between systems using different con-
ventions for storing numerical values (for example, UNIX to Windows NT).
#include <sqlmon.h> // DB2 Database Monitor interface

//--

// Byte conversion macros

//--

#define SWAP2(s) ((((s) >> 8) & 0xFF) | (((s) << 8) & 0xFF00))

#define SWAP4(l) ((((l) >> 24) & 0xFF) | ((((l) & 0xFF0000) >> 8) & 0xFF00) \

| (((l) & 0xFF00) << 8) | ((l) << 24))

//--

void swapBytes_sqlm_event_log_header(sqlm_event_log_header* r) {

 r->size = SWAP4(r->size);

 r->version = SWAP4(r->version);

 r->codepage_id = SWAP2(r->codepage_id);

 r->country_code = SWAP2(r->country_code);

} // end of swapBytes_sqlm_event_log_header)

// . . .

Reading the Event Records
After the log header has been read, all remaining records in the trace follow the fol-
lowing layout. Each record starts and terminates on a 4 byte boundary; and records are
never split across 2 files.

206 System Monitor Guide and Reference

log header

header:

header:

data

data

size
type

size
type

Record #1

Record #2

The size accounts for both header and data.
//--

// Read an event record - returns: 0 (success) or EOF

//--

int read_event_record(EventLog *evtlog, char *buffer, int *event_type) {

sqlm_event_rec_header* pHeader = (sqlm_event_rec_header*) buffer;

 //---

// Read the record header

 //---

 int rc;

rc=read_data(evtlog, (char *) pHeader, pHeader->size);

 if (rc)

return rc; /* could be at EOF */

 *event_type = pHeader->type; // The event type is specified in the header

 if (evtlog->needByteReversal)

 swapBytes_sqlm_event_rec_header(pHeader);

 //---

// Read the rest of the data

 //---

 rc=read_data(evtlog, buffer + pHeader->size,

pHeader->size - pHeader->size);

if (rc==0 && evtlog->needByteReversal)

 swapBytes(pHeader->type, buffer);

 return rc;

} /* end of read_event_record */

 Chapter 4. Event Monitor Output 207

Reading the Log Header
You must take care of byte reversal, and possibly code page conversion. This example
only handles byte reversal.
// From sqlmon.h, the DB2 system monitor header file:

// LOG HEADER

typedef struct sqlm_event_log_header

{

int byte_order; /* Big Endian or Little Endian */

unsigned long size; /* Size of this record */

unsigned long version; /* Event Monitor Version */

char event_monitor_name[SQLM_IDENT_SZ]; /* Name of the Event Mon */

unsigned short codepage_id; /* Code page of Database */

unsigned short country_code; /* Country Code of Database */

char server_prdid[SQLM_IDENT_SZ]; /* Server Product Id */

char server_instance_name[SQLM_IDENT_SZ]; /*instance name of DB2 */

 unsigned long number_nodes_in_system;

}sqlm_event_log_header;

//--

// Attributes of an Event Log

// This structure is used to keep all information that is required to

// process the output of any Event Monitor (file or pipe).

//--

typedef enum EventMonitorType { EVMPipe, EVMFile } EventMonitorType;

typedef struct EventLog {

 sqlm_event_log_header header;

 char* target;

Boolean needByteReversal; // True if running on a machine

// with a different memory model

EventMonitorType type; // type: file or pipe

int handle; // For Named pipe only

FILE* current_fp; // File currently open

char current_fn[512]; // It's name.

} EventLog;

//--

// Read the log header - store its attributes into an 'EventLog' structure.

//--

#ifdef _AIX // Compiler pre-defined macro on AIX

#define BIG_ENDIAN_MEMORY

#else

// Assume an INTEL platform

#define LITTLE_ENDIAN_MEMORY

#endif

void read_log_header(/* output */ EventLog* evtlog) {

// Read the Event Trace header

read_data(evtlog, // input: event trace (or log)

(char*) &evtlog->header, // output: log header

sizeof(sqlm_event_log_header)); // input: number of bytes to read

// is what we can handle

// Check if the memory model is different and we need byte-reveral

switch (evtlog->header.byte_order) {

 case SQLM_BIG_ENDIAN:

 #ifdef LITTLE_ENDIAN_MEMORY

evtlog->needByteReversal = 1;

 #else

evtlog->needByteReversal = 0;

 #endif

 break;

 case SQLM_LITTLE_ENDIAN:

 #ifndef LITTLE_ENDIAN_MEMORY

evtlog->needByteReversal = 1;

 #else

evtlog->needByteReversal = 0;

208 System Monitor Guide and Reference

 #endif

 break;

} // end switch

// Convert the header, if the server had a different memory model than ours

 if (evtlog->needByteReversal)

 swapBytes_sqlm_event_log_header(&evtlog->header);

// Skip extra bytes, if the record is bigger than what we can handle

// (which may become the case in subsequent releases of the product)

if (evtlog->header.size > sizeof(sqlm_event_log_header)) {

skip_data(evtlog, evtlog->header.size - sizeof(sqlm_event_log_header));

} // end if more bytes than expected for this record in the log file

} // end read_log_header

Printing Event Records
All timestamps in event monitor records are GMT time since January 1, 1970.

All strings in event monitor records are padded with blanks, up to their maximum size.
Strings are NEVER NULL terminated.

The following routines illustrate one method of handling blank-padded strings and con-
verting GMT time into local time. It also shows how to print any event monitor.
#include <stdio.h>
#include <stdlib.h>

#include <string.h>

#include <ctype.h> /* To use cprint() function */

#include <time.h>

#include <sqlmon.h> // DB2 Database Monitor interface

//--

// Convert GMT time into local time, and format it into a printable string.

//--

char* time_STRING(const sqlm_timestamp timestamp, char *timeString) {

// Event Monitor returns GMT time, adjust it to local time

struct tm *pstTm;

pstTm = localtime((signed long*) ×tamp.seconds);

if (timestamp.seconds == 0)

 strcpy(timeString, "");

 else {

if (timestamp.microsec < 0) {

sprintf(timeString, "%02d-%02d-%04d %02d:%02d:%02d",

pstTm->tm_mon + 1, pstTm->tm_mday, pstTm->tm_year + 1900,

pstTm->tm_hour, pstTm->tm_min, pstTm->tm_sec);

} else {

sprintf(timeString, "%02d-%02d-%04d %02d:%02d:%02d.%06.6ld",

pstTm->tm_mon + 1, pstTm->tm_mday, pstTm->tm_year + 1900,

pstTm->tm_hour, pstTm->tm_min, pstTm->tm_sec, timestamp.microsec);

} /* end else micro seconds are not null */

} /* end if the timestamp is non-zero */

 return timeString;

} // end of time_STRING

 All strings in an event monitor traces are BLANK PADDED up to their maximum

 size. They *are not* null terminated.

//--

// Print a Blank Padded String of maximum length SZ

//--

// note: strings returned by DB2 are NOT NULL-TERMINATED, they are all

// blank padded up to some maximum length.

//--

 Chapter 4. Event Monitor Output 209

// For example, given:

// char str[20] = "Contents of 1 ";

// the following invocation:

// fpBPSTR(stdout, " String 1", str, sizeof(str));

// will print:

// " String 1: Contents of 1"

//--

#define fpBPSTR(fp, txt, str, SZ) \

{ \

char newstr[SZ]; \

int k=0; \

while (str[k]!=' '&&k<SZ) { newstr[k]=str[k]; k++;} \

if (k<SZ) newstr[k]='\0'; \

fprintf(fp, txt ": %0.*s\n", SZ, newstr); \

}

//--

char* byte_order_STRING(int val) {

switch (val) {

 case SQLM_LITTLE_ENDIAN: return "SQLM_LITTLE_ENDIAN";

 case SQLM_BIG_ENDIAN: return "SQLM_BIG_ENDIAN";

 }

 return "";

} // end of byte_order_STRING

//--

// Print the log header record

//--

void print_sqlm_event_log_header(FILE* fp,

const sqlm_event_log_header *event_header){

 fprintf(fp,

"--\n"

" EVENT LOG HEADER\n");

fpBPSTR(fp, " Event Monitor name",

 event_header->event_monitor_name, SQLM_IDENT_SZ);

fpBPSTR(fp, " Server Product ID",

 event_header->server_prdid, SQLM_IDENT_SZ);

fprintf(fp, " Version of event monitor data: %ld\n", event_header->version);

fprintf(fp, " Byte order: %s\n",

 byte_order_STRING(event_header->byte_order));

fprintf(fp, " Size of record: %ld\n", event_header->size);

fprintf(fp, " Codepage of database: %d\n", event_header->codepage_id);

fprintf(fp, " Country code of database: %d\n", event_header->country_code);

fpBPSTR(fp, " Server instance name",

 event_header->server_instance_name, SQLM_IDENT_SZ);

 fprintf(fp,

"--\n");

 fflush(fp);

} /* end of print_sqlm_event_log_header */

//--

// Print an event record

//--

void print_event_record(FILE* fp, int event_type, char* rec, int rec_no) {

switch (event_type) {

 case SQLM_EVENT_DB:

// print_sqlm_db_event(fp, (const sqlm_db_event*) rec, rec_no);

 break;

 case SQLM_EVENT_CONN:

// print_sqlm_conn_event(fp, (sqlm_conn_event*) rec, rec_no);

 break;

 case SQLM_EVENT_TABLE:

// print_sqlm_table_event(fp, (sqlm_table_event*) rec, rec_no);

 break;

 case SQLM_EVENT_STMT:

// print_sqlm_stmt_event(fp, (sqlm_stmt_event*) rec, rec_no);

 break;

210 System Monitor Guide and Reference

 case SQLM_EVENT_STMTTEXT:

// print_sqlm_stmttext_event(fp, (sqlm_stmttext_event*) rec, rec_no);

 break;

 case SQLM_EVENT_XACT:

// print_sqlm_xaction_event(fp, (sqlm_xaction_event*) rec, rec_no);

 break;

 case SQLM_EVENT_DEADLOCK:

// print_sqlm_deadlock_event(fp, (sqlm_deadlock_event*) rec, rec_no);

 break;

 case SQLM_EVENT_DLCONN:

// print_sqlm_dlconn_event(fp, (sqlm_dlconn_event*) rec, rec_no);

 break;

 case SQLM_EVENT_TABLESPACE:

// print_sqlm_tablespace_event(fp, (sqlm_tablespace_event*) rec, rec_no);

 break;

 case SQLM_EVENT_DBHEADER:

// print_sqlm_dbheader_event(fp, (sqlm_dbheader_event*) rec, rec_no);

 break;

 case SQLM_EVENT_CONNHEADER:

// print_sqlm_connheader_event(fp, (sqlm_connheader_event*) rec, rec_no);

 break;

 case SQLM_EVENT_OVERFLOW:

// print_sqlm_overflow_event(fp, (sqlm_overflow_event*) rec, rec_no);

 break;

 case SQLM_EVENT_START:

// print_sqlm_evmon_start_event(fp,(sqlm_evmon_start_event*) rec, rec_no);

 break;

 default:

// print_unknown_event(fp, rec, rec_no);

 break;

} /* end switch on event type */

 fflush (fp);

} /* end of print_event_record */

Reading Events from a FILE Trace
This sample illustrates how to handle multiple files.

A file event monitor writes to files that are created in the directory identified by its
target. When initially turned on, it starts writing to file: 00000000.evt, when this file is full
(as specified by the MAXFILESIZE parameter on create event monitor), it moves on to
file: 00000001.evt, and so on.
//--

// Build a fully qualified Event Monitor file name, given a file number

//--

#if _AIX

 #define PATH_SEP '/'

#define PATH_SEP_STR "/"

#else /* Assume Intel platform */

 #define PATH_SEP '\\'

#define PATH_SEP_STR "\\"

#endif

void build_event_monitor_file_name(const char* target, int fnum, char *fn) {

// Build the full filename (path + filename)

int len = strlen(target);

if (target[len-1] == PATH_SEP) {

sprintf(fn, "%s%0.8d.evt", target, fnum);

} else {

sprintf(fn, "%s%s%0.8d.evt", target, PATH_SEP_STR, fnum);

} // end else need to append path delimiter to directory name

} /* end of build_event_monitor_file_name */

 Chapter 4. Event Monitor Output 211

//--

// Read Events from files

//--

void read_events_from_file(char* target) {

EventLog evtlog; /* Attributes for this event log */

int record_no; /* current record number */

int file_no; /* current file number */

 int rc=0;

int end_of_trace=0; /* True when no more files to read */

char buffer[4096]; /* buffer for reading Event records */

 //---

// Initialize the attributes of this Event Log

 //---

 evtlog.type = EVMFile; // A File log

evtlog.target = target; // Directory where the files reside

 //---

// Open the first file and read the log header

 //---

file_no=0; /* First file to open is 00000000.evt */

build_event_monitor_file_name(evtlog.target, file_no, evtlog.current_fn);

 read_log_header(&evtlog);

print_sqlm_event_log_header(stdout, &evtlog.header); // Print it

 //---

// Read/print events from the trace file(s)

 //---

record_no=0; /* Number of event records processed */

while (!end_of_trace) {

int event_type; /* Type of event read from the trace */

rc=read_event_record(&evtlog, buffer, &event_type);

if (rc == EOF) {

/* Try to open the next trace file, if any */

 closeFile(evtlog.current_fp);

 build_event_monitor_file_name(evtlog.target,

 ++file_no, evtlog.current_fn);

if ((evtlog.current_fp = openFile(evtlog.current_fn))==NULL)

end_of_trace=true; /* No more files to read */

 else {

rc=read_event_record(&evtlog, buffer, &event_type);

 if (rc==EOF)

end_of_trace = true;

} /* else read the event from the next file */

} else if (rc) end_of_trace = true;

if (rc==0) {

// Process the event

print_event_record(stdout, event_type, buffer, ++record_no);

} /* end if we got an event record */

} /* end while there are more files in the Event Monitor trace */

} // end of read_events_from_file

See evm.c sample application in engn/samples/c_AIX for the complete source.

212 System Monitor Guide and Reference

Appendix A. Database System Monitor Interfaces

This appendix contains reference material for the commands, SQL statements, and
APIs associated with the database system monitor. The following tables list the com-
mands or APIs to use for a given task.

Table 1. Snapshot Monitor Commands and APIs for a Given Task

Snapshot Monitoring Task API Command

Taking a snapshot “sqlmonss - Get Snapshot API”
on page 248
“sqlmonsz - Estimate Size
Required for sqlmonss() Output
Buffer API” on page 260

“GET SNAPSHOT Command” on
page 232
“LIST ACTIVE DATABASES
Command” on page 235
“LIST APPLICATIONS -
Command” on page 237
“LIST DCS APPLICATIONS -
Command” on page 239
“GET DATABASE MANAGER
MONITOR SWITCHES
Command” on page 228

Getting monitor switch status for
an application or session

“sqlmon - Get/Update Monitor
Switches API” on page 244

“GET MONITOR SWITCHES
Command” on page 230

Updating monitor switch status for
an application or session

“sqlmon - Get/Update Monitor
Switches API” on page 244

“UPDATE MONITOR SWITCHES
Command” on page 266

Getting monitor switch status for
the database manager level

“sqlmonss - Get Snapshot API”
on page 248

“GET DATABASE MANAGER
MONITOR SWITCHES
Command” on page 228

Resetting counters for an applica-
tion or session

“sqlmrset - Reset Monitor API”
on page 263

“RESET MONITOR Command” on
page 241

Table 2. Event Monitor Commands (or SQL) for a Given Task

Event Monitor Task Command

Creating an event monitor “CREATE EVENT MONITOR Command and SQL” on
page 214

Determining if an event monitor is active “EVENT_MON_STATE SQL Function” on page 227

Activating/Deactivating an event monitor “SET EVENT MONITOR STATE Command and SQL”
on page 242

Deleting an event monitor “DROP EVENT MONITOR Command and SQL” on
page 226

Formatting trace to stdout “db2evmon - Event Monitor Trace Formatter
Command” on page 224

Reading trace with the GUI “db2eva - Event Analyzer Command” on page 222

 Copyright IBM Corp. 1993, 1997 213

CREATE EVENT MONITOR Command and SQL

CREATE EVENT MONITOR Command and SQL

 Purpose
Stores an Event Monitor definition in the database catalogs. When activated (see “SET
EVENT MONITOR STATE Command and SQL” on page 242), an event monitor will
log monitor data when certain events occur while using the database. You should read
“Event Monitors” on page 10 and Chapter 4, “Event Monitor Output” on page 195
before using this command.

 Context
This statement can be embedded in an application program or issued interactively. It is
an executable statement that can be dynamically prepared.

 Authorization
The privileges held by the authorization ID must include either SYSADM or DBADM
authority (SQLSTATE 42502).

 Format

214 System Monitor Guide and Reference

CREATE EVENT MONITOR Command and SQL

5──CREATE──EVENT──MONITOR──event-monitor-name──FOR──5

 ┌ ┐─,──
5─ ───6 ┴──┬ ┬──┬ ┬─DATABASE──── ───────────────────────────────── ──────────────────────────────5
 │ │├ ┤─TABLES──────
 │ │├ ┤─DEADLOCKS───
 │ │├ ┤─TABLESPACES─
 │ │└ ┘─BUFFERPOOLS─
 └ ┘ ──┬ ┬─CONNECTIONS── ──┬ ┬────────────────────────────
 ├ ┤─STATEMENTS─── └ ┘─WHERE──┤ Event Condition ├─
 └ ┘─TRANSACTIONS─

 ┌ ┐─MANUALSTART─
5─ ─WRITE──TO─ ──┬ ┬─PIPE──pipe-name─────────────────── ──┼ ┼───────────── ─────────────────────5
 └ ┘─FILE──path-name──┤ File Options ├─ └ ┘─AUTOSTART───

 ┌ ┐─GLOBAL─
5─ ──┬ ┬────────────────────── ──┼ ┼──────── ──5
 └ ┘ ─ON NODE──node-number─ └ ┘─LOCAL──

Event Condition:
┌ ┐─AND | OR───

├─ ───6 ┴──┬ ┬───── ──┬ ┬ ──┬ ┬─APPL_ID─── ──┬ ┬─=───────── ─comparison-string─ ──────────────────────┤
 └ ┘─NOT─ │ │├ ┤─AUTH_ID─── ├ ┤─<>────────
 │ │└ ┘─APPL_NAME─ ├ ┤─>─────────
 │ │├ ┤─>=────────
 │ │├ ┤─<─────────
 │ │├ ┤─<=────────
 │ │├ ┤─LIKE──────
 │ │└ ┘ ─NOT──LIKE─

└ ┘──(Event Condition) ──────────────────────────────

File Options:
├─ ──┬ ┬─────────────────────────────── ──┬ ┬──────────────────────── ─────────────────────────5
 │ │┌ ┐─NONE──────────── │ │┌ ┐─pages─
 └ ┘ ─MAXFILES─ ──┴ ┴─number-of-files─ └ ┘ ─MAXFILESIZE─ ──┴ ┴─NONE──

 ┌ ┐─BLOCKED──── ┌ ┐─APPEND──
5─ ──┬ ┬─────────────────── ──┼ ┼──────────── ──┼ ┼───────── ────────────────────────────────────┤
 └ ┘ ─BUFFERSIZE──pages─ └ ┘─NONBLOCKED─ └ ┘─REPLACE─

 Parameters
event-monitor-name

Names the event monitor. This is a one-part name. It is an SQL identifier (either
ordinary or delimited). The event-monitor-name must not identify an event monitor
that already exists in the catalog (SQLSTATE 42710).

FOR
Introduces the type of events to record. See “Event Types” on page 18 for a list of
the records produced for each event type and the events that trigger writing them.

DATABASE
Specifies that the event monitor writes a database record when the database
is deactivated.

 Appendix A. Database System Monitor Interfaces 215

CREATE EVENT MONITOR Command and SQL

TABLES
Specifies that the event monitor writes a table record for each table that has
been accessed since database activation, when the database is deactivated.
An active table is a table that has changed since the first connection to the
database.

DEADLOCKS
Specifies that the event monitor writes a deadlock record whenever a deadlock
occurs.

TABLESPACES
Specifies that the event monitor writes a table space record for each table
space when the database is deactivated.

BUFFERPOOLS
Specifies that the event monitor writes a buffer pool record when the database
is deactivated.

CONNECTIONS
Specifies that the event monitor writes a connection record when an applica-
tion disconnects from the database.

STATEMENTS
Specifies that the event monitor writes a statement record whenever a SQL
statement finishes executing.

TRANSACTIONS
Specifies that the event monitor writes a transaction record whenever a trans-
action completes (that is, whenever there is a commit or rollback operation).

WHERE event condition
Defines a filter that determines which will be monitored. If the result of the
event condition is TRUE for a particular connection, then the event monitor will
generate the requested event records for that connection.

This clause is a special form of the WHERE clause that should not be con-
fused with a standard search condition.

If no WHERE clause is specified then all connections will be monitored.

APPL_ID
Specifies that the comparison string is an application ID of a connection.

AUTH_ID
Specifies that the comparison string is the authorization ID of a con-
nection.

APPL_NAME
Specifies that the comparison string is the application program name of
the connection.

comparison-string
A string to be compared with the APPL_ID, AUTH_ID, or APPL_NAME of
each application that connects to the database. comparison-string must be

216 System Monitor Guide and Reference

CREATE EVENT MONITOR Command and SQL

a string constant (that is, host variables and other string expressions are
not permitted).

WRITE TO
Introduces the target for the data.

PIPE
Specifies that the target for the event monitor data is a named pipe. The event
monitor writes the data to the pipe in a single stream (that is, as if it were a
single, infinitely long file). When writing the data to a pipe, an event monitor
does not perform blocked writes. If there is no room in the pipe buffer, then the
event monitor will discard the data. It is the monitoring application's responsi-
bility to read the data promptly if it wishes to ensure no data loss. See “Using
Pipe Event Monitors” on page 18 for more details and examples.

pipe-name
The name of the pipe (FIFO on AIX) to which the event monitor will write
the data.

The naming rules for pipes are platform specific. On UNIX operating
systems pipe names are treated like file names. As a result, relative pipe
names are permitted, and are treated like relative path-names (see path-
name below). However, on OS/2, Windows 95 and Windows NT, there is
a special syntax for a pipe name. As a result, on OS/2, Windows 95 and
Windows NT absolute pipe names are required.

The existence of the pipe will not be checked at event monitor creation
time. It is the responsibility of the user to have created and opened the
pipe for reading at the time that the event monitor is activated. If the pipe
is not available at this time, then the event monitor will turn itself off, and
will log an error. (That is, if the event monitor was activated at database
start time as a result of the AUTOSTART option, then the event monitor
will log an error in the system error log.) If the event monitor is activated
via the SET EVENT MONITOR STATE SQL statement, then that state-
ment will fail (SQLSTATE 58030).

FILE
Indicates that the target for the event monitor data is a file (or set of files).
The event monitor writes out the stream of data as a series of 8 character
numbered files, with the extension “evt”. (for example, 00000000.evt,
00000001.evt, 00000002.evt, etc). The data should be considered to be
one logical file even though the data is broken up into smaller pieces (that
is, the start of the data stream is the first byte in the file 00000000.evt; the
end of the data stream is the last byte in the file nnnnnnnn.evt).

The maximum size of each file can be defined as well as the maximum
number of files. An event monitor will never split a single event record
across two files. However, an event monitor may write related records in
two different files. It is the responsibility of the application that uses this
data to keep track of such related information when processing the event
files. See “File Event Monitor Target” on page 202 for more information.

 Appendix A. Database System Monitor Interfaces 217

CREATE EVENT MONITOR Command and SQL

path-name
The name of the directory in which the event monitor should write the
event files data. The path must be known at the server, however, the
path itself could reside on another partition (or node) (for example, in
a UNIX-based system, this might be an NFS mounted file). A string
constant must be used when specifying the path-name.

The directory does not have to exist at CREATE EVENT MONITOR
time. However, a check is made for the existence of the target path
when the event monitor is activated. At that time, if the target path
does not exist, an error (SQLSTATE 428A3) is raised.

If an absolute path (a path that starts with the root directory on AIX,
or a disk identifier on OS/2, Windows 95 and Windows NT) is speci-
fied, then the specified path will be the one used. If a relative path (a
path that does not start with the root) is specified, then the path rela-
tive to the DB2EVENT directory in the database directory will be
used.

When a relative path is specified, the DB2EVENT directory is used to
convert it into an absolute path. Thereafter, no distinction is made
between absolute and relative paths. The absolute path is stored in
the SYSCAT.EVENTMONITORS catalog view.

It is possible to specify two or more event monitors that have the
same target path. However, once one of the event monitors has been
activated for the first time, and as long as the target directory is not
empty, it will be impossible to activate any of the other event moni-
tors.

File Options
Specifies the options for the file format.

MAXFILES NONE
Specifies that there is no limit to the number of event files that
the event monitor will create. This is the default.

MAXFILES number-of-files
Specifies that there is a limit on the number of event monitor files
that will exist for a particular event monitor at any time. When-
ever an event monitor has to create another file, it will check to
make sure that the number of .evt files in the directory is less
than number-of-files. If this limit has already been reached, then
the event monitor will turn itself off.

If an application removes the event files from the directory after
they have been written, then the total number of files that an
event monitor can produce can exceed number-of-files. This
option has been provided to allow a user to guarantee that the
event data will not consume more than a specified amount of
disk space.

218 System Monitor Guide and Reference

CREATE EVENT MONITOR Command and SQL

MAXFILESIZE pages
Specifies that there is a limit to the size of each event monitor
file. Whenever an event monitor writes a new event record to a
file, it checks that the file will not grow to be greater than pages
(in units of 4K pages). If the resulting file would be too large, then
the event monitor switches to the next file. The default for this
option is:

¹ OS/2, Windows 95 and Windows NT - 200 4K pages

¹ UNIX - 1000 4K pages

The number of pages must be greater than at least the size of
the event buffer in pages. If this requirement is not met, then an
error (SQLSTATE 428A4) is raised.

MAXFILESIZE NONE
Specifies that there is no set limit on a file's size. If
MAXFILESIZE NONE is specified, then MAXFILES 1 must also
be specified. This option means that one file will contain all of the
event data for a particular event monitor. In this case the only
event file will be 00000000.evt. This is the default.

BUFFERSIZE pages
Specifies the size of the event monitor buffers (in units of 4K
pages). All FILE event monitor I/O is buffered to improve the
performance of the event monitors. The larger the buffers, the
less I/O will be performed by the event monitor. Highly active
event monitors should have larger buffers than relatively inactive
event monitors. When the monitor is started, two buffers of the
specified size are allocated. Event monitors use double buffering
to permit asynchronous I/O. See “File Event Monitor Buffering” on
page 201 for more information.

The minimum and default size of each buffer (if this option is not
specified) is 1 page (that is, 2 buffers, each 4 K in size). The
maximum size of the buffers is limited by the size of the data-
base manager monitor heap (MON_HEAP_SZ) since the buffers
are allocated from this heap.

BLOCKED
Specifies that each agent that generates an event should wait for
the event monitor to finish writing a buffer out to disk when both
are full. BLOCKED should be selected to guarantee no event
data loss. This is the default option. See “Blocked Event
Monitors” on page 202 and “Non-Blocked Event Monitors” on
page 202 for more information.

NONBLOCKED
Specifies that each agent that generates an event should not wait
when the event monitor buffers are full. NONBLOCKED event
monitors do not slow down database operations to the extent of

 Appendix A. Database System Monitor Interfaces 219

CREATE EVENT MONITOR Command and SQL

BLOCKED event monitors. However, NONBLOCKED event moni-
tors are subject to data loss on highly active systems. See
“Blocked Event Monitors” on page 202 and “Non-Blocked Event
Monitors” on page 202 for more information.

APPEND
Specifies that if event data files already exist when the event
monitor is turned on, then the event monitor will append the new
event data to the existing stream of data files. When the event
monitor is re-activated, it will resume writing to the event files as
if it had never been turned off. APPEND is the default option.
See “Restarting a File Event Monitor” on page 204 for more
information.

The APPEND option does not apply at CREATE EVENT
MONITOR time, if there is existing event data in the directory
where the newly created event monitor is to write its event data.

REPLACE
Specifies that if event data files already exist when the event
monitor is turned on, then the event monitor will erase all of the
event files and start writing data to file 00000000.evt.

MANUALSTART
Specifies that the event monitor not be started automatically each time the
database is started. Event monitors with the MANUALSTART option must be
activated manually using the SET EVENT MONITOR STATE statement. This
is the default option.

AUTOSTART
Specifies that the event monitor be started automatically each time the data-
base is started.

ON NODE

node-number
Specifies a node number where the event monitor output thread or
process runs. If defined as global, the event monitor output data, from all
nodes, will be directed to that node. The default is the node where the
command was issued.

LOCAL
Event monitor reports activity only for the node where it is running (the monitor
node). This is the default.

GLOBAL
Event monitor reports activity from all nodes. In DB2 Version 5, for a parti-
tioned database only deadlock event monitors can be defined as GLOBAL.
The GLOBAL event monitor will report deadlocks involving applications running
on any node in the system.

220 System Monitor Guide and Reference

CREATE EVENT MONITOR Command and SQL

 Usage
¹ Creating an event monitor does not activate it or create the target directory.

 Comments
¹ Event monitor definitions are recorded in the SYSCAT.EVENTMONITORS catalog

view. The events themselves are recorded in the SYSCAT.EVENTS catalog view.

 Related Information
“SET EVENT MONITOR STATE Command and SQL” on page 242
“DROP EVENT MONITOR Command and SQL” on page 226

 Appendix A. Database System Monitor Interfaces 221

db2eva - Event Analyzer Command

db2eva - Event Analyzer Command

 Purpose
Starts the event analyzer GUI from the command line, allowing the user to view traces
produced an event monitor.

 Authorization
None, unless connecting to the database (-evm and -db,), then one of the following is
required:

 sysadm
 sysctrl
 sysmaint
 dbadm

 Required Connection
None

 Format

55──db2eva──5

5─ ──┬ ┬ ─-path──evmon-target─ ──┬ ┬───────────────────────────────── ─────────5%
 │ │└ ┘ ─-conn─ ──┬ ┬──────────────────────
 │ │└ ┘ ─-db──-database-alias─
 └ ┘─-evm──evmon-name──-db──database-alias─ ──┬ ┬─────── ────────
 └ ┘ ─-conn─

 Parameters
Two methods of operation are provided for reading traces with db2eva, you can:

1. Specify the directory where the trace files reside (using -path) This mode allow
users to move trace files from a server and analyze them locally, even if the Event
Monitor has been dropped.

2. Specify the database and event monitor names; db2eva then automatically locates
the trace files. When this mode is used, db2eva connects to the database, and
issues a select target from syscat.eventmonitors to locate the directory where the
Event Monitor writes the event records. The connection is then released, unless
-conn is specified. This method cannot be used if the event monitor has been
dropped.

-path evmon-target
Specifies the absolute path of the event monitor target, which can either be
a directory or a named pipe.

222 System Monitor Guide and Reference

db2eva - Event Analyzer Command

-evm evmon-name -db database-alias
When -evm and -db are supplied, db2eva connects to the database, and
obtains the directory or pipe to which the event monitor is writing, by
issuing an SQL select from the syscat.eventmonitor catalog. For FILE
event monitors, this means that you cannot move the trace files to a dif-
ferent directory. Specify the database for which the event monitor is
defined, as catalogued on the machine where the trace is analyzed. Using
database-alias overrides the database name specified in the trace.

-conn
Requests db2eva to maintain a connection to the database specified by the
-db option. Or if -db is not supplied, then to the database specified in the
trace file header. Keeping a connection allows the event analyzer to obtain
information that is not contained in the trace files, for example the text for
static SQL statements. (The statement text events for static SQL contain
package creator, package number and section number. When the -conn
option is specified, db2eva connects to the database and retrieves the text
from the database system catalog using these fields). The default is not to
keep a connection.

 Comments
This tool is only available on OS/2 and Windows platforms.

It does not display database, table space, buffer pool, and table event records, but
properly reads traces containing them.

 Appendix A. Database System Monitor Interfaces 223

db2evmon - Event Monitor Trace Formatter Command

db2evmon - Event Monitor Trace Formatter Command

 Purpose
Formats the trace produced by file or pipe event monitors, and writes it to standard
output. This tool is located in the misc subdirectory of the sqllib directory of the
instance.

 Authorization
None, unless connecting to the database (-evm and -db are specified), then one of the
following is required:

 sysadm
 sysctrl
 sysmaint
 dbadm

 Required Connection
None

 Format

55─ ─db2evmon─ ──┬ ┬──┬ ┬─── ─────5%
 │ │└ ┘ ─-db──database-alias─ ─-evm──event-monitor-name─
 └ ┘─-path──event-monitor-target───────────────────────

 Parameters
Two methods of operation are provided for formatting a trace:

1. Specify where the trace resides,using the -path option.

2. Let db2evmon locate the trace by selecting the event monitor target from the
SYSCAT.EVENTMONITORS database catalog. You need to use -evm and -db.

-path event-monitor-target
Specifies the name of the directory containing the event monitor trace files,
or the name of the pipe where the event monitor is writing its records.

-db database-alias -evm event-monitor-name
Specifies the database where the event monitor is defined,
event-monitor-name one-part name of the event monitor. An ordinary or
delimited SQL identifier.

 Comments
If the data is being written to a pipe, the tool formats the output for display using
standard output as event records are written occur. In this case, the tool must be
started before the monitor is turned on.

224 System Monitor Guide and Reference

db2evmon - Event Monitor Trace Formatter Command

 See Also
“Programming to Read an Event Monitor Trace” on page 204

 Appendix A. Database System Monitor Interfaces 225

DROP EVENT MONITOR Command and SQL

DROP EVENT MONITOR Command and SQL

 Purpose
Removes an event monitor definition from the Database catalogs. Whenever an object
is deleted, its description is deleted from the catalog and any packages that reference
the object are invalidated.

 Context
This statement can be embedded in an application program or issued interactively. It is
an executable statement that can be dynamically prepared.

 Authorization
The authorization ID of the DROP statement when dropping an event monitor must
have SYSADM or DBADM authority

 Format

55─ ─DROP─ ─── ──EVENT──MONITOR──event-monitor-name─ ──5%

 Parameters
EVENT MONITOR event-monitor-name

Identifies the event monitor that is to be dropped. The event-monitor-name must
identify an event monitor that is described in the catalog (SQLSTATE 42704).

If the identified event monitor is ON, an error (SQLSTATE 55034) is raised. Other-
wise, the event monitor is deleted.

If there are event files in the target path of the event monitor when the event
monitor is dropped, the event files are not deleted.

 Usage
An event monitor must be stopped or OFF before it can be deleted. Dropping an event
monitor does not erase the target directory.

226 System Monitor Guide and Reference

EVENT_MON_STATE SQL Function

EVENT_MON_STATE SQL Function

 Purpose
The EVENT_MON_STATE function returns the current state of an event monitor.

 Context
This statement can be embedded in an application program or issued interactively. It is
an executable statement that can be dynamically prepared.

 Format

55──EVENT_MON_STATE─ ──(string-expression) ──5%

 Parameters
string-expression

The argument is a string expression with a resulting type of CHAR or VARCHAR
and a value that is the name of an event monitor. If the named event monitor does
not exist in the SYSCAT.EVENTMONITORS catalog table, SQLSTATE 42704 will
be returned.

 Usage
The schema is SYSIBM.

The result is an integer with one of the following values:

0 The event monitor is inactive.

1 The event monitor is active.

If the argument can be null, the result can be null; if the argument is null, the result is
the null value.

Example:

¹ The following example selects all of the defined event monitors, and indicates
whether each is active or inactive:

 SELECT EVMONNAME,

 CASE

WHEN EVENT_MON_STATE(EVMONNAME) = 0 THEN 'Inactive'

WHEN EVENT_MON_STATE(EVMONNAME) = 1 THEN 'Active'

 END

 FROM SYSCAT.EVENTMONITORS

 Appendix A. Database System Monitor Interfaces 227

GET DATABASE MANAGER MONITOR SWITCHES Command

GET DATABASE MANAGER MONITOR SWITCHES Command

 Purpose
Displays the status of the database manager monitor switches. Monitor switches
instruct the database system manager to collect statistics about its operation and per-
formance and that of the applications using it. A database manager-level switch is on
when any monitoring application has turned it on, an active event monitor requires this
switch to be on, or it has been set in the database manager configuration. This
command is used to determine if the database manager is currently collecting data.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
Instance. To display the settings for a remote instance, or for a different local instance,
it is necessary to first attach to that instance.

 Format

55──GET─ ──┬ ┬─DATABASE MANAGER─ ─MONITOR SWITCHES──────────────────────────5%
 ├ ┤─DB MANAGER───────
 └ ┘─DBM──────────────

 Parameters
None

 Example
The following is sample output from GET DATABASE MANAGER MONITOR
SWITCHES:

DBM System Monitor Information Collected

Buffer Pool Activity Information (BUFFERPOOL) = ON 06-11-1997 10:11:01.738377

Lock Information (LOCK) = OFF

Sorting Information (SORT) = ON 06-11-1997 10:11:01.738400

SQL Statement Information (STATEMENT) = OFF

Table Activity Information (TABLE) = OFF

Unit of Work Information (UOW) = ON 06-11-1997 10:11:01.738353

228 System Monitor Guide and Reference

GET DATABASE MANAGER MONITOR SWITCHES Command

 Comments
This command returns the settings for the database manager, indicating whether the
database manager is currently collecting monitor data. To see the switch settings for
your session issue the GET MONITOR SWITCHES command.

Default switch settings can be set in the database manager configuration file. If
switches are set ON in the database manager configuration file, then the database
manager will always be collecting monitor data, even if all monitoring applications have
turned off their switches.

 See Also
“GET MONITOR SWITCHES Command” on page 230
“GET SNAPSHOT Command” on page 232
“RESET MONITOR Command” on page 241
“UPDATE MONITOR SWITCHES Command” on page 266
“sqlmonss - Get Snapshot API” on page 248.

 Appendix A. Database System Monitor Interfaces 229

GET MONITOR SWITCHES Command

GET MONITOR SWITCHES Command

 Purpose
Displays the status of the database system monitor switches for the current session.
Monitor switches instruct the database system manager to collect database activity
information. Each application using the database system monitor interface has its own
set of monitor switches. This command displays them. To display the database
manager-level switches, use “GET DATABASE MANAGER MONITOR SWITCHES
Command” on page 228. If a particular switch is on, this command also displays the
time stamp for when the switch was turned on.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
Instance.

 Format

55──GET MONITOR SWITCHES───5%

 Parameters
None

 Example
The following is sample output from GET MONITOR SWITCHES:

Monitor Recording Switches

Buffer Pool Activity Information (BUFFERPOOL) = ON 02-20-1997 16:04:30.070073

Lock Information (LOCK) = OFF

Sorting Information (SORT) = OFF

SQL Statement Information (STATEMENT) = ON 02-20-1997 16:04:30.070073

Table Activity Information (TABLE) = OFF

Unit of Work Information (UOW) = ON 02-20-1997 16:04:30.070073

230 System Monitor Guide and Reference

GET MONITOR SWITCHES Command

 Comments
When a database system monitor command is first issued the session inherits the
switch settings of the database manager configuration. The settings can be overridden
using “UPDATE MONITOR SWITCHES Command” on page 266.

 See Also
“GET DATABASE MANAGER MONITOR SWITCHES Command” on page 228
“GET SNAPSHOT Command” on page 232
“RESET MONITOR Command” on page 241
“UPDATE MONITOR SWITCHES Command” on page 266
“sqlmon - Get/Update Monitor Switches API” on page 244.

 Appendix A. Database System Monitor Interfaces 231

GET SNAPSHOT Command

GET SNAPSHOT Command

 Purpose
Collects some of the data that the database manager maintains about its operation and
performance. The information returned represents a snapshot of this data at the time
the command is issued.

 Scope
Returns data only for the node to which the session is attached.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
Instance. To obtain a snapshot of a remote instance, it is necessary to first attach to
that instance.

 Format

55──GET SNAPSHOT FOR──5

5─ ──┬ ┬──┬ ┬─DATABASE MANAGER─ ─────────────────────────── ──────────────────5%
 │ │├ ┤─DB MANAGER───────
 │ │└ ┘─DBM──────────────
 ├ ┤─ALL DATABASES───────────────────────────────────
 ├ ┤─ALL APPLICATIONS────────────────────────────────
 ├ ┤─ALL BUFFERPOOLS─────────────────────────────────
 ├ ┤ ─APPLICATION─ ──┬ ┬─APPLID──appl-id────── ──────────
 │ │└ ┘ ─AGENTID──appl-handle─

├ ┤─FCM FOR ALL NODES───────────────────────────────
 ├ ┤─LOCKS FOR APPLICATION─ ──┬ ┬─APPLID──appl-id──────
 │ │└ ┘ ─AGENTID──appl-handle─
 └ ┘──┬ ┬─ALL────────── ─ON──database-alias────────────
 ├ ┤──┬ ┬─DATABASE─
 │ │└ ┘─DB───────
 ├ ┤─APPLICATIONS─
 ├ ┤─TABLES───────
 ├ ┤─TABLESPACES──
 ├ ┤─LOCKS────────
 └ ┘─BUFFERPOOLS──

232 System Monitor Guide and Reference

GET SNAPSHOT Command

 Parameters
Parameters are group by the way you would use them.

Note: The appl-id and appl-handle can be obtained by issuing a LIST APPLICATIONS
command (see “LIST APPLICATIONS - Command” on page 237).

DATABASE MANAGER
Database manager level information, including internal monitor
switch settings. On multi-node systems FCM information is also
returned.

FCM FOR ALL NODES
Provides Fast Communication Manager (FCM) statistics with for this
node with respect to all other nodes.

DATABASE ON database-alias
Database level information and counters for a database. Information
is returned only if there is at least one application connected to the
database.

ALL DATABASES
Same information for each database active on the node.

ALL ON database-alias
For the specified database, returns: database snapshot, lock snap-
shot, buffer pool snapshot, and application snapshot(for each con-
nection to the database).

APPLICATION APPLID appl-id
Application level information, includes cumulative counters, status
information. If the statement switch is ON, it also returns statistics
about each cursor currently open and the most recent SQL state-
ment executed.

APPLICATION AGENTID appl-handle
Same as APPLICATION APPLID.

APPLICATIONS ON database-alias
Same information as APPLICATION APPLID, for each application
that is connected to the database on this node.

ALL APPLICATIONS
Same information as APPLICATION APPLID, for each application
that is connected to a database on the current node.

TABLES ON database-alias
Returns Table activity information at the database and application
level for each application connected to the database, and at the
table level for each table that *was accessed* by an application
connected to the database. Requires table switch to be ON.

LOCKS FOR APPLICATION APPLID appl-id
Provides information about each lock held by the application. Pro-
vides lock wait information, if application is waiting for a lock.
Requires lock switch to be ON.

LOCKS FOR APPLICATION AGENTID appl-handle
Same information as LOCKS FOR APPLICATION APPLID.

 Appendix A. Database System Monitor Interfaces 233

GET SNAPSHOT Command

LOCKS ON database-alias
Same information as LOCKS FOR APPLICATION APPLID for each
application connected to the mentioned database. Plus a database
level summary. Requires lock switch

TABLESPACES ON database-alias
Information about tablespace activity at the database level; the
application level for each application connected to the database;
and the tablespace level for each tablespace that has been
accessed by an application connected to the database. Requires
buffer pool switch.

ALL BUFFERPOOLS
Provides buffer pool activity counters. Requires buffer pool switch to
be ON.

BUFFERPOOLS ON database-alias
Same information as ALL BUFFERPOOLS, but only for the speci-
fied database.

 Comments
INSTANCE CONNECTION: If not attached to an instance, issuing this command will
automatically attach your session to the instance specified by the DB2INSTANCE envi-
ronment variable.

To obtain a snapshot from a remote instance (or a different local instance), it is neces-
sary to first attach to that instance. If an alias for a database residing at a different
instance is specified, an error message is returned.

DATA COLLECTED UNDER SWITCH CONTROL: Data elements that are collected by
the DBMS only if a monitor switch is ON are either not returned, or returned as 'Not
Collected'. Check Chapter 3, “Database System Monitor Data Elements” on page 31 to
determine if a switch needs to be turned on for a data element.

 See Also
“GET MONITOR SWITCHES Command” on page 230
“RESET MONITOR Command” on page 241
“UPDATE MONITOR SWITCHES Command” on page 266
“LIST ACTIVE DATABASES Command” on page 235
“LIST APPLICATIONS - Command” on page 237
“LIST DCS APPLICATIONS - Command” on page 239
“sqlmonss - Get Snapshot API” on page 248

234 System Monitor Guide and Reference

LIST ACTIVE DATABASES

LIST ACTIVE DATABASES Command

 Purpose
Displays the list of databases that are active on this instance. This is a subset of the
information listed by the GET SNAPSHOT FOR ALL DATABASES command (see
“GET SNAPSHOT Command” on page 232). For each active database, this command
displays the following:

 ¹ Database name
¹ Number of applications currently connected to the database

 ¹ Database path.

 Scope
Returns data only for the node to which the session is attached.

 Authorization
None

 Required Connection
Instance. To obtain a snapshot of a remote instance, it is necessary to first attach to
that instance.

 Format

55──LIST ACTIVE DATABASES──5%

 Parameters
None

 Examples
Following is sample output from the LIST ACTIVE DATABASES command:

 Active Databases

Database name = TEST

Applications connected currently = 0

Database path = /home/smith/smith/NODE0000/SQL00002/

Database name = SAMPLE

Applications connected currently = 1

Database path = /home/smith/smith/NODE0000/SQL00001/

 Appendix A. Database System Monitor Interfaces 235

LIST ACTIVE DATABASES

 See Also
“GET SNAPSHOT Command” on page 232.
“LIST APPLICATIONS - Command” on page 237
“sqlmonss - Get Snapshot API” on page 248

236 System Monitor Guide and Reference

LIST APPLICATIONS - Command

LIST APPLICATIONS - Command

 Purpose
Displays the list of applications connected to a database on the instance, including sec-
ondary connections established to access a partitioned database.

 Scope
This command only returns information for the node on which it is issued.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
Instance. To list applications for a remote instance, it is necessary to first attach to that
instance.

 Format

55─ ─LIST APPLICATIONS─ ──┬ ┬─────────────────────────────────── ─────────────5
 └ ┘ ─FOR─ ──┬ ┬─DATABASE─ ─database-alias─
 └ ┘─DB───────

5─ ──┬ ┬───────────── ──5%
 └ ┘─SHOW DETAIL─

 Parameters
FOR DATABASE database-alias

Information for each application that is connected to the specified database
is to be displayed. Database name information is not displayed. If this
option is not specified, the command displays the information for each
application that is currently connected to any database at the node to
which the user is currently attached.

The default application information is comprised of the following:
 ¹ Authorization ID
¹ Application program name

 ¹ Application handle
 ¹ Application ID
 ¹ Database name.

 Appendix A. Database System Monitor Interfaces 237

LIST APPLICATIONS - Command

SHOW DETAIL
Output will include the following additional information:
 ¹ Sequence #
 ¹ Application status
¹ Status change time

 ¹ Database path.

Note: If this option is specified, it is recommended that the output be redirected to a
file, and that the report be viewed with the help of an editor. The output lines
may wrap around when displayed on the screen.

 Example
The following is sample output from LIST APPLICATIONS:

Auth Id Application Appl. Application Id DB # of

 Name Handle Name Agents

-------- -------------- ---------- ------------------------------ -------- -----

smith db2bp_32 12 *LOCAL.smith.970220191502 TEST 1

smith db2bp_32 11 *LOCAL.smith.970220191453 SAMPLE 1

Note: For more information about these fields, see Chapter 3, “Database System
Monitor Data Elements” on page 31.

 Comments
The database administrator can use the output from this command as an aid to
problem determination. In addition, this information is required if the database adminis-
trator wants to use “GET SNAPSHOT Command” on page 232 or FORCE an applica-
tion.

To list applications at a remote instance (or a different local instance), it is necessary to
first attach to that instance. If FOR DATABASE is specified when an attachment exists,
and the database resides at an instance which differs from the current attachment, the
command will fail.

 See Also
“sqlmonss - Get Snapshot API” on page 248
“GET SNAPSHOT Command” on page 232

238 System Monitor Guide and Reference

LIST DCS APPLICATIONS - Command

LIST DCS APPLICATIONS - Command

 Purpose
Displays the contents of the Database Connection Services (DCS) directory to standard
output.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
Instance. To list the DCS applications at a remote instance, it is necessary to first
attach to that instance.

 Format

55──LIST DCS APPLICATIONS─ ──┬ ┬───────────── ──────────────────────────────5%
 └ ┘─SHOW DETAIL─

 Parameters
LIST DCS APPLICATIONS

The default application information includes:
¹ Host authorization ID (username)
¹ Application program name

 ¹ Agent ID
¹ Outbound application ID (luwid).

SHOW DETAIL
Specifies that output include the following additional information:
 ¹ Application ID
¹ Application sequence number
¹ Client database alias
¹ Client node name (nname)
¹ Client product ID
¹ Code page ID

 ¹ Code page
¹ Outbound sequence number
¹ Host database name
¹ Host product ID.

 Appendix A. Database System Monitor Interfaces 239

LIST DCS APPLICATIONS - Command

 Example
The following is sample output from LIST DCS APPLICATIONS:

Auth Id Application Name Agent Id Outbound Application Id

-------- -------------------- ---------- --------------------------------

DDCSUS1 db2bp 89330 CAIBMOML.OMXT4H08.A79EAA3C6E29

Note: For more information about these fields, see Chapter 3, “Database System
Monitor Data Elements” on page 31.

 Comments
The database administrator can use this command to match client application con-
nections to the gateway with corresponding host connections from the gateway.

The database administrator can also use agent ID information to force specified appli-
cations off a DDCS server.

240 System Monitor Guide and Reference

RESET MONITOR Command

RESET MONITOR Command

 Purpose
Resets the counters maintained by the database system monitor for the current session
for specified database, or for all active databases, to zero.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
Instance.

 Format

55─ ─RESET MONITOR─ ──┬ ┬─ALL─────────────────────────────── ────────────────5%
 └ ┘ ─FOR─ ──┬ ┬─DATABASE─ ─database-alias─
 └ ┘─DB───────

 Parameters
ALL

This option indicates that the internal counters should be reset for all data-
bases. Some database manager information is also reset.

FOR DATABASE database-alias
This option indicates that only the counters for the database with alias
database-alias should be reset.

 Comments
Each session (instance) has its own private view of the monitor data. If one user resets,
other users are not affected.

This resets the data for all monitor switches. To reset data for a single switch turn it
OFF, then ON, using “UPDATE MONITOR SWITCHES Command” on page 266.

 See Also
“GET SNAPSHOT Command” on page 232
“GET MONITOR SWITCHES Command” on page 230
“UPDATE MONITOR SWITCHES Command” on page 266
“sqlmrset - Reset Monitor API” on page 263

 Appendix A. Database System Monitor Interfaces 241

SET EVENT MONITOR STATE Command and SQL

SET EVENT MONITOR STATE Command and SQL

 Purpose
The SET EVENT MONITOR STATE statement activates or deactivates an event
monitor. The SET EVENT MONITOR STATE statement is not under transaction control.

 Context
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The authorization ID of the statement most hold either SYSADM or DBADM authority
(SQLSTATE 42815).

 Format

 ┌ ┐─=─
55──SET──EVENT──MONITOR──event-monitor-name──STATE─ ──┴ ┴─── ──┬ ┬─0───────────── ────────────5%
 ├ ┤─1─────────────
 └ ┘─host-variable─

 Parameters
event-monitor-name

Identifies the event monitor to activate or deactivate. The name must identify an
event monitor that exists in the catalog (SQLSTATE 42704).

new-state
new-state can be specified either as an integer constant or as the name of a host
variable that will contain the appropriate value at run time. The following may be
specified:

0 Indicates that the specified event monitor should be deacti-
vated.

1 Indicates that the specified event monitor should be activated.
The event monitor should not already be active; otherwise a
warning (SQLSTATE 01598) is issued.

host-variable The data type is INTEGER. The value specified must be 0 or 1
(SQLSTATE 42815). If host-variable has an associated indi-
cator variable, the value of that indicator variable must not indi-
cate a null value (SQLSTATE 42815).

242 System Monitor Guide and Reference

SET EVENT MONITOR STATE Command and SQL

 Usage
¹ Although an unlimited number of event monitors may be defined, there is a limit of

32 event monitors that can be simultaneously active (SQLSTATE 54030).

¹ In order to activate an event monitor, the transaction in which the event monitor
was created must have been committed (SQLSTATE 55033). This rule prevents (in
one unit of work) creating an event monitor, activating the monitor, then rolling
back the transaction.

¹ If the number or size of the event monitor files exceeds the values specified for
MAXFILES or MAXFILESIZE on the CREATE EVENT MONITOR statement, an
error (SQLSTATE 54031) is raised.

¹ If the target path of the event monitor (that was specified on the CREATE EVENT
MONITOR statement) is already in use by another event monitor, an error
(SQLSTATE 51026) is raised.

 Comments
¹ Activating an event monitor performs a reset of any counters associated with it.

The following example activates an event monitor called SMITHPAY.

SET EVENT MONITOR SMITHPAY STATE = 1

The current state of an event monitor (active or inactive) is determined by using the
EVENT_MON_STATE built-in function.

 Appendix A. Database System Monitor Interfaces 243

sqlmon - Get/Update Monitor Switches API

sqlmon - Get/Update Monitor Switches API

 Purpose
Selectively turns on or off switches for groups of monitor data to be collected by the
database manager. Returns the current state of these switches for the application
issuing the call.

To get the current state of the switches at the database manager level use “sqlmonss -
Get Snapshot API” on page 248.

 Scope
This API only affects the application making the call.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
Instance.

API Include File
sqlmon.h

C API Syntax

/* File: sqlmon.h */

/* API: Get/Update Monitor Switches */

/* ... */

int SQL_API_FN

 sqlmon (

 unsigned long version,

 _SQLOLDCHAR *reserved,

 sqlm_recording_group group_states[],

 struct sqlca *sqlca);

/* ... */

 API Parameters
sqlca

Output. A pointer to the sqlca structure, that returns error information.

244 System Monitor Guide and Reference

sqlmon - Get/Update Monitor Switches API

group_states
Input/Output. Specifies the monitor switches to update and returns their
values. It is an array of sqlm_recording_group, one for each monitor switch:

input_state To request the setting for a switch use SQLM_HOLD. To
turn a switch OFF use SQLM_OFF. To turn a switch ON
use SQLM_ON.

output_state The current setting for the switch, either SQLM_OFF or
SQLM_ON.

start_time A timestamp indicating the time a switch was turned ON. A
value of 0 (zero) is returned if the switch is OFF.

reserved
Reserved for future use. Users should set this value to NULL.

version
Input. Version ID of the database monitor data to collect. The database
monitor only returns data that was available for the requested version. Set
this parameter to one of the following symbolic constants:

 ¹ SQLM_DBMON_VERSION1

 ¹ SQLM_DBMON_VERSION2

 ¹ SQLM_DBMON_VERSION5

If requesting data for a version higher than the current server, the database
monitor only returns data for its level.

Note: If SQLM_DBMON_VERSION1 is specified as the version, the APIs cannot
be run remotely.

 Comments
To obtain the status of the switches at the database manager level, call “sqlmonss -
Get Snapshot API” on page 248, specifying SQMA_DB2 for OBJ_TYPE (get snapshot for
database manager).

 See Also
“sqlmonss - Get Snapshot API” on page 248
“sqlmonsz - Estimate Size Required for sqlmonss() Output Buffer API” on page 260
“sqlmrset - Reset Monitor API” on page 263
“UPDATE MONITOR SWITCHES Command” on page 266
“GET MONITOR SWITCHES Command” on page 230

 Code Sample
The following example illustrates how to update the monitor switches and print their
current settings.

 Appendix A. Database System Monitor Interfaces 245

sqlmon - Get/Update Monitor Switches API

/*

Database Monitor Switch API

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include "sqlca.h"

#include "sqlutil.h" // for using sqlaintp

#include "sqlmon.h"

//--

// Database Monitor Switch API Sample

//--

char* sw_status_string(int val) {

switch (val) {

case SQLM_OFF: return "OFF";

 case SQLM_ON: return "ON";

 }

 return "";

}

void print_sws(sqlm_recording_group group_states[SQLM_NUM_GROUPS]);

void print_sw_set_times(sqlm_recording_group group_states[SQLM_NUM_GROUPS]);

int main() {

 //---

// Set Table switch ON, UOW switch OFF, and query the current (default)

// values for the other switches. (see Database Manager Configuration)

 //---

 sqlm_recording_group group_states[SQLM_NUM_GROUPS];

struct sqlca sqlca;

 group_states[SQLM_TABLE_SW].input_state = SQLM_ON;

 group_states[SQLM_UOW_SW].input_state = SQLM_OFF;

 group_states[SQLM_STATEMENT_SW].input_state = SQLM_HOLD;

group_states[SQLM_BUFFER_POOL_SW].input_state = SQLM_HOLD;

 group_states[SQLM_LOCK_SW].input_state = SQLM_HOLD;

 group_states[SQLM_SORT_SW].input_state = SQLM_HOLD;

 //---

// Perform the call

 //---

sqlmon(SQLM_DBMON_VERSION5, NULL, group_states, &sqlca);

if (sqlca.sqlcode<0) {

// get and display a printable error message

 char msg[1024];

sqlaintp (msg, sizeof(msg), 60, &sqlca);

 printf("%s", msg);

 }

 //---

// Print the output

 //---

print_sws(group_states); // Print the switch values

print_sw_set_times(group_states); // Print their switch set time (if ON)

} // end of Database Monitor Switch API sample

//--

// print switch values

//--

void print_sws(sqlm_recording_group group_states[SQLM_NUM_GROUPS]) {

 printf("SQLM_UOW_SW: %s\n",

 sw_status_string(group_states[SQLM_UOW_SW].output_state));

 printf("SQLM_STATEMENT_SW: %s\n",

 sw_status_string(group_states[SQLM_STATEMENT_SW].output_state));

 printf("SQLM_TABLE_SW: %s\n",

 sw_status_string(group_states[SQLM_TABLE_SW].output_state));

 printf("SQLM_BUFFER_POOL_SW: %s\n",

 sw_status_string(group_states[SQLM_BUFFER_POOL_SW].output_state));

 printf("SQLM_LOCK_SW: %s\n",

 sw_status_string(group_states[SQLM_LOCK_SW].output_state));

 printf("SQLM_SORT_SW: %s\n",

246 System Monitor Guide and Reference

sqlmon - Get/Update Monitor Switches API

 sw_status_string(group_states[SQLM_SORT_SW].output_state));

} // end print_sws

//--

// print switch set times (if ON)

//--

void print_sw_set_times(

sqlm_recording_group group_states[SQLM_NUM_GROUPS]) {

if (group_states[SQLM_UOW_SW].start_time.seconds) {

printf("SQLM_UOW_SW start_time: %s\n", ctime((time_t *)

 &group_states[SQLM_UOW_SW].start_time.seconds));

 }

if (group_states[SQLM_STATEMENT_SW].start_time.seconds) {

printf("SQLM_STATEMENT_SW start_time: %s\n", ctime((time_t *)

 &group_states[SQLM_STATEMENT_SW].start_time.seconds));

 }

if (group_states[SQLM_TABLE_SW].start_time.seconds) {

printf("SQLM_TABLE_SW start_time: %s\n", ctime((time_t *)

 &group_states[SQLM_TABLE_SW].start_time.seconds));

 }

if (group_states[SQLM_BUFFER_POOL_SW].start_time.seconds) {

printf("SQLM_BUFFER_POOL_SW start_time: %s\n", ctime((time_t *)

 &group_states[SQLM_BUFFER_POOL_SW].start_time.seconds));

 }

if (group_states[SQLM_LOCK_SW].start_time.seconds) {

printf("SQLM_LOCK_SW start_time: %s\n", ctime((time_t *)

 &group_states[SQLM_LOCK_SW].start_time.seconds));

 }

if (group_states[SQLM_SORT_SW].start_time.seconds) {

printf("SQLM_SORT_SW start_time: %s\n", ctime((time_t *)

 &group_states[SQLM_SORT_SW].start_time.seconds));

 }

} // end print_sw_set_times (if ON)

 Appendix A. Database System Monitor Interfaces 247

sqlmonss - Get Snapshot API

sqlmonss - Get Snapshot API

 Purpose
Collects database manager monitor information and returns it to a user-allocated data
buffer. The information returned represents a snapshot of the database manager opera-
tional status at the time the API was called.

 Scope
This API returns information only for the instance.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
Instance. To obtain a snapshot from a remote instance (or a different local instance), it
is necessary to first attach to that instance.

API Include File
sqlmon.h

C API Syntax

/* File: sqlmon.h */

/* API: Get Snapshot */

/* ... */

int SQL_API_FN

 sqlmonss (

 unsigned long version,

 _SQLOLDCHAR *reserved,

 sqlma *sqlma_ptr,

 unsigned long buffer_length,

 void *buffer_area,

 sqlm_collected *collected,

 struct sqlca *sqlca);

/* ... */

 API Parameters

248 System Monitor Guide and Reference

sqlmonss - Get Snapshot API

version
Input. Version ID of the database monitor data to collect. The database
monitor only returns data that was available for the requested version. Set
this parameter to one of the following symbolic constants:

 ¹ SQLM_DBMON_VERSION1

 ¹ SQLM_DBMON_VERSION2

 ¹ SQLM_DBMON_VERSION5

If requesting data for a version higher than the current server, the database
monitor only returns data for its level.

Note: If SQLM_DBMON_VERSION1 is specified as the version, the APIs cannot
be run remotely.

reserved
Input. Reserved for future use. Must be set to NULL.

sqlma_ptr
Input. Pointer to the user-allocated sqlma (monitor area) structure. This
structure specifies the snapshot requests to be returned by this invocation
of sqlmonss().

buffer_length
Input. The length of the data buffer. You may want to first call sqlmonsz()
to estimate which size would be required for a given sqlmonss() invocation.
However, if you will be issuing frequent sqlmonss() calls, and especially if
peak activity is predictable on your system, then you will get better per-
formance by allocating a fixed size buffer in your application.

buffer_area
Output. Pointer to the user-defined data buffer into which the snapshot
information will be returned.

collected
Output. A pointer to the sqlm_collected structure which provides informa-
tion about the server and the number of top-level structures returned in the
output buffer area.

sqlca
Output. A pointer to the sqlca structure where error information is returned.
For more information see the API Reference.

Snapshot Requests Supported
The following table lists the Snapshot request types that are supported.

API request type

Data structures that may
be returned (Record
type) Information returned

SQLMA_APPLINFO_ALL sqlm_applinfo
 (SQLM_APPLINFO_SS)

Application identification information for all appli-
cations currently connected to a database that is
managed by the DB2 instance on the node
where snapshot is taken.

 Appendix A. Database System Monitor Interfaces 249

sqlmonss - Get Snapshot API

API request type

Data structures that may
be returned (Record
type) Information returned

SQLMA_DBASE_APPLINFO sqlm_applinfo
 (SQLM_APPLINFO_SS)

Same as SQLMA_APPLINFO_ALL for each
application currently connected to the specified
database.

SQLMA_DCS_APPLINFO_ALL sqlm_dcs_applinfo
 (SQLM_DCS_APPLINFO_SS)

Application identification info for all DCS applica-
tions currently connected to a database that is
managed by the DB2 instance on the node
where snapshot is taken.

SQLMA_DB2 sqlm_db2
 (SQLM_DB2_SS)

Database manager level information, including
internal monitor switch settings.

sqlm_fcm
 (SQLM_FCM_SS)
sqlm_fcm_node
 (SQLM_NODE_SS)

Fast communication manager information for
each node in a partitioned database that this
node is communicating with.

SQLMA_DBASE sqlm_dbase
 (SQLM_DBASE_SS)

Database level information and counters for a
database. Information is returned only if there is
at least one application connected to the data-
base..

sqlm_rollfwd_info
 (SQLM_DBASE_ROLLFWD_SS)
sqlm_rollfwd_ts_info
 (SQLM_DBASE_ROLLFWD_TS_SS)

Rollforward information if a rollforward is in
progress.

SQLMA_DBASE_ALL Same as SQLMA_DBASE for each database
active on the node.

SQLMA_APPL sqlm_appl
 (SQLM_APPL_SS)
sqlm_lock_wait
 (SQLM_LOCK_WAIT_SS)

Application level information, includes cumula-
tive counters, status information. Lock informa-
tion for every agent working for this application
that is waiting for a lock.

sqlm_stmt
 (SQLM_STMT_SS)

Statement information for each open cursor and
the last statement executed.

sqlm_subsection
 (SQLM_SUBSECTION_SS)

Subsection information that immediately follows
its parent sqlm_stmt.

sqlm_subagent
 (SQLM_SUBAGENT_SS)

In partitioned databases, an sqlm_subagent
always follows its parent sqlm_subsection or
sqlm_stmt. An sqlm_subagent is not returned for
a coordinator agent.

SQLMA_AGENT_ID Same as SQLMA_APPL.

SQLMA_DBASE_APPLS Same as SQLMA_APPL, for each application
that is connected to the database on the node.

SQLMA_APPL_ALL Same as SQLMA_APPL. for each application
that is active on the node.

250 System Monitor Guide and Reference

sqlmonss - Get Snapshot API

API request type

Data structures that may
be returned (Record
type) Information returned

SQLMA_DBASE_TABLES sqlm_table_header
 (SQLM_TABLE_HEADER_SS)
sqlm_table
 (SQLM_TABLE_SS)

Table activity information for each table that was
accessed, sqlm_table_header followed by an
sqlm_table for each table.

SQLMA_APPL_LOCKS sqlm_appl_lock
 (SQLM_APPL_LOCK_SS)
sqlm_lock_wait
 (SQLM_LOCK_WAIT_SS)
sqlm_lock
 (SQLM_LOCK_SS)

List of locks held by the application, and any
lock wait information, sqlm_appl_lock is followed
by sqlm_lock_wait if an application is in a lock
wait, followed by an sqlm_lock for each lock
held.

SQLMA_APPL_LOCKS_AGENT_ID Same as SQLMA_APPL_LOCKS.

SQLMA_DBASE_LOCKS sqlm_dbase_lock
 (SQLM_DBASE_LOCK_SS)
 (SQLMA_APPL_LOCKS)

Lock information at the database level, and
application level for each application connected
to the database, followed by an
SQLMA_APPL_LOCKS for each application.

SQLMA_DBASE_TABLESPACES sqlm_tablespace_header
 (SQLM_TABLESPACE_HEADER_SS)
sqlm_tablespace
 (SQLM_TABLESPACE_SS)

Information about table space activity the data-
base level, the application level for each applica-
tion connected to the database, and the table
space level for each table space that has been
accessed by an application connected to the
database, sqlm_tablespace_header followed by
an sqlm_tablespace for each table space.

SQLMA_BUFFERPOOLS_ALL sqlm_bufferpool
 (SQLM_BUFFERPOOL_SS)

Bufferpool activity counters.

SQLMA_DBASE_BUFFERPOOLS Same as SQLMA_BUFFERPOOLS_ALL, but for
specified database only.

Specifying the Snapshot Requests
An invocation of sqlmonss() can specify several requests.

The sqlma supplied as input argument to sqlmonss() contains an array of
sqlm_obj_struct . Each sqlm_obj_struct is an individual snapshot request.

sqlm_obj_struct is defined as follows:

typedef struct sqlm_obj_struct /* SNAPSHOT REQUEST */

{

unsigned long agent_id; /* used for requests based on agentid */

unsigned long obj_type; /* Snapshot Request Type (SQLMA_XXXX) */

char object[SQLM_OBJECT_SZ];/* used for requests based on object */

/* name, such as 'get snapshot for database' */

}sqlm_obj_struct;

 Appendix A. Database System Monitor Interfaces 251

sqlmonss - Get Snapshot API

Where agent_id and object are only required if applicable for the request type, and are
mutually exclusive. For example: a database name is required when the type is
SQLMA_DBASE_LOCKS (get snapshot for locks on database), whereas an agent_id is
required when the type is SQLMA_APPL_LOCKS_AGENT_ID. Both agent_id and
object are ignored for requests such as SQLMA_APPLINFO_ALL (list applications).

Note that agent_id is the application handle for an application. It does not correspond
to any Operating System process Id (it is named this way for source compatibility with
older releases of DB2).

Setting up the sqlma and issuing the snapshot call

The following example sets up the sqlma for a call to sqlmonss() that requests two
different snapshots. The first request requires an object name, the database alias, the
second request requires an agent_id, the application handle:
#include "string.h"

#include "stdlib.h"

#include "stdio.h"

#include "sqlutil.h"

#include "sqlmon.h" // System Monitor interface

 main() {

struct sqlca sqlca;

 int rc;

#define BUFFER_SZ 4096 // Use a fixed size output buffer

char snap_buffer[BUFFER_SZ]; // Snapshot output buffer

 sqlm_collected collected;

 //--

// Request SQLMA_DBASE, and SQLMA_APPL_LOCKS_AGENT_ID in the sqlma

 //--

unsigned long agent_id = 0; // STUB: Obtain by issuing 'list application'

// Allocate the variable size sqlma structure

struct sqlma* sqlma = (struct sqlma *) malloc(SQLMASIZE(2));

// Request 2 different snapshots in same call

sqlma->obj_num = 2;

 sqlma->obj_var[0].obj_type = SQLMA_DBASE;

 strcpy(sqlma->obj_var[0].object, "SAMPLE");

 sqlma->obj_var[1].obj_type = SQLMA_APPL_LOCKS_AGENT_ID;

 sqlma->obj_var[1].agent_id = agent_id;

 //--

// Perform the snapshot

 //--

rc = sqlmonss(SQLM_DBMON_VERSION5, NULL, sqlma,

 BUFFER_SZ, snap_buffer,

 &collected,

 &sqlca);

if (sqlca.sqlcode < 0) {

// get and display a printable error message

 char msg[1024];

sqlaintp (msg, sizeof(msg), 60, &sqlca);

 printf("%s", msg);

 }

 free(sqlma);

 return rc;

 }

252 System Monitor Guide and Reference

sqlmonss - Get Snapshot API

Application handles can be retrieved by issuing an SQLMA_APPLINFO_ALL request
(list applications). An application connecting to the database can also retrieve its appli-
cation handle (agent_id) from the sqlca of the CONNECT request (See "Obtaining
application handle (AGENT_ID) from the CONNECT request").

Reading the Snapshot Output Buffer
The sqlmonss() routine returns data as contiguous data structures in the user supplied
buffer.

The sqlmon.h header file contains the definitions for all records returned by the
sqlmonss() routine. It is the first place you should look for record information. It contains
comments that explain how records are laid out in the output buffer. You may want to
print a copy of this file, and reference it as you read this section.

The data structures returned in the snapshot output buffer are arranged in a two-level
hierarchy:

 ¹ top-level structures

¹ secondary-level structures. These always come in the buffer following their parent
top-level structure.

Each record contains a field that specifies its type and a size field that specifies its
total size in bytes. The size must be used to read and skip this record in the output
buffer. For example, following an SQLMA_DB2 snapshot request (GET SNAPSHOT
FOR DATABASE MANAGER) on a parallel system. The buffer could contain:

buffer_ptr
size: 204
type: SQLM_DB2_SS

num_sec_dbm_structs: 3

size: 44
type: SQLM_FCM_SS

size: 20
type: SQLM_NODE_SS

size: 20
type: SQLM_NODE_SS

record 1
sqlm_db2

record 2
sqlm_fcm

record 3
sqlm_fcm_node

record 4
sqlm_fcm_node

top- level structure

secondary- level structure

secondary- level structure

secondary- level structure

The sqlm_collected output structure indicates the number of top-level structures
returned in the buffer. Each top-level structure indicates the number of secondary-level
structures that may follow it.

Attention: WARNING: It is imperative that you always use the size field for skipping a
record in the output buffer. Never use sizeof() on a snapshot record.

Your application should also always read the record type. For some snapshot requests,
the order in which records are returned is not guaranteed, and some record may not be

 Appendix A. Database System Monitor Interfaces 253

sqlmonss - Get Snapshot API

returned when a monitor switch is OFF (see “sqlmrset - Reset Monitor API” on
page 263 and “sqlmon - Get/Update Monitor Switches API” on page 244).

Loop for reading snapshot output buffer

The following code illustrates how an application should be reading and skipping the
records returned in the snapshot output buffer.
#include "stdlib.h"

#include "stdio.h"

#include "sqlutil.h"

#include "string.h"

#include "sqlmon.h" // System Monitor interface

 //--

// PROCESS EACH RECORD THAT MAY BE RETURNED IN THE SNAPSHOT OUTPUT BUFFER

 //--

while (collected.num_top_level_structs--) {

// Check the record type, (5th byte of any top-level structure)

switch ((unsigned char) *(snap+sizeof(unsigned long))) {

case SQLM_DB2_SS: {

 sqlm_db2 *db2_snap;

db2_snap = (sqlm_db2*) snap;

// Process the database manager snapshot

printf("Processing database manager snapshot\n");

 // ...

// Skip all its records in the output buffer

snap += db2_snap->size;

// Skip the secondary level entries

while (db2_snap->num_sec_dbm_structs--) snap+=(*(unsigned long*)snap);

 } break;

case SQLM_DBASE_SS: {

sqlm_dbase *db_snap = (sqlm_dbase*) snap;

// Process the snapshot ...

printf("Processing database snapshot\n");

// Skip the database snapshot and any secondary structures

snap += db_snap->size;

while (db_snap->num_sec_dbase_structs--) snap+=(*(unsigned long*)snap);

 } break;

case SQLM_APPL_SS: {

sqlm_appl *appl_snap = (sqlm_appl*) snap;

printf("Processing application snapshot\n");

while (appl_snap->num_sec_appl_structs--) snap+=(*(unsigned long*)snap);

 } break;

case SQLM_APPLINFO_SS: {

sqlm_applinfo *appinfo_snap = (sqlm_applinfo*) snap;

printf("Processing list application\n");

 snap+=appinfo_snap->size;

 } break;

case SQLM_DCS_APPLINFO_SS: {

sqlm_dcs_applinfo *dcs_snap = (sqlm_dcs_applinfo*) snap;

printf("Processing list dcs application\n");

 snap+=dcs_snap->size;

 } break;

case SQLM_TABLE_HEADER_SS: {

sqlm_table_header *tabh_snap = (sqlm_table_header*) snap;

 int numtabs = tabh_snap->num_tables;

printf("Processing list tables\n");

 // ...

// Skip it in the output buffer

snap += tabh_snap->size;

while (numtabs--) {

254 System Monitor Guide and Reference

sqlmonss - Get Snapshot API

sqlm_table *tab_snap= (sqlm_table*) snap;

snap += tab_snap->size;

 }

 } break;

case SQLM_DBASE_LOCK_SS: {

sqlm_dbase_lock *dbase_lock_snap = (sqlm_dbase_lock*) snap;

printf("Processing snapshot for locks on database\n");

 dump_dbase_lock(stdout,, dbase_lock_snap);

// this routine provided the following section Printing Snapshot Output Records

// Skip it in the snapshot output buffer

snap = skip_db_lock_snap(dbase_lock_snap);

 } break;

case SQLM_APPL_LOCK_SS: {

sqlm_appl_lock* appl_lock_snap = (sqlm_appl_lock*) snap;

printf("Processing snapshot for locks for application\n");

// Skip it in the snapshot output buffer

snap = skip_appl_lock_snap(appl_lock_snap);

 } break;

case SQLM_TABLESPACE_HEADER_SS: {

sqlm_tablespace_header *tspace_snap = (sqlm_tablespace_header*) snap;

printf("Processing snapshot for tablespaces\n");

// Skip it in the snapshot output buffer

snap = skip_tspace_snap(tspace_snap);

 } break;

 default:

printf("%s:%d: Unexpected record type %d in snapshot output buffer!\n",

__FILE__, __LINE__, (unsigned char) *(snap+sizeof(unsigned long)));

} // end check the current snapshot buffer structure

} // end while there are top-level structures in the snapshot output buffer

Note an anomaly to the interface: some top-level data structures do not have a field
that returns the number of all generic secondary structures that follows. Instead, they
specify the number of structures returned for a specific secondary-level type. Special
treatment is required for these snapshot requests. For example, the following routines,
referenced in the main loop above, skip lock and table space snapshot requests in the
snapshot output buffer.

Routines to skip specific snapshot requests in the snapshot output buffer
 //---

// Skip a get snapshot for locks for application (SQLM_APPL_LOCK_SS)

 //---

char * skip_appl_lock_snap(sqlm_appl_lock * appl_lock_snap) {

char *snap= (char*) appl_lock_snap;

 int numlocks=appl_lock_snap->num_locks;

 snap+=appl_lock_snap->size;

// Skip the lock entries for this application

while (numlocks--) snap+=(*(unsigned long*)snap);

 return snap;

} // end skip_appl_lock_snap

 //---

// Skip a get snapshot for locks for database (SQLM_DBASE_LOCK_SS)

 //---

char * skip_db_lock_snap(sqlm_dbase_lock * dbase_lock_snap) {

char *snap= (char*) dbase_lock_snap;

 int numaplocks=dbase_lock_snap->num_appls;

 snap+=(*(unsigned long*)snap);

 Appendix A. Database System Monitor Interfaces 255

sqlmonss - Get Snapshot API

// Skip the appl lock entries

while (numaplocks--) {

snap = skip_appl_lock_snap((sqlm_appl_lock*) snap);

 }

 return snap;

} // end skip_db_lock_snap

 //---

// Skip a get snapshot for table spaces (SQLM_DBASE_LOCK_SS)

 //---

char * skip_tspace_snap(sqlm_tablespace_header * ts_header) {

char *snap= (char*) ts_header;

int numtspaces = ts_header->num_tablespaces;

snap+=ts_header->size; // Skip the header

// Skip the sqlm_tablespace entries

while (numtspaces--) snap+=(*(unsigned long*)snap);

 return snap;

} // end skip_db_lock_snap

Printing Snapshot Output Records
Attention: No string is NULL-terminated.

All strings returned in snapshot output records are blank-padded up to their maximum
length.

The following example illustrates how a GET SNAPSHOT FOR LOCKS on database
can be printed.
//--

// Print a Blank Padded String of maximum length SZ

//--

// note: strings returned by sqlmonss are NOT NULL-TERMINATED, they are all

// blank padded up to some maximum length.

//--

#define dump_BPSTRING(fp, str, SZ) \

{ \

int k=0; \

while (str[k]!=' '&&k<SZ) k++; \

if (k<SZ) str[k]='\0'; \

fprintf(fp, #str": %0.*s\n", SZ, str); \

}

//--

// Map Application Status to a printable string

//--

// note: These #define may be found in sqlmon.h

//--

char* appl_status_string(int val) {

switch (val) {

 case SQLM_CONNECTPEND: return "SQLM_CONNECTPEND";

 case SQLM_CONNECTED: return "SQLM_CONNECTED";

 case SQLM_UOWEXEC: return "SQLM_UOWEXEC";

 case SQLM_UOWWAIT: return "SQLM_UOWWAIT";

 case SQLM_LOCKWAIT: return "SQLM_LOCKWAIT";

 case SQLM_COMMIT_ACT: return "SQLM_COMMIT_ACT";

 case SQLM_ROLLBACK_ACT: return "SQLM_ROLLBACK_ACT";

 case SQLM_RECOMP: return "SQLM_RECOMP";

 case SQLM_COMP: return "SQLM_COMP";

 case SQLM_INTR: return "SQLM_INTR";

 case SQLM_DISCONNECTPEND: return "SQLM_DISCONNECTPEND";

 case SQLM_TPREP: return "SQLM_TPREP";

 case SQLM_THCOMT: return "SQLM_THCOMT";

256 System Monitor Guide and Reference

sqlmonss - Get Snapshot API

 case SQLM_THABRT: return "SQLM_THABRT";

 case SQLM_TEND: return "SQLM_TEND";

 case SQLM_CREATE_DB: return "SQLM_CREATE_DB";

 case SQLM_RESTART: return "SQLM_RESTART";

 case SQLM_RESTORE: return "SQLM_RESTORE";

 case SQLM_BACKUP: return "SQLM_BACKUP";

 case SQLM_LOAD: return "SQLM_LOAD";

 case SQLM_UNLOAD: return "SQLM_UNLOAD";

 case SQLM_IOERROR_WAIT: return "SQLM_IOERROR_WAIT";

case SQLM_QUIESCE_TABLESPACE: return "SQLM_QUIESCE_TABLESPACE";

 }

 return "";

} // end of appl_status_string

//--

// Map lock_object_type to a printable string

//--

char* lock_object_type_string(int val) {

 char *result="";

switch (val) {

case SQLM_TABLE_LOCK: result = "SQLM_TABLE_LOCK";

case SQLM_ROW_LOCK: result = "SQLM_ROW_LOCK";

case SQLM_INTERNAL_LOCK: result = "SQLM_INTERNAL_LOCK";

case SQLM_TABLESPACE_LOCK: result = "SQLM_TABLESPACE_LOCK";

case 0: result = "No lock wait";

 }

 return result;

} // end of lock_object_type_string

//--

// Map lock_mode to a printable string

//--

char* lock_mode_string(int val) {

 char result="";

switch (val) {

case SQLM_LNON: result = "NO";

case SQLM_LOIS: result = "IS";

case SQLM_LOIX: result = "IX";

case SQLM_LOOS: result = "S";

case SQLM_LSIX: result = "SIX";

case SQLM_LOOX: result = "X";

case SQLM_LOIN: result = "IN";

case SQLM_LOOZ: result = "Z";

case SQLM_LOOU: result = "U";

case SQLM_LONS: result = "NS";

case SQLM_LONX: result = "NX";

 }

 return result;

}

//--

// Map lock_status to a printable string

//--

inline char* lock_status_string(int val) {

switch (val) {

case SQLM_LRBGRNT: result = "Granted";

case SQLM_LRBCONV: result = "Converting";

 }

 return result;

}

//---

// Print an sqlm_dbase_lock

//---

void dump_sqlm_dbase_lock(FILE* fp, sqlm_dbase_lock* db_lock) {

fprintf(fp,"\nsqlm_dbase_lock contains: \n");

 fprintf(fp,"db_lock->info_type: %s\n", "SQLM_DBASE_LOCK_SS");

 fprintf(fp,"db_lock->locks_held: %ld\n", db_lock->locks_held);

 fprintf(fp,"db_lock->appls_cur_cons: %ld\n", db_lock->appls_cur_cons);

 fprintf(fp,"db_lock->num_appls: %ld\n", db_lock->num_appls);

 Appendix A. Database System Monitor Interfaces 257

sqlmonss - Get Snapshot API

 fprintf(fp,"db_lock->locks_waiting: %ld\n", db_lock->locks_waiting);

dump_BPSTRING(fp, db_lock->input_db_alias, SQLM_DBPATH_SZ);

dump_BPSTRING(fp, db_lock->db_name, SQLM_IDENT_SZ);

dump_BPSTRING(fp, db_lock->db_path, SQLM_DBPATH_SZ);

} // end of dump_sqlm_dbase_lock

//--

// Print an sqlm_appl_lock

// routine referred to in earlier section 'Loop for reading snapshot output buffer'

//--

void dump_sqlm_appl_lock(FILE* fp, sqlm_appl_lock* appl_lock) {

fprintf(fp,"\nsqlm_appl_lock contains: \n");

 fprintf(fp,"appl_lock->info_type: %s\n", "SQLM_APPL_LOCK_SS");

fprintf(fp,"appl_lock->agent_id: %6.6ld\n", appl_lock->agent_id);

 fprintf(fp,"appl_lock->appl_status: %s\n",

 appl_status_string(appl_lock->appl_status));

fprintf(fp,"appl_lock->codepage_id: %ld\n", appl_lock->codepage_id);

 fprintf(fp,"appl_lock->locks_held: %ld\n", appl_lock->locks_held);

 fprintf(fp,"appl_lock->num_locks: %ld\n", appl_lock->num_locks);

// Print the status change time, only if non-zero

if (appl_lock->status_change_time.seconds) {

 fprintf(fp,"appl_lock->status_change_time: %s\n",

 ctime((time_t*) &appl_lock->status_change_time.seconds));

} // end if status changed

 dump_BPSTRING(fp, appl_lock->appl_id, SQLM_APPLID_SZ);

 dump_BPSTRING(fp, appl_lock->sequence_no, SQLM_SEQ_SZ);

 dump_BPSTRING(fp, appl_lock->appl_name, SQLM_IDENT_SZ);

 dump_BPSTRING(fp, appl_lock->auth_id, SQLM_IDENT_SZ);

dump_BPSTRING(fp, appl_lock->client_db_alias, SQLM_IDENT_SZ);

// The following information is returned only if the application is in

// a lock wait (otherwise it is zeroed, or set to blank spaces if a string):

if (appl_lock->appl_status==SQLM_LOCKWAIT) {

 fprintf(fp,"appl_lock->lock_object_name: %ld\n",

 appl_lock->lock_object_name);

 fprintf(fp,"appl_lock->agent_id_holding_lk: %6.6ld\n",

 appl_lock->agent_id_holding_lk);

 fprintf(fp,"appl_lock->lock_object_type: %s\n",

 lock_object_type_string(appl_lock->lock_object_type));

fprintf(fp,"appl_lock->table_file_id: %ld\n", appl_lock->table_file_id);

 dump_BPSTRING(fp, appl_lock->appl_id_holding_lk, SQLM_APPLID_SZ);

dump_BPSTRING(fp, appl_lock->sequence_no_holding_lk, SQLM_SEQ_SZ);

 dump_BPSTRING(fp, appl_lock->table_name, SQLM_IDENT_SZ);

 dump_BPSTRING(fp, appl_lock->table_schema, SQLM_IDENT_SZ);

dump_BPSTRING(fp, appl_lock->tablespace_name, SQLM_IDENT_SZ);

} // end if this application is in a lock_wait

} // end of dump_sqlm_appl_lock

//--

// Print an sqlm_lock

//--

void dump_sqlm_lock(FILE* fp, sqlm_lock* lock) {

fprintf(fp,"\nsqlm_lock contains: \n");

fprintf(fp,"lock->info_type: %s\n", "SQLM_LOCK_SS");

 fprintf(fp,"lock->lock_object_type: %s\n",

 lock_object_type_string(lock->lock_object_type));

// Print the object of this lock

switch (lock->lock_object_type) {

 case SQLM_ROW_LOCK:

 case SQLM_TABLE_LOCK:

 dump_BPSTRING(fp, lock->table_name, SQLM_IDENT_SZ);

dump_BPSTRING(fp, lock->table_schema, SQLM_IDENT_SZ);

fprintf(fp,"lock->table_file_id: %ld\n", lock->table_file_id);

 break;

 case SQLM_TABLESPACE_LOCK:

dump_BPSTRING(fp, lock->tablespace_name, SQLM_IDENT_SZ);

 break;

 case SQLM_INTERNAL_LOCK:

 break;

258 System Monitor Guide and Reference

sqlmonss - Get Snapshot API

 }

 fprintf(fp,"lock->lock_mode: %s\n", lock_mode_string(lock->lock_mode));

 fprintf(fp,"lock->lock_status: %s\n",lock_status_string(lock->lock_status));

fprintf(fp,"lock->lock_object_name: %ld\n", lock->lock_object_name);

} // end of dump_sqlm_lock

 Sample Programs
C \sqllib\samples\c\dbsnap.c

 See Also
“sqlmon - Get/Update Monitor Switches API” on page 244
“sqlmonsz - Estimate Size Required for sqlmonss() Output Buffer API” on page 260
“sqlmrset - Reset Monitor API” on page 263.
“GET SNAPSHOT Command” on page 232.

 Appendix A. Database System Monitor Interfaces 259

sqlmonsz - Estimate Size Required for sqlmonss() Output Buffer API

 Purpose
Estimates the buffer size needed by “sqlmonss - Get Snapshot API” on page 248.

 Scope
This API only affects the instance to which the calling application is attached.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
Instance. To obtain information from a remote instance (or a different local instance), it
is necessary to first attach to that instance. If an attachment does not exist, an implicit
instance attachment is made to the node specified by the DB2INSTANCE environment
variable.

API Include File
 sqlmon.h
 sqlca.h

C API Syntax

/* File: sqlmon.h */

/* API: Estimate Database System Monitor Buffer Size */

/* ... */

int SQL_API_FN

 sqlmonsz (

 unsigned long version,

 _SQLOLDCHAR *reserved,

 sqlma *sqlma_ptr,

 unsigned long *buff_size,

 struct sqlca *sqlca);

/* ... */

 API Parameters
sqlca

Output. A pointer to the sqlca structure where the database manager
returns error information. See API Reference for more information.

260 System Monitor Guide and Reference

buff_size
Output. A pointer to the returned estimated buffer size needed by the GET
SNAPSHOT API.

sqlma_ptr
Input. Pointer to the user-allocated sqlma data structure containing an array
of sqlm_obj_struct , each one being a request for monitored data (see
“sqlmonss - Get Snapshot API” on page 248).

reserved
Reserved for future use. Must be set to NULL.

version
Input. Version ID of the database monitor data to collect. The database
monitor only returns data that was available for the requested version. Set
this parameter to one of the following symbolic constants:

 ¹ SQLM_DBMON_VERSION1

 ¹ SQLM_DBMON_VERSION2

 ¹ SQLM_DBMON_VERSION5

If requesting data for a version higher than the current server, the database
monitor only returns data for its level.

Note: If SQLM_DBMON_VERSION1 is specified as the version, the APIs cannot
be run remotely.

 Comments
The size returned by sqlmonsz is always a little larger than what is actually required.

This function generates a significant amount of overhead (it basically takes a snapshot
that does not return any data). Allocating and freeing memory dynamically for every
sqlmonss call is also expensive. If calling sqlmonss repeatedly, for example, when
sampling data over a period of time, it may be preferable to allocate a buffer of fixed
size (for example 32K), possibly from the stack, and continue reusing that same buffer,
rather than call sqlmonsz . If SQLM_RC_BUFFER_FULL is returned then you can call
sqlmonsz and allocate a new larger buffer.

If the database system monitor finds no active databases or applications, it may return
a buffer size of zero (if, for example, lock information related to a database that is not
active is requested). Verify that the estimated buffer size returned by this API is non-
zero before calling “sqlmonss - Get Snapshot API” on page 248.

 See Also
“sqlmon - Get/Update Monitor Switches API” on page 244
“sqlmonss - Get Snapshot API” on page 248
“sqlmrset - Reset Monitor API” on page 263.

 Appendix A. Database System Monitor Interfaces 261

 Code Sample
The following example estimates the buffer size required when issuing a snapshot for
locks, tables, and database level information.
/*

Database Monitor - Estimate Buffer Size for Snapshot

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "sqlca.h"

#include "sqlutil.h"

#include "sqlmon.h"

main () {

char *dbname = "SAMPLE"; // Name of the database to monitor

 int rc;

struct sqlca sqlca;

unsigned long buffer_sz;

 //--

// Request SQLMA_DBASE, SQLM_DBASE_TABLES, and SQLMA_DBASE_LOCKS in sqlma

 //--

struct sqlma* sqlma = (struct sqlma *) malloc(SQLMASIZE(3));

sqlma->obj_num = 3;

sqlma->obj_var[0].obj_type = SQLMA_DBASE;

 strcpy(sqlma->obj_var[0].object, dbname);

sqlma->obj_var[1].obj_type = SQLMA_DBASE_LOCKS;

 strcpy(sqlma->obj_var[1].object, dbname);

sqlma->obj_var[2].obj_type = SQLMA_DBASE_TABLES;

 strcpy(sqlma->obj_var[2].object, dbname);

 //--

// Estimate Buffer size required for this request

 //--

sqlmonsz(SQLM_DBMON_VERSION5, NULL, sqlma, &buffer_sz, &sqlca);

if (sqlca.sqlcode) { // note: Positive return codes indicate a Warning

// get and display a printable error message

 char msg[1024];

sqlaintp (msg, sizeof(msg), 60, &sqlca);

 printf("%s", msg);

 }

else printf ("\nBuffer size required for this snapshot is: %d\n",buffer_sz);

 //--

// ...Take the Snapshot...

 //--

 {

 char* buffer_ptr;

 sqlm_collected collected;

buffer_ptr = (char *) malloc(buffer_sz); // Allocate the buffer

rc = sqlmonss(SQLM_DBMON_VERSION5, NULL, sqlma, buffer_sz, buffer_ptr,

 &collected, &sqlca);

// Process snapshot output in buffer_ptr ...

delete buffer_ptr; // Free the buffer

 }

}

262 System Monitor Guide and Reference

sqlmrset - Reset Monitor API

sqlmrset - Reset Monitor API

 Purpose
Resets the database system monitor data of a specified database, or of all active data-
bases for the application issuing the call.

 Scope
This API only affects the application making the call.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
Instance. To reset the monitor switches for a remote instance (or a different local
instance), it is necessary to first attach to that instance.

API Include File
sqlmon.h

C API Syntax

/* File: sqlmon.h */

/* API: Reset Monitor */

/* ... */

int SQL_API_FN

 sqlmrset (

 unsigned long version,

 _SQLOLDCHAR *reserved,

 unsigned long reset_all,

 _SQLOLDCHAR *db_alias,

 struct sqlca *sqlca);

/* ... */

 API Parameters
reset_all

Input. An input value of 0 (zero) resets monitor counters for the database
specified in db_alias . An input value of 1 resets monitor counters for all
databases and at the database manager level (db_alias is then ignored).

 Appendix A. Database System Monitor Interfaces 263

sqlmrset - Reset Monitor API

db_alias
Input. A null terminated string that identifies the alias of the database being
reset. It is ignored if reset_all is set to 1.

sqlca
Output. A pointer to the sqlca structure where the database manager
returns error information.

version
Input. Version ID of the database monitor data to reset. Use the same
value that you would specify for the sqlmonss call.

 Sample Programs
C \sqllib\samples\c\monreset.c

 Comments
Each process (attachment) has its own private view of the monitor data. If one user
resets, or turns off a monitor switch, other users are not affected. When an application
first calls any database monitor function, it inherits the default switch settings from the
database manager configuration file.These settings can be overridden with “sqlmon -
Get/Update Monitor Switches API” on page 244.

If all active databases are reset, some database manager information is also reset to
maintain the consistency of the data that is returned.

This API cannot be used to selectively reset specific data items or specific monitor
groups. However a specific group can be reset by turning its switch OFF and then ON,
using “sqlmon - Get/Update Monitor Switches API” on page 244.

 See Also
“sqlmon - Get/Update Monitor Switches API” on page 244
“sqlmonss - Get Snapshot API” on page 248
“sqlmonsz - Estimate Size Required for sqlmonss() Output Buffer API” on page 260.
“RESET MONITOR Command” on page 241.

 Code Sample
The following example resets the resettable data elements for a single database.
/*

Database Monitor - Reset Data Elements

*/

#include <stdio.h>

#include "sqlca.h"

#include "sqlutil.h"

#include "sqlmon.h"

//--

// Reset monitored data for a single database

//--

struct sqlca sqlca;

sqlmrset(SQLM_DBMON_VERSION5, NULL, SQLM_OFF, "SAMPLE", &sqlca);

if (sqlca.sqlcode) { // note: Positive return codes indicate a Warning

// get and display a printable error message

 char msg[1024];

sqlaintp (msg, sizeof(msg), 60, &sqlca);

 printf("%s", msg);

264 System Monitor Guide and Reference

sqlmrset - Reset Monitor API

} // end if reset was successful

else printf("Database Monitor Reset for '%s' was successful!\n", argv[1]);

 Appendix A. Database System Monitor Interfaces 265

UPDATE MONITOR SWITCHES Command

UPDATE MONITOR SWITCHES Command

 Purpose
Turns one or more database monitor recording switches on or off.

The database manager records a base set of information at all times. Users who
require more than this basic information can turn on the appropriate switches, but at a
cost to system performance. Switches control information that is expensive to collect.
See Chapter 3, “Database System Monitor Data Elements” on page 31 to determine if
a switch is required for a particular data element.

 Authorization
One of the following:

 sysadm
 sysctrl
 sysmaint

 Required Connection
Instance.

 Format

55──UPDATE MONITOR SWITCHES USING─ ─switch-name─ ──┬ ┬─ON── ─────────────────5%
 └ ┘─OFF─

 Parameters
USING switch-name

Elements under switch control are grouped as follows:

BUFFERPOOL Buffer pool activity information

LOCK Lock information

SORT Sorting information

STATEMENT SQL statement information.

TABLE Table activity information

UOW Unit of work information.

 Comments
To view the switch settings for your session, use “GET MONITOR SWITCHES
Command” on page 230.

266 System Monitor Guide and Reference

UPDATE MONITOR SWITCHES Command

To clear the information related to a particular switch, set the switch off, then on.

When the application starts, it inherits the settings in the database manager configura-
tion. See GET DATABASE MANAGER CONFIGURATION in the Command Reference
and dft_mon_xxx configuration parameters.

 See Also
“RESET MONITOR Command” on page 241
“GET MONITOR SWITCHES Command” on page 230
“UPDATE MONITOR SWITCHES Command” on page 266
“GET SNAPSHOT Command” on page 232
“sqlmonss - Get Snapshot API” on page 248

 Appendix A. Database System Monitor Interfaces 267

UPDATE MONITOR SWITCHES Command

268 System Monitor Guide and Reference

Appendix B. Parallel Edition Version 1.2 Users

In DB2 Version 5 the database system monitor interface has been simplified and is now
the same for all database and system configurations. This harmonization of the inter-
face means that some of the request types that were available with the Parallel Edition
(PE) V1.2 system monitor are no longer supported.

The most significant change affects how you monitor an application. In DB2 Version 5
an application snapshot returns all the relevaent application information, including a
breakdown of the application statistics at the subsection or agent level (if applicable).
For example, assuming an application is running a query composed of several sub-
sections, a GET SNAPHOT FOR APPLICATION will return:

¹ Lock wait information for each agent that is working for this application and is
waiting for a lock.

¹ Tablequeue activity for each subsection executed by this application. This allows
you to track progression of a query that is against a partitioned database.

¹ A list of process IDs or thread IDs for each agent associated with the application.

This information is available on both the coordinator and non-coordinator nodes. In PE
V1.2, you would have to request information about individual agents or tablequeues and
correlate the output obtained at these levels with the application.

Note: PE V1.2 applications are not compatible with DB2 Version 5.

PE V1.2 applications that are not using any of the requests that have are obsolete in
DB2 Version 5 can be recompiled after changing the request type from
SQLM_DBMON_PARALLEL1 to SQLM_DBMON_VERSION1. No other changes should
be required. See the following tables for obsolete requests.

agent_id

You should note that agent_id no longer corresponds to the process ID of the agent
process. This field has not been renamed in the API to ensure source compatibility with
previous versions, however it has become a globally unique identifier for the applica-
tion.

Agent ID and application handle are synonymous. See “Partitioned Database
Considerations” on page 23 for more information.

 Copyright IBM Corp. 1993, 1997 269

 API Changes

Obsolete sqlmonss()
Request Type Description Replacement

SQLMA_AGENT_APPL
SQLMA_AGENT_AGENTID

Get snapshot for agent Replaced with SQLMA_APPL which will
report a breakdown per agent, if and when
applicable.

SQLMA_COORD_AGENTS List all coordinator agents Replaced with SQLMA_APPLINFO_ALL,
which returns sqlm_applinfo for each appli-
cation. It identifies the node where the
coordinator agent runs and provides both
its application handle and agent thread or
process ID.

SQLMA_FCM_NODE_ALL
SQLMA_FCM_NODE

Get Fast Communication Manager Replaced with SQLMA_DB2, which gets all
database manager information and returns
FCM information (if applicable).

SQLMA_AGENT_ALL
SQLMA_COORD_AGENTS

Get snapshot for all agents
Get snapshot for coordinator agents

In PE V1.2, returned an
SQLMA_AGENT_AGENTID snapshot for
all agents, including the coordinators (or
the coordinators only). Replaced with
SQLMA_APPL_ALL (GET SNAPSHOT
FOR APPLICATIONS). Note that informa-
tion is not returned for agents that are not
associated with any applications, as their
counts would be zeroes.

SQLMA_DBASE_AGENTS Get snapshot for all agents for a
database

Replaced with SQLMA_DBASE_APPLS.

 Obsolete Commands

Note: GET SNAPSHOT FOR FCM is still supported, however the command processor
maps it to a GET SNAPSHOT FOR DBM and extracts the FCM information
from the returned output.

Obsolete PE V1.2 Command Replacement

get snapshot for all agents get snapshot for all applications

get snapshot for all coord agents get snapshot for all applications

get snapshot for agents on dbname get snapshot for applications on dbname

get snapshot for agents for application get snapshot for application

get snapshot for coordinating agent get snapshot for application

get snapshot for tablequeues get snapshot for application

270 System Monitor Guide and Reference

Appendix C. DB2 Version 1 sqlestat Users

The following information previously available with the sqlestat API on OS/2 for DB2
Version 1 is now available through snapshot monitoring.

sqlestat Name Data Element

component_id “Product Identification” on page 38

corr_serv_lvl “Service Level” on page 37

curr_reqs_lvl “SQL Requests Since Last Commit” on page 173

db_type “Server Operating System” on page 37

location “Database Location” on page 43

node “Catalog Node Network Name” on page 42

product_name “Product Name” on page 38

 Copyright IBM Corp. 1993, 1997 271

272 System Monitor Guide and Reference

Appendix D. How the DB2 Library Is Structured

The DB2 Universal Database library consists of SmartGuides, online help, and books.
This section describes the information that is provided, and how to access it.

To help you access product information online, DB2 provides the Information Center on
OS/2, Windows 95, and the Windows NT operating systems. You can view task infor-
mation, DB2 books, troubleshooting information, sample programs, and DB2 information
on the Web. “About the Information Center” on page 280 has more details.

 SmartGuides
SmartGuides help you complete some administration tasks by taking you through each
task one step at a time. SmartGuides are available on OS/2, Windows 95, and the
Windows NT operating systems. The following table lists the SmartGuides.

SmartGuide Helps you to... How to Access...

Add Database Catalog a database on a client workstation. From the Client Configuration
Assistant, click on Add .

Create Database Create a database, and to perform some basic
configuration tasks.

From the Control Center, click with the
right mouse button on the Databases
icon and select Create ->New.

Performance Config-
uration

Tune the performance of a database by
updating configuration parameters to match your
business requirements.

From the Control Center, click with the
right mouse button on the database
you want to tune and select Configure
performance .

Backup Database Determine, create, and schedule a backup plan. From the Control Center, click with the
right mouse button on the database
you want to backup and select
Backup ->Database using
SmartGuide .

Restore Database Recover a database after a failure. It helps you
understand which backup to use, and which logs
to replay.

From the Control Center, click with the
right mouse button on the database
you want to restore and select
Restore ->Database using
SmartGuide .

Create Table Select basic data types, and create a primary
key for the table.

From the Control Center, click with the
right mouse button on the Tables icon
and select Create ->Table using
SmartGuide .

Create Table Space Create a new table space. From the Control Center, click with the
right mouse button on the Table
spaces icon and select Create ->Table
space using SmartGuide .

 Copyright IBM Corp. 1993, 1997 273

 Online Help
Online help is available with all DB2 components. The following table describes the
various types of help.

Type of Help Contents How to Access...

Command Help Explains the syntax of
commands in the
command line
processor.

From the command line processor in interac-
tive mode, enter:

? command

where command is a keyword or the entire
command.

For example, ? catalog displays help for all
the CATALOG commands, whereas ?
catalog database displays help for the
CATALOG DATABASE command.

Control Center
Help

Explains the tasks
you can perform in a
window or notebook.
The help includes pre-
requisite information
you need to know,
and describes how to
use the window or
notebook controls.

From a window or notebook, click on the
Help push button or press the F1 key.

Message Help Describes the cause
of a message
number, and any
action you should
take.

From the command line processor in interac-
tive mode, enter:

? message number

where message number is a valid message
number.

For example, ? SQL30081 displays help
about the SQL30081 message.

To view message help one screen at a time,
enter:

? XXXnnnnn | more

where XXX is the message prefix, such as
SQL, and nnnnn is the message number,
such as 30081.

To save message help in a file, enter:

? XXXnnnnn > filename.ext

where filename.ext is the file where you want
to save the message help.

Note: On UNIX-based systems, enter:

\? XXXnnnnn | more or

\? XXXnnnnn > filename.ext

274 System Monitor Guide and Reference

Type of Help Contents How to Access...

SQL Help Explains the syntax of
SQL statements.

From the command line processor in interac-
tive mode, enter:

help statement

where statement is an SQL statement.

For example, help SELECT displays help
about the SELECT statement.

SQLSTATE Help Explains SQL states
and class codes.

From the command line processor in interac-
tive mode, enter:

? sqlstate or ? class-code

where sqlstate is a valid five digit SQL state
and class-code is a valid two digit class
code.

For example, ? 08003 displays help for the
08003 SQL state, whereas ? 08 displays
help for the 08 class code.

 Appendix D. How the DB2 Library Is Structured 275

 DB2 Books
The table in this section lists the DB2 books. They are divided into two groups:

¹ Cross-platform books: These books are for DB2 on any of the supported platforms.

¹ Platform-specific books: These books are for DB2 on a specific platform. For
example, there is a separate Quick Beginnings book for DB2 on OS/2, Windows
NT, and UNIX-based operating systems.

Most books are available in HTML and PostScript format, and in hardcopy that you can
order from IBM. The exceptions are noted in the table.

You can obtain DB2 books and access information in a variety of different ways:

View To view an HTML book, you can do the following:

¹ If you are running DB2 administration tools on OS/2, Windows 95, or
the Windows NT operating systems, you can use the Information
Center. “About the Information Center” on page 280 has more details.

¹ Use the open file function of the Web browser supplied by DB2 (or one
of your own) to open the following page:

 sqllib/doc/html/index.htm

The page contains descriptions of and links to the DB2 books. The
path is located on the drive where DB2 is installed.

You can also open the page by double-clicking on the DB2 Online
Books icon. Depending on the system you are using, the icon is in the
main product folder or the Windows Start menu.

Search To search for information in the HTML books, you can do the following:

¹ Click on Search the DB2 Books at the bottom of any page in the
HTML books. Use the search form to find a specific topic.

¹ Click on Index at the bottom of any page in an HTML book. Use the
Index to find a specific topic in the book.

¹ Display the Table of Contents or Index of the HTML book, and then
use the find function of the Web browser to find a specific topic in the
book.

¹ Use the bookmark function of the Web browser to quickly return to a
specific topic.

¹ Use the search function of the Information Center to find specific
topics. “About the Information Center” on page 280 has more details.

Print To print a book on a PostScript printer, look for the file name shown in the
table.

Order To order a hardcopy book from IBM, use the form number.

276 System Monitor Guide and Reference

Book Name Book Description Form Number

File Name

Cross-Platform Books

Administration Getting Started Introduces basic DB2 database administration con-
cepts and tasks, and walks you through the primary
administrative tasks.

S10J-8154

db2k0x50

Administration Guide Contains information required to design, implement,
and maintain a database to be accessed either locally
or in a client/server environment.

S10J-8157

db2d0x50

API Reference Describes the DB2 application programming interfaces
(APIs) and data structures you can use to manage
your databases. Explains how to call APIs from your
applications.

S10J-8167

db2b0x50

CLI Guide and Reference Explains how to develop applications that access DB2
databases using the DB2 Call Level Interface, a call-
able SQL interface that is compatible with the Micro-
soft ODBC specification.

S10J-8159

db2l0x50

Command Reference Explains how to use the command line processor, and
describes the DB2 commands you can use to manage
your database.

S10J-8166

db2n0x50

DB2 Connect Enterprise Edition
Quick Beginnings

Provides planning, installing, configuring, and using
information for DB2 Connect Enterprise Edition. Also
contains installation and setup information for all sup-
ported clients.

S10J-7888

db2cyx50

DB2 Connect Personal Edition
Quick Beginnings

Provides planning, installing, configuring, and using
information for DB2 Connect Personal Edition.

S10J-8162

db2c1x50

DB2 Connect User's Guide Provides concepts, programming and general using
information about the DB2 Connect products.

S10J-8163

db2c0x50

DB2 Connectivity Supplement Provides setup and reference information for cus-
tomers who want to use DB2 for AS/400, DB2 for
OS/390, DB2 for MVS, or DB2 for VM as DRDA Appli-
cation Requesters with DB2 Universal Database
servers, and customers who want to use DRDA Appli-
cation Servers with DB2 Connect (formerly DDCS)
application requesters.

Note: Available in HTML and PostScript formats
only.

No form number

db2h1x50

Embedded SQL Programming
Guide

Explains how to develop applications that access DB2
databases using embedded SQL, and includes dis-
cussions about programming techniques and perform-
ance considerations.

S10J-8158

db2a0x50

Glossary Provides a comprehensive list of all DB2 terms and
definitions.

Note: Available in HTML format only.

No form number

db2t0x50

 Appendix D. How the DB2 Library Is Structured 277

Book Name Book Description Form Number

File Name

Installing and Configuring DB2
Clients

Provides installation and setup information for all DB2
Client Application Enablers and DB2 Software Devel-
oper's Kits.

Note: Available in HTML and PostScript formats
only.

No form number

db2iyx50

Master Index Contains a cross reference to the major topics
covered in the DB2 library.

Note: Available in PostScript format and hardcopy
only.

S10J-8170

db2w0x50

Message Reference Lists messages and codes issued by DB2, and
describes the actions you should take.

S10J-8168

db2m0x50

Replication Guide and Reference Provides planning, configuring, administering, and
using information for the IBM Replication tools sup-
plied with DB2.

S95H-0999

db2e0x50

Road Map to DB2 Programming Introduces the different ways your applications can
access DB2, describes key DB2 features you can use
in your applications, and points to detailed sources of
information for DB2 programming.

S10J-8155

db2u0x50

SQL Getting Started Introduces SQL concepts, and provides examples for
many constructs and tasks.

S10J-8156

db2y0x50

SQL Reference Describes SQL syntax, semantics, and the rules of the
language. Also includes information about release-to-
release incompatibilities, product limits, and catalog
views.

S10J-8165

db2s0x50

System Monitor Guide and Ref-
erence

Describes how to collect different kinds of information
about your database and the database manager.
Explains how you can use the information to under-
stand database activity, improve performance, and
determine the cause of problems.

S10J-8164

db2f0x50

Troubleshooting Guide Helps you determine the source of errors, recover
from problems, and use diagnostic tools in consulta-
tion with DB2 Customer Service.

S10J-8169

db2p0x50

What's New Describes the new features, functions, and enhance-
ments in DB2 Universal Database.

Note: Available in HTML and PostScript formats
only.

No form number

db2q0x50

Platform-Specific Books

Building Applications for UNIX
Environments

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a UNIX system.

S10J-8161

db2axx50

Building Applications for
Windows and OS/2 Environ-
ments

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a Windows or OS/2 system.

S10J-8160

db2a1x50

278 System Monitor Guide and Reference

Book Name Book Description Form Number

File Name

DB2 Extended Enterprise Edition
Quick Beginnings

Provides planning, installing, configuring, and using
information for DB2 Universal Database Extended
Enterprise Edition for AIX.

S72H-9620

db2v3x50

DB2 Personal Edition Quick
Beginnings

Provides planning, installing, configuring, and using
information for DB2 Universal Database Personal
Edition on OS/2, Windows 95, and the Windows NT
operating systems.

S10J-8150

db2i1x50

DB2 SDK for Macintosh Building
Your Applications

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a Macintosh system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

S50H-0528

sqla7x02

DB2 SDK for SCO OpenServer
Building Your Applications

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a SCO OpenServer system.

Note: Available for DB2 Version 2.1.2 only.

S89H-3242

sqla9x02

DB2 SDK for Silicon Graphics
IRIX Building Your Applications

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a Silicon Graphics system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

S89H-4032

sqlaax02

DB2 SDK for SINIX Building
Your Applications

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a SINIX system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

S50H-0530

sqla8x00

Quick Beginnings for OS/2 Provides planning, installing, configuring, and using
information for DB2 Universal Database on OS/2. Also
contains installing and setup information for all sup-
ported clients.

S10J-8147

db2i2x50

Quick Beginnings for UNIX Provides planning, installing, configuring, and using
information for DB2 Universal Database on
UNIX-based platforms. Also contains installing and
setup information for all supported clients.

S10J-8148

db2ixx50

Quick Beginnings for Windows
NT

Provides planning, installing, configuring, and using
information for DB2 Universal Database on the
Windows NT operating system. Also contains
installing and setup information for all supported
clients.

S10J-8149

db2i6x50

 Appendix D. How the DB2 Library Is Structured 279

Notes:

1. The character in the sixth position of the file name indicates the language of a
book. For example, the file name db2d0e50 indicates that the Administration Guide
is in English. The following letters are used in the file names to indicate the lan-
guage of a book:

2. For late breaking information that could not be included in the DB2 books, see the
README file. Each DB2 product includes a README file which you can find in the
directory where the product is installed.

Language Identifier Language Identifier
Brazilian Portuguese B Hungarian H
Bulgarian U Italian I
Czech X Norwegian N
Danish D Polish P
English E Russian R
Finnish Y Slovenian L
French F Spanish Z
German G Swedish S

About the Information Center
The Information Center provides quick access to DB2 product information. The Informa-
tion Center is available on OS/2, Windows 95, and the Windows NT operating systems.
You must install the DB2 administration tools to see the Information Center.

Depending on your system, you can access the Information Center from the:

¹ Main product folder
¹ Toolbar in the Control Center
¹ Windows Start menu.

The Information Center provides the following kinds of information. Click on the appro-
priate tab to look at the information:

Tasks Lists tasks you can perform using DB2.

Reference Lists DB2 reference information, such as keywords, commands,
and APIs.

Books Lists DB2 books.

Troubleshooting Lists categories of error messages and their recovery actions.

Sample Programs Lists sample programs that come with the DB2 Software Devel-
oper's Kit. If the Software Developer's Kit is not installed, this tab
is not displayed.

Web Lists DB2 information on the World Wide Web. To access this
information, you must have a connection to the Web from your
system.

280 System Monitor Guide and Reference

When you select an item in one of the lists, the Information Center launches a viewer to
display the information. The viewer might be the system help viewer, an editor, or a
Web browser, depending on the kind of information you select.

The Information Center provides search capabilities so you can look for specific topics,
and filter capabilities to limit the scope of your searches.

 Appendix D. How the DB2 Library Is Structured 281

282 System Monitor Guide and Reference

 Appendix E. Notices

Any reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM’s licensed program may be used. Any functionally equivalent
product, program or service that does not infringe any of IBM’s intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those expressly des-
ignated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the

IBM Director of Licensing,
 IBM Corporation,

500 Columbus Avenue,
Thornwood, NY, 10594

 USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Canada Limited
 Department 071

1150 Eglinton Ave. East
North York, Ontario

 M3C 1H7
 CANADA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

This publication may contain examples of data and reports used in daily business oper-
ations. To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

 Trademarks
The following terms are trademarks or registered trademarks of the IBM Corporation in
the United States and/or other countries:

 Copyright IBM Corp. 1993, 1997 283

ACF/VTAM
ADSTAR
AISPO
AIX
AIXwindows
AnyNet
APPN
AS/400
CICS
C Set++
C/370
DATABASE 2
DatagLANce
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
Distributed Relational Database Architecture
DRDA
Extended Services
FFST
First Failure Support Technology
IBM
IMS
Lan Distance

MVS/ESA
MVS/XA
NetView
OS/400
OS/390
OS/2
PowerPC
QMF
RACF
RISC System/6000
SAA
SP
SQL/DS
SQL/400
S/370
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WIN-OS/2

Trademarks of Other Companies
The following terms are trademarks or registered trademarks of the companies listed:

C-bus is a trademark of Corollary, Inc.

HP-UX is a trademark of Hewlett-Packard.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks or regis-
tered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM Corpo-
ration under license.

Solaris is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries licensed exclu-
sively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a double asterisk
(**), may be trademarks or service marks of others.

284 System Monitor Guide and Reference

 Index

A
acc_curs_blk element 162
accepted block cursor requests, monitor element 162
accesses to overflowed records, monitor element 157
activating an event monitor 15
active sorts, monitor element 84
active_sorts element 84
agent and connection data elements

agents assigned from pool 75
agents created due to empty agent pool 76
agents registered 73
agents waiting for a token 73
applications connected currently 72
applications executing in the database currently 72
committed private memory 78
connects since first database connect 71
local connections 69
local connections executing in the database

manager 70
local databases with current connects 71
maximum number of agents registered 74
maximum number of associated agents 77
maximum number of coordinating agents 76
number of idle agents 75
remote connections executing in the database

manager 69
remote connections to database manager 68
secondary connections 78
stolen agents 77

agent ID holding lock, monitor element 145
agent pool 67
agent_id 200
agent_id element 45
agent_id_holding_lock element 145
agent_pid element 66
agent_usr_cpu_time element 191
agents

associated 67
coordinator 67
idle 67
subagent 67

agents assigned from pool, monitor element 75
agents created due to empty agent pool, monitor

element 76
agents registered, monitor element 73

agents waiting for a token, monitor element 73
agents_created_empty_pool element 76
agents_from_pool element 75
agents_registered element 73
agents_registered_top element 74
agents_stolen element 77
agents_top element 190
agents_waiting_on_token element 73
agents_waiting_top element 74
appl_con_time element 62
appl_id element 50
appl_id_holding_lk element 146
appl_idle_time element 66
appl_name element 49
appl_priority element 59
appl_priority_type element 60
appl_section_inserts element 126
appl_section_lookups element 125
appl_status element 46
application agent priority, monitor element 59
application creator, monitor element 179
application handle

See agent_id
application handle (agent ID), monitor element 45
application ID holding lock, monitor element 146
application ID, monitor element 50
application identification data elements

application agent priority 59
application handle (agent ID) 45
application ID 50
application idle time 66
application name 49
application priority type 60
application status 46
application status change time 48
authorization ID 52
client communication protocol 58
client operating platform 58
client process ID 57
client product/version ID 53
configuration NNAME of client 53
connection request completion timestamp 62
connection request start timestamp 62
coordinating node 61
database alias used by application 54
database country code 59

 Copyright IBM Corp. 1993, 1997 285

application identification data elements (continued)
drda correlation token 57
host product/version ID 55
ID of code page used by application 48
outbound application ID 55
outbound sequence number 56
previous transaction stop time 65
previous unit of work completion timestamp 62
process or thread id 66
sequence number 52
unit of work completion status 65
unit of work start timestamp 63
unit of work stop timestamp 64
user authorization level 60
user login ID 56

application idle time, monitor element 66
application name, monitor element 49
application priority type, monitor element 60
application snapshot 7
application status change time, monitor element 48
application status data elements

See application identification data elements
application status, monitor element 46
applications connected currently, monitor element 72
applications executing in the database currently, monitor

element 72
appls_cur_cons 72
appls_in_db2 element 72
associated agent 67
associated_agents_top element 77
auth_id element 52
authority required

for event monitors 15, 195
for snapshot monitoring 6

authority_lvl element 60
authorization ID, monitor element 52
autostarting an event monitor 15
availability of data

snapshot monitoring 10

B
binds_precompiles element 174
binds/precompiles attempted, monitor element 174
blocked event monitors 202
bp_info element 109
buff_free element 85
buff_free_bottom element 85
buffer overflows

pipe 20

buffer pool 90
buffer pool activity data elements

buffer pool asynchronous data reads 101
buffer pool asynchronous data writes 102
buffer pool asynchronous index reads 104
buffer pool asynchronous index writes 103
buffer pool asynchronous read requests 107
buffer pool asynchronous read time 105
buffer pool asynchronous write time 106
buffer pool data logical reads 93
buffer pool data physical reads 94
buffer pool data writes 95
buffer pool index logical reads 96
buffer pool index physical reads 97
buffer pool index writes 98
buffer pool information 109
buffer pool log space cleaners triggered 107
buffer pool threshold cleaners triggered 109
buffer pool victim page cleaners triggered 108
database files closed 100
time waited for prefetch 110
total buffer pool physical read time 99
total buffer pool physical write time 100

buffer pool asynchronous data reads, monitor
element 101

buffer pool asynchronous data writes, monitor
element 102

buffer pool asynchronous index reads, monitor
element 104

buffer pool asynchronous index writes, monitor
element 103

buffer pool asynchronous read requests, monitor
element 107

buffer pool asynchronous read time, monitor
element 105

buffer pool asynchronous write time, monitor
element 106

buffer pool data logical reads, monitor element 93
buffer pool data pages from extended storage, monitor

element 113
buffer pool data pages to extended storage, monitor

element 112
buffer pool data physical reads, monitor element 94
buffer pool data writes, monitor element 95
buffer pool event monitor 18
buffer pool hit ratio 91
buffer pool index logical reads, monitor element 96
buffer pool index pages from extended storage, monitor

element 114

286 System Monitor Guide and Reference

buffer pool index pages to extended storage, monitor
element 112

buffer pool index physical reads, monitor element 97
buffer pool index writes, monitor element 98
buffer pool information, monitor element 109
buffer pool log space cleaners triggered, monitor

element 107
buffer pool snapshot 7
buffer pool threshold cleaners triggered, monitor

element 109
buffer pool victim page cleaners triggered, monitor

element 108
buffering, event monitor 201

C
cache

catalog 119
package 122

capabilities, monitoring
activity monitoring 1
performance analysis 2
problem determination 1
system configuration 2

cat_cache_heap_full element 122
cat_cache_inserts element 120
cat_cache_lookups element 119
cat_cache_overflows element 121
catalog cache

See cache
catalog cache data elements

catalog cache heap full 122
catalog cache inserts 120
catalog cache lookups 119
catalog cache overflows 121

catalog cache heap full, monitor element 122
catalog cache inserts, monitor element 120
catalog cache lookups, monitor element 119
catalog cache overflows, monitor element 121
catalog node network name, monitor element 42
catalog node number, monitor element 43
catalog_node element 43
catalog_node_name element 42
CE_free element 87
CE_free_bottom element 87
client communication protocol, monitor element 58
client operating platform, monitor element 58
client process ID, monitor element 57
client product/version ID, monitor element 53

client_db_alias element 54
client_nname element 53
client_pid element 57
client_platform element 58
client_prdid element 53
client_protocol element 58
codepage_id element 48
comm_private_mem element 78
commit statements attempted, monitor element 166
commit_sql_stmts element 166
committed private memory, monitor element 78
component_id element 38
con_local_dbases 71
configuration NNAME of client, monitor element 53
configuration NNAME at monitoring (server) node,

monitor element 34
conn_complete_time element 62
connection data elements

See application status data elements
connection entries currently free, monitor element 87
connection for snapshot 9
connection information 7
connection request completion timestamp, monitor

element 62
connection request start timestamp, monitor

element 62
connection status, monitor element 89
connection_status element 89
connections event monitor 18
connections involved in deadlock, monitor element 140
connects since first database connect, monitor

element 71
coord_agents_top element 76
coord_node element 61
coordinating node, monitor element 61
coordinator agent 27, 67
corr_token element 57
counters 20, 33
country_code element 59
CPU time used, monitor element 191
cpu usage data elements

CPU time used 191
CREATE EVENT MONITOR statement 214
creating an event monitor 15
creator element 179
current agents waiting on locks, monitor element 144
current number of tablequeue buffers overflowed,

monitor element 188
cursor name, monitor element 178

 Index 287

cursor_name element 178

D
data definition language (DDL) SQL statements, monitor

element 169
data element

definition 28
types 33

data elements (by API element name) 57
acc_curs_blk 162
active_sorts 84
agent_id 45
agent_id_holding_lock 145
agent_pid 66
agent_sys_cpu_time 191
agent_usr_cpu_time 191
agents_created_empty_pool 76
agents_from_pool 75
agents_registered 73
agents_registered_top 74
agents_stolen 77
agents_top 190
agents_waiting_on_token 73
agents_waiting_top 74
appl_con_time 62
appl_id 50
appl_idle_time 66
appl_name 49
appl_priority 59
appl_priority_type 60
appl_section_inserts 126
appl_section_lookups 125
appl_status 46
appli_id_holding_lk 146
appls_cur_con 72
appls_in_db2 72
associated_agents_top 77
auth_id 52
authority_lvl 60
binds_precompiles 174
bp_info 109
buff_free 85
buff_free_bottom 85
cat_cache_heap_full 122
cat_cache_inserts 120
cat_cache_lookups 119
cat_cache_overflows 121
catalog_node 43
catalog_node_name 42

data elements (by API element name) (continued)
CE_free 87
CE_free_bot 87
client_db_alias 54
client_nname 53
client_pid 57
client_platform 58
client_prdid 53
client_protocol 58
codepage_id 48
comm_private_mem 78
commit_sql_stmts 166
component_id 38
con_local_dbases 71
conn_complete_time 62
conn_time 41
connection_status 89
coord_agents_top 76
coord_node 61
corr_token 57
country_code 59
creator 179
cursor_name 178
db_conn_time 41
db_heap_top 126
db_location 43
db_name 39
db_path 40
db_status 42
db2_status 39
db2start_time 34
ddl_sql_stmts 169
deadlocks 133
degree_parallelism 191
direct_read_reqs 117
direct_read_time 118
direct_reads 115
direct_write_reqs 117
direct_write_time 118
direct_writes 116
disconn_time 41
dl_conns 140
dynamic_sql_stmts 165
execution_id 56
failed_sql_stmts 165
fetch_count 182
files_closed 100
host_prdid 55
idle_agents 75
input_db_alias 193

288 System Monitor Guide and Reference

data elements (by API element name) (continued)
int_auto_rebinds 170
int_commits 171
int_deadlock_rollbacks 173
int_rollbacks 172
int_rows_deleted 157
int_rows_inserted 159
int_rows_updated 158
last_backup 44
last_reset 192
local_cons 69
local_cons_in_exec 70
lock_escals 134
lock_list_in_use 132
lock_mode 136
lock_object_name 138
lock_object_type 137
lock_status 137
lock_timeouts 139
lock_wait_start_time 145
lock_wait_time 142
lock_waits 141
locks_held 131
locks_held_top 139
locks_waiting 144
log_reads 129
log_space_used 130
log_writes 130
MA_free 86
MA_free_bot 86
num_agents 190
num_subagents 186
number_nodes 89
open_loc_curs 163
open_loc_curs_blk 163
open_rem_curs 160
open_rem_curs_blk 161
operation 176
outbound_appl_id 55
outbound_sequence_no 56
overflow_accesses 157
package_name 177
piped_sorts_accepted 81
piped_sorts_requested 80
pkg_cache_inserts 124
pkg_cache_lookups 123
pool_async_data_read_reqs 107
pool_async_data_reads 101
pool_async_data_writes 102
pool_async_index_reads 104

data elements (by API element name) (continued)
pool_async_index_writes 103
pool_async_read_time 105
pool_async_write_time 106
pool_data_from_estore 113
pool_data_l_reads 93
pool_data_p_reads 94
pool_data_to_estore 112
pool_data_writes 95
pool_drty_pg_steal_clns 108
pool_drty_pg_thrsh_clns 109
pool_index_from_estore 114
pool_index_l_reads 96
pool_index_p_reads 97
pool_index_to_estore 112
pool_index_writes 98
pool_lsn_gap_clns 107
pool_read_time 99
pool_write_time 100
post_threshold_sorts 80
prefetch_wait_time 110
prev_stop_time 65
prev_uow_stop_time 62
product_name 38
query_card_estimate 183
query_cost_estimate 183
RB_free 88
RB_free_bot 88
rej_curs_blk 162
rem_cons_in 68
rem_cons_in_exec 69
rf_log_num 149
rf_num_tspaces 149
rf_status 149
rf_timestamp 148
rf_type 148
rollback_sql_stmts 167
rolled_back_appl_id 147
rows_deleted 153
rows_inserted 153
rows_read 156
rows_selected 154
rows_updated 154
rows_written 155
sec_log_used_top 127
sec_logs_allocated 129
section_number 177
select_sql_stmts 168
sequence_no 52
sequence_no_holding_lk 147

 Index 289

data elements (by API element name) (continued)
server_db2_type 35
server_instance_name 35
server_nname 34
server_platform 37
server_prdid 36
server_version 36
service_level 37
sort_heap_allocated 79
sort_overflows 83
sql_reqs_since_commit 173
sqlca 182
ss_exec_time 185
ss_node_number 184
ss_number 184
ss_status 185
ss_sys_cpu_time 191
ss_usr_cpu_time 191
static_sql_stmts 164
status 65
status_change_time 48
stmt_node_number 174
stmt_operation 176
stmt_sorts 181
stmt_start 179
stmt_stop 180
stmt_sys_cpu_time 191
stmt_text 180
stmt_type 175
stmt_usr_cpu_time 191
stop_time 180
system_cpu_time 191
table_file_id 159
table_name 151
table_schema 152
table_type 150
tablespace_name 143
time_stamp 193
tot_log_used_top 128
total_buffers_rcvd 90
total_buffers_sent 90
total_cons 71
total_sec_cons 78
total_sort_time 82
total_sorts 82
tq_cur_send_spills 188
tq_node_waited_for 187
tq_rows_read 188
tq_rows_written 189
tq_tot_send_spills 187

data elements (by API element name) (continued)
tq_wait_for_any 186
ts_name 148
uid_sql_stmts 168
uow_comp_status 65
uow_lock_wait_time 144
uow_log_space_used 130
uow_start_time 63
uow_stop_time 64
user_cpu_time 191
x_lock_escals 135

data elements (by name) 57
accepted block cursor requests 162
accesses to overflowed records 157
active sorts 84
agent ID holding lock 145
agents assigned from pool 75
agents created due to empty agent pool 76
agents registered 73
agents waiting for a token 73
application agent priority 59
application creator 179
application handle (agent ID) 45
application ID 50
application ID holding lock 146
application idle time 66
application name 49
application priority type 60
application status 46
application status change time 48
applications connected currently 72
applications executing in the database currently 72
authorization ID 52
binds/precompiles attempted 174
buffer pool asynchronous data reads 101
buffer pool asynchronous data writes 102
buffer pool asynchronous index reads 104
buffer pool asynchronous index writes 103
buffer pool asynchronous read requests 107
buffer pool asynchronous read time 105
buffer pool asynchronous write time 106
buffer pool data logical reads 93
buffer pool data pages from extended storage 113
buffer pool data pages to extended storage 112
buffer pool data physical reads 94
buffer pool data writes 95
buffer pool index logical reads 96
buffer pool index pages from extended storage 114
buffer pool index pages to extended storage 112
buffer pool index physical reads 97

290 System Monitor Guide and Reference

data elements (by name) (continued)
buffer pool index writes 98
buffer pool information 109
buffer pool log space cleaners triggered 107
buffer pool threshold cleaners triggered 109
buffer pool victim page cleaners triggered 108
catalog cache heap full 122
catalog cache inserts 120
catalog cache lookups 119
catalog cache overflows 121
catalog node network name 42
catalog node number 43
client communication protocol 58
client operating platform 58
client process ID 57
client product/version ID 53
commit statements attempted 166
committed private memory 78
configuration NNAME of client 53
configuration NNAME at monitoring (server)

node 34
connection entries currently free 87
connection request completion timestamp 62
connection request start timestamp 62
connection status 89
connections involved in deadlock 140
connects since first database connect 71
coordinating node 61
CPU time used 191
current agents waiting on locks 144
current number of tablequeue buffers

overflowed 188
cursor name 178
data definition language (DDL) SQL statements 169
database activation timestamp 41
database alias used by application 54
database country code 59
database deactivation timestamp 41
database files closed 100
database location 43
database manager type at monitored (server)

node 35
database name 39
database path 40
deadlocks detected 133
degree of parallelism 191
direct read requests 117
direct read time 118
direct reads from database 115
direct write requests 117

data elements (by name) (continued)
direct write time 118
direct writes to database 116
drda correlation token 57
dynamic SQL statements attempted 165
exclusive lock escalations 135
execution elapsed time 185
failed statement operations 165
fcm buffers currently free 85
host product/version ID 55
ID of code page used by application 48
input database alias 193
internal automatic rebinds 170
internal commits 171
internal rollbacks 172
internal rollbacks due to deadlock 173
internal rows deleted 157
internal rows inserted 159
internal rows updated 158
last backup timestamp 44
last reset timestamp 192
local connections 69
local connections executing in the database

manager 70
local databases with current connects 71
lock escalations 134
lock mode 136
lock object name 138
lock object type waited on 137
lock status 137
lock wait start timestamp 145
lock waits 141
locks held 131
log being rolled forward 149
log phase 149
maximum database heap allocated 126
maximum number of agents registered 74
maximum number of agents waiting 74
maximum number of associated agents 77
maximum number of coordinating agents 76
maximum number of locks held 139
maximum secondary log space used 127
maximum total log space used 128
message anchors currently free 86
minimum connection entries 87
minimum fcm buffers free 85
minimum message anchors 86
minimum request blocks 88
number of agents created 190
number of agents working on a statement 190

 Index 291

data elements (by name) (continued)
number of agents working on a subsection 186
number of idle agents 75
number of lock timeouts 139
number of log pages read 129
number of log pages written 130
number of nodes 89
number of rollforward table spaces 149
number of rows read from tablequeues 188
number of rows written to tablequeues 189
number of successful fetches 182
open local cursors 163
open local cursors with blocking 163
open remote cursors 160
open remote cursors with blocking 161
outbound application ID 55
outbound sequence number 56
package cache inserts 124
package cache lookups 123
package name 177
piped sorts accepted 81
piped sorts requested 80
post threshold sorts 80
previous transaction stop time 65
previous unit of work completion timestamp 62
process or thread id 66
product identification 38
product name 38
query cost estimate 183
query number of rows estimate 183
rejected block cursor requests 162
remote connections executing in the database

manager 69
remote connections to database manager 68
request blocks currently free 88
rollback statements attempted 167
rolled back application 147
rollforward timestamp 148
rollforward type 148
rows deleted 153
rows inserted 153
rows read 156
rows selected 154
rows updated 154
rows written 155
secondary connections 78
secondary logs allocated currently 129
section inserts 126
section lookups 125
section number 177

data elements (by name) (continued)
select SQL statements executed 168
sequence number 52
sequence number holding lock 147
server instance name 35
server operating system 37
server product/version ID 36
server version 36
service level 37
snapshot time 193
sort overflows 83
SQL communications area (SQLCA) 182
SQL dynamic statement text 180
SQL requests since last commit 173
start database manager timestamp 34
statement node 174
statement operation 176
statement operation start timestamp 179
statement operation stop timestamp 180
statement sorts 181
statement type 175
static SQL statements attempted 164
status of database 42
status of DB2 instance 39
stolen agents 77
subsection node number 184
subsection number 184
subsection status 185
table file ID 159
table name 151
table schema name 152
table space name 143
table type 150
tablespace being rolled forward 148
time waited for prefetch 110
time waited on locks 142
total buffer pool physical read time 99
total buffer pool physical write time 100
total fcm buffers received 90
total fcm buffers sent 90
total lock list memory in use 132
total number of tablequeue buffers overflowed 187
total sort heap allocated 79
total sort time 82
total sorts 82
total time unit of work waited on locks 144
unit of work completion status 65
Unit of Work log space used 130
unit of work start timestamp 63
unit of work stop timestamp 64

292 System Monitor Guide and Reference

data elements (by name) (continued)
update/insert/delete SQL statements executed 168
user authorization level> 60
user login ID 56
waited for node on a tablequeue 187
waiting for any node to send on a tablequeue 186

database
information 233
monitor, resetting 241

database activation timestamp, monitor element 41
database alias used by application, monitor element 54
database connection

applications connected currently, monitor
element 72

applications executing in the database currently,
monitor element 72

connection request completion timestamp, monitor
element 62

database country code, monitor element 59
database deactivation timestamp, monitor element 41
database event monitor 18
database files closed, monitor element 100
database heap data elements

maximum database heap allocated 126
database identification data elements

catalog node network name 42
catalog node number 43
database activation timestamp 41
database deactivation timestamp 41
database location 43
database name 39
database path 40
last backup timestamp 44
status of database 42

database location, monitor element 43
database manager

monitor switches, checking 228, 230
statistics 232

database manager configuration data elements
active sorts 84
agents assigned from pool 75
agents registered 73
agents waiting for a token 73
applications connected currently 72
applications executing in the database currently 72
committed private memory 78
connection entries currently free 87
connection status 89
connects since first database connect 71
fcm buffers currently free 85

database manager configuration data elements (con-
tinued)

local connections 69
local connections executing in the database

manager 70
local databases with current connects 71
maximum number of agents registered 74
maximum number of agents waiting 74
maximum number of associated agents 77
maximum number of coordinating agents 76
message anchors currently free 86
minimum connection entries 87
minimum fcm buffers free 85
minimum message anchors 86
minimum request blocks 88
number of idle agents 75
number of nodes 89
piped sorts accepted 81
piped sorts requested 80
post threshold sorts 80
remote connections executing in the database

manager 69
remote connections to database manager 68
request blocks currently free 88
secondary connections 78
sort overflows 83
stolen agents 77
total fcm buffers received 90
total fcm buffers sent 90
total sort heap allocated 79
total sort time 82
total sorts 82

database manager snapshot 7
database manager type at monitored (server) node,

monitor element 35
database monitor

description 266
database name, monitor element 39
database path, monitor element 40
database snapshot 7
database status data elements

See database identification data elements
database system monitor

GET DATABASE MANAGER MONITOR
SWITCHES 228

GET MONITOR SWITCHES 230
GET SNAPSHOT 232
RESET MONITOR 241
UPDATE MONITOR SWITCHES 266

 Index 293

db_conn_time element 41
db_heap_top element 126
db_location element 43
db_name element 39
db_path element 40
db_status element 42
db2 explain 2
db2_status 39
db2batch 27
db2eva 14, 16, 222
db2evmon 16, 27, 224
db2gov 27
db2start_time element 34
ddl_sql_stmts element 169
deadlock event monitor 18
deadlocks data elements

See locks and deadlocks data elements
deadlocks detected, monitor element 133
deadlocks element 133
degree of parallelism, monitor element 191
degree_parallelism element 191
direct read requests, monitor element 117
direct read time, monitor element 118
direct reads from database, monitor element 115
direct write requests, monitor element 117
direct write time, monitor element 118
direct writes to database, monitor element 116
direct_read_reqs element 117
direct_read_time element 118
direct_reads element 115
direct_write_reqs element 117
direct_write_time element 118
direct_writes element 116
disconn_time element 41
dl_conns element 140
drda correlation token, monitor element 57
DROP statement 226
dynamic SQL statements attempted, monitor

element 165
dynamic_sql_stmts element 165

E
ESTIMATE SIZE REQUIRED FOR sqlmonss() OUTPUT

BUFFER (sqlmonsz) 260
event analyzer 27

See also db2eva
event analyzer command 222
event monitor

CREATE EVENT MONITOR statement 214

event monitor (continued)
DROP statement 226
EVENT_MON_STATE function 227
SET EVENT MONITOR STATE statement 242

event monitor trace formatter 224
event monitors

activating 15
authority required 15
autostarting 15
blocked 202
buffering 201
creating 15
definition 4, 17
disk space 203, 213
event types 17
example of deadlock monitoring 10
file event monitors 201
information available 17
matching to application 200
non-blocked 202
output 195
partitioned databases 25
pipe event monitors 18
processing data 203
reading the trace 16
restarting 204
target 202, 204
trace 10, 195
using 15
when written 10, 17

event types 17
EVENT_MON_STATE function 227
exclusive lock escalations, monitor element 135
execution elapsed time, monitor element 185
execution_id element 56
extended storage 110
extended storage data elements

buffer pool data pages from extended storage 113
buffer pool data pages to extended storage 112
buffer pool index pages from extended storage 114
buffer pool index pages to extended storage 112

F
failed statement operations, monitor element 165
failed_sql_stmts element 165
fast communication manager data elements

connection entries currently free 87
connection status 89
fcm buffers currently free 85

294 System Monitor Guide and Reference

fast communication manager data elements (continued)
message anchors currently free 86
minimum connection entries 87
minimum fcm buffers free 85
minimum message anchors 86
minimum request blocks 88
number of nodes 89
request blocks currently free 88
total fcm buffers received 90
total fcm buffers sent 90

fcm buffers currently free, monitor element 85
fetch_count element 182
file event monitors 201
files_closed element 100
function

EVENT_MON_STATE 227
EVENT_MON_STATE, returning event monitor

states 227

G
gauges 33
GET DATABASE MANAGER MONITOR

SWITCHES 228
GET MONITOR SWITCHES 230
GET SNAPSHOT 232

effect on UPDATE MONITOR SWITCHES 266
GET SNAPSHOT (sqlmonss) 248
GET/UPDATE MONITOR SWITCHES (sqlmon) 244

H
host product/version ID, monitor element 55
host_prdid element 55

I
ID of code page used by application, monitor

element 48
idle agent 67
idle_agents element 75
information available

from snapshot monitoring 7
information data elements 33
input database alias, monitor element 193
input_db_alias element 193
instance connection 9
int_auto_rebinds element 170
int_commits element 171

int_deadlock_rollbacks element 173
int_rollbacks element 172
int_rows_deleted element 157
int_rows_inserted element 159
int_rows_updated element 158
interface, database system monitor

event monitor commands 213
event monitor GUI 16
snapshot monitoring APIs 7, 213
snapshot monitoring commands 7, 213
snapshot monitoring GUI 7

internal automatic rebinds, monitor element 170
internal commits, monitor element 171
internal rollbacks due to deadlock, monitor element 173
internal rollbacks, monitor element 172
internal rows deleted, monitor element 157
internal rows inserted, monitor element 159
internal rows updated, monitor element 158
intra-query parallelism data elements

degree of parallelism 191
number of agents created 190
number of agents working on a statement 190

L
last backup timestamp, monitor element 44
last reset timestamp, monitor element 192
last_backup element 44
last_reset element 192
LIST ACTIVE DATABASES 235
LIST APPLICATIONS 237
LIST DCS APPLICATIONS 239
loc_list_in_use 132
local connections executing in the database manager,

monitor element 70
local connections, monitor element 69
local databases with current connects, monitor

element 71
local_cons element 69
local_cons_in_exec 70
lock escalations, monitor element 134
lock mode, monitor element 136
lock object name, monitor element 138
lock object type waited on, monitor element 137
lock snapshot 7
lock status, monitor element 137
lock wait data elements

agent ID holding lock 145
application ID holding lock 146
current agents waiting on locks 144

 Index 295

lock wait data elements (continued)
lock wait start timestamp 145
lock waits 141
rolled back application 147
sequence number holding lock 147
table space name 143
time waited on locks 142
total time unit of work waited on locks 144

lock wait start timestamp, monitor element 145
lock waits, monitor element 141
lock_escals element 134
lock_mode element 136
lock_object_name element 138
lock_object_type element 137
lock_status element 137
lock_timeouts element 139
lock_wait_start_time element 145
lock_wait_time element 142
lock_waits 141
locks

current agents waiting on locks, monitor
element 144

locks held, monitor element 131
total lock list memory in use, monitor element 132
total time unit of work waited on locks, monitor

element 144
locks and deadlocks data elements

connections involved in deadlock 140
deadlocks detected 133
exclusive lock escalations 135
lock escalations 134
lock mode 136
lock object name 138
lock object type waited on 137
lock status 137
locks held 131
maximum number of locks held 139
number of lock timeouts 139
total lock list memory in use 132

locks held, monitor element 131
locks_held element 131
locks_held_top element 139
locks_waiting 144
log being rolled forward, monitor element 149
log phase, monitor element 149
log_reads element 129
log_space_used element 130
log_writes element 130
logging data elements

maximum secondary log space used 127

logging data elements (continued)
maximum total log space used 128
number of log pages read 129
number of log pages written 130
secondary logs allocated currently 129
Unit of Work log space used 130

logical view 22

M
MA_free element 86
MA_free_bottom element 86
maximum database heap allocated, monitor

element 126
maximum number of agents registered, monitor

element 74
maximum number of agents waiting, monitor

element 74
maximum number of associated agents, monitor

element 77
maximum number of coordinating agents, monitor

element 76
maximum number of locks held, monitor element 139
maximum secondary log space used, monitor

element 127
maximum total log space used, monitor element 128
memory requirements 23
message anchors currently free, monitor element 86
minimum connection entries, monitor element 87
minimum fcm buffers free, monitor element 85
minimum message anchors, monitor element 86
minimum request blocks, monitor element 88
mon_heap_sz 23
monitor switches

query database manager switch settings 4
setting explicitly 3
setting for a snapshot 5
setting implicitly 4

monitored level 28
monitored object 28
monitoring

levels 3
monitoring application 28
monitoring databases 228, 230
multiple partition databases

event monitors 25
snapshot monitoring 23
subsections 26
tablequeue 26

296 System Monitor Guide and Reference

N
nodegroup 26
non-buffer I/O activity data elements

direct read requests 117
direct read time 118
direct reads from database 115
direct write requests 117
direct write time 118
direct writes to database 116

num_agents element 190
num_subagents element 186
number of agents created, monitor element 190
number of agents working on a statement, monitor

element 190
number of agents working on a subsection, monitor

element 186
number of idle agents, monitor element 75
number of lock timeouts, monitor element 139
number of log pages read, monitor element 129
number of log pages written, monitor element 130
number of nodes, monitor element 89
number of rollforward table spaces, monitor

element 149
number of rows read from tablequeues, monitor

element 188
number of rows written to tablequeues, monitor

element 189
number of successful fetches, monitor element 182
number_nodes element 89

O
open local cursors with blocking, monitor element 163
open local cursors, monitor element 163
open remote cursors with blocking, monitor

element 161
open remote cursors, monitor element 160
open_loc_curs element 163
open_loc_curs_blk element 163
open_rem_curs element 160
open_rem_curs_blk element 161
operation element 176
outbound application ID, monitor element 55
outbound sequence number, monitor element 56
outbound_appl_id element 55
outbound_sequence_no element 56
overflow_accesses 157
overflows, event monitor 202

P
package cache

See cache
package cache data elements

package cache inserts 124
package cache lookups 123
section inserts 126
section lookups 125

package cache inserts, monitor element 124
package cache lookups, monitor element 123
package name, monitor element 177
package_name element 177
pipe event monitors

defining 18
overflows 20
using 18

piped sorts accepted, monitor element 81
piped sorts requested, monitor element 80
piped_sorts_accepted element 81
piped_sorts_requested element 80
pkg_cache_inserts element 124
pkg_cache_lookups 123
pool_async_data_read_reqs element 107
pool_async_data_reads element 101
pool_async_data_writes element 102
pool_async_index_reads element 104
pool_async_index_writes element 103
pool_async_read_time element 105
pool_async_write_time element 106
pool_data_from_estore element 113
pool_data_l_reads element 93
pool_data_p_reads element 94
pool_data_to_estore element 112
pool_data_writes element 95
pool_drty_pg_steal_clns 108
pool_drty_pg_thrsh_clns element 109
pool_index_from_estore element 114
pool_index_l_reads element 96
pool_index_p_reads element 97
pool_index_to_estore element 112
pool_index_writes element 98
pool_lsn_gap_clns element 107
pool_read_time element 99
pool_write_time element 100
post threshold sorts, monitor element 80
post_threshold_sorts element 80
prefetch_wait_time element 110
prefetchers 92
prev_stop_time element 65

 Index 297

prev_uow_stop_time element 62
previous transaction stop time, monitor element 65
previous unit of work completion timestamp, monitor

element 62
process or thread id, monitor element 66
product identification, monitor element 38
product name, monitor element 38
product_name element 38

Q
query

database manager monitor switch settings 4
event monitor state 17

query cost estimate, monitor element 183
query number of rows estimate, monitor element 183
query_card_estimate element 183
query_cost_estimate element 183

R
RB_free element 88
RB_free_bottom element 88
rej_curs_blk element 162
rejected block cursor requests, monitor element 162
rem_cons_in element 68
rem_cons_in_exec 69
remote connections executing in the database manager,

monitor element 69
remote connections to database manager, monitor

element 68
request blocks currently free, monitor element 88
RESET MONITOR 241
RESET MONITOR (sqlmrset) 263
resetting monitor data 21
rf_log_num element 149
rf_num_tspaces element 149
rf_status element 149
rf_timestamp element 148
rf_type element 148
rollback statements attempted, monitor element 167
rollback_sql_stmts 167
rolled back application, monitor element 147
rolled_back_appl_id element 147
rollforward data elements

log being rolled forward 149
log phase 149
number of rollforward table spaces 149
rollforward timestamp 148
rollforward type 148

rollforward data elements (continued)
tablespace being rolled forward 148

rollforward timestamp, monitor element 148
rollforward type, monitor element 148
rows deleted, monitor element 153
rows inserted, monitor element 153
rows read, monitor element 156
rows selected, monitor element 154
rows updated, monitor element 154
rows written, monitor element 155
rows_deleted element 153
rows_inserted element 153
rows_read element 156
rows_selected element 154
rows_updated element 154
rows_written element 155

S
samples

event monitor trace 12, 196
event monitoring on partitioned databases 25
lock snapshot 5
monitoring deadlocks with a lock snapshot 10
programming to read the data stream 204
query event monitor state 17
setting switches 21
snapshots on partitioned databases 23

sec_log_used_top element 127
sec_logs_allocated element 129
secondary connections, monitor element 78
secondary logs allocated currently, monitor

element 129
section inserts, monitor element 126
section lookups, monitor element 125
section number, monitor element 177
section_number element 177
select SQL statements executed, monitor element 168
select_sql_stmts element 168
sequence number holding lock, monitor element 147
sequence number, monitor element 52
sequence_no element 52
sequence_no_holding_lk element 147
server identification data elements

configuration NNAME at monitoring (server)
node 34

database manager type at monitored (server)
node 35

product identification 38
product name 38

298 System Monitor Guide and Reference

server identification data elements (continued)
server instance name 35
server operating system 37
server product/version ID 36
server version 36
service level 37
start database manager timestamp 34
status of DB2 instance 39

server instance name, monitor element 35
server operating system, monitor element 37
server product/version ID, monitor element 36
server status data elements

See server identification data elements
server version, monitor element 36
server_db2_type element 35
server_instance_name element 35
server_nname element 34
server_platform element 37
server_prdid element 36
server_version element 36
service level, monitor element 37
service_level element 37
SET EVENT MONITOR STATE statement 242
setting switches

for a monitoring application 5
snapshot monitoring

APIs 213
authority required 6
availability of data 10
commands 213
data element categories 4
definition 4
information available 7
information returned 7
interface 7
partitioned databases 23
request types 7
required connection 9
sample output 5, 21
setting switches 5, 21
snapshot types 7

snapshot monitoring data elements
input database alias 193
last reset timestamp 192
snapshot time 193

snapshot time, monitor element 193
snapshot types

application 8
buffer pool 8
database 8

snapshot types (continued)
database manager 8
lock 8
table 8
table space 8

sort overflows, monitor element 83
sort_heap_allocated element 79
sort_overflows element 83
SQL communications area (SQLCA), monitor

element 182
SQL cursors data elements

accepted block cursor requests 162
open local cursors 163
open local cursors with blocking 163
open remote cursors 160
open remote cursors with blocking 161
rejected block cursor requests 162

SQL dynamic statement text, monitor element 180
SQL requests since last commit, monitor element 173
SQL statement

CREATE EVENT MONITOR 214, 221
DROP 226
SET EVENT MONITOR STATE 242, 243

SQL statement activity data elements
binds/precompiles attempted 174
commit statements attempted 166
data definition language (DDL) SQL statements 169
dynamic SQL statements attempted 165
failed statement operations 165
internal automatic rebinds 170
internal commits 171
internal rollbacks 172
internal rollbacks due to deadlock 173
rollback statements attempted 167
select SQL statements executed 168
SQL requests since last commit 173
statement node 174
static SQL statements attempted 164
update/insert/delete SQL statements executed 168

SQL statement details data elements
application creator 179
cursor name 178
number of successful fetches 182
package name 177
query cost estimate 183
query number of rows estimate 183
section number 177
SQL communications area (SQLCA) 182
SQL dynamic statement text 180
statement operation 176

 Index 299

SQL statement details data elements (continued)
statement operation start timestamp 179
statement operation stop timestamp 180
statement sorts 181
statement type 175

sql_reqs_since_commit element 173
sqlca element 182
sqlcode -973 23
sqlmon.h header file 195
ss_exec_time element 185
ss_node_number element 184
ss_number element 184
ss_status element 185
start database manager timestamp, monitor element 34
statement event monitor 18
statement node, monitor element 174
statement operation start timestamp, monitor

element 179
statement operation stop timestamp, monitor

element 180
statement operation, monitor element 176
statement sorts, monitor element 181
statement type, monitor element 175
static SQL statements attempted, monitor element 164
static_sql_stmts 164
statistics

database manager 232
status element 65
status of database, monitor element 42
status of DB2 instance, monitor element 39
status_change_time element 48
stmt_node_number element 174
stmt_operations element 176
stmt_sorts element 181
stmt_start element 179
stmt_stop element 180
stmt_text element 180
stmt_type element 175
stolen agent 67
stolen agents, monitor element 77
stop_time element 180
subagent 67
subagent information data elements

active sorts 84
piped sorts accepted 81
piped sorts requested 80
post threshold sorts 80
process or thread id 66
sort overflows 83
total sort heap allocated 79

subagent information data elements (continued)
total sort time 82
total sorts 82

subsection details data elements
current number of tablequeue buffers

overflowed 188
execution elapsed time 185
number of agents working on a subsection 186
number of rows read from tablequeues 188
number of rows written to tablequeues 189
subsection node number 184
subsection number 184
subsection status 185
total number of tablequeue buffers overflowed 187
waited for node on a tablequeue 187
waiting for any node to send on a tablequeue 186

subsection node number, monitor element 184
subsection number, monitor element 184
subsection status, monitor element 185
subsections 183

definition 26
monitoring 26
tablequeue 26

switches
See monitor switches

T
table activity data elements

accesses to overflowed records 157
internal rows deleted 157
internal rows inserted 159
internal rows updated 158
rows deleted 153
rows inserted 153
rows read 156
rows selected 154
rows updated 154
rows written 155
table file ID 159
table name 151
table schema name 152
table type 150

table event monitor 18
table file ID, monitor element 159
table name, monitor element 151
table schema name, monitor element 152
table snapshot 7
table space event monitor 18

300 System Monitor Guide and Reference

table space name, monitor element 143
table space snapshot 7
table type, monitor element 150
table_file_id element 159
table_name element 151
table_schema element 152
table_type element 150
tablequeue 26
tablespace being rolled forward, monitor element 148
tablespace_name element 143
taking a snapshot

issuing get snapshot command 5
sample output 5

time 33
time waited for prefetch, monitor element 110
time waited on locks, monitor element 142
time_stamp element 193
timestamp 33
tools

control center 27
db2batch 27
db2evmon 27
db2gov 27
event analyzer 27

tot_log_used_top element 128
total buffer pool physical read time, monitor element 99
total buffer pool physical write time, monitor

element 100
total fcm buffers received, monitor element 90
total fcm buffers sent, monitor element 90
total lock list memory in use, monitor element 132
total number of tablequeue buffers overflowed, monitor

element 187
total sort heap allocated , monitor element 79
total sort time, monitor element 82
total sorts, monitor element 82
total time unit of work waited on locks, monitor

element 144
total_buffers_rcvd element 90
total_buffers_sent element 90
total_cons element 71
total_sec_cons element 78
total_sort_time element 82
total_sorts element 82
tq_cur_send_spills element 188
tq_node_waited_for element 187
tq_rows_read element 188
tq_rows_written element 189
tq_tot_send_spills element 187

tq_wait_for_any element 186
trace

event monitor 10
format 195
programming to read 204
sample 12
size 202
viewing 14

transaction event monitor 18
ts_name element 148

U
uid_sql_stmts element 168
unit of work completion status, monitor element 65
Unit of Work log space used, monitor element 130
unit of work start timestamp, monitor element 63
unit of work stop timestamp, monitor element 64
uow_comp_status element 65
uow_lock_wait_time element 144
uow_log_space_used element 130
uow_start_time element 63
uow_stop_time element 64
UPDATE MONITOR SWITCHES 266
update/insert/delete SQL statements executed, monitor

element 168
updating switch settings

See setting switches
user authorization level, monitor element 60
user login ID, monitor element 56

V
view, logical 22

W
waited for node on a tablequeue, monitor element 187
waiting for any node to send on a tablequeue, monitor

element 186
water mark 33

X
x_lock_escals element 135

 Index 301

302 System Monitor Guide and Reference

 Contacting IBM

This section lists ways you can get more information
from IBM.

If you have a technical problem, please take the time to
review and carry out the actions suggested by the Trou-
bleshooting Guide before contacting DB2 Customer
Support. Depending on the nature of your problem or
concern, this guide will suggest information you can
gather to help us to serve you better.

For information or to order any of the DB2 Universal
Database products contact an IBM representative at a
local branch office or contact any authorized IBM soft-
ware remarketer.

Telephone

If you live in the U.S.A., call one of the following
numbers:

¹ 1-800-237-5511 to learn about available service
options.

¹ 1-800-IBM-CALL (1-800-426-2255) or
1-800-3IBM-OS2 (1-800-342-6672) to order pro-
ducts or get general information.

¹ 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the
United States, see Appendix A of the IBM Software
Support Handbook. You can access this document by
selecting the "Roadmap to IBM Support" item at:
http://www.ibm.com/support/.

Note that in some countries, IBM-authorized dealers
should contact their dealer support structure instead of
the IBM Support Center.

World Wide Web
http://www.software.ibm.com/data/
http://www.software.ibm.com/data/db2/library/

The DB2 World Wide Web pages provide current DB2
information about news, product descriptions, education
schedules, and more. The DB2 Product and Service
Technical Library provides access to frequently asked
questions, fixes, books, and up-to-date DB2 technical
information. (Note that this information may be in English
only.)

Anonymous FTP Sites
ftp.software.ibm.com

Log on as anonymous. In the directory /ps/products/db2,
you can find demos, fixes, information, and tools con-
cerning DB2 and many related products.

Internet Newsgroups
comp.databases.ibm-db2, bit.listserv.db2-l

These newsgroups are available for users to discuss
their experiences with DB2 products.

CompuServe
GO IBMDB2 to access the IBM DB2 Family forums

All DB2 products are supported through these forums.

To find out about the IBM Professional Certification
Program for DB2 Universal Database, go to
http://www.software.ibm.com/data/db2/db2tech/db2cert.html

 Copyright IBM Corp. 1993, 1997 303

ÉÂÔÙ

Part Number: 10J8164

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

S10J-8164-00

1
0
J
8
1
6
4

